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Abstract

In this thesis, we study spectral measures of Boolean functions. In the first half of thesis,

we study the Walsh spectrum and the periodic autocorrelation spectrum of a Boolean

function. A database of Boolean functions is implemented and described, and a survey is

presented of cryptographic criteria, most of which are included within the database. In the

second half of the thesis, we study the aperiodic autocorrelation spectrum of a Boolean

function and some more spectral measures with respect to certain types of unitary matrix.

We investigate the Turyn construction for Golay complementary pairs. We show how to

convert this construction so as to realize three distinct types of complementary construction.

We focus, in particular, on the construction of Boolean function pairs which are Type-I,

Type-II or Type-III complementary or near-complementary.
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Chapter 1

Introduction

Boolean functions are functions from the vector space of all binary vectors of length n,

F2
n, to the finite field F2 ({0, 1}). They play an important role in coding theory and a fun-

damental role in cryptology. In both applications, Boolean functions with a small number

of variables n are used in practice due to efficiency. Though n is currently small, studying

and determining those n small Boolean functions with specific and desired properties is a

hard problem that cannot be solved by an exhaustive search due to the size of the space

of n- variable Boolean functions which is 22n . This size is huge for n ≥ 6. For instance

suppose that we have a computer that performs 109 operations per second, then for n = 6

we have 226
= 264 ≈ 1019 different Boolean functions which means that our computer will

spend 1010 seconds ≈ 31 years looping through all of them. When n = 7 it will spend much

longer than the current age of the universe. This simply means that, for n ≥ 6, exhaustive

search is infeasible. So looking for desired functions should employ clever computer inves-

tigations(heuristic search) or mathematical constructions(algebraic techniques) or employ

a combination of both investigations and algebraic techniques.

In this thesis, we implement a Boolean function database website that contains desirable

Boolean functions found by researchers throughout the world. The website calculates cer-

tain properties of a Boolean function, and encourages the user to save the Boolean function

to the website if it is a good one, and retrieves the Boolean function according to the

conditions entered by the user. The website displays the bounds on the properties of the

Boolean functions in the database. It also calculates theoretical bounds on the properties

of a Boolean function.
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Conventionally, researchers identify periodic cryptographic criteria for a Boolean func-

tion and these are what we focus on in the Boolean functions database. In contrast, in the

second half of the thesis, we consider the aperiodic autocorrelation spectrum of a Boolean

function and some more spectral measures with respect to certain types of unitary matrix.

Specifically, we investigate the Turyn construction for Golay complementary pairs. We

show how to convert this construction so as to realize three distinct types of complemen-

tary construction. We focus, in particular, on the construction of Boolean function pairs

which are Type-I, Type-II or Type-III complementary or near-complementary.

The rest of the thesis is organized as follows:

In Chapter 2, we begin by giving a brief introduction to cryptology and the use of Boolean

functions in cryptology. Then we discuss three different ways to represent Boolean func-

tions.

In Chapter 3, we begin by defining two useful analytic tools, the Walsh Spectrum and the

periodic autocorrelation spectrum, which are used in describing many of the cryptographic

properties of Boolean functions. After this, we discuss the properties that are related to

the Walsh spectrum and the periodic autocorrelation spectrum. We close the Chapter by

discussing other properties that are not directly related to Walsh Spectrum and the periodic

autocorrelation spectrum.

Chapter 4 is devoted to theoretical bounds on the properties of Boolean functions.

We discuss many of the currently known bounds on the algebraic degree, nonlinearity,

correlation immunity, resilience, propagation criteria, absolute indicator and sum of squares

indicator.

Chapter 5 describes the implemented Boolean Functions Database Website and lists

the objectives of this Website.

Chapter 6 surveys Golay complementary sequences and arrays. It discusses the existence

of Golay sequences and arrays, describes the spectral properties of Golay sequences and

arrays, and also describes some of the standard constructions of Golay sequences and arrays.

In Chapter 7, we introduce Type-I, Type-II and Type-III complementary array pairs.
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We then discuss the constructions of Type-I, Type-II and Type-III array pairs and the

conversions among Type-I, Type-II and Type-III. We also present binary constructions for

Type-I, Type-II and Type-III complementary array pairs, where each array dimension is

of length 2 and characterize all known binary pairs in Type-I, Type-II and Type-III that

could be constructed by recursively using these binary constructions. We close the chapter

by using these binary constructions to find near-complementary binary pairs in Type-I and

Type-II simultaneously.

Chapter 8 wraps up what has been accomplished in this thesis and presents some future

work.
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Chapter 2

Introduction to Boolean functions

Cryptology is the study that embodies cryptography and cryptanalysis. Cryptography

is the study of designing cryptosystems, while cryptanalysis is the study of breaking these

cryptosystems. The main objective of cryptography is to secure the communication be-

tween two or more channels by transforming the transmitted message(plaintext) to a mes-

sage(ciphertext) that cannot be recovered by an adversary to its original status before the

transformation. The transformation from plaintext to ciphertext is called encryption and

the recovery of the plaintext from the ciphertext is called decryption.

Encryption-decryption cryptography is the classical cryptography. Modern cryptog-

raphy has embodied other techniques such as authentication, data integrity and non-

repudiation [23]. The study of encryption-decryption can be divided into symmetric cryp-

tography and public key cryptography. Symmetric cryptography is the process of encrypt-

ing and decrypting a message using the same key, while public key cryptography is the

process of encrypting a message by a public key and decrypting it by a private key. The

study of symmetric cryptography includes the study of stream ciphers and block ciphers

and their applications. Since we focus on Boolean functions in this thesis, we will explain

stream and block ciphers a little bit more.

2.1 Stream Ciphers

A stream cipher operates on individual bits. The provably secure stream cipher, called the

one time pad, is a stream cipher whose secret key has the same length as the plaintext. The

cipher xors the secret key bits with plain text bits. Modern stream ciphers try to embody
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the one time pad by using a short key to generate a much longer pseudo-random key stream

sequence. Constructing robust stream ciphers requires keystreams of long period otherwise

the stream cipher will be vulnerable to certain attacks.

Linear Feedback Shift Registers(LFSRs) devices are used to produce long period se-

quences from short ones. An LFSR of length n consists of n stages. Each stage stores

one bit(or word) and has one input and one output. The flow of bits is controlled by a

clock. At each clock tick, the contents of stage 0 is the output and forms part of the output

sequence. Stage i is moved to stage i − 1 for each 1 ≤ i ≤ n − 1. Stage n − 1 is filled

by the feedback bit(or word), sj, which is formed by xoring together a fixed subset of the

previous stages (0, 1, . . . , n− 1) depending on the structure of the LFSR (see the following

figure, sj =
⊕n

i=1 cisj−i) [23]. LFSRs are vulnerable to the powerful O(n2) linear com-

Figure 2.1: LFSR

plexity Berlekamp-Massey attack [23] which requires only 2n consecutive sequence bits(or

words) to deduce the ci’s. Therefore, the LFSR is used together with a nonlinear Boolean

function to avoid the Berlekamp-Massey attack. The most used LFSR models are the filter

generator and the combining LFSR.

2.2 Block Ciphers

A block cipher divides the plaintext into block of bits with the same length and then

encrypts each block by the secret key. As in stream ciphers, Boolean functions play an

important role in block ciphers. Every block cipher takes as input a block of plaintext

represented in bits (x0, . . . , xn−1) and outputs a binary vector (y0, . . . , ym−1) depending on
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Filter generator Combining LFSR

Figure 2.2: Filter generator and Combining LFSR

the secret key. y0, . . . , ym−1 are the outputs of Boolean functions having x0, . . . , xn−1 and

the secret key as their input parameters.

2.3 Representations of Boolean functions

There are many ways to represent a Boolean function. The advantage of each representation

over the other depends on the application that is using the Boolean function. We present

now three different representations.

Truth Table(TT)

The truth table representation is the default representation of a Boolean function as it

directly translates the definition of a Boolean function. The TT of a Boolean function

f on F2
n is a binary vector of length 2n, each element of this binary vector is an image

corresponding to a unique element in F2
n. Now we introduce a notation that lets us order

the elements of the TT lexicographically. We replace each element (x0, x1, . . . , xn−1) in

F2
n by its decimal representation x = x02n−1 + x12n−2 + ... + xn−1. So instead of writing

f(0, 0, . . . , 0) we write f(0), instead of f(0, 0, . . . , 1) we write f(1), instead of f(1, 1, . . . , 1)

we write f(2n − 1) and so on. This gives a lexicographical order on all the elements of
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F2
n and allows us to define a Boolean function as f = [f(0) f(1) f(2) . . . f(2n − 1)]. For

instance, suppose we have a 3-variable Boolean function f = [0 1 1 0 0 1 0 1]. Then our

TT will be as shown in Table 2.1.

x x0 x1 x2 f(x)

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

Table 2.1: Truth table

Another representation that is closely related to the truth table is the polarity TT(PTT)

or bipolar representation, and is widely used in telecommunications. It is defined as (−1)f =

[(−1)f(0) (−1)f(1) . . . (−1)f(2n−1)] which means that instead of 0’s in TT we have 1’s in the

PTT and instead of 1’s in TT we have −1’s in the PTT. So it is a sequence of {1,−1}’s.

Algebraic Normal Form(ANF)

The ANF is one of the most used representations in cryptography. An ANF of a Boolean

function on F2
n is a polynomial of the following form:

f(x0, x1, . . . , xn−1) =
∑

j=(j0,...,jn−1)∈Fn2

ajx
j0
0 x

j1
1 · · ·x

jn−1

n−1 (mod 2)

where aj ∈ F2.

The algebraic degree of f , denoted by deg(f), is the number of variables in the longest

term(s) of the ANF of f . If deg(f) ≤ 1, then f is called an affine function. An affine
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function without the constant term (i.e. a0 = 0) is often called a linear function. An affine

function with deg(f) = 0, which is either f(x) = 0 or f(x) = 1, is called a constant function.

The set of affine functions is denoted by A(n).

Let C = [c0 c1 . . . c2n−1] be the coefficient vector of the polynomial representing the

Boolean function f . If cj = 1, where 0 ≤ j ≤ 2n−1, then the monomial xj00 x
j1
1 · · ·x

jn−1

n−1 exists

in the ANF of f and does not otherwise, where (j0, j1, . . . , jn−1) is the binary representation

of index j. For instance, if C = [0 0 0 0 1 0 0 1] then the ANF is x0 +x0x1x2. The following

theorem, shows a relation between C and the truth table f = [f(0) f(1) f(2) . . . f(2n−1)].

Theorem 1. [32] Let f be the truth table of an n-variable Boolean function. Let be as

defined above. Then

C = fAn

where

An =

 1 1

0 1

⊗n

That is An is the nth tensor power1 mod 2 of the matrix

 1 1

0 1

, or in other notation,

An =

 An−1 An−1

0 An−1

 and A0 = [1]

Proof:

We prove the theorem by induction on n. Let n = 1. Take any Boolean function in one

1The tensor product of a p× q matrix U and a k × l matrix V is defined by the pk × ql matrix U ⊗ V

=


u11V u12V . . .

u21V u22V . . .
...

...
. . .

, where uij is the entry of row i and column j in U . The nth tensor power of a

matrix U is the tensor product of U with itself n times: U ⊗ U ⊗ · · · ⊗ U .
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variable f = [f(0) f(1)] and multiply it by

A1 =

 1 1

0 1


We get [f(0) f(0)+f(1)]. On the other hand it is obvious that f(x0) = f(0)+(f(0)+f(1))x0

which indicates that C = [f(0) f(0) + f(1)]= fA1. So the theorem is true when n = 1.

To clarify the induction step, we again verify the theorem when n = 2, f = [f(0) f(1)

f(2) f(3)] = [f(0, 0) f(0, 1) f(1, 0) f(1, 1)]. Multiplying f by A2, we get fA2 = [f(0, 0)

f(0, 0) + f(0, 1) f(0, 0) + f(1, 0) f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1)]. On the other hand

f(x0, x1) = f(0, x1) + (f(0, x1) + f(1, x1))x0

Substituting f(0, x1) by f(0, 0) + (f(0, 0) + f(0, 1))x1 and f(1, x1) by f(1, 0) + (f(1, 0) +

f(1, 1))x1, we get f(x0, x1) = f(0, 0)+(f(0, 0)+f(0, 1))x1 +(f(0, 0)+f(1, 0))x1 +(f(0, 0)+

f(0, 1) + f(1, 0) + f(1, 1))x0x1, we see that C = [f(0, 0) f(0, 0) + f(0, 1) f(0, 0) + f(1, 0)

f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1)] = fA2 and this proves that the theorem holds for n =

2.

Now we assume that the theorem holds when the number of variables is less than n.

We want to prove that the theorem is true when the number of variables is n. Let

f(0, x1, . . . , xn−1) = f0(x0, . . . , xn−1) and f(1, x1, . . . , xn−1) = f1(x0, . . . , xn−1). Obviously,

f0 = [f0(0) . . . f0(2n−1)], f1 = [f1(0) . . . f1(2n−1)] and f = [f0 f1]. Let C0 be the coefficient

vector related to f0 and C1 be the coefficient vector related to f1. Then by the induction

hypothesis C0 = f0An−1 and C1 = f1 An−1. Now f=f0+(f0+f1)x0, has coefficient vector

C = [C0 C0 + C1], substituting C0 by f0An−1 and C1 by f1An−1, we find that C = [f0An−1

f0An−1 + f1An−1] = fAn, which proves that the theorem holds when the number of vari-

ables is n.�

Theorem 1 helps us to convert from truth table to ANF and vice versa in almost 22n binary

operations. The following algorithm reduces the conversion to only O(n2n) operations.

Algorithm 1:

Input: TT of a Boolean function f
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Output: The coefficient vector of the ANF of f

For 0 ≤ k ≤ n, define fk,a ∈ F2k , where 0 ≤ a ≤ 2n−k − 1.

1. Set f0, a = f(a) for 0 ≤ a ≤ 2n − 1.

2. for k = 0 to n− 1 do

for b = 0 to 2n−k−1 − 1 do

f(k+1),b = [fk,2b fk,(2b+1)+fk,2b]

3. C = fn,0

The following example illustrates what the above algorithm does. Let us find the ANF

of the Boolean function represented by the truth table in Table 2.1. We have f = [0 1 1 0

0 1 0 1]. Looking at the 1’s positions in C we see that the ANF of f is x2 + x1 + x0x1.

f 0 1 1 0 0 1 0 1

k = 0 0 1 1 1 0 1 0 1

k = 1 0 1 1 0 0 1 0 0

k = 2 0 1 1 0 0 0 1 0

C = f3,0 0 1 1 0 0 0 1 0

Table 2.2: Converting TT to ANF algorithm

Trace representation

The trace representation plays an important role in sequence theory, and is also used

for defining and studying Boolean functions [4]. In the theory of finite fields, the trace

function on the finite field Fpn is the function Tr : Fpn → Fp defined by Tr(x) = x + xp +

xp
2

+ xp
3

+ . . . + xp
n−1

. Here we are considering the case when p = 2, that is, when our

finite field is the binary field F2n . So our trace is a function Tr : F2n → F2. Define the

function Tr(
∑i=k

i=0 x
ait+bi) on F2n for 0 ≤ t ≤ 2n − 2 and integers a, b. Let p(x) be a

10



primitive polynomial over F2n . Then x can generate F2n , i.e., xt where 0 ≤ t ≤ 2n − 2 are

all nonzero elements of F2n . From the theory of finite fields, we know that each element in

F2n can be represented by a binary string of length n, and we also know that F2n consists

of all the possible binary strings of length n. This means that, for each value of xt, we

have a corresponding binary string. By evaluating Tr(
∑i=k

i=0 x
ait+bi) for 0 ≤ t ≤ 2n − 2,

we obtain 2n − 1 binary values. Now, for each t, let Tr(
∑i=k

i=0 x
ait+bi) be an element in

the truth table at the position corresponding to the decimal representation of the binary

string corresponding to the element xt. Now, if we set a value at position 0, we will have a

complete truth table. This value can be either true or false, but by convention we set it as

false. The general form of the trace function we are dealing with is Tr(
∑i=k

i=0 x
ait+bi). There

is a restriction on the values of b1, b2, b3, . . . , bk depending on a1, a2, a3, . . . , ak respectively.

To validate bi, where 1 ≤ i ≤ k we do the following steps:

1. Compute v = gcd(2n − 1, ai).

2. Compute u = (2n − 1)/v.

3. Find the smallest number r such that u divides 2r − 1.

4. Compute e = (2n − 1)/(2r − 1).

5. If xbi ∈ {0 xe x2e . . . x(2r−1)e}, then bi is valid.

Since the trace function is linear then Tr(
∑i=k

i=0 x
ait+bi) =

∑i=k
i=0 Tr(x

ait+bi). After vali-

dating bi and ai, we consider computing the trace function over the finite field F2r rather

than F2n , where r is as noted above.

Let us take an example to explain how to convert a trace representation to a truth table

representation. Suppose we have a Boolean function represented by Tr(x3t+2) with a prim-

itive polynomial p(x) = x3 + x+ 1 on the finite field F23 . The finite field F23 indicates that

the Boolean function represented by Tr(x3t+2) is a 3 variable Boolean function. Computing

Tr(x3t+2) for 0 ≤ t ≤ 23 − 2 = 6, gives us the following table,
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α x0 x1 x2 Tr(α)

1 0 0 1 0

x 0 1 0 1

x2 1 0 0 0

x3 0 1 1 0

x4 1 1 0 1

x5 1 1 1 1

x6 1 0 1 1

Table 2.3: Trace computation

Permuting the table to be in a lexicographical order and adding the all zero row, we

get the following truth table

α x0 x1 x2 Tr(α)

0 0 0 0 0

1 0 0 1 0

x 0 1 0 1

x3 0 1 1 0

x2 1 0 0 0

x6 1 0 1 1

x4 1 1 0 1

x5 1 1 1 1

Table 2.4: Truth table representation of Tr(x3t+2)

Let us see how the trace representation can be obtained from the truth table of a Boolean

function. By ordering the truth table according to the generator of the finite field F2n and

removing the all zeros entry we get a binary vector of length 2n − 1. Using the inverse of

the Galois discrete Fourier transform on this binary vector, we get a vector V, with entries

12



in finite field F2n . This vector has properties that lead us to deduce the trace function. Let

ci be the coset leader of the cyclotomic coset i of F2n , where 1 ≤ ci ≤ 2n − 2. If the entry

at position ci in the vector V is nonzero then all the entries at the positions corresponding

to the elements of coset i should be nonzero. If xj is an entry in the vector V at position

ci, then the corresponding trace formula is Tr(xcit+j) . Thus for each coset leader, we have

a corresponding trace formula. So we see that the number of trace formulas depends on

the number of nonzero elements of the vector V. The sum of these trace formulas is the

trace function corresponding to the TT of the Boolean function. To do this transformation

we multiply our vector by the Inverse Galois Discrete Fourier Transform (IGDFT) matrix

which is an 2n−1 × 2n−1 matrix,



1 1 1 · · · 1

1 α1·1 α1·2 · · · α1·2n−1

1 α2·1 α2·2 · · · α2·2n−1

...
...

...
. . .

...

1 α2n−1·1 α2n−1·2 · · · α2n−1·2n−1


where α = x2n−2 and x is a generator of F2n according to some primitive polynomial

p(x) in F2n .

The following example demonstrates how to convert a truth table Boolean function to

a trace Boolean function. Consider the Boolean function represented by Table 2.4. By

permuting Table 2.4 back to the table on Table 2.3 and removing the all zeros entry, we get

the following binary vector [0 1 1 0 1 0 1]. Now we want the trace function of this binary

vector. Computing the inverse discrete Fourier transform on this vector gives us a vector

with entries in F 3
2 . To compute this transform we multiply our vector by the following
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matrix: 

1 1 1 1 1 1 1

1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α α5 α2 α6 α3

1 α5 α3 α α6 α4 α2

1 α6 α5 α4 α3 α2 α


where α = x6 and x3 = x+1 according to our primitive polynomial p(x) = x3+x+1. This

transformation gives us the following vector [0 0 0 x2 0 x x4]. Now, we have nonzero

elements at positions 3, 5 and 6. These positions are the elements of a cylcotomic coset in

F 3
2 . We see that 3 is the coset leader, so a1 = c1 = 3. We also see that x2 is the element

at index c2, so b1 = 2. Therefore, our trace formula is Tr(x3t+2). Since 3, 5 and 6 are

the only nonzero positions then there is only one trace formula. Suppose that we get the

following vector [0 x4 x x2 x2 x x4] in some transformation. The nonzero elements give us

the following cyclotomic cosets in F 3
2 . We see that we have two cyclotomic cosets, {1, 2,

4} and {3, 5, 6}. They give us two trace formulas, Tr(xt+4) and Tr(x3t+2). The sum of

them, Tr(xt+4) + Tr(x3t+2), gives us the corresponding trace function.
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Chapter 3

Boolean functions cryptographic

criteria

In his seminal paper [38], Claude Shannon suggested two statistical properties that any

classical cryptosystem should possess in order to be secure against statistical analysis,

namely confusion and diffusion. Confusion means complicating the relation between the

key and the ciphertext in a way such that each ciphertext bit depends on several bits of

the secret key. Diffusion means distributing the secret key over the plaintext in a way

such that each key bit affects as many bits as possible in the ciphertext. In other words,

diffusion is enhanced if changing of a key bit in the plaintext changes several bits in the

ciphertext. Most of the attacks on classical cryptosystems exploit weaknesses of these two

important properties in the system under attack.

Attacks on classical cryptosystems have led to criteria that must be satisfied by crypto-

graphic Boolean functions embedded in those cryptosystems. To name a few, nonlinearity

and correlation immunity are proposed criteria for a Boolean function to resist an affine

approximation attack on the filter generator and a correlation attack on the combining

generator respectively. They both achieve confusion by complicating the relation between

the ciphertext and the keystream.

Before going deep into the criteria of Boolean functions, we need to introduce some

definitions that will be used later. The Hamming weight of a binary vector u ∈ F2
n, denoted

by wt(u), is the number of nonzero places in u. Since a Boolean function is a binary vector,

the Hamming weight of a Boolean function f on F2
n, denoted by wt(f), is the number of

nonzero places or the number of 1’s in f . The Hamming distance between two Boolean
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functions f1 and f2, denoted by d(f1, f2), is the size of the set {x ∈ F2
n : f1(x) 6= f2(x)}

which is equal to wt(f1 + f2).

3.1 Analytic tools for Boolean functions

The discrete Fourier transform of a Boolean function f(x) is defined to be the real valued

function f̂(a) defined on F2
n,

f̂(a) =
∑
x∈F2

n

f(x)(−1)a·x (3.1)

where a · x = a0x0 + · · ·+ an−1xn−1. Note that f̂(0) equals the Hamming weight of f .

The transform of the sign function of f , defined by (−1)f , equals,

Wf (a) =
∑
x∈F2

n

(−1)f(x)+a·x (3.2)

This transform is called the Walsh transform. It is easy to see that Wf (a) = 2n−wt(f(x)+

a · x).

Substituting (−1)f(x) by 1− 2f , we find a relation between Wf (a) and f̂(a),

Wf (a) =

−2f̂(a) if a 6= 0

2n − 2f̂(a) if a = 0

The derivative of f with respect to a vector b ∈ F n
2 is the Boolean function Dd(f) =

f(x)+f(x+d). The periodic autocorrelation function of f is a real-valued function defined

on all a ∈ F n
2

∆f (a) =
∑
x∈F2

n

(−1)f(x)+f(a+x) =
∑
x∈F2

n

(−1)Da(f) (3.3)

The following theorem shows the expression of the periodic autocorrelation function ∆f (a)

for all a ∈ F n
2 in terms of the Walsh transform.

Theorem 2. Wiener-Khintchine: ∆f (a) =
∑

u∈F2
nWf (u)2(−1)a.u.

In this chapter, we will see the importance of the Walsh transform and the periodic auto-

correlation in the study of Boolean functions.
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3.2 Criteria related to Walsh transform

The affine approximation attack [22, 43] on the filter generator chooses the best affine

approximation of the filter generator Boolean function. To choose the best affine approxi-

mation, the attack calculates Pr(f(x) = a · x + b) for all a ∈ F2
n and b ∈ F2 and chooses

the affine function a · x+ b with the highest probability. In order to better understand the

criteria related to Walsh transform, we need to calculate this probability1.

Let N0 denote the number of x = u such that f(u) = a.u and N1 denote the number of

x = u such that f(u) = a.u+ 1. Obviously, N0 +N1 = 2n. Let pa denotes Pr(f(x) = a · x)

and qa denotes Pr(f(x) = a · x+ 1). We see that pa = N0

2n
and qa = N1

2n
= 1− N0

2n
. Looking

back at equation 3.2, the Walsh transform can be written in terms of N0 and N1,

Wf (a) =
∑
x∈F2

n

(−1)f(x)+a·x = N0 −N1 (3.4)

and this is because

(−1)f(x)+a·x =

1 if f(x) = a · x

−1 if f(x) = a · x+ 1

Replacing N1 by 2n −N0 in equation 3.4, gives us

Wf (a) = 2N0 − 2n = 2n+1pa − 2n = 2n+1(pa −
1

2
) (3.5)

Rearranging equation 3.5, we find the following formulas for pa and qa

pa =
1

2
+

1

2n+1
Wf (a) (3.6)

qa =
1

2
− 1

2n+1
Wf (a) (3.7)

1The calculations that yield equations 3.4, 3.5, 3.6, an 3.7 are quoted from [32].
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Equation 3.6 states the probability that the linear function a ·x is a good approximation

for f(x) if the Walsh transform of f with respect to a, Wf (a), has a big value. The

bigger Wf (a) is, the better a · x is in approximating f(x). Equation 3.7 states that the

affine function a · x + 1, which is the complement of the linear function a · x, is a good

approximation for f(x) if Wf (a) is a small negative number. To sum up, whenever the

absolute value of Wf (a), |Wf (a)|, is big, we have a good approximation whether of the

form a · x or a · x + 1. The maximum absolute value of the Walsh spectrum gives us the

best approximation to f(x) with probability 1
2

+(−1)
ψ(maxa∈Fn2 |Wf (a)|) 1

2n+1 maxa∈Fn2 |Wf (a)|,

where ψ(maxa∈Fn2 |Wf (a)|) equals 0 when the sign of maxa∈Fn2 |Wf (a)| before taking the

absolute value is positive and equals 1 when the sign of maxa∈Fn2 |Wf (a)| before taking the

absolute value is negative.

To calculate pa and qa, we need to calculate Wf (a). We see that Wf (a) is actually a

multiplication of the row vector (−1)f(x) and the column vector (−1)a·x. So multiplying

the row vector (−1)f(x) by a matrix, name it Hn, gives us the whole Walsh spectrum of the

Boolean function f , Wf = (−1)fHn. The columns of Hn are the column vectors (−1)ai·x

where 0 ≤ i ≤ 2n − 1 and ai corresponds directly to the binary vector of the binary

representation of the decimal integer i and the column vector is ordered lexicographically

with respect to the set of {x : x ∈ F n
2 }. The matrix Hn = [(−1)a·x] is a 2n × 2n with

column i represented by the column vector (−1)ai−1·x. This matrix is exactly a Hadamard

matrix2. For instance when n = 1, we have H1 =

 1 1

1 −1

 and for n = 2, we have

H2 =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


The following Theorem demonstrates how to simply calculate Hn.

2A Hadamard matrix is a square matrix whose elements are either +1 or -1 and whose rows are mutually

orthogonal.
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Theorem 3. [32]

Hn =

 1 1

1 −1

⊗n

proof:

We prove the statement by induction on n. For n = 1 the theorem is satisfied. So

assume the theorem is satisfied when the number of variables is less than n. we have

x = (x̂, xn−1) where x̂ = (x0, x1, . . . , xn−2), and a = (â, an−1) where â = (a0, a1, . . . , an−2).

From the definition of Hn, we see that

Hn =

 (−1)â.x̂+0.0 (−1)â.x̂+0.1

(−1)â.x̂+1.0 (−1)â.x̂+1.1

 =

 Hn−1 Hn−1

Hn−1 −Hn−1

 =

 1 1

1 −1

⊗Hn−1

But by the induction hypothesis, we have

Hn−1 =

 1 1

1 −1

⊗n−1

This means that

Hn =

 1 1

1 −1

⊗n

which proves that the theorem holds for every n. �

The vector and matrix multiplication in the Walsh transform computation, almost takes

O(22n) bit operations but there is a fast algorithm similar to Algorithm 1 that dramatically

reduces the computation to just O(n2n) bit operations.

Algorithm 2:

Input: Truth table of a Boolean function f

Output: The Walsh transform spectrum Wf

For 0 ≤ k ≤ n, define Wfk,a ∈ F2k , where 0 ≤ a ≤ 2n−k − 1.
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1. Set Wf0,a = (−1)f(a) for 0 ≤ a ≤ 2n − 1.

2. for k = 0 to n− 1 do

for b = 0 to 2n−k−1 − 1 do

Wf(k+1),b
= [Wfk,2b +Wfk,(2b+1)

Wfk,2b −Wfk,(2b+1)
]

3. C = Wfn,0

The following example demonstrates algorithm 2 and finds the best affine approxima-

tion. Let f = [0 1 1 1 1 1 0 0] be a Boolean function. In order to find the best affine

approximation we need to compute the Walsh transform. The following table shows the

process of computing the Walsh transform of f using algorithm 2 along with vectors p and

q whose coordinate i represents the probability of Pr(f(x) = a ·x) and Pr(f(x) = a ·x+1)

where a ∈ F n
2 is the binary representation of integer i, respectively for 0 ≤ i ≤ 2n − 1.

(−1)f 1 −1 −1 1 1 1 −1 −1

k = 0 0 2 −2 0 −2 0 2 0

k = 1 0 0 0 4 0 0 4 0

k = 2 0 0 4 4 0 0 4 −4

Wf = Wf3,0 0 0 4 4 0 0 −4 4

p 0.5 0.5 0.75 0.75 0 0 0.25 0.75

q 0.5 0.5 0.25 0.25 0 0 0.75 0.25

Table 3.1: Walsh Transform Computation + Finding the best approximation

From the above table, we see that the highest probability occurring in p is at coordinates

3, 4 and 7. Coordinate 3 corresponds to the linear function (0, 1, 1) · (x0, x1, x2) = x1 + x2,

coordinate 4 corresponds to the linear function (1, 0, 0) · (x0, x1, x2) = x0 and coordinate 7

corresponds to the linear function (1, 1, 1) ·(x0, x1, x2) = x0 +x1 +x2. In q, there is only one

highest probability which occurred at coordinate 6 and corresponds to the affine function

(1, 1, 0) · (x0, x1, x2) + 1 = x0 + x1 + 1.
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Nonlinearity

The nonlinearity of a Boolean function f on F n
2 , denoted by nl(f), is the minimum Ham-

ming distance between f and the set of all affine functions on F n
2 , A(n). In mathematical

terms it is

nl(f) = min
g∈A(n)

(d(f, g)) (3.8)

The nonlinearity criterion can be expressed in terms of the Walsh transform: To com-

pute nonlinearity we need to find d(f, a · x) and d(f, a · x + 1) for all the possible linear

functions a · x, d(f, a · x) = 2n −#{x : f(x) = a · x} = 2n − 2npa = 2n − 2n−1 − 1
2
Wf (a)

= 2n−1 − 1
2
Wf (a), while d(f, a · x + 1) = 2n − #{x : f(x) = a · x + 1} = 2n − 2nqa =

2n− 2n−1 + 1
2
Wf (a) = 2n−1 + 1

2
Wf (a). This suggests that mina∈Fn2 (d(f, a ·x), d(f, a ·x+ 1))

= 2n−1 − 1
2
Wf (a) and therefore the nonlinearity of f is:

nl(f) = 2n−1 − 1

2
max
a∈Fn2
|Wf (a)| (3.9)

Equation 2.10 implies that the smaller maxa∈Fn2 |Wf (a)| is, the better nl(f) we will have.

This raises the question how small can maxa∈Fn2 |Wf (a)| be ? The following theorem will

help us to answer this question.

Theorem 4. Parseval’s Equation:
∑

a∈Fn2
Wf (a)2 = 22n.

Proof:[1]

In matrix notation
∑

a∈Fn2
Wf (a)2 = [Wf ][Wf ]

t, but from equation 2.8, we know that

Wf = (−1)fHn, so we have [Wf ][Wf ]
t = [(−1)fHn][(−1)fHn]t = [(−1)fHn][Hn]t[(−1)f ]t =

[(−1)f ][Hn][Hn]t[(−1)f ]t, but since Hn is a Hadamard matrix then HnH
t
n = 2nI (Orthog-

onal property of the Hadamard matrix Hn), therefore [Wf ][Wf ]
t = 2n[(−1)f ][(−1)f ]t =

2n.2n = 22n. �

Theorem 4 implies that the mean ofWf (a)2 equals 2n, which means that, maxa∈Fn2 Wf (a)2 ≥

2n, thus maxa∈Fn2 |Wf (a)| ≥ 2
n
2 and this answers the above question. So an n vari-

able Boolean function f , gets the highest or the maximum possible nonlinearity when
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maxa∈Fn2 |Wf (a)| = 2
n
2 . This tells us that,

nl(f) ≤ 2n−1 − 2
n
2
−1 (3.10)

This upper bound is valid for every Boolean function f on F n
2 , and it is called the universal

nonlinearity bound. A Boolean function is highly nonlinear if its nonlinearity is close to

the universal bound. When the universal bound is achieved, the corresponding Boolean

function is called a bent function. Bent functions have nice properties but the fact that they

are unbalanced (see the definition of balanced functions below) make them undesirable in

practice. At the end of this chapter, we will give a brief discussion about bent functions.

We will give a detailed discussion about nonlinearity and its relations with other criteria

in Chapter 4.

Balancedness

A Boolean function f on F n
2 is balanced if wt(f) = 2n−1. In terms of Walsh transform a

Boolean function is balanced if Wf (0) = 0 which statistically means that Pr(f(x) = 0) =

Pr(f(x) = 1) = 1
2
. Cryptographic functions are ideally balanced or near balanced in order

to prevent cryptanalysts from statistically analysing their output distributions.

Correlation immunity and resilience

Correlation immunity criteria was introduced by Siegenthaler [39] to resist correlation at-

tacks on stream ciphers whose keys are generated by the combining generator depicted in

figure 2.2.

An n variable Boolean function f(x0, x1, . . . , xn−1) is correlation immune (CI) of order m

if Pr(f = 1|xi1 = c1, xi2 = c2, . . . , xim = cm) = Pr(f = 1) for any choice of distinct

i1, i2, . . . , im from {0, 1, . . . , n − 1} and c1, . . . , cm belong to F2. The following theorem

[44] gives an equivalent non-probabilistic characterization on the definition of correlation

immunity.
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Theorem 5. Let f(x0, x1, . . . , xn−1) be a boolean function on F n
2 and let fj be any Boolean

function obtained by setting xi1 = c1, xi2 = c2, . . . , xim = cm in f(x0, x1, . . . , xn−1) for any

choice of distinct i1, i2, . . . , im from {0, 1, . . . , n − 1} and c1, c2, . . . , cm belong to F2. Then

f is correlation immune if wt(fj) = wt(f)/2m.

Proof:

From the definition, we know that Pr(fi = 1) = Pr(f = 1). Since f is an n variable

function then Pr(f = 1) = wt(f)/2n, but fj has n − m variables and so Pr(fj = 1) =

wt(fj)/2
n−m. By equating these probabilities, we find that wt(fj) = wt(f)/2m. � In [42],

Xiao and Massey provided a characterization of correlation immunity based on the Walsh

transform.

Theorem 6. [42] A Boolean function on F n
2 is correlation immune of order m iff Wf (a) = 0

for all a ∈ F n
2 with 1 ≤ wt(a) ≤ m.

The original proof of Theorem 6 is very complicated but there is an easier one provided by

Sarkar [35]. A balanced mth order correlation immune Boolean function is called an m-

resilient Boolean function. Using Theorem 5, we see that a Boolean function is m-resilient

if wt(fj) = wt(f)/2m = 2n−1/2m = 2n−m−1 where fj is as defined in Theorem 5. Using

Theorem 6, we see that a Boolean function is m-resilient iff Wf (a) = 0 for all a ∈ F n
2 with

0 ≤ wt(a) ≤ m. Any balanced function is considered as 0-resilient, while nonbalanced

functions are considered as (-1)-resilient.

Because of their balancedness, resilient functions are preferred over unbalanced correlation

immune functions for cryptographic applications. Let f(x) be the Boolean function in the

combining generator depicted in figure 2.2. If f(x) is 1-resilient, then the Siegenthaler

correlation attack [40] will not be possible on a single LFSR. However, as f(x) is not 2-

resilient, it is possible to attack a pair of LFSRs which is a more difficult task compared to

attacking a single LFSR.
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3.3 Criteria related to the periodic autocorrelation

function

Differential cryptanalysis [2] analyses the effect of particular differences in input pairs on

the differences of the resultant output pairs. That is having x and x+ a as an input pair,

trying to analyse the difference in their output f(x) + f(x + a), and hoping to discover

statistical patterns in the output distribution. Computing Pr(f(x) = f(x + a)) gives

information about the distribution of f(x) + f(x + a). Following the same steps we used

to compute Pr(f(x) = a · x) on page 18, we find that for all a ∈ F n
2 ,

Pr(f(x) = f(x+ a)) = Pr(f(x) + f(x+ a) = 0) =
1

2
+

1

2n+1
∆f (a)

Pr(f(x) = f(x+ a) + 1) = Pr(f(x) + f(x+ a) = 1) =
1

2
− 1

2n+1
∆f (a)

The above equations show that a Boolean function f has resistance against differential

cryptanalysis if for most nonzero a, |∆f (a)| is zero or very close to zero as the Boolean

function f(x) + f(x + a) will be balanced or close to balanced which means it has an

identical or semi-identical distribution which is unwelcomed by cryptanalysts.

Linear Structure

If the derivative of a Boolean function f , Da(f), is a constant function, then the vector

a is called a linear structure of f . The all-zero vector is a trivial linear structure. So

when talking about linear structures we mean the nonzero linear structures. If a is a linear

structure of f , then f(x) = f(x + a) + b, where b ∈ F2. Existence of such an equality

makes the differential attack possible because the distribution of f(x) +f(x+a) will either

be a set of zeros or a set of ones which will lead to statistical analysis. So cryptographic

functions used in block ciphers must have no nonzero structure.
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Propagation Characteristic and Strict Avalanche Criteria

In block ciphers, the coordinate functions of S-boxes are Boolean functions. Propaga-

tion Characteristic(PC) and Strict Avalanche Criteria(SAC) are important properties of

Boolean functions that are used in S-boxes. The SAC was introduced by Webster and

Tavares [45] when they were looking for principles for designing DES-like encryption algo-

rithms. A Boolean function satisfies the SAC if complementing a single bit results in the

output of the function being complemented with a probability of a half. This is exactly

having f(x) + f(x+ a) being balanced for all a ∈ F n
2 with wt(a) = 1. In terms of periodic

autocorrelation, this is having |∆f (a)| = 0 for all a ∈ F n
2 with wt(a) = 0. In terms of linear

structures, f satisfies SAC, if any a ∈ F n
2 with wt(a) = 1 is a linear structure. But the

problem with SAC functions is that they can have a large number of vectors with Hamming

weight larger than one as their linear structures. This makes employing SAC functions in

S-boxes a potential risk. Therefore the SAC was generalized to PC by Preneel [29]. A

Boolean function satisfies the propagation characteristic of degree l, PC(l), if complement-

ing l or less bits results in the output of f being complemented with a probability of a half.

This is exactly having f(x) + f(x + a) being balanced for all a ∈ F n
2 with wt(a) = l. In

terms of the periodic autocorrelation function, f satisfies PC(l) if ∆f (a) = 0 for all a ∈ F n
2

such that 1 ≤ wt(a) ≤ l. In terms of linear structures f satisfies PC(l), if any a ∈ F n
2

with wt(a) = l is a linear structure. Boolean functions particularly in block ciphers must

satisfy the PC at a high level to avoid differential cryptanalysis. A stronger property than

PC(l) is PC(l) of order k, which is satisfied when at most k coordinates of the input x are

fixed and f still satisfy PC(l). In other words, Da(f) is k-resilient for all a ∈ F n
2 such that

1 ≤ wt(a) ≤ l.

Global Avalanche Characteristics(GAC)

A Boolean function satisfying PC(l) does not have linear structures with Hamming weight

less than l. However, the PC(l) criterion does not prevent the possibility of having linear
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structures of Hamming weight more than l. This suggests that even the PC which was

generalized from SAC is not a sufficient indicator to identify the possibility of differential

attacks. On the other hand, the requirement of f(x) + f(x + a) to be 100% balanced to

satisfy PC is very strict which leads to having functions satisfying PC(n), and these are

bent functions which have nice properties but may be undesirable in practice due to their

unbalancedness.

The above shortcomings of PC were stated by Zhang and Zheng [46] as an answer to

why they proposed the GAC indicators. GAC indicators consist of a sum-of-squares in-

dicator, defined by σf =
∑

a∈Fn2
∆f (a)2 and an absolute indicator defined by ∆max =

maxa∈Fn2 ,a6=0 |∆f (a)|. The smaller σf and ∆f , the better f will be in resisting differential

cryptanalysis.

3.4 Other Criteria

Algebraic degree

Cryptographic functions should have high algebraic degrees. A stream cipher using the filter

generator to generate its keystream can be attacked by the powerful O(D2) Berlekamp-

Massey linear complexity attack [23] if we know at least 2D keystream bits where D =∑d
i=0

(
n
i

)
, n is the length of the LFSR used by the filter generator, and d is the algebraic

degree of the filter function. If d is low, then the number of key bits, needed to be known,

will be small, thereby reducing the amount of the key needed to be known and also the

amount of time needed to perform the attack. In the S-boxes of block ciphers, using Boolean

functions of low degrees might make higher differential attacks effective [4]. But Boolean

functions of degree n − 1 or n are not always good functions as they may be weak with

respect to some other criteria such as nonlinearity and resilience as we will see in Chapter

3.
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Algebraic Immunity ([4, 32])

In 2003, Courtois and Meier [7] introduced a powerful attack called algebraic attack that

changed the map of Boolean functions cryptographic criteria. It recovers the secret key by

solving a system of nonlinear equations over the finite field F2. For instance, an algebraic

attack on the filter generator depicted in figure 2.2, finds the initial states (s0, s1, ..., sn−1)

provided that we know some part of the keystream. This initial state will then generate the

whole keystream. All the attacks we noted previously on the filter generator operate in this

way but the advantage of the algebraic attack over those attacks is that it requires a lesser

amount of keystream to be known in advance. To better understand algebraic immunity,

we need to explain how algebraic attacks work. Let y0, y1, ..., yk be the known part of the

keystream. We see that,

yj = f(Lj(s0, ..., sn−1)) for 0 ≤ yj ≤ k − 1 (3.11)

where Lj is a linear function that updates the LFSR from state j to state j + 1 (i.e.

Lj(s0, . . . , sn−1) = (sj, sj+2, . . . , sj+n−1) with each element written in terms of (s0, s1, . . . , sn−1).

Now we have a nonlinear system of k equations. Applying linearization to this system we

end up with a linear system of k equations and a number of variables ≤ to D =
∑d

i=1

(
n
i

)
which can be solved by Gaussian elimination in O(D3) linear operations. But if D is too

high then Gaussian elimination will be infeasible. Courtois and Meier came up with an idea

that dramatically decreases D. They introduced the notion of an annihilator of a Boolean

function. They defined it as follows, A nonzero Boolean function g is called an annihilator

of a Boolean function h if hg = 0. Their idea relies on finding an annihilator of f and f + 1

where f is the filter generator function. They proved the existence of an annihilator for

both f and f + 1. They also proved that the degree of an annihilator of a Boolean function

on F n
2 is ≤ dn

2
e. To see how this decreases D, suppose that g0 and g1 are annihilators for f

and f + 1 respectively. Let S0 = (s0, . . . , sn−1). Now when yj = 0, we multiply each equa-

tion in 3.11 by g1, we find that 0 = g1(Lj(S0))f(Lj(S0)) = g1(Lj(S0))(f(Lj(S0)) + 1 + 1) =

g1(Lj(S0))(f(Lj(S0)) + 1) + g1(Lj(S0)) = g1(Lj(S0)). When yj = 1, we multiply each equa-
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tion by g0, and find that g0(Lj(S0)) = g0(Lj(S0))f(Lj(S0)) = 0. So the system of equations

in 3.11 will be altered to

0 =

g1(Lj(S0)) if yj = 0

g0(Lj(S0)) if yj = 1

Applying linearization to the above system of equations reduces the number of variables

to at most D1 =
∑d1

i=1

(
n
i

)
where d1 = min(d(g0), d(g1)) ≤ dn

2
e. The smaller d1, the lesser

amount of time is needed for solving the above system by Gaussian elimination since D1 will

be much smaller than D. This attack gives rise to the notion of algebraic immunity. The

algebraic immunity of a Boolean function f , denoted by AI(f), is defined as the smallest

degree of any nonzero Boolean function g such that gf = 0 or g(f + 1) = 0. We mentioned

previously that Courtois and Meier proved that the degree of any annihilator is ≤ dn
2
e.

This obviously means that AI(f) ≤ dn
2
e. So to be safe against algebraic attacks, we need

to have AI(f) as high as possible.

Bentness

Bent functions on F n
2 are Boolean functions whose nonlinearity achieve the universal non-

linearity bound 2n−1−2
n
2
−1. They have a flat Walsh spectrum, |Wf (a)| = 2

n
2 for all a ∈ F n

2 .

The fraction n
2

proves that bent functions exist only when n is even since the Walsh trans-

form is an integer valued function; They can also be defined as the Boolean functions with

PC(n), i.e., ∆f (a) = 0 for all a 6= 0, a ∈ F n
2 , and this is because f is bent if and only

if f(x) + f(x + a) is balanced for all a 6= 0 [4]. Although these two definitions show that

bent functions have maximum possible nonlinearity and propagation characteristic, which

are nice properties, for a cryptographic function, bent functions are not always ideal due

to their unbalancedness which can be proved by observing that balanced functions satisfy

Wf (0) = 0 which contradicts the bentness property of having the absolute Walsh transform

equals to 2
n
2 for all a ∈ F n

2 .
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Chapter 4

Theoretical Bounds on Boolean

functions criteria

Some of the most important criteria a cryptographic function must satisfy in order to be

currently used in practice are balancedness, high algebraic degree, high nonlinearity, high

correlation immunity, high propagation characteristic, low absolute indicator, low sum-of-

squares indicator and high algebraic immunity. In this chapter, we study the theoretical

bounds on these criteria and the best trade-off possible among some of these criteria.

4.1 Bounds on algebraic degree

Siegenthaler’s bound [39] states that an n variable, mth correlation immune Boolean func-

tion f has degree at most n − m. Moreover, if f is balanced and m < n − 1, then the

degree of f is at most n −m − 1. Siegenthaler’s proof to the above bound is very compli-

cated but there is an easier proof by Sarkar in [35]. This bound suggests that there is a

trade-off between the algebraic degree and correlation immunity, that is, if a cryptosystem

has high algebraic degree to resist the linear complexity attack then it will have a low

correlation immunity and hence be weak against correlation attacks. So we have to make

the best trade-off between algebraic degree and correlation immunity by selecting Boolean

functions achieving Siegenthaler’s bound, that is, n-variable, m-resilient Boolean functions

with degree d = n −m − 1. Another algebraic degree bound is on bent functions. It was

found by Rothaus [30] and it states that The algebraic degree of any bent function on F n
2

is dn
2
e where n is an even integer ≥4.
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4.2 Bounds on Nonlinearity

The universal nonlinearity bound nl(f) ≤ 2n−1 − 2
n
2
−1 is achieved only by bent functions

which exist only for even n. Obviously, for odd n the universal bound cannot be tight

but the maximum nonlinearity for odd n lies between 2n−1 − 2
n−1

2 (It is called the bent

concatenation bound and it can be achieved by quadratic functions [4]) and 2n−1 − 2
n
2
−1.

It has been shown that for n = 1, 3, 5 and 7, it equals 2n−1 − 2
n−1

2 [20]. In 1983, it has

been shown that for odd n ≥ 15, Boolean functions with nonlinearity ≥ 2n−1−2
n−1

2 can be

constructed. In 2006, it has been shown that for n = 9, Boolean functions with nonlinearity

equal to 2n−1 − 2
n−1

2 + 2
n−9

2 could be constructed [20]. In 2007, it has been shown that

for n = 9 [18], Boolean functions with nonlinearity equal to 2n−1 − 2
n−1

2 + 2.2
n−9

2 could be

constructed. In 2007, a balanced 13-variable Boolean function with nonlinearity equal to

2n−1 − 2
n−1

2 + 2.2
n−13

2 was constructed by Maitra [20].

Bounds on nonlinearity of Balanced functions

Balanced Boolean functions cannot achieve the universal nonlinearity bound but they have

a slightly improved upper bound [37],

nl(f) ≤

2n−1 − 2
n
2
−1 − 2 if n is even

bb2n−1 − 2
n
2
−1cc if n is odd

(4.1)

where bbxcc denotes the maximum even integer less than or equal to x. nl(f) = mina∈Fn2 d(f, a·

x) = mina∈Fn2 wt(f ⊕ a · x) = wt(f) +wt(a · x)− 2wt(f · (a · x)) but wt(f) and wt(a · x) are

even since they are balanced functions, so nl(f) is an even integer. So the maximum non-

linearity possible for balanced functions can be upper bounded by the largest even number

less than 2n−1 − 2
n
2
−1 which is 2n−1 − 2

n
2
−1 − 2 for even n and bb2n−1 − 2

n
2
−1cc for odd

n. This proves the above upper bounds. The maximum nonlinearity of balanced functions

is unknown for any n ≥ 8. For instance, the highest nonlinearity currently known for an

8-variable balanced function is 116 which is less than 118 (the number obtained by the
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above upper bound) but still there is no proof that there is no balanced Boolean function

with nonlinearity 118. For odd n it is known that the above upper bound is not tight since

for n = 7, the maximum nonlinearity of balanced functions is known to be 56 which is less

than bb27−1 − 2
7
2
−1cc = bb58.34cc = 58 (the number obtained by the above upper bound).

For even n, it is still unknown whether the above upper bound is tight or not as all the

currently known maximum nonlinearities (n ≤ 6) of balanced functions equal the above

upper bound which do not affirm or negate the tightness of the above upper bound.

Bounds on nonlinearity of m-resilient functions

A lot of research has been done on optimizing the nonlinearity while fixing the order of

resilience. In 1999, Pasalic and Johansson [28] answered the question of whether an n-

variable Boolean function, n ≤ 6, which is m-resilient and with nonlinearity nl(f), exists

or not by solving the following integer programming(0-1 IP) model:

f̂(0) = 2n−1, balancedness

f̂(a) = 0, 1 ≤ wt(a) ≤ m, m-resilient,∣∣∣f̂(a)
∣∣∣ ≤ 2n−1 − nl(f), a 6= 0, nonlinearity

The above 0-1 IP has no objective function as any solution is sufficient to solve the

problem. If the above 0-1 IP model has no solution for a specified resilience(m) and

nonlinearity(nl(f)) then there does not exist a Boolean function having that specified re-

silience and nonlinearity. Since IP is an NP-hard problem and problems of more than 100

variables are considered as infeasible, the above model can only be used for n ≤ 6 as for

n = 7 we have 128 variables which is infeasible. Pasalic and Johansson solved the above

model for n ≤ 6 but their main result was the following theorem found when n = 6.

Theorem 7. [28] The maximum nonlinearity for a 1-resilient function on 6 variables is

24.
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Although many useful results between resilience and nonlinearity were found by the

approach of fixing the order of resilience and optimizing nonlinearity, this approach has

not investigated the exact nature of the trade-off between resilience and nonlinearity, that

is, it has not answered the question, what is the maximum nonlinearity of an n-variable

and m-resilient Boolean function? In 2000, this question was answered independently by

Sarkar and Maitra [33], by Tarannikov [44] and by Zhang and Zheng [48].

Sarkar and Maitra found the following major result on the Walsh Spectrum of resilient

or correlation immune functions which consequently allowed them to obtain a nontrivial

upper bound on the maximum possible nonlinearity of m-resilient or m-correlation immune

functions.

Theorem 8. [33] Let f be an n-variable with n ≥ 3. Then for all a ∈ F n
2 ,

Wf (a) ≡

0 (mod 2m+1) if f is m-correlation immune, m ≤ n− 2

0 (mod 2m+2) if f is m-resilient, m ≤ n− 3

For the proof of this theorem, refer to [33]. Theorem 8 was used to deduce the following

theorem,

Theorem 9. [33] Let nlc(n,m) denote the maximum nonlinearity of an n-variable and m-

correlation immune Boolean function, nlr(n,m) denote the maximum nonlinearity of an n-

variable and m-resilient Boolean function and nlmax(n) denote the maximum nonlinearity

for an n-variable Boolean function. If n is even, then

nlc(n,m) ≤

2n−1 − 2m if m > n
2
− 1

2n−1 − 2
n
2
−1 − 2m if m ≤ n

2
− 1(∗)

nlr(n,m) ≤

2n−1 − 2m+1 if m+ 1 > n
2
− 1

2n−1 − 2
n
2
−1 − 2m+1 if m+ 1 ≤ n

2
− 1(∗)

If n is odd, then
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nlc(n,m) ≤

2n−1 − 2m if nlmax(n) > 2n−1 − 2m

maxh≥0{h2m} ≤ nlmax(n) if nlmax(n) ≤ 2n−1 − 2m (∗)

nlr(n,m) ≤

2n−1 − 2m+1 if nlmax(n) > 2n−1 − 2m+1

maxh≥0{h2m+1} ≤ nlmax(n) if nlmax(n) ≤ 2n−1 − 2m+1(∗)

Further in all nlr(m,n) bounds except the starred ones, the Walsh spectrum of any function

achieving the stated bounds has three values 0,±2m+2. Also in all nlc(m,n) bounds except

the starred ones, the Walsh spectrum of any function achieving the stated bounds has three

values 0,±2m+1.

Proof:[33]

We prove the cases concerning nlr(n,m). The other cases concerning nlc(n,m) being

similar. We know that for all a ∈ F n
2 , Wf (a) = 2n−d(f, a ·x). Using Theorem 8 we replace

Wf (a) by ±k2m+2 where k ≥ 0, thus we find that d(f, a · x) = 2n−1± k2m+1. Now we have

4 cases,

Case 1: If n is even and m + 1 > n
2
− 1; nlr(n,m) = mina∈Fn2 d(f, a · x) = mink≥0{2n−1 ±

k2m+1} ≤ 2n−1 − 2m+1(as k cannot be 0 for all a). Since 2n−1 − 2m+1 < nlmax(n) =

2n−1 − 2
n
2
−1. Therefore, nlr(n,m) ≤ 2n−1 − 2m+1 is a nontrivial upper bound.

Case 2: If n is even and m+ 1 ≤ n
2
− 1; Let 2

n
2
−1 = p2m+1(as m+ 1 ≤ n

2
− 1), nlr(n,m) =

mina∈Fn2 d(f, a · x) = mink≥0{2n−1 ± k2m+1}. If for all a we have k ≤ p, then f must be

bent(as nlr(n,m) = 2n−1− 2
n
2
−1) and hence not resilient. Thus there must be some a such

that the corresponding k > p. This shows that nlr(n,m) = 2n−1 − 2
n
2
−1 − 2m+1.

Case 3: If n is odd and nlmax(n) > 2n−1 − 2m+1; this case is similar to Case 1.

Case 4: If n is odd and nlmax(n) ≤ 2n−1 − 2m+1; nlr(n,m) = mina∈Fn2 d(f, a · x) =

mink≥0{2n−1 ± k2m+1} = mink≥0{2n−1 − k2m+1}. It is obvious that nlr(n,m) is a multiple

of 2m+1. Therefore the highest multiple of 2m+1 which is less than or equal to nlmax(n) is

a nontrivial upper bound for nlr(n,m).

We prove the last statement for the nlr(n,m) case, the other case is similar. If the Walsh
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spectrum for any function achieving the bounds does not have three value, 0,±2m+2, then

from the divisibility property we have Wf (a) = ±2m+i for some a and for some i ≥ 3. Thus

d(f, a · x) = 2n −Wf (a) = 2n − 2m+i which is less than the stated bounds.�

In [48], Zheng and Zhang improved the upper bound of correlation immune functions in

Theorem 9. They showed that the nonlinearity of an mth order correlation immune and n-

variable Boolean function f is less than or equal to 2n−1−2m+1 if m ≥ 0.6n−0.4, regardless

of the balancedness of f . Boolean functions whose Walsh spectrum has three values 0,±2λ

where λ is a positive integer are called plateaued functions. So Boolean functions achieving

the above stated bounds are called plateaued functions. The following theorem proved by

Claude Carlet [4] suggested a bound for nlr(n,m) regardless of the evenness of n.

Theorem 10. [4] Let f be an n-variable and m-resilient Boolean function then, nlr(n,m) ≤

2n−1 − 2m+1d 2n−m−2√
2n−

∑m
i=0 (ni)

e

Proof:[4]

From Sarkar-Maitra’s divisibility property, we know that Wf (a) = ϕ(a)2m+2 where ϕ(a)

is an integer valued function. But Parseval’s equation (see Theorem 4) and the fact that

Wf (a) = 0 for all a with weight ≤ m imply that∑
a/wt(a)>m ϕ(a)2 = 22n−2m−4

and thus

maxa∈Fn2 |ϕ(a)| ≥
√

22n−2m−4

2n−
∑m
i=0 (ni)

= 2n−m−2√
2n−

∑m
i=0 (ni)

Since ϕ(a) is an integer valued function, then maxa∈Fn2 |ϕ(a)| ≥ d 2n−m−2√
2n−

∑m
i=0 (ni)

e. This im-

plies that,

nlr(n,m) = 2n−1−1
2

maxa∈Fn2 |Wf (a)| = 2n−1−2m+1 maxa∈Fn2 |ϕ(a)| ≤ 2n−1−2m+1d 2n−m−2√
2n−

∑m
i=0 (ni)

e.

�

Applying the same approach of Theorem 10 but for m-correlation immune functions, we

find a bound similar to that of Theorem 10.

nlc(n,m) ≤ 2n−1 − 2md 2n−m−1√
2n −

∑m
i=1

(
n
i

)e (4.2)
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Claude Carlet [4] suggested that his upper bound in Theorem 10 is potentially better than

Sarkar-Maitra’s bound when n is even but when n is odd he pointed that it is difficult

to say which is better as Sarkar-Maitra’s bound involves nlmax(n) which is unknown for

n ≥ 9 which in turn makes Theorem 10’s bound more effective than Sarkar-Maitra’s bound.

Bounds on nonlinearity of m-resilient functions with degree d

The following theorem introduced by Claude Carlet [5] generalized Sarkar-Maitra’s divis-

ibility property by involving the algebraic degree d. We will call it the degree divisibility

property.

Theorem 11. [5] Let f be an n-variable m-resilient function and let d be its algebraic

degree. The values of the Walsh spectrum of f are divisible by 2m+2+bn−m−2
d
c.

For the proof of Theorem 11, refer to [34]. It was first proved by using the numerical

normal form1 but later it was proved by Sarkar [34] using only the properties of the Walsh

spectrum. Sarkar also proved that the values of the Walsh spectrum of any m-correlation

immune function are divisible by 2m+1+bn−m−1
d
c [34]. Theorem 11 gives directly a more

precise upper bound on the nonlinearity of an m-resilient function of degree d.

Theorem 12. [5] Let f be n-variable m-resilient Boolean function with degree d, then if n
2
−

1 < m+1+bn−m−2
d
c we have the maximum nonlinearity nlr(n,m, d) ≤ 2n−1−2m+1+bn−m−2

d
c;

otherwise we have

nlr(n,m, d) ≤

2n−1 − 2
n
2
−1 − 2m+1+bn−m−2

d
c if n is even

2n−1 − 2m+1+bn−m−2
d
cd2n

2
−m−2−bn−m−2

d
ce if n is odd

For the proof of Theorem 12, refer to [5]. An upper bound similar to that of Theorem

12 but for m-correlation immune functions can be given by using the degree divisibility

property for correlation immune functions (It can be obtained by replacing 2m+1+bn−m−2
d
c

1The Numerical Normal Form (NNF) is a representation of Boolean functions introduced by Carlet-

Guillot[6].
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with 2m+bn−m−1
d
c in each bound in Theorem 12). Carlet also showed in [5], that the nonlin-

earity of an m-correlation immune and n-variable Boolean function is less than or equal to

2n−1−2m+1+bn−m−2
d
c if m ≥ 0.6n. The m-resilient functions achieving the bound 2n−1−2m+1

when m + 1 > n
2
− 1 also achieve Siegenthaler’s degree bound n − m − 1 which can be

proved as follows: From Theorem 12, we see that m-resilient functions achieve the bound

2n−1 − 2m+1 when d > n−m− 2, but d ≤ n−m− 1, thus d = n−m− 1.

Bounds on nonlinearity involving the GAC indicators

In the previous Chapter we stated that the GAC indicators are the absolute indicator(∆max)

and the sum-of-squares indicator(σf ). The following theorem [47] gives a straightforward

upper bound on nonlinearity involving the sum-of-squares indicator(σf ).

Theorem 13. [47] For any function f on F n
2 the nonlinearity of f satisfies

nl(f) ≤ 2n−1 − 1
2

4
√
σf

Proof:[47]

Theorem 2(Wiener-Khintchine) suggests that ∆f (a) =
∑

u∈F2
nWf (u)2(−1)a.u, squaring

both sides of this equation and taking the sum for all a ∈ F n
2 , we get the following equation∑

a∈Fn2
Wf (a)4 = 2n

∑
a∈Fn2

∆f (a)2 [47]. Thus there exists an a ∈ F n
2 , such that Wf (a)4 ≥∑

a∈Fn2
∆f (a)2. This implies that Wf (a) ≥ 4

√∑
a∈Fn2

∆f (a)2 = 4
√
σf . Hence from equation

3.7, we have

nl(f) = 2n−1 − 1

2
maxa∈Fn2 |Wf (a)| ≤ 2n−1 − 1

2
4
√
σf . �

The following theorem gives an upper bound on nonlinearity involving the absolute indicator(∆max).

Theorem 14. [47] For any function f on F n
2 , the nonlinearity of f satisfies

nl(f) ≤ 2n−1 − 1
2

√
2n + ∆max

For the proof of this theorem, refer to [47].
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4.3 Bounds on GAC indicators

A lower bound for σf is obviously σf ≥ 22n since ∆f (0) = 22n. This bound is achieved when

the derivative Df (a) is balanced for all a 6= 0. That is when f is bent. An upper bound

for σf is σf ≤ 23n since ∆f (a)2 ≤ 22n for all a. Obviously this upper bound is achieved

when Df (a) is constant for all a 6= 0. That is when f is an affine function. Therefore,

22n ≤ σf ≤ 23n. A lower bound for ∆max is obviously ∆max ≥ 0 which as we stated above

is achieved when the derivative Df (a) is balanced for all a 6= 0 (f is bent). An upper

bound for ∆max is ∆max ≤ 2n which is achieved when f has a nonzero linear structure.

Therefore, 0 ≤ ∆max ≤ 2n. These are the trivial bounds for the sum-of-squares indicator

and the absolute indicator for any Boolean function. But we need to know the GAC bounds

for resilient functions since any cryptographic function must be resilient. In [21], Maitra

introduced lower bounds for both the sum-of-squares indicator and the absolute indicator

on resilient and correlation immune functions. In this section, we discuss all these bounds.

Lower bounds on the sum-of-squares indicator

For any Boolean function f , define Ff as the number of nonzero values on the Walsh

spectrum, i.e. Ff = #{a ∈ F n
2 : Wf (a) 6= 0}. A lower bound for the sum-of-squares

indicator involving Ff was introduced in [21].

Theorem 15. [21] Let f be a Boolean function on F n
2 . Then, σf ≥ 23n

Ff
. Moreover, if f

has a three valued Walsh spectrum 0,±2λ (f is a plateaued function), then σf = 23n

Ff
.

This theorem was later modified by Maitra to the following theorem.

Theorem 16. [21] Let f be a Boolean function on F n
2 . Then σf ≥ 23n

2n−
∑m
i=1 (ni)

> 22n +

2n+log2
∑m
i=1 (ni) if f is m-correlation immune and σf ≥ 23n

2n−
∑m
i=0 (ni)

> 22n + 2n+log2
∑m
i=0 (ni) if

f is m-resilient.

Proof:[21]
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It is obvious to see that Ff ≤ 2n −
∑m

i=1

(
n
i

)
when f is m-correlation immune and Ff ≤

2n −
∑m

i=0

(
n
i

)
when f is m-resilient. Substituting these values of Ff in Theorem 15 yields

σf ≥ 23n

2n−
∑m
i=1 (ni)

> 22n + 2n+log2
∑m
i=1 (ni) for m-correlation immune functions and σf ≥

23n

2n−
∑m
i=0 (ni)

> 22n + 2n+log2
∑m
i=0 (ni) for m-resilient functions. �

Another lower bound on σf was deduced by using the divisibility property and the degree

divisibility property of resilient and correlation immune Boolean functions described in the

previous section. The following theorem shows the sum-of-squares bounds on m-resilient

and m-correlation immune functions using the divisibility property,

Theorem 17. [21] Let f be a Boolean function on F n
2 . Then σf ≥ 2n+2m+2 if f is m-

correlation immune and σf ≥ 2n+2m+4 if f is m-resilient. Moreover, these bounds are

achieved when f is a plateaued function.

Proof:[21]

If f is m-correlation immune; The divisibility property Wf (a) ≡ 0(mod 2m+1) tell us that

the Walsh values of f are 0,±i2m+1, where i is a positive integer. Using Parseval’s equation∑
a∈Fn2

Wf (a)2 = 22n, we deduce that Ff ≤ 22n−2m−2. Substituting this value of Ff in

Theorem 15 yields σf ≥ 2n+2m+2. If f is plateaued then the Walsh values of f will be

0,±2m+1 and hence Ff = 22n−2m−2 and so σf achieves the bound σf = 2n+2m+2.

Similarly, if f is m-resilient; The divisibility property Wf (a) ≡ 0(mod 2m+2) tell us that the

Walsh values of f are 0,±i2m+2, where i is a positive integer. Using Parseval’s equation∑
a∈Fn2

Wf (a)2 = 22n, we deduce that Ff ≤ 22n−2m−2. Substituting this value of Ff in

Theorem 15 yields σf ≥ 2n+2m+4. If f is plateaued then the Walsh values of f will be

0,±2m+2 and hence Ff = 22n−2m−2 and so σf achieves the bound σf = 2n+2m+4. �

Since the trivial bound for σf is 22n, then the bound when f is m-correlation immune in

Theorem 17 is nontrivial when n + 2m + 2 > 2n, that is when m > n
2
− 1. Similarly, the

bound when f is m-resilient in Theorem 17 is nontrivial when n + 2m + 4 > 2n, that is

when m > n
2
−2. The following theorem shows another lower bound for the sum-of-squares
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bounds on m-resilient and m-correlation immune functions using the degree divisibility

property,

Theorem 18. [21] Let f be a Boolean function on F n
2 of degree d. Then σf ≥ 2n+2m+2+2bn−m−1

d
c

if f is m-correlation immune and σf ≥ 2n+2m+4+2bn−m−2
d
c if f is m-resilient. Moreover,

these bounds are achieved when f is a plateaued function.

The proof of this theorem is very similar to the proof of the above theorem. In the previous

section we showed that nonlinearity and algebraic degree of resilient or correlation immune

functions are optimized simultaneously if f is plateaued. Theorems 16 and 17 tell us also

that the sum-of-squares indicator for resilient functions is optimized when f is plateaued.

This indicates that for an n-variable, m-resilient plateaued function the nonlinearity, the

algebraic degree and the sum-of-squares indicator are optimized simultaneously.

Lower bounds on the absolute indicator

Every lower bound for the sum-of-squares indicator of the form σf ≥ σ directly implies

that the absolute indicator is lower bounded by
√

σ−22n

2n−1
. This is proved as follows [21]:

we know that σf =
∑

a∈Fn2
∆f (a)2. Thus the absolute value of each ∆f (a) will be the

minimum value when each ∆f (a) = 0, for all a ∈ F n
2 , a 6= 0, possess equal values. Hence,

the minimum value of ∆max will be
√

σf−22n

2n−1
. Thus, theorem 16 implies that ∆max ≥√

1
2n−1

22n
∑m
i=1 (ni)

2n−
∑m
i=1 (ni)

> 2
n
2

√ ∑m
i=1 (ni)

2n−
∑m
i=1 (ni)

is a lower bound for m-correlation immune functions

and ∆max ≥
√

1
2n−1

22n
∑m
i=0 (ni)

2n−
∑m
i=0 (ni)

> 2
n
2

√ ∑m
i=0 (ni)

2n−
∑m
i=0 (ni)

for m-resilient functions. Similarly other

lower bounds can be obtained from Theorems 17 and 18.
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Chapter 5

Boolean function database website

The Selmer center is responsible for developing and hosting a Boolean function database

website for Europe-wide cryptography project called ECRYPT. The idea is that the website

will be used throughout the world, and that researchers into Boolean functions will submit

their best functions to the database.

One aim of this database is to show how close the bounds on the properties of Boolean

functions in the database come to the theoretical bounds on the properties of Boolean func-

tions. This then motivates the finding of construction methods that achieve the theoretical

bounds and also the finding of tighter theoretical bounds that match the properties of the

best representative functions in the database. If the bounds on the database equal the

theoretical bounds, our database will be completed with respect to the criteria considered,

since it will contain a representative for every good function. The following example shows

how the database could be used. Suppose you are looking for a Boolean function with

certain properties. Then you can consult the database and discover that:

1. There is a function with the properties you want that was found and saved in the

database by someone else.

2. There is no function with the properties you want in the database. If your properties

are within the theoretical bounds (such theoretical bounds may also be provided by

the database), a function with your properties could exist but it is not known how to

construct it. This will motivate researchers to either improve the theoretical bounds

and/or find construction methods that achieve the current theoretical bounds. If
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your properties are not within known theoretical bounds, then a function with your

properties does not exist.

We implemented the following three pages in the database website.

Conversion page

In this page, the user can convert between three different Boolean functions representations.

These three representations are the truth table representation, the ANF representation, and

the trace representation.

Check page

In this page, the user can enter a Boolean function in either its truth table, ANF or trace

representation to calculate the following cryptographic criteria: ANF degree, balancedness,

bentness, absolute distribution of the coefficients of the Walsh spectrum, nonlinearity, cor-

relation immunity, absolute distribution of the coefficients of the autocorrelation spectrum,

propagation characteristic, absolute indicator and sum-of-squares indicator. The user can

save the function in the database if the entered function is interesting. The function will be

saved in three different formats (TT, ANF, Trace) together with the calculated (mentioned

above) criteria.

Search page

In this page, the user can search in the database for a Boolean function by any combina-

tion of the following attributes: number of variables (n), ANF degree (d), balancedness

criterion (bal), bentness criterion (bent), nonlinearity criterion (nl), correlation immunity

criterion (m), propagation characteristic of degree 0 (pc), absolute indicator (abs) and sum-

of-squares indicator (sos).The page allows the user to see the lower/upper bounds of the

above mentioned attributes for any Boolean function in the database possessing any valid

combination of the above mentioned attributes. It also allows the user to see the theoretical
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lower/upper bounds for any possible Boolean function possessing any valid combination of

the above mentioned attributes. For instance, if the user looks for an 8-variable balanced

Boolean function, then the database upper bound on nonlinearity will be 116 (116 is the

highest nonlinearity currently known for an 8-variable balanced function) and the theoret-

ical upper bound for nonlinearity will be 118 (See the upper bound on balanced Boolean

functions on page 29). We implemented the following theoretical bounds depending on the

user input,

Input Combination = n

In this case, the only nontrivial theoretical bound is the universal upper bound on nonlin-

earity when n is even, if n is odd the upper bound is obtained by taking the floor of the

universal upper bound on nonlinearity.

Input Combination = n+ d

Besides the universal upper bound for nonlinearity, we have Siegenthaler’s bound on cor-

relation immunity, m < n− d.

Input Combination = n+ bal

In this case, the only nontrivial bound is the bound in 4.1.

Input Combination = n+ d+ bal

Besides the universal upper bound for nonlinearity, we have Siegenthaler’s bound on cor-

relation immunity (in this case resilience as we have ’bal’ in the input), m < n− d− 1.

Input Combination = n+ bent

Besides the universal upper bound for nonlinearity, we have Rothaus’s bound on the degree

of bent functions, d <= n/2.
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Input Combination = n+m

In this case, we have two nontrivial upper bounds: one on nonlinearity and the other on the

ANF degree. When n is even, we use the upper bound on nonlinearity in Theorem 9 but

when n is odd we use the upper bound on nonlinearity in 4.2 since it is more usable that

of Theorem 9 when n is odd. The upper bound on the ANF degree is Siegenthaler’s bound

d < n−m (if m ≥ 0.6n− 0.4, we use the upper bound 2n−1− 2m+1). We also have a lower

bound on the sum-of-squares indicator and a lower bound on the absolute indicator. We

use the lower bound on the sum-of-squares indicator, σf , in Theorem 17 (for m-correlation

immune). We use the lower bound on the absolute indicator obtained by substituting the

lower bound of σf in
√

σf−22n

2n−1
.

Input Combination = n+ bal +m

In this case, we have two nontrivial upper bounds: one on nonlinearity and the other on

the ANF degree. When n is even, we use the upper bound on nonlinearity in Theorem 9

but when n is odd we use the upper bound on nonlinearity in Theorem 10 since it is more

usable than that of Theorem 9 when n is odd. The upper bound on the ANF degree is

Siegenthaler’s bound d < n −m − 1. We also have a lower bound on the sum-of-squares

indicator and a lower bound on the absolute indicator. We use the lower bounds on the

sum-of-squares indicator, σf , in Theorem 17 (for m-resilient). We use the lower bound on

the absolute indicator obtained by substituting the lower bound of σf in
√

σf−22n

2n−1
.

Input Combination = n+ d+m

In this case, we have only one nontrivial upper bound on nonlinearity. It is similar to the

one in Theorem 12 and is obtained by simply replacing 2m+1+bn−m−2
d
c by 2m+bn−m−1

d
c in each

bound in Theorem 12 (if m ≥ 0.6n, we use the upper bound 2n−1 − 2m+1+bn−m−2
d
c). We

have two nontrivial lower bounds, one lower bound on the sum-of-squares indicator and the

other lower bound on the absolute indicator. We use the lower bound on the sum-of-squares
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indicator, σf , in Theorem 18 (for m-correlation immune). We use the lower bound on the

absolute indicator obtained by substituting the lower bound of σf in
√

σf−22n

2n−1
.

Input Combination = n+ d+ bal +m

In this case, we have only one nontrivial upper bound on nonlinearity. It is the one in

Theorem 12. We have two nontrivial lower bounds, one on the sum-of-squares indicator

and the other lower bound on the absolute indicator. We use the lower bound on the

sum-of-squares indicator, σf , in Theorem 18 (for m-resilient). We use the lower bound on

the absolute indicator obtained by substituting the lower bound of σf in
√

σf−22n

2n−1
.

Input Combination = n+ abs

In this case, we have two nontrivial upper bounds: one on nonlinearity and the other on

correlation immunity. The upper bound on nonlinearity is the one in Theorem 14. The

upper bound on correlation immunity is m ≤ d(log2 (∆2
max(2

n − 1) + 22n)−n−2)/2e which

can be deduced from Theorem 17.

Input Combination = n+ sos

In this case, we have two nontrivial upper bounds: one on nonlinearity and the other on

correlation immunity. The upper bound on nonlinearity is the one in Theorem 13. The

upper bound on correlation immunity is m ≤ d log2 σf−n−2

2
e which can be deduced from

Theorem 17.

Our contribution to the database website

The Boolean function database was initially created by Lars Erik Danielsen and later

developed by Sondre Ronjom. The following are our contributions to their work

1. Implementing the conversions from trace representations to a truth table or ANF

representations and vice versa.
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2. Enabling the calculations of cryptographic criteria for Boolean functions with number

of variables up to 21.

3. Calculating theoretical bounds on the cryptographic criteria implemented in the

database.

The following table summarizes the implemented theoretical bounds in the website.

Input/Bounds d nl m pc abs sos

n U

n+ d U U

n+ bal U

n+ d+ bal U

n+ bent U L=U L=U L=U L=U L=U

n+m U U L L

n+ bal +m U U L L

n+ d+m U L L

n+ d+ bal +m U L L

n+ abs U U

n+ sos U U

Table 5.1: The rows on the table refer to the user input, while the columns refer
to the bound on the implemented criteria. Entry ’U’ means that the
bound implemented is an upper bound, while entry ’L’ means that the
bound implemented is a lower bound and the empty entry means that
the bound is either trivial or nonexistent.
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Chapter 6

Golay complementary sequences and

arrays

In the previous chapters, we studied the Walsh spectrum and the autocorrelation spec-

trum of a Boolean function and some of the cryptographic criteria related to them. The rest

of this thesis deals with more spectral measures of a Boolean function, including aperiodic

autocorrelation and presents new constructions with respect to these spectral measures,

related to the Golay construction for complementary sequences. In this chapter, we give a

survey on Golay sequence and array pairs. This survey will serve as an introduction to the

next chapter.

6.1 Golay complementary binary sequences

Let A = (A0, A1, . . . , AN−1) be a binary sequence of length N such that Ai ∈ {1,−1} for

0 ≤ i ≤ N − 1. The aperiodic autocorrelation function of a length s binary sequence A is

given by

CA(k) =
N−k−1∑
i=0

AiAi+k (6.1)

for 0 ≤ k ≤ N − 1 and measures the extent to which a binary sequence repeats itself.

Let B = (B0, B1, . . . , BN−1) be another binary sequence of length N . The pair (A,B) is

called a Golay complementary sequence pair if

CA(k) + CB(k) = 0 for all k 6= 0.
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We call a sequence A a Golay sequence if it forms a Golay sequence pair with some sequence

B. The earliest Golay complementary sequences were defined over a binary alphabet,

{1,−1}. They were introduced by M. Golay in 1949. Golay showed the existence of

complementary pairs of lengths 2 and 10 [13], and 26 [15]. He also gave a construction

for pairs of length 2N and 2MN from existing pairs of lengths M and N [14] (see section

6.1.2). In 1974, Turyn gave a construction for pairs of length MN from existing pairs

of lengths M and N [41](see section 6.1.2). These constructions tell us that Golay pairs

exist for infinitely many lengths. The following two theorems summarize the known results

about the existence of Golay sequences.

Theorem 19. [41](see section 6.1.2) If there exist binary Golay sequence pairs of length

N and M then there exists a binary Golay sequence pair of length NM .

Corollary 1. There exists a binary Golay sequence pair of length 2a10b26c for all integer

a, b, c ≥ 0.

The following two theorems summarize the known results about the nonexistence of

Golay sequences.

Theorem 20. [14] If there exists a binary Golay sequence pair of length N > 1 then N is

even.

Theorem 21. [11] If there exists a binary Golay sequence pair of length N > 1 then N has

no prime factor congruent to 3 modulo 4.

6.1.1 Spectral property of Golay binary sequences

A binary Golay sequence A of length N can be associated with a polynomial A(z) =

A0 + A1z + A2z
2 + . . .+ AN−1z

N−1 in indeterminate z with coefficients ±1.

Theorem 22. [26] A pair (A,B) of length N is called a binary Golay pair if the associated

polynomials (A(z), B(z)) satisfy

A(z)A(z−1) +B(z)B(z−1) = 2N (6.2)
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Moreover, if z is restricted to lie on the unit circle in the complex plane, i.e. |z| = 1. Then

|A(z)|2 + |B(z)|2 = 2N, |z| = 1 (6.3)

Proof:

The Golay property, CA(k) +CB(k) = 0 for k 6= 0, and equation 6.2 are equivalent because

A(z)A(z−1) = CA(0) +
∑N−1

k=1 CA(k)(zk + z−k). If |z| = 1 then |A(z)|2 = A(z)A(z−1) and

thus equation 6.3 follows.�

The discrete Fourier transform on a Golay sequence A = (A0, A1, . . . , AN−1) yields an

infinite complex sequence, DFTAω :

DFTAω =
N−1∑
j=0

Ajω
j = A(ω) (6.4)

where |ω| = 1.

Corollary 2. A pair (A,B) of length N is called a Golay binary pair if

|DFTAω |2 + |DFTBω |2 = 2N, ∀ω, |ω| = 1. (6.5)

Proof:

We have that, |ωk| = 1 and therefore, from 6.3, |DFTAω |2+|DFTBω |2 = |A(ω)|2+|B(ω)|2 =

2N.�

Remark:

When ω = ek
2πi
N , where i =

√
−1, we recover the kth point of the periodic discrete Fourier

transform, but this is only a special case of the more general property where |ω| = 1. Thus,

5.5 identifies that the pair (A,B) is complementary with respect to the continuous discrete

Fourier transform.
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6.1.2 Equivalence and Constructions of Golay binary sequences

Equivalence classes of Golay binary sequences

The following operations on a Golay pair (A,B) of length N preserve their length and

complementarity [14] and form the equivalence class of (A,B). The output pair (A′, B′) of

length N of each operation forms one of the elements in the equivalence class of (A,B),

1. Exchanging A and B in the pair.

2. Reversing the order of either A or B or both, i.e. (A′, B′) = (
←−
A,B), where

←−
A =

(AN−1, . . . , A1, A0) if A = (A0, A1, . . . , AN−1).

3. Multiplying either A, B or both of them by −1.

4. The linear offset transformation, (A′, B′) = ((−1)iAi, (−1)iBi).

Constructions of Golay binary sequences

By simple algebraic operations on equation 6.3, many recursive constructions for Golay

sequences can be obtained. The following are the well-known recursive constructions:

1. The Golay-Shapiro-Rudin [31, 14] recursion generates a length 2N Golay sequence

from a length N Golay sequence. It can be stated as follows. Let (A, B) be a Golay

pair of length N , then simple algebraic manipulation shows that A(z) + zNB(z) and

A(z)− zNB(z) satisfy equation 6.3. This could also be written in terms of A and B

as:

(A,B)→ (A|B,A| −B) where ’|’ means concatenation.

2. Turyn’s construction [41] can be stated as follows. Let (C,D) and (A,B) be Golay

pairs of lengths M and N respectively. Then

C(zN)(A(z) +B(z))/2 + zN(M−1)D(z−N)(A(z)−B(z))/2,

D(zN)(A(z) +B(z))/2− zN(M−1)C(z−N)(A(z)−B(z))/2
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is a Golay pair of length MN .

3. Golay’s concatenation and interleaving constructions [14] are stated as follows. Let

(C,
←−
D) and (A,B) be Golay pairs of lengths M and N respectively, where

←−
D means

reversal of D. Then Golay’s concatenation construction is stated as follows

C(zN)A(z) +D(zN)B(z)zMN and
←−
D(zN)A(z)−

←−
D(zN)B(z)zMN

and Golay’s interleaving construction is stated as follows

C(z2N)A(z2) +D(z2N)B(z2)z and
←−
D(z2N)A(z2)−

←−
D(z2N)B(z2)z

Given a fixed alphabet for the elements of our pair, we refer to a Golay pair as primitive if

it cannot be constructed from shorter pairs over the same alphabet. Repeated application

of Turyn’s construction can be used to construct Golay pairs for all lengths N = 2a10b26c

for all a, b, c ≥ 0. For instance, we can generate an infinite number of pairs by starting

with the following primitive pairs of lengths 2, 10 and 26:

(+ +, + -)

(- + + - + - + + + -, - + + + + + + - - +)

(+ - + - + + + + - -, + + + + - + + - - +)

(+ + + + - + + - - + - + - + - - + - + + + - - + + +, + + + + - + + - - + - + + + + + - + - - - + + - - -)

where ’+’ and ’−’ mean 1 and −1 respectively.

In 1961, Golay [14] gave a direct construction for Golay pairs of length 2m. In 1999,

Davis and Jedwab gave an elegant description of this construction by using algebraic nor-

mal forms. Let

a(x0, x1, . . . , xm−1) =
m−2∑
i=0

xπ(i)xπ(i+1) +
m−1∑
i=0

cixi + c,

b(x0, x1, . . . , xm−1) =
m−2∑
i=0

xπ(i)xπ(i+1) +
m−1∑
i=0

cixi + xπ(0) + c′
(6.6)
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where π is a permutation of {0, 1, . . . ,m−1} and ci, c and c′ ∈ F2. Let Ai = (−1)a(i0,i1,...,im−1)

and Bi = (−1)b(i0,i1,...,im−1), for 0 ≤ i ≤ 2m − 1 where (i0, i1, . . . , im−1) is the binary repre-

sentation of integer i. Then (A,B) is a Golay pair of length 2m. Golay indicated [26] that

this construction implies the existence of at least m!2m distinct Golay binary sequences of

length 2m.

6.2 Golay complementary array pairs

Let A = (A[i1, . . . , ir]) be an r-dimensional array of size s1 × . . . × sr whose elements

are defined over S ⊆ C. The aperiodic autocorrelation function of an s1 × . . . × sr array

A = (A[i1, . . . , ir]) is given by [16]

CA(k1, . . . , kr) =

s1−k1−1∑
i1=0

. . .
sr−kr−1∑
ir=0

A[i1, . . . , ir]A[i1 + k1, . . . , ir + kr] (6.7)

where 0 ≤ kq ≤ sq − 1, q ∈ {1, . . . , r} and the bar represents complex conjugation. An

s1× . . .× sr Golay complementary array pair is a pair of s1× . . .× sr arrays A and B over

S ⊆ C, for which

CA(k1, . . . , kr) + CB(k1, . . . , kr) = 0 for all (k1, . . . , kr) 6= 0.

We call an array A a Golay array if it forms a Golay array pair with some array B.

The following theorems summarize the known results about the existence of Golay arrays.

Theorem 23. [19] If there exist binary Golay sequence pairs of length s1, . . . , sr then there

exists an s1 × . . .× sr binary Golay array pair.

Corollary 3. [16] There exists an s1 × . . . × sr binary Golay array pair, where each sk

takes the form 2ak10bk26ck for integer ak, bk, ck.

In 1992, Dymond [10] proved an important generalization of Theorem 19 to the con-

struction of multidimensional arrays.
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Theorem 24. [10] If there exist Golay pairs of size s1× . . .×sr and t1× . . .× tr then there

exists a Golay pair of size s1t1 × . . .× srtr.

Jedwab and Parker indicated [16] that Theorem 23 can be recovered by repeated ap-

plication of Dymond’s multidimensional construction (note that we have not stated the

multidimensional construction in Theorem 24, for further information about the construc-

tion refer to [10]).

Reference [16] proved that there is a relation between the aperiodic autocorrelations of

a (d+1)-dimensional array and a d-dimensional array. The following lemma illustrates this

relation.

Lemma 1. [16] For integer r ≥ 0, let A = (A[i, j, i1, . . . , ir]) be an s × t × s1 × · · · × sr
array. Define the st × s1 × · · · sr array ψ(A) = (B[m, i1, . . . , ir]) by B[ti + j, i1, . . . , ir] :=

A[i, j, i1, . . . , ir] for 0 ≤ i < s, 0 ≤ j < t, 0 ≤ ik < sk(k = 1, . . . , r). Then, for all integer

u, v, u1, . . . , ur, where 0 ≤ v < t,

Cψ(A)(tu+ v, u1, . . . , ur) = CA(u, v, u1, . . . , ur) + CA(u+ 1, v − t, u1, . . . , ur).

One can use Lemma 1 to show that the existence of a (d+1)-dimensional array pair implies

the existence of a d-dimensional array pair.

Theorem 25. [16] For integer r ≥ 0, suppose that A and B form an s× t× s1 × · · · × sr
Golay array pair over an alphabet S. Then ψ(A) and ψ(B), as defined in Lemma 1, form

an st× s1 × · · · × sr Golay array pair over S.

Proof:[16]

Fix integers u, v, u1, . . . , ur where (u, v, u1, . . . , ur) 6= 0. By Lemma 1,

Cψ(A)(tu+ v, u1, . . . , ur) + Cψ(B)(tu+ v, u1, . . . , ur) = CA(u, v, u1, . . . , ur) + CA(u+ 1, v −

t, u1, . . . , ur) + CB(u, v, u1, . . . , ur) + CB(u+ 1, v − t, u1, . . . , ur) = 0,

since A and B form a Golay pair. Therefore ψ(A) and ψ(B) form a Golay array pair over

S.�

Repeated application of Theorem 26 gives us the following Corollary.
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Corollary 4. [16] If there exists an s1× . . .×sr Golay array pair then there exists a Golay

sequence pair of length
∏r

k=1 sk over the same alphabet.

6.2.1 Spectral property of Golay array pairs

A Golay array A = A[i1, . . . , ir] of size N1 × . . .×Nr can be associated with a polynomial

A(z1, . . . , zr) =
∑N1−1

i1=0 . . .
∑Nr−1

ir=0 A[i1, . . . , ir]z
i1
1 · · · zirr

in indeterminates (z1, . . . , zr) 6= 0 with coefficients in C. Saying that the associated poly-

nomials of (A(z1, . . . , zr), B(z1, . . . , zr)) are complementary shall mean that the pair (A,B)

is complementary, where A and B are sequences whose elements are the coefficients of

A(z1, . . . , zr) and B(z1, . . . , zr) respectively. The following theorem generalizes Theorem

22.

Theorem 26. [12] An array pair (A, B) of size N1× . . .×Nr is called a Golay pair if the

associated polynomials (A(z1, . . . , zr), B(z1, . . . , zr)) satisfy

A(z1, . . . , zr)A(z−1
1 , . . . , z−1

r ) +B(z1, . . . , zr)B(z−1
1 , . . . , z−1

r ) = ε(A) + ε(B)

Moreover, if z1, . . . , zr are restricted to lie on the unit circle in the complex plane. Then

|A(z1, . . . , zr)|2 + |B(z1, . . . , zr)|2 = ε(A) + ε(B)

where ε(A) =
∑N1−1

i1=1 . . .
∑Nr−1

ir=0 |A[i1, . . . , ir]|2 (ε(B) is defined similarly).

Proof:[12]

Straightforward manipulation shows that

A(z1, . . . , zr)A(z−1
1 , . . . , z−1

r ) =
∑

k1
. . .
∑

kr
CA(k1, . . . , kr)((z

k1
1 · · · zkrr ) + (z−k11 · · · z−krr ))

Since CA(k1, . . . , kr)+CB(k1, . . . , kr) = 0 for all (k1, . . . , kr) 6= 0, thenA(z1, . . . , zr)A(z−1
1 , . . . , z−1

r )+

B(z1, . . . , zr)B(z−1
1 , . . . , z−1

r ) = CA(0, . . . , 0) + CB(0, . . . , 0) = ε(A) + ε(B). If |zi| = 1 for

1 ≤ i ≤ r, then |A(z1, . . . , zr)|2 = A(z1, . . . , zr)A(z−1
1 , . . . , z−1

r ) and therefore the second

equation follows. �
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The spectral property of a Golay array can be interpreted by the multidimensional

discrete Fourier transform. The multidimensional discrete Fourier transform of an N1 ×

. . .×Nr Golay array A = (A[i1, . . . , ir]) yields the infinite set of complex values DFTAω1,...,ωr
:

DFTAω1,...,ωr
=

N1−1∑
i1=0

. . .
Nr−1∑
ir=0

ωi11 · · ·ωirr A[i1, . . . , ir] = A(ω1, . . . , ωr) (6.8)

where |ωj| = 1, for 1 ≤ j ≤ r.

The following Corollary generalizes Corollary 2,

Corollary 5. A pair (A, B) of size N1 × . . .×Nr is called an array pair if

|DFTAω1,...,ωr
|2 + |DFTBω1,...,ωr

|2 = ε(A) + ε(B)

where ωj = 1, for 1 ≤ j ≤ r and ε(A) is defined as mentioned previously.

Proof:

The proof is similarly to the proof of Corollary 2. �

Remark:

When ωj = e
kj

2πi
Nj , 0 ≤ kj ≤ Nj−1, for 1 ≤ j ≤ r, we recover a point of the multidimensional

periodic Fourier transform but this is only a special case of the more general property where

|ωj| = 1. Thus Corollary 5 identifies that the array pair (A,B) is complementary with

respect to the continuous multidimensional discrete Fourier transform.

6.2.2 Constructions of Golay arrays

Borwein and Ferguson [3] generalized Turyn’s construction as follows.

Theorem 27. [3] Suppose each of the pairs (C(r), D(r)) and (A(s), B(s)) is complemen-

tary. Then the pair

F (r, s, t, u) = C(r)A(s) +D(r−1)B(s)t,

G(r, s, t, u) = (D(r)A(s) + C(r−1)B(s)t)u

is complementary.

Proof:[3]
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According to Theorem 26, the pair (F (r, s, t, u), G(r, s, t, u)) is complementary if

F (r, s, t, u)F (r−1, s−1, t−1, u−1) +G(r, s, t, u)G(r−1, s−1, t−1, u−1)

is constant. Substituting,

F (r, s, t, u)F (r−1, s−1, t−1, u−1) +G(r, s, t, u)G(r−1, s−1, t−1, u−1) =

(C(r)C(r−1) +D(r)D(r−1))(A(s)A(s−1) +B(s)B(s−1))

which is constant since A and B is a complementary pair. �

By making appropriate substitutions in the above construction, the following construc-

tions can be derived:

1. If (A,B) is complementary and C(r) = D(r) = t = u = 1, then (F,G) = (A+B,A−

B).

2. Turyn’s construction mentioned in section 6.1.2 can be derived by starting with the

complementary pairs (C(r), D(r)) and ((A(s)+B(s))/2, (A(s)−B(s))/2) and setting

r = zNs , s = z, t = zNs(Nr−1) and u = 1.

The construction in Theorem 27 can be generalized to the following multidimensional

version of Turyn’s construction.

Theorem 28. Abbreviate (s0, . . . , sns−1) and (r0, . . . , rnr−1) to s and r respectively. Let r, s

and t be indeterminates. Let (A(s), B(s)) be the associated polynomials of a complemen-

tary array pair (A,B) of size i0 × . . . × ins−1, (A,B). Let (C(r), D(r)) be the associated

polynomials of a complementary array pair (C,D) of size j0 × . . . × jnr−1 then the array

pair of size i0× . . .× ins−1× j0× . . .× jnr−1× 2 having the following associated polynomials

F (r, s, t) = C(r)A(s) +D∗(r)B(s)t,

G(r, s, t) = D(r)A(s)− C∗(r)B(s)t

is complementary, where D∗(r) = (rj0−1
0 · · · rjnr−1−1

nr−1 )D(r−1
0 , . . . , r−1

nr−1).

Proof:
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According to Theorem 26, (F (r, s, t), G(r, s, t)) is complementary if

F (r, s, t)F (r−1, s−1, t−1) + G(r, s, t)G(r−1, s−1, t−1)

is constant. Substituting,

F (r, s, t)F (r−1, s−1, t−1) + G(r, s, t)G(r−1, s−1, t−1) =

(C(r)C(r−1) +D(r)D(r−1)(A(s)A(s−1) +B(s)B(s−1)) = (ε(C) + ε(D))(ε(A) + ε(B)),

which is constant. �
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Chapter 7

Type-I/II/III Pairs

7.1 Introduction

In this chapter we rename the Golay array pair construction, where each dimension is of

size 2 as, the Type-I construction. We then introduce two new variants of the Golay array

construction, naming them Type-II and Type-III complementary constructions.

Throughout this chapter, the term “an array of size 2n” refers to an n-dimensional array

of size 2 × . . . × 2. Let V = (V00...0, V00...01, . . . , V11...1) be an array of size 2n and U be a

matrix of size 2n × 2n which is a tensor product of 2 × 2 unitary matrices. Then UV is

an array of size 2n. |UV | refers to the array obtained by taking the absolute value of each

entry of UV .

The spectral property of an n-dimensional Golay array of size 2n can be re-expressed

using a 2n × 2n unitary matrix. The following theorem illustrates this re-expression,

Theorem 29. Let F and G be a Golay array pair of size 2n such that ε(F ) = ε(G) = 2n.

Then the spectral property of F and G is expressed as follows

|F (z0, z1, . . . , zn−1)|2 + |G(z0, z1, . . . , zn−1)|2 = 2× 2n, (7.1)

where |zj| = 1 for 0 ≤ j ≤ n− 1 and ε(F ) is as defined previously in Theorem 26.

Let UI = U0 ⊗ U1 ⊗ · · · ⊗ Un−1, where

Uj =
1√
2

 1 αj

1 −αj

 (7.2)

for some arbitrary αj ∈ C, where |αj| = 1 for all 0 ≤ j ≤ n − 1. Let F̂ = UIF and
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Ĝ = UIG. Then the above spectral property 7.1 can be re-expressed as follows:

|F̂k0,...,kn−1 |2 + |Ĝk0,...,kn−1|2 = 2 (7.3)

where F̂k0,...,kn−1 is the entry at index (k0, . . . , kn−1) ∈ F n
2 in F̂ = UIF .

Proof:

The proof follows immediately from Corollary 5. �

Let us call a matrix UI formed from a tensor product of 2×2 matrices of the type spec-

ified in 7.2 a Type-I unitary matrix (Each Uj is unitary and therefore UI is also unitary).

Thus an array pair (F,G) is Type-I complementary if it satisfies 7.3. Theorem 29 says that

any Golay array pair of size 2n is a Type-I complementary pair and the converse is also

true. Thus a “Type-I complementary pair” is just a new name for a Golay pair of size 2n.

The complementarity obtained by UI raises the question, does the complementarity prop-

erty hold for other types of unitary matrices ? Generally, a 2 × 2 unitary matrix can be

written as,

u = D

 cos(θ) sin(θ)eiφ

sin(θ) − cos(θ)eiφ

 (7.4)

where θ and φ are arbitrary angles, and D is a diagonal or anti-diagonal 2 × 2 unitary

matrix. θ and φ can be viewed as defining points on the surface of a sphere which is

sometimes called the “Bloch sphere”. Type-I unitaries, UI , are constructed from 2 × 2

unitaries where θ = π
4
. Two other types of unitary matrices, named Type-II and Type-III,

can be identified by assigning φ = 0 and φ = π
2

in 7.4 respectively. Now, we have the

following three types of unitary matrix representing the 3 circumferences of the sphere that

meet at right-angles:

Let N = 1√
2

 1 i

1 −i

, where i =
√
−1. Then the following relations hold:

uI = DuIIIN, uII = D′uIN and uIII = D′′uIIN (7.5)
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Type-I: uI = 1√
2

 1 eiφ

1 −eiφ

 ,

Type-II: uII =

 cos(θ) sin(θ)

sin(θ) − cos(θ)

 ,

Type-III: uIII =

 cos(θ) sin(θ)i

sin(θ) − cos(θ)i


where D,D′ and D′′ are arbitrary 2 × 2 diagonal or anti-diagonal unitary matrices. The

complementarity in Type-II and Type-III is defined in the same way as the complementarity

in Type-I. Let UI , UII and UIII be the unitary matrices formed from the tensor products

of Type-I, Type-II and Type-III unitaries respectively. An array pair (F,G) of size 2n is

Type-I, Type-II or Type-III complementary if

|F̂k0,...,kn−1|2 + |Ĝk0,...,kn−1|2 = c (7.6)

where F̂k0,...,kn−1 is the entry at index (k0, . . . , kn−1) ∈ F n
2 in F̂ = UF , c is a constant and

U = UI , U = UII or U = UIII respectively. If ε(F ) = ε(G) = 2n, then c equals 2. Let

(F = (−1)f , G = (−1)g) be a complementary binary array pair of size 2n, where f and

g are n-variable Boolean functions, then we say that the Boolean function pair (f, g) is

complementary.

Peak-to-average power ratio of arrays of size 2n

The peak-to-average power ratio (PAPR) of an n-dimensional array of size 2× · · · × 2, V ,

with respect to a set of unitary matrices, J , denoted by PJ(V ) is defined as

PJ(V ) = max
U∈J

2n|UV |2∑
y∈Fn2

|V (y)|2
(7.7)

Thus, 1 ≤ PJ(V ) ≤ 2n. For a given set of unitary matrices, J , we are interested in

constructing arrays, V, such that PJ(V ) is as small as possible. It is difficult to construct

such arrays but as we will see in section 7.5, it is easier to construct pairs of arrays such
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that their power sum, PJ(V, V ′), is as small as possible, where

PJ(V, V ′) = max
U∈J

2n(|UV |2 + |UV ′|2)∑
y∈Fn2

|V (y)|2 + |V ′(y)|2
(7.8)

For a pair of arrays (V, V ′),

PJ(V ) ≤
∑

y∈Fn2
(|V (y)|2 + |V ′(y)|2)∑
y∈Fn2

|V (y)|2
PJ(V, V ′) (7.9)

Thus, constructing pairs also provides a tight bound on each member of the pair. In this

Chapter, we consider the case, ε(V ) =
∑

y∈Fn2
|V (y)|2 = ε(V ′) =

∑
y∈Fn2

|V ′(y)|2, which

gives us the following upper bound,

PJ(V ) ≤ 2PJ(V, V ′). (7.10)

Corollary 6. Let V be an array of size 2n with ε(V ) = 2n. Then the peak-to-average power

ratio of V with respect to Type-I , Type-II or Type-III matrices is at most 2 if V is a Type-I,

Type-II or Type-III member of an array pair respectively.

Proof:

We prove the Type-I case. The other cases being similar. Let V be a member of a Type-I

array pair, Let PI(V ) denote the peak-to-average power ratio with respect to Type-I unitary

matrices. Then from relations 7.6 and 7.7, PI(V ) = max |UIV |2 ≤ 2.�

If V is a binary array of size 2n, then V can be written as (−1)v where v is an n-variable

Boolean function. In this Chapter, the PAPR of a Boolean function v shall mean the PAPR

of (−1)v, i.e., PJ(v) ≡ PJ(V ). The PAPR of two Boolean functions v and v′ shall also

mean the PAPR of (−1)v and (−1)v
′
, i.e., PJ(v, v′) ≡ PJ((−1)v, (−1)v

′
).

Near-complementary pairs

It is of interest to construct pairs which are as near-complementary1 as possible with respect

to the action of a 2n × 2n unitary, U , which is an n-fold tensor product of any 2 × 2. An

1Near-complementary pairs were constructed by Parker and Tellambura in [27] and also by Schmidt in

[36].
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array pair (F,G) of size 2n is near-complementary with respect to a set of unitary matrices,

J , if PJ(F,G) is minimal or close to minimal for elements of F and G taken from a fixed

alphabet. If J is the set of Type-I/II/III matrices, then (F,G) is a Type-I/II/III near

complementary pair respectively. From equations 7.8 and 7.10, we see that PJ(F,G) is an

upper bound for the PAPR of either F or G. Thus constructing good near complementary

pairs can be used as a construction for arrays with low PAPR.

Conversions between Type-I/II/III complementary array pairs

By using the relations in 7.5, Type-X can be converted to Type-Y, for X and Y taken from

I, II, and III. The following theorem illustrates the conversions among the three types,

Theorem 30. Let (AI , BI), (AII , BII) and (AIII , BIII) be Type-I, Type-II and Type-III

complementary pairs respectively. Then the conversions of (AI , BI): (N2⊗nAI , N
2⊗nBI)

and (N⊗nAI , N
⊗nBI), are Type-II and Type-III complementary pairs respectively, the con-

versions of (AII , BII): (N⊗nAII , N
⊗nBII) and (N2⊗nAII , N

2⊗nBII), are Type-I and Type-

III complementary pairs respectively, and the conversions of (AIII , BIII): (N2⊗nAIII , N
2⊗nBIII)

and (N⊗nAIII , N
⊗nBIII), are Type-I and Type-II complementary pairs respectively.

Proof:

We prove the statement for the conversions of (AI , BI). The other proofs are similar. Let

UI , UII and UIII be the unitary matrices formed from tensor product of Type-I, Type-II

and Type-III unitaries respectively. We know that (AI , BI) is Type-I complementary if

|UIAI |2 + |UIBI |2 = 2. From 7.5, we see that UI = u⊗nI = (DuIII)
⊗n = D1UIIIN

⊗n and

also see that UI = D2UIIN
2⊗n (since N3 is a diagonal matrix). Thus,

|UIAI |2 + |UIBI |2 = |D2UIIN
2⊗nAI |2 + |D2UIIN

2⊗nBI |2 = |D1UIIIN
⊗nAI |2 +

|D1UIIIN
⊗nBI |2 = |UIIN2⊗nAI |2 + |UIIN2⊗nBI |2 = |UIIIN⊗nAI |2 + |UIIIN⊗nBI |2 = 2

and therefore the conversions of (AI , BI), (N2⊗nAI , N
2⊗nBI) and (N⊗nAI , N

⊗nBI) are

Type-II and Type-III complementary pairs respectively. �
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Remark:

In the above theorem, replacing N2 by N−1 will also be a valid alternative since N2 = DN−1

where D is a 2×2 diagonal matrix. Observe that converting a Type-I binary pair to Type-II

or Type-III will not preserve the binary alphabet of the pair in Type-II or Type-III (See

Examples 1 and 2 on pages 76 and 77). In section 7.2, we show how to convert the Type-I

construction itself in order to facilitate the construction of binary pairs in Type-II and

Type-III.

Symmetry properties in Type-I/II/III

The following transformations on a Type-I/II/III complementary array pair (F,G) of size

2n preserve the size and complementarity of (F,G):

1. (F,G)→ (F ′ = F,G′ = −G).

2. (F = (−1)f , G = (−1)g) → (F ′ = (−1)f+l, G′ = (−1)g+l) where f and g are n-

variable Boolean functions and l is an n-variable affine function.

3. (F,G) → (β1F + β2G, β3F + β4G) where β1, β2, β3 and β4 form the 2 × 2 unitary

matrix U =

 β1 β3

β2 β4

.

The proof of property 1 is trivial. Property 2 can be recovered be repeated application of

property 1. Property 3 can be proved as follows: we prove the case for Type-I. The other

cases follow similarly. Let F (z0, . . . , zn−1) andG(z0, . . . , zn−1) be the associated polynomials

of F and G respectively. (β1F + β2G, β3F + β4G) is Type-I complementary if

(β1F (z0, . . . , zn−1) + β2G(z0, . . . , zn−1))(β1F (z−1
0 , . . . , z−1

n−1) + β2G(z−1
0 , . . . , z−1

n−1)) +

(β3F (z0, . . . , zn−1) + β4G(z0, . . . , zn−1))(β3F (z−1
0 , . . . , z−1

n−1) + β4G(z−1
0 , . . . , z−1

n−1))

is constant. Now, since U is a unitary matrix then UU∗ = I, where U∗ is the conjugate

transpose of matrix U . Therefore, β1β2 + β3β4 = β2β1 + β4β3 = 0 and β1β1 + β3β3 =

β2β2 + β4β4 = 0. Evaluating the above expression and using the above identities, we get
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F (z0, . . . , zn−1)F (z−1
0 , . . . , z−1

n−1) +G(z−1
0 , . . . , z−1

n−1)G(z−1
0 , . . . , z−1

n−1)

which is constant by our hypothesis. Thus (β1F+β2G, β3F+β4G) is Type-I complementary.�

Remark: Property 1 is a special case of property 3 as it can be obtained by setting β1 = 1,

β2 = β3 = 0 and β4 = −1. One can also show that property 2 is a special case of the re-

peated application of property 3.

7.2 Type-I/II/III Constructions

We know that Type-I complementary pairs are Golay array pairs of size 2n and that im-

mediately tells us that they can be constructed by one of the standard Golay array con-

structions, in contrast to both Type-II and Type-III which are not Golay pairs. This raises

the question, how can we construct Type-II and Type-III complementary pairs directly as

opposed to via rotation of Type-I pairs, as discussed in the previous section ?

7.2.1 Type-I Construction

As we noted above, Type-I pairs are Golay array pairs of size 2n and therefore any method

which constructs Golay array pairs of size 2n is a construction method for Type-I. The fol-

lowing proposition shows how to construct Type-I pairs and generalizes to the construction

of Type-I near-complementary pairs. It is just a special case of Theorem 28 (but generalizes

Theorem 28 to near-complementarity).

Proposition 1. Abbreviate (s0, . . . , sns−1) and (r0, . . . , rnr−1) to s and r respectively. Let

r, s and t be indeterminates. Let (A(s), B(s)) be the associated polynomials of a Type-

I (near-)complementary array pair (A,B) of size 2ns. Let (C(r), D(r)) be the associated

polynomials of a Type-I (near-)complementary array pair (C,D) of size 2nr . Then the array

pair (F,G) of size 2ns+nr+1 having the associated polynomials,

F (r, s, t) = C(r)A(s) +D∗(r)B(s)t (7.11)

G(r, s, t) = D(r)A(s)− C∗(r)B(s)t (7.12)
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is Type-I (near-)complementary, where D∗(r) = r0r1 · · · rnr−1D(r−1) and r−1 = (r−1
0 , r−1

1 , . . . , r−1
nr−1).

More precisely, if r, s and t are restricted to lie on the unit circle in the complex plane, then

PI(F,G) = PI(A,B)PI(C,D) (7.13)

where PI means PAPR with respect to Type-I unitary matrices.

Proof:

As in Theorem 28, evaluating F (r, s, t)F (r−1, s−1, t−1) + G(r, s, t)G(r−1, s−1, t−1) gives us

the constant (C(r)C(r−1) + D(r)D(r−1))(A(s)A(s−1) + B(s)B(s−1)) which proves that

(F,G) is a Type-I complementary pair. Since t and the elements of r and s are re-

stricted to lie on the unit circle in the complex plane, then |F (r, s, t)|2 + |G(r, s, t)|2 =

(|C(r)|2 + |D(r)|2)(|A(s)|2 + |B(s)|2)).

Let n = ns + nr + 1. From Theorem 29, we see that max (|F (r, s, t)|2 + |G(r, s, t)|2) =

max (2n(|UIF |2 + |UIG|2)) = 2n+1PI(F,G), max (|C(r)|2 + |D(r)|2) = 2nr max(|UIC|2 +

|UID|2) = 2nr+1PI(C,D) and max (|A(s)|2 + |B(s)|2) = 2ns max(|UIA|2+|UIB|2) = 2ns+1PI(A,B).

Combining all these equations together, we find that PI(F,G) = PI(A,B)PI(C,D).�

Remark:

Proposition 1 can be generalized for arrays of any combination of dimensions and not just

for arrays where each dimension is of size 2.

Construction of Type-I binary pairs

We consider the construction of Type-I (near-)complementary binary arrays. Thus we

assume in Proposition 1 that A,B,C and D are all binary arrays. So D∗(r) =
←−
D(r),

where
←−
D(r) is the associated polynomial of

←−
D which is the reversal of D (

←−
D [i1, . . . , inr ] =

D[1− i1, . . . , 1− inr ], where (i1, . . . , inr) ∈ F nr
2 ). Moreover we shall consider only the case

where t = 1. Thus we obtain from 7.11 and 7.12,

F (r, s) = C(r)A(s) +
←−
D(r)B(s) (7.14)

G(r, s) = D(r)A(s)−
←−
C (r)B(s) (7.15)
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From symmetry property 3 we know that if (A,B) is Type-I complementary, then so is

((A + B)/2, (A − B)/2). Therefore, by replacing A(s) and B(s) with ((A(s) + B(s))/2)

and ((A(s) − B(s))/2) respectively in equations 7.14 and 7.15, we arrive at the following

complementary pair

F (r, s) = C(r)((A(s) +B(s))/2) +
←−
D(r)((A(s)−B(s))/2) (7.16)

G(r, s) = D(r)((A(s) +B(s))/2)−
←−
C (r)((A(s) +B(s))/2) (7.17)

The following Corollary proves that (F,G) is a binary pair and gives a direct formula for

constructing binary pairs.

Corollary 7. Let (A = (−1)a, B = (−1)b) be a Type-I complementary binary array pair of

size 2ns, where a and b are the ANFs of ns-variable Boolean functions. Let (C = (−1)c, D =

(−1)d) be also a Type-I complementary binary array pair of size 2nr , where c and d are the

ANFs of nr-variable Boolean functions. Then the pair (F,G) in 7.16 and 7.17 is a binary

pair and can be written as (F = (−1)f , G = (−1)g), where f and g are given by

f = (a+ b)(c+
←−
d ) + a+

←−
d

g = (a+ b)(←−c + d) + b+←−c (7.18)

and
←−
d (r0, r1, . . . , rnr−1) = d(r0 + 1, r1 + 1, . . . , rnr−1 + 1), is Type-I (near-)complementary.

Proof:

We prove the formula for f . The proof for g is similar. The coefficient of sx0
0 · · · s

xns−1

ns−1 r
xns
0 · · · rxns+nr−1

nr−1 ,

where (x0, . . . , xns+nr) ∈ F ns+nr−1
2 in polynomial F (r, s) in 7.16 is,

1
2
(−1)c((−1)a + (−1)b) + 1

2
(−1)

←−
d ((−1)a − (−1)b)

Consider the subcases where (a, b) = (0, 0), (0, 1), (1, 0) and (1, 1), respectively. Thus,

when a = b = 0, we obtain, the expression (a + 1)(b + 1)c. Similarly, when a = 0, b = 1,

we obtain, (a + 1)b
←−
d . When a = 1, b = 0, we obtain, a(b + 1)(

←−
d + 1), and, when

a = b = 1, we obtain, ab(←−c + 1). By adding the four subexpressions together we find that

f = ac+ bc+ b
←−
d + a

←−
d + a+ c. Now if (c, d) is a pair then so is (

←−
d ,←−c ). Thus, replacing c

by
←−
d and d by←−c , in f , yields f = a

←−
d + b

←−
d + bc+ac+a+d = (a+ b)(c+

←−
d ) +a+

←−
d . �
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7.2.2 Type-II Construction

Theorem 30 tell us how to convert Type-I pairs to Type-II pairs. We can exploit this idea to

convert the Type-I construction over n variables to a Type-II construction by using the same

approach to that used in Theorem 29, which is to left-multiply the Type-I construction by

N2⊗n or by N−1⊗n (since N2 = DN−1, where D is a 2× 2 diagonal matrix). The following

proposition shows how to construct Type-II pairs.

Proposition 2. Abbreviate (s0, . . . , sns−1) and (r0, . . . , rnr−1) to s and r respectively. Let

r, s and t be indeterminates. Let (A(s), B(s)) be the associated polynomials of a Type-

I (near-)complementary array pair (A,B) of size 2ns. Let (C(r), D(r)) be the associated

polynomials of a Type-I (near-)complementary array pair (C,D) of size 2nr . Then the array

pair (F ′, G′) of size 2ns+nr+1 having the associated polynomials,

F ′(r, s, t) = C ′(r)A′(s) +D′(r)B′(s) + i(D′(r)B′(s)− C ′(r)A′(s))t

G′(r, s, t) = D′(r)A′(s)− C ′(r)B′(s)− i(D′(r)A′(s) + C ′(r)B′(s))t,

is Type-II (near-)complementary, where A′ = (N−1)⊗nsA,B′ = (N−1)⊗nsB,C ′ = (N−1)⊗nrC,D′ =

(N−1)⊗nrD (and therefore D′ = (N−1)⊗nrD∗)2, and A(s), B(s), C(r) and D(r) are the as-

sociated polynomials of arrays A,B,C and D respectively. More precisely,

PII(F,G) = PII(A
′, B′)PII(C

′, D′) = PI(A,B)PI(C,D)

where PII means PAPR with respect to Type-II unitary matrices.

Proof:

2The identity D′ = (N−1)⊗nrD∗ in Proposition 2 can be proved as follows: Let v = k + li

p + qi

, where k, l, p, q ∈ R and i =
√
−1. Then, by definition, v∗ =

 p− qi

k − li

.

Let v′ = N−1v. Now, we want to prove that v′ = N−1v∗. The right hand side (RHS),

N−1v∗ = 1√
2

 1 1

−i i

 p− qi

k − li

 = 1√
2

 (k + p)− (l + q)i

(l − q)− (p− k)i

. The left hand side (LHS), v′ =

1√
2

 1 1

−i i

 k + li

p + qi

 = 1√
2

 (k + p) + (l + q)i

(l − q) + (p− k)i

 = RHS. Now the identity D′ = (N−1)⊗nrD∗

follows by tensor expansion of the identity v′ = N−1v∗.
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Let n = ns + nr + 1. Let (F,G) be the array pairs of size 2n having the associated poly-

nomials in 7.11 and 7.12. Since the Type-II construction = (N2)⊗n = (N−1)⊗nType-I

construction, then multiplying F and G by (N−1)⊗n, we obtain F ′ and G′ respectively.

We prove the formula for F ′. The proof forG′ is similar. F ′ = (N−1)⊗nF = (N−1)⊗ns+nr+1F =

(I⊗nr+ns⊗N−1)((N−1)⊗ns+nr ⊗ I)F = (I⊗nr+ns⊗N−1)F̂ , where F̂ is the array pair having

the associated polynomial C ′(r)A′(s) + D′(r)B′(s)t. (I⊗nr+ns ⊗N−1)F̂ gives us the array

pair having the associated polynomial C ′(r)A′(s)+D′(r)B′(s)+i(D′(r)B′(s)−C ′(r)A′(s))t.

�

Construction of Type-II binary pairs

We consider the construction of Type-II (near-)complementary binary arrays. By assuming

in Proposition 2 that A′, B′, C ′ andD′ are all binary arrays and that t = 0, soD′(r) = D′(r),

we obtain the following construction for Type-II (near-)complementary pairs

F ′(r, s) = C ′(r)A′(s) +D′(r)B′(s) (7.19)

G′(r, s) = D′(r)′A(s)− C ′(r)B′(s) (7.20)

From symmetry property 3 we know that if (A′, B′) is Type-II complementary, then so is

((A+ B)/2, (A− B)/2). Therefore, by replacing A′(s) and B′(s) with ((A′(s) + B′(s))/2)

and ((A′(s)− B′(s))/2) respectively in equations 7.19 and 7.20, we arrive at the following

complementary pair

F ′(r, s) = C ′(r)((A′(s) +B′(s))/2) +D′(r)((A′(s)−B′(s))/2) (7.21)

G′(r, s) = D′(r)((A′(s) +B′(s))/2)− C ′(r)((A′(s) +B′(s))/2) (7.22)

The following Corollary proves that (F ′, G′) is a binary pair and gives a direct formula for

constructing binary pairs.

Corollary 8. Let (A′ = (−1)a, B′ = (−1)b) be a Type-II binary complementary array

pair of size 2ns, where a and b are the ANFs of ns-variable Boolean functions. Let (C ′ =
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(−1)c, D′ = (−1)d) be also a Type-II binary complementary array pair of size 2nr , where

c and d are the ANFs of nr-variable Boolean functions. Then the pair (F,G) in 7.21 and

7.22 is a binary pair and can be written as (F ′ = (−1)f , G′ = (−1)g), where f and g, given

by

f = (a+ b)(c+ d) + a+ d

g = (a+ b)(c+ d) + b+ c (7.23)

is Type-II (near-)complementary.

Proof:

The proof is similar to that for Corollary 8.�

7.2.3 Type-III Construction

One can use again the conversion idea behind the Type-II construction to find a construc-

tion for Type-III. Thus we convert the Type-I construction over n variables to a Type-III

construction by left multiplying the Type-I construction by N⊗n, i.e. Type-III construc-

tion = N⊗nType-I construction. The following proposition shows how to construct Type-III

pairs.

Proposition 3. Let Z =

 1 0

0 −1

. Abbreviate (s0, . . . , sns−1) and (r0, . . . , rnr−1) to s

and r respectively. Let r, s and t be indeterminates. Let (A(s), B(s)) be the associated poly-

nomials of a Type-I (near-)complementary array pair (A,B) of size 2ns. Let (C(r), D(r))

be the associated polynomials of a Type-I (near-)complementary array pair (C,D) of size

2nr . Then the array pair (F ′′, G′′) of size 2ns+nr+1 having the associated polynomials,

F ′′(r, s, t) = C ′′(r)A′′(s) + inr+1D′′z (r)B
′′(s) + (C ′′(r)A′′(s)− inr+1D′′z (r)B

′′(s))t,

G′′(r, s, t) = D′′(r)A′′(s)− inr+1C ′′z (r)B′′(s) + (D′′(r)A′′(s) + inr+1C ′′z (r)B′′(s))t
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is Type-III (near-)complementary, where A′′ = N⊗nsA,B′′ = N⊗nsB,C ′′ = N⊗nrC,D′′ =

N⊗nrD (and therefore D′′ = (−i)nrZ⊗nrN⊗nrD∗)3, C ′′z (r) = Z⊗nrC ′′, D′′z (r) = Z⊗nrD′′,

and A(s), B(s), C(r) and D(r) are the associated polynomials of arrays A,B,C and D re-

spectively. More precisely, PIII(F
′′, G′′) = PIII(A

′′, B′′)PIII(C
′′, D′′) = PI(A,B)PI(C,D).

Proof:

The proof is similar to that for Type-II.

Construction of Type-III binary pairs

We consider the construction of Type-III (near-)complementary binary arrays. If (A′′, B′′)

is a Type-III pair, using symmetry property 3, so is (A′′, ikB′′) for some integer k. By

re-assigning B′′ as ikB′′ for k chosen appropriately and assuming in Proposition 2 that

A′′, B′′, C ′′ and D′′ are all binary arrays and that t = 0, so D′′(r) = D′′(r), we obtain the

following construction

F ′′(r, s) = C ′′(r)A′′(s) +D′′z (r)B
′′(s) (7.24)

G′′(r, s) = D′′(r)′′A(s)− C ′′z (r)B′′(s) (7.25)

From symmetry property 3 we know that, if (A′′, B′′) is Type-III complementary, then so is

((A+B)/2, (A−B)/2). Therefore, by replacing A′′(s) and B′′(s) with ((A′′(s) +B′′(s))/2)

and ((A′′(s)−B′′(s))/2) respectively in equations 7.24 and 7.25, we arrive at the following

3The identity D′′ = (−i)nrZ⊗nrN⊗nrD∗ in Proposition 3 can be proved as follows: Let v = k + li

p + qi

, where k, l, p, q ∈ R and i =
√
−1. Then, by definition, v∗ =

 p− qi

k − li

. Let

v′′ = Nv. Now, we want to prove that v′′ = −iZNv∗. The right hand side (RHS), −iZNv∗ =

−i√
2

 1 0

0 −1

 1 i

1 −i

 p− qi

k − li

 = 1√
2

 (k − q)− (p + l)i

(k + q) + (p− l)i

. The left hand side (LHS),

v′′ = 1√
2

 1 i

1 −i

 k + li

p + qi

 = 1√
2

 (k − q) + (p + l)i

(k + q)− (p− l)i

 = RHS. Now the identity D′′ =

(−i)nrZ⊗nrN⊗nrD∗ follows by tensor expansion of the identity v′′ = −iZNv∗.
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complementary pair

F ′′(r, s) = C ′′(r)((A′′(s) +B′′(s))/2) +D′′z (r)((A
′′(s)−B′′(s))/2) (7.26)

G′′(r, s) = D′′(r)((A′′(s) +B′′(s))/2)− C ′′z (r)((A′′(s) +B′′(s))/2) (7.27)

The following Corollary proves that (F ′′, G′′) is a binary pair and gives a direct formula for

constructing binary pairs.

Corollary 9. Let (A′′ = (−1)a, B′′ = (−1)b) be a binary array pair of size 2ns, where a

and b are the ANFs of ns-variable Boolean functions. Let (C ′′ = (−1)c, D′′ = (−1)d) be

also a binary array pair of size 2nr , where c and d are the ANFs of nr-variable Boolean

functions. Then the pair (F,G) in 7.26 and 7.27 is a binary pair and can be written as

(F ′′ = (−1)f , G′′ = (−1)g), where f and g are given by

f = (a+ b+ lr)(c+ d) + a+ d

g = (a+ b+ lr)(c+ d) + b+ c+ lr (7.28)

and lr is the linear Boolean function
∑ns+nr−1

i=ns
xi, where (xns , . . . , xns+nr−1) are the Boolean

variables of c and d, is Type-III (near-)complementary.

Proof:

The proof is similar to that for Corollary 8 (note that (−1)lr(xns ,...,xns+nr−1) corresponds to

the diagonal entries of Z⊗nr). �

7.3 Type-I/II/III complementary binary pairs

In this section, we use the constructions in 7.18, 7.23 and 7.28 to generate the ANF of Type-

I, Type-II and Type-III binary complementary pairs. But in order to generate complemen-

tary pairs by these recursive constructions, we need initial binary complementary pairs to

start with for each construction, i.e. primitive complementary pairs for Type-I, Type-II

and Type-III. It is already known that the array pair of size 2, (F = (−1)f , G = (−1)g),
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where f = 0 and g = x0, are Boolean functions defined over 1 variable, is a Type-I primitive

complementary pair. We further determine that this pair is also a Type-II primitive com-

plementary pair. In contrast to Type-I and Type-II, in Type-III, we found that any array

pair of size 2n consisting of any combination of affine functions is a Type-III complemen-

tary pair. Some of these affine array pairs are primitive and some are not. The array pairs

(F = (−1)f , G = (−1)g), where (f = 0, g = 0), (f = 0, g = x0) and (f = x0, g = x0) and f

and g are defined over 1 variable, form the primitive array pairs of size 2. The array pair

(F = (−1)f , G = (−1)g), where (f =
∑i=n−1

i=0 xi, g =
∑i=n−1

i=0 xi) is a primitive array pair of

size 2n. We use these primitive pairs as initial pairs to the Type-I and Type-II and Type-III

binary constructions to construct complementary array pairs of larger size. Before describ-

ing the output of each construction, we need to introduce the following symmetry property

for binary array pairs in Type-I/II/III: If (F = (−1)f(x0,...,xn−1), G = (−1)g(x0,...,xn−1)), where

f and g are n-variable Boolean functions, is a complementary binary pair in Type-I/II/III,

then so is (F ′ = (−1)f(xπ(0),...,xπ(n−1)), G′ = (−1)g(xπ(0),...,xπ(n−1))), where π is any permutation

of {0, 1, . . . , n− 1}. We call this symmetry property the re-labeling property.

Type-I complementary binary pairs (Golay array pairs of size 2n)

The primitive binary array pair for Type-I is (F = (−1)0, G = (−1)x0). So we set (a =

0, b = x0) and (c = 0, d = x1) as initial pairs for the construction in 7.18. This outputs

f = x0x1 + x0 + x1 + 1 and g = x0x1 + x0, and thus ((−1)f , (−1)g) is an array pair

of size 22. We then use a = f and b = g, and c = 0 and d = x2. This outputs f =

x0x1 + x1x2 + x0 + 1 and g = x0x1 + x1x2 + x0 + x2, and thus ((−1)f , (−1)g) is an array

pair of size 23. Proceeding in this way, we notice that the construction in 7.18 generates

only the array pair, ((−1)f , (−1)g), where f =
∑n−2

i=0 xixi+1 +
∑n−2

i=2 xi + x0 + 1 and g =∑n−2
i=0 xixi+1 +

∑n−1
i=2 xi + x0. By using the symmetry properties 1 and 2, we find that

((−1)f , (−1)g), where f =
∑n−2

i=0 xixi+1 and g = f + xn−1 is a Type-I array pair (note that

this is the same Golay sequence pair obtained in 6.6 by [8] and it was also obtained as an

array pair in [12]). We use this pair as a canonical representation for all known Type-I array
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pairs of size 2n. Since f and g are quadratic functions, then Type-I complementary pairs

can best be described by undirected graphs4 as they simply form a path graph5 (Type-I

binary array pairs of size 2n are Golay array pairs of size 2n).

Type-II complementary binary pairs

The primitive binary array pair for Type-II is (F = (−1)0, G = (−1)x0). So we set (a =

0, b = x0) and (c = 0, d = x1) as initial pairs for the construction in 7.23, this outputs

f = x0x1+x1 and g = x0x1+x0, and thus ((−1)f , (−1)g) is an array pair of size 22. We then

use a = f and b = g, and c = 0 and d = x2, this outputs f = x0x1 + x0x2 + x1x2 + x1 + x2

and g = x0x1 + x0x2 + x1x2 + x0, and thus ((−1)f , (−1)g) is an array pair of size 23.

Proceeding in this way, we notice that the construction in 7.23 generates only the array pair,

((−1)f , (−1)g), where f =
∑n−2

i=0

∑n−1
j=i+1 xixj+

∑n−1
i=1 xi and g =

∑n−2
i=0

∑n−1
j=i+1 xixj+x0. By

using the symmetry property 2, we find that ((−1)f , (−1)g), where f =
∑n−2

i=0

∑n−1
j=i+1 xixj

and g = f +
∑n−1

i=0 xi is an array pair. We use this pair as a canonical representation for all

Type-II array pairs. Since f and g are quadratic functions, then Type-II complementary

pairs can best be described by undirected graphs as they simply form a complete graph6.

Type-III complementary binary pairs

Any array pair of size 2n consisting of any combination of affine functions is a Type-III

complementary pair. The following example shows that there are array pairs consisting

of a combination of affine functions that are not primitive: Setting (a = 0, b = x0) and

(c = 0, d = 0) as initial pairs for the construction in 7.28, where (a, b) and (c, d) are

defined over 1 variable, and thus lr = x1, outputs f = 0 and g = x0 + x1, and thus

4A graph is pair G = (V,E), where V = (v0, v1, . . . , vn−1) is a set of n vertices (or nodes) and E ⊆ V ×V .

A pair vi, vj ∈ E is called an edge.
5A path graph is a graph with two nodes of vertex degree (the number of neighbors the node has) one

and the other nodes of vertex degree 2.
6A complete graph is a graph where all pairs of vertices are connected by an edge.
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((−1)f , (−1)g) is an array pair of size 22. Using some combinations of these affine array

pairs as (a, b) and (c, d) in 7.28, one can output many quadratic Boolean function pairs

(f, g), which can be used again as either (a, b) or (c, d). This will generate an infinite number

of quadratic Boolean function pairs (f, g) which give us an infinite number of array pairs

(F = (−1)f , G = (−1)g). For instance, setting (a = 0, b = x0), (c = 0, d = x3), where (a, b)

are Boolean functions defined on 1 variable and (c, d) are Boolean functions defined over 3

variables and so lr = x1 +x2 +x3, outputs f = x0x3 +x1x3 +x2x3 and g = f +x0 +x1 +x2,

and thus ((−1)f , (−1)g) is an array pair of size 24. More generally if we set (a = 0, b = x0),

(c = 0, d = xn−1), where (a, b) are Boolean functions defined over 1 variable and (c, d)

are Boolean functions defined over n − 1 variables and so lr = x1 + x2 + . . . + xn−1, we

get f = x0xn−1 + x1xn−1 + . . . + xn−2xn−1 and g = f + x0 + x1 + . . . + xn−2, and thus

((−1)f , (−1)g) is an array pair of size 2n. This pair is best described by a star graph7.

Another star graph pair can be obtained as follows: setting (a = 0, b = x0) and (c =

0, d = x1) where (a, b) and (c, d) are both defined over 1 variable, outputs f = x0x1 and

g = x0x1 + x0. Then setting this (f, g) as (a, b) and (c = 0, d = x2) where (a, b) are defined

over 2 variables and (c, d) are defined over 1 variable, outputs f = x0x1+x0x2 and g = f+x0.

Then setting this (f, g) as (a, b) and (c = 0, d = x3) where (a, b) are defined over 3 variables

and (c, d) are defined over 1 variable, outputs f = x0x1 + x0x2 + x0x3 and g = f + x0.

Proceeding in this way, after n − 1 steps, we arrive at f = x0x1 + x0x2 + . . . + x0xn−1

and g = f + x0. By re-labeling f and g (exchanging x0 and xn−1), we get the pair

f = x0xn−1 + x1xn−1 + . . . + xn−2xn−1 and g = f + xn−1, which is a star graph similar to

the star graph mentioned above but they only differ in the linear terms of g.

Now using the star graph (f = x0xn−2+x1xn−2+. . .+xn−3xn−2, g = f+x0+x1+. . .+xn−3)

as (a, b) where (a, b) are Boolean functions defined over n − 1 variables and setting (c =

0, d = xn−1) where (c, d) are Boolean functions defined over 1 variable and so lr = xn−1,

7A star graph is a tree (a connected graph which does not contain a cycle) on n nodes with one node

having vertex degree n− 1 and the other n− 1 having vertex degree 1.
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outputs f = x0xn−2 + x1xn−2 + . . . + xn−3xn−2 + x0xn−1 + x1xn−1 + . . . + xn−3xn−1 and

g = f + x0 + . . . + xn−3, and thus ((−1)f , (−1)g) is an array pair of size 2n. So we see

that the number of Type-III complementary array pairs of size 2n grow as n grows, which

is totally different from Type-I and Type-II as they have only one class of array pairs (the

path graph and the complete graph respectively).

To characterize Type-III pairs generated by 7.28, we performed a search on connected

quadratic Boolean functions8 with number of variables between 2 and 7 to find Boolean

functions with PAPR ≤ 2.0 with respect to Type-III matrices. We found many connected

quadratic Boolean functions with PAPR ≤ 2.0 with respect to Type-III matrices. By

adding a linear term for each function found, we found the other function that forms a pair

with it. i.e. If f is a Boolean function with PAPR ≤ 2.0 with respect to Type-III matrices,

then (f, f + l), for some linear function l, is a Type-III complementary pair. We actually

found two different pairs (f, f + l1) and (f, f + l2), where l1 and l2 are linear functions,

for each function found f . The following proposition characterizes some of the connected

complementary pairs in Type-III.

Proposition 4. If f1 =
∑j0≤k−1

i=0 xixk +
∑j1≤k−1

i=0 xixk+1 + · · ·+
∑jn−k−1≤k−1

i=0 xixn−1 (where

k ≤ n− 1 and there is at least one js = k− 1 where s ∈ {0, 1, . . . , n− k− 1}, this condition

guarantees that f1 is connected) and g1 = f1 +
∑n−1

i=k xi or g1 = f1 +
∑k−1

i=0 xi, then (f1, g1)

is a connected complementary pair in Type-III. Also if f2 = x0xn−2 +x1xn−2 +
∑n−3

i=2 xixn−1

and g2 = f2+x0+x1+xn−1 or g2 = f2+
∑n−2

i=2 xi, then (f2, g2) is a connected complementary

pair in Type-III. For n ≤ 7, (f1, g1) and (f2, g2) cover all the connected complementary pairs

up to re-labeling. Moreover, all the connected complementary pairs for n ≤ 7 are recursively

constructible from the primitive linear complementary pairs.

8A connected graph is a graph where there is a path from every vertex to all other vertices. A connected

quadratic Boolean function is a Boolean function whose corresponding graph is connected.
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7.4 Conversions between Type-I/II/III complemen-

tary binary array pairs

Let (AX , BX) be a complementary binary array pair of size 2n in Type-X, then by The-

orem 29, ((N2)⊗nAX , (N
2)⊗nBX) and (N⊗nAX , N

⊗nBX) are Type-Y and Type-Z pairs

respectively, where X, Y and Z are taken from {I, II, III}. The converted pair (Fx, Gx)

can be trivially transformed to a pair (F ′x, G
′
x) that is defined over {0, 1, i,−1,−i}. The

following three sections give a direct formula for the non-binary array pairs obtained from

the conversions of the canonical binary pairs in Type-I and Type-II and the star graph pair

in Type-III to Type-II/III, Type-I/III and Type-I/II respectively.

Let V = (V00...0, V00...1, . . . , V11...1) be an array of size 2n defined over {0, 1, i,−1,−i},

then V can be written as M · iP = (M00...0i
P00...0 ,M00...1i

P00...1 , . . . ,M11...1i
P11...1), where M is

a binary array of size 2n defined by Mk = |Vk|, where k ∈ F n
2 and P is an array of size 2n

defined over Z4 as

Pk =



0 if Vk = 1

1 if Vk = i

2 if Vk = −1

3 if Vk = −i

∗ if Vk = 0

where k ∈ F n
2 and ’*’ can be any number. M can be considered as a truth table of a

Boolean function defined over F2. P can be considered as a truth table of a generalized

Boolean function defined over Z4.

Theorem 1 tells us how to find the algebraic normal form for a Boolean function de-

fined over F2. So by applying Theorem 1, we find the algebraic normal form of M ,
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m(x0, . . . , xn−1). The algebraic normal form for P is defined by,

p(x0, x1, . . . , xn−1) =
∑

j=(j0,...,jn−1)∈Fn2

ajx
j0
0 x

j1
1 · · ·x

jn−1

n−1 (mod 4)

where aj ∈ Z4. Theorem 1 can be easily modified to find the algebraic normal form of

Boolean functions defined over Z4. This modification can be stated as follows: Let f be the

truth table of an n-variable Boolean function defined over Z4 and C be as defined in section

2.3 (the coefficient vector in the ANF of f). Then

C = fAn

where

An =

 1 3

0 1

⊗n

The above modification enables us to find the algebraic normal form p(x0, x1, . . . , xn−1) of

the vector P . Thus, we can write the pair members as m(x0, . . . , xn−1) · ip(x0,··· ,xn−1), where

i =
√
−1, m(x0, . . . , xn−1) and p(x0, · · · , xn−1) are the algebraic normal forms of M and P

respectively.

The following two examples explain the conversions of the path graph array pair of size

23 (Type-I complementary array pair) to Type-II and Type-III respectively.

Example 1. Converting the path graph array pair of size 23, (F = (−1)x0x1+x1x2 , G =

(−1)x0x1+x1x2+x2) to Type-II, gives us the following arrays (N2)⊗nF = (−1 + i, 0, 1 +

i, 0, 0, 1 − i, 0, 1 + i) =
√

2ω(i, 0, 1, 0, 0,−i, 0, 1) =
√

2ωF ′ and (N2)⊗nG = (0, 1 + i, 0, 1 −

i, 1 + i, 0,−1 + i, 0) =
√

2ω(0, 1, 0,−i, 1, 0, i, 0) =
√

2ωG′, where ω = 1+i√
2

. Since (N2)⊗nF =
√

2ωF ′ and (N2)⊗nG =
√

2ωG′ form a complementary array pair in Type-II, then the pair

(F ′, G′) is also complementary in Type-II since |F ′k0,k1,k2|
2 + |G′k0,k1,k2|

2 is constant for every

(k0, k1, k2) ∈ F 3
2 since |ω| = 1. F ′ = (i, 0, 1, 0, 0,−i, 0, 1) can be written as MF ′ · iPF ′ , where

MF ′ = (1, 0, 0, 0, 1, 0, 1) and PF ′ = (1, ∗, 0, ∗, ∗, 3, ∗, 0). G′ = (0, 1, 0,−i, 1, 0, i, 1) can be

written as MG′ · iPG′ , where MG′ = (0, 1, 0, 1, 1, 0, 1, 1) and PG′ = (∗, 0, ∗, 3, 0, ∗, 1, ∗). Since
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the ’*’ in PF ′ and PG′ can be any number, we replace it by a certain number in Z4 so as

to make PF ′ or PG′ be as symmetric as possible so that the ANF of PF ′ and PG′ can be in

its simplest form . Thus, we change PF ′ from (1, ∗, 0, ∗, ∗, 3, ∗, 0) to (1, 3, 0, 0, 1, 3, 0, 0). We

change PG′ from (∗, 0, ∗, 3, 0, ∗, 1, ∗) to (0, 0, 1, 3, 0, 0, 1, 3). Now the ANFs of MF ′ and MG′

equal x0 +x2 +1 and x0 +x2 respectively. The ANF for PF ′ obtained by using Corollary 10

is 2x2 + 3x1 + 2x1x2 + 1 which is a generalized Boolean function defined over Z4. The ANF

for PG′ obtained by using Corollary 10 is x1 +2x1x2 which is a generalized Boolean function

defined over Z4. Therefore, the pair ((x0 + x2 + 1) · i2x2+3x1+2x1x2+1, (x0 + x2) · ix1+2x1x2) is

a complementary array pair in Type-II.

Example 2. Converting the path graph array pair of size 23, (F = (−1)x0x1+x1x2 , G =

(−1)x0x1+x1x2+x2) to Type-III, gives us the following arrays N⊗nF = 1√
2
(1 + i, 1 + i,−1 +

i, 1−i, 1+i,−1−i, 1−i, 1−i) = ω(1, 1, i,−i, i,−1,−i,−i) = ωF ′ and N⊗nG = 1√
2
(1+i, 1+

i, 1− i,−1 + i,−1− i, 1 + i, 1− i, 1− i) = ω(1, 1,−i, i,−1, 1,−i,−i) = ωG′, where ω = 1+i√
2

.

Since N⊗nF =
√

2ωF ′ and N⊗nG =
√

2ωG′ form a complementary array pair in Type-

III, then the pair (F ′, G′) is also complementary in Type-III since |F ′k0,k1,k2|
2 + |G′k0,k1,k2 |

2

is constant for every (k0, k1, k2) ∈ F 3
2 since |ω| = 1. F ′ = (1, 1, i,−i, i,−1,−i,−i) can

be written as MF ′ · iPF ′ , where MF ′ = (1, 1, 1, 1, 1, 1, 1, 1) and PF ′ = (0, 0, 1, 3, 1, 2, 3, 3).

G′ = (1, 1,−i, i,−1, 1,−i,−i) can be written as MG′ · iPG′ , where MG′ = (1, 1, 1, 1, 1, 1, 1, 1)

and PG′ = (0, 0, 3, 1, 2, 0, 3, 3). Now the ANF of MF ′ and MG′ equals the constant one for

both of them. The ANF for PF ′ obtained by using Corollary 10 is x1+2x1x2+2x0x2+2x0x1

which is a generalized Boolean function defined over Z4. The ANF for PG′ obtained by using

Corollary 10 is 3x1 + 2x1x2 + 2x0 + 2x0x2 + 2x0x1 which is a generalized Boolean function

defined over Z4. Therefore, the pair (ix1+2x1x2+2x0x2+2x0x1 , i3x1+2x1x2+2x0+2x0x2+2x0x1) is a

complementary array pair in Type-III.

77



7.4.1 Converting Type-I to Type-II and Type-III

The only known Type-I complementary pair is the path graph pair. Converting the path

graph pair, (FI , GI) = ((−1)f , (−1)g), where f = x0x1 +x1x2 + · · ·+xn−2xn−1 and g = f +

xn−1 to Type-II and Type-III gives us the pairs (FII , GII) = ((N2)⊗n(−1)f , (N2)⊗n(−1)g)

and (FIII , GIII) = (N⊗n(−1)f , N⊗n(−1)g) respectively. We transform (FII , GII) and (FIII , GIII)

to pairs (F ′II , G
′
II) and (F ′III , G

′
III) respectively that are defined over {0, 1, i,−1,−i}. We

then find the m.ip formulas for both (F ′II , G
′
II) and (F ′III , G

′
III).

Converting the path graph to Type-II

The function obtained by converting the first member of the path graph pair of size 2n to

Type-II (F ′II) can be written as m · ip where m and p are the following functions:

m =

1 if n is even

1 +
∑n−1

2
i=0 x2i if n is odd

p =


c+ 3

∑n−1
i=0 xi + 2

∑n−2
2

i=0

∑n−2
2

j=i x2ix2j+1 if n is even

c+ 2
∑n−1

2
i=1 x2i + 3

∑n−3
2

i=0 x2i+1 + 2
∑n−2

i=1

∑n−1
2

j=d i+1
2
e xix2j if n is odd

where c ∈ Z4.
9

The function obtained by converting the second member of the path graph pair to Type-II

(G′II) can be written as m · ip where m and p are the following functions:

m =

1 if n is even∑n−1
2

i=0 x2i if n is odd

p =


c+ 3

∑n−2
2

i=0 x2i+1 +
∑n−2

2
i=0 x2i + 2

∑n−2
2

i=0

∑n−2
2

j=i x2ix2j+1 if n is even

c+
∑n−3

2
i=0 x2i+1 + 2

∑n−2
i=1

∑n−1
2

j=d i+1
2
e xix2j if n is odd

9Note that throughout this section, we do not need to know the value of the constant c in p as it has no

effect since |U ·mic+p1 | = |U ·mip1 |, where p = c + p1 and U is a unitary matrix of either Type-I, Type-II

or Type-III.

78



where c ∈ Z4.

Converting the path graph to Type-III

The function obtained by converting the first member of the path graph pair to Type-III

(F ′III) can be written as m · ip where m and p are the following functions:

m =


1 if n = 3k

1 if n = 3k + 1

1 +
∑n−1

i=0,i 6=3k+2 xi if n = 3k + 2

p =


c+

∑n−3
3

i=0 x3i+1 + 2
∑n−2

i=0,i 6=3k+2

∑n−1
j=i+1,j 6=3k xixj if n = 3k

c+ 3
∑n−1

3
i=0 x3i + 2

∑n−3
i=0,i 6=3k+2

∑n−1
j=i+1,j 6=3k+1 xixj if n = 3k + 1

c+ 3
∑n−2

3
i=0 x3i+1 + 2

∑n−3
i=1,i 6=3k

∑n−1
j=i+1,j 6=3k+2 xixj if n = 3k + 2

where c ∈ Z4.

The function obtained by converting the second member of the path graph pair to Type-III

(G′III) can be written as m · ip where m and p are the following functions:

m =


1 if n = 3k

1 if n = 3k + 1∑n−1
i=0,i 6=3k+2 xi if n = 3k + 2

p =


c+ 3

∑n−3
3

i=0 x3i+1 + 2
∑n−3

3
i=0 x3i + 2

∑n−2
i=0,i 6=3k+2

∑n−1
j=i+1,j 6=3k xixj if n = 3k

c+
∑n−1

3
i=0 x3i + 2

∑n−4
3

i=0 x3i+1 + 2
∑n−3

i=0,i 6=3k+2

∑n−1
j=i+1,j 6=3k+1 xixj if n = 3k + 1

c+
∑n−2

3
i=0 x3i+1 + 2

∑n−5
3

i=0 x3i+2 + 2
∑n−3

i=1,i 6=3k

∑n−1
j=i+1,j 6=3k+2 xixj if n = 3k + 2

where c ∈ Z4.
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7.4.2 Conversion of Type-II to Type-I and Type-III

The only known Type-II complementary pair is the complete graph pair. Converting the

complete graph pair, (FII , GII) = ((−1)f , (−1)g), where f =
∑n−2

i=0

∑n−1
j=i+1 xixj and g =

f +
∑n−1

i=0 xi to Type-I and Type-III gives us the pairs (FI , GI) = (N⊗n(−1)f , N⊗n(−1)g)

and (FIII , GIII) = ((N2)⊗n(−1)f , (N2)⊗n(−1)g) respectively. We transform (FI , GI) and

(FIII , GIII) to pairs (F ′I , G
′
I) and (F ′III , G

′
III) respectively that are defined over {0, 1, i,−1,−i}.

We then find the m.ip formulas for both (F ′I , G
′
I) and (F ′III , G

′
III).

Converting the complete graph to Type-I

The function obtained by converting the first member of the complete graph pair to Type-

I (F ′I) can be written as m · ip where m =
∑

(i0,i1,...,in−1)∈Fn2 /(1,1,...,1) x
i0
0 x

i1
1 . . . x

in−1

n−1 and

p = c + 3xn−1 where c ∈ F2. The function obtained by converting the second mem-

ber of the complete graph pair to Type-I (G′I) can be written as m · ip where m =∑
(i0,i1,...,in−1)∈Fn2 /(1,1,...,1) x

i0
0 x

i1
1 . . . x

in−1

n−1 and p = 3 + xn−1.

Converting the complete graph to Type-III

The function obtained by converting the first member of the complete graph pair to Type-

III (F ′III) can be written as m · ip where m and p are the following functions:

m =

1 if n is even

c+
∑n−1

i=0 xi if n is odd

where c = 1 if n(mod 4) ≡ 1 and equals to 0 otherwise.

p =


0 if n is odd∑n−1

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n(mod 4) ≡ 0

1 + 3
∑n−1

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n(mod 4) 6≡ 0

The function obtained by converting the second member of the complete graph pair to

Type-III (G′III) can be written as m · ip where m and p are the following functions:
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m =

1 if n is even

c+
∑n−1

i=0 xi if n is odd

where c = 0 if n(mod 4) ≡ 1 and equals to 1 otherwise.

p =


0 if n is odd

3
∑n−1

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n(mod 4) ≡ 0

3 +
∑n−1

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n(mod 4) 6≡ 0

7.4.3 Converting Type-III to Type-I and Type-II

Out of an infinite choice of pairs, we choose the star graph complementary pair in Type-III

and convert it to a Type-I and Type-II complementary pair. Converting the star graph

pair, f =
∑n−1

i=0 xixn−1 and g1 = f + xn−1 or g2 = f +
∑n−2

i=0 xi to Type-I and Type-II

gives us the pairs (FI , GI1 or GI2) = ((N2)⊗n(−1)f , (N2)⊗n(−1)g1 or (N2)⊗n(−1)g2) and

(FII , GII1 or GII2) = (N⊗n(−1)f , N⊗n(−1)g1 or N⊗n(−1)g2) respectively. We transform

(FI , GI1 or GI2) and (FII , GII1 or GII2) to pairs (F ′I , G
′
I1

or G′I2) and (F ′II , G
′
II1

or G′II2)

respectively that are defined over {0, 1, i,−1,−i}. We then find the m.ip formulas for both

(F ′I , G
′
I1

or G′I2) and (F ′II , G
′
II1

or G′II2).

Converting the star graph to Type-I

The function obtained by converting the first member of the star graph pair to Type-I (F ′I)

can be written as m · ip where m and p are the following functions:

m =
∑

(i0,i1,...,in−2)∈Fn−1
2 /(1,1,...,1)

xi00 x
i1
1 . . . x

in−2

n−2

p = b1 + 3xn−1 + b2xn−2 + 2xn−2xn−1

where b1 ∈ Z4 and b2 =

(n− 3)mod 4 if n is even

(n− 1)mod 4 if n is odd

.
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The function obtained by converting the second member (first option) of the star graph

pair to Type-I (G′I1) can be written as m · ip where m and p are the following functions:

m =
∑

(i0,i1,...,in−2)∈Fn−1
2 /(1,1,...,1)

xi00 x
i1
1 . . . x

in−2

n−2

p = b1 + 3xn−1 + b2xn−2 + 2xn−2xn−1

where b1 ∈ Z4 and b2 =

(n− 1)mod 4 if n is even

(n− 3)mod 4 if n is odd

.

The function obtained by converting the second member (second option) of the star graph

pair to Type-I (G′I2) can be written as m · ip where m and p are the following functions:

m =
∑

(i0,i1,...,in−2)∈Fn−1
2 /(1,1,...,1)

xi00 x
i1
1 . . . x

in−2

n−2

p = b1 + xn−1 + b2xn−2 + 2xn−2xn−1

where b1 ∈ Z4 and b2 =

(n− 3)mod 4 if n is even

(n− 1)mod 4 if n is odd

.

Converting the star graph to Type-II

The function obtained by converting the first member of the star graph pair to Type-II

(F ′II) can be written as m · ip where m and p are the following functions:

m =

1 if n is odd

b+
∑n−1

i=0 xi if n is even

where b =

0 if n(mod 4) ≡ 0

1 if n(mod 4) 6≡ 0

.
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p =



b1 + xn−1 + 2
∑n−2

i=1

∑n−1
j=i+1 xixj if n = 4k

b2 + 3xn−1 + 2
∑n−2

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n = 4k + 1

b3 + 3xn−1 + 2
∑n−2

i=1 xi + 2
∑n−2

i=1

∑n−1
j=i+1 xixj if n = 4k + 2

b4 + xn−1 + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n = 4k + 3

where b1, b2, b3 and b4 ∈ Z4 and k is a positive integer.

The function obtained by converting the second member (first option) of the star graph

pair to Type-II (G′II1) can be written as m · ip where m and p are the following functions:

m =

1 if n is odd

b+
∑n−1

i=0 xi if n is even

where b =

0 if n(mod 4) 6≡ 0

1 if n(mod 4) ≡ 0

.

p =



b1 + 3xn−1 + 2
∑n−2

i=1 xi + 2
∑n−2

i=1

∑n−1
j=i+1 xixj if n = 4k

b2 + xn−1 + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n = 4k + 1

b3 + xn−1 + 2
∑n−2

i=1

∑n−1
j=i+1 xixj if n = 4k + 2

b4 + 3xn−1 + 2
∑n−2

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n = 4k + 3

where b1, b2, b3 and b4 ∈ Z4 and k is a positive integer.

The function obtained by converting the second member (second option) of the star graph

pair to Type-II (G′II2) can be written as m · ip where m and p are the following functions:

m =

1 if n is odd

b+
∑n−1

i=0 xi if n is even

where b =

0 if n(mod 4) 6≡ 0

1 if n(mod 4) ≡ 0

.
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p =



b1 + xn−1 + 2
∑n−2

i=1 xi + 2
∑n−2

i=1

∑n−1
j=i+1 xixj if n = 4k

b2 + 3xn−1 + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n = 4k + 1

b3 + 3xn−1 + 2
∑n−2

i=1

∑n−1
j=i+1 xixj if n = 4k + 2

b4 + xn−1 + 2
∑n−2

i=0 xi + 2
∑n−2

i=0

∑n−1
j=i+1 xixj if n = 4k + 3

where b1, b2, b3 and b4 ∈ Z4 and k is a positive integer.

7.5 Construction of binary near-complementary pairs

In this section, we find near-complementary binary pairs with respect to Type-I and

Type-II matrices simultaneously. For an array pair of size 2n, (A,B), we define PX,Y (A,B) =

max (PX(A,B), PY (A,B)) where PX(A,B) and PY (A,B) are the PAPRs with respect to

Type-X and Type-Y matrices respectively, and PX,Y (A,B) is therefore, the maximum

PAPR taken with respect to Type-X matrices and Type-Y matrices.

Type-I and Type-II near-complementary pairs

We see that the Type-I binary construction in 7.18 and the Type-II binary construction in

7.23 output the same pair when c = ←−c and d =
←−
d . Therefore, the following proposition

follows.

Proposition 5. If (A = (−1)a, B = (−1)b) and (C = (−1)c, D = (−1)d) are near-

complementary binary pairs with respect to Type-I and Type-II unitary matrices, then (F =

(−1)f , G = (−1)g), where f and g are as follows

f = (a+ b)(c+ d) + a+ d

g = (a+ b)(c+ d) + b+ c (7.29)

is a near-complementary pair with respect to Type-I and Type-II if c =←−c and d =
←−
d . We

call this property of (c, d), the reversal property. Moreover, PI,II(F,G) = PI,II(A,B)PI,II(C,D).
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The output pair of 7.29, (f, g), further satisfies f =
←−
f and g = ←−g if a = ←−a and

b =
←−
b . Thus by making use of 7.29, our problem of finding near-complementary pairs is

restricted to finding near-complementary primitive pairs including those that satisfy the

reversal property. We then use these near-complementary primitive pairs as initial pairs in

7.29 (note that the initial pair (c, d) should satisfy the reversal property). We performed a

search on all quadratic functions (A more general search is desirable but computationally

prohibitive. Moreover, our computational experiments suggest that quadratic functions

give the pairs with lowest PAPRs). We searched all quadratics for a number of variables

between 2 and 8 to find functions f , having T = max(PI((−1)f ), PII((−1)f )) as small

as possible. Assuming that we covered enough spectral points, we found that T is lower

bounded by 4.0 when the number of variables is between 2 and 6, and lower bounded

by 8.0 when the number of variables is 7 or 8. We then tried to find for each function

another quadratic function so that together they form a near-complementary pair. We

assumed that for a quadratic function f , the best pair is (f, f + l) where l is a linear

function (computational experiments suggested that this was a good idea). Assuming that

we covered enough spectral points, we calculated PI,II(f, f + l) for every possible linear

function. Table 7.1 shows the pairs found for a number of variables between 2 and 8 (For

n = 7 and 8, we list only the functions that satisfy the reversal property). The table lists

all the linear functions that form a pair with f , where f is an n-variable quadratic Boolean

function with a low PAPR with respect to Type-I and Type-II matrices. The linear function

li = xi0 +xi1 + . . .+xij where 1 ≤ i ≤ 2n−1 and 0 ≤ ij ≤ 2n−1 are the indices of the ones

in the binary representation of integer i. For instance l5 = x0 + x2 and l7 = x0 + x1 + x2

when n = 3. The table condenses the ANF of a Boolean function by replacing each xi by

i and each ’+’ by ’,’. For instance, f = x0x2 + x1x3 is condensed to 02, 13.

The following two examples show two different ways of using 7.29.

Example 3. We found that (A = (−1)a, B = (−1)b) is a primitive pair with PI,II(A,B) =

2, where a = 01 and b = a, 1. Similarly, we found that (C = (−1)c, D = (−1)d) is a
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primitive pair satisfying the reversal property with PI,II(C,D) = 2, where c = 23, 24, 35, 45

and d = c, 2, 3, 4, 5. Using 7.29, we get the following (F = (−1)f , G = (−1)g) pair, where

f = 01, 23, 24, 14, 15, 35, 45, 4, 5 and g = 01, 23, 24, 14, 15, 35, 45, 1. Then (F,G) is a pair

with PI,II(F,G) = 4 but (F,G) does not satisfy the reversal property so we can only use it

recursively again as an (A,B) pair not as a (C,D) pair.

Example 4. We found that (A = (−1)a, B = (−1)b) is a primitive pair with PI,II(A,B) =

2, where a = 01, 02, 13, 23 and b = a, 1. Similarly, we found that (C = (−1)c, D =

(−1)d) is a primitive pair satisfying the reversal property with PI,II(C,D) = 2, where

c = 45, 46, 57, 67 and d = c, 4, 5, 6, 7. Using 7.29, we get the following (F = (−1)f , G =

(−1)g) pair, where f = 02, 13, 23, 46, 06, 07, 16, 17, 26, 27, 36, 37, 01, 45, 57, 67, 6, 7 and g =

f, 0, 1, 2, 3. Then (F,G) is a pair with PI,II(F,G) = 4 and since (A,B) satisfies the reversal

property then so does (F,G). This gives us a pair that is recursively usable as either an

(A,B) pair or a (C,D) pair.
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n f l PI,II(f, f + l)

2 01 All linear functions 2.0

3 12 l4, l5, l6, l7 2.0

3 01,02,12 All linear functions except l7 2.0

3 02,12 All linear functions except l1 2.0

4 01,23 l7, l11, l13, l14 2.0

4 03,12,13,23 l6, l8, l10, l11, l12, l13, l15 2.0

4∗ 01,02,13,23 l3, l5, l10, l12 2.0

4 02,03,12,13,23 l4, l5, l6, l7, l8, l9, l10 2.0

4 02,13,23 l5, l7, l10, l11, l12, l13, l14, l15 2.0

5 02,04,13,14,24 l14, l15, l23, l26, l27 2.0

5 02,03,13,14,24 l31 2.25

5 02,03,04,13,14,24 l10, l15, l21, l30 2.0

5 02,03,04,13,14,24,34 l10, l14, l20, l23, l27, l28, l31 2.0

5 02,03,04,14,23,24 l13, l25, l31 2.0

5 02,03,04,13,14,23,24,34 l15, l21, l22, l27 2.0

6 02,04,05,13,14,15,24,35 All linear functions 4.0

6 02,04,05,13,14,15,24,35,45 l63 2.0

6 02,04,05,13,14,24,25,35,45 All linear functions 4.0

6 02,03,05,13,14,15,24,25,35,45 All linear functions 4.0

6 02,03,04,05,13,14,15,24,25,35 All linear functions 4.0

6 02,03,04,05,13,14,15,24,25,34,35,45 l21, l22, l41, l42 2.0

6 02,03,04,05,14,15,23,24,25,35,45 l27, l51 2.0

7∗ 03,05,14,16,25,26,36,46 l18, . . . , l123 4.0

7∗ 03,04,05,06,14,16,25,26,36,45,46,56 l22, . . . , l125 4.0

7∗ 03,05,14,15,24,26,36,45,46,56 l18, . . . , l127 4.0

7∗ 02,04,05,06,13,14,15,16,24,35,46,56 l1, . . . , l127 4.0

7∗ 02,03,05,06,13,14,15,16,24,25,26,35,36,45,46,56 l4, . . . , l123 4.0

7∗ 02,03,04,05,13,14,15,16,24,25,26,35,36,46 l1, . . . , l127 4.0

8∗ 03,05,06,07,14,15,25,27,36,46,57,67 l39, . . . , l255 4.0

8∗ 03,05,06,07,14,15,16,17,26,27,35,47,57,67 l34, . . . , l255 4.0

8∗ 03,05,06,07,14,16,25,27,35,36,37,47,57,67 l36, . . . , l239 4.0

Table 7.1: The ’. . .’ in n = 7 and n = 8 means that there are many other linear functions. The ’*’ means

that the corresponding function, f , satisfies the reversal property, i.e. f =
←−
f . The pair (f, f + l)

will satisfy the reversal property if l has an even number of terms.
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Chapter 8

Conclusion

In the first half of the thesis, we studied the Walsh cryptographic criteria and the auto-

correlation cryptographic criteria of Boolean functions. We also studied theoretical bounds

on these criteria. We implemented a Boolean function database. The database holds in-

formation about cryptographic criteria of Boolean functions. It also calculates theoretical

bounds for any valid combination of those cryptographic criteria.

In the second half of the thesis we studied the aperiodic autocorrelation spectrum of a

Boolean function and some more spectral measures with respect to certain types of unitary

matrix. We gave a survey on Golay complementary sequences and array pairs. The spectral

property of Golay array pairs of size 2n was re-expressed with reference to transforms formed

from 2n×2n Type-I unitary matrices. We therefore called Golay complementary array pairs

of size 2n, “Type-I complementary” array pairs. This led us to define complementarity of

array pairs of size 2n with respect to two other transform types formed from 2n×2n unitary

matrices called Type-II and Type-III matrices. Boolean function complementary pairs in

Type-I, Type-II and Type-III were constructed. Non-binary alphabet complementary pairs

in Type-I, Type-II and Type-III were constructed by converting binary pairs in Type-

I, Type-II and Type-III to Type-II/III, Type-I/III and Type-I/II respectively. Boolean

functions which are near-complementary pairs with respect to Type-I and Type-II were

also constructed.

This thesis proposes the following future work,

1. There is still much work to be done to improve the Boolean function database. For
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instance, the algebraic immunity criterion should be implemented. Constructions of

good cryptographic functions should also be added to the website.

2. The Boolean function pairs constructed in Type-I, Type-II and Type-III are either

affine or quadratic functions. This raises the question about the existence of binary

pairs of higher algebraic degree in Type-I, Type-II and Type-III. So we propose

answering this question as a future work.

3. Cryptanalysts exploit the weakness in the criteria related to the Walsh spectrum and

the periodic autocorrelation spectrum of Boolean functions to break cryptosystems

based on Boolean functions. However, the use of the aperiodic autocorrelation and

some other spectral measures in cryptanalysis have been studied in [25, 9]. Refer-

ence [9] gave cryptographic criteria that are related to the aperiodic autocorrelation

spectrum. In [25] the definition of nonlinearity has been generalized to measure the

distance of Boolean functions to affine functions over higher alphabets rather than

just the binary alphabet and so the nonlinearity is calculated with respect to more

general spectra rather than just the Walsh transform spectrum. In other words, the

definition of nonlinearity has been generalized to the PAPR with respect to certain

types of unitary matrix. These studies suggest that cryptosystems based on Boolean

functions can be attacked by exploiting the weaknesses in their generalized nonlin-

earity. Therefore, the constructions of cryptographic Boolean functions should be

expanded to include Boolean functions with higher PAPR with respect to certain

types of unitary matrix. So we propose constructing good cryptographic Boolean

functions having higher PAPR with respect to certain types of unitary matrix as

a future work. We also propose implementing the aperiodic autocorrelation crite-

ria defined in [9] and the generalized nonlinearity criterion in the Boolean function

database.
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