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Abstract 
 
PepT1 (Peptide Transporter 1, SLC15A1) is a proton-coupled peptide transporter 
responsible for uptake of short peptides and peptide-like drugs from the intestinal lumen 
into enterocytes. A PepT1-type transporter has recently been sequenced for Atlantic cod 
and found to be expressed along the whole post-gastric intestine including pyloric caeca. 
In the present thesis the effect of dietary inclusion of peptides and amino acids on 
expression of PepT1 mRNA in different regions of juvenile Atlantic cod intestine was 
investigated. Five groups of cod weighing 10-15 grams were fed for 46 days with a diet 
containing approximately 42% crude protein, either as fishmeal (FM diet) or 30 % of the 
fish meal substituted by either whole fish hydrolysate (FH diet), retenate after ultra 
filtration of fish hydrolysate (UFR diet), retenate after nano filtration of fish hydrolysate 
(NFR diet) or a mix of free amino acids (FAA diet). After 14 days (T1) and at the end of 
the experiment (46 days; T3), three fish were sampled from each group and the intestine 
divided into five segments, namely pyloric caeca (S1) and the remainder of the intestine 
from the pyloric caeca to the anus divided into four equally long segments (S2 to S5). 
Total RNA isolated from each segment was subjected to a two-step quantitative RT-PCR 
using SYBR green and Atlantic cod elongation factor 1 alpha as reference gene. 

For all diets PepT1 was found to be expressed in all segments, suggesting that for 
juvenile Atlantic cod the whole intestine is involved in peptide absorption. The different 
groups of fish showed a similar PepT1 mRNA expression in all segments, but differences 
in regional expression were found. At T3 the regional expression profile showed 
statistical differences in PepT1 expression between segments in the FAA and UFR fed 
fish (diets included amino acids or larger sized peptides). Both groups had a higher 
expression in S2 and S3 (mid intestine) then pyloric caeca (S1) and S5. A similar trend 
was also observed for the UFR at T1, while the FAA fed fish had a low and stable 
expression in all segments at T1. No significant differences in PepT1 expression were 
found between segments in the FM, FH or the NFR fed group for any time. These results 
suggest that for diets where 30% of the fish meal has been replaced by fish hydrolysate 
containing short peptides (FH and NFR) the involvement of the pyloric caeca in peptide 
absorption is similar to the remainder of the intestine, while diets with no or low amounts 
of short chained peptides included (FAA and UFR) have a lower involvement of pyloric 
caeca in peptide absorption compared to mid intestine. A general higher expression of 
PepT1 was found at T3 then at T1 in all segments except S4, but no interaction between 
time and diet was found, indicating that some developmental or growth related changes in 
PepT1 expression occurs during this life stage of Atlantic cod. These results suggest that 
dietary peptides of various chain lengths as well as free amino acids affect the regional 
expression of PepT1 mRNA in the intestine of juvenile Atlantic cod. The signaling 
pathways responsible for PepT1 regulation still remains to be described. 
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1. Introduction 

1.1 Background 

Due to uncertainty concerning the ecological status of wild Atlantic cod (Gadus morhua) 

(Brander 2006), the efforts to establish this species in aquaculture has been intensified. In 

the last years there has been a rapid increase in the total number of farmed cod in Norway, 

from a live stock of about 180 thousand in 1999 to more than 15 million fish in 2006 

(Norwegian Directorate of Fisheries 2007). One of the areas that are of major interest to 

the fish farmers is optimizing the growth of the fish, so an essential step is therefore to 

produce feed with optimal nutrient composition to minimize the food to growth ratio. 

Growth is mainly accretion of protein (Houlihan 1988) and estimates have shown that 47 

– 60 % of the diet should contain protein for optimal growth efficiency of Atlantic cod 

fed a fish meal diet (Lied and Rosenlund 1983; Rosenlund et al. 2004). The use of fish 

meal based on harvest from wild stocks in the production of a high quality food product 

has raised the question about fish farming as a sustainable industry (Naylor 2000; Pauly 

et al. 2002). Because of this and the recent shortage and increased cost of fish meal 

world-wide, the feed producers have started an intensive search for substitutes. Various 

sources of plant proteins have received the most attention and Atlantic cod seems to be 

efficient at utilizing protein from vegetable sources (for recent studies see Albrektsen et 

al. 2006; Hansen et al. 2006; Refstie et al. 2006a; Refstie et al. 2006b; Hansen et al. 

2007a; Hansen et al. 2007b; Olsen et al. 2007). However, a negative effect on both feed 

utilization and growth has been found when the level of vegetable protein exceed 50 % 

(Hansen et al. 2007a; Olsen et al. 2007) and at even lower levels if the indispensable 

amino acid requirements are not met (von der Decken and Lied 1993). One of the reasons 

for inefficient utilization of vegetable sources in fish is the presence of anti-nutritional 

factors like protease inhibitors, antivitamins, phytic acid, lectins, allergens and 

phytoestrogens (reviewed by Francis et al. 2001). However, in a study on Atlantic cod 

where 24% of the protein was substituted with either dietary soybean meal (SBM) or 

SBM bioprocessed to remove these anti-nutrients, no significant difference was found in 

utilization of the two diets (Refstie et al. 2006a; Refstie et al. 2006b). On the other hand, 

both soy diets gave lower feed efficiency and protein retention than a pure fish meal diet, 
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thus indicating non-optimal feed utilization when vegetable protein is included. Another 

reason for inefficient utilization of vegetable dietary sources could be that plant materials 

are missing some components that are necessary for optimal growth and development. 

Aksnes (2005) compared the amount of taurine, anserine, carnosine, nucleotides and free 

amino acids in different raw materials and found no or small amounts of these 

compounds in vegetable sources compared to material from animal origin. Indeed, some 

of these components (amino and nucleic acids) have been found to stimulate growth 

when included in feed for marine fish (Burrells et al. 2001a; Burrells et al. 2001b; Kim et 

al. 2005), and suggests that some proportion of the diet should contain material from 

marine origin in order to sustain optimal growth. A major by-product from the fish 

industry is fish silage, which during enzymatic breakdown releases fractions of 

hydrolyzed proteins that can be utilized in the production of fish protein hydrolysate 

(Liaset et al. 2000). Fish hydrolysate was found to contain high levels of all the 

compounds investigated in the study by Aksnes (2005), and its use as a substitution for 

fish meal has been investigated. In a study on Atlantic cod, Aksnes et al.(2006b) found 

that replacement of about 30% of the fish meal with fish hydrolysate gave no significant 

differences in growth or feed efficiency compared to a full fish meal diet. Successful 

substitution of fish meal with fish hydrolysate has also been found for other species like 

rainbow trout (Oncorhynchus mykiss)(Aksnes et al. 2006c), Atlantic salmon (Salmo salar) 

(Berge and Storebakken 1996; Refstie et al. 2004; Hevroy et al. 2005) and sea bass larvae 

(Dicentrarchus labrax) (Cahu et al. 1999). In a study on Atlantic salmon Espe et al. 

(1999) found that the absorption of amino acids were more efficient when up to 30 % of 

the fish meal was replaced by protein concentrate from fish silage. However, moderation 

also seems to be important when substituting fish meal with hydrolyzed proteins because 

too high inclusion levels appears to have a negative effect on growth (Espe et al. 1999; 

Hevroy et al. 2005). Thus, as suggested by Refstie et al. (2004) a more efficient digestion 

and absorption might be obtained by a balanced and controlled inclusion of alternative 

sources. Although numerous studies have been focusing on the effect of fish meal 

substitution on growth and digestion, no known studies have been conducted on Atlantic 

cod on how the dietary composition affect the intestinal absorption of protein in vitro. 

The activity and capacities of nutrient transporters in the intestine of fish has been found 



  Introduction 

University of Bergen  6 June 2008 

to be affected by the dietary composition (Buddington et al. 1987), however details on the 

regulatory mechanisms is scarce. So in order to replace fish meal in diets for a 

carnivorous teleost like Atlantic cod it is therefore important to have thorough knowledge 

on how the chemical composition of the diets affects the digestive and absorptive process.  

1.2 Protein digestion 

The digestion of food is a complex process involving mechanical and enzymatic 

degradation, from food intake to nutrient absorption in the intestine (for a review on these 

mechanisms in fish see Rust 2002).  In contrast to higher vertebrates where mechanical 

breakdown of the food starts in the mouth, most fish have limited ability to chew so the 

first step of degradation is in the stomach. The increased volume of the stomach 

stimulates the secretion of hydrochloric acid, water and the digestive enzyme pepsin into 

the lumen. Muscular contractions together with ingested water and secretions from the 

stomach helps break down and mix the food into a homogenized mass called chyme. 

Pepsin is the first enzyme involved in the proteolysis of ingested protein, and is secreted 

from oxynticopeptic cells as its inactive precursor pepsinogen. The low pH in the 

stomach activates pepsinogen and starts an autocatalytic process that will generate active 

pepsin which then can hydrolyze dietary protein into large polypeptides (Ganapathy et al. 

2006). In addition the acidic conditions will also directly contribute to the degradation of 

protein (Rust 2002). As the chyme enters the intestine more alkaline conditions (caused 

by the presence of bicarbonate) cause neutralization of the acidic digest (Rust 2002). 

Protein (and lipid) in the chyme stimulate the release of the hormone cholecystokinin 

which further stimulate the secretion of pancreatic enzymes or their inactive precursors 

into the intestinal lumen (Buddington and Krogdahl 2004). The active forms of these 

digestive enzymes are trypsin, chymotrypsin, elastase and carboxypeptidase, which 

through their proteolytic activity break down polypeptides in the chyme to shorter 

peptides. The final step of protein hydrolysis is completed by brush border membrane 

bound peptidases which break down the protein to absorbable amino acids and short 

peptides (two to three amino acids long) (Ganapathy et al. 2006). Even though amino 

acids are absorbed, a major proportion of protein is believed to be transported over the 

brush border membrane as di- and tripeptides (Adibi 1997). Studies on rainbow trout 
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(Boge et al. 1981; Dabrowski et al. 2003) and African tilapia (Oreochromis mossambicus) 

(Reshkin and Ahearn 1991) indicate that this is also the case in fish. The transport of 

these di- and tripeptides is mediated by a low affinity high capacity transporter called 

oligopeptide transporter 1 (PepT1) (Daniel 2004). 

 

1.3 PepT1 

PepT1 or solute carrier family 15, member nr 1 (Slc15a1) is a member of the superfamily 

POT (proton oligopeptide transporters) (Paulsen and Skurray 1994). After the first 

reported cloning of PepT1 was done in rabbit intestine (Fei et al. 1994), numerous studies 

have been conducted and the transporter has now been found in a number of animals and 

in different organs (reviewed by Meredith and Boyd (2000)). Recently the gene coding 

for a PepT1-type transporter in Atlantic cod was sequenced (Rønnestad et al. 2007), 

adding much needed information to this transporter in fish where the only published 

sequence available is from zebrafish (Danio rerio) (Verri et al. 2003). The gene coding 

for Atlantic cod PepT1 (assigned GeneBank accession number AY921634) was found to 

be 2838 bp long with an open reading frame of 2190 bp coding for a protein with 729 

amino acids. Comparative analysis of the amino acid sequence showed that the 

transporter had 58 – 63 % similarity with other characterized PepT1 sequences, with 

highest identity and grouping phylogeneticaly to zebrafish PepT1. The conformation of 

the protein in the apical membrane of the enterocytes was found to follow the general 

PepT1 model (Fei et al. 1994; Verri et al. 2003; Meredith and Price 2006) with 12 

transmembrane domains and a large extracellular loop between domain 9 and 10. 

However, within the extra cellular loop of Atlantic cod Pept1 a sequence of 8-12 amino 

acids with unknown function was found that was not observed in any of the other PepT1 

sequences, including zebrafish (Rønnestad et al. 2007).  

Investigation of the tissue distribution in Atlantic cod showed no expression of the 

transporter in heart, gill, eye or liver, very low expression in ovary and higher expression 

in spleen, kidney and intestine (Rønnestad et al. 2007). This distribution is similar to the 

results obtained in zebrafish (Verri et al. 2003), with the exception of ovary where no 

expression of PepT1 was found in zebrafish. Intestinal expression of PepT1 has also been 
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found in Asian weatherloach (Misgurnus anguillicaudatus) (Gonçalves et al. 2007). Also 

in this study no expression of PepT1 was found in gill. However, contrary to cod and 

zebrafish there was a fairly high expression of PepT1 in liver and heart but with no 

detectable expression in kidney, indicating that differences in tissue distribution exist 

among species of fish. In the study on Atlantic cod (Rønnestad et al. 2007), investigation 

into the regional expression of PepT1 along the digestive tract showed no expression in 

the stomach, high signals in pylorus caeca, proximal intestine and mid intestine but with a 

weaker signal in the most distal part of the intestine. Amberg et al. (2008) studied the 

spatial expression of PepT1 in the digestive tract of developing Atlantic cod larvae, and 

found that PepT1 mRNA was present in the whole intestine before onset of exogenous 

feeding. These findings indicate that PepT1 is important in protein uptake in all life 

stages of Atlantic cod. In both fish (Verri et al. 2003; Rønnestad et al. 2007) and 

mammals (Freeman et al. 1995; Sai et al. 1996) histological studies have showed that 

PepT1 mRNA is expressed in the villus of the intestinal epithelium, while the protein is 

mainly located from the mid part to the tip of the villus, anchored in the apical membrane 

of the absorptive cells microvilli (Freeman et al. 1995; Sai et al. 1996; Ogihara et al. 

1999).  

The transport of peptides via PepT1 into the enterocyte is regulated by a trans-

membrane electrical potential and a inward proton gradient across the membrane 

(Ganapathy and Leibach 1983; Sai et al. 1996). The enterocyte inside negative membrane 

potential is generated by Na+-K+-ATPase and a potassium channel in the basolateral 

membrane and the H+ gradient by a Na+-H+-exchanger in the apical membrane 

(Ganapathy et al. 2006). The presence of the H+ gradient is essential because the peptides 

are co-transported together with the hydrogen ions over the apical membrane and into the 

enterocyte (Daniel 2004). Transported peptides are normally hydrolyzed intracellularly 

by cytoplasmic peptidases so mainly free amino acids are transported out of the basal 

membrane and into the portal circulation (Ganapathy et al. 2006). However, small 

peptides that are resistant to hydrolysis may enter the blood and this has led to an 

intensive investigation in humans because many drugs, pro-drugs and bioactive peptides 

gain entry to the systemic circulation via PepT1 (for a review see Brandsch et al. 2008). 

Investigations into the role of PepT1 in nutrient uptake and how it is stimulated in fish 
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will therefore not only give important information for production of better feed, but may 

also give information on how the transporter can be utilized as a transporter of bioactive 

compounds.  

A number of studies have been conducted on mechanisms regulating the activity 

of PepT1 in mammals (for a review see Adibi 2003), but only two known studies have 

been targeting the dietary effects on PepT1 activity in fish (Gonçalves et al. 2007; 

Amberg et al. 2008). Gonçalves et al. (2007) studied the regional expression of PepT1 

mRNA along the intestine of Asian weatherloach introduced to three different dietary 

conditions. For a period of one month the fish were either fed a protein rich diet, a 

carbohydrate rich diet or starved. No significant differences in PepT1 expression was 

found between diets for any of the investigated segments. However, the high protein diet 

contained only 9 % more protein than the carbohydrate diet and the results could be 

further confounded by the fact that the diets varied in energy and levels of other 

components (lipid, fiber, moisture and ash). In the study of Amberg et al. (2008), where 

PepT1 gene expression was studied in Atlantic cod larvae fed either zooplankton or 

enriched rotifers, it was found that when the larvae started exogenous feeding a slight 

increase in expression of PepT1 occurred, but with no differences between diets. Dietary 

differences were found in larger larvae (> 0.15mg dry weight), where a higher expression 

of PepT1 was found in fish fed zooplankton compared to the rotifer fed groups. However, 

a change from one diet to the other did not alter these differences, allowing the authors to 

suggest that other factors than the feed affected the expression of PepT1 in Atlantic cod 

larvae. No chemical analysis was conducted on the two diets in the study, so it is 

therefore not known if the dissimilarity in dietary composition had the potential to 

generate differences in PepT1 expression. The dietary effects on regulation of PepT1 

expression and activity can be more important in other life stages of fish, so more 

thorough investigations need to be conducted. In higher vertebrates PepT1 is found to be 

regulated by its substrates in a number of studies. In humans, PepT1 appears to be up-

regulated by the presence of dipeptides both at the protein and mRNA level 

(Thamotharan et al. 1998; Walker et al. 1998). In both studies Caco-2 cells were used to 

study how incubation of the cells together with glycyl-L-glutamine affected the uptake of 

glycylsarcosine (Gly-Sar). In the study by Thamotharan et al. (1998) there was no 
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increase in uptake after two hours but a significant increase after 24 hours. Inhibition of 

translational mechanisms abolished this effect suggesting that increased activity of PepT1 

was based on increased levels of PepT1 mRNA and subsequent protein synthesis. Walker 

et al. (1998) demonstrated that cells incubated for three days had a significant increase in 

transport abilities, which was caused by higher numbers of active PepT1 proteins and 

increased stability and synthesis of PepT1 mRNA. Dietary protein has also found to up-

regulate expression and activity of PepT1 in rats (Erickson et al. 1995; Shiraga et al. 

1999), where Shiraga et al. (1999) also showed that the amino acid phenylalanine up 

regulated the amount of PepT1 mRNA and protein. In rats, developmental differences in 

regional expression of PepT1 has also been found (Shen et al. 2001), with the highest 

expression of PepT1 in both small and large intestine up to five days after birth. After this 

period the expression of PepT1 is reduced to undetectable levels in the colon and to 25 % 

of the activity observed in the small intestine, a change that is postulated to be caused by 

a change from a protein rich milk diet (during nursing) to a more omnivorous adult 

feeding regime. Deprivation of food also seems to have a stimulatory effect on PepT1. 

Using immunostaining and ultrastructural visualization of rat intestine Ogihara et al. 

(1999) found a significant increase in membrane bound PepT1 protein in rats that had 

been starved for four days. Further, Naruhashi et al. (2002) found that rats that had been 

starved for two days showed a significant increase in PepT1 mRNA in the small intestine.  

In summary, the studies on higher vertebrates discussed above demonstrate that 

dietary composition and nutritional status are important factors regulating PepT1 activity 

both at mRNA and protein level. Although it is possible that PepT1 in fish are regulated 

in similar ways, more detailed studies are necessary to understand how the dietary 

ingredients in fish feed affect the activity of the transporter. The differences in 

environmental conditions for terrestrial and marine vertebrates could make the functional 

characteristics of PepT1 in teleost differ from the general vertebrate model. Marine 

teleost continuously drink water as part of their adaptation to the hyperosmotic sea water 

and this lead to a continuous loading of ions into the intestinal lumen (Marshall and 

Grosell 2006). This could result in different luminal osmotic and ionic working 

conditions for the nutrient transporters in terrestrial vertebrates and marine teleost. 

Further, the high variability in life history strategies and biological settings among fish 
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species would make conclusions for fish in general based on results obtained from one 

species speculative. In a nutritional aspect this is supported by the findings that both 

proteolytic activity and nutrient absorption capacities vary in different species of fish 

under the same experimental conditions (Buddington et al. 1987; Hidalgo 1999). In 

relation to PepT1 some special features have been observed in the two studies where the 

PepT1 has been sequenced for fish that could alter the functional characteristics of the 

transporter (Verri et al. 2003; Rønnestad et al. 2007). The unique short amino acid 

sequence found in the extra cellular loop in Atlantic cod PepT1 (Rønnestad et al. 2007) is 

not observed in other species and could affect the function of the transporter. In the study 

of zebrafish PepT1 by Verri et al. (2003) it was found that extracellular alkalization led to 

an increase in dipeptide uptake, which is in contrast to the mammalian model where 

increase in peptide transport is found during extracellular acidification (Ganapathy and 

Leibach 1983). It is therefore suggested that species specific studies should be conducted 

when studying the functionality of PepT1. With this thesis we therefore set out to obtain 

information on the dietary regulation of spatial PepT1 transport activity and mRNA 

expression in the intestine of juvenile Atlantic cod.  

1.4 Goal and hypothesis 

The overall goal of this study was to investigate how fractions of peptides with different 

chain length included in the diet affected the spatial transport capacities and mRNA 

expression of PepT1 in the post-gastric digestive tract of Atlantic cod. These results 

where planned to be obtained through the following steps: 

 

1. Establish a protocol to measure transport of peptides across the brush border 

membrane in Atlantic cod. 

2. Optimize the protocol for relative quantification of PepT1 gene expression in 

Atlantic cod. 

3. Use these protocols to assess the transport capacities and mRNA expression of 

PepT1 in pyloric caeca and in four equally long segments from the remainder of 

the intestine. And to determine how the activity in these intestinal regions was 

affected when one third of fish meal of the diets was replaced with peptides of 
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different size or free amino acids. The regional expression was to be studied at 

two different sampling points to see if any changes in activity occurred over time. 

 

The hypothesis is that inclusion of dietary short chained peptides will lead to an increase 

in the concentration of available substrates for the PepT1 in the intestinal lumen. In order 

to absorb the high levels of peptides it is expected an increase in PepT1 activity (transport 

capacities and/or mRNA expression). It is anticipated that that short peptides in the diet 

will require less proteolytic work and cause increased activity of PepT1 in the proximal 

regions of the intestine. If the absorptive capacity for peptides in the proximal part of the 

intestine become saturated it is hypothesised that there will be additional mobilization of 

PepT1 in distal regions of the intestine that are expected to be less active in peptide 

absorption. 
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2. Materials and methods  
The activity of PepT1 in the pyloric caeca and five equally long segments from the 

pyloric ceca to the anus of juvenile Atlantic cod was investigated. Dietary regulation of 

the transporter was examined by feeding five groups of fish diets containing 

approximately 42 % protein either as fish meal or approximately 30% of the fish meal 

substituted by different fractions of fish protein hydrolysate or by free amino acids. In 

order to describe the dietary effect on PepT1 two analytical approaches was selected. The 

first method quantify the transport capacity of PepT1 directly by the use of brush border 

membrane vesicles (BBMV) while the latter method assess the level of mRNA coding for 

PepT1 by quantitative reverse transcriptase polymerase chain reaction (q-RT-PCR). For 

all groups of fish the activity of PepT1 was investigated after 14 and 46 days on 

experimental diets. 

2.1 Fish rearing and experimental conditions 

Juvenile Atlantic cod (8-15 grams) were obtained from Real Salmon AS, Eikelandosen, 

Norway. During the acclimatization and experimental period from mid May to early 

August 2007 fish were reared in the basement of the High Technology Centre, University 

of Bergen, Norway. The fish were divided in to five 1000 litre fibreglass tanks and 

acclimatized to experimental conditions for four weeks (T = 9ºC and 24 h light). All 

groups were hand-fed until visual satiety twice a day (7 days/week), and the amount food 

delivered was recorded. During the acclimatization period the fish were fed a 2.5 mm 

pelleted fishmeal diet (FM diet in Table 1). Three weeks into the acclimatizing period all 

fish were anaesthetized using 50mg L-1 tricain methanesulfonate (MS-222) (Argent 

Chemical Laboratories Inc., WA, USA) and weight and length were measured before pit-

tag was inserted in the abdomen (Trovan MicroTransponder ID162A, Identify UK Ltd). 

In order to let the fish restore from tagging all fish were kept one more week in their 

tanks on the FM diet before control sampling and transition to experimental diets. The 

protocol was approved by the local representative for the Norwegian State Board of 

Biological Experiments with Living Animals. 
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2.2 Diets 

All diets were provided by Dr. Anders Aksnes at NOFIMA, as 2.5 mm extruded pellets, 

produced to be isoproteic, isolipidic and isoenergetic, and designed to vary only in 

protein composition. Overview on ingredients and chemical composition of the different 

diets is presented in Table 1. 

Table 1 - Ingredients and chemical composition of diets 

Ingredient (%) FM FH UFR NFR FAA 
Fish meal 268/06   51.8   35.3   35.1   35.1   34.6
Raw wheat 209/06   48.0   56.0   58.0   54.0   36.5
Fish hydrolysate      0.0   14.4     0.0     0.0     0.0
Ultra filtration retenate     0.0     0.0   13.2     0.0     0.0
Nano filtration retenate     0.0     0.0     0.0   13.0     0.0
Fish oil 1   12.2   14.1   14.1   14.1   14.0
Vitamin mix 2     1.0     1.0     1.0     1.0     2.0
Mineral mix 3     0.4     0.4     0.4     0.4     0.4
Betafine 4     0.4     0.4     0.4     0.4     0.4
Inositol 5     0.03     0.03     0.03     0.03     0.0
Lysine-HCl   10.0   10.0   10.0   10.0     0.0
Dicalcium phosphate   17.6   17.6   17.6   17.6     0.0
Amino acid mix 6     0.0     0.0     0.0     0.0   12.1
 
Proximate composition 
Dry matter (DM, %) 95.9 95.2   94.7   94.6   95.5
Moisture (%) 4.1 4.8 5.3 5.4 4.5
Crude Protein (% DM)   43.1       43.2   41.9   41.7   41.5
Crude Fat (% DM)   19.6       19.3   18.7   20.0   19.1
Carbohydrate 7 26.2 26.3 27.5 27.1 30
Ash (% DM)     7.0         6.4     6.6     5.8     4.9
Energy (calculated) (Mj/kg) 22.6 22.5 22.1 22.5 22.6

1 NorSeaOil, Norsildmel, Norway. 
2 Provided per kg of feed: vitamin D3, 3000 I.E.; vitamin E, 160 mg; thiamin, 20 mg; riboflavin, 30 mg; pyrodoxine-HCl, 
25 mg; vitamin C, 200 mg; calcium pantothenate, 60 mg; biotin. 1 mg; folic acid, 10 mg; niacin, 200 mg; vitamin B12, 
0.05 mg; menadion bisulphite, 20 mg. 
3 Provided per kg of feed: magnesium, 56 mg; potassium, 450 mg; zinc, 90 mg; iron, 56 mg; manganese, 11 mg; copper, 
5.6 mg. 
4 Betafin BCR, Finnsugar Bioproducts, Finland.  
5 Danisco Animal Nutrition, Finland. 
6 Provided as percentage of total: aspartic acid, 9.36; glutamic acid, 13.54; hydroxyprolin, 0.96; serine, 4.15; glycine, 
6.13; histidine, 5.19; arginine, 7.38; threonine, 4.20; alanine, 6.05; proline, 4.04; tyrosine, 3.42; valine, 4.84; 
methionine, 3.08; isoleucine, 4.20; leucine, 7.30; phenylalanine, 3.91; lysine, 9.74; cysteine, 1.44; tryptophan, 1.07. 
7 Carbohydrate calculated as 100 % - %protein - %fat - %ash - %moisture. 
 

Diets contained approximately 42 % crude protein (CP), provided either as fish meal (FM 

diet) or approximately 30 % of the fish meal substituted by either fish hydrolysate (FH 

diet), retenate after ultra filtration of fish hydrolysate (UFR diet) or retenate after nano 

filtration of fish hydrolysate (NFR). The plan was to include permeate after nano 

filtration to the last diet, but this was not possible due to technical reasons. Therefore, for 
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the last diet a mix of free amino acids was instead used to substitute 30 % of the fish meal 

(FAA diet). On dry weight basis all diets were calculated to contain approximately 30 % 

carbohydrates and 20 % fat. A detailed description on production of ingredients and feed 

together with the chemical analysis is provided in literature elsewhere (Aksnes et al. 

2006a; Aksnes et al. 2006b; Aksnes et al. 2006c). 

 
Table 2 - Content of free amino acids (% of total protein) 

Amino acid FM FH UHR NFR FAA 
Aspartate 0.04 0.24 0.31 0.35 1.76 
Glutamate 0.25 0.53 0.66 0.64 3.6 
Hydroxyproline < 0.01 0.02 0.02 0.04 1.34 
Serine 0.04 0.21 0.28 0.21 1.3 
Aspargine 0.02 0.04 0.06 0.07 0.04 
Glutamine 0.15 0.26 0.33 0.2 1.99 
Glycine 0.01 0.03 0.06 0.08 0.03 
3-amino-propanoic acid 0.01 0.05 0.06 0.04 0.01 
Taurine 0.87 1.13 1.36 1.07 0.57 
Histidine 0.07 0.13 0.15 0.16 1.57 
4-amino-butanoic acid 0.02 0.03 0.06 0.1 0.07 
Citrulline <  0.005 < 0.005 < 0.005 < 0.005 < 0.005 
Threonine 0.05 0.2 0.26 0.26 1.19 
Alanine 0.24 0.47 0.65 0.53 1.22 
Carnosine < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Arginine 0.11 0.34 0.39 0.55 2.33 
Proline 0.04 0.15 0.21 0.19 1.29 
Anserine 0.05 0.33 0.43 0.46 0.05 
Tyrosine 0.03 0.19 0.16 0.21 0.61 
Valine 0.07 0.3 0.4 0.41 1.51 
Methionine 0.02 0.19 0.25 0.25 1.05 
Cysteine < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Isoleucine 0.04 0.25 0.32 0.35 1.33 
Leucine 0.08 0.58 0.76 0.79 2.38 
Phenylalanine 0.04 0.28 0.35 0.32 1.12 
Tryptophan 0.03 0.08 0.09 0.09 0.34 
Ornithine 0.03 0.04 0.13 0.07 0.02 
Lysine 0.13 0.43 0.63 0.73 2.49 
Total free amino acids 2.44 6.5 8.38 8.17 29.21 

 

Free amino acid composition of the different diets is presented in Table 2. With higher 

levels of 17 out of the 28 investigated amino acids (with the exception of ornithine, 

cysteine, anserine, arginine, carnosine, citrulline, 4-amino-butanoic acid, taurine, 3-

amino-propanoic acid, glycine and aspargine), the FAA diet contained the highest 

amounts of free amino acids (making up close to 30 % of the protein). With the exception 

of cysteine, citrulline and ornithine, the FM diet contained the lowest amount of both 

individual and total free amino acids. The FH, UHR and NFR diets contained equal 
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amounts of all amino acids, with a slightly lower total free amino acid concentration in 

the FH diet.  

Details on the fractional composition of fish hydrolysate and filtered fish 

hydrolysate included in the FH, UFR and NFR diet is presented in Table 3. All fish 

hydrolysate material contained small or undetectable fractions of the largest peptides (10 

000-20 000 Da). The total fish hydrolysate (included in FH diet) contained the highest 

amount of all peptide fractions except the medium sized peptides (1000-5000 Da), and 

the lowest amount of anserine and taurine of the three. The retenate fish hydrolysate after 

ultra filtration (included in UFR diet) contained the lowest amount of the shortest 

peptides and free amino acids, but approximately 90 % of the protein as an even 

distribution for short to large chained peptides. FH retenate after nano filtration (included 

in NFR diet) contained the highest amount of the second smallest peptide fractions (100-

1000 Da) and the lowest amount of large peptides (5 000-10 000 Da). 

 
Table 3 - Chemical composition of fish hydrolysate and filtered FH 

Ingredient (g/kg DM) FH UFR NFR 
Yield by fractionation (%) 100.0   57.0   29.0
Crude protein 913.0 972.0 959.0
Lipid   <1.0   <1.0   <1.0
Ash   78.0   15.0   64.0 1

Free amino acids (% of protein)   10.4     1.7   14.8
Peptides 10.000-20.000 Da 2   <1.0   <1.0   <1.0
Peptides 5.000-10.000 Da 2   35.9   35.0   19.7
Peptides 1.000-5.000 Da 2     9.7   25.8   12.4
Peptides 100-1.000 Da 2   36.1   28.0   58.8
Peptides <100 Da 2   16.0     6.7     9.0
Anserine (g/kg prot)   27.5   48.0   41.2
Taurine (g/kg prot)   11.0   17.0   17.0

1 Include some chloride from HCl added for preservation. 
2 Size fractioned as described in Aksnes et al. 2006b. 

2.3 Fish sampling 

Two fish from each tank were sampled on the day before feeding with experimental diets 

(T0) and ten fish from each tank 14 days (T1), 34 days (T2) and 46 days (T3) after T0. 

Before dissection the fish where anaesthetized using 50mg L-1 MS-222 and killed with a 

blow to the head. All dissecting work was done on ice. The weight and length of each fish 

was measured before the whole intestine was removed by cutting right before the pyloric 

caeca and right before the anus. The intestine was divided into five segments consisting 
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of the pyloric caeca and the remainder of the intestine divided into four equally long parts 

(Figure 1). From each intestine a small section right after the pyloric caeca was sampled 

for use in other studies (in 

situ hybridization). To 

make sure that the 

relative length of all the 

segments were the same 

for each intestine a 

template form was used 

(Figure 2). When the 

intestine (without the 

pyloric caeca) was 

stretched over the template the part covering the dark section of the template was cut out 

(sample for other studies) and the rest of the intestine divided into four equally long parts 

according to the light sections on the 

template. The intestine was emptied of 

any leftover feed by gently stroking the 

content out and each segment was 

rinsed thoroughly in a phosphate-

buffered saline (PBS) solution (145 

mM NaCl, 8 mM Na2HPO4, 2 mM 

NaH2PO4, pH 7.2) before gently dried 

with lab paper. The segments were 

then wrapped in pre-labeled aluminum 

foil, frozen in liquid nitrogen and 

stored at - 80 ºC until further use.  

2.4 Isolation of BBMV and electrogenic transport measurements 

BBMV produced from intestine have been successfully used in a number of transport 

studies both in humans (Ganapathy et al. 1986; Malo and Berteloot 1991), rabbit 

(Ganapathy et al. 1984), rat (Cassano et al. 1984) and fishes like European eel (Anguilla 

Figure 1 - Segments sampled from each intestine. Segment 1 (S1) 
being the pyloric caeca and the following segments (S2-S5) equally 
long parts from the remainder of the intestine.  The short piece 
between the pyloric caeca and segment 2 was sampled for other 
studies. 

Figure 2 - Template to cut intestine. Dark narrow part 
to the left was used to sample a short segment of the 
intestine that where to be used in other studies.  The 
remainder of the intestine was cut into four equally 
long parts according to the light sections of the 
template. 
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anguilla) (Storelli et al. 1986; Verri et al. 1992; Maffia et al. 1997; Verri et al. 2000), 

African tilapia (Reshkin and Ahearn 1991; Thamotharan et al. 1996), Pacific copper 

rockfish (Sebastes caurinus) (Ahearn et al. 1992) and Antarctic ice fish (Chionodraco 

hamatus) (Maffia et al. 2003). No known studies have been performed where BBMV 

have been isolated from Atlantic cod or any other gadoid fishes. Methodical training for 

this procedure was conducted at the University of Salento, Italy, and during the stay work 

was done on the preparation of an article describing the method which is now published 

in Aquaculture Nutrition (Verri et al. 2008). Details on the method and the materials used 

are described in this article and is attached as Appendix A. Briefly, starting from 

intestinal mucosal scrapings it is possible to obtain the brush-border membranes of the 

enterocytes in a right (luminal) side out vesicular form (called brush-border membrane 

vesicles, or BBMV) through initial homogenization and following steps of a) 

precipitation in the presence of Mg2+ and hyposmotic medium and b) centrifugation 

(described in detail by Storelli et al. 1986). To assess the quality of the isolated BBMV, a 

comparison is made between the specific activity of brush-border membrane-bound 

enzymes (for instance alkaline phosphatase, leucine aminopeptidase and maltase) in the 

final BBMV fraction and in the homogenate from the mucosa (prior to isolation of 

vesicles) (Storelli et al. 1986). A 12-to-18-fold increase in the activity in one or more of 

such membrane-bound enzymes (often called enrichment factor or yield) is generally 

considered adequate to indicate that an enriched fraction of BBMV has been obtained 

after the biochemical isolation process (Prof. Tiziano Verri, personal communication). In 

parallel, a negligible enrichment in other membrane-bound enzymes (such as the Na+/K+-

ATPase, that is a marker for the basolateral membrane), as well as in organelle-specific 

enzymes and cytosolic enzymes, rules out the possibility that the BBMV fraction is 

contaminated by other cellular components (Storelli et al. 1986).  

BBMV are osmotically active (i.e. the vesicular membrane separates the 

extravesicular from the intravesicluar space) and when used in conjunction with 

radioactive or fluorescent tracers can be utilized to monitor a variety of transport 

phenomena across membrane. The potential-sensitive fluorescent dye 3,3'-

diethylthiadicarbocyanine iodide (DiS-C2(5)) is ideal to spectrophotometrically detect 

changes in membrane potential in conjunction with BBMV (Verri et al. 2008). When an 
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inside-negative membrane potential is artificially generated in BBMV by using an 

outwardly-directed 100-to-1 K+ gradient and the K+ ionophore valinomycin, the 

fluorescent dye (DiS-C2(5)) binds to the vesicles causing a rapid decline in the measured 

fluorescence. As the artificially-induced membrane potential diminishes, the dye is 

steadily released to the extravesicular medium as a function of time, thus causing an 

increase in fluorescence. Electrogenic transport via membrane transporters (that induce 

charge movement across the vesicle membrane) significantly affect the membrane 

potential dissipation rate, and consequently the fluorescence signal. As di- and tripeptides 

cross the membrane together with hydrogen ions via PepT1 (Daniel 2004), PepT1-

mediated transport activity can be monitored by comparing the fluorescence changes in 

the extravesicular medium in the presence and absence of extravesicular peptides. Based 

on this difference it is possible to calculate the transport rate of peptides into the vesicles. 

The method can also be utilized to measure electrogenic transport of other compounds 

like amino acids and sugars (Verri et al. 2008), and may also have a potential to study the 

transport of peptide-mimicking drugs since many of these are co-transported via PepT1 

(Rubio-Aliaga and Daniel 2002; Brandsch et al. 2008).  

2.5 Q-RT-PCR 

Q-RT-PCR is a powerful tool that can be used to detect even the smallest amount of RNA 

(reviewed by Kubista et al. 2006). RNA isolated from tissue or cells can with the help of 

the enzyme reverse transcriptase be synthesized into complementary DNA (cDNA), a 

discovery that awarded David Baltimore, Renato Dulbecco and Howard Martin Temin 

with the 1975 Nobel Prize in medicine (The Nobel Foundation 2008). Through the 

polymerase chain reaction (PCR), first explained by Mullis et al. (1986), the cDNA can 

be amplified exponentially to yield high amounts of product. By using gene specific 

primers, PCR can be used to amplify a targeted gene sequence in the cDNA (Kubista et al. 

2006). It is possible to measure this amplification process real-time (real-time PCR) by 

using fluorescent probes that emit fluorescence when binding to double stranded DNA 

(amplified cDNA) (Bustin 2002). The number of amplifications it takes for the 

fluorescent to reach a threshold value is called the crossing point or the cycle threshold 

(Ct), and the time needed to reach this threshold will depend on the starting concentration 
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of the targeted sequence. Although it is possible to perform absolute quantification of a 

gene (reviewed by Bustin 2000), relative quantification based on normalization to a 

standard is preferred when doing comparative analysis (Pfaffl 2001). A reference gene is 

often used as standard and is a gene that is present in the investigated tissue which 

expression is not affected by different experimental conditions (Kubista et al. 2006). In a 

PCR this means that the Ct value should be the same for all compared samples when an 

equal amount of template is used. However, stable expression of a reference gene is 

rarely found in all tissues under different experimental conditions, so for a given 

experimental setup, multiple potential reference genes should be evaluated in order to 

find the most suited candidate (Thellin et al. 1999). GeNorm is a Visual Basic applet for 

Microsoft Excel developed by Vandesompele et al. (2004), and is often used when 

determining the most stable reference gene among a number of candidates. This applet 

runs a pair wise comparison of the variation in relative quantities for every investigated 

gene, ranking the stability of each gene with an M-value. M-value lower than 1.5 is an 

indication for good stability, and the gene showing the lowest value should be selected as 

an internal control gene (Vandesompele et al. 2004). Once an appropriate reference gene 

is obtained, the expression of the gene of interest (GOI) can then be related to the 

expression of this reference gene, and the relative quantities calculated by the following 

formula: 

GOIREF CtCtRQ −= 2                 Equation 1 (Kubista and Sindelka 2007) 

 

Where RQ is the relative quantity and CtREF and CtGOI is the Ct value for the reference 

gene and the gene of interest respectively. However, this formula assumes that both 

reference gene and gene of interest have been amplified with 100 % efficiency, a criterion 

that in most cases are not met (Kubista et al. 2006). The efficiency of the amplification 

process depend on the purity of the template used and should be evaluated as a number of 

substances and reaction conditions have been found to inhibit or enhance the PCR (for a 

review see Wilson 1997). Components affecting amplification can often be diluted out, so 

a method frequently used to determine amplification efficiency is to calculate the 

linearity of a cDNA dilution series (Rasmussen 2001). By running a linear regression on 
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plotted Ct values against the cDNA concentration the slope of this curve can be used to 

calculated the amplification efficiency according to the formula:  

[ ]slopeE /110 −=         Equation 2 (Rasmussen 2001) 
 

Where E is amplification efficiency and given as a value between 1 and 2, where 2 equals 

100 % efficiency. Once amplification efficiency of both reference gene and gene of 

interest has been determined relative gene expression can be calculated according to the 

formula: 

( )
( ) REF

GOI

Ct
REF

Ct
GOI

E
ENE =

      Equation 3 (Muller et al. 2002) 

 

Where NE is normalized gene expression, EGOI amplification efficiency of gene of 

interest, EREF efficiency of reference gene and CtGOI and CtREF crossing point values for 

gene of interest and reference gene respectively. This method was used to determine the 

PepT1 mRNA expression in segments of Atlantic cod intestine. 

2.6 RNA isolation 

For each diet (FM, FH, UFR, NFR and FAA) three fish (total of 3x5 segments for each 

diet) was randomly selected from the sampled fish at T1 and T3 (14 and 46 days after 

start of feeding with 

experimental diets). A 

sub-sample of 60 +/- 

10 mg tissue was 

taken from each 

segment for RNA 

isolation. The location 

from which the sub-

samples were taken is 

illustrated in Figure 3. Dissecting of segments was done on dry ice to prevent thawing of 

Figure 3 - Illustrating where each sub-sample for RNA isolation were 
taken from the intestinal segments. Sub-sample 1 from the pyloric caeca 
was taken from the tip to the base of the caeca and sub-sample 2-5 taken 
from the center part of each segment. 
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tissue before it was added to the extraction medium. Total RNA was isolated using TRI-

reagent (Sigma, MO, USA) according to the manufacturer’s protocol. Tissue was 

homogenized for 20 seconds in 1 ml TRI-reagent using Lysing Matrix D tubes (MP 

Biomedicals, OH, USA) in a  FastPrep FP120 (Savant Instruments Inc, NY, USA). After 

precipitation with isopropanol and washing with ethanol the RNA pellet was dissolved in 

44 µl diethylpyrocarbonate (DEPC) treated water (Ambion, TX, USA).  

2.7 DNAse treatment 

In order to remove any genomic DNA the RNA was treated with RQ1 RNase-Free 

DNase (Promega Corporation, WI, USA) according to manufacturer’s recommendations 

with DNase Stop reaction substituted by phenol:chloroform extraction. In an additional 

precipitation step the (DNase treated) RNA was added 9 ml Sodium Acetate and 250µl 

100 % ethanol and stored for 2 hours at -20ºC. Precipitated RNA was then washed in 

ethanol and re-suspended in 30-50µl DEPC-treated water depending on size of RNA 

pellet. 

2.8 Quantification and quality control of RNA 

Purity and concentration of RNA was measured using a ND-1000 spectrophotometer 

(NanoDrop Technologies, NC, USA).  Integrity of the RNA was checked by running 1µg 

RNA on an ethidium-bromide stained 1 % agarose gel with 1x TAE buffer. Gels were 

then subjected to ultraviolet light and photographed in a GDS 7500 White/Ultraviolet 

Transilluminator (UVP, CA, USA).  

2.9 cDNA synthesis 

For each sample 4µg (0.2µg/µl) of RNA was synthesized to cDNA using SuperScript III 

First-Strand Synthesis System for RT-PCR (Invitrogen, CA, USA) with Oligo(dT)20 

primers according to manufacturer’s protocol, but with RNase H treatment omitted. For 

every diet RNA from one segment was selected as negative reverse transcription (-RT) 

and prepared without the addition of the reverse transcriptase enzyme. The enzymatic 

reaction was incubated using a Peltier Thermal Cycler 200 (MJ Research Inc., MA, USA). 



  Materials and methods 

University of Bergen  23 June 2008 

2.10 Calculation of amplification efficiency and working concentrations, 

and evaluation of reference genes 

Atlantic cod elongation factor 1 alpha (EF1A), ubiquitin (Ubi) and Ribosomal protein S9 

(S9) was selected as reference gene candidates. For sequence of forward and reverse 

primers for all genes see Table 4. CDNA from all segments from two fish (UFR diet) 

where pooled and two dilution series was made (2x and 10x) to be used in calculation of 

amplification efficiency and working concentration for gene of interest and all reference 

genes. With PepT1 specific primers the 2x dilution series was run in triplicates on a PCR 

plate (as described in section 2.11 Real-time PCR), and for each reference gene the 10x 

dilution series was run in triplicates with corresponding primers. To calculate the 

amplification efficiency Ct values and concentrations were plotted in Microsoft Excel and 

the slope of the dilution curve calculated by linear regression. Amplification efficiency of 

codPepT1 and the three reference genes were then determined according to Equation 2, 

proposed by Rasmussen (2001). Amplification efficiency in percentage was calculated 

using “QPCR Standard Curve Slope to Efficiency Calculator” (Stratagene ® 2008) 

 

Table 4 – Nucleotide sequence of primers for PepT1 and reference gene candidates 

Gene 
GenBank 

reference 

Amplicon 

length 
Sequence forward and reverse primers 

codPepT1 AY921634 103 
F: 5’-GGC TTT TAT TGC TGC TGC TC-3’ 

R: 5’-ACC GGC CAA GTT AAA GAC CT-3’ 

EF1A CO541820 93 
F: 5’-CCCCTC CAG GAC GTC TAC AAG-3’ 

R: 5’-GGC AGA GCC ACC GAT CTT C-3’ 

S9 CO542669 84 
F: 5’-TCT TTG AAG GTA ATC CAA CTT CAT CTT-3’ 

R: 5’-CGA GGA TGT AAT CCA ACT TCA TCT T-3’ 

Ubiquitin CO542553 69 
F:5’-GGC CGC AAA GAT GCA GAT-3’ 

R:5’-CTG GGC TCG ACC TCA AGG T-3’ 

All reference gene primers were provided at the courtesy of Pål Olsvik. Primers for Cod PepT1 are 

published in Amberg et al (2008). 

 

Because cDNA was synthesized using oligo-dT primers (thereby transcribing only 

mRNA) the final concentration of cDNA was not known. Determination of cDNA 

working concentrations were therefore based on pre-transcription total RNA 
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concentrations (0.2 µg/µl). The working concentration was selected as a common value 

that was within the linear phase of the dilution curves for all investigated genes. This was 

found to be a dilution to 0.03 µg/µl from an initial 0.2 µg/µl total RNA (approximately 

seven fold dilution of cDNA). 

The M-value was calculated for every reference gene to find which of the three 

that had the most stable expression among samples (Vandesompele et al. 2004). For each 

of the five intestinal segments cDNA was pooled from three different diets (FM, FH and 

FAA). For each reference gene the five pooled samples was then run in triplicates on a 

PCR plate (as described in section 2.11 Real-time PCR) to obtain the Ct values. Relative 

quantities calculated from mean Ct values were then evaluated using geNorm 

(Vandesompele et al. 2004). The reference gene that gave the lowest M-value was 

selected as internal control gene to be used on the experimental plates, and to be related 

to PepT1. To confirm the stability of the selected reference gene Ct values from all 

experimental plates were evaluated in geNorm. For each diet the stability among 

segments was investigated, and by comparing reference gene Ct values from different 

plates the stability among segments from different diets and from different times was also 

evaluated. 

2.11 Real-time PCR 

cDNA was amplified in a PTC-200 (MJ Research, MA, USA) with a Chromo 4 

Continuous Fluorescence Detector (Bio-Rad, CA, USA) managed by the software RJ 

Opticon Monitor 3.2.32 (Bio-Rad). The PCR plates used was Semi-skirt 96CLR, 

MicroSeal PCR Plates covered with Optical clear Microseal “B” Film (Bio-Rad). 

Programmed amplification process consisted of 6 minutes polymerase activation at 95ºC 

followed by 40 cycles at 95ºC for 30 s, 56ºC for 30s, 72ºC for 30 s. After last cycle there 

was a final extension at 72ºC for 10 minutes before the amplification process was ended. 

Amplification of product was detected using SYBR Green PCR Master Mix (Applied 

Biosystems, CA, USA). cDNA from each segment was amplified in triplicates both for 

PepT1 and for the reference gene (total of six wells for each sample). In order to detect 

any variation between plates duplicates of a plate-to-plate control was added to each plate, 

which consisted of pooled cDNA from all segments in two fish (UFR diet). Preliminary 
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tests on cDNA from a number of segments showed no amplification of the –RT sample or 

the non-template control (NTC) (water, primers and SYBR Green) for either PepT1 or 

the reference gene, so on all experimental plates one well was dedicated to the –RT 

(PepT1 primers) and one well to NTC (reference gene primers). With 5 µl cDNA, 2.5 µl 

(150 ng) forward primer, 2.5 µl (150ng) reverse primer and 10 µl SYBR Green the final 

volume in each well was 20 µl.  

2.12 Calculation of Mean Normalized Expression 

After all plates were run a manual threshold value was selected (0.08) in the Q-PCR 

software (RJ Opticon Monitor 3.2.32, Bio-Rad) that was significantly above the 

background, and within the exponential phase of the amplification plot for all samples. 

The Ct values was then exported in to a Microsoft Excel sheet and the triplicates from 

each sample sorted so that the lowest, median and highest Ct-value from PepT1 was 

related to the lowest, median and highest Ct-value of the reference gene respectively 

(Simon 2003). GeNorm results from the plate-to-plate control gave M-values lower than 

1.0 for both PepT1 and reference gene, but to minimize the effect of variation between 

plates the Ct values from every plate was also normalized towards the plate-to-plate 

controls according to a formula proposed by Kubista and Sindelka (2007): 

 

m
Ct

CtCtCt ppAllpp
r

gene
rnorm

∑ −+−= 22
          Equation 4  

 

Where Ctnorm is the Ct value normalized to plate-to-plate variance, Ctrgene the measured Ct 

value, Ctr
p2p measured plate-to-plate Ct value on the respective plate, m the number of 

plates and ΣCtAll-p2p the sum of all plate-to-plate Ct values. 

 

The normalized Ct values was then used to calculate mean normalized expression (MNE) 

using the Excel Visual Basic applet qGene (Muller et al. 2002). 
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2.13 Statistical analysis 

MNE values were checked for normality using a Shapiro-Wilk’s test and homogeneity of 

variance was investigated using a Levene’s test. MNE values showed homogeneity of 

variance but normality tests failed (Shapiro-Wilk`s test: p<0.05). MNE values were then 

log2 transformed as suggested by Kubista and Sindelka (2007), and normality and 

homogeneity of variance re-tested. The tests showed normality and homogeneity of 

variance for log2 transformed values which were used in further statistical analysis. The 

effect of diet and time on MNE in each segment was investigated using a two-way 

analysis of variance (ANOVA). Differences in expression between segments within each 

diet were investigated for both times by repeated measures one-way ANOVA. In cases 

where significant differences were found a post-hoc Tukey HSD test was used to 

determine which groups differed. For the post-hoc of the repeated measures ANOVA the 

critical value was estimated using dferror and MSwithin segments substituted by MSerror in 

Tukey HSD formula (Hays 1994). To look for correlation between PepT1 gene 

expression and growth or size a Pearson correlation test was done between expression in 

each segment and the respective fish specific growth rate and condition factor. (For 

calculation of specific growth rate and condition factor see subscript Table 5). All 

statistical analysis except the post hoc Tukey HSD was performed using the statistical 

software R version 2.6.1 (The R Foundation for Statistical Computing, www.r-

project.org). Tukey HSD test following repeated measures ANOVA showing significant 

differences between groups was calculated manually using Microsoft Excel. P-values 

from 0.1 to 0.05 were considered as trends and p-values smaller then 0.05 were 

considered statistically significant.  
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3. Results 

3.1 Fish growth and physiological performance 

With temperatures stable around 9 ºC, a steady water flow and oxygen levels never below 

90 % no technical difficulties occurred during the experimental period and only two fish 

died. Only minor differences in growth parameters were observed between groups (Table 

5, from Dr. Pedro Gómez Requeni, unpublished data). No significant difference in 

condition factor (CF) was found between groups either for T1 or T3. Fish fed the FAA 

diet had a significant higher specific growth rate (SGR) then the FM, FH and UFR groups 

from T0 until sampling at T1 (one-way ANOVA; P<0.01, F-value=6.29, 4 df). No 

significant difference in SGR was found between groups from the T2 to T3 sampling or 

overall during the whole experimental period (T0 – T3). At the T1 sampling the fish fed 

the UFR diet showed a lower hepatosomatic index (HSI) then the other groups (one-way 

ANOVA; P<0.01, F-value=4.98, 4 df). At T3 no statistically differences were found 

between groups HSI.  

Table 5 - Growth and physiological performance for the different diets at T1 and T3 

 FM FH UFR NFR FAA 

CF a 
       T1 

       T3 

 

0.83 ± 0.06 
0.91 ± 0.08 

 

0.84 ± 0.08 
0.89 ± 0.05 

 

0.85 ± 0.07 
0.88 ± 0.1 

 

0.85 ± 0.08 
0.86 ± 0.08 

 

0.86 ± 0.08 
0.88 ± 0.07 

SGR (%) b 

       T0 – T1 
       T2 – T3 
       T0 – T3 

 

1.62 ± 0.51A 
1.68 ± 0.48 
1.73 ± 0.28 

 

1.66 ± 0.52A 

1.70 ± 0.35 
1.75 ± 0.37 

 

1.58 ± 0.36A 

1.80 ± 0.52 
1.76 ± 0.33 

 

1.75 ± 0.54AB 

1.65 ± 0.35 
1.70 ± 0.28 

 

1.97 ± 0.54B 

1.68 ± 0.46 
1.78 ± 0.41 

HSI c 

       T1 

       T3 

 

9.2 ± 1A 

10 ± 1.4 

 

8.8 ± 1.6 A 

9.6 ± 1.8 

 

7.2 ± 2.2 B 

9.3 ± 1.6 

 

9 ± 1.7 A 

10.1 ± 1.4 

 

9.3 ± 1.6 A 

9.4 ± 2.8 

Results from Dr. Pedro Gómez Requeni, unpublished data.Values are mean ± standard deviation, n=18 for HSI, n=90 
for CF and SGR at T0-T1, n≈20 for CF and SGR at T2-T3 and T0-T3. Values within row showing different capital 
superscript letter are statistically different. Table is only showing data relevant for T1 and T3 sampling.  
a Condition factor (CF): (100 x weigth (g))/length (cm)3 
b Specific growth rate in % (SGR): 100 x ((ln final weight (g) – ln initial weight (g)) / days)) 
c Hepatosomatic index (HSI): (liver weight (g) / body weigth (g)) x 100 

3.2 Isolation of BBMV and electrogenic transport measurements 

A successful preparation of BBMV were made from intestines of European eel, and 

electrogenic transport measurements were conducted (Verri et al. 2008, Appendix A). 
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However, within the time-frame available for this thesis we failed to prepare and utilize 

BBMV from Atlantic cod intestine in transport studies. Both tests on frozen intestines of 

adult cod (1.5 – 2 kg) and preparations from fresh intestines from juvenile cod (200-300 g) 

were unsuccessful. The spectrofluorometric measurements showed that there was no 

difference in fluorescence quenching when there was a difference in intra- and 

extravesicular K+-concentration (outwardly directed 100mM to 1mM K+ gradient) 

compared to when concentrations were the same inside and outside the vesicles (no K+ 

gradient, intracellular K+ concentration equal to extracellular K+ concentration equal to 

100 mM), indicating lack of membrane potential (data not shown). Significant yield in 

brush-border membrane-bound enzymes was obtained (enrichment factors; alkaline 

phosphatase 15.1, leucine aminopeptidase 12.9) which indicated successful isolation. 

Transport measurements were tested with different concentrations of vesicles, 

valinomycin and fluorescent dye (DiS-C2(5)) and at two different temperatures (20 and 

7ºC). Changing these parameters did not allow us to study transport, so we were unable to 

establish a working protocol for Atlantic cod before the start of the feeding experiment.  

  

3.3 RNA isolation and Q-RT-PCR 

Quality control of RNA samples gave a 280/260 nm ratio between 1.95 - 2.10 and a 

260/230nm ratio between 2.1 - 2.3 and pictures of the gels gave clear 18S and 28S bands 

with a ratio 2:1 in strength for all samples (data not shown). Amplification efficiency of 

the different genes was found to be 1.96 (96.41 %) for PepT1, 1.99 (98.84 %) for EF1A, 

1.87 (86.6 %) for S9 and 1.92 (92.03 %) for Ubi. GeNorm evaluation of the different 

reference genes (S9, Ubiquitin and EF1A) showed that EF1A had the lowest M-value 

(0.885), which was selected as reference gene when calculating the relative expression of 

PepT1. GeNorm evaluation of EF1A Ct values obtained from all experimental plates 

yielded M-values lower than 1.0 for all investigated combinations (segment : diet : time), 

confirming the stability of EF1A among samples and sampling points. No background 

was found in the NTC or -RT wells. 
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Figure 4 – See next page for legend. 

 

 
 

Time P-value 

T1 n.s. 

T3 n.s. 

 

 

Time P-value 

T1 n.s. 

T3 n.s. 

 

  

Time P-value 

T1 n.s. 

T3 0.0498* 

 

Time P-value 

T1 n.s. 

T3 n.s. 

 

 

 

  

Time P-value 

T1 n.s. 

T3 0.0402* 
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Figure 4 – Regional mean normalized gene expression of PepT1 in fish fed different experimental diets; 
either all protein in diet as fish meal (FM) or approximately 30 % of the fish meal substituted by either 
fish hydrolysate (FH), retenate after ultra filtration of fish hydrolysate (UFR), retenate after nano 
filtration of fish hydrolysate (NFR) or a mix of free amino acids (FAA). All graphs showing mean 
normalized expression (MNE) +/- standard error for the two sampling points; 14 days (T1) (light bars) 
and 46 days (T3) (dark bars) on the experimental diets. Regions in each diet are sub-samples from 
pyloric caeca (S1) and four equally long segments from the remainder of the intestine (S2-S5). Tables 
opposite to graph show results from repeated measures ANOVA for the two different sampling points. 
Different letters denote significant differences (P<0.05) in PepT1 gene expression between segments. 

3.4 PepT1 gene expression 

For all diets PepT1 was found to be expressed in all five segments (Figure 4 and Figure 

5). No correlation was found between expression in individual segments and the 

respective fish SGR or CF (data not shown). 

3.4.1 Regional expression of PepT1 

The intestinal PepT1 expression profile for each diet is shown in Figure 4. In the FM diet 

there was a trend at T1 (P=0.086, F-value=3.20, 4 df) and it appears as there is a slightly 

higher expression of PepT1 in S2, S3 and S4 than in pyloric caeca (S1) and S5 (light bars 

FM graph Figure 4). A similar expression profile was observed at T3 but statistical tests 

did not suggest any differences between segments (P=0.15, F-value=2.1, 4 df). In the FH 

diet no significant difference in expression of PepT1 between segments were found for 

any of the sampling points (FH graph Figure 4). At T3 a significant difference was found 

between segments in the UFR diet (P=0.0498, F-value=3.84, 4 df) (dark bars UFR graph 

Figure 4). The post-hoc test showed that the expression of PepT1 was higher in S2 and 

S3 than that in pyloric caeca (S1) and S5. A trend could also be observed for T1 (P=0.07, 

F-value=3.53, 4 df), and at both T1 and T3 a gradually decline in expression from the 

proximal to the distal intestine after the pyloric caeca could be observed, with expression 

in the two last segments (S4 and S5) similar to that observed in the pyloric caeca. In the 

NFR fed fish equal expression was found in all segments at both T1 and T3 (NFR graph 

Figure 4). Significant difference in expression between segments was found for the FAA 

diet at T3 (P=0.04, F-value=4.2, 4 df) (dark bars FAA graph Figure 4). The expression of 

PepT1 in segment 2 and 3 was higher then in the pyloric ceca (S1) and S5, giving a 

profile very similar to that observed for the UFR diet at T3. No significant difference in 

expression of PepT1 was observed between segments at T1 which showed an even and 

low expression in all segments (light bars FAA graph Figure 4).  
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Factor P-value 

time 0.012 * 

diet n.s. 

time:diet n.s. 

 
Factor P-value 

time 0.003 * 

diet n.s. 

time:diet n.s. 
 

 
Factor P-value 

time 0.016 * 

diet n.s. 

time:diet n.s. 
 

 
Factor P-value 

time n.s. 

diet n.s. 

time:diet n.s. 
 

 

  
Factor P-value 

time 0.03 * 

diet n.s. 

time:diet n.s. 
 

Figure 5 – See next page for legend. 
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Figure 5 – Mean normalized gene expression of PepT1 in pyloric caeca (S1) and four equally long 
segments from the remainder of the intestine (S2-S5) for fish fed different experimental diets. Either all 
protein in diet as fish meal (FM) or approximately 30 % of the fish meal substituted by either fish 
hydrolysate (FH), retenate after ultra filtration of fish hydrolysate (UFR), retenate after nano filtration 
of fish hydrolysate (NFR) or a mix of free amino acids (FAA). All graphs are showing expression at the 
two sampling points; 14 days (T1) (light bars) and 46 days (T3) (dark bars) on experimental diets. Tables 
opposite to graph show results from Two-way ANOVA on the effect of time , diet and the interaction 
between time and diet.  

 

3.4.2 Effect of diet and time on PepT1 expression 

A comparison between diets averaged MNE in each segment is shown in Figure 5. No 

significant difference in PepT1 expression between diets was found in any of the 

segments. The expression of PepT1 was found to be higher at T3 then at T1 in all 

segments except S4 (Figure 5), but not related to any specific diets as no interaction 

between diet and time was found. 
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4. Discussion 

4.1 Fish growth and physiological performance  

Since the focus of this thesis was to assess the dietary effect on regulation of PepT1, only 

the main observations from the growth experiment will be discussed. Further details on 

the dietary effect on growth performance and metabolism are due to be reported in 

ongoing studies (Pedro Gómez Requeni, unpublished). The small differences in growth 

parameters (CF, SGR or HSI) that were found between the groups suggest that Atlantic 

cod can utilize both fish hydrolysate and free amino acids when these levels are included 

in the diet. This is in accordance with the findings of Aksnes et al. (2006b), who 

substituted fishmeal in a high plant protein diet for Atlantic cod with either approximately 

27 % total fish hydrolysate, ~16 % ultra filtrated retenate, ~ 8 % nano filtrated retenate or 

~ 4 % nano filtrated permeate. No significant difference in CF or SGR was found 

between groups after 89 days on these experimental diets. The SGR was however lower 

(~1.3 %) then in the current study, and is probably related to the high levels of various 

plant protein (520g kg -1) that where included to the study by Aksnes et al. (2006b). This 

is supported by the finding of Hansen et al. (2007a) who showed that plant protein 

inclusion levels of 50% or more in diets for Atlantic cod caused a significant lower SGR 

then groups of fish fed no or 25% plant protein included.  

In post-smolt Atlantic salmon, there were no differences in SGR between groups of 

fish when up to 24 % of the fish meal was substituted by fish hydrolysate (Hevroy et al. 

2005). The beneficial effect seems to be even better when substituting fish meal with 

hydrolysate in a diet containing some plant material for this fish. This is shown by the 

finding of Refstie et al. (2004) where the overall growth rate of the salmon increased 

when up to 36 % of the fish meal was substituted by fish hydrolysate in a diet containing 

10 % soy bean meal. An interesting topic to study further could therefore be to 

investigate the growth of Atlantic cod fed increasing levels of fish hydrolysate in diets 

containing moderate to low levels of plant protein. 

Similar inclusion levels of free amino acids as used in the FAA diet in the current 

study have been found to be beneficial both for protein synthesis and growth when 

substituting intact protein in diets for Atlantic salmon (Espe and Lied 1994). In the 
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current study the overall SGR for the FAA diet was similar to that in the other groups, 

which suggest that also juvenile Atlantic cod can utilize free amino acids at these 

inclusion levels. Espe and Lied (1994) discussed whether the increased protein synthesis 

is associated with increased levels of insulin, which is an important hormone both in 

amino acid uptake and muscle growth in fish (Matty 1986; Rungruangsak-Torrissen et al. 

1999; Rungruangsak-Torrissen and Sundby 2000). The higher SGR observed from T0 to 

T1 for the FAA diet in the currents experiment could therefore be associated with a better 

incorporation of dietary protein and the involvement of insulin could be important. 

However, the exact reason for this high SGR during the first period might be more 

explainable once more metabolic data is available (Dr. Pedro Gómez Requeni, 

unpublished).  

In the study by Aksnes et al. (2006b) it was found a slightly lower HSI in cod fed the 

diets containing retenate after ultra- and nano filtration. A lower HSI were also found at 

T1 in the current study for the UFR fed fish. However, the diet containing retenate after 

nano filtration (NFR) did not show a lower HSI then the other diets (FM, FH and FAA), 

and at T3 all groups showed similar HSI. Thus, it seems that the diets used in the currents 

study do not cause any differences in relative liver weight over time.  

Even though the groups in the current study showed similar growth parameters the 

dietary treatments could have caused some differences in feed and protein utilization 

between groups. This is demonstrated by the reduced feed efficiency of Atlantic cod fed 

diets containing retenate after filtration of fish hydrolysate (Aksnes et al. 2006b) and the 

lower protein efficiency with the use of hydrolysate in diets for post-smolt salmon 

(Hevroy et al. 2005). Based on the feed delivered to each tank in the current study the 

amount of food consumed by each kg of fish seemed to be stable and the same among 

groups during the whole experimental period (Dr. Pedro Gómez Requeni, unpublished). 

However, as no replicate data is available it is not possible to accurately calculate feed 

and protein utilization. The costs associated with the growth performance found in the 

groups this study is therefore not known and should be investigated in future studies.  

Studies on Atlantic cod have showed that the gastric evacuation of chyme from the 

stomach to the intestine is fairly even from 6 - 12 up to 48-60 hours after feeding 

(depending on dietary treatment) (Lyndon et al. 1993; Hansen et al. 2006). In the study 
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by Lyndon et al. (1993) plasma levels of free amino acids measured in the hepatic portal 

vein was high from 12 hours postprandial until the last measurement was conducted after 

24 hours. In the current experiment fish from all diets were sampled approximately 24 

hours after last feeding and during dissection it was observed that all intestines had a 

fairly even distribution of chyme in the lumen (data not shown). It is therefore safe to 

assume that this is a period of active absorption where a potential dietary effect on PepT1 

could be detected.    

4.2 Isolation of BBMV 

The reasons for the unsuccessful preparations of BBMV from Atlantic cod intestine are 

not known. Successful preparations of BBMV from other fishes have been made earlier 

in both eel (Storelli et al. 1986; Verri et al. 1992; Maffia et al. 1997; Verri et al. 2000), 

tilapia (Reshkin and Ahearn 1991; Thamotharan et al. 1996), rockfish (Ahearn et al. 1992) 

and even Antarctic ice fish (Maffia et al. 2003). Based on these findings and that 

successful preparation was made from eel intestine using the exact same chemicals and 

protocol (Verri et al. 2008, Appendix A), some special considerations apparently needs to 

be made when preparing BBMV from Atlantic cod intestine. Our results clearly indicated 

enrichment in brush-border membrane-bound enzymes, which suggest that the method 

applied to Atlantic cod allow isolation of BBMV. What appeared to be a missing 

membrane potential could be caused by three factors. Either the brush-border membrane 

fractions do not form vesicles, or if vesicles are present, valinomycin either fails to 

generate a negative membrane potential or the membrane potential is quickly neutralized 

by leakage or transport of ions into the vesicles. Within the time available for this thesis 

we were unfortunately unable to conduct further investigations into these problems. 

Future problem solving should include new preparations of BBMV from Atlantic cod 

intestine and studies of the vesicular suspension with microscopic techniques to 

determine if vesicles are present (Bozzola and Russell 1998). If vesicles are not formed or 

brush-border membrane fractions are loosely connected (thereby causing leakage), 

further optimisation and tests on the preparation protocol needs to be conducted. If 

vesicles are present in the suspension the reason for the undetectable membrane potential 

should be investigated further. Other ionophores than valinomycin (such as nigericin that 
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acts as an H+, K+ and Pb2+ ionophore) might be tested to see if they are able to generate a 

membrane potential (Prof. Tiziano Verri, personal communication). The presence and 

role of other transporters in the vesicles should also be investigated, as transport of ions 

over the BBM could neutralize the membrane potential. Thus, in order to determine how 

and why Atlantic cod differ from other investigated species further experiments with 

suggested problem solving steps should be conducted.  

Since we were not able to use this method in measuring the transport capacity of 

PepT1 in the intestinal regions, it is not known how the dietary treatments will affect the 

activity of membrane-bound PepT1 protein. No studies have been found where substrates 

stimulate the activity of PepT1 without affecting de novo synthesis of mRNA. However, 

in a study with human Caco-2 cells by Walker et al. (1998) there was a non-proportional 

relationship between increased levels of PepT1 mRNA and increased dipeptide transport, 

and it was concluded that increased mRNA stability and transcription also contributed to 

some of the increased transport. It is also possible that the dietary differences could have 

some indirect effect on PepT1 activity, since some studies have shown that hormones and 

signalling pathways can regulate PepT1 activity without affecting mRNA expression. 

Early studies on PepT1 regulation have shown that activation of protein kinase C (PKC) 

have a negative effect on PepT1 mediated transport of the dipeptide Gly-Sar in Caco-2 

cells (Brandsch et al. 1994), an inhibitory effect that was found to be on membrane bound 

PepT1 protein and not at the gene expression level. Subsequent studies of the signal 

pathway found that this activation of PKC and subsequent inhibition of PepT1 was 

related to increased activity of cyclic AMP (cAMP) (Muller et al. 1996). The latter study 

therefore concluded that the cAMP-mediated activation of PKC (and protein kinase A) is 

an important route in down regulation of PepT1 activity. In the sequence of Atlantic cod 

there appeared to be three cAMP/cGMP-dependent protein kinase motifs but no protein 

kinase C phosphorylation site (Rønnestad et al. 2007). Although it is likely that these 

regulatory mechanisms are different in Atlantic cod, further studies on the effect of 

secondary messengers on PepT1 activity needs to be conducted to verify this assumption. 

Nielsen et al. (2003) found that short-term treatment with insulin had a positive effect on 

Gly-Sar uptake when administered to the basolateral side of Caco-2 cells. This positive 

effect by insulin has also been found in a earlier study by Thamotharan et al. (1999), 
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where pre-incubation of Caco-2 cells in medium containing 5nM insulin stimulated Gly-

Gln uptake two fold compared to control. The conclusion from both studies is that insulin 

treatment of Caco-2 cells either led to an activation of membrane bound PepT1 protein or 

a mobilization from a preformed cytoplasmic pool, without affecting the amount or 

stability of PepT1 mRNA. Insulin is an important hormone involved in anabolic 

processes during fish metabolism (Matty 1986; Navarro et al. 1999; Buddington and 

Krogdahl 2004), and increased levels of this hormone correlate with higher 

concentrations of plasma free amino acids in Atlantic salmon (Rungruangsak-Torrissen 

and Sundby 2000). As the level of plasma free amino acids seems to be affected by level 

of hydrolyzed protein or free amino acids included in the diet (Espe 1993; Berge et al. 

1994; Espe and Lied 1994; Espe et al. 1999) it is possible that a consequent change in 

insulin levels could affect the activity of PepT1 without affecting levels of mRNA. 

Another regulatory mechanism of PepT1 was suggested in a study by Berlioz et al. (2000) 

where an agonistic stimulation of alpha-2-adrenergic receptors increased transport of the 

antibiotic cephalexin in a differentiated human Caco-2 cell line. Because of the rapid 

response to the agonist and the kinetic properties of transport it was suggested that the 

positive effect was caused by increased mobilization of PepT1 protein to the apical 

membrane. Although no information is available on the presence or function of the alpha-

2-adrenergic receptor in Altantic cod intestine, high affinity for agonists and antagonists 

have indicated its presence in goldfish intestine (Bakker et al. 1993).  However, to pursue 

the idea that these regulatory mechanisms either via neural, insulin or cAMP and protein 

kinase pathways applies in Atlantic cod further studies needs to be conducted. In any case, 

it is still important to keep in mind that even though the relationship between levels of 

PepT1 protein and mRNA in most situations are closely connected (Daniel 2004), the 

findings above show that it is possible that the dietary treatments used in the current 

experiment could have some effects on PepT1 activity outside of what is possible to 

detect with Q-RT-PCR.  
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4.3 Q-RT-PCR 

The use of same sample size during isolation and same RNA quantity for cDNA 

synthesis is important for normalization when comparing samples (Huggett et al. 2005). 

In the current experiment the sub-samples taken from the intestinal segments were of the 

same size and amount of RNA used for cDNA synthesis were the identical for all samples. 

The OD values obtained from the RNA quality control of all samples is right in the area 

of what is considered highly purified RNA, and the clear 28S and 18S bands obtained 

from electrophoreses gel is good indication of low degradation and high integrity of RNA 

(Bustin and Nolan 2004; Fleige and Pfaffl 2006). As good quality RNA is essential for 

successful real-time RT-PCR (Pfaffl 2002), these results show that a good foundation was 

made for reverse-transcription and the consecutive PCR for all samples.  

A stable reference gene is essential to obtain accurate gene quantification data, 

and should be thoroughly evaluated as the activity of most genes will be regulated under 

certain conditions (Thellin et al. 1999). The low M-value obtained from geNorm 

investigations of the experimental plates confirms that the expression of codEF1A 

remained stable both among intestinal segments, between dietary treatments and times. 

EF1A has also been found to be a reliable reference gene in a study by Lilleeng et al. 

(2007) were intestinal gene expression in Atlantic cod was studied under two different 

dietary treatments. Further, in a study to find the most stable reference gene in Atlantic 

salmon, Olsvik et al. (2005) compared multiple reference candidates and found EF1A to 

be the best choice. All in all this suggest that EF1A is a reliable reference gene and 

should be included when evaluating candidate reference genes in fish.  

Amplification of genomic material other than the targeted sequence could be a 

potential source of error and is often caused by the presence of unwanted DNA molecules 

or primer dimer formation (Kubista et al. 2006). Since no background was found in the 

NTC and -RT wells in this study it therefore indicates that the Ct values are obtained 

from amplified mRNA only.  

4.4 PepT1 gene expression 

The results from this study show that Pept1 is expressed through the whole intestine of 

juvenile Atlantic cod, confirming results from previous studies both in adult (Rønnestad 
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et al. 2007) and larval Atlantic cod (Amberg et al. 2008). Thus, indicating that PepT1 is 

important in protein uptake, and that the whole intestine probably is involved in peptide 

transport in this fish. In the study by Rønnestad et al. (2007) a weaker signal of PepT1 

gene expression was found in the most distal intestine indicating a reduced activity of the 

transporter in this region for adult Atlantic cod. In the current study the expression of 

PepT1 in the last segment was found to be similar to at least two of the preceding 

segments, and with the exception of the UFR and FAA diet at T3 showed no statistical 

difference in expression compared to the other segments for any of the other diets (Figure 

5). Studies with Atlantic salmon have concluded that the dietary protein requirements 

decline with increasing fish size (Einen and Roem 1997), so it is possible that for the 

juvenile fish used in the current experiment PepT1 activity in needs to be high the whole 

intestine in order to meet the high demand of amino acids for growth. During dissection 

in the currents study no clear distal chamber of the intestine could be observed (own 

unpublished observations), a feature that is found in intestine of adult cod (Refstie et al. 

2006b; Rønnestad et al. 2007). These anatomical differences could cause some 

developmental differences in the function of PepT1 in this region. Developmental change 

in PepT1 expression has been found in the intestine of rats in a study by Shen et al.  

(2001). During the nursing period when rats where on a protein rich milk diet there was 

an even and high expression of PepT1 in the whole intestine including colon. Just prior to 

weaning the levels of PepT1 mRNA and protein showed a rapid decrease in all segment 

and to low or undetectable levels in colon, a change that was suggested to be caused by a 

change from a protein rich milk diet to feeding diets consisting of mainly carbohydrates. 

It is however not determined whether the high PepT1 expression observed during 

suckling in these rats was a response to optimize growth (and survival) at an early age or 

a direct response of PepT1 to the high protein levels in the diet. The dietary protein levels 

used in the current study (approximately 42 % DM) is close to what is considered to give 

optimal protein retention for Atlantic cod this size (Lied and Rosenlund 1983; Rosenlund 

et al. 2004). In a study by Førde-Skjærvik et al. (2006) the digestibility of different 

nutrients was investigated along the intestine of Atlantic cod and it was found an active 

digestion of protein in the whole intestine including the most distal region in fish fed a 

protein rich fish meal diet (57% CP). High levels of dietary protein have been found to 
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increase the intestinal PepT1 mRNA expression in both rats (Erickson et al. 1995) and 

birds (Chen et al. 2005). So a reason for the stable expression of PepT1 in the whole 

intestine (including the most distal region) in the current study could therefore be that the 

luminal peptide content is close to levels that are giving maximum retention, thereby 

calling for a mobilization of transporters in the whole intestine to meet the high levels of 

available protein. However, how the level of protein included in the diet affects the 

expression and activity of PepT1 in Atlantic cod is still a topic that needs to be 

investigated. 

The lack of correlation between PepT1 expression in each segment and SGR or 

CF in the current study is in accordance with the results from Asian weatherloach by 

Gonçalves et al. (2007), where groups of fish that had a significant difference in both 

growth and final bodyweight showed the same intestinal PepT1 expression. Thus, even 

though protein is the main source of growth in fish (Houlihan 1988) and transport of short 

peptides via PepT1 in Atlantic cod seems to be an important route for protein absorption 

(Rønnestad et al. 2007; Amberg et al. 2008; Own results), the relationship is probably 

more complex.  

4.4.1 Regional expression of PepT1 

In a study on Atlantic halibut (Hippoglossus hippoglossus) filling of the pyloric caeca  

was caused by retrograde contractions in the nearby proximal intestine after the pyloric 

caeca, moving chyme in an posterior to anterior direction (Rønnestad et al. 2000). The 

narrow area between the pyloric sphincter and the entrance to the pyloric caeca in 

Atlantic cod intestine indicate that also this fish has to utilize similar mechanisms in order 

to fill the pyloric caeca (own unpublished observations). When the chyme fills the pyloric 

caeca from the subsequent intestinal region, thereby exposing the two areas to the same 

luminal content, one might expect to find a similar regulatory effect on the expression of 

PepT1 in S1 and S2. However, since a small proportion just after the pyloric caeca was 

removed in the current study (see section 2.3 Fish sampling) a significant part of the 

intestine involved in this retrograde movement of chyme was not investigated. The 

expression in S2 might therefore be more related to activity in the early mid intestine than 

proximal intestine.  
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The only known study that have been looking at dietary effects on the regional 

expression of PepT1 in fish is the study on Asian weatherloach by Gonçalves et al. 

(2007). As expected no expression of PepT1 was found in the most distal part of the 

intestine in this fish as this region is utilized as an accessory air-breathing organ 

(Gonçalves et al. 2007), while it in the preceding intestine was a gradual decline in PepT1 

expression in a proximal to distal direction. This expression profile was however not 

different between groups feed either a protein rich diet, carbohydrate rich diet or starved 

during the experimental period (one month). The regional profile in higher vertebrates 

appears to be a fairly even expression of PepT1 in duodenum, jejunum and ileum with 

low or undetectable levels in colon (Erickson et al. 1995; Freeman et al. 1995; Miyamoto 

et al. 1996; Chen et al. 1999; Shen et al. 2001; Rome et al. 2002; Chen et al. 2005), 

although expression of PepT1 in the colonic area have been found in bears (Gilbert et al. 

2007), suckling rats (Shen et al. 2001) and under certain intestinal pathological conditions 

in humans (reviewed by Adibi 2003). A change in profile as a response to diet have 

however not been found, although there appears to be a general increase in PepT1 

expression in the whole small intestine as a response to a high (quality) protein diet 

(Erickson et al. 1995; Chen et al. 2005; Gilbert et al. 2008). As demonstrated in vitro, the 

presence of dipeptides in incubation medium for human Caco-2 cells has been found to 

up regulate PepT1 mRNA levels (Thamotharan et al. 1998; Walker et al. 1998). The 

results from the current study show that the dietary inclusion of peptides also could have 

an effect on the regional expression of PepT1 in the intestine of juvenile Atlantic cod. 

The FH diet had the highest level of the shortest peptides included (Table 1) and there 

was a similar expression in all segments including the pyloric caeca in the fish fed this 

diet. The UFR and FAA diets had only small or no levels of short chained peptides 

included and both showed a higher expression of PepT1 in S2 and S3 then pyloric caeca 

and S5 at T3, a tendency that was also observed for the UFR diet at T1. Based on the 

levels of PepT1 mRNA this indicates that for fish fed the FH diet the relative 

involvement of PepT1 in the proximal regions of the intestine (e.g. pyloric caeca) is 

higher than in diets containing less short peptides (UFR and FAA). Similar to the FH diet 

the statistical tests showed that there were no differences in PepT1 expression between 

segments for the NFR fed fish, which also suggests that high amounts of slightly larger 
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peptides (100-1000 Da) would cause involvement of PepT1 in the pyloric caeca similar to 

that observed in other segments. The higher PepT1 expression observed in S2 and S3 in 

the UFR and FAA diets could therefore be caused by a lack of or low amounts of short 

chained peptides included in the diet. Consequently that this region have a higher 

function in protein absorption as some proteolytic work needs to be conducted on the 

dietary protein before the substrate is available for PepT1 (Ganapathy et al. 2006). This 

could also explain the trend that was observed in the FM diet at T1, indicating that there 

was a lower expression of PepT1 in pyloric caeca (S1) and S5 than in S2, S3 and S4. As 

the diet had all its protein from fish meal and not included any peptides this suggests that 

some degradation of protein is necessary before peptides can be transported via PepT1 

also for this group. However, a similar trend was not observed at T3 where the statistical 

test showed that there were no significant differences between segments. It is therefore 

not possible to conclude that there is any lower relative involvement of PepT1 in pyloric 

caeca compared to other segments in fish fed the FM diet. Gilbert et al. (2008) compared 

groups of broiler chicks fed equal amounts of either a high quality protein diet (soybean 

meal) or a low quality protein diet (corn gluten meal), and found that chicks fed the high 

quality diet to have the highest intestinal PepT1 mRNA expression. It is well known that, 

to date, high-quality fish meal is the optimal marine protein ingredient in pelleted feed for 

carnivorous fish. Thus, since the FM diet contained approximately 14% more fish meal 

then the other diets it could therefore be that the higher levels of good quality protein 

would allow a better utilization of digested protein thereby allowing a more rapid 

absorption of peptides. Further, the fish fed the FM diet had been on this diet since the 

start of the experimental period, meaning that they would have had a significant longer 

time (one month) then fish fed the other diets to adapt an optimal utilization of the feed. 

However, to investigate this further the regulatory effects on PepT1 by protein quality 

and the transporters postprandial adaptation to dietary conditions should be investigated 

in more detail.   

The profile observed at T3 for the FAA diet was not observed at T1, when there 

was a low and equal expression in all segments. The low PepT1 mRNA levels did not 

seem to affect growth performance in any way as the FAA diet was found to have the 

highest SGR from T0 to T1 (Table 5). As discussed earlier and in the study by Espe and 
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Lied (1994), high levels of dietary free amino acids lead to higher plasma free amino 

acids levels and probably have an regulatory effect on the levels of circulating insulin.  

Because insulin have found to stimulate the activity of membrane bound PepT1 without 

affecting mRNA levels (Thamotharan et al. 1999; Nielsen et al. 2003) it is possible that 

the fish have maintained dipeptide transport due to activation of membrane-bound PepT1 

or recruitment from a preformed cytoplasmic pool. Ferraris et al. (1988a) found no 

difference in intestinal PepT1 mediated carnosine transport after two weeks for groups of 

mice fed diets containing 54 % protein either as intact casein, hydrolyzed casein or free 

amino acids. This suggests that in mice the transporter is still present and active after 

longer periods on diets with high levels of free amino acids.  However, to what extent the 

level of PepT1 mRNA were affected in these mice are not known. Given the time the fish 

in the current experiment were fed the FAA diet before the T1 sampling (two weeks) and 

with enterocyte turnover time of just days (Kryvi and Totland 1997) it would be 

reasonable to expect elevated de novo synthesis of PepT1 mRNA during this period. 

Shiraga et al. (1999) found that the amino acid phenylalanine (Phe) up regulated the 

amount of PepT1 mRNA and stimulated Gly-Sar transport in BBMV. If this amino acid 

also functions as an inducer of PepT1 activity in Atlantic cod a positive effect should also 

be expected in the current study as the FAA diet contained more than 3 times higher 

levels of Phe compared to all the other diets (Table 2). Further, Daniel (2004) reported 

that luminal free amino acids inhibit dipeptidases in the BBM, so with less hydrolysis of 

dipeptides one might expect more substrate to become available for PepT1. Thus, as 

evidence suggest a positive effect of free amino acids on PepT1 activity the reason for the 

low and stable expression at T1 for the FAA diet is probably related to other regulatory 

mechanisms outside of what is possible to identify with the data available in this thesis. 

More detailed studies should therefore be conducted to investigate the long term 

postprandial effects of amino acids (and possibly indirectly insulin) on PepT1 expression 

in Atlantic cod. 

4.4.2 Effect of diet and time on PepT1 expression 

Shiraga et al. (1999) included 20 % of the dipeptide Gly-Phe in an otherwise protein free 

diet to adult rats. After four days on experimental diets the group fed diets containing the 
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dipeptide showed approximately 2.5 fold higher expression of PepT1 protein and mRNA 

in the intestine than rats fed protein free diets. However, even with these relatively high 

inclusion levels of pure dipeptide the expression was only slightly higher than PepT1 

expression in rats fed 20 and 50 % intact protein (casein) included to the diet. In another 

study on mice the transport of carnosine was measured using everted intestinal sleeves 

prepared from animals fed a protein rich diet with 54 % of the diet either as casein, partly 

hydrolyzed casein or free amino acids (Ferraris et al. 1988a; Ferraris et al. 1988b). After 

two weeks of feeding these diets there were no differences in carnosine uptake in any of 

the segments investigated (duodenum, jejunum and ileum). The results from these two 

studies seem to be in line with the findings in the currents study. As the statistical 

analysis and Figure 5 shows, there was no significant difference in PepT1 mRNA 

expression between diets in any of the segments. Thus, inclusion of fractions of peptides 

or free amino acids at the levels used in this study do not seem cause any changes in 

PepT1 expression above or below that found in groups fed other diets for any of the 

intestinal regions investigated. Gonçalves et al. (2007) found that there was no difference 

in PepT1 expression in the intestine Asian weatherloach fed either a protein rich diet, 

carbohydrate rich diet or starved for one month. In the study on Atlantic cod larvae no 

difference in PepT1 expression was found between groups fed either zooplankton or 

enriched rotifers (Amberg et al. 2008). Thus, the results from the current study seem to 

add support to the findings in these studies, suggesting that dietary properties might be 

less important in the regulation of PepT1 expression in fish. However, as the results 

suggest that a higher inclusion of short peptides seem to cause a higher relative 

involvement of PepT1 in the pyloric caeca (see 4.4.1 Regional expression of PepT1), 

upcoming studies should assess the dietary effect on PepT1 expression when higher 

levels of short chained peptides are included to the diet (for instance permeate after nano 

filtration of fish hydrolysate (Aksnes et al. 2006b)).  

From the start of the weaning period (7-14 postpartum) until 24-30 days 

postpartum there is an increase in the levels of PepT1 mRNA and protein in the small 

intestine of rats (Miyamoto et al. 1996; Shen et al. 2001). In both studies it is suggested 

that rise in PepT1 activity could be an adaptation for better utilization of low protein diet 

and/or to optimize growth and survival at an early age. In the current experiment the fish 
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fed the fish meal diet (FM) had a longer time (1 month) to adapt to the dietary conditions 

compared to the other groups, so if the higher expression found at T3 compared to T1 

were related to dietary adaptation one might expect to find a more pronounce difference 

between sampling points in fish fed diet were fish meal was substituted (FH, UFR, NFR 

and FAA). However, no interaction between time and diet was found (Figure 5) so the 

higher expression at T3 found for most segments do not seem to be caused by any 

ongoing adaptation to the dietary conditions. Thus, it would seem that for juvenile 

Atlantic cod some developmental or growth related changes in PepT1 expression occur 

during this life stage.   
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5. Conclusion and future perspectives 
PepT1 appears to be involved in peptide absorption in the whole intestine of juvenile 

Atlantic cod as the transporter is expressed along the whole post-gastric intestine. 

Compared to adult Atlantic cod where it has been indicated a lower involvement of 

PepT1 in the most distal region (Rønnestad et al. 2007), the results from the current study 

suggest that for juvenile cod the involvement of the most distal segment seems to be 

similar to that of other regions of the intestine.  

With an overall higher activity of PepT1 in most segments at T3 then at T1 the 

results also suggest that some developmental changes in PepT1 expression occur during 

growth of juvenile Atlantic cod.  

Although a higher inclusion level of short peptides did not lead to expression of 

PepT1 above that observed for diets not containing or with larger peptides, the hypothesis 

is partly confirmed by the fact that for diets where fish meal is substituted (FH, UFR, 

NFR and FAA) the expression of PepT1 mRNA indicate that the relative involvement of 

the pyloric caeca in peptide transport is lower compared to the two following segments 

for diets without or with low levels of short peptides included (UFR and FAA diet), and 

that for diets containing the highest amount of short chained peptides the involvement of 

PepT1 in the pyloric caeca in peptide transport is similar to that observed in the rest of the 

intestine (FH and NFR). Since no differences in PepT1 expression was found in the last 

segment, none of the dietary treatments used seemed to cause any increased activity in 

the most proximal intestine due to saturation of PepT1 activity in early intestine. The last 

segment also showed a similar expression to that in the preceding segment for all diets 

suggesting that the dietary protein composition used in this study mainly cause regulation 

of PepT1 at the mRNA level in the proximal and mid intestine. 

 

With the use of fish hydrolysate as a substitution for fish meal in pelleted feed for 

Atlantic cod it might therefore be beneficial to include some short peptides in order to 

stimulate an earlier absorption of protein. How and if this could improve protein retention 

is however one of many questions that still needs to be answered. Thus, to better 
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understand the function of PepT1 in Atlantic cod, the following topics should be 

investigated in future studies: 

 

- Many studies on higher vertebrates have shown that the expression and activity of 

PepT1 increase with increasing levels of dietary protein (Erickson et al. 1995; 

Shiraga et al. 1999; Chen et al. 2005; Gilbert et al. 2008). To what extent dietary 

protein levels affect the transporter in marine teleost is not known. This is 

important information for Atlantic cod and other important aquaculture species to 

better understand the relationship between PepT1 and growth.  

- PepT1 has received much attention in human not only because of its nutritional 

importance but because of its role in transport of β-lactam antibiotics, 

angiotensin-converting enzyme inhibitors and other drugs (Brandsch et al. 2008). 

To what extent PepT1 is involved in the transport of the antibiotics and other 

drugs currently used in aquaculture feed for Atlantic cod and other important 

aquaculture species is not known. Further investigations into these mechanisms 

could allow a better understanding on how to stimulate a better uptake of these 

compounds.  

- The kinetics of peptide transport via PepT1 in Atlantic cod should investigated, 

either by optimizing the BBMV protocol (Verri et al. 2008) or using other 

methods like everted sleeves (Karasov and Diamond 1983),  Xenopus laevis 

oocytes (Daniel 2000) or Ussing chamber (Ray et al. 2002). 

- Hormones like insulin, epidermal growth factor, leptin and thyroid hormone, have 

been found to have a regulatory effect on PepT1 in mammals (Adibi 2003). These 

aspects need to be investigated in relation to PepT1 in fish to better understand the 

regulatory mechanisms of the transporter. 

- The increasing use of alternative dietary protein sources also introduces potential 

anti nutrients and other bioactive ingredients into the intestinal lumen. How these 

components affect PepT1 expression and transport properties should be 

investigated. 

- Finally it would be interesting to see how the PepT1 profile in the intestine of 

wild Atlantic cod relates to the profiles found in this experiment. 
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A rapid and inexpensive method to assay transport of short
chain peptides across intestinal brush-border membrane
vesicles from the European eel (Anguilla anguilla)
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Abstract

Membrane potential depolarization due to electrogenic

peptide transport activity was examined in eel (Anguilla

anguilla) intestinal brush-border membrane vesicles

(BBMV) by monitoring the fluorescence quenching of the

voltage-sensitive dye 3,3¢-diethylthiadicarbocyanine iodide.

Our experimental approach consisted of generating an

internal negative membrane potential mimicking in vivo

conditions and measuring membrane potential depolariza-

tion due to different extravesicular dipeptides. Peptide-

dependent membrane potential depolarization was observed

in both the presence and absence of extravesicular Na+ and

was inhibited by diethylpyrocarbonate, which is consistent

with the involvement of electrogenic, Na+-independent,

H+-dependent peptide transport activity. Kinetic analysis

indicated that peptide-dependent membrane potential

depolarization is a saturable process (Km,app � 1.5 mmol

L)1) and that within the 0.1–10 mmol L)1 peptide range a

single carrier system is involved in the transport process.

Our results suggest that a peptide transport activity, kinet-

ically resembling the PepT1(Slc15A1)-type-mediated H+/

peptide cotransport action, can be monitored in eel intes-

tinal BBMV using an easy and inexpensive fluorescence

assay.

KEY WORDSKEY WORDS:: cyanine dye, di/tripeptide transport, DiS-C2(5),

membrane potential, PepT1, Slc15A1
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Introduction

Hydrolysis of dietary proteins leads to high levels of short

chain peptides (di- and tripeptides) in the intestinal lumen

during the digestive process. Released di- and tripeptides

are either further hydrolysed to their constituent amino

acids or directly taken up in intact form into intestinal

epithelial cells (for a comprehensive review, see e.g. Daniel

2004). At the apical membrane of enterocytes, transport of

di- and tripeptides is mediated by a single carrier system,

namely PepT1(Slc15a1) (for a recent review of the trans-

porters of the Solute Carrier 15 family, see e.g. Daniel &

Kottra 2004). PepT1 functions as a Na+-independent, H+-

dependent transporter of a large variety of di- and tri-

peptides. It is electrogenic and responds to both application

of inwardly directed transmembrane H+ gradients (pHout <

pHin) and the (internal negative) transmembrane electrical

potential (for details, see Daniel 2004). PepT1 is also

responsible for the transport of orally active drugs, such

as b-lactam antibiotics, aminopeptidase and angiotensin-

converting enzyme inhibitors, d-aminolevulinic acid and

many selected pro-drugs (for a review, see e.g. Rubio-

Aliaga & Daniel 2002).

With regard to fish, peptide transport has initially been

described in brush-border membranes of European eel

(Anguilla anguilla) intestine (Verri et al. 1992, 2000; Maffia

et al. 1997), tilapia (Oreochromis mossambicus) intestine

(Reshkin & Ahearn 1991; Thamotharan et al. 1996), rock-

fish (Sebastes caurinus) intestine and pyloric caeca

(Thamotharan et al. 1996), Atlantic salmon (Salmo salar)

intestine (Bakke-McKellep et al. 2000; Nordrum et al.

2000), rainbow trout (Oncorhynchus mykiss) intestine (Bogé

et al. 1981; Nordrum et al. 2000) and icefish (Chionodraco

hamatus) intestine (Maffia et al. 2003). Interestingly, some

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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of these early studies pointed out that in fish, as in mam-

mals (for a recent review, see e.g. Daniel 2004), a single

peptide can be more efficiently absorbed than a mixture of

the identical amino acids (Bogé et al. 1981; Reshkin &

Ahearn 1991). In fish brush-border membrane vesicle

(BBMV) preparations, carrier-mediated uptake of radiola-

belled peptides is stimulated by transmembrane electrical

potential and to a less extent by an inwardly directed

transmembrane H+ gradient (Reshkin & Ahearn 1991;

Thamotharan et al. 1996; Maffia et al. 1997; Verri et al.

2000). Furthermore, intravesicular acidification is observed

with the addition of di- and tripeptides to the extravesicular

medium (Verri et al. 1992, 2000; Maffia et al. 1997, 2003).

Diethylpyrocarbonate (DEP), which efficiently inhibits

peptide transport in mammalian BBMV (Miyamoto et al.

1986; Kramer et al. 1988; Kato et al. 1989), also inhibits

peptide transport in fish BBMV (Verri et al. 1992, 2000;

Thamotharan et al. 1996; Maffia et al. 1997, 2003). Such

biochemical features have recently been corroborated by

the molecular and functional characterization of a

piscine PepT1-type peptide transporter, i.e. the zebrafish

PepT1 (Verri et al. 2003). At present, based on such

experimental results, the assessment of intestinal peptide

transport activity and function in fish is a highly predictable

procedure.

During the past decade, the bulk of biochemical, physi-

ological and molecular information collected about the

functional activity of the fish intestinal peptide transporter

has paralleled the concept that teleosts can efficiently utilize

dietary di- and tripeptides for development, growth and

metabolism, and consequently, that balanced peptide-based

diets or peptide rather than amino acid supplementation

would be highly advantageous in solving the problem of

nutritional inadequacy of formulated feeds for cultured fish

(a still open debate; see e.g. Zambonino Infante et al. 1997;

Dabrowski et al. 2003, 2005; Aragão et al. 2004; Zhang

et al. 2006; Rønnestad et al. 2007). In this context, the

availability of easy and inexpensive assays to rapidly eval-

uate intestinal transport of peptides in fish might be

instrumental in the investigation of which peptides (i.e.

families/groups) are best and/or selectively absorbed and

thus assist in the choice of the best combination of peptides

to supplement. In fact, current methodology in peptide

transport research is largely based on the use of highly

expensive and not always accessible radiolabelled (3H or
14C) di- and tripeptides, that are not commercially available

and can be obtained only after very costly custom synthesis

(5000–15 000 € per peptide). This has limited the chances of

study to a few model peptides. In the present study, we

report for the first time the effect of extravesicular dipep-

tides on an artificially imposed internal negative membrane

potential in BBMV from eel intestine by monitoring the

fluorescence quenching of the voltage-sensitive dye 3,3¢-di-
ethylthiadicarbocyanine iodide (DiS-C2(5)). By using this

non-radioactive method, we were able to assess both satu-

rable peptide-dependent membrane potential depolarization

and kinetics, suggesting that carrier-mediated peptide

transport activity can be easily monitored using this volt-

age-sensitive dye. This is particularly desirable in studies of

peptide transport, as the fluorescence method can be used to

test for many kinds of peptides and peptide-like drugs, thus

opening the possibility for large-scale screenings of their

absorption in fish.

Materials and methods

Materials

European yellow eels (Anguilla anguilla), 200–250 g, were

obtained from a commercial source, Ittica Ugento (Lecce,

Italy), and kept in seawater aquariums until use. All chemi-

cals were reagent grade and purchased from Merck

(Darmstadt, Germany). Valimomycin was obtained from

Sigma (St Louis, MO, USA). The cyanine dye DiS-C2(5) was

obtained from Eastman Kodak (Rochester, NY, USA).

BBMV preparation

Brush-border membrane vesicles were prepared from the

intestine of yellow eels as described elsewhere (Storelli et al.

1986). The preparation was based on a selective precipita-

tion, in the presence of ethylene glycol-bis(b-aminoethyl-

ether)-N,N¢-tetraacetic acid and MgCl2 12 mmol L)1, of all

cellular components, with the exception of the brush-border

membranes. After the last centrifugation step, BBMV were

resuspended in suitable buffer (KCl 100 mmol L)1, mannitol

100 mmol L)1, HEPES 20 mmol L)1 adjusted to pH 7.4

with Tris), centrifuged at 50 000 g for 30 min, and resus-

pended again in a small volume (100–200 lL) of the same

buffer by passing them 30 times through a fine-gauge needle.

To ensure complete equilibration of the extravesicular buffer

components into the intravesicular osmotically active space,

BBMV were kept on ice for at least 1 h before starting the

experiment. Protein concentration was measured using the

Bio-Rad Protein Assay Kit I (Bio-Rad Laboratories, Segrate,

Italy) using lyophilized bovine plasma c-globulin as a stan-

dard. Before starting the experiment, protein concentration

was adjusted to 6 mg mL)1.
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Fluorescence quenching measurements

The fluorescence of DiS-C2(5) was measured as previously

described (Cassano et al. 1988) using a Perkin-Elmer LS-

50B spectrofluorometer equipped with an electronic stirring

system and a thermostabilized (25 �C) cuvette holder and

controlled by a personal computer running the Perkin-

Elmer Fluorescence Data Manager software (Perkin-Elmer

Life and Analytical Sciences, Waltham, MA, USA). Exci-

tation and emission wavelengths were 645 and 665 nm,

respectively, and both slit widths were set to 10 nm. Into a

glass cuvette 10 lL of a 0.6 mmol L)1 dye solution (in

ethanol), 10 lL of a 1 mmol L)1 valinomycin solution (in

ethanol) and 1960 lL of an extravesicular cuvette buffer

were added. For sake of clarity, details of the composition

of the extravesicular cuvette buffers are shown in Figs 1 and

4. The fluorescence intensity of the mixture was set to 90

arbitrary fluorescence units and the reaction started by

injecting 20 lL of a BBMV suspension (120 lg of proteins)

into the cuvette. Under our experimental conditions, intra-

and extravesicular buffers had the same ionic strength, pH,

anion concentration and osmolarity. Fluorescence signals

were recorded every 0.1 s and the rate of fluorescence

quenching dissipation was calculated from the slope

through the data points collected during the dissipation of

the artificially imposed internal negative membrane poten-

tial (see Fig. 1). Fluorescence quenching dissipation signals

were linear up to 1 min after the addition of the vesicles as

judged by regression analysis with correlation coefficients

(by the least squares fit) of 0.98–0.99 for each experimental

condition.

Calculation of kinetic parameters

The rates of depolarization due to peptide transport were

fitted to the following Michaelis–Menten-type equation:

DF¼ ðDFmax�½S�Þ=ðKm;appþ½S�Þ ð1Þ

where DFmax is the maximal fluorescence response produced

by the peptide, [S] is the extravesicular peptide concentration
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Figure 1 Dissipation of an internal negative membrane potential in

the presence of extravesicular peptides. BBMV were prepared in a

buffer containing mannitol 100 mmol L)1, HEPES 20 mmol L)1

adjusted to pH 7.4 with Tris, KCl 100 mmol L)1. Twenty microlitres

of the vesicle suspension was injected (see upper arrow) into a cuvette

buffer containing (final concentration) mannitol 100 mmol L)1,

HEPES 20 mmol L)1 adjusted to pH 7.4 with Tris, valinomycin

5 lmol L)1, DiS-C2(5) 3 lmol L)1, ethanol 1% and: (1) KCl

100 mmol L)1 (control; trace a); (2) KCl 1 mmol L)1, choline

chloride 99 mmol L)1 (trace b); (3) KCl 1 mmol L)1, choline chlo-

ride 99 mmol L)1, Gly-LL-Pro 10 mmol L)1 (trace c); (4) KCl

1 mmol L)1, NaCl 99 mmol L)1 (trace d); (5) KCl 1 mmol L)1,

NaCl 99 mmol L)1, Gly-LL-Pro 10 mmol L)1 (trace e). When present,

peptides iso-osmotically replaced mannitol. In order to rapidly

abolish the artificially imposed internal negative membrane potential,

20 ll of a 3 mol L)1 KCl solution were added into the cuvette

(30 mmol L)1 final concentration) at the time indicated (lower

arrow), which resulted in a rapid return of the fluorescence signal

towards values equal to the control (KCl 100 mmol L)1; trace a). In

the figure, five traces are superimposed. Please note x-axis gap (1.10–

1.95 min interval) with trace breaks. A BBMV is representatively

depicted as a circle, with �in� meaning inside and �out� outside. KCl

100 indicates the concentration of KCl inside the vesicle (KCl

100 mmol L)1). Refer to a–e for KCl, choline chloride, NaCl and

Gly-LL-Pro concentrations outside the vesicle. With low K+ concen-

tration outside (KCl 1 mmol L)1) and in the presence of valinomy-

cin, an outwardly directed K+ gradient is generated, which results in

an internal negative membrane potential. Membrane potential dis-

sipation rate is influenced by extravesicular cations and/or Gly-LL-Pro

(traces b–e). KCl 30 indicates the concentration of KCl into the

cuvette (KCl 30 mmol L)1) that is used to abolish the internal

negative membrane potential.
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and Km,app is the peptide concentration yielding one half

DFmax. Kinetic parameters ± standard error (SE) over the

estimate parameter were determined by non-linear regression

analysis using the software GraphPad Prism 4 (GraphPad

Software Inc., San Diego, CA, USA).

Statistical analysis

Each experiment was repeated at least three times using

BBMV prepared from four to six animals. Within a single

experiment, each data point represents three to five replicate

measurements. Data points reported in the figures are given

as mean ± SE. SE bars are shown wherever they exceed the

size of the symbols.

Statistical analysis was carried out using Student�s t-test

for unpaired samples or two-way analysis of variance (ANO-ANO-

VAVA), as appropriate. When indicated, post hoc tests (Bonfer-

roni) were also performed. GraphPad Prism 4 software was

used for statistical analysis. A P value of less than 0.05 was

considered to be statistically significant.

Results

Rheogenic transport of peptides in eel intestinal

BBMV

In order to generate an internal negative membrane potential

mimicking in vivo conditions, BBMV preloaded with

100 mmol L)1 KCl were injected into a buffer containing the

K+ ionophore valinomycin, KCl 1 mmol L)1 and choline

chloride 99 mmol L)1. In this way, an internal negative

membrane potential was artificially created which led to a

corresponding fluorescence quenching, which then slowly

dissipated with time (Fig. 1, trace b). Fluorescence quenching

dissipated more rapidly when the dipeptide glycyl-LL-proline

(Gly-LL-Pro) was also present in the extravesicular medium

(Fig. 1, trace c), which suggested that Gly-LL-Pro may activate

a specific rheogenic pathway in eel intestinal BBMV. BBMV

also were injected into a buffer containing NaCl instead of

choline chloride, a more physiological experimental condi-

tion (Fig. 1, trace d). With Na+ replacing choline, the rate

of membrane potential dissipation was higher than that

recorded in the presence of choline, indicating, as expected,

that Na+ is more permeable than choline across eel intestinal

BBMV. Also in this case, a consistent increase in the rate of

membrane potential dissipation with respect to trace d

(Fig. 1) could be observed in the presence of Gly-LL-Pro

(Fig. 1, trace e). Treatment of eel intestinal BBMV with

2 mmol L)1 DEP totally abolished Gly-LL-Pro-dependent

membrane depolarization in both the choline and Na+

media (Fig. 2).

Dissipation of the fluorescence quenching dependent on

extravesicular dipeptides (namely, Gly-Gly, Gly-LL-Ala and

Gly-LL-Pro) was compared to that dependent on its compo-

nent amino acids glycine (Gly), LL-alanine (LL-Ala) and

LL-proline (LL-Pro), on the amino acid LL-phenylalanine (LL-Phe)

and on the monosaccharide DD-glucose, all (control) sub-

strates for which rheogenic transport in eel intestinal BBMV

has previously been demonstrated using the same experi-

mental set up as described in this study (Cassano et al. 1988,

1990; Maffia et al. 1990). In general, extravesicular dipeptides

induced membrane depolarization in eel intestinal BBMV to

a lesser extent than amino acids and DD-glucose (Fig. 3).
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Figure 2 Inhibition of peptide-dependent fluorescence quenching

dissipation by diethylpyrocarbonate (DEP). BBMV were incubated

for 1 h at 20 �C in a buffer containing mannitol 280 mmol L)1,

K2HPO4/KH2PO4 20 mmol L)1, pH 6.4 either in the presence (from

a 100 mmol L)1 ethanol stock solution) or in the absence (ethanol

only) of DEP 2 mmol L)1. Final ethanol concentration in the media

did not exceed 1%. To eliminate the excess of DEP, which affects

DiS-C2(5) fluorescence signal, DEP-treated and not-treated BBMV

were diluted in 35 ml of a buffer containing mannitol 100 mmol L)1,

HEPES 20 mmol L)1 adjusted to pH 7.4 with Tris, KCl

100 mmol L)1 and centrifuged at 50 000 g for 30 min. This washing

procedure was repeated twice. The resulting BBMV were preloaded

with a buffer containing mannitol 100 mmol L)1, HEPES 20 mmol

L)1 adjusted to pH 7.4 with Tris, KCl 100 mmol L)1 and used for

the transport measurements. Dissipation of the internal negative

membrane potential due to extravesicular peptide was measured in

the presence of extravesicular choline or Na+ (as shown in Fig. 1).

Net rates of peptide-dependent fluorescence quenching dissipation

are reported in the figure. Data were analysed to assess the effect of

DEP (factor I: + or –), the effect of extravesicular medium (factor II:

white or black colours) and their possible interaction based on a

balanced two-way analysis of variance (two-way ANOVAANOVA). Mean

values differed for DEP treatment only (F = 56.75, df = 1,

P < 0.05). Mean values with shared letters were not significantly

different.
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Dipeptides also induced depolarization in both choline and

Na+ medium (see also Fig. 2), which was to be expected, as

dipeptides are cotransported into the cell with H+ and not

with Na+. Furthermore, it was observed that Gly, LL-Pro and

LL-Ala induced depolarization in both choline and Na+

medium (Fig. 3), with depolarization in the presence of Na+

being higher than that obtained in its absence. This behav-

iour is also expected as such amino acids are substrates of

two different classes of transport systems, one H+-dependent

the other Na+-dependent, that are located on the apical

membrane of intestinal epithelial cells (for recent reviews see

Brandsch 2006; Bröer et al. 2006; Thwaites & Anderson

2007), including eel intestinal epithelium (Storelli et al. 1986;

Cassano et al. 1988, 1990; Maffia et al. 1990; Ingrosso et al.

2000). Furthermore, as expected, both LL-Phe and DD-glucose

induced depolarization in the presence of Na+ only (Fig. 3)

as their transport occurs via Na+-dependent transport

systems (for a recent review see Bröer et al. 2006).

In summary, these results suggest that in eel intestinal

BBMV the presence of extravesicular peptides can promote

significant membrane depolarization, as detected by the use

of a voltage-sensitive fluorescent dye.

Kinetics

Kinetics was initially determined by monitoring Gly-LL-Pro-

dependent membrane depolarization with increasing concen-

trations of Gly-LL-Pro in the presence of extravesicular choline

(Fig. 4a) or Na+ (Fig. 4b). In both cases, peptide-dependent

depolarization was a hyperbolic function of peptide con-

centration. The corresponding Woolf–Augustinsson–Hofstee

plots (Segel 1975) are also shown (see insets to Fig. 4a,b), and

these suggest that the peptide-dependent membrane potential

depolarization is due to a single carrier-mediated process.

Kinetic analysis performed using Gly-Gly as a substrate

confirmed the occurrence of a single carrier-mediated process

for dipeptide transport in eel intestinal BBMV. Kinetic

parameters, calculated by non-linear regression analysis

(see Materials and methods, equation 1), are summarized for

both substrates in Table 1.

In order to exclude the possibility that depolarization was

not entirely due to the peptide but also to its component

amino acids (which could be present in the extravesicular

medium as hydrolysis products, thus contributing to the

depolarization effect), we performed a kinetic analysis of

Gly-Gly in the presence of saturating concentrations of its

component amino acid glycine (Gly). On the same membrane

preparation, Gly-Gly-dependent depolarization rate with

increasing [Gly-Gly] (Fig. 5, open circles) and Gly-dependent

depolarization rate with increasing [Gly] (Fig. 5, open

squares) were initially measured (experiment conducted in

sodium medium). Kinetic parameters were calculated for

both substrates by fitting the Michaelis–Menten equation to

rate values using non-linear regression analysis (see Material

and methods, equation 1) (R2 = 0.993 for glycyl-glycine and

R2 = 0.980 for glycine). Thereafter, fluorescence quenching

was measured in the simultaneous presence of Gly
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Figure 3 Dependence of transport rate (fluorescence quenching

dissipation) on extravesicular peptides, amino acids and sugars.

Dissipation of the internal negative membrane potential due to

extravesicular substrates Gly-LL-Pro, Gly-Gly, Gly-LL-Ala, Gly,

LL-Pro, LL-Ala, DD-Phe and DD-glucose was measured in either choline

or Na+ medium as described in Fig. 1. Net rates of substrate-

dependent fluorescence quenching dissipation are reported in the

figure as obtained by subtracting the dissipation rate measured in

the absence of substrate (control; see Fig. 1, trace b and d) to the

rate obtained in the presence of substrate (see Fig. 1, trace c and e).

Data were analysed in order to assess the effect of the type of

substrate (factor I: group I, group II and group III), the effect of

extravesicular medium (factor II: white or black colours) and their

possible interaction based on a balanced two-way analysis of var-

iance (two-way ANOVAANOVA). Group I was composed of Gly-LL-Pro, Gly-

Gly and Gly-LL-Ala (dipeptides), group II of Gly, LL-Pro and LL-Ala

(component amino acids) and group III of LL-Phe and DD-glucose.

Mean values differed significantly for type of substrate (F = 26.20,

df = 2; P < 0.05), for extravesicular medium (F = 160.90, df = 1,

P < 0.05) and for interaction between the two factors (F = 41.95,

df = 2, P < 0.05). Interaction was due to the different response of

LL-Phe and DD-glucose in the presence of the different extravesicular

medium (i.e. group III is composed of substrates that are trans-

located across the membrane by Na+-dependent transport

processes only, and therefore in the absence of sodium a very

low membrane potential depolarization is generated). Finally,

application of the Bonferroni post hoc test showed that there are

differences between mean values of group II (t = 5.73, df = 4,

P < 0.05) and group III (t = 13.19, df = 2, P < 0.05) for different

extravesicular media, but not for group I.
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10 mmol L)1 and increasing Gly-Gly concentrations (Fig. 5,

closed circles). The dashed line in Fig. 5 was obtained using

the kinetic parameters reported in the legend to the figure

according to the following equation:

DF ¼ fDF Gly
max � ½Gly�=ðKGly

m;app þ ½Gly�Þg
þ fDF Gly�Gly

max � ½Gly�Gly�=ðKGly�Gly
m;app þ ½Gly�Gly�Þg

ð2Þ

and represents the depolarization expected if Gly and

Gly-Gly have completely different pathways. Conversely,

the dotted line in Fig. 5 was calculated using the same

parameters as above according to the following equation:

DF ¼ ðDF Gly
max � ½Gly�=ðKGly

m;app þ DF Gly�Gly
max

� ½Gly�Gly�=KGly�Gly
m;app Þ=ð1þ ½Gly�=KGly

m;app

þ ½Gly�Gly�=KGly�Gly
m;app Þ

ð3Þ

and represents the depolarization expected in the case that

Gly and Gly-Gly would have mutually competed for a

common transport system (competitive inhibition, see

also Cassano et al. 1990). The rate values measured in the

presence of both substrates (closed circles) approximated the

dashed line (two distinct pathways and no inhibition)

(R2 = 0.911), thus suggesting that the two measured trans-

port phenomena occur via distinct carriers and do not

interfere with each other.

Discussion

A large variety of peptides are generated in the gut lumen

during normal digestion of dietary proteins. Large quantities

of di- and tripeptides are absorbed intact through the gut

mucosa and this is the primary mechanism for absorption of

dietary nitrogen (for a recent review see Daniel 2004).

Interestingly, many of these dietary peptides also exhibit

significant biological activity, and are systemically active in

microgram quantities (for recent reviews see e.g. Zaloga &

Siddiqui 2004; Rutherfurd-Markwick & Moughan 2005).

PepT1, located at the apical membrane of the enterocyte, is

the transport system that endorses, channels and regulates

the transepithelial transport of di- and tripeptides into the

intestinal epithelium, thus representing the physiological

route for the intestinal absorption of such substrates (see e.g.

Daniel 2004; Daniel & Kottra 2004). Hundreds of dipeptides

and thousands of tripeptides may be substrates of PepT1,

although with highly differing transport efficiencies (for a
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Figure 4 Saturation of initial rate of fluorescence quenching dissipation versus extravesicular peptide concentration. BBMV were prepared in a

buffer containing mannitol 100 mmol L)1, HEPES 20 mmol L)1 adjusted to pH 7.4 with Tris, KCl 100 mmol L)1. Twenty microlitres of the

vesicle suspension was injected into a buffer containing (final concentration) mannitol 100 mmol L)1, HEPES 20 mmol L)1 adjusted to pH 7.4

with Tris, valinomycin 5 lmol L)1, DiS-C2(5) 3 lmol L)1, ethanol 1%, either choline chloride 99 mmol L)1, KCl 1 mmol L)1 (a) or NaCl

99 mmol L)1, KCl 1 mmol L)1 (b), and increasing concentrations (from 0.1 to 10 mmol L)1) of the peptide Gly-LL-Pro compensated for by

decreasing mannitol concentrations. Net peptide-dependent transport rate was determined by subtracting data of fluorescence quenching

dissipation obtained in the absence of peptide (as a reference, see Fig. 1, trace b and trace d) from data obtained in the presence of increasing

peptide concentrations (see Fig. 1, trace c and trace e). The lines represent the best curve fitting the data and were obtained by an iterative non-

linear regression program (see Materials and methods, equation 1) [R2 = 0.997 for the experiment reported in (a) and R2 = 0.978 for the

experiment in (b)]. Calculated kinetic parameters for this experiment were as follows: Km,app = 1.16 ± 0.08 mmol L)1, DFmax = 5.71 ± 0.12

DF% min)1 mg)1 protein for the experiment reported in (a) and Km,app = 0.78 ± 0.13 mmol L)1, DFmax = 10.94 ± 0.51 DF% min)1 mg)1

protein for the experiment in (b). In the insets, experimental data of the initial rates of peptide-dependent fluorescence quenching dissipation

reported in the main bodies of the figures are transformed according to Woolf–Augustinsson–Hofstee.
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recent classification of PepT1 substrates on the basis of their

affinity and transport rate see e.g. Vig et al. 2006). Therefore,

in order to more easily estimate their individual transport

efficiencies and thus select from the variety of di- and trip-

eptides that can optimally or suboptimally cross the intestinal

epithelium via PepT1 in fish, we developed an easy low-cost

method to assay transport of single peptides across the

intestinal epithelium. Our method, based on the use of a

voltage-sensitive fluorescent dye in combination with eel

intestinal BBMV, allows for the screening of transport

activity of all commercially available di- and tripeptides, and

is an alternative to the use of the highly expensive and not

always accessible radiotracer-based methods that are

routinely used in peptide transport research.

It has previously been shown that in eel intestinal BBMV

DiS-C2(5) fluorescence quenching depends linearly on the

value of the electrical potential difference across the mem-

brane. In other words, DiS-C2(5) fluorescence increases with

membrane depolarization and decreases with membrane

hyperpolarization (Cassano et al. 1988). It has also been

shown that the flux of positive charges generated by Na+/

neutral substrate (DD-glucose or neutral amino acids) co-

transport activities can be measured by monitoring the

decay of an artificially imposed internal negative membrane

potential (Cassano et al. 1988, 1990; Maffia et al. 1990). In

the present paper, we have extended these findings by

showing that in eel intestinal BBMV the decay of the artifi-

cially imposed internal negative membrane potential can also

be due to a flux of positive charges generated by pure H+/

neutral substrate cotransport activities, such as that gener-

ated by a PepT1-type transporter in the presence of ex-

travesicular zwitterionic (at pH 7.4) Gly-Gly, Gly-LL-Pro and

Gly-LL-Ala. In the presence of extravesicular zwitterionic

peptides, electrogenic transport occurs in eel intestinal

BBMV, accelerating the depolarization of the artificially in-

duced membrane potential due to transfer of net positive

charges from the exterior to the interior side of the mem-

brane. This happens either in the presence or absence of

Na+, suggesting that electrogenicity of peptide transport

may be due to movement of cation(s) other than Na+ (e.g.

H+) across the brush-border membrane. This conclusion is

also corroborated by the fact that Cl) (100 mmol L)1 in both

intra- and extravesicular medium) is unable to short-circuit

membrane potential with the present experimental set up

(Cassano et al. 1988). These results are similar to findings

obtained in rabbit intestinal BBMV using the voltage-sensi-

tive cyanine dye DiS-C3(5) but with a different experimental

set up (Ganapathy et al. 1984, 1985). Moreover, as the

peptide-dependent depolarization component was totally

Table 1 Kinetic parameters for peptide transport in eel intestinal

brush-border membrane vesicles

Peptide

Extravesicular

medium

Kinetic parameters

Km,app

(mmol L)1)

DFmax (DF%

min)1 mg)1

protein)

No. of

experiments

(n)

Gly-LL-Pro Choline

chloride

1.43 ± 0.53 6.46 ± 1.02 3

Gly-LL-Pro NaCl 1.68 ± 1.01 10.86 ± 1.86 3

Gly-Gly Choline

chloride

1.59 ± 0.40 7.60 ± 0.33 4

Gly-Gly NaCl 2.49 ± 0.84 10.21 ± 2.15 5

Rates were obtained by measuring the initial fluorescence

quenching dissipation as reported in Fig. 1: Km,app values are ex-

pressed in mmol L)1, DFmax values are in DF% min)1 mg)1 protein.

Values are reported as means ± standard errors. Kinetic para-

meters were calculated with an iterative non-linear regression

program by fitting rates of fluorescence quenching dissipation

to a Michaelis–Menten equation (see Materials and methods).

Extravesicular medium did not significantly affect Gly-LL-Pro and

Gly-Gly kinetic parameters, as assessed by the application of

unpaired Student�s t-tests (P > 0.05) to calculated Km,app and

DFmax mean values.
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Figure 5 Dependence of cotransport rate (fluorescence quenching

dissipation) on the extravesicular concentration of glycyl-glycine

(open circles) and glycine (open squares) in BBMV from eel

intestine. The experiment was performed in the presence of Na+

gradient (out > in). Experimental conditions were as reported in

Fig. 4. By fitting the rate values to a Michaelis–Menten equation,

kinetic parameters were calculated and resulted: (1) Km,app
Gly =

2.20 ± 0.45 mmol L)1, Jmax
Gly = 34.71 ± 2.56 DF% min)1

mg)1 protein for glycine, (2) Km,app
Gly-Gly = 0.76 ± 0.07 mmol L)1,

Jmax
Gly-Gly¼ 23.83 ± 0.31 DF% min)1 mg)1 protein for glycyl-

glycine. Glycyl-glycine transport was also measured in the presence

of glycine 10 mmol L)1 (closed circles). The dotted and dashed

lines were calculated as reported in the text (see Results), assuming

that glycine and glycyl-glycine are, respectively, transported

by two distinct carriers (equation 2) or by the same carrier

(equation 3).
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inhibited by DEP, the data support the concept that the

activity of a H+/peptide cotransport phenomenon was indeed

measured under the experimental conditions employed.

Further support for the quality of our methodological

approach comes from the following pieces of evidence: (1) in

the 0.1–10 mmol L)1 range, peptides cause depolarization

following Michaelis–Menten-type saturation kinetics, with

apparent affinity constants in the millimolar range; (2) a single

transport system is apparently involved in peptide transport

in both the presence and absence of Na+; (3) peptide trans-

port is observable even in the presence of a second substrate

which transport activity also generates membrane depolari-

zation (i.e. glycine in our experiments). These results are in

full agreement with kinetic data previously obtained in the

same (Verri et al. 1992, 2000; Maffia et al. 1997) and other

(Reshkin & Ahearn 1991; Thamotharan et al. 1996; Maffia

et al. 2003) fish models using different experimental

approaches. Of interest is the observation that the kinetic

parameters of Gly-LL-Pro transport measured using our novel

fluorometric method (Km,app = 1.43 mmol L)1, in extra-

vesicular choline chloride medium and pH 7.4) were

absolutely comparable to those we obtained previously using

same eel intestinal BBMV experimental preparation, same

experimental conditions and the radioactive tracer [3H]Gly-LL-

Pro (Km,app = 1.27 mmol L)1; Maffia et al. 1997). To the

best of our knowledge, [3H]Gly-LL-Pro and DD-[3H]Phe-LL-Ala

are the only radioactive peptides tested in eel intestinal

BBMV so far. Taken together, our results strongly support

the idea that the �low affinity� H+/peptide cotransport

activity operating in eel intestinal brush-border membranes

can be monitored by means of our simple fluorescence

analysis.

In conclusion, we have shown that PepT1-type peptide

transport activity can be monitored in eel intestinal BBMV

by means of an easy fluorescence assay. This assay is also

inexpensive with respect to the current methodology,

mainly as it eliminates the problem of the very costly

custom synthesis of radiolabelled di- and tripeptides. As

pointed out above, the need for radioactive material has

significantly limited transport studies to a very few model

peptides, such as Gly-LL-Pro, Gly-Sar and DD-Phe-LL-Ala.

Such peptides have been chosen as they are resistant to

spontaneous hydrolysis in aqueous solution as well as to

hydrolysis mediated by brush-border membrane and/or

cytosolic enzymes. Our fluorometric assay offers the

advantage of analysing a large variety of substrates

regardless of their sensitivity to hydrolysis. In fact, all

substrates, including readily hydrolysable peptides (such as

the dipeptides Gly-Gly and Gly-LL-Ala studied in this

paper), are tested in the millimolar range and are moni-

tored by means of a very brief (1–2 min) assay procedure.

This significantly limits the amount of component amino

acids that are released in the assay medium due to the

enzymatic degradation that occurs when peptides are in

contact with the BBMV preparation.

In the perspective of optimizing diet formulations in

aquaculture, an understanding of the basic processes that

allow intestinal nutrient absorption is advantageous. Our

method may represent a realistic option for screening for the

uptake of a variety of peptides and peptide-like molecules in

the intestine of commercially relevant cultured fish species.

This method is particularly attractive in light of recent data

that have clearly demonstrated that not all peptides are

effective substrates of PepT1 (Vig et al. 2006), in contradic-

tion to the assumption that PepT1 transports all di- and

tripeptides equally well. Different peptides generated in the

gut lumen during normal digestion of dietary proteins may

differ regarding their affinity to the transporter, their rate of

transport, whether they are transported at all, and their

competitive inhibition of the transport of the other peptides

also present in the intestinal lumen. Therefore, not only

peptide hydrolysis products obtained after normal digestion

from various natural protein sources, but also artificial

peptide-based diets, might be either more or less efficacious

on the basis of their peptide composition. The method may

also be applicable in investigations into the use of small

peptides with constituent, nutritionally limiting amino acids

rather than the purified amino acids as supplements in feeds.
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