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Abstract 
A new method to synthesize system dynamics (SD) with geographic 

information systems (GIS) is presented in this research. This new method employs 
the Object Oriented Paradigm (OOP) as a common platform for the integration 
process. Recently, GIS software such as ArcGIS has become fully Object-Oriented 
software, providing the ArcObjects developer kit as a collection of (COM-compliant) 
objects that can be linked/embedded within other OO software. Vensim® software is 
an Object-Based simulation environment that can be used to build simulation models 
that may be linked to other applications through its dynamic link library (DLL). We 
developed a new application, referred to as SDGIS Application, using Microsoft 
Visual Basic to tightly couple the SD model components with their counterparts in 
the GIS model (i.e., stocks and flows with the associated geo-referenced features).  

Initially, the GIS model provides the spatial information to the SD model. The 
SD model, through simulation, identifies the changes in the spatial features over time 
and communicates them back to the GIS model. These changes in space in turn 
impact the decisions taken by the user. Thus, processes can be modelled in time and 
space in an integrated way while capturing underlying accumulation process, the 
feedbacks, and nonlinearities. 

The underlying approach, resulting in creation of the SDGIS application, 
provides a much-needed capability to model spatially distributed, dynamic feedback 
processes in time and space, while facilitating an understanding of the interactions 
between different components within the system. The main strength of this approach 
is the two-way simultaneous exchange of data between the SD and GIS, providing 
feedback in time and space. The technique used to build the SDGIS application is 
different than existing techniques for dynamic modelling such as Cellular Automata; 
Agent-Based simulation and GIS Model-Builder, and addresses most of the 
limitations present in these techniques. This approach, and the associated techniques, 
can be used to build similar applications like the SDGIS to model a variety of natural 
and social processes where the main concern is the space–time interaction. This is 
true in cases that concern environmental processes, water and/or natural resources 
management, and disaster management. In this research, the applicability of the 
SDGIS Application is demonstrated with an application to the irrigation system in the 
Nile Delta region in Egypt.  

Key words: System dynamics; Geographic information systems; Object Oriented; Environmental 
systems; Water resources management; spatial distribution; Irrigation system; the Nile Delta. 
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1.1 Background 

The primary goal of this research is to develop a new method that enables us 

to understand: (1) The structure of complex, spatially distributed, dynamic systems. 

(2) The behaviour of such systems over time resulting from the interaction between 

their structural components across space. (3) The relationship between structure and 

behaviour.  

We intend to develop the new method by way of a technique that allows us to 

model and simulate complex dynamic systems that are characterized by a spatial 

distribution of its components. Consequently, we need a set of tools that facilitate 

building and analysing models that reflect the structure of such systems (i.e. represent 

the causal relationships between system components including the rules governing 

those relationships, and relationships span across time and space). In this research, we 

will therefore make use of tools developed in the areas of system dynamics (SD) and 

geographic information systems (GIS).  

Environmental systems are a good example of a class of spatially distributed 

dynamic feedback systems. The feedback structure of such systems includes 

accumulation processes as well as nonlinear stochastic relationships that span time 

and space. SD is well suited to address such complexity while GIS can be used to 

layout the system across the spatial dimension. 

System dynamics may be defined as a powerful method providing a modelling 

and simulation based technique for framing, understanding, and discussing complex 

issues and problems. SD was originally developed to help understand industrial 

systems. Over the past three decades, SD has been applied more broadly in a wide 

range of disciplines, in areas of social science including management, and in natural 

science including engineering, medicine, and psychology. Perhaps more importantly, 

SD has been applied across discipline to address multidisciplinary issues. Among the 

many issues addressed we find urban decay, social unrest, economic development, 

renewable/non-renewable energy management, ecological and environmental change.  
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Environmental simulation models provide diagnostic and predictive outputs 

that can be combined with socio-economic data to assess local and regional 

environmental risk or natural resource management issues. Such assessments may 

involve air pollution, water quality, the impact of human activities on natural 

ecosystems; or conversely, the effects of climate variability on water supplies, 

agriculture, ecosystems, or other natural resources. 

More recently, the importance of scientific models for the assessment of 

potential global environmental problems, including regional response to global 

change, has been illustrated by the National Research Council (NRC) (1986, 1990), 

Earth System Sciences Committee (ESSC) (1986, 1988), International Council of 

Scientific Unions (ICSU) (1986), International Geosphere-Biosphere Program 

(IGBP) (1990), and Committee on Earth Sciences (CES) (1989,1990). Eddy (1993) 

has discussed several environmental issues and suggested various courses of action, 

including the need for environmental simulation models, to help understand the 

current behaviour and to project the future state of the complex Earth system 

processes. These simulation models are necessary to help differentiate between 

environmental changes that are due to natural variability in the environmental system 

versus possible changes due to human impact. Although much progress has been 

made, research is still needed to model and understand environmental processes in 

natural science. 

Fundamentally, the spatial dimension is essential in environmental modelling; 

and the integrated systems approach for developing and testing environmental 

simulation models suggests coupling with Geographic Information Systems (GIS) 

technology. Conceptually, GIS seem well suited to address spatial data and modelling 

issues that are associated with a modelling environment that includes multiscale 

processes (i.e., at different levels of aggregation), all within both heterogeneous 

landscape domain and complex terrain. GIS can help address data integration issues 

associated with multiscale data from ground-based and remote sensing sources. GIS 

could potentially support exploratory analysis of complex spatial patterns, including 

environmental processes. Finally, advanced environmental simulation models require 
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detailed spatial data that provides an opportunity for innovative thematic mapping 

and error analyses with GIS.  

From an environmental perspective, there are three primary reasons for why 

there is a need for integration of SD and GIS. These reasons are: 

1. It is important to retain a spatial representation in models designed to 

address and solve environmental problems. GIS enables us to examine the spatial 

aspects of such problems and to make use of the results of such analysis in the 

proposed solutions. But current GIS lack the capability of representing a complex 

causal structure underlying the dynamics of such problems and to relate that structure 

to the resulting problem behaviour. Moreover, in GIS none of the relationships span 

time, there are no accumulations represented. Current GIS are typically limited to 

analytic compromises that include static representations of dynamic spatio-temporal 

processes, use of simple logical operations to explore complex relationships, and 

non-stochastic treatments of uncertain events. SD Models, in particular, could allow 

GIS to function beyond the limits of a static and planar domain where complex, often 

nonlinear, relationships that span over time and form feedback loops, may be 

explicitly expressed such that change and even uncertainty can be addressed in a 

direct way. GIS are currently very limited in their ability to examine any dynamic 

processes unless they are “wired up” in advance by analysts having a particular 

objective in mind and a very good understanding of both the technical aspects of GIS 

and the operation of a given model. This probably requires more knowledge than many 

users possess. 

2. SD Modelling tools typically lack sufficiently flexible GIS capabilities like 

the spatial analytical tools. In addition to the rich visualization, GIS could offer SD 

modelling, in part, a flexible environment with a standardized array of spatial opera-

tors based on mathematical principles that describe meaningful properties of 

spatially distributed entities (motion, dispersion, and transformation for example). 

Sufficient intelligence could be built into such a tool to prevent some forms of 

misuse by the uninformed. Such an approach offers the benefits of a potentially 
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common analytic medium in which more comparability would be possible and 

through which it might be possible to improve communications among modellers 

working in different disciplines.  

3. SD Modelling and GIS technology can both be made more robust by their 

linkage and co-evolution. Regardless where the new SDGIS modelling co-

functionality comes to reside, in or out of the GIS or the SD software environment, 

the effort to combine the strengths of the associated tools will be mutually beneficial. 

Naturally, it is impossible to foresee all such benefits; but one can speculate (with 

confidence) that SD Modelling, at least, would benefit from a better engagement of 

the visual senses in evaluating the assumptions, operations, and results of models. 

Surely, many readers could recount experiences wherein the better mapping/ 

visualization of spatial properties brought new and sometimes startling understanding 

to those previously confident that they fully understood a target system by way of 

their methods of analysis. 

It is not difficult to imagine that a conclusive synergy may combine the spatial 

representations of GIS with the temporal characteristics of SD models and the ability 

to characterize uncertainty and error. It is challenging, however, to find out how 

these tools should be made more interdependent and interactive. To solve pressing 

environmental problems, we will need different tools that work effectively together 

that are easy to use, and may be employed in a flexible manner to address complicated 

problems that arise in the context of multidisciplinary dynamic, spatially distributed 

feedback systems. These objectives will need to be harmonized in order to make 

rapid progress. Without taking the first step, the allure of constantly improving 

technologies will continue to draw both SD and GIS along separately. Without 

formalization of an effort to achieve integration, only the very fortunate will be able to 

incorporate the benefits of SD and GIS in their work because only they will have 

sufficient understanding and/or resources to overcome the difficulty of coupling 

tools that remain quite dissimilar. 
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1.2 Motivation 

The motivation and justification for such a research emerge from the fact that 

there is a need for integration of SD and GIS that is driven by our need to make 

environmental choices. System Dynamics and GIS originated in, and still represent, 

substantially different domains of expertise, yet their integration will benefit both of 

them as well as the community of scientists, politicians, and public at large engaged 

in environmental problem solving.  

In system dynamics we seek to understand the relationship between the 

structure and the behaviour of complex dynamic systems. The behaviour over time 

results from the interactions between the system’s components. Therefore, the time 

dimension is a significant characteristic of the behaviour; behaviour unfolds over 

time. On the other hand, the system components coexist in the space across various 

geographic locations. In other words, the structure of the system is often spatially 

distributed and the behaviour that unfolds is, in part, determined by that location (in 

absolute or relative terms). Therefore, the spatial structure may be considered a 

significant part of the structure at large. Consequently, to understand the relationship 

between structure and behaviour we must concern ourselves with the spatial 

dimension the same way we consider the time dimension. 

With the exception of few instances, the spatial dimension is not represented 

explicitly in system dynamic models. It has not been given the attention it deserves 

relative to the significant role it often plays in real life. One reason for this 

insufficient representation may originate from the fact that the SD modellers focus on 

the behaviour of the system over time. Another reason could be the lack of a 

mechanism that represents the spatial dimension properly and efficiently in system 

dynamics. Developing such a mechanism is a major challenge. 

Our intention is to develop a conceptual framework for modelling spatial 

dynamic systems. The underlying concept is to “tightly couple” the “basic SD 

building blocks” with their counterparts of “GIS features”. In that sense, we will 

enhance the SD method with the GIS capabilities (e.g., spatial analytical tools and 
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rich visualization) and vice versa; in other words, to add the spatial dimension to SD, 

and the temporal dimension to GIS. This conceptual framework will then be used to 

create the spatial simulation data model (i.e., the SDGIS Application), which in turn 

will be applied to the irrigation system in the Nile Delta, Egypt as a proof of concept. 

1.3 The Research Approach 

This research is a multidisciplinary effort that crosses a number of scientific 

fields including environmental sciences, system sciences (system dynamics), 

geography (GIS technology), and information science (object orientation). Therefore, 

we assume that the reader has the essential knowledge about these domains.  

The approach applied in this research is composed of three stages: (1) in-depth 

analysis and assessment for the state of SD, GIS, and object-orientation; (2) design of 

the conceptual framework and the development of the SDGIS application; (3) apply 

the new system (SDGIS) in a real environmental problem. The three stages 

(appearing with cyan in Figure 1-1) are described in the following paragraphs. 

 
Figure 1-1: The research approach diagram 

The first stage includes in-depth analysis and assessment of the current SD, 

GIS, and Object-Oriented paradigm, respectively. We study system dynamics to 

identify the relevance and significance of space in the SD. We study the GIS 

technology to examine the relevance and significance of the temporal dimension in 

GIS. The object-oriented paradigm will be introduced to serve as a common platform 

that facilitates the integration process. Then we identify the state of the environmental 
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simulation models, we assess the diverse methods to add the temporal dimension to 

GIS (e.g. prior work such as the Time geography path), and finally, we illustrate and 

examine the prior attempts of integrating SD with GIS (e.g., SME application, 

GRASS applications, etc.). 

The second stage is the design of the conceptual framework for the integration 

process. This design process includes the selection and utilization of techniques 

within simulation modelling (i.e., continuous or discrete), GIS (i.e., raster or vector 

based GIS), as well as Object Orientation (i.e., Bian or Booch method) that are 

appropriate to our research. Within this conceptual framework, we build a simulation 

model and a GIS model using synthetic datasets. We use illustrative examples to 

explain the coupling procedure that facilitates the synthesis between the two models. 

The implementation process includes building a GUI for the new SDGIS application 

to enable the users to access and handle models and performs the simulation.  

In the third stage, we apply the SDGIS prototype in our case study.  This 

implementation is undertaken as a “proof-of-concept” for the ideas developed in this 

research.  The case study concerns the water scarcity problem that might emerge in 

the Nile Delta region in Egypt during the next twenty-five years. We employ the 

SDGIS to model and simulate the water accumulation, release, and flow through the 

irrigation network. The ultimate goal is to design policies for water preservation and 

management. This stage encompasses fieldwork activities such as data collection and 

direct communication and collaboration with a several authorities and jurisdictions. 

1.4 The Aim of This Research 

This research aims at demonstrating that synthesizing SD with GIS is not only 

feasible, but also produces a result beneficial to both SD and GIS practitioners. Based 

on the concepts developed in the spatio-temporal GIS, Time Geography, and 

object-oriented approaches, we develop a conceptual framework (the spatial 

simulation data model) that enables us to integrate the space and time domains and to 

 



Chapter One 10

make use of this integration within the context of environmental modelling. In this 

research we aim at attaining five different goals: 

1. We want to define the space-time entity representation as a new means of 

characterising complex spatial dynamic systems in system dynamics. 

2. We want to provide a deeper understanding of the spatial relationships and use 

this understanding to develop a suitable way to deal with the passage of time 

and the mechanisms of change within the environmental simulation models. 

3. We want to synthesize the two approaches; modelling the environment with 

SD and modelling the environment with GIS, by associating the spatial 

simulation framework with the model construction tools of SD (Diagram, 

stock and flow) and the spatial representation capabilities and analytical tools 

of GIS (map features, overlay functions, and spatial queries).  

4. We want to contribute to the development of the water preservation policies by 

providing a different perspective on the causal and spatial relationships 

underlying the water scarcity problem. 

5. We want to undertake the implementation of the SDGIS Application into the 

irrigation system in the Nile Delta region, Egypt as “proof-of-concept”. 

1.5 The Original Contribution of This Research 

Phillips and Pugh (2000) identified nine characteristics to consider the original 

contribution of any PhD dissertation if the dissertation covers one of them. These 

characteristics are:  

1. Carrying out empirical work that has not been done before. 

2. Making a synthesis that has not been made before. 

3. Using already known material but with a new interpretation 

4. Trying out something in this country that has previously only been done in 
other countries. 
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5. Taking a particular technique and applying it in a new area. 

6. Bringing new evidence to bear on an old issue. 

7. Being cross-disciplinary and using different methodologies. 

8. Looking at areas that people in the discipline haven’t looked at before. 

9. Adding to knowledge in a way that hasn’t been done before. 

The innovation of this work lies in the utilization of the object-oriented 

paradigm to incorporate the two technologies. In this thesis, we synthesis the system 

dynamics methods with the methods associated with GIS within object-oriented 

framework and apply the resultant application into the irrigation system. This 

synthesis has not been made before. Above, we have underlined five ways in which 

we believe that this research contributes to the science, i.e. is original in its nature.  

First, the empirical work presented in chapter six and seven concerning the 

water scarcity problem and the current irrigation system in the Nile Delta region; the 

analysis of the water stress conditions (the driving forces for water scarcity problem) 

utilizing simulation models combined with spatial analytical tools of the GIS, and the 

evaluation of the water preservation policies, and the assessment of their feasibility in 

the case of Egypt, this empirical work is original.   

Second, synthesizing SD models with GIS (in particular, the vector-based 

GIS) in a tightly coupled way using Object-Orientation, compared to the prior 

attempts (that described in the literature review, in chapter three), we believe, to our 

best of knowledge, that this synthesis has not been made before.  

Third, the technique used to tightly couple the SD model components with the 

spatial features as explained in the conceptual framework, and implemented in the 

SDGIS and its application in the irrigation system, this work is original.  

Fourth, in terms of cross-disciplinary, it is obvious that this research crosses 

several disciplines including system dynamics, geographical information systems, 

and object orientation in the context of Environmental modelling. This is explained in 

chapter two where we cover the essential literature of the environmental modelling 
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domain, the Geographic Information System (GIS), simulation-modelling techniques 

focusing on System Dynamics (SD), and the Object Orientated paradigm as a 

common platform that facilitates synthesizing SD with GIS. In terms of methodology, 

we developed two different models for the study area (SD model and GIS model) and 

developed the SDGIS application that integrated both models and applied this 

application for the water scarcity problem. As Phillips put it “Being cross-disciplinary 

and using different methodologies is considered original”.  

Fifth, within the discipline of system dynamics, perhaps a considerable 

number of SD modellers have studied the water resources management, and 

simulation models in general have been utilised in hydrology domain. On the other 

hand, geographers, environmental scientists, and GIS specialists may have developed 

several models for hydrography, drainage basins and watersheds, and rain-fall/run-off 

processes. Remarkably, the two communities of modellers in both disciplines work 

separately. We were able to incorporate the benefits of SD and GIS in our work 

because we were fortunate to study both disciplines in previous education stages and 

gained sufficient understanding and have the resources to overcome the difficulty 

of coupling tools that remain, in many respects, dissimilar. 

1.6 Thesis Outline  

This thesis is divided into eight chapters. This first chapter briefly explains the 

research topic, our motivation, the research approach, and how the research has been 

organized. 

The second chapter provides a theoretical background and an overview 

regarding the main disciplines related to this research: the Environmental Modelling 

domain, the Geographic Information System (GIS), System Dynamics (SD), and the 

Object Oriented Paradigm. We review the foundations of object-oriented methods of 

analysis and design, and the associated principles of software construction and user 

interface design. 
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In the third chapter, a literature review on the prior attempts to integrate SD 

with GIS is presented. The aim is to understand the difference between this previous 

work and our work presented in this research. 

In chapter four we explain the conceptual framework and the procedures that 

we apply to synthesise the SD model components with their counterpart features in 

the GIS. We use an irrigation system as an example that can be modelled separately 

in system dynamics and GIS. Then, the two models are coupled through the 

development of an object-oriented based application. In this chapter also we 

introduce the software packages used to build the SD and the GIS models (Vensim® 

DSS and ArcGIS) and the Object components associated with them used to build the 

SDGIS application (Vensim® DLL and ArcObjects developer kit). 

In chapter five we develop the SDGIS application. We describe in detail the 

steps of creating the application, the connection between the SD model and the GIS 

model, and the representation of the simulation results. A number of custom tools 

were built to: (1) facilitate access to and communication between the two pieces of 

software used to build the models, (2) controlling the simulation performance, and (3) 

handle the display of the results in two ways (i.e., on maps and graphic charts). 

Chapter six is the first part of our case study that deals with the application of 

the SDGIS to the irrigation system in the Nile Delta, Egypt. In this chapter, we first 

describe the water scarcity problem that may emerge in the near future in Egypt, 

analyse its driving forces and highlight the factors that tend to intensify and possibly 

escalate the problem. Second, we describe the geographical and topological 

characteristics of the study area focusing on the irrigation system. Third, we explain 

the adaptation of the SDGIS application to the present irrigation system. Finally, we 

document the results of running the SDGIS application to test its operability and 

performance. 

In chapter seven, that is the second part of the case study, we demonstrate the 

capabilities of the SDGIS application through illustrative examples for employing the 

SDGIS as: (i) an interactive learning environment for the educational purpose of 
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explaining the complex irrigation system behaviour and management to non-technical 

individuals; (ii) an optimization tool for the irrigation network and the agriculture 

lands to attain the ultimate utilization of water and land resources; (iii) a spatial 

decision support system (SDSS) for supply, demand, and water allocation 

management and as a policy assessment tool for the water preservation measures.  

In chapter eight we document the research conclusions and suggest future 

work. The implementation of the SDGIS Application and its adaptation to the case 

study has many consequences. It improved our analytical capabilities and enhanced 

our understanding of the dynamics of the water scarcity problem. Incorporating the 

spatial dimension in the SD model and the temporal dimension in the GIS model, and 

integrating both models in one system evidently proofed the significance of 

considering Time and Space when we model spatially distributed dynamic systems. 

Such results are being discussed in the last chapter. 



 

2. Chapter 2 

Chapter 2

The Background Theory 

The Theoretical Foundation & 
Research Context
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2.1 Introduction 

This research crosses several disciplines including system dynamics, 

geographical information systems, and object orientation in the context of 

Environmental modelling. This chapter covers the essential literature of the 

environmental modelling domain, the Geographic Information System (GIS), 

simulation-modelling techniques focusing on System Dynamics (SD), and the Object 

Orientated paradigm as a common platform that facilitates synthesizing SD with GIS. 

The chapter is divided into four main parts with respect to the disciplines 

involved in this research. In the first part we describe the state of the environmental 

modelling domain. We list a number of environmental problems confronting different 

countries and discuss the differences in attitudes pertaining such problems. The 

objective is to understand how different people perceive these problems in different 

ways and why environmental simulation models are significant to analyse and predict 

the environmental impacts and their immediate and long-term consequences and the 

associated risks. 

GIS, as a powerful analytical tool, has been utilized in environmental 

modelling to perform sophisticated spatial analysis. The resulting data from such 

analysis is used as an input to the simulation models. Therefore, in the second part of 

this chapter, we introduce the field of GIS and describe the state-of-the-art in spatial 

modelling and briefly review the various approaches to incorporate the temporal 

dimension in GIS. The objective is to highlight the significance of time in GIS 

applications and to shift the dominant idea of organizing space over time to represent 

a real world phenomenon in space and time. 

In the third part of this chapter, we describe the major paradigms in simulation 

modelling. The phrase “simulation modelling” used in this chapter is not limited to 

system dynamics. There are a number of simulation-modelling techniques such as 

Agent-based simulation and Cellular Automate. There is, to great extend, an overlap 

between these techniques that may create some confusion. Therefore, it is worthwhile 
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to briefly describe the principles of each technique and the respective strengths and 

weaknesses. We exemplify fields of research and applications for each discipline that 

utilize one of these techniques, and demonstrate the broad overlap in research topics. 

This greatly helps to understand the difference between what we are doing in this 

research and the efforts done by others. It helps also to identify the best suitable 

technique for environmental problem solving. 

Obviously, environmental modelling needs GIS to perform spatial analysis and 

needs simulation models to analyse and predict the environmental impacts. 

Remarkable, the two communities of modellers work separately, but have recently 

admitted that there is an urgent need for integration. One of the integration challenges 

is the lack of an appropriate mechanism to incorporate GIS and SD. Object 

orientation may serve as a common platform that facilitates such integration.  

Therefore, in part four of this chapter, we provide a historical background for the 

object-oriented paradigm and illustrate the diverse efforts involved in object-oriented 

methods. This helps to explain the main concepts of object-oriented methods that are 

essential for developing our spatial simulation data model (SDGIS) that explained in 

chapter four. The historical background summarises the chronological developments 

from object-oriented programming languages to object-oriented design methods, and 

finally to object-oriented analysis methods.  

The concluding remarks of this chapter emphasise the need for integration and 

discuss the feasibility of such an integration given the available technology 

(software). Recently, GIS software (i.e. ArcGIS 8.1) has become fully object 

oriented, however, the available SD software (i.e. Powersim, Vensim) are object 

based. In the literature, there is a heavily debate among software expertise concerning 

the Object-Oriented versus Object-Based software. We briefly describe the main 

differences. This greatly helps understanding synthesizing procedures explained in 

chapter four. 
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Five references provide the framework for the subsequent discussion. First, 

Law and Kelton (2000) introduce the beginnings of the simulation modelling. 

Frenkiel and Goodall (1978) provide an excellent summary of early use of simulation 

models for environmental problem solving. A number of significant issues 

concerning the topic of modelling have been addressed by several global change 

documents [ESSC, 1988; IGBP, 1990; NRC, 1990]. Goodchild, Parks, and Steyaert 

(1993) introduced a remarkable volume concerning the state of the modelling 

environment with GIS. Finally, Sterman’s book of business dynamics (2000) 

provides an overview of simulation and system dynamics. 

2.2 Environmental Modelling 

2.2.1 Human Activities and Environmental Problems 

Different human communities are confronted with different sets of 

environmental problems, and even if they had the same problems they would 

probably see them differently. This is particularly true for the comparison between 

developed and developing countries. Most environmental problems are a result of 

intensive industrialization and advanced standards of living achieved with little 

regard to possible environmental effects. Although similar difficulties are now arising 

in the developing nations, many of their environmental problems are different and 

centre on the need to increase food production and resource utilization to match the 

requirements of the rapidly expanding population. Some of the most important 

environmental problems in these two groups of countries are listed in Table 2-1. 

A number of the problems listed in this table for developing countries are of 

little or no importance in developed countries, but the reverse is not often true. It may 

be assumed, in fact, that problems in the first column either already exist in 

developing countries or are likely to appear as development proceeds unless measures 

are taken to avert them. At present, they are overshadowed by the problems listed in 

the second column.  
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Despite the listed problems associated with each group, there are 

environmental problems that threaten all mankind alike that have recently been 

recognized. Such problems include: (1) Possible long-term climatic change (in 

average, trends and variability) that may be associated with, for instance, increasing 

consumption of fossil fuels. (2) Exhaustion of non-renewable resources. (3) Changes 

in populations of animal and plant species. (4) Possible changes in atmospheric 

transmission of radiation, for instance, through use of aerosols and supersonic 

aircraft.  Different countries perceive such environmental problems in different ways. 

Consequently, it is difficult (if not sometimes impossible) to generate international 

consensus on possible solutions. 
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Table 2-1: Environmental problems in developed and developing countries 
with respect to different fields of human activity1 

Developed Countries Developing Countries 
1. Food Production 

Effects of strategies for planting, fertilizing, pest 
control, irrigation and storage. 
Development of unstable, monoculture systems. 
Reliance on energy-intensive practices. 
Effects of land allocation for crop types and/or 
grazing. 
Soil erosion and problems of water use. 

Effects of strategies for planting, fertilizing, 
pest control, irrigation and storage. 
Effects of introducing fertilizers, pesticides, 
and mechanized methods. 
Spreading of weeds and pests through the 
introduction of new crop varieties. 
Effects of `slash and burn' practices, and of 
clearing scrub. 
Soil deterioration - erosion, salinization, 
water logging. 
Desertification of arid lands, resulting from 
overgrazing or unwise clearing and 
cropping. 

2. Use of Forests 
Environmental impacts of planting and 
harvesting strategies. 
Environmental impacts of disease and pest 
control. 
Conflicts in providing for habitat preservation, 
recreation and multiple usages, including forests 
as energy sources. 

Forest destruction. 
Poor forest management resulting in 
undesirable changes in species composition. 

3. Pattern of land use 
Environmental effects of land allocation policies 
for cities, waste disposal sites, agriculture, 
forests, transportation, natural and recreational 
areas, etc. 
Problems of settlement on flood plains, 
geologically hazardous areas, etc. 
Spoiling of land by extraction industries (oil 
pipelines, strip mining, slag heaps, etc.) and lack 
of adequate measures of control. 
Long term effects of various land uses. 

Effects of dense urban settlement - disease, 
sewage, pollution, etc. 
Untimely exploitation of non-renewable 
resources. 
Environmental results of land tenure 
systems leading to fragmentation. 
Penetration of little known areas, and 
resultant transport of disease, exotic species, 
etc. 

4. Energy production and use 
Excessive energy use through an energy-
intensive standard of living, and failure to adopt 
energy conservation techniques. 
Environmental impacts associated with 
production, storage, allocation and transmission 
strategies. 
Environmental hazards of some new energy 
sources (nuclear safety, oil shale exploitation, 
etc.) and lag times in the development of 
improved sources (solar, nuclear fusion, etc.) 

Depletion of nutrients and deterioration of 
soil due to use of charcoal and dung as fuel. 
Impacts associated with developing supplies 
of energy to support increased levels of 
industrial and agricultural production. 

                                              
1 Source: Frenkiel and Goodall 1978. 
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Table 2-1 (continued) 

Developed Countries Developing Countries 
5. Water supply 

Environmental impacts of developing, storing 
and allocating water supplies. 
Short and long term impacts of weather 
modification. 

Difficulties of availability of water in 
quantity and quality necessary for urban 
settlement. 
Problems with rural water supplies. 
Adverse effects of new irrigation systems, 
including introduction or increase in 
diseases, and changes in soil composition 
and structure. 
Incidence of floods. 

6. Pollution and waste disposal 
Air  
Impact of pollutants on health, property and food 
production. 
Introduction of synthetic trace chemicals. 
Transportation of pesticides and disease. 
Pollution impacts of traffic patterns. 
Thermal effects of power plants. 
Effects of weather modification efforts. 
Trapping of terrestrial radiation by gases; effect 
of changes in ozone layer. 
Depletion of solar input by particulates. 

 

Water  
Pollution by municipal sewage and industrial 
waste. 
Eutrophication of freshwater bodies from sewage 
and agricultural runoff (including intensive 
animal production areas). 
Thermal pollution by power plants. 
Contamination of ground water reserves by 
underground disposals, percolation from landfill, 
etc. 
Marine pollution by oil discharges and spills, and 
hazardous waste disposal. 

Sanitary and pollution problems of villages. 
Air, water and land pollution are all 
increasing as the process of urbanization 
and industrialization get underway. 
Furthermore, they often pose special 
problems because of inadequate lead-time 
and preparation. 

Land  
Uncontrolled erosion. 
Impacts of landfills and other above ground 
disposal sites. 
Irresponsible disposal of litter by individual 
citizens. 
Leaks from underground disposal of hazardous 
wastes. 

 

7. Social life 
Population density problems. 
Excessive noise. 
Impacts of social attitudes and consumer 
preference. 

Problems of intensive urban migration and 
settlement. 
Rural depopulation. 
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2.2.2 Environmental Problems Perceptions2 

In addition to differences between developed and developing countries, there 

are contrasts in perception of the prevailing problems between individuals within the 

single nation. These contrasts may arise from such individuals belonging to different 

population strata taking different roles in society, such as labours, decision makers, 

administrators, and scientists. 

For the general public in over-crowded and underfed nation, one prime cause 

of environmental problems typically arise from shortage of food resulting from an 

increase in the population over and above the increase in the food supply. This call 

for a high degree of resources utilization that eventually may be environmentally 

harmful (say because of resources depletion). Although one may obtain a more 

efficient utilization of these resources, for example, by employing a higher level of 

technology, the level of education and income typically does not allow the majority 

of the population to take advantage of such opportunities. The need for food, often 

amounting to a daily life-or-death struggle from an individual perspective, tend to 

sideline or allow for only a very short-term perspective on the environmental 

consequences of such an intensive and often inefficient utilization of resources. Long-

term perspective catches the popular attention only when given prominence in 

publicity. Otherwise, an individual's foresight is generally limited to days or weeks, 

and to environmental consequences directly and immediately affecting their own life. 

Decision-makers in governmental bodies vary in their outlook on 

environmental problems depending on the role they play. Politicians give their main 

attention to those environmental problems that are most prominent in the mind of the 

voters. Consequently, the time-scale for politicians is too often limited by the next 

election. Decision-makers in the public service may have longer-term views of such 

problems, particularly if their positions require them to remain working with, or 

affected by, the same problems over an extended period of time. As a result, long-

                                              
2 The significance of this part will be obvious when we come to our case study in chapter six. 
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term responsibility for the environment, on behalf of the public, will often fall upon 

their shoulders and be dealt with in the form of policy development and the 

implementation of regulations that affect both the public and the private sector. 

Private corporations whose decisions affect the environment may operate on a 

time-scale similar to the permanent public service decision-makers (long-term). 

However, their motivation may be somewhat different. The focus will be on what 

best serves their business interests. Environmental concerns are therefore in focus 

because they constitute business opportunities or because not being concerned about 

the environment may hurt the business, say, in the form of a loss of reputation or 

governmental or private premiums to be paid in the future. 

Usually, decision-makers who are in the public eyes, whether in private 

corporations or in governmental bodies, and whether elected or appointed, would take 

account of public reactions to their decisions. Among the problems which may 

confront them are the activities of “action groups” (stakeholders), usually local but 

often vocal and even aggressive.  

Scientists generally view environmental problems on a longer time-scale than 

that of the decision-makers. However, their focus maybe narrower, since the training 

and career structures for scientists do not usually encourage them to become familiar 

with subjects outside their own area of expertise. Therefore, the physical scientist 

presumably would concentrate solely on climatic change, while the biologist is more 

interested in the fate of endangered species. The social scientists are likely to give 

more attention to the problems of the population explosion, high-density housing, or 

rural depopulation. Only recently, means for encouraging interaction among these 

disciplines tend to be developed.  

There is no absolute measure for the relative importance of different 

environmental problems. The views of all groups, from the public to the scientist, 

from the least to the most highly developed country, are all relevant within their own 

frame of reference. It is not the responsibility of an environmental scientist or a 

modeller to try to reconcile or resolve these differences in attitudes. Rather, he should 
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see his role as the determination and clarification of all likely consequences of any 

action that may be contemplated. It is in this context the main value of environmental 

modelling field lies. If causal chains and networks of relationships can be established 

in complex systems, simulation models are the tools whereby these interconnections 

can be explored. Hence, the effects of modifying one part of the system can be 

discovered and related to the consequence for other, more remote, parts. This 

provides a better understanding of the dynamics of the system, and thus enables to 

predict the results of proposed actions, and to select the action that seems to be most 

desirable among a set of possible options. 

2.2.3 Environmental Modelling Domain Overview 

Environmental modelling, as one of the scientific tools that facilitates the 

prediction and analysis of the environmental impacts and the associated risks, is a 

well-established field of research. We can find a number of analytical approaches 

dating back to Lotka (1924). In the field of hydrology for example, we can look back 

at more than a hundred years of modelling history [Maidment, 1993]. Although these 

studies were conducted over a wide variety of time scales, none of them explicitly 

accounted for the spatial dimensions. In limnology, oceanography, and plant 

sociology for example, concepts such as patchiness were discussed, however, not 

referenced to a fixed coordinate system, as is the case in GIS. 

Computer-based mathematical models that realistically simulate spatially 

distributed, time-dependent environmental processes in nature are increasingly 

recognized as fundamental requirements for the reliable, quantitative assessment of 

complex environmental issues of local, regional, and global concern. These 

environmental simulation models provide diagnostic and predictive outputs that can 

be combined with socio-economic data for assessing local and regional 

environmental risk or natural resource management issues. Such assessments may in-

volve air and water quality; the impact of man's activities on natural ecosystems; or 

conversely, the effects of climate variability on water supplies, agriculture, 

ecosystems, or other natural resources. 
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More recently, the importance of the scientific models for the assessment of 

potential global environmental problems, including regional response to global 

change, has been illustrated by the National Research Council (NRC) (1986, 1990), 

Earth System Sciences Committee (ESSC) (1986, 1988), International Council of 

Scientific Unions (ICSU) (1986), International Geosphere-Biosphere Program 

(IGBP) (1990), and Committee on Earth Sciences (CES) (1989,1990). Eddy (1993) 

has discussed several environmental issues and suggested various courses of action 

including the need for environmental simulation models to help understand the 

current behaviour and to project the future state of the complex Earth system 

processes. These simulation models are necessary to help differentiate between 

environmental changes that are due to natural variability in the environmental system 

versus possible changes due to human impacts. Although much progress has been 

made, research is still needed to understand and model environmental processes in 

natural science. 

In the literature, the environmental modelling domain is extremely influenced 

and overwhelmed by the dynamical simulation models that are evolved through 

global climate change research programs, specifically as noted by the Committee on 

Earth and Environmental Sciences CEES (1991), NRC (1990), and IGBP (1990). 

These types of advanced models are also applicable to issues within the areas of land 

and water resource management, environmental risk assessment, and other 

applications. This section addresses the status of research on the development and 

testing of models, not the use of models in an applications or an assessment mode. 

In the following paragraphs, we highlight some of the general research themes 

that tend to characterize the state of environmental simulation modelling within, and 

particularly across, natural science disciplines. Then, we describe the state of the GIS 

for environmental problem solving. For the purpose of this research we focus on 

hydrologic modelling. The goal of these remarks is to help facilitate the 

understanding of the models subsequently discussed in chapter three, as well as to 

establish further potential integration between environmental simulation modelling 

and geographic information systems (GIS).  
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Environmental Simulation Models 

The phrase environmental simulation model in the following paragraphs is 

used as a general term, not limited to system dynamics simulation models only, to 

characterize the types of models found in the environmental modelling literature. 

There is no one definition or all-encompassing term that will adequately describe this 

type of modelling. In fact, most of these models are more commonly referred to as an 

Earth science model, atmospheric or hydrological model, ecosystem dynamics model, 

or some other type of model. The term by which a model is named is frequently 

associated with the particular scientific discipline, spatial and temporal scale, 

application, or type of bureaucratic program. 

General Concepts  

Environmental processes in the real world are typically three dimensional, 

time dependent, and complex. Such complexity can include nonlinear relationships, 

stochastic variables, and feedback loops over multiple time and space. There may be 

significant qualitative understanding of a particular process, but the quantitative 

understanding may be limited. The ability to express the physical process as a set of 

detailed mathematical equations may not exist, or the equations may be too 

complicated to solve without simplifications. 

Furthermore, computer limitations or the manner in which mathematical 

equations are converted for numerical-processing on a grid (discretization) lead to the 

parameterisation of sub-grid small-scale complex processes that cannot be explicitly 

represented in the model. In some cases, these sets of equations can be viewed as a 

collection of hypotheses, concerning physical processes, whose inputs and outputs are 

linked. This set of parameterised equations represents the modeller’s best approach to 

account for these processes, given these collective constraints. (This concept is 

illustrated in the subsection on Simulation Models.) 

Therefore, it is important to recognize that environmental models are usually, 

at best, just a simplification of real world processes [IGBP, 1990]. Reality is only 
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approximated within the model. In spite of all these qualifications, models in the 

hands of a skilled user do, in fact, provide useful information of scientific and applied 

interest. 

The phrase "environmental simulation model" can be dissected (from 

environmental domain viewpoint) and examined word by word to help understand 

these types of models. In fact, other key terms such as "parameterisation" or 

"discretization" permit even more understanding of the modelling process, as well as 

the current state of the models. 

Types of models 

Steyaert et al., (1993) classified models into three major categories: scale, 

conceptual, and mathematical. An example of a scale model would be a scaled-down 

replica of a mountain range or an airplane wing for use in wind tunnel experiments. 

There are also analog scale models such as a topographic map. (Note: GIS deal with 

analog models. hence, integration implies links between scale models and 

mathematical models). Conceptual models are frequently used in the modelling 

process in block diagrams that show major systems, processes, and qualitative 

interrelationships between subsystems. Mathematical models can be further 

classified as either deterministic or statistical (i.e., non-deterministic). Statistical or 

probability models contain at least one stochastic process represented by one or more 

random variables. A deterministic model does not have any random variables. Thus, a 

stochastic model has output data that are also random variables, and a deterministic 

model has a unique set of output data for a given input set [Law and Kelton, 1982]. 

(In this categorization, deterministic models are associated with environmental 

processes, and statistical models are based on empirical analysis of observations.) 

Both deterministic and statistical models can be further subdivided into either 

"steady-state" or "dynamic" models, where dynamic models contain at least one term 

that is a function of time. In the case of deterministic relationships, steady-state 

models can be represented by algebraic expressions for diagnostic study. Similarly, 

the deterministic-dynamic model is represented by differential equations that include 
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at least one time derivative or by algebraic relationships that include a time term. 

Both total and partial differential equations are used. 

Diagnostic models may represent the interrelationships within a system that is 

in a static or steady-state condition (that is no temporal component) or for some fixed 

point in time given a quasi-steady-state assumption. Prognostic models are used for 

prediction and depict a dynamic system that is a function of time [IGBP, 1990]. 

Simulation models 

An environmental simulation model may be defined as a computer-based 

technique to imitate, or simulate, the operations of various kinds of real-world 

processes [Law and Kelton, 1982]. Examples of real-world environmental processes 

are hydrodynamic fluid flow, radiating and heat transfer, biological growth 

mechanisms, and ecological development. Physically based laws describing these 

processes may not be known. 

To study these types of processes, either individually or as part of a system, 

physically based laws (e.g. Newton's laws of motion) or other types of assumptions 

are usually made on how the processes actually work. These laws or assumptions can 

be expressed as mathematical or logical relationships; collectively they represent a 

model. 

There are no fixed rules, but typically the environmental simulation model will 

include time-dependent partial differential equations and algebraic equations. The 

model is a dynamic model because of the time dependency. In some cases, these may 

be based on assumption or may be derived empirically through statistical analysis of 

observed data. For complex processes, there may be an extensive number of 

equations. Frequently, the goal is to make prognostic projections based on the 

simultaneous solution of a set of equations (with the same number of unknowns), as 

discussed by Lee et al., (1993). Frequently, assumptions must be made to simplify the 

set of equations. 
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For a very simple deterministic model, it may be possible to calculate an exact 

solution for idealized conditions (e.g. couette flow). However, real-world processes 

are typically so complex and nonlinear that an analytic solution is not possible. In 

such cases, the model is converted so that a numerical solution can be calculated on a 

computer. 

In the case of numerical solutions, the system of mathematical equations that 

make up a model is usually converted to run on a two- or three-dimensional grid. The 

methodology for restructuring a system of equations to run on a grid is termed 

“discretization”. There may be small-scale processes, termed sub-grid processes, 

which must be accounted for at the grid level, usually by a method that is termed 

“parameterisation” [Steyaert et al., 1993]. 

Parameterisation may be viewed as a method for scaling sub-grid processes up 

to the grid level. However, the concept of parameterisation is also used to link models 

across space and time scales. For example, detailed data and models near the process 

level at small scales are used to parameterise relationships at the next higher scales. 

Such an approach is of interest to scaling instantaneous biophysical data at the plant 

leaf level (evapotranspiration and photosynthesis) to annual regional estimates of net 

primary production or evapotranspiration [Running, 1991] through multiple 

parameterisations. These parameterisations can be quite elaborate, for example, the 

land surface parameterisation for a global climate model. (To complicate matters, the 

terms "model" and "parameterisation" are sometimes used interchangeably.) 

Lee et al., (1993) provided additional information concerning the meteorology 

numerical models. Because the equations are discretized, only portions of the 

equations are based on fundamental physical quantities (for example, the pressure 

gradient and advective terms in the equation of motion). The remainder of the terms 

are parameterised and generally are not based on fundamental concepts. Lee et al., 

(1993) provide examples of such parameterisations for meteorological models: cloud 

physics, long- and short-wave radiative flux divergence, sub-grid turbulent fluxes, 

and soil and vegetation effects. 
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There are several reasons for uncertainty in model results: (1) Only a limited 

number of processes can be treated; (2) Processes may not be well understood or, for 

some other reason, may be treated inadequately; and (3) The spatial and temporal 

resolution is inadequate [IGBP, 1990]. Also, the solutions may be very sensitive to 

initial conditions if the interactions in the models are sufficiently nonlinear (see for 

example [Lorenz, 1967]). 

Finally, the term "modelling" may be referred to as the research process that 

leads to the development of a "model". The modelling process typically involves the 

development and testing of complex, interrelated hypotheses as a part of the scientific 

method. This process may include the collection and analysis of observations that 

may be used to formulate a model or to test the hypothesis. The modelling process 

can include steps to develop, test and evaluate, validate, and apply the model. 

Recent works by several authors support the use of dynamic modelling in 

environmental analysis. Macgill (1986) provided an assessment of different 

modelling styles including the system dynamics models and their capabilities for 

scenario testing. Sampson (1985) presented a view of modelling and simulation based 

on systems methodology. Sheldon (1984) suggested the use of system simulation 

techniques for determining optimum production strategies for natural resources. 

Couclelis (1985) also suggested the use of Cellular Automata (CA) in modelling 

geographic systems. Itami (1988) and Gimblett (1989) applied the cellular automata 

concept within a GIS. Green (1989) studied the utility of cellular automata and 

percolation theory in spatial patterns and dynamics in forest ecosystems. All these 

efforts indicate a trend toward the use of system dynamics as a decision support tool 

in environmental management and decision-making.  

 More sophisticated environmental models need system dynamics approach to 

deal with the temporal dimension, feedback loops and overall dynamic and 

complexity of the environmental systems. They need also a GIS to represent the 

spatial dimension. Simulation, Spatial distribution, increased dimensionality, and 
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resolution are one straightforward way of "improving" environmental modelling 

domain. 

Classification of Environmental Simulation Models 

Apart from the possible varieties of approach in the technical construction of 

models mentioned in the previous paragraph, models may also vary greatly in subject, 

in scale, and in the purpose of use/study. Frenkiel and Goodall (1978) set a detailed 

list of attributes that specify an environmental simulation model in different 

respects. From these attributes we found that environmental simulation models can 

be classified into three major categories as shown in Table 2-2. 

Table 2-2: Classification of Environmental Simulation Models. 
(a) The Subject (b) The purpose of use/study (c) Environmental system 

being studied 
Environmental conservation Decision-making (political, 

operational). 
Type (atmosphere, river-
stream, lake, groundwater, 
coastal-estuarine, ocean, 
land, soil, primary 
production, agriculture, 
forest, urban, etc.). 

Pollution control Scientific research Size (local, regional, 
national, global). 

Resource utilization. Educational and training Time horizon (hour, day, 
week, month, year, decade, 
century). 

 Public information  
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Modelling the Environment with GIS 

Environmental problems do have an obvious spatial dimension. Within the 

environmental modelling domain, this is addressed by spatially distributed models, 

which describe environmental phenomena in one dimension (for example, in river 

models), two dimensions (land, atmospheric, and water-quality models, models of 

population dynamics), or three dimensions (again air and water models). The 

increasing development and use of spatially distributed models replacing simple 

spatially aggregated or lumped parameter models is, at least in part, driven by the 

availability of more and more powerful and affordable computers [Fedra and Loucks, 

1985; Loucks and Fedra, 1987].   

Fundamentally, environmental processes operate at multiple space and time 

scales. Multiple spatial scales are evident in the fields of hydrology (networks of 

small watersheds scaling up to large river basins), and ecology (patches, landscapes, 

and biomes)3. The use of Remote Sensing RS and GIS technologies to extend and 

extrapolate local results to the regional level is one approach. Another is the use of 

nested modelling concepts, sometimes in combination with remote sensing and GIS. 

GIS, as described in detail later in this chapter4, provides representations of the 

spatial features of the Earth, while hydrologic modelling is concerned with the flow of 

water and its constituents over the land surface and in the subsurface environment. The 

connection between the two subjects is obviously clear. Hydrologic modelling has 

been successful in dealing with time variation, and models with hundreds or even 

thousands of time steps are common, but spatial disaggregation of the study area has 

been relatively simple. In many cases, hydrologic models assume uniform spatial 

properties or allow for small numbers of spatial subunits within which properties 

are uniform. GIS offers the potential to increase the degree of definition of spatial 

                                              
3 It is evident also in the field of atmospheric science (hemispheric long-wave patterns, synoptic 
waves, surface layer fluxes, and eventually the dissipation of micro scale turbulence fluctuations near 
the land surface) 
4 See section 2.3 
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subunits, in number and in descriptive detail, and GIS-hydrologic model linkage also 

offers the potential to address regional or continental-scale processes whose hydrology 

has not been modelled previously to any significant extent. 

The goal of this section is to outline an intellectual basis for the linkage 

between GIS and hydrologic modelling. Its specific objectives are to present a 

taxonomy of hydrologic modelling; to understand the kinds of models that are used 

and what they are used for; to indicate which kinds of models could be incorporated 

within GIS and which are best left as independent analytical tools linked to GIS for 

data input and display of results; to examine the object-oriented data model as an 

intermediate link between the spatial relational model inherent in GIS and the data 

models used in hydrology; and to look at some future directions of hydrologic models 

that have not been possible before but that might now be feasible with the advent of 

GIS. The scope is limited to a fairly abstract discussion looking over the field as a 

whole rather than to one or other types of models within the field. 

General concepts 

A hydrologic model can be defined as a mathematical representation of the 

flow of water and its constituents on some part of the land surface or subsurface 

environment [Maidment, 1993]. In this sense, hydrologic modelling has been going 

on for at least 150 years. Darcy's Law (the fundamental equation governing 

groundwater flow) was discovered in 1856, the St.Venant equations describing 

unsteady open channel flow were developed in 1871, and a steady stream of 

analytical advances in description of the flow of water has occurred in the succeeding 

decades. Transport of constituents in natural waters was sparsely treated before about 

1950; after that time, first for transport in pipes, and then later in rivers, estuaries, and 

groundwater systems, transport issues gradually assumed a greater prominence and 

are now a major factor in hydrologic modelling. Computer models began to appear in 

the middle 1960s, first for surface water flow and sediment transport, then in the 

1970s for surface water quality and groundwater flow, then in the 1980s for 

groundwater transport. There are literally hundreds of public domain computer 
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programs for hydrologic modelling; however, the most frequently used models in the 

United States, for example, are produced or endorsed by the Federal government, and 

these are much fewer in number (not more than a few dozen in total). Table 2-3 

summarizes some of the models commonly used in hydrology. 

Hydrologic modelling depends on a representation of the land surface and 

subsurface because this is the environment through which water flows. There are also 

interactions with biological and ecological modelling because the transport of 

constituents in natural waters is influenced by biological activity that may increase or 

decrease the amount of constituents in water, and because the amount and condition of 

water flow can affect habitats for fish, plants and animals. The degree of saturation of 

the soil is a time-varying hydrologic parameter that impacts biological and ecological 

processes.  

Hydrology is closely tied to weather and climate too. So, in principle, 

modelling of atmospheric processes should be linked to hydrologic modelling, but in 

practice a close linkage between these two types of models is difficult to achieve 

because the large, grid-square spatial scale of atmospheric modelling, especially 

global climate modelling, is so much larger than the watershed or aquifer scale 

normally used for hydrologic models. 

There are three basic issues: pollution control and mitigation for both 

groundwater and surface water; water utilization for water supply for agriculture, 

municipalities, and industry and the competing demands for in-stream water use and 

wildlife habitat; and flood control and mitigation. Most hydrologic modelling is 

directed at solving problems in one of these three areas. 
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Table 2-3: Some commonly used computer codes for hydrologic modelling. 
and the sources from which they can be obtained.  

Surface Water Hydrology Models 
(1) Single-event rainfall-runoff models 

HEC-1 U.S. Army Corps of Engineers, Davis, California 
TR-20 Soil Conservation Service, U.S. Dept. of Agriculture, Washington DC 
ILLUDAS Illinois State Water Survey, Champaign, Illinois 
DR3M U.S. Geological Survey, Reston, Virginia 
(2) Continuous stream flow simulation 

SWRRB Agricultural Research Service, U.S. Dept. of Agriculture, Temple, Texas 
PRMS U.S. Geological Survey, Reston, Virginia 
SHE Institute of Hydrology, Wallingford, England. 
(3) Flood hydraulics  

Steady flow: 
HEC-2 U.S. Army Corps of Engineers, Davis, California 
WSPRO U.S. Dept_ of Transportation, Washington, DC  
Unsteady flow: 
DMBRK U.S. National Weather Service, Silver Spring, Maryland 
DWOPER U.S. National Weather Service, Silver Spring, Maryland 
(4) Water quality 

SWMM University of Florida Water Resources Center, Gainesville, Florida 
HSPF USEPA Environmental Research Laboratory, Athens, Georgia 
QUAL2 USEPA Environmental Research Laboratory, Athens, Georgia 
WASP USEPA Environmental Research Laboratory, Athens, Georgia 

Subsurface Water Hydrology Models 
(1) Groundwater flow 

PLASM International Groundwater Modelling Centre (IGWMC), Colorado School of 
Mines, Golden, Colorado 

MODFLOW U.S. Geological Survey, Reston, Virginia 
AQUIFEM-1 Geocomp Corporation 
(2) Groundwater contaminant transport 

AT123D IGWMC, Golden, Colorado 
BIO1D Geotrans, Inc., Herndon, Virginia RNDWALK     IGWMC, Golden, 

Colorado 
USGS MOC U.S. Geological Survey, Reston, Virginia 
MT3D S.S. Papadopulis and Associates, Inc, National Water Well Association 
MODPATH       U.S. Geological Survey, Reston, Virginia 
(3) Variably saturated flow and transport 

VS2D U.S. Geological Survey, Reston, Virginia 
SUTRA U.S. Geological Survey, Reston, Virginia; National Water Well Association 

Source: David R. Maidment, 1993. 
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State of Hydrologic Modelling Independent of GIS 

All of the waters of the Earth can be classified into three types: atmospheric 

water, surface water, and subsurface water [Maidment, 1993]. Atmospheric water 

includes water vapour in the atmosphere and also water and ice droplets being carried 

by clouds or falling as precipitation. Surface water is water flowing on the land 

surface or stored in pools, lakes, or reservoirs. Subsurface water is water contained 

within the soil and rock matrix beneath the land surface. Hydrologic modelling is 

largely concerned with surface and subsurface water. When modelling of “atmospheric 

water processes” is considered, such as precipitation or evaporation, it is generally to 

supply input information needed for some aspect of the surface or subsurface water 

balance. The dynamics of atmospheric processes are so complex that models of 

precipitation and evaporation are more analogies to the real processes rather than 

precise physical descriptions. 

In modelling the flow of water, the main issue is to determine the disposition 

of rainfall: how much of it becomes runoff, infiltration, groundwater recharge, 

evaporation, and water storage? Once the discharge of water is determined at 

particular point, the hydraulics of flow is sometimes also considered, such as the flow 

velocity and water surface elevation in a channel, or the Darcy flux and piezometric 

head field in an aquifer. Transport issues are also important. These include transport of 

material floating or suspended in water such as sediment; constituents dissolved in 

water, such as toxic chemicals or pesticides; and biological constituents in water, 

whose effect is measured by their consumption of dissolved oxygen. The objective in 

modelling pollutant flows is to be able to predict how far and how fast a pollutant 

will travel in a water body, what will happen to it as it travels, and what will be its 

ultimate fate. If remedial activities are being undertaken to clean up pollution, 

modelling of the extraction of polluted waters is also sometimes undertaken, such as 

in the design of pumping schemes to extract contaminated groundwater. Obviously, 

physical processes such as adsorption of the pollutant onto the soil or rock matrix, or 

chemical processes, such as the oxidation or reduction of chemical species, are 

important in assessing the pollutant fate and transport. 
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In a general way, hydrologic modelling can be divided into four components: 

Vertically, there is a distinction between modelling surface or subsurface waters; 

sequentially, there is a distinction between modelling flow and transport, or 

equivalently between modelling water quantity and water quality. Thus, one can speak 

of a surface water flow model or a surface water quality model, and likewise a 

subsurface flow or transport model. It is necessary to model or map the flow field before 

modelling the transport of constituents since their motion is driven by the motion of the 

flow field. 

One can also distinguish three major variables for which hydrologic models 

are constructed: Q (units of volume per unit time) for flow or discharge; h (units of 

length) for water surface elevation or piezometric head; and C (units of mass per unit 

volume of water) for constituent concentrations. Once the time and space distribution 

of these variables has been determined, a hydrologic modelling exercise is usually 

complete. It may be noted that while h and C are scalar variables, their gradients are 

vectors. The discharge Q is also a vector and is oriented in the direction of declining 

head gradient. The product of concentration and discharge produces the constituent or 

contaminant loading (in units of mass per unit time) that is being carried by the flow, 

such as the sediment load of a river. 

Spatial Components in Hydrologic Modelling 

There are four basic spatial components used in hydrologic models: surface 

watersheds, stream channels, lakes or estuaries, and subsurface aquifers. Each of 

these components is a three-dimensional object, but they can be approximated 

satisfactorily for many purposes with a model of lesser dimensions. The first three 

components are described in more details elsewhere (see for example Arc Hydro data 

model developed by ESRI). What is important here to remember is that in each of the 

four flow systems mentioned, the same physical principles govern water flow and 

transport and similar equations are used to describe these phenomena. The most 

fundamental principle is the conservation of mass-water or constituent mass cannot 

be created or destroyed. This principle is expressed as the continuity equation, which 
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states that the rate of change of storage in a system is equal to the inflow minus the 

outflow. To complete the description of water motion, an additional principle is 

usually employed-either the momentum principle (for fairly rapidly varying flow 

with time steps of the order of hours or days) or the energy principle (for long-term 

studies with time steps of the order of months or years). The momentum principle 

is contained in Newton's second law of motion, which states, “If a body is acted upon 

by an unbalanced external force, its motion will change in proportion to the 

magnitude of the force and in the direction of the external force”. The energy 

principle is contained in the first law of thermodynamics, which states, “The change 

of energy of a body is equal to the amount of heat input it receives minus the amount 

of work it does”; work being measured by the product of force applied by the body and 

the distance through which it moves. 

From the previous discussion, it is apparent that similar physical principles 

and various spatial representations can be used for hydrologic modelling. It is thus 

possible to propose taxonomy of hydrologic modelling that classifies available 

models. There are a number of ways such taxonomies can be built up, but the 

following way (next paragraph) may serves as a basic framework within which more 

detailed classifications can be made.  

Hydrologic phenomena vary in all three space dimensions, in time, and are 

random or uncertain because they are driven by rainfall and because many of the 

properties of the flow domain are unknown, especially for subsurface flow. There are 

thus five sources of variation that one can consider in a hydrologic model: time, three 

space dimensions, and randomness. All hydrologic models can be classified according 

to the assumptions made about these three factors. The simplest case is a 

deterministic (no randomness), lumped (processes are assumed spatially uniform), 

steady flow model (no variation in time). This is typical of steady, uniform flow in a 

channel, or aquifer system, for which the mechanics are well understood and 

modelled. Allowing any one of the factors (time, one space dimension, or randomness) 

to be accounted for explicitly, is also commonly handled, and good models with 

computer programs for this purpose have existed for about 20 years (e.g. steady, non-
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uniform flow in rivers, radial flow towards wells in groundwater, regression 

modelling, and statistical analysis of extreme floods); modelling variation with respect 

to any two of these factors taken as independent variables has become possible with 

standardized computer programs within the last 10-15 years (e.g. unsteady, non-

uniform flow in rivers, two-dimensional steady flow and transport in groundwater 

systems; time series and geostatistical analysis of hydrologic data). Allowing any 

three of these factors to be explicitly varying is really still largely in the research realm 

(e.g. two-dimensional, unsteady flow in rivers and estuaries, three-dimensional steady 

groundwater flow models; geostatistical studies with randomness explicitly 

characterized in two dimensions on a spatial plane). Models with four or five inde-

pendent variables are even more in the research realm [Maidment, 1993]. The state of 

flow modelling is more advanced than that of transport modelling, both for surface 

and subsurface waters. Often the flows are computed first, and then transport is 

modelled using the pre-computed flow field. In subsurface waters, flow in saturated 

groundwater below the water table is better understood than is unsaturated flow above 

the water table, especially near the soil surface.  

GIS can make a contribution to hydrologic modelling by solidifying the 

treatment of spatial variation. In so doing, it is likely that models with three 

independent variables will become capable of general application in the near future; 

and those with one or two independent variables will become more accurate and less 

costly to implement than they are now. 

State of Modelling Coupled With GIS  

Several levels of hydrologic modelling in association with GIS can be 

distinguished: hydrologic assessment, hydrologic parameter determination, 

hydrologic modelling inside GIS, and linking GIS with hydrologic models.  

Hydrologic assessment means mapping, in GIS, the hydrologic factors that 

pertain to some situation, usually as a means of risk assessment. Hydrologic 

parameter determination is currently the most active area in GIS related to 

hydrology. The goal is to determine the input parameters of the hydrologic models 
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by analysing the terrain and land cover features. Thus land surface slope, channel 

lengths, landuse, and soil characteristics of a watershed are starting to be extracted 

from both raster and vector GIS systems. A simple way for a GIS to supply 

hydrologic parameters is through linkage to a library of geo-referenced parameter 

values. For example, SWRRB model [Arnold et al., 1990] for simulation of the water 

resources of rural basins has a library of weather parameters defined for about 100 

weather stations in the United States, so that in application of the model without 

local weather data, the analyst chooses parameters from the weather station closest 

to the study area. Likewise, for soils information, SWRRB has detailed information 

on soil properties for hundreds of soils classified on county soil maps. If these maps 

were likewise stored in GIS, then the linkage of these parameters as attributes of the 

soil polygons would be a straightforward matter. In Canada a similar 

georeferenced parameter library is used for modelling pesticide movement in soils. 

It is possible to do some hydrologic modelling directly within GIS systems, 

as long as time variability is not needed. This is the case when considering annual 

averages of variables, such as annual average flow or pollutant loadings from a 

watershed. One can then implement spreadsheet-type models in which flows or 

loadings are computed as flow or load per unit area times the area; one can also 

capture some more complex equations, such as those for pollutant loadings derived 

from the regression, where the independent variables in the regression equations are 

mapped in coverage and then the loadings are worked out based on a mathematical 

combination of coverage data. 

Another way of eliminating time as a variable is to take a snapshot at the peak 

flow condition and model that by assuming the discharge is at its peak value 

throughout the system. It is thus possible to route water through GIS networks using 

analogies to traffic flow routing in which each arc is assigned an impedance 

measured by flow-time or distance and flow is accumulated going downstream 

through the network. A limitation of this type of modelling is that for water flow, the 

impedance to flow into the arc is related to the amount of flow; that means, one 

cannot specify the impedance without first knowing the flow, and cannot calculate 
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the flow without first knowing the impedance. But this problem has been known in 

hydrology for many years, and the well-used rational formula for storm sewer design 

gets around this by working successively downstream, so that the amount of flow is 

being accumulated as the computations proceed and thus the impedance to be 

assigned to the next arc can be determined. 

Linking GIS and hydrologic models through Object-oriented linkage  

Figure 2-1 shows a concept of GIS representation of the real world, proposed 

by Scott Morehouse of ESRI [Morehouse, 1978]. He suggests that: starting with image 

processing, building through raster GIS, then through vector GIS, one can obtain raster 

and tabular representations of reality. He indicates that the next step beyond tabular 

modelling is semantic modelling, in which one attempts to capture the functional 

interrelationship of the objects located on the land surface. Semantic modelling is a 

very familiar concept for hydrologists, as it is the prime way that the data structures 

for lumped hydrologic models are organized. In such models, geography serves a 

starting point for building up the semantic representation of the system, but once it is 

constructed, the semantic representation becomes the primary mental model that the 

hydrologist uses when thinking about the system. 

Building semantic models in hydrology requires an abstraction of spatial 

features into spatial objects to form a schematic representation of the flow system. An 

object-oriented model, such as that used in some expert system programs, appears to 

be a good linkage between GIS and hydrologic models for these types of models. Each 

line in the input code of the hydrologic model can be conceived of as an object whose 

properties are the various fields in that line. Djokic and Maidment (1991) were 

conducting some research along these lines at the University of Texas using a linkage 

between the ARC/INFO GIS and the expert system Nexpert Object [Djokic and 

Maidment, 1991]. 
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Figure 2-1: A hierarchy of models for knowledge about the real world 

Source: [Morehouse, 1978]. 

 

Concluding Remarks on Environmental Modelling 

It goes without saying that many hydrologic analyses are time-varying, 
particularly for surface water flow (less so for groundwater). GIS really does not 
lend itself to time-varying studies because there is no explicit representation of 
time in the data structures. One cannot readily model the evolution through time 
of spatial variation in a phenomenon within GIS for this reason. But such variations 
are often needed in hydrology, for example, to look at tidal variation of flow and 
transport in an estuary. Until GIS explicitly integrate time variation in its data 
structures, its role will largely be limited to an input data provider and an 
output display and mapping device. 

As Maidment put it “ Because most surface water hydrology flows are time 
varying and because much of the concern about groundwater flow deals with tracing 
out the motion of contaminants over time, it would be very helpful to have in GIS 
some explicit data structures that resemble the space-time domain. With such data 
structures for point, line, and area primitives, it would be realistic to begin thinking 
about doing numerical modelling within GIS instead of keeping it in a separate code, 
as is now necessary. There is no doubt that computation is more efficient if it can rely 
on a single set of data structures instead of having data passed back and forth between 
different data structures”. 
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2.3 The Geographic Information Systems 

2.3.1 The Origins of the GIS 

GIS has a longer history than most realize. Depending of what lineage one 

traces, one can find hints of what was to come in GIS perhaps 45 years ago or more, 

through computer-assisted cartography [Tobler, 1959], in civil engineering [Horwood 

et al., 1962], and solid vestiges in geography [Wellar and Graf, 1972]. There was 

clearly some sense of what a GIS was in 1972 as indicated by the publication of the 

proceedings from the Second Symposium on Geographical Data Handling 

[Tomlinson, 1972]. Tomlinson and Petchenik (1988) edited a series of articles that 

treat computer-assisted cartography as one of the core lineages, particularly analytical 

cartography [Tobler, 1977] with its focus on the transformation of spatial data 

geometries. 

The Canadian Geographic Information System developed between 1960 and 

1969 has often been called the first production GIS. In mid-1970s, the design for 

spatial data manipulation (in the Odyssey system) was developed at the Harvard 

Laboratory for Computer Graphics and Spatial Analysis. Industrial-strength 

commercial GIS first took root in the early 1980s when spatial data managers were 

teamed with relational data managers to provide the spatial and attribute data 

management [Tomlinson, 1988].  

Remote sensing has had a significant impact on GIS, but the major focus in 

remote sensing has been on the development of image processing systems. As early 

as 1972, Tomlinson has discussed the use of remote sensing data in GIS. The link 

between image processing systems and GIS has also been maturing for quite some 

time [Marble and Peuquet, 1983]. 

Recent developments in GIS are too voluminous to review in this limited 

space. However, the number of software packages in the commercial marketplace and 

the number of GIS textbooks and reference volumes of collected papers published 

recently give an indication of recent growth and development. Not less than 55 
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commercial products are available worldwide according to the GIS sourcebook [GIS 

world sourcebook, 1996]. Overall, the data, the software, and the hardware market 

are estimated to be in the multi-billions of dollars. 

GIS has now become a large field so that no single basic reference source has 

it all. Thus, the state of knowledge must be taken as an aggregate of references. 

Several books have appeared that are useful for environmental problems, each with a 

particular perspective on GIS. For example, Burrough (1986) text focuses on GIS for 

land resource assessment, with a large portion dedicated to database issues. Starr and 

Este (1990) text deals with GIS from a remote sensing perspective, but emphasizing 

the importance of satellite imagery as well as point, line, and polygon vector-

structured data. Tomlin (1990) text treats GIS from an analytical, map algebra 

perspective, dealing principally with data analysis rather than data entry or map 

product displays. Clarke (1990) text, although focusing on analytical cartography, 

provides a very valuable perspective on the algorithmic transformations of space.  

Collections of articles for basic-readers have also appeared. Peuquet and 

Marble (1990) provide an introductory collection of papers. Ripple (1987) provides a 

compendium of natural resource management topics. Such a compendium was 

warranted for environmental issues. As early as 1991, Maguire, Goodchild, and 

Rhind introduced the most ambitious reference on the general principles and 

applications of the GIS. The two-volume reference was indicative of both the wealth 

of knowledge and the maturation of certain GIS topics, but certain topics like human 

factors issues and network GIS remain largely untreated in texts. 

Although it is true that there has been a tremendous growth in knowledge 

related to GIS, there is still considerable room for improvement. Improvements 

would occur on several fronts, including issues related to institutional arrangements, 

data, software and hardware [Frank et al., 1991]. A major part of those 

improvements, related to the study of the environment, will be the linking of the GIS 

and the environmental simulation models. Although analytical models have been a 

part of the GIS for some time [Wheeler, 1988] and have been linked to the GIS for 
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topics like resource assessment [Burrough et al., 1988], the cross-fertilization 

between environmental simulation models and GIS is not started yet, and here 

our original contribution lies. 

Finally, we have to mention that much of the current experience in 

environmental modelling comes from hydrological modelling, particularly as 

performed by the Water Resources Division of USGS. This is one of the main 

reasons motivated us to select our case study in this research. We have to 

remember that Environmental modelling as a broad topic can place some of the 

heaviest demands on GIS because of its need to handle many kinds of data in 

both space and time in a more dynamic way than has been demonstrated to date. 

These requirements will help GIS evolve, perhaps in ways not currently envi-

sioned. The current state of GIS should not be viewed so much as a hindrance, 

but as an opportunity that needs both direction and steps for progress. Realizing 

this opportunity involves putting GIS to use in creative ways. This might be 

considered as another contribution for our research. 

2.3.2 The Nature of Geographic Information System 

People come to understand the nature of the GIS from three basic perspectives: 

functional, procedural, and structural. Cowen (1988) identified several ways to define 

the GIS found in the literature and stated that definitions often arise due to a 

perspective on a topic. However, all seemed lacking, and he proposed to describe the 

GIS as a "decision support system", although this phrase did not receive much 

elaboration. Fundamentally, three perspectives are important for GIS: 

• A functional perspective concerning what applications the GIS is used for (the 
nature of the GIS use). 

• A procedural perspective concerning how the GIS works with regard to the 
various steps in the process to perform this work (the nature of the GIS 
workflow); and 

• A structural perspective concerning how the GIS is put together with regard 
to various components (the nature of the GIS architecture). 
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All three perspectives add a different insight into the nature of the GIS, and any 

comprehensive definition should incorporate all three. Although no single definition 

says it all, a definition that combines a procedural and structural perspective and has 

had some discussion and agreement is: “A system of hardware, software, data, people, 

organizations, and institutional arrangements for collecting, storing, analysing, and 

disseminating information about areas of the Earth,” particularly in this case for 

understanding environmental processes [Dueker and Kjerne, 1989]. Such a 

definition is in keeping with the most popular rendition given by those with 

considerable experience in the field (e.g. [Marble, 1990]), but is slightly broader in 

scope because it admits the institutional considerations that give flavour to the GIS. A 

single definition of GIS is too limited to offer a full functional description, and if our 

intention is to integrate the GIS with any other technology we should understand the 

three perspectives to realize where the integration will reside. Consequently, each of 

them will be discussed in turn in the following overview to provide a comprehensive 

understanding. 

Functional Perspective: The nature of the GIS use  

There are many dimensions that can be considered in the use of GIS. There 

have been recent attempts through the National Centre for Geographic Information 

and Analysis (NCGIA) at developing taxonomy of use [Obermeyer, 1989]. The 

framework for such taxonomy can include many dimensions, such as [Onsrud, 1989]: 

• Type of task: resource inventory, assessment, management and development.  
• Application area: environmental, socio-economic, etc.; 
• Level of decision: policy, management, and operations; 
• Spatial extent of problem: small, medium, or large study area size; and 
• Type of organization: public, private, or non-profit. 

 
All five dimensions are pertinent for any particular use of the GIS. A generic 

treatment of use can only hope to focus on a couple of dimensions. Of particular 

interest here are the dimensions that concern tasks and environmental applications. 
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Environmental tasks include those tasks for inventorying, assessing, 

managing, and predicting the fate of environmental resources. An environmental 

inventory is an accounting of the state of a resource environment, what exists and 

what does not in particular areas. This can be accomplished with a GIS at different 

levels of spatial, temporal, and thematic resolution as deemed necessary by the group 

interested in the inventory. Such an accounting is a very traditional, descriptive 

approach to "doing geography”. An assessment can be used to determine what has 

been lost due to environmental influences. The relationship between what exists and 

what no longer exists is a difference in two maps over time. The difference is 

computed through use of a change detection technique. Environmental management 

is a task requiring certain policy controls to determine what resources should receive 

protected-use. Environmental prediction is a task requiring a thorough understanding 

of the “causal mechanisms” of change, and is the most difficult of all tasks, as it 

requires assumptions about many unknowns. 

The second dimension concerning “application area”; GIS can provide support 

for several different environmental modelling applications. These include: 

hydrological modelling [Maidment, 1993], ecological systems modelling [Kessell, 

1990], plus policy considerations for risk/hazard assessment [Hunsaker et al., 1990] 

involving these models. Another of the dimensions of use is the decision-making 

level. Different GIS processing environments support different levels of decision-

making (but it is not a DSS itself, this issue is discussed in chapter seven). 

GIS usage in terms of tasks, applications, and levels of decision-making, takes 

particular meanings when we understand whom the users are. Several types of users 

can be identified: scientists, managers, technical specialists/analysts, clerks, and the 

general public. At the current time the largest group of users are mainly specialists 

with a background in both GIS jargon and their own disciplinary jargon. 

Three primary modes of GIS use can be identified: map, query, and model 

[Nyerges, 1991a]. The map mode provides referential and browse information, when 

a user wishes to see an overview of a spatial realm, and needs to get a sense of what 
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is there. A query mode is used to address specific requests for information posed in 

two ways. One is that the user could specify a location and request information on 

phenomena surrounding that location or nearby. A second is that a user could specify 

a kind of phenomenon (or phenomena) and request to see all locations where the 

phenomenon occurs. However, there are several other renditions of these basic 

questions [Nyerges, 1991a]. Questions dealing with "when" and "how much" can be 

added to the "what" and "where" in queries about the geographic phenomenon under 

study. Model invocation is the third mode of use. After having prepared the nature of 

the inputs to be retrieved for a model, the model is run and an answer is computed. 

More realistic data with a locational character do have an impact on model results. 

In addition, geographical displays interactively depicting the nature of the sensitivity 

of certain parameters can be very useful in support of model initialisation 

(parameterisation). The model brings together the locational, temporal, and thematic 

aspects of phenomena in a geographic process characterization. 

GIS operate in all conceivable modes for information processing. There are 

systems that are standalone, and there are systems that are wholly integrated. In the 

standalone mode the GIS is the entire workhorse for problem solving, whereas with 

integrated systems GIS is only one part of a comprehensive solution [Nyerges, 

1991c]. To consider such issues more thoroughly, we can view GIS from a 

procedural perspective. 

Procedural Perspective: The nature of the GIS workflow  

The GIS workflow process consists primarily of four steps: (1) problem 

definition (and software/hardware setup if needed); (2) data input/capture (with 

subsequent data storage/management); (3) data manipulation/analysis; and (4) data 

output/display. Data storage/management functions support all the others. 

Tasks and applications that solve problems require functions (sometimes 

called operations) to make use of the GIS. The major functions that support use of the 

GIS include data entry/capture, data storage/management, data manipulation/analysis, 

and data display/output. Data entry/capture functions support all other processing 
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steps. There is no question that data entry/capture functions can support 

environmental modelling. In fact, this is the most obvious of the support functions, 

and unfortunately sometimes the only function that is recognized. Data management 

functions focus on characterizing the state of the data environment for each context. 

Complete data records for geographic phenomena would include an observation of 

thematic attribute character, an observation of location, and an observation of time. 

The tendency has been to characterize the present, forgetting about the past. In many 

instances new data replace old data, with the record of old data being eliminated 

(except for database backup and archive). As a result of this view of the value of old 

data, current systems can only handle the character of phenomena as time slices for 

past, present, and future observations.  

Current inventories may or may not constrain analyses, depending on the 

functions available for transforming data into a suitable form for analysis. Langran 

and Chrisman (1988) describe the value of retaining old data, and some of the 

conceptual issues underpinning design requirements for spatio-temporal inventories. 

Functions that support GIS data manipulation focus on preparing data for the 

analysis phase of processing. Conversion from one structure to another is often 

necessary to support spatial data analysis. Functions that support GIS data analysis 

focus on developing and synthesizing spatial relationships in geographic data to 

provide answers. They range from simple models developed wholly within the GIS 

context to elaborate coupled models linked into the GIS environment. Examples of 

such functions for river network modelling appear in Table 2-4. These functions 

produce answers that take the form of single numbers or words, perhaps in response 

to a query, or they take the form of several thousand numbers or words as the basis of 

a map display.  

Many of the current concerns with analytical functions are with the design 

tradeoffs for integrating and/or linking spatial process models into the GIS context, 

that is, the model structuring function in this table.  
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The advantage of the GIS is that it provides interactive data processing 

support. Consequently, the four steps described can occur in rather rapid 

succession. However, for some projects, days rather than minutes are required to 

proceed through all of the steps. The ease with which these necessary steps are 

carried out is influenced by the GIS architecture. 

 

Table 2-4: GIS data analysis functions to support river network modelling 
Function Description 
Spatial Data Analysis  
 Spatial intra-object 

measurement: 
Individual object calculations for line length, polygon 
area, and surface volume, polygon perimeter, percent of 
total area. 

 Spatial inter-object 
measurement: 

Inter-object calculations for distance and direction 
point to point, point to line, polygon perimeter, percent 
of total area, percentiles, range, and midrange. 

 Descriptive spatial 
statistics: 

Centroid (weighted, geometric). 

 Inferential spatial statistics:  Trend analysis. 
Attribute Data Analysis  
 Descriptive non-spatial 

statistics: 
Frequency analysis, measures of dispersion (variance, 
standard deviation, confidence intervals), measures of 
central tendency (mean, median, mode), factor analysis, 
contingency tables. 

 Inferential non-spatial 
statistics:  

Correlation, regression, analysis of variance, 
discriminant analysis. 

Spatial and Attribute Data Analysis  
 Overlay operators:  Point, line, area object on/ in point, line, area object. 
 Network indices:  Compute network indices for connectivity, diameter, 

and tree branching structures. 
 Significance tests:  t-test, chi-square, Mann-Whitney, runs. 
 Simulation:  Test the interaction of flows on the network over time. 

Test modal choice over time. 
 Model structuring:  A model-structuring environment that provides 

linkages between parts of models and the GIS environ-
ment through a special language interface. 
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Structural Perspective: The nature of the GIS Architecture  

Another way to describe the general nature of the GIS is to examine the nature 

of the software architecture. As mentioned in the definition, GIS is composed of data, 

software, and hardware used by personnel to develop and disseminate geographic 

information. In a sense, each of the components of data, software, and hardware has 

architecture (a framework for how it is put together). For this discussion, and from a 

systems design point of view, perhaps the most fundamental of these three is the 

software architecture. GIS architecture can be described in terms of generic modules 

as shown in Figure 2-2. Many authors [Calkins and Tomlinson, 1977; Clarke, 1986; 

Guptill, 1988) list the following modules that are of significance: input/capture, 

data management, manipulation/analysis, output/display. Not surprisingly, these 

modules are a reflection of the use and processing activities in the GIS. 

Human 
Interface 
Module

Data 
Management 

Module

Manipulation/ 
Analysis 
Module

Output/ 
Display 
Module

Input/ 
Capture 
Module

Human 
Interface 
Module

Data 
Management 

Module

Manipulation/ 
Analysis 
Module

Output/ 
Display 
Module

Input/ 
Capture 
Module

Figure 2-2: GIS as architecture of modules from a structural perspective. 
 

Each of the modules has been described in terms of functions that the 

respective module performs. The data capture module provides operational 

functions for acquiring data. The data management module stores and retrieves the 

data elements. The manipulation and analysis module handles the transformation of 

data from one form to another and the derivation of information from data. The data 
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output and display module provides a way for the user to see the data (information) 

in the form of diagrams, maps, and/or tables, etc. 

The architecture of the data management module determines the design of the 

descriptive constructs used for data storage. As such it is the fundamental mechanism 

for determining the nature of data representation as presented to applications, 

whether these be integrated functions in the GIS or models linked to the GIS. 

The architecture of the module is based on the types of data models used. A data 

model determines the constructs for storage, the operations for manipulation, and 

the integrity constraints for determining the validity of the data to be stored 

[Nyerges, 1987]. The data model concept is often misunderstood; many authors 

including only the data construct aspect of this concept. Goodchild (1992) reviewed 

the different data structuring approaches used in the GIS data models. Together with 

the various functions described in Table 2-4 and the integrity constraints for keeping 

data valid, these aspects of the GIS data model determine the architecture of a system. 

Among the more common GIS data models are the layer, object, and network 

data models [Goodchild, 1992], together with a relational data model (Figure 2-3). 

Layer models consist of spatial data constructs (location samples) with attached 

attribute data constructs. Object models consist of culturally defined attribute 

descriptions (attribute data constructs) with attached spatial data constructs. The 

principal difference between layer models and object models is that layer models 

do not bundle spatial and attribute data for data management, where object models 

do bundle spatial and attribute data for management. Network models can be 

developed like layer-based or object models, but with the additional stipulation that 

the linear geometry along the phenomenon must be part of the spatial description. 

The network model in Figure 2-3 indicates this through the use of the linear address 

construct, which can be thought of as a sequence of river sampling stations. Relational 

data models carry the attribute information for layer-based, object, and network 

models. Consequently, the difference in the data modelling approach is whether the 

spatial, attribute, and temporal characteristics are bundled as described phenomena 

or not. 

 



Chapter Two 54

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Layer Data Model

Explicit link

Explicit link

Constructs managed separately, but linked

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Object (feature) Data Model

Constructs managed together

Spatial 
Linear 

addressing 
Constructs

Attribute 
Data 

Constructs

GIS Network Data Model

Explicit link

Linear addressing constructs and topological constructs 
managed together; but spatial and attribute constructs 
managed separately

Spatial 
topological 
addressing 
Constructs

Are used 
to position

Are used 
to derive 
linear 
extent of

Grid Cell

Pixel

Polygon

Ring (a (series of) 
closed chain(s))

Polyline

Line

Node (topological connector)

Point

…………

…………

…………

…………

…………

Attr4Attr3Attr2Attr1

Attribute column

Re
la

tio
na

l t
ab

le tuple

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Layer Data Model

Explicit link

Explicit link

Constructs managed separately, but linked

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Object (feature) Data Model

Constructs managed together

Spatial 
Linear 

addressing 
Constructs

Attribute 
Data 

Constructs

GIS Network Data Model

Explicit link

Linear addressing constructs and topological constructs 
managed together; but spatial and attribute constructs 
managed separately

Spatial 
topological 
addressing 
Constructs

Are used 
to position

Are used 
to derive 
linear 
extent of

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Layer Data Model

Explicit link

Explicit link

Constructs managed separately, but linked

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Object (feature) Data Model

Constructs managed together

Spatial 
Linear 

addressing 
Constructs

Attribute 
Data 

Constructs

GIS Network Data Model

Explicit link

Linear addressing constructs and topological constructs 
managed together; but spatial and attribute constructs 
managed separately

Spatial 
topological 
addressing 
Constructs

Are used 
to position

Are used 
to derive 
linear 
extent of

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Layer Data Model

Explicit link

Explicit link

Constructs managed separately, but linked

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Layer Data Model

Explicit link

Explicit link

Constructs managed separately, but linked

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Object (feature) Data Model

Constructs managed together

Spatial 
Data 

Constructs

Attribute 
Data 

Constructs

GIS Object (feature) Data Model

Constructs managed together

Spatial 
Linear 

addressing 
Constructs

Attribute 
Data 

Constructs

GIS Network Data Model

Explicit link

Linear addressing constructs and topological constructs 
managed together; but spatial and attribute constructs 
managed separately

Spatial 
topological 
addressing 
Constructs

Are used 
to position

Are used 
to derive 
linear 
extent of

Spatial 
Linear 

addressing 
Constructs

Attribute 
Data 

Constructs

GIS Network Data Model

Explicit link

Linear addressing constructs and topological constructs 
managed together; but spatial and attribute constructs 
managed separately

Spatial 
topological 
addressing 
Constructs

Are used 
to position

Are used 
to derive 
linear 
extent of

Grid Cell

Pixel

Polygon

Ring (a (series of) 
closed chain(s))

Polyline

Line

Node (topological connector)

Point

Grid Cell

Pixel

Polygon

Ring (a (series of) 
closed chain(s))

Polyline

Line

Node (topological connector)

Point

…………

…………

…………

…………

…………

Attr4Attr3Attr2Attr1

Attribute column

Re
la

tio
na

l t
ab

le tuple

…………

…………

…………

…………

…………

Attr4Attr3Attr2Attr1

Attribute column

Re
la

tio
na

l t
ab

le tuple

Figure 2-3: Common GIS models 
  Figure 2-4: Data representation in GIS. 

 
Top: Graphic depiction of spatial data 
constructs.  
Down: Graphic depiction of attribute 
data constructs. 

 
 

 

Bundling characteristics allows for easier data manipulation. Not bundling 

them allows for easier data management. The primitive spatial data constructs in 

layer, object, and network models include: point, node, segment, chain, ring, 

polygon, cell, and table (Figure 2-4). The primitive data constructs in the relational 

data model include: table (relation), tuples, and columns. These basic constructs are 

combined in various ways to form the layer, object, and relational models. 
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There are six different types of layer models. These types include: irregular or 

regular sampled points, contours, polygons, grid cells, and triangular nets. The 

irregular or regular sampled points are composed usually of points in X, Y, and Z 

space with an attached attribute. Contours are (X, Y) points with implicit segments, 

the aggregate sequence of points having an attached attribute, usually for terrain 

elevation or water depth. The polygon model is composed of topological chains (also 

called arcs or edges in some systems) that form a ring (closed boundary) around 

individual areas, with all areas together exhaustively covering a spatial extent, having 

no overlaps or gaps between polygons. The grid cells are areas (usually of the same 

rectangular size) exhaustively covering a surface. Triangular nets are (usually) 

irregularly spaced points that form vertices of triangles, whose sizes are optimised to 

cover a surface (with no gaps or overlaps) for the most effective representation. 

Goodchild (1992) discussed the layer models in more detail. 

The data management module is connected directly to the data/capture, 

manipulation/analysis, and output/display modules (Figure 2-2). It provides the 

clearinghouse function to pass data between the various modules. One of the major 

reasons that GIS has been so useful is because it provides a mechanism to manage 

large volumes of spatially related data in a systematic fashion. Originally the graphics 

were acceptable, but computer-assisted cartography was better. The analytical 

capability was acceptable, but spatial models (in many different disciplines) provided 

for better analysis. For this reason the GIS often had been referred to as a database 

engine. With the advances in graphics and analysis incorporated into many GIS in 

recent years, this view has changed. Some organizations look at the GIS as a graphics 

engine, while others look at it as an analytical engine. Nonetheless, the GIS cannot 

do everything; it would be too expensive if it did. 

One of the functions that are still poorly performed in GIS (if not missing) 

is those functions deal with time (temporal dimension). Geographic phenomena 

are depicted as a 'static' map displaying information of the real world at a particular 

time, but geographic processes are dynamic. Although the concept of storing unique 

attribute information linked to objects within a GIS is fundamental, adding the time 
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element raises some intriguing questions and presents new difficulties. There have 

been many attempts to add the temporal dimension to the GIS. In the following 

section we explore the concept of the temporal GIS and review its strengths and 

weaknesses. The aim is to understand the significance of time in GIS and the 

feasibility to perform simulation modelling. 

2.3.3 Significance of Time in GIS 

Time has fascinated humans for generations, serving as the eternal medium 

through which we pass. It is also a dimension in the GIS field that is getting more 

attention now than ever. Throughout the geography literature, many researchers 

have studied temporal progressions in an analytic manner. There are for example 

the studies of innovation and diffusion [Hägerstrand, 1952], which in turn led to 

the ideas of "Cellular Geography" [Tobler 1979] and "Cellular Automata" 

[Couclelis 1985].  

Furthermore, there is Hägerstrand's more qualitative study of the effects of 

time and space on people that he termed "Time Geography" [Hägerstrand 1962; 

1970]. He examined space and time within a general equilibrium framework, in 

which it is assumed that every entity performs multiple roles; it is also implicitly 

admitted that location in space cannot effectively be separated from the flow of time. 

In this framework, an entity follows a space-time path, starting at the point of birth 

and ending at the point of death. Such a path can be depicted over space and time by 

collapsing both spatial and temporal dimensions into a space time path. Time and 

space are seen as inseparable. 

In the last 15 years, there has been a fair amount of research and debate on 

the subject of time-integrative GIS, predominantly from a technical perspective. 

Many design proposals and even some intriguing prototype software solutions 

were presented. However, not much has been accomplished in the real world, 

although potential applications of temporal GIS abound. 
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Although most conventional texts on GIS still try to avoid the complex issues 

raised by the integration of time into GIS, there are a few exceptions to the rule. Gail 

Langran (1992) wrote a seminal work on "Time in Geographic Information Systems", 

reviewing and discussing many of the possibilities and technologies in detail. Other 

substantial contributions continue to come from Peuquet and MacEachren (1998), the 

members of the GeoVISTA centre at Penn State University. The discussion on 

temporal GIS has profited from the GIS-Data initiative sponsored by the European 

Science Foundation and the national research councils of 14 European countries. 

In general, a temporal GIS maybe defined as an attempt to store and analyse 

spatial objects and changes in their attributes through time [Castagneri 1998]. Every 

spatial object used in a GIS has a temporal validity as well as one or many attribute 

values. The entity of a spatio-temporal process may change its spatial representation 

over time as well as its spatial relationship to other entities. In addition, the related 

attribute information may be subject to changes throughout time. All spatial objects in 

a GIS are in the first instance defined by their spatial representation. This 

concentration on the spatial aspect of an object as the focal point of the 

conceptualisation of a spatio-temporal process in a GIS neglects the fact that Time 

and Space are equivalent dimensions.  

Thomas Ott and Frank Swiaczny (2000), Monica Wachowicz (1999), and May 

Yuan (1996) gave an overview of different approaches of the conceptualising of time 

related to spatial objects in a GIS. In this context "the concept of time implies that 

changes occur throughout the present, the past and future of the life span of a real-

world phenomenon. The temporal GIS would aim at understand these changes and 

their effects over time rather than simply reproducing them by displaying a sequence 

of snapshots" [Wachowicz and Healey 1994]. According to Langran (1993) the 

following major functions of a temporal GIS can be distinguished: 

• Inventory: Storing a complete description of the study area, and accounting for 
changes in both the physical world and computer storage. 

• Analysis: Explaining, exploiting, or forecasting the components contained by 
and the processes at work in a region. 
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• Updates: Superseding outdated information with current information. 
• Quality control: Evaluating whether new data are logically consistent with 

previous versions and states. 
• Scheduling: Identifying or anticipating threshold database states, which trigger 

predefined system responses. 
• Display: Generating static or dynamic map, or a tabular summary of temporal 

processes at work in region. 
 

To realize these functions in the conventional GIS, temporal information for 

objects must be added to the logical data models used in GIS. Different approaches to 

do so are discussed in [McBride et al., 2002]. "Thus, while great progress has been 

made in developing data models for GIS that go beyond the time slice approach, the 

creation of a truly spatio-temporal GIS remains an unmet challenge" [Couclelis 

1999]. The integration of time in existing desktop GIS packages is an even greater 

challenge today. As a prerequisite for this attempt, basic concepts have to be utilized. 

These basic concepts are explained in the following paragraphs. 

Temporal Data representation in GIS 

Many GIS data models have been proposed to involve temporal information. 

Their general frameworks use a set of geometry-based spatial objects to represent 

reality. Thematic characteristics are represented as attributes of spatial objects. 

Temporal information is either associated with time-stamped individual layers, such 

as the Snapshot Model [Armstrong, 1988], or individual spatial objects, such as the 

Space-Time Composite Model [Langran and Chrisman, 1988]. 

In the snapshot model, every layer is a collection of temporally homogeneous 

units of one theme (Figure 2-5). It shows the states of a geographic distribution at 

different times without explicit temporal relations among layers. Time intervals 

between any two layers may vary and there is no implication for whether changes 

occur within the time lag of any two layers. The Temporal Map Sets (TMS) [Beller et 

al., 1991] model can be seen as extensions of the snapshot model. The design of TMS 

purports to model geographic events in a defined area (Figure 2-6). Events are 

defined as binary TMSs, specifying whether each cell is in or out of the event. These 
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snapshot approaches always result in a large amount of data duplication with 

unchanged properties in space and time. The major drawback is data redundancy and 

the risk of data inconsistency. 

The Space-Time Composites model (STC) represents the world as a set of 

spatially homogenous and temporally uniform objects in a 2D space (i.e., a layer) 

Figure 2-7. Every space-time composite has its unique temporal course of changes in 

attributes. Apparently, space-time composites can be derived by temporal overlays of 

time-stamped layers (snapshots). A space-time composite conceptually describes the 

change of a spatial object through a period of time. Attribute changes are recorded at 

discrete times, although its temporal resolution is not necessarily accurate. The STC 

model is able to record temporality within the largest common units of attribute, 

space, and time (i.e. change in site), but it fails to capture temporality among 

attributes across space (i.e. motion or movement). In addition, updating a database of 

STC requires reconstruction of STC units. Consequently, geometrical and topological 

relationships among STC units change and the whole database, both spatial objects 

and attribute tables, needs to be re-organized. 

The spatio-temporal object model (ST-Object model) represents the world as a 

set of discrete objects consisting of spatio-temporal atoms by incorporating a 

temporal dimension orthogonal to the 2D space (Figure 2-8). Spatio-temporal atoms 

are the largest homogeneous units in which certain properties hold in both space and 

time. A spatio-temporal object can possess changes in both space and time, although 

there is no change occurring within each of its spatio-temporal atoms. Therefore, the 

ST Object model is able to record changes in attributes of a ST-object in both spatial 

and temporal dimensions, together or separately, by projecting its ST-atoms to the 

spatial and/or temporal space. However, gradual changes in space through time are 

unable to be represented in the ST Object model since its ST-atoms are discrete. 

Though the ST Object model is similar to the snapshot model and STC model, it only 

represents sudden changes upon an independent, discrete, and linear time structure. 

None of them are able to portray the concepts about transition, process, or motion. 
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The above attempts indicates the fact that although the debate on temporal data 

models for GIS continues, one thing is clear, that is, GIS users no longer are satisfied 

with static data. From wildfire management to urban growth models, scientists and 

GIS users are wondering of what GIS can do. Despite the potential benefits from 

spatio-temporal GIS applications, current limitations in basic understanding of 

temporal datasets continue to hinder the development of truly useful Temporal GIS 

data models and tools.  

Although the computer technology for spatio-temporal analysis exists, the 

GIS community must undergo a paradigm shift to fully appreciate “spatial 

dynamic GIS” benefits. It is not just a matter of collecting time-based data 

within a GIS, but also developing: A new way of thinking about time in a spatial 

sense; A new way of thinking about feed back loops and delays; A new vision to 

the cause and effect (causality relationships) that draw changes in geographic 

processes.  
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Figure 2-5: An example of the snapshot model [Armstrong, 1988] 

 

 
Figure 2-6: An example of a TMS [Beller et al. 1991] 

 

 
Figure 2-7: An example of an STC layer for burns [Langran and Chrisman, 1988] 

 

 

Figure 2-8: An example of a spatio-temporal object model [Worboys, 1992] 
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2.4 Simulation Modelling Techniques 

The Latin verb simulare means to imitate or mimic. The purpose of a 

simulation model is to mimic the real system so that its behaviour can be studied. The 

model is a laboratory replica of the real system, said another way: a microworld. By 

creating a representation of the real system in the laboratory, a modeller can perform 

experiments that are impossible, unethical, or prohibitively expensive in the real 

world [Sterman 1991]. 

In principle, modelling is a way of solving problems that occur in the real 

world. Modelling allows one to optimise systems prior to implementation. Modelling 

process includes: abstraction (the process of mapping real problems into virtual 

world); analysis and optimization; and mapping the solution back to the real system. 

We can distinguish between analytical models and simulation models. In analytical 

or static models the result functionally depends on the inputs (a number of 

parameters). It is possible to implement such a model in a spreadsheet. However, 

analytical solution does not always exist, or maybe very hard to find. Then simulation 

or dynamic modelling may be applied. A simulation model may be considered as a 

set of rules (e.g., equations, flowcharts, state machines, cellular automata) that define 

how the system being modelled will change in the future given its present state. 

Simulation is the process of model “execution” that takes the model through discrete 

or continuous state changes over time. In general, for complex problems where time 

dynamics is significant, simulation modelling is the best answer.  

In the simulation modelling literature, there is a mix of use regarding the 

terminology. We found terms are used in different ways that create some confusion. 

Thus, to make sure we all agree on terms, we consider the following paragraph:  

There are two theories underlay the simulation modelling paradigms, the 

control theory and the complexity theory [Scholl, Hans J. 2001]. These theories stand 

behind two major nonlinear modelling methodologies, the System Dynamics and the 

Agent-based modelling respectively (Scholl called them modelling techniques). 
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Simulation models use two different techniques, continuous simulation and discrete-

event simulation (some references identified Cellular Automata as a third technique, 

while others consider it as a method). Models can fall in two types, deterministic and 

stochastic. Finally, the three popular SD modelling tools are Stella, Powersim, and 

Vensim, whereas Swarm, Echo, and Xraptor are three development toolkits that help 

developing and implementing Agent-Based models. 

Despite the distinctions between the simulation models, all of them share a 

common approach to modelling [Sterman 1991; 1994]. As Sterman stated “A 

simulation model does not calculate what should be done to reach a particular goal, 

but clarifies what would happen in a given situation”. The purpose of the simulation 

may be foresight (predicting how systems might behave in the future under assumed 

conditions) or policy design (designing new strategies or organizational structures and 

evaluating their effects on the behaviour of the system). In other words, simulation 

models are “What-If” tools. Often, such “What-If” information is more important 

than knowledge of the optimal decision [Sterman 1991]. 

Frenkiel and Goodall described the relationships between the major simulation 

techniques as shown in Figure 2-9. For situations where the system being studied 

contains a number of separate items each of them has its own characteristics and 

period of existence within the system, discrete-event simulation is often appropriate. 

In discrete-event technique, changes in the state of the system are conceptualized as 

taking place in discrete jumps corresponding to the arrivals, departures, or other 

critical changes in status of the individual items. This approach could, for instance, 

appropriately be used in modelling demographic processes in a small population 

where each birth and death is to be noted separately [Frenkiel and Goodall 1978]. 

This contrasts with the continuous simulation technique where the changes are 

thought of as taking place in a continuous manner (although they may be 

programmed in terms of discrete equations). System Dynamics models are 

continuous models, they do not model discrete events, rather they "view separate 

events and decisions as riding on the surface of an underlying tide of policy, 

pressures, and dynamic pattern" [Richardson, G. P., 1991 p. 323].  
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Figure 2-9: Relationships between the major simulation approaches. 

Source: Frenkiel and Goodall 1978. 

Where the number of separate items is sufficiently large, and only their average 

or groups’ behaviour is of interest, a continuous simulation model may still be 

appropriate. But where it is essential to follow the fortunes of each item and preserve 

its individuality, the discrete-event form is usually necessary. So far, continuous 

simulation models have been the choice in the majority of environmental 

applications, but recently more use of discrete-event simulation introduced through 

Cellular Automata and Agent-based simulations as well. 

Simulation models can be typified as deterministic or stochastic. In a 

deterministic model the state of the system at the next time step is entirely defined by 

the state of the system at the current time step and the transfer functions used. In a 

stochastic model there may be several future states corresponding to the same current 

state. Each of these future states may occur with a certain probability [Radzicki, 

Michael J. 1990a, 1990b: U.S. Department of Energy, 1997].  

 



The Background Theory 65

2.4.1 Major Paradigms in Simulation Modelling 

Borshchev and Filippov (2005) identified the major approaches (paradigms) in 

simulation modelling as shown in Figure 2-10. The approaches are arranged on a 

scale with respect to the typical level of abstraction of the corresponding models. The 

approaches are: System Dynamics (SD), “Discrete Event” (DE) (they consider it as 

an approach), and Agent Based (AB). There is also Dynamic Systems (DS) field, but 

it stays a bit aside as it is used to model “physical” systems. Technically, SD and DS 

deal mostly with continuous processes whereas DE and AB work mostly in discrete 

time (i.e. jump from one event to another).  

 
Figure 2-10: Approaches (Paradigms) in Simulation Modelling on Abstraction Scale. 

Source: Andrei Borshchev and Alexei Filippov (2005) 

Based on how approaches correspond to abstraction, Dynamic Systems or “physical” 

modelling is at the bottom of the chart. System Dynamics (dealing with aggregates) is 

located at the highest abstraction level. Discrete Event modelling is used at middle-low 

abstraction. As for Agent Based modelling is used across all abstraction levels.  

Historically, SD, DS and DE have been taught at universities to very distinct 

groups of students such as management, control engineers, and industrial engineers. 

As a result, they currently exist as three separate practitioners’ communities (three 

different worlds) that never talk to each other. AB until recently has been almost 
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purely academic topic [Borshchev and Filippov, 2005]. Borshchev and Filippov claim 

that: “the increasing demand for global business optimization have caused modellers 

to look at AB and combined approaches to get deeper insight into complex 

interdependent processes having very different natures. Therefore, there is a request 

for platforms that would allow for integration and efficient cooperation between 

different modelling paradigms.” 

Scholl (2001) pointed to the same issue, as he put it: “Agent-based and System 

Dynamics modelling, Rather than benefiting from one another, the two disciplines 

ignored each other’s literature almost entirely. This is even more remarkable since the 

study areas significantly overlap. Still, results were seldom compared nor shared.” 

Scholl called for closing this gap and for bringing the two literatures into contact.  

We believe that the reason of this deviate maybe because the theories behind 

these disciplines are different (as we will see in the coming paragraphs). Another 

reason could be the purpose of each approach (the ultimate goal). However, 

combining or merging the approaches and inspecting how they can fit together is 

beyond this research. What is important here is to understand the relative strength and 

weaknesses, similarities and distinctions among the major modelling disciplines. This 

would: (1) remove the confusion that one might fall in due to the similarity; (2) 

answer the question that one might ask (or may raise) about the difference between 

our research objectives (our new method developed) and the prior work that have 

been made by others; (3) provide insight understanding and strengthen the theoretical 

background regarding the simulation modelling. The major simulation modelling 

disciplines described next are System Dynamics, Agent-Based simulation, and 

Cellular Automata. 
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2.4.2 System Dynamics Modelling 

System dynamics approach uses a perspective based on the scientific concept 

of information feedback and mutual or recursive causality to understand the dynamics 

of complex physical, biological, and social systems [Forrester, 1968]. System 

Dynamists attempt to understand the basic structure of a system, and thus understand 

the behaviour it can produce. The underlying concept of feedback is its loop 

structure, or the notion of circular causality. It is worthwhile to recall how traditional 

science establishes causality: "(1) the cause precedes the effect in time, (2) there is an 

empirical correlation between them, and (3) the relationship is not found to be the 

result of some third variable" [Babbie, 1998]. Only relationships satisfying all three 

criteria are recognized as causal by traditional researchers. 

The existence of causal relationships governing the behaviour of the system 

is the core of the System dynamics modelling [Saleh, M. 2000]. Thus, a closed loop 

of circular causality can be formed.  

The second concept in system dynamics is the accumulation process that is a 

fundamental process in Nature. "Nowhere does Nature differentiate; in real systems, 

dynamic change arises only from accumulation, that is, integration” [Forrester, 1980]. 

Thus, the focus is on the accumulation (integration) process, rather than the 

differentiation process.  

The Endogenous Origin of Cause is the third concept.  This implies the 

existence of other concepts such as: closed causal boundaries, feedback, and 

nonlinearity. This concept dictates that the root causes of a "solvable problem" 

associated with a particular system are contained within the internal structure of the 

system itself. A solvable problem means that behaviour can be adjusted (controlled) 

by human intervention. As long as the problem of interest is a solvable one, then the 

root causes of the problematic behaviour are not a consequence of unavoidable 

exogenous disturbances, but rather arise from the complex relationships of the 

structure of the system.  
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The endogenous concept necessitates the presence of a closed causal 

boundary for the system. This closed boundary separates the dynamically significant 

inner workings of the system from the dynamically insignificant external 

environment. While, in general system theory a closed system is defined as a 

materially closed one, in system dynamics a closed system is defined as a causally 

closed one. A system dynamist looks for the boundary that encompasses the smallest 

number of components within which the dynamic behaviour of the problem is 

generated. Those components are capable by themselves, without exogenous aid, to 

reproduce the essential characteristics of the problematic behaviour. A problem focus 

acts as a critically important filter that screens out unnecessary details and focuses the 

attention on the significant aspects of the system.  

The feedback view of system dynamics can be seen as a consequence of the 

closed causal boundary and the endogenous concept. If feedback loops would not 

presented in a closed boundary system, then all causal links would (at the end) have 

to be connected to exogenous factors outside the boundary of the system. This will 

make the behaviour of the system a result of those exogenous factors. Since system 

dynamists have an internal perspective to problems, the existence of the feedback 

loop concept is inevitable. A feedback loop is defined as a closed sequence of causes 

and effects (circular causality), a closed path of action and information. Also, in 

system dynamics, a feedback system is defined as a one of an interconnected set of 

feedback loops. 

A common feature of a feedback loop is the presence of delay in the flow of 

information and material throughout the loop. For example, the release of water from 

the reservoir does not immediately result in a delivery of water to the last farm at the 

tail of the channel, crops planted cannot immediately be harvested, new ideas take 

time to spread, etc. Delays have the tendency to dramatically change the behaviour of 

the model. “Delays are crucial in creating the dynamic characteristics of information 

feedback systems” [Forrester, 1961, 1985]. The delay in a negative feedback loop can 

exhibit oscillating behaviour, and usually attenuate the amplification power of a 

positive feedback loop. 
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Given the behaviour characteristics of the problems addressed by system 

dynamics, then the endogenous origin of cause concept forces system dynamists to 

include nonlinearities in the structure of their models. To understand the reason, we 

must first understand the behaviour characteristics of the problems that the system 

dynamics program attempts to solve.  

Many problems that the program addresses are characterized by an unstable, 

non-linear, self-limiting behaviour, or in short, complex behaviour. Complex 

behaviour is a typical characteristic of many natural phenomena in the universe. 

Complex behaviour can never be generated, without exogenous aid (the endogenous 

origin of cause concept), by a linear feedback model. A typical control model (recall 

that the control theory is the parent program of system dynamics) will be a linear 

feedback one. That is because most engineering applications do not exhibit such kind 

of complex behaviour. Yet, Forrester [Forrester, 1969] had to step out of the linear 

world into the nonlinear universe to be able to address the problems in real world 

exhibiting complex behaviour. 

In such kinds of complex behaviour, no static view of the feedback loops of 

the model is therefore sufficient. It is necessary for the feedback loops to change 

endogenously their relative strength of influence as conditions (states) change to 

generate such complex behaviour.  

In system dynamics terminology, we call this the ability of the model to 

endogenously shift its dominant loops. Dominant loops are loops that are primarily 

responsible for the behaviour of the model over an interval of time. Loop dominance 

usually shifts among a number of loops in the course of time. For example, the self-

limiting behaviour (the so-called S-shaped behaviour) can be generated by two 

coupled feedback loops. One loop is positive and the other one is negative. In the 

beginning the positive feedback loop is dominant and this generates the exponential 

growth behaviour and then, as the model changes its state, the negative feedback loop 

dominates and the saturation behaviour results. 
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The endogenous shift in loop dominance takes place as a consequence of 

nonlinearities in the equations defining the model's structure. If these equations were 

linear, no such shift in loop dominance would occur, and only one fixed set of loops 

will continuously dominate the model. In system dynamics, we expect models to 

change their dominant structure over time. Consequently, the focus is on nonlinear 

models [Forrester, 1987]. 

Structural changes are considered to be significant and are handled quite 

differently in cybernetics and in system dynamics modelling. In traditional 

cybernetics, structural changes are captured linguistically and sometimes 

diagrammatically, for example by redrawing the system structure. In the more 

quantitative program, the system dynamics program, structural changes are 

represented by endogenous shifts in loop dominance, which are capable of changing 

the active structure over time [Forrester, 1987]. 

It is assumed that there is a hidden meta-loop between structure and behaviour 

[Davidsen, 1991]. Shift in loop-dominance is a result of the dynamic behaviour of the 

model itself. These shifts in loop dominance change the active structure of the model. 

As the active structure changes, so does the dynamic behaviour of the model, which 

in turn further shifts the dominance of the loops, and so on. Understanding the 

mechanisms of this meta-loop is the principle outstanding problem in the system 

dynamics program. The goal is to understand the mechanisms of this hidden meta-

loop in the model first (i.e. assuming that the model is our virtual world), then to 

reflect our understanding of the model on the real system. As Davidsen (1991) put it: 

“System dynamics has a great potential in describing the complexity of the real world 

(something that many modelling programs lacks), yet currently the explanatory 

power of system dynamics is not adequate. The major challenge, in future, for the 

system dynamics program, is to develop new concepts and tools that can enhance the 

explanatory power of the program through innovative ways of "tracing" in depth the 

mechanisms of this hidden meta-loop; otherwise the program is under the threat of 

reaching a crisis state”. 
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Finally, in the context of the model structure and complexity, the system 

components may coexist in the space. Environmental systems for example do have an 

obvious spatial dimension. In other words, the structure of the system is often 

distributed geographically. Consequently, space maybe substantial part of the 

structure and maybe considered as a structural component in the system, and to 

understand the environmental processes, and the relationship between the structure 

and the behaviour, we must concern ourselves with the spatial dimension which is 

significant and prominent aspect of the structure of the system.  

Despite the fact that spatial dimension is crucial for environmental 

modelling, the spatial dimension has not explicitly represented in system 

dynamics. It has not been given the attention it deserves with respect to its 

significant role; presumable it plays often in real life. The system dynamists 

focus on the behaviour of the system, but when focusing on the structure of the 

system, relatively few system dynamists concern themselves with the space as a 

structural component; and take the spatial dimension explicitly into 

consideration, the way we typically do when we utilize geographical information 

systems. The reason for that might be the lack of a mechanism that represents 

the spatial dimension explicitly, properly and efficiently in system dynamics. 

Creating such mechanism is a major challenge. 

2.4.3 Agent-Based Modelling 

As opposed to the concept of feedback and circular causality in system 

dynamics modelling, is the concept of emergence and Agent-Based modelling. The 

aim of the Agent-Based (also known as Entity or Individual-based) modelling is to 

look at global consequences of individual or local interactions in a given space 

[Reynolds, 1999]. Agents are seen as the generators of emergent behaviour in that 

space [Holland, 1999]. Interacting agents, though driven by only a small set of rules 

that govern their individual behaviour, account for complex system behaviour whose 

emergent dynamic properties cannot be explained by analysing its component parts. 

In Holland's words "The interactions between the parts are nonlinear; so the overall 
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behaviour cannot be obtained by summing the behaviours of the isolated components. 

Said another way, there are regularities in system behaviour that are not revealed by 

direct inspection of the laws satisfied by the components". Emergence, thus, is 

understood as the property of complex systems where "much (is) coming from little" 

[Holland, 1991, 1999]. Emergence is the focal point of what now is called the theory 

of Complexity [Phelan, 1999]. 

Agent-Based models consist of a space, framework, or environment in which 

interactions take place and a number of agents whose behaviour in this space is 

defined by a basic set of rules and by characteristic parameters [Reynolds, 1999a]. 

Some Agent-Based models are spatially explicit meaning that agents are associated 

with a location in geometrical space. Some spatially explicit agent-based models also 

exhibit mobility, where the individuals can move around their environment. This 

would be a natural model, for example, of an animal in an ecological simulation, 

whereas plants in the same simulation would not be mobile. Spatially explicit models 

may use either continuous (real valued) or discrete (integer valued, grid-like) space. 

However, not all models need to be spatially explicit (i.e. location does not play any 

role in computer networks simulations). 

Agent-Based models are subset of multi-agent systems, which includes any 

computational system whose design is fundamentally composed of a collection of 

interacting parts. For example an "expert system" might be composed of many 

distinct bits of advice that interact to produce a solution. Individual-based models are 

distinguished by the fact that each "agent" corresponds to autonomous individuals in 

the simulated domain. The emergent dynamic behaviours resulting from Agent-based 

models can be linked with those of other models forming an even higher level of 

complexity and emerging behaviours. In summary, Complexity Theory is the 

"science of emergence" [Waldrop, 1992], and agent-based models are a key element 

for modelling emergent phenomena. 
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2.4.4 Cellular Automata 

Similar to the Agent-Based modelling is the Cellular Automata concept that 

was first introduced by John Von Neumann in the late forties [Von Neumann, 1966]. 

This concept gained popularity three decades later through John Conway's work in 

the game of Life [Fogelman et al., 1987; Toffoli and Margolus, 1987).  

Cellular Automata models of dynamic systems consider a lattice of cells on a 

line (one-dimensional cellular automata) or a uniform grid (two or three-dimensional 

cellular automata), with a discrete variable at each cell. The state of a cellular 

automaton is completely specified by the values of the variables at each cell. A 

cellular automaton evolves in discrete time steps, with the value of the variable at one 

cell being affected by the values of variables at cells in its neighbourhood on the 

previous time step. The neighbourhood of a cell is typically taken to be the cell itself 

and all immediately adjacent cells. The variables at each cell are updated 

simultaneously (synchronously), based on the values of the variables in their 

neighbourhood at the preceding time step, and according to a definite set of local 

rules [Wolfram 1983; 2002]. Since they are based on microscopic behaviour, the 

transition rules are generally quite simple. However, the resulting overall behaviour 

of the system can appear to be quite complex.  

An example for two-dimensional Cellular Automata is shown in Figure 2-11. 

Each cell has two possible states (black and white) and the local neighbourhood of 

the cell is defined by two adjacent neighbouring cells. The transition rules simply 

specify that the state of a cell at time (t+Δt) is equal to the state of its two neighbours 

at time (t) if these have the same state, otherwise the state of the cell will remain 

unchanged. In terms of structure, this computational scheme is similar to the scheme 

employed in the numerical manipulation of partial differential equations. The 

difference is that the state variable at each cell of the lattice is only allowed to assume 

a small set of values, typically, two states per cell and that the transition functions do 

not assume an algebraic form [Hogeweg, 1988] but may be deterministic or 

stochastic.  
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Figure 2-11: 2D Cellular Automata example 

Cellular Automate Applications Example  

Camara et al. (1996) have modelled the predator-prey relationship using a 

cellular automata formulation and compared the results with a traditional differential 

equation based model. A regular time steps were considered for both models. 

Predators and preys were assigned locations in cells in a mosaic representing a 

territory (Figure 2-12). Cyclic boundary conditions were also considered. To simulate 

species growth, a random reproduction and death rules were assumed. Probabilities 

for these rules for both predators and preys were determined based on birth and death 

rate constants. Predators and preys could meet in the same cell. Then, for a certain 

probability, the prey could die. This cellular automata model was implemented on 

personal computer using software that allows the consideration of a spatial 

representation as a background. Objects in this background may interact with the 

predators and preys following appropriate rules.  

Another predator-prey model was developed using iThink [Richmond, 1991], 

considering an initial number of individuals, birth and death rates, for both species 

identical to the ones used in the cellular automata model (Figure 2-12). The results 

from the two approaches are compared in Figure 2-14. Notice that while the cellular 

automata model continues to perform oscillations, the iThink model stabilizes. 
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Figure 2-12: Object representation of a predator-prey Cellular Automata model. 

 

 
Figure 2-13: iThink predator-prey model. 

 

 

Figure 2-14: A comparison between CA model run and the iThink model run. 
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The distinctions between CA and Agent-Based modelling can be seen in many 

parts. First, Agents have more freedom to navigate and explore their spatial 

environments than the individual finite state machines that comprise CA are, simply 

because their spatial behaviour is not constrained by a lattice and interaction can be 

mediated beyond the neighbourhood.  

Second, Agents possess true mobility within their virtual spaces, some discrete 

confines that separate them from the environment in which they exist. This boundary 

need not be cellular, although this is one of the forms that agents may take. In this 

way, agents can be designed to mimic, for example, any urban entity (e.g., individual 

inhabitants, businesses, vehicles, etc.), allowing for a much richer range of spatial 

processes to be represented than is possible in CA.  

Third, in CA, information exchange is mediated through the neighbourhood. 

While in Agent-Based models, the exchange of information is much more explicit 

(Figure 2-15). Agents can communicate with other agents as well as with their 

environments. Indeed, specific computer languages and protocols have been devised 

to cater to agent communication, e.g. Knowledge Query and Manipulation Language 

(KQML). The potential channels for interaction are therefore much greater within 

Agent-Based models when compared to CA. 

 
Figure 2-15: The exchange of information in Agent-based models. 
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Reynolds also makes clear the relationship between Agent-Based systems and 

CA by stating that “There is an overlap between individual-based models and cellular 

automata. Certainly, cellular automata are similar to spatially explicit, grid-based, 

immobile individual-based systems. However, CA models are always homogenous 

and dense (all cells are identical), whereas a grid-based individual-based model might 

occupy only a few grid cells, and more than one distinct individual might live on the 

same grid. Perhaps the significant difference is whether the simulation's inner loop 

proceeds cell-by-cell, or individual-by-individual. The philosophical issue is whether 

the simulation is based on a dense and uniform dissection of the space (as in a CA), 

or based on specific individuals distributed within the space” [Reynolds, 1999]. 

Challenges Facing Cellular Models 

Camara et al., (1994) stated that Cellular Automata appear to be a promising 

approach to simulate spatial phenomena. They concluded that in some situations (e.g. 

water quality and forest fire propagation modelling) the results obtained with cellular 

automata were similar to the ones obtained with the traditional models. They 

proposed cellular automata models to replace differential equation based models 

[Toffoli and Margolus, 1987]. However, these attempts show that for process-based 

models, the definition of cellular automata transition rules might be cumbersome. 

Future practical application of cellular automata in these cases will certainly require 

built-in transition rules.  

For a predator-prey problem, the cellular automata model has used a simple 

transition rules. For this problem, transition rules such as attraction and repulsion will 

have to be developed. Naturally, the spatial nature of the cellular automaton model 

made it produce different results from the conventional differential equation lumped 

model.  

Future developments should not be centred only on transition rules. The 

modelling of more complex systems will require the handling of a larger number of 

interacting bit planes. Extensions to three dimensions may be also relevant for a 

number of environmental applications.  
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Finally, cellular automata concepts may be extended to simulate real or 

symbolic multidimensional objects. Camara’s work points towards that direction by 

simulating pictorial objects defined by position, size and colour. Future work should 

also take into account the shape of objects (basically a set of connected cells).  

2.4.5 Fields of Application and Tools 

System Dynamics modelling has been used in a wide range of fields such as 

biology, ecology, economics, education, engineering, medicine, public administration 

and policy design, law, business administration, psychology, sociology, the military 

among others. System Dynamics has become popular when its general principles of 

feedback thought were presented to a wider audience under the label of systems 

thinking [Senge, 1990]. However, systems thinking can ultimately not be applied 

without rigorous modelling. 

The three popular SD modelling tools are Stella, Powersim, and Vensim. 

Stella is one of the older simulation packages that widely used in K-12 to graduate 

education. Students, teachers, and researchers use Stella "to render, then test, their 

mental models of everything from how a bowl of soup cools to how a galaxy 

expands…and everything in between" [STELL URL]. A second modelling package is 

Powersim that is "used to create models of processes and competitive markets, 

demonstrate strategies and identify leverage points for managing change" [Powersim 

URL]. The modeller can also "import historical information, experiment with future 

scenarios and develop the best long-term strategy". A third modelling software 

package is Vensim, which is used for developing, analysing, and packaging high 

quality dynamic feedback models [Vensim URL]. Models are constructed graphically 

or in a text editor. The features provided by Vensim include: dynamic functions, 

subscripting (arrays), Monte Carlo sensitivity analysis, optimization, data handling, 

and application interfaces. 

Agent-Based models are applied to an equally wide range of fields as System 

Dynamics modelling. Typical fields are ecology, biology, anthropology, artificial 
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societies, psychology, sociology, economics, traffic and vehicle simulations, 

animation and interactive media, and the military applications. There are currently at 

least three development toolkits that help develop and implement agent-based 

models: Swarm was originally developed at the Santa Fe Institute. It is a package for 

multi-agent simulation of complex system and a "tool for researchers in a variety of 

disciplines, especially artificial life. The basic architecture of Swarm is the simulation 

of collections of concurrently interacting agents" [Minar et al., 1996]. Echo is 

another package widely used for ecological simulations. It is a simulation tool 

developed to investigate mechanisms that regulate diversity and information 

processing in systems comprised of many interacting adaptive agents, or complex 

adaptive systems (CAS) [Echo URL]. XRaptor is a third tool, which is an 

environment for simulation of scenarios in continuous virtual multi-agent worlds. It is 

written in C++. XRaptor allows studying the behaviour of agents in different 2D or 

3D continuous worlds [XRaptor URL]. 

2.4.6 Relative Strength and Weaknesses 

The major differences between the modelling disciplines also mark their 

relative strengths and weaknesses. In SD modelling, the feedback loop is the unit of 

analysis as seen earlier. Dynamic systems are deductive, in that, they are described by 

their feedback structure at an aggregate level. That is, individual agents or events do 

not matter much in SD models, since the dynamics of the underlying structures are 

seen as dominant. Feedback structures, for example in social science fields of study, 

can become subject to controversy since perspectives on a problem and perceptions 

thereof may differ widely. 

Constructing models, hence, is a process in which expert consensus regarding 

the feedback structure is essential to the credibility of any given model. If the 

feedback structure of a model captures the structure of a system insufficiently, the 

resulting insights may be faulty, even if the model matches historical data of the 

modelled system to some degree. 
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On the other hand, if the model does represent the systemic problem 

sufficiently, leverage points for intervention can be identified fairly effectively. This, 

however, is not possible at an individual rather than an aggregate level. 

Agent-Based modelling focuses on individuals who interact on the basis of 

generally simple rules. The resulting emergent behaviour of such agents as a complex 

system is the basic unit of analysis. The approach is inductive. The researcher may 

modify rules and environmental parameters and then try to understand what the 

resulting outcomes are with regard to the emergent behaviour of the overall system. 

As long as rules are known or can be discovered by some sort of observation, 

the modelling and testing of such emergent structures is a relatively straightforward 

process. However, once the reverse direction of study is employed, that is, a complex 

aggregate behaviour of a system has been observed, and now its agents and the rules 

by which they interact shall be identified, the process can be anything but 

straightforward. "Discovering" agents and rules and then building a model, which in 

turn is capable of mimicking the previously observed dynamic behaviour, may 

become a very tedious avenue of research. If rules and agents are identified, leverage 

points can be found at an individual level that may influence the complex aggregate 

behaviour of a system significantly. 

Both techniques aim at discovering leverage points in complex aggregate 

systems, modellers of agent-based models seek them in rules and agents, while SD 

modellers do so in the feedback structure of a system. 

2.4.7 Concluding Remarks  

System Dynamics and circular causality on one hand, and Agent-Based and 

complexity theory on the other hand, have both produced rich bodies of research and 

literature on widely overlapping fields of application. Both have a high capacity of 

explanatory power. The cross study of these bodies of literature is overdue. Results 

on identical or neighbouring research topics must be compared. 
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Individual-based modelling and aggregate feedback modelling may 

complement each other in ways that are unimagined from today's perspective. The 

comparison of results in the same subject areas will most probably lead to some fine 

insights. It would also be desirable to see an Agent-Based implementation for some 

SD classic models such as the "beer game" which, in particular, may have the 

potential to become a classic in the agent-based modelling field as well. Testing 

techniques are a starting point for more active and mutually influential collaboration 

[Senge, 1990; Singe et al, 1994]. 

 

2.5 Object Orientation  

“Object-oriented methods cover methods for design and methods for analysis. 

Sometimes there is an overlap, and it is really an idealization to say that they are 

completely separate activities” [Graham, 1994]. 

 In searching for a more effective model to represent the dynamic world, 

Peuquet and Duan (1995) proposed an Event based Spatial-Temporal Data Model 

(ESTDM) for temporal analysis of the geographical data. The data model takes into 

consideration the changes to the location and/or other properties associated with the 

time-line. 

 Among many methodologies proposed, the approach that is repeatedly 

proposed as a better solution for modelling the dynamic world is the object-oriented 

paradigm. Tang et al., (1996) proposed a system based on geographic features, in 

which the semantic feature objects form the basis of the system. Geographic locations 

are properties of the geometric objects that are encapsulated by the semantic features. 

Takeyama and Couclelis (1997) presented a similar design philosophy. Both were 

applied to a cellular automata system.  

 Raper and Livingstone (1995) outlined another design for modelling 

natural processes. The design bases the representation of real world on form, process, 
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and material objects. Geographic location and time are treated as properties of the 

objects. They claimed that both feature-based and time-based designs allow easier 

handling of spatial and temporal dynamics of entities or phenomena. These designs, 

and especially the ones that focus on features in dynamic progress, are particularly 

adaptive to modelling processes. This design is consistent with the vision of the 

Open-GIS consortium as well [OGIS, 1996; Buehler and McKee, 1996]. 

Object-orientation is perhaps the most effective framework that can embrace 

both System Dynamics and GIS models in a single coherent information system 

because both geographical features (spatial entities) and system components can be 

represented as Objects that have properties and behaviours (methods). 

Conceptually, within the Object Oriented framework, the entities of the 

phenomena of interest form the essential objects. These objects are linked through 

associations. The location (represented by geographical coordinates) and the time 

(represented by points in time and/or time intervals/step) are the properties of the 

objects. Methods are actions that object execute when certain event occurs. Thus, 

with the time advance, object may change/update its location (executed by way of its 

methods) that explicitly leads to state-change of an object. Issues such as 

incompatibility in data resolution, spatial-temporal handling, and dynamic (runtime) 

simulation can be adjusted due to the flexibility of this framework.  

Practically, the Object Oriented framework supports reuse of object class 

libraries, effective spatial and temporal queries, easy interfacing with visualization, 

and flexible customization. These technical advantages support the realization of 

component ware, a concept and practice that is foreseen as the future of the GIS by 

many researchers (e.g. Open-GIS consortium), and the future of the environmental 

modelling as well [Buehler and McKee, 1996].  

2.5.1 A Brief History of Object Orientation  

Object Orientation appeared in the early 1960s as a result of the efforts of Dahl 

and Nygaard, at the Norwegian Computing Centre in Oslo, in creating and 

 



The Background Theory 83

implementing new concepts for programming discrete simulation applications. By 

year 1965 they developed Simula5 on the basis of the ALGOL-60 language, which 

was specifically oriented towards discrete event simulation [Dahl et al., 1966]. Later, 

in year 1967, the same Norwegian team has developed the programming language 

Simula-67 [Dahl et al., 1968], once again an extension of ALGOL-60.  

Simula-67 introduced the basic concepts that characterise existing 

object-oriented programming languages. In particular, the notion of an object class 

defined by its type and the algorithms necessary to represent its actions. It also 

introduced the inheritance mechanisms through which an object class could inherit 

the data and the algorithms from other object classes. 

The concepts introduced by Simula-67 were widely recognized after the 

mid-1970s. The programming language Smalltalk, a result of the work accomplished 

by Kay, Goldberg, Ingals and others at the Xerox Research Centre at Palo Alto 

(PARC), was established as the purest representation of object-oriented concepts 

[Wachowicz 1999]. In Smalltalk everything is perceived as an object, and objects 

communicate with each other by passing messages. Having its origins in Simula and 

the doctoral research work of Alan Kay, Smalltalk has evolved by integrating the 

notion of classes and inheritance from Simula as well as the functional abstractions 

flavour of LISP6. 

There have been five releases of Smalltalk running from Smalltalk-72, 

launched in 1972, to Smalltalk-80, launched in 1980. The other three releases were 

launched in 1974, 1976 and 1980. Smalltalk-V and Smalltalk-AT have also been 

created as dialects from the former Smalltalk developments [Krasner, 1981]. 

Generally, Smalltalk is a complete programming environment, offering features such 

as editors, a class hierarchy, browsers and many of the features of a fourth-generation 

language [Graham, 1994]. According to Booch, “Smalltalk is perhaps the most 

                                              
5 SIMULA [Dahl et al., 1970] - is the first simulation language and contains some constructs, which 
are embryonic forms of those found in the object oriented programming paradigms.  
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important object-oriented programming language, because its concepts have 

influenced not only the design of almost every subsequent object-oriented 

programming language, but also the look and feel of graphic user interfaces such as 

the Macintosh user interface and Motif.” [Booch, 1994] 

Several object-oriented programming languages have been developed, most of 

them having their conceptual foundations based on Smalltalk. These attempts have 

tried to overcome the main inefficiency problems of Smalltalk (e.g. in interpretative 

language, for example, the code is not pre-compiled and executed; the lack of support 

for persistent objects and a distributed multi-user environment) but with the pitfall of 

compromising the purity and consistency of Smalltalk's features. Over 100 

object-oriented programming languages have been developed over the past decade. 

However, as Stroustrup points out: “One language is not necessarily better than 

another because it has a feature the other does not - there are many examples to the 

contrary. The important issue is not how many features a language has, but that the 

features it does have are sufficient to support the desired programming styles in the 

desired application areas” [Stroustrup, 1988; 1998]. Object-oriented programming 

languages are still being developed and it is expected that new languages will emerge, 

acquiring new features rapidly. 

The research and development in artificial intelligence (AI) programming 

environments (from mid-1970s) have also influenced the object-oriented paradigm. 

LISP is one of the main programming languages used in AI systems, and several 

object-oriented extensions of LISP have been created. LOOPS, Common LOOPS, 

FLAVOURS, KEE, ART and New FLAVOURS are some examples in which a 

semantically ample form of inheritance is proposed that differs from the one 

encountered in most object-oriented programming languages such as Smalltalk. In 

these cases, values, in particular default values, can be inherited as well as attribute 

names [Graham, 1994]. 

                                                                                                                                            
6 LISP stands for list processing, originally developed by John McCarthy in 1958 and more recently 
it has been used in artificial intelligence work. 
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With the maturing of the concepts in object-oriented programming languages 

and their practical use in various application contexts, research interests have 

diversified. Focusing on object-oriented design methods, Booch stated: 

“Object-oriented design is a method of design encompassing the process of 

object-oriented decomposition and a notation for depicting both logical (class and 

object structure) and physical (module and process architecture) as well as static and 

dynamic models of the system under design.” [Booch, 1994] 

Significant debate has arisen in this research area concerning whether an 

object-oriented design method can be intrinsically independent of any programming 

language, or whether current design methods are intrinsically associated with specific 

object-oriented programming languages. Most object-oriented design methods reveal 

the influence of Booch's pioneering work [Booch, 1986]. In his original proposal, 

Booch suggested a design method based on some features of the ADA programming 

language, using an object-oriented style. GOOD7 and HOOD8 are examples of 

ADA-derived methods that enforce the top-down hierarchical decomposition 

approach among objects but without the support of inheritance and polymorphism. 

Also influenced by Booch's work, OOSD9 provides a hybrid, low-level 

notation for logical design of object-oriented methods in general. Although designed 

to be an independent language, OOSD has not been extended to a consistent object-

oriented notation due to its inability to deal with complex data structures and large 

numbers of methods. OODLE10 is another example of a language-independent 

notation, which advocates four interrelated diagrams in order to support the 

Shlaer-Mellor approach to object-oriented design. Booch's revised design method 

[Booch, 1991; 1994] probably gives probably the most incisive and comprehensive 

prospect of an object-oriented design method. His method improves the concepts of 

                                              
7 General Object-Oriented Design method developed at NASA. 
8 Hierarchical Object-Oriented Design method developed at the European Space Agency. 
9 Object-Oriented Structure Design introduced by Wasserman, Pircher and Muller (1990). 
10 Object-Oriented Design Language is a design-specific component of the Shlaer-Mellor method 
(Shlaer and Mellor, 1988). 
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object orientation and their respective notations as a whole, overlapping with the 

concepts of object-oriented analysis. 

Other research innovations have emerged from the synergy between object-

oriented programming and database management systems. This has generated a 

potential mechanism for representing, storing, organising, sharing and recovering 

objects that include multiple complex data types and associated methods and 

functions. Object-oriented database systems (OODBS) have developed capabilities 

such as persistence, long transactions and versioning, unlike most traditional 

relational database management systems. By combining database functionalities with 

object-oriented programming, OODBS has become an expressive device for 

multimedia applications, client-server systems as well as GIS, CAD, engineering and 

manufacturing systems. 

Object-oriented databases have emerged as commercial products. ONTOS,11 

O2,12 GemStone,13 ObjectStore14 and ORION15 are some examples of 

object-oriented databases, although their capabilities can differ widely. These 

object-oriented databases have in common basic characteristics such as methods 

associated with objects, inheritance of attributes and procedures from super-types 

(super-classes), and the ability to define the type (class) of objects, their attribute 

types and relationships. However, they differ substantially in their query languages. 

The significant differences between them probably result from the fact that OODBS 

have been elaborated using programming languages for their data models as points of 

departure. Sometimes declarative query languages are only introduced after the initial 

implementation. “The lack of a standard or a formal background for object-oriented 

                                              
11 ONTOS is a product of Ontologic, Billerica MA, which enhances C++ with persistent objects. 
12 O2 is a commercial product of GIP Altair, Le Chesnay, France. It reveals strong Prolog influences. 
13 GemStone is a product of Servio Corporation, Alameda CA and Beaverton OR. It has been built 
onto an extension of Smailtalk-80 known as OPAL. 
14 ObjectStore is a product of Object Design, Burlington MA, based on C++ programming language. 
15 ORION is a commercial product of Itasca Systems, Minneapolis MN, which extends LISP with 
object-oriented capabilities. 
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query languages has caused differences in query language syntax, completeness, SQL 

compatibility and treatment of encapsulation” [Cattell, 1991].  

Object-oriented databases also offer the possibility of storing and manipulating 

all data pertaining to a GIS application in the same manner. By contrast, in relational 

databases, spatial data cannot be so readily stored and their integration with other 

systems is cumbersome. Chance, Newell and Theriault (1992) advocate the benefits 

of object-oriented concepts in developing a seamless environment. In the case of 

ArcGIS, object-oriented database capabilities have been implemented by front-ending 

a version-managed tabular data store with an object-oriented language named VBA 

(Visual Basic for Applications). In this environment, system programming, 

applications development, system integration and customisation are all written using 

the same object-oriented programming language, VBA. “Object-orientation does not 

just mean that there is a database with objects in it, but that the system is organised 

around the concept of objects which have behaviour (methods)” [Chance, Newell, 

and Theriault 1992].  

Following the proliferation of research on object-oriented programming and 

database management systems, object-oriented analysis methods have been gradually 

developed as an approach to improving our understanding of the concepts, activities, 

rules and assertions of the object orientation paradigm. “Object-oriented analysis is a 

method of analysis that examines requirements from the perspective of the classes 

and objects found in the vocabulary of the problem domain” [Booch, 1994]. Within 

the object orientation paradigm, methods developed for design are frequently 

applicable to analysis, and vice versa.  

Computer Aided Software Engineering (CASE) has become increasingly 

important as a graphical tool for supporting object-oriented analysis and design 

methods. CASE tools have been variously regarded with enthusiasm or with 

scepticism regarding whether there is any advantage to be gained through their use. 

An increasing number of software products for CASE tools are under 

development based on the composition of graphical symbols and notations depicting 
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the semantics and features from the object-oriented analysis and design methods. The 

most important benefits of using CASE tools are their ability to generate code 

automatically and enhance productivity. However, CASE tools can restrict innovative 

kinds of application, where the rules and methods provided by CASE tools are 

inappropriate or even non-existent. The main examples of CASE tool systems 

available in several platforms and operating systems are the ROSE tool supporting 

Booch's method. Object Maker supports a vast range of conventional and 

object-oriented methods including Booch, Coad-Yourdon, Shlaer-Mellor, Rumbaugh-

Hood. OOA-Tool supports Coad-Yourdon method. 

Object-oriented paradigm (with its origins in computer simulation domain) is 

perfectly suited to the fundamental requirement for the GIS applications. A GIS 

should facilitate abstract representations of real world objects that are 

understandable and easy to use. It is natural to represent spatial entities as objects in 

the application. The paradigm also greatly reduces the problem of redundancy as it 

supports the usage of the same model in different phases of application development. 

GISs request persistence storage of objects. Therefore, the ideal solution is to use an 

OODBMS to store data. 

2.5.2 Object Oriented Concepts 

Object-oriented programming uses fundamental constructs called objects to 

represent real-world concepts. An Object is an abstraction of an entity in the real 

world. It reflects the information about the entity and methods for interacting with it. 

Objects possess both a data structure and behaviour. An object’s data structure is 

described by its properties or attributes. A property is a descriptor for an object that 

may take on different values. For example, a river object could be described by a 

width property. An object’s behaviour is also known as its methods or operations. A 

method is a task that an object performs in appropriate situations. For instance, a river 

object might have a method that routes a hydrograph through it. A Class is a 

description of a set of objects describable with a uniform set of attributes and 

methods. A class therefore represents a generalization of a set of objects with 
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common properties and behaviour. Objects are instantiated (generated) from this 

description. 

Object-oriented development is a thought process and is largely independent 

of its actual implementation in a programming language. By focusing first on the 

design of objects rather than implementation, designers can create objects that best 

model the relevant aspects of their real counterpart. An object-oriented approach 

generally includes four concepts: identity, classification, polymorphism, and 

inheritance [Rumbaugh et al., 1991].  

Identity refers to the quantification of data as discrete objects. Objects can 

represent both concrete entities such as a reservoir, or concepts such as a reservoir 

operating policy [Rumbaugh et al., 1991].  

Classification refers to the grouping of objects with the same properties and 

methods into a class. The class defines the properties and methods for the objects, 

with each object representing an instance of the class. In a water resources 

application, an example of a class might be a reservoir, while the High-Dam Lake 

would be example of reservoir object. Although each reservoir object contains the 

same properties, such as the name of its managing agency, the values of the 

properties may differ [Rumbaugh et al., 1991].  

Polymorphism means that different classes may implement the same 

behaviour in different ways. For instance, a reservoir object might perform a flood 

routing operation differently than a river object. Polymorphism allows new classes to 

utilize existing operations without the need for rewriting code, as long as each new 

class contains the code it needs to handle the operation [Rumbaugh et al., 1991].  

Inheritance refers to the hierarchical sharing of properties and methods among 

related classes. Properties and methods common to several types of objects can be 

grouped into a superclass, also known as a parent class. Subclasses, or child classes, 

can then inherit those properties and methods in addition to defining their own. For 

example, a waterbody could be modelled as a superclass, with subclasses of river, 
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lake, and fishpond. Each subclass may have a fish count property, while the lake and 

fishpond classes may also define a surface area property. Some superclasses are 

useful for grouping properties and methods, but are never used to instantiate objects 

of their own. These classes are called abstract classes. By grouping common 

properties and methods into superclasses and then utilizing inheritance, repetition in a 

program is greatly reduced [Rumbaugh et al., 1991].  

From an implementation point of view, there are some other concepts that we 

consider fundamental. Here we briefly list them alongside with their definitions. 

Object identification enables each object to be uniquely distinguished from all 

other objects in the database. An object identifier (OID) is generated by the system at 

the moment when the object is being created, independently of the values of its 

attributes. OID is immutable, that is, stable for the lifetime of the object. An OID is 

dropped only if the object is destroyed; furthermore, it should be used only once in 

the database in order to be associated with only one real-world object. 

Encapsulation is the principle that enables an object to hide its structure 

and/or behaviour from other objects. Internals of an object are accessible only via its 

interface that is the operations known by the system. In this way, the external 

properties and methods of an object (those visible to other objects) are separated from 

the implementation details of the object (that are hidden from other objects). By 

internalizing the implementation details, a system becomes much easier to maintain. 

The designer can change the implementation (for instance to fix a bug or improve 

efficiency) of a particular object’s methods without having to change the way those 

methods are called by other objects [Rumbaugh et al., 1991]. 

Association enables specifying relationships that exist between various objects 

in the database. Associations may be expressed explicitly in some OO models, while 

in others they are represented as reference attributes. In the latter case, the value of a 

reference attribute is the OID of the associated object. Additionally, some OO models 

have the construct of ordered association that takes into account the order of the 

association objects.  

 



The Background Theory 91

Version control is often needed in non-traditional areas, where different 

“versions” of the same object may be important. For example, in GIS applications it 

can be the case that the boundary of some spatial object changes over time (e.g. 

agriculture area, lake, etc.), so information about the previous state (version) and the 

new state of the same object is required. Usually, versions are implemented as 

different objects, which means that they will have different OIDs 

The main advantage of the Object-Oriented paradigm is how well it facilitates 

a systems understanding; it enables what many end-users consider a “natural” 

representation of real world objects, their mutual relationships and behaviour. 

Object-Oriented applications are easy to maintain because they are modular and 

objects are independent of each other; a change in one object should not affect other 

objects in the system. The paradigm supports reusability: objects are self-contained 

and may be reused in other similar applications. It also supports distributed and 

parallel processing. 

Microsoft has taken the lead in creating and developing various object oriented 

applications. In order to make these applications communicate efficiently, they have 

to setup some standards and/or protocols. COM, that stands for Component Object 

Model, is a binary specification standard devised by Microsoft that allows compliant 

software to utilize the object libraries of other COM-compliant software. COM itself 

is not a programming language, although languages such as C++ and Visual Basic 

lend themselves towards COM-compliant software design. Rather, COM provides a 

standard set of rules for developing software such that components from a program 

with a COM-compliant design can access components from other COM-compliant 

programs, regardless of the language in which each program was developed.  

COM may be most evident within the Microsoft Office applications of Excel 

and Word. Because each application can utilize the object libraries of the other 

application, each can incorporate useful components from the other application into 

its own documents. For instance, copying and pasting a range of Excel cells from a 

spreadsheet or a chart into a Word document is an easy operation and produces no 
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error. In fact, Excel’s charting capabilities are directly linked to Microsoft Graph, 

another COM-compliant object library distributed with Microsoft Office.  

The COM-compliant design and encapsulation allow components of an object 

oriented system to be compatible with other programs, regardless of the programming 

language or implementation details of those components. One way in which this is 

accomplished is through the incorporation of DLLs into a software system. A DLL, 

or dynamic linked library, is a set of objects, functions, or routines that operate in the 

same process space as the calling application. By including a DLL from another 

COM-compliant application in a particular application’s software design, that 

application can use components from the other application that are included in the 

DLL. For example, when a software-developer incorporates COM-compliance into 

his/her designed software, the software possesses the potential to utilize components 

from any other COM-compliant software. This means that a purely computational 

model could be extended to produce graphs, prepare reports, carry out spreadsheet 

operations, update databases, or even upload results to a web site, while keeping the 

core functionality of the model relatively simple. In chapter four, we describe in 

details the relationship between Object Oriented paradigm and GIS and with System 

Dynamics respectively. 
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2.6 Conclusions 

Different human communities are confronted with different sets of 

environmental problems, and even if they had the same problems, they would 

perceive them in different ways. Even the perception of the prevailing problems 

within the single nation contrasts between various sections of the population. 

Consequently, it is difficult, if not sometimes impossible, to generate international 

consensus on possible solutions. Yet, there are environmental problems that threaten 

all mankind alike that are recently attracted attention worldwide. Such problems 

include: climatic change, non-renewable resources depletion, changes in atmospheric 

transmission of radiation, and changes in populations of animal and plant species. 

This makes the prediction and analysis of the environmental impacts and the 

associated risks, the bases for a rational management of our environment, a task of 

increasing global importance. 

Environmental modelling, as one of the scientific tools that facilitates this 

prediction and analysis, is a well-established field of research with more than a 

hundred years of modelling history [Maidment 1993]. The environmental processes 

in the real world are typically three dimensional, time dependent, and complex. Such 

complexity can include nonlinear behaviour, stochastic components, and feedback 

loops over multiple time and space scales. With the advent of digital computers, 

numerical simulation models as well as spatially distributed models became feasible. 

Early linear models, applications of system dynamics to ecological problems, and 

ever more complex multi-compartment models like CLEANER and MS. CLEANER 

were developed [Fedra 1994].  

Environmental problems do have an obvious spatial dimension. Within the 

environmental modelling domain, this was addressed by spatially distributed models, 

which describe environmental phenomena in one dimension (e.g., in river models), 

two dimensions (land, atmospheric, water-quality models, and models of population 

dynamics), or three dimensions (again air and water models). The increasing 

development and use of spatially distributed models replacing simple spatially 
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aggregated or lumped parameter models is, at least in part, driven by the availability 

of more and more powerful and affordable computers [Loucks and Fedra, 1987; 

Fedra and Loucks, 1985].  This approach contributed significantly evolving the 

hydrological modelling, which is one of the active areas of research within 

environmental modelling domain.  

The waters of the Earth are so extensive, their motion is so complex, and so 

much about what happens in hydrology is determined by the flow environment 

through which the water passes, therefore, GIS is extremely required. It is probably 

true that the factor most limiting hydrologic modelling is not the ability to 

characterize hydrologic processes mathematically, or to solve the resulting equations, 

but rather the ability to specify the values of the model parameters representing the 

flow environment accurately. GIS would help overcome that limitation. 

Hydrologic phenomena are driven by rainfall and are thus always time 

dependent, even though by taking snapshots at particular points in time or by time 

averaging over long periods, a steady-state model can be created. To accomplish a 

complete linkage between GIS and hydrologic models would require GIS to have 

time-dependent data structures so that the evolution through time of the spatial 

distribution of hydrologic phenomena could be readily observed. 

The concept of spatial analysis, as practiced by geographers and incorporated 

into GIS, has the goal of interpreting spatial data; that is, one is presented with a set 

of spatial features and associated descriptive data and one seeks to determine the 

patterns inherent in these data and by making intelligent queries of the data to define 

the optimal locations for activities. The concept of spatial analysis as practiced by 

hydrologists and incorporated into hydrologic models is that there are equations that 

govern the motion of water through the spatial domain, and one uses these to infer 

what the flow and transport patterns will be in a particular circumstance with a 

model. These are two very different concepts of spatial analysis, but they are 

complementary, and if they can be brought together more closely through the 
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integration of GIS and hydrologic modelling, both GIS and hydrology will be 

strengthened. 

One of the GIS functions that is extremely needed in the environmental 

modelling, and it still does not do well, is to perform simulation modelling. For 

that reason, linking simulation models with the GIS is seen as an area of interest to 

many researchers. This problem is part of the larger problem that deals with systems 

integration and linking applications to each other. 

The architecture of the GIS data model determines how easy or difficult it is to 

couple GIS and environmental simulation models. [Nyerges 1991a; 1991c] and 

[Wehrend and Lewis 1990] described different coupling environments based on the 

nature of the models and the GIS involved. Coupling environments can range from 

loose to tight coupling depending on the compatibility of the data constructs and the 

software operations used to process them. A loose coupling involves a data transfer 

from one system to another. A tight coupling is one with integrated data management 

services. The tightest of couplings is an embedded or integrated system, where the 

GIS and models rely on a single data manager. Embedded systems have been shown 

to be either too superficial for solving problems or too complex in their development. 

Since embedded systems require a substantial amount of effort, and are developed for 

selected user groups, they tend to be rather expensive, and constraining when changes 

are desired. 

Nyerges (1991b) also reviewed several trends in data, software, and hardware 

that collectively represent frontiers of GIS development. Whether or not these 

developments are fostered by frontiers of GIS use remains to be seen. One significant 

development involves temporal aspects, both for data representation and processing. 

Recent efforts [Armstrong, 1988; Langran and Chrisman, 1988; Langran, 1993] have 

produced valuable contributions, but concepts that form the basis of design 

suggestions for software architecture are still needed. When these developments are 

incorporated into commercial GIS then we will see substantial progress in pushing 

back the GIS frontier as related to environmental modelling. Such progress could in 
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fact be almost as significant as the maturing of space-only based GIS. Coupling 

simulation models to the GIS is required at the current time because no GIS currently 

has the data representation flexibility for space and time, together with the algorith-

mic flexibility to build simulation models internally. Coupling models to GIS 

depends on the compatibility of the software architectures.  

In summary, the integrated systems approach for developing and testing 

environmental simulation models suggests potential links to GIS technology. In 

conceptual terms, GIS seem well suited to address data and modelling issues that are 

associated with a modelling environment that includes multiscale processes, all 

within a complex terrain and heterogeneous landscape domain. GIS can help address 

data integration questions associated with multiscale data from ground-based and 

remote sensing sources. GIS could potentially support exploratory analysis of 

complex spatial patterns and environmental processes. Finally, these advanced 

environmental simulation models require detailed spatial data, which provides an 

opportunity for innovative thematic mapping and error analyses with a GIS. 

However, there is much to be done to meet the needs of the modelling community. 
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3.1 Introduction 

In this chapter we describe the efforts that have been made to integrate the 

simulation models with the geographical information systems in a number of 

knowledge domains using different methods and techniques. From a broader 

perspective, the basic concept (shared among these efforts) is to incorporate the 

temporal dimension with the spatial dimension to produce an integrated spatial 

simulation model (or system). In this context, two points should be made clear: 

First, the “simulation models” in the coming examples are not limited to 

system dynamics models. In fact, the majority of the simulation models reported in 

literature are mathematical models (also known as dynamic simulation models). They 

are similar to SD models in that they are dynamic, nonlinear, and sometimes 

stochastic models. However, they differ from SD models in that they are physically 

based models which include sophisticated mathematical equations/formulations (e.g., 

second order partial differential equations, Markov chains16, covariance17 and/or 

Leslie18 matrices, etc.), whereas SD models include a combination of differential 

equations (for stocks) and algebraic formulations (for auxiliaries). Furthermore, their 

ultimate goal is to gain more understanding of the physical processes within the 

modelled systems (although they may be used for prediction purposes like weather 

forecasting models) but they do not intend to be used for designing policies the same 

way as SD models do.  

Second, the raster based GIS are extensively employed in theses attempts 

rather than vector based GIS. This is maybe because of the nature of the problems 

                                              
16 In mathematics, a Markov chain, named after Andrei Markov, is a discrete-time stochastic process 
with the Markov property. Having the Markov property means that the next state solely depends on 
the present state and doesn't directly depend on the previous states. 
17 In statistics and probability theory, the covariance matrix is a matrix of covariances between 
elements of a vector. It is the natural generalization to higher dimensions of the concept of the 
variance of a scalar-valued random variable. 
18 The Leslie Matrix is a discrete and age-structured model of population growth very popular in 
population ecology. It is used to model the changes in a population of organisms over a period of 
time. 
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that have been modelled and/or the best way of representation for the associated 

spatial features. Noticeable, the majority of these efforts have taken place in 

knowledge domains such as ecology, biology, oceanography, or atmosphere and 

biosphere at large. Social systems as well as urban and sustainable development 

problems have been rarely addressed. 

In terms of classification, we can distinguish between two types of attempts: 

(1) the work that have been made by academic individuals (e.g., Master thesis, PhD 

dissertation, published papers, etc.) and, (2) the work that have been made by teams 

or organizations (e.g. as projects in research institutes, IT companies, and software 

vendors). The effort of an individual is commonly an academic activity and usually 

limited by time and budget, while the efforts by institutions have, in most situations, a 

larger budget and time may be extended. In this sense, it is not rational to compare 

between these two types of efforts and their outcomes, rather, the focus should be on 

the integration methods and techniques that have been used. 

In terms of their relevance to this research, two types of attempts can be 

distinguished: (1) integrated systems that included System Dynamics simulation 

models and, (2) those systems that included mathematical simulation models (i.e., 

physically based process models). There is also a number of attempts aimed at 

developing specialized software (simulators) pertaining to hydrology and water 

resources management are being described in the last section of this chapter. 

Although one may argue the relevance of these examples, however, we believe that 

they have made a remarkable contribution to the integration methods and techniques. 

The objective is to understand the integration challenges and to highlight the 

difference between the work in this research and the work that have been done so far.  

Therefore, the chapter is organized in the following way: in the first section, 

we list a number of individuals’ attempts to integrate SD models with GIS and then 

the other simulation models with GIS. In the second section, we describe noteworthy 

software that has been developed at large research centres and federal organizations 

worldwide. In literature, the integration of simulation models with GIS (or say the 
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integration attempts and the issues related to them such as integration methods, 

techniques, and strategies) has extremely influenced and overwhelmed by those 

models evolved through the environmental modelling domain (e.g., hydrologic, water 

resource management, oceanography, and weather forecast models) and the 

ecological modelling domain (e.g., landscape, marine, and ecosystem models). There 

is some degree of overlap between these models. For example, the issues of GIS 

integration in hydrologic modelling clearly share some content with those in land 

surface/subsurface modelling. Therefore, we intend to describe one example from 

each domain (i.e., SME for ecological modelling, GRASS-GIS and its associated 

models (AGNPS, TOPMODEL, and SWAT) for overlapped disciplines, IDLAMS for 

landscape modelling, and WaterWare for hydrological modelling). These examples 

are organized according to their relevance to our research too.  

In the third section, we describe two simulators pertaining to hydrology and 

water resources management that, to some extent, have an interfacing with GIS maps. 

They are included in this chapter because they share the research area (i.e. water 

resources management) and the geographical extent (Nile basin and Delta) with our 

case study (i.e. the irrigation system in the Nile Delta).  

Section 3.3 and 3.4 contain descriptions of some of the technical details that 

characterize various software packages of relevance to this work. We have found no 

reason to diverge in our description from the descriptions offered in the original 

documentation of these packages. In fact, that would easily introduce inaccuracies 

that would not benefit the reader of this thesis. To some extent, therefore, this section 

has been written as a composition of quotes from various sources. We have referred 

to these sources, but chosen not to use quotation marks in order to avoid making the 

text intransparent. The composition is made so as to establish a background for the 

description and evaluation of the development work documented in this thesis, 

including the comparison with existing software packages.  

 



Chapter Three 102

3.2 The Prior Work of Integration by Academics 

The integration of the simulation models with the associated GIS capabilities 

for spatial data analysis and visualization has been the main concern of a number of 

researchers19. We can distinguish between two groups of researches depending on 

their perspective and ultimate goals. The first group consists of system dynamicists 

while the second group includes environmental scientists and geographers. Both 

groups have made considerable efforts in this area of research.  

Hans D. Kasperidus (1988), a scientist among the first group of system 

dynamicists, has designed an integrated system dynamics model to analyse and 

evaluate possible future developments for high-mountain agriculture under 

challenging economical and ecological conditions in Berchtesgaden in Germany. The 

purpose of the model is to help understanding the relationship between farmers’ 

economical activities, different landuse options, and the regional landscape 

attractiveness. Although he did not explain, in his paper, the procedure of linking the 

SD model with the GIS, he claimed that the link allowed for the translation of the 

dynamic pattern of landuse changes into spatial patterns. He added: “A decade after 

the first simulation runs, it was possible to look at the real development of the system. 

For this approach the original model adapted to Stella 5 environment. The predicted 

possible changes in landuse then compared with actual changes to prove the quality 

of scenario assumptions and model structures”.  

Singhasaneh and Eiumnoh (1991) described the gap between the GIS and the 

SD software as one that limits the study and in-depth understanding of any system 

falling into this gap. To fill this gap, they developed a system to demonstrate the 

integration of SD with GIS. Three SD models were used (two synthetic models and 

one of the Pattaya city of Thailand) to test the performance of the system. They aimed 

                                              
19 Note that system dynamics methodology utilizes simulation models and it aims at policy design 
and strategy development. Most of the simulation models described in this chapter are mathematical 
models and the integration aims at gaining insight into the analysis of spatial systems. 
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at demonstrating the importance of the integration by developing a complete system 

for the prediction of the landuse changes. 

Grossmann and Eberhardt (1993) studied and compared a number of dynamic 

modelling techniques, including those that allowed for the representation and analysis 

of complex aggregated dynamic feedback models. The integration of the dynamic 

models and the GIS was applied in the context of “tourism and its interactions with 

the regional economy and the new agricultural strategies”. The integration was on the 

conceptual level, where the dynamic model is used to describe the mechanism of 

attractiveness and the resulting deterioration of an area, and the GIS (that uses several 

different base assessment maps) is utilized to depict the areas where infrastructure is 

likely to be built and tourists are likely to reside. 

Dmitri et al. (2000), at Moscow State University, developed a system dynamic 

based educational toolkit (called ECONET simulator) to train regional decision 

makers in Russia to manage the regional ecological nets of natural protected 

territories in a context of cross-sectional environmental-social-economical sustainable 

development. According to Dmitri, ECONET included 10 roles, 8 maps, and a 

number of software (Excel, Visual Basic, Delphi, and GIS), and offered the 

opportunity to run an integrated (ecological, social, and economy) model over 30 

years, using three years as a time-step. ECONET embodied the ideas of SD 

simulation game “Poplysphere” designed by Sidorenko and Krjukov in 1997. Dmitri 

compared ECONET with similar existing SD-GIS-based models for sustainable 

regional and interregional development such as “Pangaia” developed by Kanegae and 

Kaneda (1995/1996), and claimed that ECONET enables the experts (i.e., federal and 

regional managers, and NGO leaders) to test some concepts of regional econet 

designs by means of simulation of spatial and temporal decisions in the three areas 

concerned. Dmitri claimed that: “compared to GIS-based cellular automata and 

artificial neural nets, this model is a new type of toolkit for researching and solving 

underlying problems”.   
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At the University of Bergen, two Master students (Abraha Zewdie 1998 and 

Ling Shi 1999) attempted to integrate SD with GIS in their research.  Zewdie studied 

the feasibility and the functionality of enhancing GIS with SD methods to support the 

understanding of the relationship between structure and behaviour of the dynamic 

spatial systems. He used Powersim to develop a simulation model to analyse the 

problem of forest depletion in Ethiopia; and PC ARC/INFO to develop the required 

maps. He employed Object-Oriented methods (analysis and design) to loosely couple 

the simulation model with the GIS through import/export Excel files. The temporal 

modelling techniques in system dynamics and the GIS perspective were combined. 

The main role of the GIS was to enhance the visualization of the dynamics of the SD 

model. The same way of integration (loosely coupling) has been used by Ling Shi 

(1999). Shi developed a “spatial decision support system for land use planning” to 

help planners to improve their policies. However, she used ArcView 3.1 and 

developed some scripts with Avenue (the ArcView 3.x customisation language) to 

facilitate the DDE (Dynamic Data Exchange) with the Excel files produced by 

Powersim.  She applied her model to the urbanization problems in Shanghai, China. 

Hallie Anthony (1998) integrated GIS with a system dynamics model of water 

flows in the Mono Basin [Ford 1999; Mono Lake website]. Anthony began with the 

Stella model of Mono Lake and re-built this model in Powersim to take advantage of 

Powersim's dynamic data exchange (DDE). The DDE facilitates the export of data 

from Powersim models to other applications such as Microsoft Excel. Anthony 

selected PC ARC/INFO as the platform for the GIS. She used a digital elevation data 

provided by USGS to create the coverage used to map the lake surface. To build an 

integrated system, Anthony used DDE in Powersim, VBA macros in Excel and SML 

(Simple Macro Language) macros in PC ARC/INFO. The initial step is to export the 

data originating from the Powersim model components, each representing a level of 

elevation in the mono lake area, via DDE to Excel. VBA macros in Excel were used 

to create symbol files needed by PC/ARC INFO to create lake surfaces. Each polygon 

in the final elevation coverage has an associated symbol, indicating water or land. 

The SML macros were then used to map the surfaces at the elevations found in the 
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Powersim model. The ARCPLOT subprogram was used to draw the elevation 

contours. (The resolution is one meter, the same as the resolution in the original 

USGS data.) The polygons were then shaded to represent land or water. The final 

product is a collection of maps associated with each of the elevation models emerging 

from the Powersim model. Anthony's maps were created and updated, one after 

another, so that the receding lakeshore is visually mapped at 25-year intervals in the 

Powersim simulation. She recommended that her system be improved for interactive 

studies (using the option available in Powersim to pause the simulation so as to 

facilitate an interaction to take place, i.e. an intervention on the part of the user of the 

system). The user could change a key policy variable (such as water export) during 

the simulation runtime, and the integrated system would respond with a new map at 

the next simulation step. 

The second group, consisting of geographers and environmental scientists, 

includes Thomas Maxwell and Robert Costanza (1997). They established a research 

program aimed at developing a Spatial Modelling Environment (SME). Later, the 

University of Maryland sponsored the research and it became one of its major 

projects. The main purpose of the SME was to translate the set of difference 

equations describing an ecosystem model generated by STELLA into parallel-C code. 

Subsequently, several ecosystem models were developed using SME, including a 

non-linear dynamic Coastal Ecological Landscape Spatial Simulation (CELSS) model 

and the Everglades Landscape Model [Sklar and Costanza 1991]. The SME and both 

models are described in detail later in this chapter. 

Despotakis, Giaoutzi, and Nijkamp (1993) subdivided the phenomena under 

investigation into two categories: geographical phenomena and economic, ecological, 

and social phenomena within the framework of sustainable development. They 

attempted to establish the missing link between these two categories by linking non-

spatial models to spatial models (GIS). They developed a new system, called 

“dynamic GIS”, and applied that system to the Greek Sorades Islands to study the 

conflicting objectives that appear in the area (the regional economic development and 

the environmental projection). They employed a non-spatial modelling tool, SPANS, 

 



Chapter Three 106

for modelling spatial phenomenon while STELLA was used as a non-spatial dynamic 

modelling tool. To integrate these two models, a conceptual equivalence between the 

components of the two models was identified to facilitate the integration process. The 

stocks in the non-spatial model were related to each layer in the spatial model, in such 

a way that the spatial content of a specific layer was regarded to be stocks that change 

over time. The dynamic changes of the stocks over time are propagated in space 

using the corresponding layer in the spatial data model. 

Betz et al., (1998) attempted to integrate the landscape simulation model 

LANDSIM with GIS (ARC/INFO) to simulate the interactions between the forest 

fires and the forest succession, and to generate maps of predicted community types at 

the Bryce Canyon National Park in Utah. 

Sui, Dianzhi (1993), in his PhD Dissertation, has investigated the opportunities 

for integrating the GIS-based spatial analysis with the dynamic modelling (i.e. he 

used Cellular Automata to examine the dynamics of urban spatial structures). He 

incorporated three urban models with GIS, to study the changes in the urban structure 

of Hong Kong between 1966 and 1986, and to predict the future development 

patterns by the year 2006 at a district level. 

Gilruth et al., (1990) utilized GIS and Remote Sensing (RS) in modelling 

deforestation and land degradation in the Guinea Highlands of West Africa, (i.e., to 

simulate patterns of land clearing for shifting cultivation based on farmers' selection 

behaviour for new fields based on topography and proximity to village). Using GIS, 

the key model variables such as slopes, village proximity, site productivity, and 

labour are derived from maps, aerial photographs and ground data, to develop a 

dynamic spatial model of deforestation and land use changes. In addition, Gilruth 

pointed out the significance of the model in evaluating alternative strategies of 

landuse conversion. 

From the examples illustrated above we conclude: First, the simulation 

models, whether SD models or mathematical models, have been used to represent the 

changes in the state of the system over time resulting from the dynamic interactions 
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between the system components that may be spatially distributed. The GIS models, 

on the other hand, were used to represent the topological relationships between the 

spatial features and its attributes. Second, with the exception of the SME example, the 

coupling methods used in the above examples were implemented through data 

exchange (import/export) process utilizing an intermediate program such as Excel, 

Access, etc. This type of coupling is called loose coupling. Only rare efforts have 

been made to include the causal nature into spatio-temporal GIS. The work of Allen 

E., Edwards G., and Bedard Y. (1995) may be the only effort to be found in the 

literature, and this was merely carried through at the conceptual level. [Allen et al, 

1995] developed a generic conceptual causal data model for explicitly representing 

the causal links within the spatio-temporal GIS. 
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3.3 The Work of Institutions and Research Centres 

A number of environmental and ecological institutions and research centres 

have developed sophisticated software aimed at facilitating the spatial simulation 

modelling; some of which will be discussed in this section. One of these software is 

The Spatial Modelling Environment SME, developed by Thomas Maxwell and 

Robert Costanza at Ecological Economics Institute, University of Maryland. 

Moreover, there is GRASS - Geographic Resources Analysis Support System that has 

been under continual development since 1982 and has involved a large number of 

federal U.S. agencies, universities, and private companies. The Construction 

Engineering Research Laboratory (CERL) in Champaign, Illinois has developed the 

core components of GRASS (and later, the GRASS releases). Then there is the 

IDLAMS software, developed by Argonne National Laboratory, one of the U.S. 

Department of Energy's largest research centres. And there is the WaterWare 

software developed by Kurt Fedra at Environmental Software and Services (ESS) 

GmbH, Austria. WaterWare and a number of specialized software pertaining to 

hydrology and water resources management such as MFS, developed by the National 

Oceanic and Atmospheric Administration (NOAA), and NileSim developed by 

Maryland University, are discussed in section 3-4. 

3.3.1 SME – The work of Ecological Economics Institute 

The spatial modelling environment (SME) has been developed by Thomas 

Maxwell, Ferdinando Villa, and Robert Costanza at the University of Maryland to 

facilitate the development of ecosystem models [Maxwell et al., 1995]. SME links 

icon-based graphical modelling environments (e.g. STELLA) with parallel 

supercomputers and a generic object database. According to Maxwell, SME allows 

the users to create and share modular, reusable model components, and utilizes 

advanced parallel computer architectures without having to invest unnecessary time 

in computer programming or learning new systems [Maxwell and Costanza, 1995]. 

SME is free software that can be downloaded, including the documents, from the 

anonymous ftp site [ftp://iee.umces.edu/SME3]. It is associated with UNIX operating 
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system, and there are five complementary components required in order to configure 

and successfully run the SME. These components are: Gnome xml, Java 1.2, Tcl 8.0 

or later, NCSA Hierarchical Data Format (HDF), GRASS 4.1 or later, and the 

libraries MPI and SNI [SME user’s guide, 2005]. The following paragraphs give a 

brief description of the design of the SME. A more detailed description can be found 

in the SME website [http://www.uvm.edu/giee/SME3/]. 

SME utilizes a grid-based approach to build the intended spatial landscape 

model. In this context, the space is represented as a uniform grid of cells20, where 

each cell has an embedded SD model (i.e., STELLA) called the “unit model” which 

simulates the ecosystem dynamics for that cell. A variable of habitat type, for 

example, is used to parameterize the unit model in each cell, and the flux of 

information between cells takes place within the domain of the spatial landscape 

model as shown in Figure 3-1. 

The main components of the SME have been described by its developers as 

the View, the ModelBase and the Driver components. Figures 3-2 and 3-3 illustrate 

the basic architectural modules and the flow of operations in the SME respectively. 

The View component is used to graphically develop the simulation models 

(e.g., a number of unit models that collectively is called the front-end modules). The 

SME can utilize a number of graphic modelling tools such as STELLA, EXTEND, 

SimuLab, or Vensim [SME user’s guide, 2005]. When the STELLA model, for 

example, is completed, the model can be run and the variables of interest can be 

plotted in various formats to help visualize the model behaviour. Maxwell stated: 

“Using iconographic modelling techniques greatly increase the ease with which the 

model can be changed and calibrated. The effects of changes made can be viewed 

immediately allowing the user to concentrate on modelling instead of computational 

details, greatly reducing model development time”. 

                                              
20 The same approach used in Cellular Automate and Agent-Based discrete simulation models. 
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Figure 3-1: The basic structure of a spatial ecosystem model. [SME, 2005] 

 
Figure 3-2: The main components of SME (View-Modelbase-Driver). [SME, 2005] 
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Figure 3-3: The SME Architecture. [SME users’ guide, 2005] 

When the front-end modules are complete, the Module Constructor translates 

them into a text-based Modular Modelling Language (MML). The MML modules can 

then be stored in the ModelBase component, or used immediately to construct a 

working spatial simulation.  

The Code Generators convert the MML modules into a C++ object hierarchy 

which incorporated into the simulation Driver component. The configuration of the 

final spatial output takes place during this step. The configuration process includes 

selecting the intended variables to be displayed or mapped, and associating each 

MML object with a spatially oriented cell in the raster GIS map. The Code 

Generators also produce a set of simulation resource files that are used for runtime 

configuration of the model parameters, inputs, and outputs. The Driver then handles 

input-output of parameters, the link with the database, the GIS files, and the 

execution of the simulation.  
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Therefore, the development of the spatial simulation can be summarised in 

three steps. First, the SD unit models (front-end modules) are created in the View 

component, which means that the vast majority of the design work takes place in a 

non-spatial regime. Second, once developed and tested, the unit models are then 

linked together in the View or in the Modelbase components for a further round of 

tests. Implementing the spatial interactions takes place in this step by designing these 

interactions in the MML language, or by linking predefined methods from the Driver 

libraries. The Driver libraries contain methods that have been developed to 

implement common hydrologic scenarios including movement of water and 

constituents over and under the landscape surface. Finally, the assembled model (the 

spatial landscape model) is calibrated and verified spatially in the Driver component. 

The spatial aspects of the simulation are incorporated in this step. All calibration that 

can be accomplished without reference to the spatial nature of the system is 

completed in the prior steps.  

 

SME Applications 

The application of SME was first made to the Atchafalya Estuary in Louisiana 

in the early 1990’s [Sklar et al., 1985; Costanza et al., 1990]. The model is called “the 

Coastal Ecological Landscape Spatial Simulation (CELSS) model”. The initial 

modelling process began with dividing the Estuary waterscape into one square 

kilometre cells (the model included 2479 cells). A dynamic, nonlinear, ecosystem 

simulation model, with seven state variables of the waterway were then developed in 

each cell. The model is generic in its structure and can represent one of a six habitat-

types by assigning unique parameter settings. Each cell is potentially connected to 

each adjacent cell by the exchange of water and materials. The simulation models 

were then compiled and integrated by the Spatial Modelling Environment (SME). 

The required spatial data varied with each location and was supplied by digital maps 

from a standard geographical information system. The completed model was used to 

predict the water depths of the estuary by determining the number and density of 
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existing plant species distribution. Aerial photographs were used to calibrate and 

verify the accuracy of the model. It took the effort of four programmers for four years 

(16 person-years) to fully develop and implement the original CELSS model using a 

supercomputer. Maxwell and Costanza claim that the model has proved to be very 

effective at helping them understanding complex ecosystem behaviour and guiding 

policy and research [Sklar et al., 1985; Costanza et al., 1990].  

More recent applications of the SME have been developed at the University of 

Maryland. The Everglades Landscape Model (ELM) was developed using the SME. 

The ELM is designed to be one of the principal tools in a systematic analysis of the 

varying options in managing the distribution of water and nutrients in the Everglades. 

Central to its objectives, is the prediction of vegetation change under different 

scenarios. Water quantity, and the associated hydro-period, has been a central issue in 

understanding changes to the vegetation of the Everglades [Davis et al., 1994; White 

1994]. Nutrients from agricultural areas also appear to be important in understanding 

vegetation succession. The interaction of these factors, including the frequency and 

severity of fires, appears to drive the succession of the plant communities in the 

Everglades [Duever et al., 1994; Gunderson, 1994; White, 1994].  

Within the ELM, the landscape modelled is partitioned into a spatial grid of 

10,178 square unit cells, each of them covering one square kilometre surface area. An 

ecosystem "unit" model is replicated in each of the unit cells representing the 

Everglades landscape [Fitz et al., 1995]. The unit model itself is further divided into a 

set of model sectors that simulate the ecological (including physical) dynamics using 

a process oriented, mass balance approach. While the unit model simulates ecological 

processes within a unit cell, horizontal fluxes across the landscape occur within the 

domain of the SME. Within this spatial context, the water fluxes between cells carry 

dissolved nutrients, determining the quantity and quality of the water in the 

landscape. 
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3.3.2 GRASS-GIS and associated Simulation Models  

GRASS (Geographic Resources Analysis Support System) is an open source, 
free GIS software, originally developed by the U.S. Army Construction Engineering 
Research Laboratories (CERL), between 1982 and 1995, as a tool for land 
management and environmental planning. GRASS was published in year 1989 and in 
1997 CERL stopped developing GRASS and the Centre for Advanced Geography 
and Spatial Research at Baylor University became the sponsor for supporting and the 
development of further versions of GRASS. Because GRASS is an open source 
software, it gained a vast popularity and due to its rapid growth, the Development 
Team has grown into a multi-national team at numerous locations. 

GRASS, as described by its developers, includes all the functions that are 
required in any hybrid GIS software package [Neteler, 2004]. It accommodates raster, 
vector and point data modules, in addition to a number of modules that are organized 
into groups to facilitate operations such as: display, general file functions, utilities to 
convert data from one format to another, satellite data processing, and 3D 
visualization. However, the strongest parts of GRASS are the raster analysis and 
image processing facilities. All analyses and modelling processes are done with raster 
maps. Vector and point data are used for input and output. In raster analysis, for 
example, weighted overlaying (with unlimited number of layers, and up to complex 
models like erosion modelling) can be carried out. The image processing module 
contains the standard functions like: rectification, supervised and unsupervised 
classification, image enhancement with digital filters, transformation, edge detection, 
and many other functions. 

The modular concept, the internal language (FORTRAN), and the fully 
described programming library allow the users and programmers to: 1) write their 
own modules, which can make use of the database access functions and predefined 
standard GIS functions, and connect them to their own calculations; 2) create specific 
applications (e.g., AGNPS, SWAT, QUAL2EU) and couple them with GRASS. A 
number of examples can be found in the standard GRASS deployed package and on 
the Internet as add-in external modules associated with GRASS interface [Shepard, 
2000]. 
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The integration of GRASS-GIS with simulation models has been exhibited in 

several applications such as erosion modelling (e.g., AGNPS, ANSWERS, and 

KINEROS), Rainfall-runoff modelling (TOPMODEL, storm water), hydrological 

modelling (SWAT, CASC2D), watershed calculation, floodplain analysis, 

landscape analysis, and wildfire spread. For the purpose of this research, we briefly 

describe one example from relevant applications. More information can be found at: 

http://grass.itc.it/index.php  (or any other mirror site) [Accessed Dec. 2007]. 

 

The AGNPS model 

AGNPS (Agricultural Non-Point Source Pollution Model) is a single event 

based and parameter simulation model developed by U.S. Department of Agricultural 

Research Service (USDARS) [Young et al., 1987]. The model is used to forecast 

surface run-off volume, peak flow rate, soil loss, sediment, nutrient and pesticide 

yield in a watershed. It is intended to provide basic information on water quality to be 

used to classify nonpoint source pollution problems in agricultural watersheds. For 

simulation purposes, the watershed is subdivided into homogeneous land areas (cells) 

with respect to soil type, land use, and land management practices. These areas can 

be of any shape, from square grid cells to hydrologic boundaries. Due to the large 

amount of input data required, the application of AGNPS is limited to watersheds not 

larger than 200 km2 [Young et al., 1989; Engel et al., 1993]. However, AGNPS has 

been applied to large basins, by representing the study area by a grid of cells larger 

than 16 ha. For example, [Morse et. al., 1994] applied AGNPS with 100 ha cells to 

calculate the nutrient and pesticide concentrations in a 1645 km2 watershed. Several 

efforts have been made to integrate AGNPS with various GIS software packages to 

evaluate agricultural nonpoint source pollution. At least three attempts to integrate 

AGNPS with GRASS have been constructed: (i) at Michigan State University [He et 

al., 1993], (ii) by Srinivasan and Engel [Engel, 1996], and (iii) by the Soil 

Conservation Service as a watershed planning tool in the Hydrologic Unit Water 

Quality Project (HUWQ) [Drungil et al., 1995].  He et al., (1993) used an integrated 
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AGNPS/GRASS system, known as WATERWORKS, to evaluate the impact of 

agricultural run-off on water quality in the Case River, a sub-watershed of Saginaw 

Bay. Mitchell et al., (1993) developed an integrated AGNPS/GRASS system to 

validate the AGNPS for predicting pesticide run-off from small watersheds of mild 

topography. Srinivasan and Engel (1995) developed a spatial decision support system 

using AGNPS and GRASS to assess agricultural nonpoint source pollution 

[Srinivasan and Engel, 1995]. In theses examples, GRASS was employed to perform 

the basic GIS functions of data input, storage, analysis and display [Drungil et al., 

1995]. AGNPS has also been linked to other GIS software packages. For example, 

Jankowski and Haddock (1993) coupled AGNPS with PC-Arc/Info (ESRI product). 

The conjunction was constructed using Arc/Info macro language (AML), Pascal 

language, and batch programming. Another AGNPS-Arc/Info integrated system was 

constructed by Tim and Jolly (1994) to evaluate the effectiveness of several 

alternative management strategies in reducing sediment pollution in a 417-ha 

watershed located in southern Iowa. AGNPS has also been linked to: ERDAS 

Imagine, a grid cell-based GIS software package [Evans and Miller, 1988]; Geo/SQL, 

a vector-based GIS software [Yoon et al., 1993]; and IDRISI, a raster-based GIS 

software [Klaghofer et al., 1993]. 

 

The TOPMODEL model 

TOPMODEL (TOPography-based hydrological MODEL) is a rainfall–runoff 

model, originally developed by Beven and Kirby (1979) at University of Leeds, UK. 

The model requires data from a Digital Elevation Model (DEM) and a sequence of 

rainfall and potential evapotranspiration data to operate. The model is used to predict 

the catchment’s water discharge and the spatial soil water saturation pattern.  

TOPMODEL has been validated with rainfall-discharge data [Hornberger et al., 

1985; Robson et al., 1993; Obled et al., 1994; Wolock, 1995] and several recent 

studies have examined its applicability to water quality problems [Wolock et al., 

1990; Robson et al., 1992].  
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TOPMODEL makes use of a topographic index of hydrological similarity 

based on the analysis of the topographic data. For a long time, the calculation of the 

topographic index has been made manually, but with the advent of GIS and terrain 

analysis techniques this procedure is now automated [Quinn and Beven, 1993]. The 

GIS is normally used to produce the topographic index and the channel routing from 

the DEM.  

Over the past two decades, TOPMODEL concepts have been implemented 

with various programming languages on different computer platforms (see, for 

example, Beven, 1997). The tools developed have been used widely in several 

catchments worldwide [Beven, 1997]. Efforts have also been made to integrate 

TOPMODEL with GIS, mostly from a hydrological perspective. For example, 

Chairat and Delleur (1993) used GRASS to determine the hydrological parameters 

and to link them with TOPMODEL. The linking method, however, was not explicitly 

described in literature although it has been mentioned that it belongs to loosely 

coupling methods as GRASS is mainly employed to access the input and output data 

from TOPMODEL. A second effort by Stuart and Stocks (1993) focused on the 

integration of a set of generic modelling tools into the SPANS GIS. Another 

application is AVTOP which integrates TOPMODEL into ArcView GIS [Huang and 

Jiang, 2002]. In AVTOP, the whole simulation process including stream network 

generation, topographic index map, and computation of soil saturation is 

implemented solely by the ArcView macro language (i.e., Avenue). The soil 

saturation status is visualized on top of a three-dimensional (3D) watershed surface 

layer for a better understanding of the predicted contributing area with respect to the 

distribution of the topographic index.  

The SWAT model 

SWAT (Soil and Water Assessment Tool) is a river basin (or watershed) scale 

model aimed at quantifying the impact of land management practices on water, 

sediment, and agricultural chemical yields, in large complex watersheds characterized 

by varying soil types, land use, and management conditions over long periods of 
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time. The model components include hydrology, weather, sedimentation, soil 

temperature, crop growth, nutrients, pesticides and agricultural management.  

SWAT divides the watershed into sub-watersheds. Each of them is connected 

through a stream channel and further divided into Hydrologic Response Unit (HRU). 

HRU is a unique combination of a soil and a vegetation type in a sub-watershed. 

SWAT simulates hydrology, vegetation growth, and management practices at the 

HRU level. Water, nutrients, sediment, and other pollutants from each HRU are 

summarized in each sub-watershed and then routed through the stream network to the 

watershed outlet [Neitsch et al., 2005a; 2005b]. 

SWAT has been linked with GRASS [Srinivasan, 1992; Engel et al., 1993; 

Srinivasan and Arnold, 1994], Arc/Info [Bian et al., 1995], and ArcView [Arnold et 

al., 1998]. The SWAT-GRASS linkage is a pre-processing utility that has been 

developed within GRASS to generate the input information used by SWAT [Arnold 

et al., 1993]. As Arnold put it, “Rather than having manual user inputs into SWAT, 

raster-based map layer inputs for soil information, land use and land cover, and 

digital elevation models are interactively analysed and formatted by GRASS and 

SWAT model utility routines. GRASS also contains routines for basic hydrologic 

modelling and parameter calculations and this capability can be used to develop input 

to SWAT”. Watershed boundary delineation, Slope and Aspect percent, and flow 

directions are examples of the important hydrologic parameter analyses that can be 

calculated by GRASS.  

The SWAT-GRASS model has been applied for small scale hydrologic 

modelling as well as for continental scale. For example, Jacobson et al. (1995) 

evaluated the water quality impacts of the diverse crops and management practices in 

a 4.6 km2 sub-watershed of the Herrings Marsh Run Watershed in the North Carolina 

Coastal Plains. Srinivasan and Arnold (1994) applied the SWAT–GRASS model to 

calculate several features (e.g., average annual rainfall, total water yield, actual and 

potential evapotranspiration, and annual grain yield and biomass production) for the 

entire USA. The input data such as the map of soil types (STATSGO), the map of 
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land use (USGS LULC), and the Digital Elevation Model (DEM) were required to 

run the SWAT-GRASS model. The USA was divided into 78,863 STATSGO 

polygons for this analysis [Mizgalewicz and Maidment, 1996].  

SWAT has also an ArcView extension developed by Diluzio et al., (2001). 

The linkage requires designation of land use, soil types, soil chemistry, weather, 

groundwater, water use, pond, and stream water quality data, as well as the 

simulation period, to ensure a successful simulation. Barnett and Fulcher (2001) 

developed another linkage with ARC/INFO using AML (ArcInfo Macro Language) 

as well as a user friendly, menu-oriented, graphic user interface for reformation of the 

modelling processes involved in SWAT model. 

 

3.3.3 IDLAMS - The Work of Argonne National Laboratory  

IDLAMS (Integrated Dynamic Landscape Analysis and Modelling System) is 

a decision support system that incorporates a number of ecological models and based 

on a GIS framework [Sydelko et al., 2000]. IDLAMS was developed in year 1994 by 

the U.S. Department of Energy at Argonne National Laboratory (ANL) and the U.S. 

Army Construction Engineering Research Laboratories (USACERL). IDLAMS 

aimed at predicting land conditions (i.e., vegetation, wildlife habitats, and erosion 

status) by simulating changes in military land ecosystems for given training 

intensities and land management practices. Therefore, the military land managers can 

use IDLAMS as a tool to compare different land management practices and to further 

determine a set of land management activities and prescriptions that best suit the 

needs of a specific military installation [Li, et al., 1998]. 
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IDLAMS21 includes four major components: the vegetation dynamics model, a 

set of wildlife habitat suitability models, an erosion model, and a scenario evaluation 

module [Li et al., 1998]. These components were integrated through a static GIS 

structure. Consequently, the flexibility and the dynamic interaction between these 

models were limited. To overcome these limitations, an object-oriented prototype of 

IDLAMS was developed based on an object-oriented architecture known as DIAS 

(Dynamic Information Architecture System) shown in Figure 3-4. 

Figure 3-5 shows the conceptual design of OO-IDLAMS. OO-IDLAMS 

includes a number of key Objects such as: the domain object (e.g., grassland, 

watershed, stream, atmospheric layer, etc.); the Object Library; the Data 

Import/Export Utilities; the Discrete Event Simulation Manager; the GeoViewer 

module that provides the GIS functionalities; and the Course-of-Action (COA) object 

that is a flowchart of individual steps constituting a specific plan or action and is used 

to model procedural or sequential processes. The OO-IDLAMS prototype integrates a 

subset of the original IDLAMS components including the Vegetation Dynamics 

Model and the Habitat Model. For the OO-IDLAMS implementation, the Military 

Training and Land Management components of the original Vegetation Dynamics 

Model were broken into three COA objects (Training, Burning, and Planting). These 

COAs represent the land use and the land management plans for the study area. 

COAs are considered to be models within OO-IDLAMS. The natural succession 

processes remain part of the external Vegetation Dynamics Model. OO-IDLAMS 

also employs GeoViewer (an object-oriented GIS module) to navigate the study area 

to create, query, view, and manipulate objects.  

                                              
21 21 IDLAMS is developed for military use and not available for public. Most publications describe 
the approach, but do not explain the integration method. We try to describe IDLAMS to the best of 
our knowledge from the available resources. 
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Figure 3-4: OO-IDLAMS Components (based upon DIAS) 

 
Figure 3-5: OO-IDLAMS Conceptual Design [Sydelko et al., 2000] 

Noticeable, the models that appear in Figure 3-5, do not communicate directly 

together but are only integrated through their relationships with the domain objects. 

This makes it easier to replace a model or to integrate additional models without 

disrupting other models in the suite. This modular design makes OO-IDLAMS more 

flexible than the earlier IDLAMS version. However, Sydelko commented on DIAS 

by stating: “Although DIAS provides an excellent framework for the integration of 

multiple models, it does not solve the more basic ecological and environmental 

research issues related to model integration. These issues include, but are not limited 

to (1) the ecological implications of multiple-scale modelling and simulation and (2) 

the impacts of data aggregation and disaggregation. However, DIAS can be used as 

an excellent workbench from which to explore and investigate these issues.” 
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3.3.4 WaterWare -The work of Kurt Fedra 

WaterWare is a river basin information and decision support system based on 

a set of related mathematical, water resources, simulation models. WaterWare has 

been initiated through the EUREKA project (EU487) and the related RTD projects22. 

WaterWare has evolved through a series of applications to: the river Thames in 

England, the Lerma-Chapala basin in Mexico, the West Bank and Gaza in Palestine, 

the Kelantan River in Malaysia; and a series of other case studies around the 

Mediterranean (e.g. in Cyprus, Turkey, Lebanon, Jordan, Palestine, Egypt, Tunisia 

and Morocco) within the framework of the INCO projects SMART and OPTIMA.  

WaterWare is implemented within an object oriented framework. It facilitates 

the integration of several components. These components may include: (1) 

geographical data (e.g., administrative/land use/land cover maps, digital elevation 

models DEM, etc.); (2) A number of water resources simulation models (e.g., 

rainfall-runoff model (RRM); water resources model (WRM); water quality models 

(STREAM, BLTM); irrigation water demand model (IWD); and groundwater flow 

and transport model (XGW)); (3) River Basin Objects (e.g., water supply/demand 

nodes, sources of pollutants, etc.); (4) River Networks (shared between WRM and 

STREAM models and linked to the River Basin Objects); and (5) analytical and 

decision support tools (ranging from simple screening-level to sophisticated 

Optimization models) for water allocation. These components are integrated through 

a consistent architecture that includes a multimedia user interface with Internet 

access, a hybrid GIS, and an embedded expert system for environmental impact and 

assessment [Fedra, 1994, 1995, 1996a, 1996b, 2002, 2005]. Fedra stated: 

“WaterWare is designed to be a highly detailed operation analysis tool at short time 

intervals (hourly to daily); Strongly linked to water quality modelling of in-stream 

flows to determine optimal wastewater loading strategies as well as related 

engineering, environmental, and economic aspects”.  

                                              
22 The related projects can be found at http://www.ess.co.at/docs/gallery.html  
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Fedra described the basic data framework of the WaterWare as a combination 

of a hybrid GIS that provides the overall structure, and classes of objects that include: 

river basin elements, model scenarios, and tasks. The river basin elements include: 

sub-catchments, reservoirs, treatment plants, and river reaches. These elements are 

represented as polygons, lines, points, or regular cell grids. Their state is determined 

by a set of methods (model scenarios or sets of rules for the embedded expert 

system). Tasks are specific problem oriented views of river basin objects (or 

combinations of objects). They present their state, usually over time and based on a 

number of decision variables or scenarios, to the user to support planning and 

management decisions.  

The various objects are linked in an explicit way. For example, the reservoir 

might be linked to: the sub-catchment that provides its inflow, the observation station 

that monitors the hydro-meteorological data, and the associated irrigation district. 

Models such as the rainfall-runoff model or the irrigation water demand model are 

used to update the state of these respective objects, and thus provide inputs to the 

water resource model. The water resource model, in turn, provides input to the water 

quality model that, again, operates in the context of other objects such as discharge 

nodes or water extraction and monitoring points.  

For the purpose of this research we briefly describe the relevant parts from 

WaterWare system that are the Embedded GIS Tools and the irrigation water demand 

model (IWD).  

WaterWare has its own GIS tools and functions that are specifically designed 

for WaterWare. These tools and functions are written in C and C++ programming 

languages and organized in a number of libraries. The GIS tools are associated with 

vector and raster layers as well as digital elevation data (DEMs). The important 

functions of the GIS tools include: arbitrary overlay stacking and zooming of map 

layers, display outputs from simulation and optimization models including the spatial 

interpretation of data as topical maps.   
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The map layers used in WaterWare either provide background for spatial 

reference and orientation, or direct data input for the simulation models. Examples for 

the latter are the digital elevation model (DEM), land use maps, and the river 

network. The embedded GIS functions and tools are represented in the WaterWare 

interface as a toolbar menu, as shown in Figure 3-6, that includes shortcuts for layer 

selection and stacking, zooming, colour editing, a four window mode for map 

comparison, 3D display of the DEM with any map draped over the elevation data, 

and read-back functions for locations, distances, or areas. 

 
Figure 3-6: WaterWare Embedded GIS Tools. [Fedra, 2002] 

The Irrigation Water Demand Model (IWD) 

The IWD, as described by Fedra, is a simulation model aimed at predicting the 

water demand for any of the irrigation districts in the river basin. The IWD model 

describes the irrigation districts or units that can range in size and complexity from a 

single field to an entire regional irrigation scheme. The model input includes the size 

and the crop pattern of the irrigation object, irrigation technology and transmission, 

and the local climate as well as groundwater information. The model output is the 

daily or monthly irrigation water demand in terms of river diversion or water 

extraction/pumping requirements. In parallel to the water requirement, the model can 

generate a simple cost-benefit analysis for the irrigation operation [Fedra, 2002]. The 

model uses either the CROPWAT approach developed by FAO to determine crop 
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water requirements in the growing season and computes supplementary irrigation 

water requirements, or an alternative model (IRRWD) based on a dynamic concept 

of crop specific physiological water demand.  

 
Figure 3-7: Irrigation Water Demand Model. [Fedra, 2002] 

 

The model output is presented in a graphical format as time series of the 

various components of the water budget, which supports the calculation of multiple 

and overlapping growing seasons for multiple crops.  

The model can be structured for hierarchies of irrigation operations, so that it 

can aggregate the output from numerous individual fields and plots into large 

irrigation districts. This possibility of a hierarchical representation makes it possible 

to configure complex irrigation schemes at a high level of detail and realism.  

The output, the dynamic supplementary irrigation water demand, can be 

exported to the overall water resources model (WRM) where the respective irrigation 

district is represented as a demand node.  
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3.4 Hydrology and water resources applications 

Several applications in water resources have been reported in literature where 

GIS has been linked with hydrologic/hydrodynamic models [Batty and Xie 1994; 

Zhang 1994; Shamsi 1996; Yao and Terakawa 1999]. Sasowsky and Gardner (1991) 

linked the Simulation of the Production and Utilization of Rangelands (SPUR) model 

to the GIS to develop input parameters for the model. Rewerts and Engel (1991) 

linked the ANSWERS model to the GIS for the development of input structures. As 

mentioned earlier, Srinivasan (1992) developed a link with the AGNPS model to the 

GIS not only for development of effective input opportunities, but also to visualize 

raster maps generated by the GIS based on the AGNPS output. Arnold (1992) 

developed a linkage for the SWAT hydrologic model similar to the AGNPS interface 

developed by Srinivasan. The SWAT linkage also incorporates advanced 

visualization tools capable of statistical analysis of output data. The methodology for 

linking the GIS to a hydrologic model is conceptually simple. A GIS-based front-end 

processor will analyse the input map layer(s) and extract the distributed parameter 

information based on the data in each map layer. The data are then formatted into an 

input file structure that the model can read, import, and then utilize as a basis for 

simulation. Depending on the capabilities of the GIS and the simulation model, the 

GIS can also be used to spatially display output information. This can be 

accomplished by either using GIS tools to build output map layers or by viewing text 

or graph outputs.  

In the context of GIS applications in hydrology, Olivera and Maidment (1999) 

have used the GIS to identify flow path, to determine flow direction, and to delineate 

a watershed. However, this approach is limited in its application for diffusion 

processes (e.g., overland flooding), which does not follow a unique path or multiple 

paths. Olivera et al. (2000) have reported the development of a global-scale flow 

routing model using a source-to-sink algorithm that has been completely developed 

within GIS using Visual C++. One limitation of this approach is its rigidity, for 

example for water resources applications operating rules cannot be modified during 

the simulation. Davis (2000) and Whiteaker (2001) have developed Olivera’s 
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application to a new GIS data model, called ArcHydro, to represent natural basins, 

watersheds, and network of streams and riches. ArcHydro was intended to provide a 

structure for pre-processing GIS data for use in hydrologic simulation models. 

However, ArcHydro aimed at representing the process of surface water runoff that 

collects water from riches to channels to the mainstream to the sink point (e.g. to the 

sea). The irrigation network, however, works in the opposite direction. It distributes 

water from the mainstream to channels to the riches that provides water to 

agricultural areas. This implies a water distribution instead of water collection, or 

branching versus assembling. Therefore, modules of such as watershed, catchment, 

and basin in ArcHydro would not work in the modelling of an irrigation system and 

the governing rules for water distribution would have to be reformulated (reversed).  

In the following paragraphs, we describe two simulators that have been 

developed for the Nile River Basin. The Nile River Basin is one of the largest river 

basins worldwide. There is a fascination about the Nile River that has captured 

human imagination throughout history (see for example [Terje Tvedt, 2002]). Some 

five thousand years ago a great civilisation emerged depending on the river and its 

annual flooding cycle. At the beginning of this new millennium, some academic 

institutions such as NOAA and University of Maryland undertake major scientific, 

investigatory projects on the Nile River Basin such as Nile Forecasting System (NFS) 

and Nilesim hydrologic simulator. Some of these projects are described in the 

following paragraphs to understand what has already been studied in the region.  

 

3.4.1 MFS - The work of NOAA 

In year 1990, The National Oceanic and Atmospheric Administration (NOAA) 

initiated a river forecast system for the Nile River called “Monitoring, Forecasting 

and Simulation” project MFS [Bellerby, 2003]. The MFS project was funded by the 

USAID and implemented by the FAO. The primary objective of the MFS project is to 

predict the inflow into Aswan High Dam with as much lead time as possible. An 
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additional goal is to regionalise forecast capability so that many of the ten countries 

that share the Nile basin could benefit from the use of the Nile River forecasts. 

Phase one of the project (1990-1993) involved initial development of the Nile 

Forecasting System (NFS) for the Blue Nile River in Sudan. In the further phases, a 

significant improvement of the accuracy of NFS and in the simulation of the NFS for 

the Blue Nile and the White Nile has been achieved. Version 2.1 of the NFS was 

installed in Cairo in June 1994 and contains enhanced satellite calibration 

coefficients, a hydrologic calibration system, an enhanced reservoir operation system 

for the Blue Nile, an improved data assimilator, and graphics outputs [Elshamy, 

2006]. Because of the lack of adequate hydro-meteorological data, the European 

METEOSAT satellite data was used to obtain more detailed spatial resolution of the 

distribution of precipitation over the basin. A distributed hydrologic system was 

designed to take advantage of the satellite derived precipitation as well as known 

physical characteristics of the river basin from GIS. 

 

3.4.2 NFS - The Nile Forecasting System 

The Nile Forecasting System (NFS) is an operational satellite-driven 

distributed hydrological modelling system installed at the Nile Forecasting Centre 

(NFC) at the Ministry of Water Resources and Irrigation (MWRI), Cairo, Egypt. The 

system was developed under the auspices of the “Monitoring, Forecasting, and 

Simulation of the River Nile (MFS)” project managed under the auspices of United 

Nations Food and Agriculture Organisation (UN/FAO) with the primary development 

work undertaken by the United States National Weather Service (NWS). 

Imagery data from the European METEOSAT satellite are received using a 

Primary Data User System (PDUS). This imagery is used to generate daily estimates 

of precipitation using a Cold Cloud Duration (CCD) technique with pixel-by-pixel 

rain-rate calibrations. The gridded rainfall data are then inserted into a distributed 

hydrological model operating on the 5km METEOSAT grid. Each cell of the model 
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contains three components, a two layer non-linear water balance model,, a hill slope 

model that accounts for average travel times from hillsides to river channels, and a 

kinematic routing model which account for in-channel flow from grid-square to grid-

square. The model is used for the operational simulation and forecasting of inflow to 

Lake Nasser, impounded by Aswan High Dam. Three-month forecasts are produced 

using the Extended Stream-flow Prediction (ESP) technique, which employs 

historical data to provide multiple plausible scenarios of future precipitation. 

 
Figure 3-8: The GUI for the Nile Forecasting System NFS. [Bellerby, 2003] 
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3.4.3 NileSim - The work of Maryland University  

NileSim is a hydrologic simulator for the Nile River basin developed at 

University of Maryland as a simulation-based learning environment. It is a free 

software23 that is used at the University for the undergraduate course “The Nile: 

Technology, Politics, and the Environment”.  

NileSim is a Windows-based graphical simulator for the entire Nile River 

Basin, which has been developed principally for the pedagogical purpose of 

explaining complex river behaviour and management to non-technical individuals. 

NileSim also allows for applications to study agriculture, economics, history, and 

sustainability of the region, thus addressing social as well as engineering issues. The 

simulator has been developed in a cost-effective manner, making use of modern 

software development tools from electronic design automation. This has provided a 

rigorously accurate tool, which is fast, graphically intuitive, and simple for people to 

use. The tool supports interactive experimentation with a simulated Nile River Basin 

for users to learn by observation how that basin system works. 

The GUI of Nilesim shows a full-screen image of the Nile River basin from 

the Equatorial Lakes and Ethiopia to the Delta. This image is colour-coded, so that 

lakes, rivers, and reservoirs appear in dark blue, seas are light blue, political 

boundaries are yellow, and man-made features are red (Figure 3-9). Yet, the image is 

used as a background (not an interactive map) with invisible icons that divert the user 

to the underlying simulation model. While the NileSim program is a complicated set 

of algorithms, the user cannot see them and interacts only with the GUI.  

The simulator is based on a detailed description of the physical hydrology of 

the river system and is calibrated to empirical records of the basin. Its output 

reproduces the descriptive statistics of observed hydrographs, reservoir levels, and 

travel times of flood waves along river reaches. The NileSim model incorporates 

                                              
23 The software can be downloaded from (http://www.isr.umd.edu/SimPLE/) Accessed 2007. 
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monthly river flow variability from analyses described in the literature [Said, 1993; 

Shahin, 1985]. The monthly flow and volume estimates include a stochastic 

component. The filling and draining of reservoirs obey mass balance, and the travel 

times of flood waves downstream are described by Manning’s equation and 

geographically distributed reach geometries. 

 
Figure 3-9:  The GUI of the NileSim. [Levy, 1999] 

The underlying network simulation of the river basin was developed using 

VisSim, a network simulation toolkit from the electrical engineering industry. VisSim 

combines a graphical development environment for rapidly building network 

diagrams with a set of mathematical and logical tools for describing analytical 

relationships within such networks. The NileSim GUI was built using Delphi 3.0. The 

final code constructed, using these tools, was compiled into a C-based executable 

code for users to download from the Internet. This strategy of using CASE tools 

rather than writing original code allowed NileSim to be developed within a few 

months and to have both the functionality and look-and-feel of standard Windows 
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software; this consistency with industry standards is important in simplifying training 

and encouraging use. 

Concluding Remarks 

Most of the research discussed in this chapter emphasizes the importance of 

linking the dynamic modelling methodologies with the GIS. The capabilities of the 

GIS to analyse relational and spatial data makes this type of technology ideal for 

linking with environmental simulation models, in particular, the hydrologic models. 

The GIS, then, is used as a visual spatial analytical tool and to develop input 

parameters for the simulation model. Such linkage greatly reduces the time needed to 

develop input data for simulation models and to simplify the input process.  

Attempts have been made to add the spatial dimension to the SD models. 

These attempts can be divided in two categories: (1) introducing spatial dimension 

into the system dynamics model (implicit approach) or (2) translating the SD model 

equations to run in the GIS. The first approach does not represent spatial dimension 

in an explicit manner, e.g., the Mono Lake model [Ford 1999]. In this model, 

spatially important features of the system are represented with aggregate relationships 

such as surface area–volume curve; and elevation–volume curve. The second 

approach involve translating SD model equations into a programming language and 

interfacing with GIS, for instance, Costanza et al. (1990), Theobald and Gross (1994), 

and Westervelt and Hopkins (1999). In these studies, the work is focused on spatial 

modelling (emphasis on GIS) and SD is used to bring the dynamic modelling 

(temporal aspect) capability into the GIS environment. Since SD model equations are 

translated to run within the GIS, a drawback of this approach is a loss of the 

interactive power of SD (changes cannot be introduced during the simulation). The 

main limitation in all the attempts that have been made thus far, for spatio-temporal 

dynamic modelling, is that the relationship between time and space is not made 

explicit, - they typically either span time or space, not both. 
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Noteworthy, the examples mentioned in section 3-3 and 3-4 (e.g., SME, 

CELSS, ELM, GRASS, WaterWare, etc.,) were developed by the effort of a sizable 

team of experts and large budgets.  For example, WaterWare was developed through 

a European collaborative effort involving universities, research institutes, and 

commercial companies [Fedra and Jamieson, 1996a; 1996b; 1996c]. We believe that, 

in order to make an impact, we should consider reducing the time involved for both 

the development of and the simulation based on this type of models, and that we 

should move towards smaller, more transparent models and less expensive 

computational resources (e.g. personal computers). We should notice too that the 

integration of the simulation models and the GIS although successfully completed, 

has been extensive and has been completed using an extremely sophisticated systems 

design. 

In section 3-3, three simulation models associated with GRASS have been 

described (i.e., AGNPS, TOPMODEL, and SWAT). In literature, such models are 

known as catchment models. In general, catchment models are distinguished by: a) 

the precision of the spatial units used in analysis as being lumped or distributed and 

b) the precision of the events modelled over time as being a single event or 

continuous time steps [Maidment, 1993].  

Lumped or distributed describes the way in which the model spatially handles 

the data. Lumped models use spatially averaged parameters and perform 

computations over the whole catchment region. As the within variation for a 

catchment increases, the model predictions may become less informative and 

accurate. Distributed models are based upon the discretisation of the landscape into 

smaller functional land units. Usually a uniform grid is used for computational 

convenience. Calculations are performed on discrete cells and then accumulated to 

make predictions over the whole catchment. With advances in computer technology 

distributed models are gaining popularity. However they require large amounts of 

data. The advantage of distributed systems is that they are able to better account for 

local variability in land conditions. This is important for land management decisions 
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which require a better understanding of land processes within a catchment and for 

applying farm scale management options.  

Single event and continuous time step refer to the time frame over which the 

model runs. Single event models calculate a single rainstorm event and run over a 

short period of time that covers the rainfall duration and time for runoff to drain from 

the watershed. Continuous time step models run over longer periods like a year or 

over the period of a seasonal crop rotation. Both model types are useful and provide 

different types of information. Continuous time step models do not produce accurate 

calculations for single storms. Similarly, single event models may not necessarily 

provide accurate long term predictions. An example of a catchment model that 

implements a single event distributed parameter is the AGNPS model [Young et al., 

1989]. An example of a catchment model that implements a continuous time step 

lumped model is the SWAT model [Arnold et al., 1993a]. Both models were 

developed in North America and have been significantly tested. Application outside 

North America is limited and mainly focused around research applications rather than 

part of decision support processes. 

The disadvantage of lumped models is that they do not make predictions for 

specific sites, and therefore may potentially overlook significant environmental 

problems. Distributed models, on the other hand, are good at detecting local affects 

and anomalies. However they are very complex in their operation and require large 

volumes of input data to describe the variation in the landscape. For instance, 

AGNPS requires at least twenty-two parameters for each cell [Young et al., 1989]. 

Formatting and input of data is a time consuming task using manual methods. 

Integration with GIS has streamlined this process and resulted in improved data 

management and analysis ability [Fedra, 1996a]. But there still exists problems to 

develop data sets with respect to the parameter assumptions built-in environmental 

models, and to adequately validate models for local situations. Without proper 

validation users are not sure of the model outputs and are unlikely to use them for 

decision-making. Therefore, a tighter integration between GIS and modelling 

applications is needed to provide improved data validity of input and output data.  
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3.5 Conclusion 

The efforts reported in this chapter leave no doubt that the integration of the 

simulation models with the GIS is highly demanded. The reviewed attempts are listed 

in Table 3-1. Theses efforts may be classified in many ways.  

First, in terms of the simulation approach that has been used, we can distinguish 

between attempts used the System Dynamics models (appear in red italics in table 3-

4) and the attempts used process based mathematical models. Second, in terms of the  

GIS data abstraction, the majority of attempts make use of Raster based GIS while 

Vector based GIS was limited although most of the network structures (like river 

streams and channels, transportation, utilities, and irrigation networks) are best 

represented in vector GIS. Third, in terms of the integration methods (i.e., loose 

coupling or tight coupling), the tightly coupling has been used once (WaterWare). 

Efforts may be also classified according to the types of simulation (i.e., continuous or 

discrete-event simulation); the knowledge domain (e.g., environmental, ecological, 

economical or social); or the method of implementation (using the available 

technology or build specific applications) and the cost and the efforts excreted. 

However, a close inspection for these efforts suggested that there is, to large extent, a 

room for more efforts. 

This research addresses a certain gap found in the literature. That is 

integrating the system dynamics simulation models with Vector based GIS in a tightly 

coupled method, using the available technology, to analyse and study an 

environmental problem such as water scarcity problem that has large impacts on 

social, economic, and human lives. Therefore, the emphasis in this research is on the 

SD simulation models to be integrated with vector-based GIS for analysing the 

irrigation system within the context of policy design and strategy development for a 

highly significant problem that is the water scarcity problem.  
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Table 3-1: List of Reviewed Literature (attempts of integration) 
Author Software 

Name 
Simulation 
Approach 

Spatial 
Tools 

Theme Study Area Integration method 

Kasperidus 
1988 

 SD Model 
Stella 5 

R.GIS 
N/A 

Agriculture Germany N/A 

Singhasaneh 
& Eiumnoh 
1991 

 SD Model 
N/A 

N/A 
N/A 

Urban Planning 
Landuse change 

Thailand N/A 

Grossmann & 
Eberhardt 
1993 

   Tourism, 
economy, & 
Agr. strategies 

 Conceptual Level 

Dmitri et al., 
2000 

ECONET 
simulator 

SD Model 
N/A 

GIS 
N/A 

Ecological nets 
of natural 
protected areas  

Moscow 
State 
University 

Loose coupling 
using Excel, Visual 
Basic, and Delphi  

Zewdie, A., 
1998 

 SD Model 
Powersim 

Vector GIS 
Arc Info 

forest depletion 
problem 

Ethiopia Loose coupling 
using Excel 

Ling Shi 
1999 

 SD Model 
Powersim 

N/A urbanization 
Landuse 
planning 

China Loose coupling 
using Excel 

Anthony, H., 
1998 

 SD Model 
Powersim 

R.GIS 
Arc Info 

Environment Mono Lake Loose coupling 
using Excel 

       
Despotakis et 
al., 1993 

Dynamic 
GIS 

STELLA SPANS Environment Greek 
Sorades 
Islands 

N/A 
Using especial 
translators 

Betz et al., 
1998 

VAFS/ 
LANDSIM 

LANDSIM Raster GIS 
ARC/INFO 

Forest fires Bryce 
Canyon 
Utah, USA 

N/A 

Sui, Dianzhi 
1993 

 N/A N/A Urban Hong Kong N/A 

Gilruth et al., 
1990 

 Dynamic 
simulation 
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4.1 Introduction 

This chapter includes three main sections. In the first section we provide a 

brief description about Object Oriented GIS (OOGIS) and explain the differences 

from the traditional GIS. This is followed by an overview of the dominant software in 

GIS domain that is “ArcGIS”. We briefly explain the basic terminology, the main 

features, and capabilities.  

In section two, we highlight the relationship between the Object Oriented 

paradigm and the System Dynamics. We analyse the basic SD language and explain 

how object oriented methods have been applied to the simulation software. We point 

to the OO extensions that can be added to SD. In this research we employ Vensim 

DSS, one of the available simulation software. Therefore, we assume that the user has 

some basic concepts regarding the Vensim software and its DLL functions. More 

information about the Vensim DLL functions can be found in the Vensim Manual. 

Section three is the point of departure to develop the new application SDGIS 

from which we explain our new method of integration. First we describe the 

conceptual design, the various integration strategies, and the selection of the “tightly 

coupling” strategy to be implemented. Second we discuss a number of technical 

issues related to the development of the SDGIS application. These issues include: (i) 

using external or internal simulation models (models designed to run independently 

of from within the GIS), we explain the difference between using the external models 

verses internal models, and the relative strengths and weaknesses for each approach. 

(ii) The different ways to design and implement the user interface of the SDGIS 

application (i.e., as an ActiveX DLL that can be added to the ArcMap as a customised 

tool, or as a standalone UI that employ the ArcObjects to provide the required 

functionalities). (iii) Having decided to build a standalone application, we can 

implement this with either VB or VC++. Thus, we highlight the advantages and 

disadvantages of using the two developing environments. The conclusion of this 

chapter comes at the end of this section.  
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I should remind the reader that developing the SDGIS application and the 

integration work in this research has been done several times due to the rapid 

evolution of the technology. The first application was developed using ArcView 3.3 

software to prepare(develop the maps and the attribute data associated with it) data 

the maps, Powersim Constructor to develop the simulation model, and the Microsoft 

Visual Basic 5.0 to build our new application and the GUI. MapObjects 2.1 has been 

utilised to provide the GIS tools embedded within the application and Powersim DLL 

to connect the application with Powersim Engine to simulate the model and obtain 

the results. Due to the fast progress in the technology, however, it was necessary to 

migrate to the more recently released packages. The second application is built using 

ArcGIS 8.3, Vensim® DSS version 5.2a, and Visual Basic 6.  ArcGIS software 

package is fully object-oriented software that employs Visual Basic for Applications 

(VBA) as a modelling language24. Vensim DLL provides more functions and 

facilities to control the simulation model, and Visual Basic 6.0 has some 

improvements from the prior version (i.e., VB 5.0). Despite the release of Visual 

Basic dot Net that was intended mainly to facilitate the web applications, Visual 

Basic 6.0 is more suitable for our application and has all the functionality required. 

We also used ArcObjects shipped with ArcGIS instead of MapObjects 2.1 that has 

been used earlier. 

The focus in this research is to integrate the simulation models with the GIS 
models. SD models may be built using Powersim, Vensim, Stella or any other visual 
SD software. The challenge comes in creating the link between the SD and GIS. This 
link can be established thought using the DDLs. Both software, Powersim and 
Vensim, have been successfully incorporated into our new application. Although 
Powersim Studio provides the opportunity to build more hierarchally structured 
models as opposite to the flat models in Vensim, Vensim DLL offers better 
capabilities for controlling the model from external applications such as VB. For this 
reason, we decided to use Vensim DLL in the final application SDGIS. Since the 
hierarchal structure is not provided in Vensim, the only option was to build a flat 
model. 

                                              
24  ArcView 3.3 is Object based but not object-oriented and uses Avenue as a customisation anguage. 
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4.2 Object Oriented GIS 

4.2.1 The Basic Concepts of OOGIS  

Geographical features (also referred to as spatial entities or spatial objects) are 

natural, manmade, or abstract objects of interest. These features are usually defined 

in the form of two main data categories: spatial data and attributes (non-spatial data). 

The spatial data describes the geographical features by geometrical information 

(shape of the feature and position) and topological information (relations to other 

features). Attributes (or non-spatial data that are usually numerical and textual) 

are the characteristics related to the geographical features. Attributes have no 

specific location; only their association with spatial data defines them. For example, a 

river is a spatial entity that has a name such as “The Nile”; this is the non-spatial data. 

The spatial data and its representation and management have always been the 

primary concern for GIS technology developers. Spatial data is a key feature and can, 

in GISs, be considered more important than non-spatial data, since this differentiates 

GIS from other types of information systems [Maguire and Dangermond, 1991]. The 

main distinction between the traditional GIS and OOGIS is the way the spatial data is 

handled and managed. 

At the time when first GIS appeared, the task of displaying graphical 

information was very demanding due to limited hardware resources. Therefore, 

early GISs were usually based on systems that supported visualization of spatial 

data, such as computer aided design (CAD) systems. Low-level data structures 

used in CAD systems (like arrays, linked lists implemented as arrays, and 

dynamic linked lists) were used to store data, and traditional file handling 

techniques were employed in systems for managing data. This approach provided 

facilities for displaying and editing geographic information. However, because of 

the massive volume of spatial data that describes the geographical features and 

the significance of the topological links, CAD systems did not suffice [Mitrovic et 

al., 1996]. The need to store, retrieve, and represent the spatial data adequately 

resulted in the development of a new data structures for GIS, such as various 
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types of trees (R, Quad or KD trees) for fast spatial retrieval on large datasets 

[Samet, 1990]. These structures encompass both geometrical and topological data 

(which contain data about neighbouring objects such as farms and parcels on both 

sides of a river), sometimes accompanied by attribute data as well. 

The commercial success of database management systems (DBMS) and their 

widespread use was also reflected in the development of GIS. Several commercial 

DBMSs emerged. Generally, they were based on one of the classical data models: 

hierarchical, network, relations or their derivatives [Codd, 1982]. Commercial 

relational database management systems (RDBMS) have gained much popularity, 

and products such as Oracle and Ingres were widely spread. They are built on the 

relational model that organizes data as tables and relations. The columns of the table 

are called attributes and all values in an attribute are elements of a common domain 

that describes the set of all possible values. Rows are referred to as records or relation 

elements [Ullman, 1982].  

The first GIS package based on relational database systems (such as 

Arc/Info [ESRI, 1991] stored only attributes (non-spatial data) in the database, 

mostly because of limited performances of contemporary computer systems, while 

the spatial data were still kept in property data models; these two parts were 

linked to each other, but were supported by separate data managers. Such 

hybrid architectures were commercially successful and dominant at the market for 

a decade. Yet, the separation of the underlying data into two parts had 

undesirable consequences, particularly concerning the lack of support for 

ensuring data security, integrity control, multiple user access, and concurrency 

management for spatial component of the database [Mitrovic et al., 1996]. 

The solution was to integrate spatial and non-spatial components under the 

control of a RDBMS. Initial efforts to implement a spatial database by way of 

pure relational model [Van Roessel, 1987] demonstrated that such an approach, 

although theoretically feasible, is unsatisfactory due to its low performance and 

the information concerning one object must be spread across many relations due to 
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the normalization performed upon the relations, and many join operations must be 

performed in order to recreate complex spatial objects. The relational data model 

alone cannot provide appropriate indexing and retrieval operations for spatial data 

[Mitrovic et al., 1996]. 

There were two subsequent research directions in using databases for 
storing both attribute and spatial data. The first approach is the extension of the 
relational data model and modification of RDBMS so that spatial data could be 
stored while retaining the advantages of the relational data model. This approach 
is based on abstract data types and relaxing the constraints of the relational data 
model (normal forms). Research in this area started in the 1980s [Abel 1989; 
Guptill and Stonebraker 1992; Mitrovic D., 1993], and commercial GIS tools based 
on the extended relational model are available (Smallworld, ESRI SDE, Oracle 
Multidimensional). The second approach is the application of OODBMS, resulting 
from the general acceptance of C++ as the major implementation tool for GIS.  

Egenhofer and Frank (1992) proposed that the DBMS, as a subsystem of a 

GIS, can be replaced by another product of the same modelling power such as an 

OODBMS. Object-orientation possesses rich modelling structures, enabling a more 

intuitive representation that more closely parallels the natural structure seen in the 

maps. For example, Figure 4-1 shows a simple map and some data that represents two 

segments of a single “Road”: 

 

Figure 4-1: A sample map and data25 
 

                                              
25 Source: Garvey et al., 2000 
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In a relational database, each segment would have to be treated as a number of 

rows rather than a single object. A segment number would be needed to link the 

related records: 

Line No. Segment No. Type No. X Y Z 
1 1 226 350460 312880 0 
2 1 226 350406.375 313047.125 0 
3 1 226 350393.9375 313185.9375 0 
4 1 226 350406.375 313325.5625 0 
5 1 226 350480 313680 0 
6 2 226 350060 314320 0 
7 2 226 350480 313680 0 
 

In contrast, in an object-oriented database, a user-defined type could be created 

to hold the point coordinates and each segment could be represented as one object. In 

this approach, the segment numbers are unnecessary and the object orientation 

provides an improved way of representing the information that can be easily 

manipulated as a whole rather than in bits: 

Line No. Type No. POINT 
1 226 { (350460, 312880,0) 

(350406.375, 313047.125,0) 
(350393.9375, 13185.9375,0) 
(350406.375, 313325.5625,0) 
(350480, 313680, 0) } 

2 226 { (350060, 314320, 0) 
(350480, 313680, 0) } 

 

An object-oriented GIS allows for encapsulation of the spatial entities so that 

all of its geometry, data, and behaviours are contained in a single object. Hierarchies 

or networks of objects can be constructed to represent complex objects (e.g. 

hydrological network) and the interrelations between objects. The objects can also be 

related via a layer hierarchy based on any relationship. 

An additional claim made for object-oriented database systems is that they 

make the task of constructing GIS software considerably easier. This is particularly 

relevant when manipulating complex data structures and for creating visualisations of 

the data. A successful GIS will invariably embody this type of data structure and will 
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almost certainly require a visual representation of map data. A further motivation for 

the use of an object-oriented approach to the production of such a system is therefore 

the expectation that the approach will result in a system that has a clean interface and 

is easier to maintain than an equivalent system built using conventional programming 

techniques. ESRI sponsored this approach and the first fully Object-Oriented GIS 

package (ArcGIS 8.0) was released in 2001. ESRI’s OOGIS data model is called 

geodatabase. In the following paragraphs, we briefly describe the structure of the 

geodatabase and the main characteristics of ArcGIS. More information concerning 

ArcGIS modules and functions can be found on ESRI URL 

[http://www.esri.com/software/arcgis/] 

Geodatabase Structure 

The object oriented data model that is used in ArcGIS is called geodatabase. It 

supports an object oriented vector data model. In this model, entities are represented 

as objects with properties, behaviour, and relationships. Support for a variety of 

different geographic object types is built into the model. These object types include: 

simple objects, geographic features (objects with location), network features (objects 

with geometric integration with other features), annotation features, and other more 

specialized feature types. The model allows for defining relationships between 

objects, together with rules for maintaining the referential integrity between objects. 

The Geodatabase organizes geographic data into a hierarchy of data objects. These 

data objects are stored in object classes, feature classes, and feature datasets.  

An object class is a table in the geodatabase that stores non-spatial data. All 

tables (and feature classes) have a set of required fields that are necessary to record 

the state of any particular object in the table (or feature class). These required fields 

are automatically created when the user creates a new table (or feature class), and 

cannot be deleted. Required fields may also have required properties such as their 

domain property. The user cannot modify the required property of a required field. 

For example, in a simple feature class, “OBJECTID” and “Shape” are required fields. 

 

http://www.esri.com/software/arcgis/
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They do have properties such as their aliases and geometry type that user can modify, 

but these fields cannot be deleted. 

A feature class is the conceptual representation of a geographic feature. When 

referring to geographic features, feature classes include point, line, area, and 

annotation. A feature class is a collection of features with the same type of geometry 

and the same attributes. Simply it is an object class that stores features and has a field 

of type geometry. 

A feature dataset is a collection of feature classes that share the same spatial 

reference. The spatial reference for a feature class describes its coordinate system. 

Feature classes that store simple features can be organized either inside or outside a 

feature dataset. Simple feature classes that are outside a feature dataset are called 

standalone feature classes. Feature datasets are a way to group feature classes with 

the same spatial reference so that they can participate in topological relationships 

with each other. To most users, feature datasets also have a natural organizational 

quality, much like a folder on a file system. Since for many GIS applications the 

majority of the data for a particular database has the same spatial reference, the 

temptation to group large numbers of feature classes into feature datasets is 

irresistible. 

ArcGIS supports two main categories of Features: Simple Features and 

Network Features. Simple Features include points, lines, and polygons. Network 

Features include Simple Edges, Complex Edges, Simple Junctions, and Complex 

Junctions. All Edges are connected throughout Junctions. A Simple Edge is a linear 

Network Feature with no internal junctions. A Complex Edge is a linear Network 

Feature that may contain one or more internal junctions, which are vertices that lie on 

the edge but do not split the edge. Thus a Complex Edge may join another Complex 

Edge anywhere along its length, while Simple Edges can only join other Simple 

Edges at their endpoints. Simple Junctions can be thought of as the nodes that 

connect Edge Features, although Junctions do not have to be attached to any Edges. 
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Complex Junctions are Junctions with special internal connectivity, analogous to a 

switchboard.  

A collection of Features of the same type is stored as a Feature Class. Each 

row in the Feature Class table represents an individual Feature. Feature Classes that 

share a common use can be grouped into Feature Datasets. A Feature Dataset is a 

container that defines a reference frame for the Feature Classes that it contains. The 

reference frame includes information about the spatial projection, coordinate range 

and coordinate precision for the data. Feature Datasets can also store relationships 

between Feature Classes, as well as geometric networks. Relationships in ArcGIS are 

comparable to relationships in any RDBMS, with related rows in different tables 

being linked by a common identifier in key fields in each table. Geometric networks 

are used for defining network topology between Features. Geometric networks 

support tracing and connectivity tasks. Only Network Features (line and point 

features) may participate in a geometric network.  

Feature Datasets, Feature Classes, relationships, geometric networks, and non-

spatial tables are all stored in a Geodatabase. A Geodatabase is a relational database 

that serves as a container for spatial data in ArcGIS. Other RDBMS software, such as 

Oracle or Access, can open a Geodatabase. Using such software to view a 

Geodatabase reveals Feature Class tables, as well as other tables used to maintain the 

Geodatabase. 

Custom Features  

ArcGIS has extended the power and functionality of a Feature by 

incorporating object-oriented technology into its software design. In addition to their 

spatial and attribute information, Features can also possess special behaviours 

through the use of interfaces. For example, in addition to being a simple blue line on 

a map, the GIS representation of a river may also know how to route a flood wave 

from its upstream to its downstream end, how to draw itself at different scales, and 

which Features to notify if its’ spatial or attribute information changes. By adding 
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custom behaviour to Features, the GIS representation of real-world objects becomes a 

more accurate depiction of the reality that the GIS intended to represent. 

Custom Features can also take advantage of ArcGIS’s COM-compliant design. 

Because ArcGIS is COM-compliant, Features can access the capabilities of software 

such as Microsoft Excel to plot graphs, or Word to prepare reports. The code behind a 

Feature’s behaviour can be written with a COM-compliant programming language, 

such as C++, meaning that users no longer must learn a proprietary programming 

language to customize the software.  

COM-Compliant  

ArcGIS is the first GIS software released by ESRI with a COM-compliant 

design. Through COM, ArcGIS can now communicate with other COM-compliant 

software, such as Word, Excel, and Internet Explorer, by utilizing public components 

(those that can be accessed by other applications) from the softwares’ object library. 

ArcGIS also uses Visual Basic for Applications (VBA) as its customisation language, 

no longer requiring users to learn a proprietary language (such as Avenue or AML) 

for customisation purposes. Note that VBA is different from VB, in that Visual Basic 

is used to create standalone applications or DLLs, while VBA is used from within a 

software application to customize that application.  

Through VBA, the graphical user interface of ArcMap and ArcCatalog can be 

tailored to fit the needs of the user. Custom buttons and toolbars can be created, and 

macros can be written to automate complex tasks. VBA is also the means by which 

the object libraries of other COM-compliant software are accessed. This means that 

ArcGIS can now link spatial data to spreadsheet applications, reports, and even web 

utilities. The customisation potential provided by COM-compliance and VBA has 

extended the functionality of ArcGIS far beyond that of any GIS software in the past. 
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ArcObjects  

 In addition to the customisation capabilities within ArcGIS, ESRI has 

provided a collection of objects (known as ArcObjects developer kit) from which 

users can create standalone programs that utilize one or more components from 

ArcGIS. These streamlined applications incorporate only the ArcGIS components 

they need, resulting in a much smaller and faster software product than the full 

version of ArcGIS software. This collection of reusable components is referred to as 

ArcObjects.  

ArcObjects encompasses a Map Control (as an ActiveX control), Map Layout 

Control, and more than a hundred other objects that can be used in Visual Basic, 

Delphi, Java, and other industry standard programming environments [ESRI, 2001]. 

These controls possess much of the same functionality found in ArcGIS. Applications 

built with ArcObjects can support the display of spatial information, with 

functionality such as panning and zooming. ArcObjects also supports basic querying 

of features (either spatially or by attribute data), location of addresses, feature 

selection, and statistical calculations. While ArcObjects is not intended to act as a 

substitute for complete ArcGIS functionality, it can add GIS capabilities to an 

application that would otherwise be lacking a mapping component.  

In this research we use ArcGIS to develop the spatial model that will be 

connected to the simulation model through our new application SDGIS. Because 

SDGIS is intended to be a standalone application, we utilise ArcObjects to provide 

the GIS capabilities and tools within the application. In the following section, we 

develop the spatial model that represents a surface flood irrigation system. This 

model will be used in the next chapter to test the performance of the SDGIS 

application. 
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4.2.2 Modelling the Irrigation System with GIS 

To describe our method, we consider an example of a surface-flood irrigation 

system that includes: (1) a main stream delivering water to a number of secondary 

canals that deliver water to tertiary ditches which in turn supply water to farms; (2) a 

number of control-gates or regulators that usually located at the head of each canal 

and/or ditch to control the flow of water; (3) the agriculture lands that utilize the 

water for cultivation practices and planting crops and, (4) the supplementary data and 

information concerning the efficiency of the canal system for water delivery, the 

cropping pattern (i.e. succession of crops) and water needs for each crop during the 

growing period, the agriculture calendar, and the annual schedule of water releases 

from the reservoir.  

The GIS model for such a system would include, and be organized in, four 

feature classes: (1) the irrigation network as a line feature class; (2) the control-gates 

and regulators as a point feature class; (3) the agriculture lands and farms as a 

polygon feature class; and (4) the topology feature class that is a geometric network 

links the three feature classes together.  

Networks in GIS are conceptually simple. They are comprised of two 

fundamental components, edges and junctions. Streams, transmission lines, and pipes 

are examples of edges, while control-gates, switches, and the confluence of stream 

reaches are examples of junctions. Edges are connected together at junctions, and the 

flow from one edge can be transferred to another edge throughout junctions. Since 

features have a geometry shape and can easily be mapped, such a network is called a 

geometric network. Remarkably, for every geometric network, there is a 

corresponding logical network, which is a "behind-the-scenes" data structure that 

stores edges and junctions IDs and positions and the connectivity rules between them. 

The logical network consists of tables with unique identifiers. When the geometric 

network is created within the geodatabase, the logical network is automatically built 

and maintained. In fact, to analyse the flow through a network we simply deal almost 

exclusively with the logical network. 
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The attribute data related to the streams and canals; the control-gates and 

regulators; and to the various agriculture lands are stored into the attribute tables 

associated with each feature class. For example, the Canal Name, Canal Average 

Cross Section, Minimum Water Content, and Maximum Carrying Capacity are stored 

in the “Canals” feature class. While the Farm ID, Farm Area, Crop Type, and the 

Canal ID that delivers water to the farm are stored in the “Farms” feature class.   

The maps are shown in Figures 4-2, 4-4, 4-6, and 4-7. These maps cover the 

Nile Delta region. During the fieldwork, we collected these maps from various 

sources. The maps were mainly in digital format; however, they were created from 

hardcopy maps that have different scales. Fortunately, the majority of these maps had 

the scale of 1:50,000. Therefore most of the necessary details do appear clearly. 

We started with converting the digital maps from the shape-file format to the 

geodatabase format, correcting their projection, and unifying the coordinate system. 

Some editing work was necessary to verify and assure the consistency of data. Next, 

we extracted the intended features (e.g., canals, control-gates, and farms) and 

organized them in feature classes, and added the attribute data associated with each 

feature in the related attribute tables as shown in Figures 4-3 and 4-5. A geometric 

network has been built using the three feature classes and the water flow direction has 

been set for each canal. It was necessary to create a relationship between each canal 

and the farms irrigated from it. This is a one-to-many relationship. We implemented 

this by adding a new field in the “Farm” attribute table and inserting the Canal ID that 

delivers water to each farm in this field. During this process, we found that some of 

the farms have more than one source for irrigation. Therefore we inspected these 

sources and considered the closest, higher ranked, of these canals to be the primary 

source of irrigation. This work lasted over six months. 
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Figure 4-2: The irrigation network in the Nile Delta. 
 

 

Figure 4-3: The attribute table of the Canals feature class. 
 

 

Figure 4-4: The irrigated farms feature class. 
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Figure 4-5: The attribute table of Farms feature class. 
 

 

Figure 4-6: Creating the geodatabase in ArcCatalog from the main layers. 
 

 

Figure 4-7: Creating the geometric network using ArcInfo. 
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Using the “identify” tool, the user can select any feature from the map and 

examine its attribute data in a dialog-box as shown in Figure 4-8. The user can also 

query the map using either “query by attribute” or “query by location” tool. For 

example, the user can select all canals that have width between 10-15 meters or the 

canals fall in certain geographical area. ArcMap will then redraw the results on the 

map using a different colour. The power of such software lays in its capability to find 

the spatial relations and answer the user’s questions such as where, which, and how 

(e.g., where is a certain feature, which canal supply water to a certain farm, or how 

many farms are irrigated from a certain canal). The user can also perform 

sophisticated calculations and statistics such as calculating the total length of the first-

level canals, the total area of the farms irrigated from a certain canal, and so fourth. 

 

 
Figure 4-8: The identify dialog box in ArcMap. 

 

The GIS model presented in this section is used in the next chapter alongside 

with the SD model described later in this chapter to explain our new method of 

integration and to assess in the development of the SDGIS application.  
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4.3 Object Oriented Paradigm and SD 

4.3.1 The Basic Concepts of OOSD 

The efforts of Dahl and Nygaard to create and implement new concepts for 

programming discrete simulation applications resulted in establishing the object-

oriented paradigm [Dahl et al., 1966, 1968]. Simula is considered the first object-

oriented programming language and the predecessor to Smalltalk, C++, Java, and all 

modern class-based object-oriented languages. As its name implies, Simula was 

designed to perform simulations, in particular, discrete simulation. However, the 

Object-oriented languages and tools for continuous simulation took longer to arrive. 

Object orientation has been added to continuous simulation in two different ways: (i) 

As a library of classes usable from a general purpose OO language (usually C++) 

[Copstein et al., 1997] and (ii) As a continuous simulation language with built-in OO 

constructs (e.g. the Object Oriented Continuous System Modelling Program 

OOCSMP) [Elmqvist et al., 1997].  

The Object-Oriented paradigm views any program as a collection of discrete 

objects that are self-contained data structures and methods that interact with other 

objects. It provides a way of dividing the program into modules by using objects as 

building block. The concept of reuse is central to object-oriented programming and it 

is achieved through inheritance. Whilst there are pure object-oriented languages such 

as Eiffel and Smalltalk, there are also hybrid-languages such as C++ which provides 

all the crucial elements for applying the object-oriented paradigm, and there are other 

languages, such as Ada 95, which are categorised as object-based because they 

contain some aspect of encapsulation inside objects that can be created from a set of 

existing classes, but does not provide the mechanism for creating new classes. The 

simulation software developed using object-based languages are considered to be an 

object-based software rather than object-oriented.  

The simulation software designed for the developments of SD simulation 

models offer some common approaches to model building. In general, these tools 

enable model development through graphical specification of required relationships 
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among variables (STELLA/iThink, Vensim, Powersim), or by the implicit writing of 

equations in text editors (COSMOS & COSMIC, Dysmap2, Dynamo) [Richardson 

and Pugh, 1981]. They also provide built-in functions that cover a wide range of 

simulation, mathematical and logical, statistical and analytical tools in the form of 

tables, graphs, animation, flow charts, or reports that explains simulation results. 

Some offer additional functionality for model sensitivity testing and optimisation 

[Coyle, 1996]. 

Despite the variety of simulation software currently available in the market, 

the basic SD language, in principle, has only two building blocks: the stock and the 

flow [Myrtveit, 2000]. Remarkably, this basic SD language is very powerful and 

facilitates building and expressing almost any dynamic system. This is due to the 

general nature of stocks and flows. The magnitude (value) of the stocks (i.e. the stock 

level) altogether represent the system state at any moment in time, and the magnitude 

(value) of flows (i.e. the flow rate) altogether represent the changes to the system 

state that take place as time advances. Stock levels and flow rates are represented as 

variables. Models can be built from only flow rates and stock levels, but, in practice, 

it may be useful to introduce auxiliary variables for expressing some of the logic 

behind the computation of flows. 

Modelling and simulation software, especially those with visual programming 

style, can utilise well the benefits of Object-Oriented Programming, particularly the 

concept of reuse. There are a number of well-recognized SD models that have been 

developed over the years. Such models, or part of them, can be used as building 

blocks in other models. It is not necessary that modellers start from scratch every 

time they build a new model. Instead, the modeller can use some parts of these 

standard SD models. For example, the first order delay [Forrester, 1961] or coflows 

[Hines, 1983; Homer, 1983] are substructures (or model units, or components) that 

have been documented and are well understood. They may be employed as standard 

building blocks during the development of other models. In the SD literature, these 

independent substructures or prefabricated units are known as “molecules” [Hines, 
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1996] or “components” [Myrtveit, 2000]. These substructures are objects that 

encapsulate data, methods, and events ready for use in other SD models. 

Creating substructures for reuse has been a major concern for SD modellers. 

Some claim that SD model components for visual simulation illustrates how a visual 

simulation model can be used to develop SD model with no programming experience, 

and in a short development time [Umar, 1997; Miller et al., 1998; Balci et al., 1998; 

Harrell and Hicks, 1998; and Mackulak et al., 1998]. In the following paragraphs, we 

briefly describe and comment on three approaches to build substructures and 

implement the concept of “reuse” in various SD software. Theses approaches include 

Molecules developed in Vensim [Hines, 1996], Components developed in Powersim 

[Myrtveit, 2000], and Component-Based Programming CBP using C++ Builder 

[Ddembe et al., 1999]. 

Molecules 

As Hines described them, Molecules are structures, primitive compositions of 

stock and flow (or auxiliary) elements and are in turn the building blocks of complete 

models. A molecule is an element of substructure that serves a particular purpose. As 

a typical example, one of the simplest molecules and probably appears in most 

models is the decay process shown in Figure 4-9.   

 

Figure 4-9: A sample of SD model substructure. 
 

Molecules are closely related to what are called "classes" in object-oriented 

programming. For example, the material delay molecule is derived from the decay 

molecule and is used in the aging chain molecule. Similarly, the productivity coflow 

is derived from the standard coflow, which is derived from a smooth [Hines, 1983]. 
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This object-oriented organization is very helpful because it provides a good way to 

learn about successively more complicated molecules. Once a molecule is thoroughly 

understood, it is a much easier task to understand the other molecules derived from it. 

It is useful to distinguish between molecules and archetypes [Senge, 1990]. 

Archetypes present dynamic lessons that have been learned from systems having 

certain structural characteristics [Kim, 1989, 1994, 1995]. Molecules are building 

blocks from which more complex structures are created. Molecules may improve our 

ability to represent structure effectively and efficiently, but do not draw dynamic 

lessons from particular structures. 

 Currently, molecules are available as a stand-alone application that can 

be implemented as add-on to the Vensim® software. Figure 4-10 shows a preliminary 

selection of molecules and their relationships. Using molecules are easy. The diagram 

shown in Figure 4-10 is presented when the user selects “Molecules” item from 

“Windows” dropdown menu in the main toolbar of Vensim®. Double clicking on any 

of the names in the diagram brings up that molecule in a separate view. The user can 

then select the molecule, or a portion of it, copy it to the clipboard, and insert it into 

the model he/she is working on. Once this is done, the normal Vensim tools may be 

used to rename the model elements, change the units of measurement, and complete 

the construction of the model. 

 Molecules, and their organization, provide a framework for presenting 

important and commonly used elements of model structure to beginners and 

experienced model builders. By having access to theoretically consistent and well-

tried formulations, modellers can review what has suggested in previous models and 

modify or directly incorporate these formulations into their own models [Hines, 

1996]. Ultimately, the molecule framework will be available for use with system 

dynamics software supporting the model interchange format (MIF) protocol 

[Myrtveit et al., 1995]. This will allow anyone with system dynamics software to use 

molecules.  
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Figure 4-10: Molecules associated with Vensim software26 
 

Comment: 

This method (copy and insert/paste) maybe acceptable in small and medium 

size models, but with large size models it becomes more difficult to persist modelling 

without a hierarchical inheritance structure of the kind the object oriented paradigm 

suggests. The basic elements of any SD language support only flat models. In order to 

cope with complexity, it should be possible to introduce different levels of abstraction 

into the model. For example, at the highest level, the model represents some system 

and at the next level we have subsystems that can be further divided into smaller and 

smaller parts, all the way down to the basic building blocks (stocks and flows). Some 

simulation software use various kinds of visual filtering mechanisms (e.g., sectors, 

viewers, diagrams) in order to deal with complexity in large models, however, a new 

concepts to facilitate the hierarchal structure must be introduced. Component 

Extension, coming up next, proposed by Myrtveit might be the point of departure. 

                                              
26 Source: Vensim® website: http://www.vensim.com/molecule.html [Accessed Dec. 2007] 
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Component Extension 

Magne Myrtveit27 proposed a new design for an object-oriented extension 

called “component” [Myrtveit, 2000]. The concept of the component is similar, to 

some extent, to the concept of molecules. However, the new extension aimed at 

facilitating the hierarchal structure and supporting encapsulation and polymorphism. 

The components have been introduced in Powersim Studio software. 

The component, as Myrtveit described it, can be seen as the counterpart of the 

class in object-oriented programming. It has a customisable interface for 

communicating with the rest of the model. Thus, the component encapsulates the 

entire elements (variables) of the sub-model, and can be used to create instances. The 

component has methods to import and export the values of its entire variables. 

Polymorphism could be achieved through the component interfaces, as components 

with equal interfaces are interchangeable.  

A component would normally include basic variables (i.e., levels, auxiliaries 

or constants). Such variables are connected using basic links and flow symbols. When 

connecting components, there will be more than one basic variable involved. In this 

case we need a way to bundle variables together into a connector that can be plugged 

into a compatible connector of another component. Two new structured variable 

types were introduced for this purpose, the sockets and the plugs. Sockets and plugs 

can hold variables, and they also have an interface type. A plug can be connected to 

socket if the plug has the reverse interface of the plug. When a plug and a socket are 

connected, the variables on each side are connected. The same way is used when a 

sub-model variable is connected to a component. In both cases the connection can 

only be made if the interfaces match. Also, when a connection takes place, the 

implications for the underlying model equations are determined automatically. It is 

not necessary to edit any equations for the connection to take place. 

                                              
27 The founder of Powersim 
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Comment: 

This approach seems very promising. However, the DLL in Powersim does 

not support complete control over such structure from an external application. For 

this reason we would not be able to use it in developing our new application.  

Component-Based Programming 

 Ddembe and Michael (1999) have used Borland C++ Builder to 

develop reusable components. C++ Builder is a visual programming environment 

where 32-bit Windows applications can be designed, developed and debugged. The 

style of programming supported by C++ Builder is widely known as Component 

Based Programming CBP. Telles (1997) describes C++ Builder as a true Rapid 

Application Development (RAD) tool. It offers programmers an Integrated 

Development Environment that allows programs to be written, edited, compiled and 

linked, all within a single application. It also offers CBP in which components are 

used in applications to ease the programming task and reduce the development time. 

However, in order to allow creation of components that may be used on other 

platforms, and facilitate the use and manipulation of components from other 

platforms in C++ Builder applications, additions have to be made to the C++ syntax.  

The C++ Builder describes a component as an object in code. Visual 

Component Library (VCL) contains different types of objects, some of which are not 

components. Components in C++ Builder are identified as any class, which is directly 

descended from the TComponent class. Objects, which are not components, are 

derived directly from TObject, the ancestor class at the top of the VCL hierarchy. In 

object-oriented terms, VCL is a good example of the use of inheritance. 

TComponent, the ancestor of all components in the VCL provides the minimal 

properties and events necessary for a component to work in the C++ Builder 

environment. Other base classes that descend from it have specialised capabilities, 

which are present in all classes derived from them. One significant characteristic of 

all components is that they are visual and can be manipulated at design time. 
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However, developing simulation models with C++ Builder requires the direct writing 

of equations in code form. This is contrasting the physical assembly of building 

blocks when using simulation software package. However, it is possible to visually 

model both the equation and simulation interface given the availability of suitable 

components. C++ Builder currently has an extensive range of components, some of 

which are dedicated to specific types of application. An extensive collection of 

components is dedicated to use in database development and manipulation, and for 

Internet applications. However, there are no components specifically developed for 

use in SD simulation modelling. 

As the model variables in SD (except for constants) are dependent on 

equations that make use of other variables to get their value, it is necessary to 

initialise the declared variables (placing them in the right order of execution) with the 

appropriate value or equation in the Forms constructor, to enable their use in 

subsequent calculations. The initialisation process involves assigning initial values to 

stocks and constants, and equations to flows and converters to set their values. Once 

initialisation is achieved, run time equation is written to set the cumulative value of 

stock variables. The next step is to establish a link to a graphics object that would 

display the result of calculations during model simulation and these forms a major 

aspect of the simulation interface building process. 

In terms of displaying simulation results, C++ Builder offers two graph 

components on the ActiveX page of the component palette but initial explorations 

showed them to be unsuitable for use due to a lack of adequate documentation for 

their application, and the fact that their use within an application requires a major 

deployment of supporting files which must be installed and registered on the client’s 

machine before application installation can take place. Nevertheless, it is possible to 

procure independent components from other source and install them into C++ 

Builder. To use the procured graph component for simulation purposes, it is 

important to override and re-write methods which set graph properties such as lines, 

tick marks, line points, axes values, grids, etc. Once the underlying implementation is 
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complete, an interface that facilitates entering data for onward assignment to graph 

properties need to be created using a collection of components. 

 

Comments:  

Learning to use C++ Builder for CBP is somewhat tedious. It is necessary to 

become acquainted with the available components, their properties, methods and 

events, and also learn how to use them within an application. These components and 

the vast number of object classes available within the VCL are documented in 

volumes of manuals and in online help facility. For an experienced C++ programmer, 

learning and using C++ Builder maybe fairly simple task but for a user with little 

previous programming experience, the learning process may be time consuming.  

Using current simulation software packages, presuming the modeller has 

knowledge of System Dynamics fundamentals; no special skill such as programming 

is required to successfully use the tool, other than to learn the specifics of features 

and functionality offered by the package. With CBP using C++ Builder, there is still 

the need to write some code even though the level of functionality, which has been 

built into the components, vastly reduces the level of effort and skill needed. 

However, programming a SD simulation model without components specifically 

provided for such use still require real technical skills and the benefits offered by the 

Component-Based approach in other situations therefore does not apply. 

In terms of relevance of the CBP to simulation software architecture, the 

modelling framework provided by graphical SD software packages directly supports 

the dynamics of its elements (i.e., Levels, Rates and Auxiliaries), and enables the 

specification of the relationships between these elements through links created by 

connector object. C++ Builder, being a generic programming tool that is not geared 

towards any specific application development, does not offer features that directly 

support the fundamental principles of SD modelling.  
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A significant useful feature of the simulation software is that they provides 

underlying support in the specification of equations, arranging them in the necessary 

order of execution and creating part of the run time equation.  

Programming a SD model with C++ Builder requires a greater level of 

technical skills, and in the absence of the suitable SD components, the benefits of 

component-based programming cannot be successfully applied to SD simulation 

modelling. The level of programming required in the use of components depends on 

the degree of functionality built into them. It is therefore possible to develop SD 

simulation components, which would require little or no programming skills. 

 

Concluding Remarks  

The power and beauty of the basic SD language lie in its simplicity and 

flexibility. A skilled modeller can capture the essential dynamics of a large system 

using only a few variables. For example, the Forrester’s model of World Dynamics 

[Forrester, 1970, 1973] is a huge model that represents the world. Remarkably, it has 

five state variables. Therefore, it might be worthy to keep our models as simple as 

possible.  

SD modellers can make use of the benefits of object-oriented paradigm, in 

particular, the concept of reuse. In this context, three approaches to create reusable 

substructure or model-units have been introduced: molecules, components, and 

component-based programming. However, molecules support only developing flat 

models. Components overcome the limitations of molecules by supporting the 

hierarchal structure, but they are limited to Powersim Studio and there are no MFI 

standards to use components in other SD software. Another limitation of the 

components use is that Powersim DLL (or ActiveX control) does not support a full 

control over the model from an external application. The third approach, that is to 

build simulation models using C++ Builder, requires sophisticated technical skills in 

programming and using components. 
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For the purpose of this research, we make use of a simple model to explain our 

new method.  In fact, what we need is a simple and flexible modelling environment 

(e.g. Powersim, Vensim) that provides the basic SD language (stocks and flows), and 

a mechanism that facilitates a full control over the system. The focus in this research 

is to integrate the simulation models with the GIS. SD models may be built using 

Powersim, Vensim, Stella or any other visual SD software. The critical part is the link 

between the SD and GIS. This link can be established thought the DDL. Both 

software, Powersim and Vensim, have been used to develop our application. 

Although Powersim Studio provides the opportunity to build more hierarchally 

structured models as opposed to the flat models in Vensim, Vensim DLL offers better 

capabilities for controlling the model from external applications such as VB. For this 

reason we decided to develop the final application SDGIS using Vensim DLL that 

provides more flexibility and control over the simulation model. Since the hierarchal 

structure is not provided in Vensim, the only option was to build flat model.  

 

4.3.2 Modelling the irrigation system with SD 

A simple simulation model capturing the essential dynamic processes of water 

supply and utilization in agriculture is presented in this section. The irrigation scheme 

can be described in this way: the water inflow of the mother river is received and 

stored in the natural reservoir behind the dam (e.g., the High Dam Lake at the south 

of Egypt). Water is released from the reservoir, flows into the Nile mainstream that 

contains a number of barrages on certain locations to direct, slow down, or raise the 

level of the flow. Barrages are normally located at the head of the main distributor 

canals. The water flows from such main canals to secondary canals from which the 

water is delivered to the agriculture lands and farms passing through the tertiary 

canals or what is known as irrigation ditches [Holmen, 1991; Tiwari and Dinar, 

2002]. Part of the water carried by the irrigation scheme is lost to seepage and 

percolation as a result of topography and other part of water evaporates during 

conveyance. After transmission, water is applied on the fields. Planting for crop-

production consume part of it, another fraction ends up in the drainage network and a 
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third fraction is lost to seepage. Thus taking into consideration the structure of the 

irrigation network, the irrigation system efficiency can be split into conveyance or 

delivering efficiency and application efficiency. Whereas the conveyance efficiency 

points to the ratio between “the quantity of water released from the storage facilities 

and the quantity of water received at farm level” [Martinez, 1994], the application 

efficiency refers to the water use at the farm level [Tiwari and Dinar, 2002]. The 

model is shown in Figure 4-11. 

 

Figure 4-11: Simple Canal Model 
 

The model contains two stocks: the reservoir stock (i.e. High Dam Lake) that 

stores the annual water inflow that comes from the mother river, and regulates the 

supply of water into the Nile mainstream during the year. The second stock is the 

Canal (anonymous canal) that carries and conveys the water to the agriculture land 

(consumed water). The water left after the demand has been met, drains to the next 

canal(s) or to the sea if the canal is located at the tail of the system.  

The annual inflow of the mother river varies from year to year and therefore 

the water release from the Aswan High Dam depends on the received inflow. 

However, the water is released in a way that sustains the irrigated agriculture and the 

domestic needs. Figure 4-12 shows one of the patterns of water releases practiced by 

MWRI. 
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Naturally, every canal has a carrying capacity that cannot be exceeded. The 

carrying capacity is calculated according to the canal cross-section and the speed of 

the flow. For various reasons, a minimum quantity of water should always exist in the 

canal (for example, to retain fish and lilies or for navigation purposes). This quantity 

is calculated as a percentage (i.e. 25%) of the canal volume.  

 

Figure 4-12: The annual inflow rate. 
 

Different crops need different amounts of water. A list of the most popular 

crops being planted in Egypt and their water requirements per growing period are 

shown in tables 4-1 and 4-2. Thus, the water demand is simply equal to the area of 

the agriculture land multiplied by the quantity of water needed to plant the proposed 

crops. For many years, farmers have used to plant certain crops in succession order. 

This is known as the cropping pattern. The obvious reason for this is their suitability 

to the climatic seasons and the flood season, and the growing period for each crop. 

By careful planning, the farmers can utilize the agriculture land in an optimum 

manner during the whole year. Dates of planting are well identified and collectively 

known as the agriculture calendar. The cropping patterns commonly applied in Egypt 

are listed in Table 4-3. 
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Table 4-1: Crop Water Need 

 
 

Table 4-2: The growing period for popular crops 
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Table 4-3: The cropping patterns commonly used in Egypt 

 
 

The annual water demand for the three cropping patterns listed above is 

presented in the model as table functions. Figure 4-13 shows the water demand for 

each crop pattern assuming that the area of the agriculture land (i.e. equals 8.6 million 

faddan28) is planted with one crop pattern once at a time. 

 

Figure 4-13: The crop types water requirements. 
 

The delivering efficiency in this model is assumed to be 95 percent, meaning 

that, only five percent of the amount of water delivered is lost. Application efficiency, 

                                              
28 Faddan equals to 4200 square meters. 
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being largely depended on different farmer’s behaviour and their awareness, is not 

included in this model. The quantity of water lost due to delivering efficiency is 

added to the water demand (water needed for planting) and this becomes the “total 

water demand” which is compared to the “available water” to identify the “water 

coverage”. If the water coverage is below one, this means there is a shortage in water 

supply and vice versa. “Available water” simply calculated by subtracting the 

“minimum water content” that should remain in the canal from the water volume in 

the canal. If the available water is larger than the total water demand it is simply 

delivered to the farms (consumed water) and the water left is drained into the 

subsequent canals. If not, the farms will receive only the available water and the 

minimum water content in the canal will drain to the next canals with some time 

delay. From the water coverage, we can calculate precisely the “Actual Farmed Area” 

from the agriculture land. The model shown in Figure 4-14 has been modified by 

removing the “Reservoir” stock and the “Mother River Water Supply” rate to work as 

a molecule that can be reused to build a larger model that encompasses the complete 

irrigation system in the Nile Delta region. This will be explained in chapter five. 

 

Figure 4-14: The Irrigation model molecule. 
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The Model Results 

The model is calibrated by introducing the real data obtained from the 

Ministry of Water Resources and Irrigation (MWRI) and the Ministry of Agriculture 

and Land Reclamation (MALR) in Egypt during the fieldwork. The data obtained 

from MWRI illustrates the annual schedule for water release from the High Dam at 

Aswan. The schedule indicates the quantity of water released every day over the year. 

For example, the average quantity of water released is 220 million cubic meters and 

the maximum is 270 million cubic meters at the highest demand in month June. The 

data obtained from MALR, however, is at “agriculture seasons” basis (i.e., three 

seasons per year). It illustrates the anticipated water demand according to the 

cropping pattern plan. The data has been processed, filtered, and introduced to the 

model to reflect the real situation in an average canal in the second level of the 

irrigation system that includes three levels in all.  It is clear from the Figure 4-15 (a) 

that the water supply exceeds the demand most of the year with the exception for the 

month of June where a number of factors combine to mark the month as the water-

shortage period. As the hot season peaks, the last irrigation is desperately needed 

before the harvest season begins, this comes at the time of the lowest level of water in 

the reservoir, after three long months of flow support from the dammed up water and 

before the flood arrives in August.  Therefore, it is normal to see the canal volume 

falls and with that the water coverage during this month as shown in Figure 4-15 (b).  

The set of graphs on the right hand side in Figure 4-16 represents the model’s 

first run with the real data obtained from MWRI and MALR. The DT considered in 

this run was one month. Notably, the actual farmed area suffers some losses during 

the third month of the year. This is obviously related to the descending water 

coverage during the same period, likely to be below 100%. A close inspection for the 

model to identify the reasons for such behaviour reveals that there is no real causes 

stand behind such behaviour. Therefore, it was necessary to change the DT to 

simulate the model on daily basis rather than monthly basis. The new behaviour 

shows: no losses in land farmed, the water coverage is above 100%, and the 

behaviour of the canal looks smoother (more naturally).  
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(a) The water demand and supply      (b) the Canal state and water coverage 

Figure 4-15: The model results. 
 

DT = one month    DT = one day 

     

     

     
Figure 4-16: The model results from two runs based on various DT. 
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4.4 Development Strategy 

In this section, we describe the outline procedures to develop the SDGIS 

application. First we explain the conceptual design, the various integration strategies, 

and select the strategy to be implemented, that is, the “tightly coupling”. Second we 

discuss a number of technical issues related to the development of the SDGIS 

application. These issues include: (i) using external or internal simulation models 

(models designed to run independently of from within the GIS), we explain the 

difference between using the external models verses internal models, and the relative 

strengths and weaknesses for each approach. (ii) The different ways to design and 

implement the user interface of the SDGIS application (either from within the 

ArcGIS by creating the UI as an ActiveX DLL and adding it to the ArcMap as a 

customised tool, or by using VB to create a standalone UI and employ the ArcObjects 

to provide the required functionalities. (iii) Having decided to build a standalone 

application, we can implement this with either VB or VC++. Thus, we highlight the 

advantages and disadvantages of using the two developing environments. 

4.4.1 The Conceptual Design 

Up to this point, we have developed two models for the irrigation system. The 

first model is the GIS model (spatial model) and the second one is the SD model 

(simulation model). Each of these models provides different insights into the 

irrigation system. Both models are intended to support the water allocation decision 

making process, and to help decision makers to take the appropriate actions. In this 

section, we explain the abstract method to connect both models and the conceptual 

design of the SDGIS. The implementation of this design will be explained in the next 

chapter.  

Starting with the simulation model, we can see that the stock acts as a 

container that hosts the value of a variable (e.g., the quantity of water in the canal). 

The value of the stock changes only through its flows (the control-gates). In GIS, the 

model is consisting of spatial features assembled in feature classes (layers) that are 
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classified according to the features type (geometry shape such as points, lines, and 

polygons). The line is simply defined as a connection between two points and 

represents a linear feature (e.g., river, stream, canal) that acts as a conveyer (or a 

container) carrying water, which moves from the start point (source) to the end point 

(sink). Within an irrigation network, such points (source and sink points) normally 

have control-gates (regulators) to control the flow passing through them. The water 

volume in the stream is changing through these points (control-gates). Consequently, 

it can be easily assumed that the linear features (streams) in GIS are the counterparts 

of the stocks in SD model and the point features (control-gates) are the counterpart of 

the flow-rates. Lines and points are connected to another neighbouring lines and 

points forming the irrigation network, the same way the stocks and flows are 

connected together to form a complete model (the outflow of one stock would be the 

inflow of the next stock). Therefore, an equivalent simulation model for the GIS 

model of the irrigation system would include a stock for each canal (this maybe 

modelled as array stock), and the network of relationships between stocks would 

follow the same sequence of water flow directions.  The inflow-rate of this stock is 

the control-gate located at the head of this canal. The outflow-rate can be presented 

either with an end point (sink) or a control-gate if the canal is connected to a 

neighbouring canal. Because the farm’s area does not change, farms would be 

represented as auxiliaries rather than stocks. Non-spatial data (attributes) such as 

conveyance efficiency, crop water needs, crop growing period, and cropping pattern, 

are represented as constants, tables, or graph functions. In this way, we can connect 

the simulation model components with the associated GIS features. Simply, for every 

canal there would be a corresponding stock and for every flow-rate there would be a 

control-gate. 

Since the results of the simulation model are numerical, we can easily store the 

values of the stocks, flows, and auxiliaries over time in the attribute table of the 

associated feature class. Then, using symbol palettes provided by ArcGIS (e.g. single 

symbol, unique values, graduated colours, etc.), we draw/redraw the results as a new 

map with time advances. Thus, for every time step, with every change in the state of 
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the system we store the new values of the variables and redraw a new map to create a 

series of snapshots. At the end of the simulation we can retrieve all the snapshots and 

re-display them sequentially. 

Figure 4-17 describes the sequence of operations’ execution and the flow of 

data and information through the SDGIS application. As shown in the top-right side 

of the figure, first we need to prepare the GIS model by organizing the digital maps 

into feature classes (e.g., Canals, Control-gates, and Farms feature class). In the 

attribute table associated with Canals feature class, we calculate the length for each 

canal (this is an automated process within ArcMap), add the canal’s average cross 

section, and calculate the volume of the canal (i.e., the canal length times cross 

section). The Control-gate feature class is connected to the Canals feature class to 

confirm that each canal has a control-gate. In the attribute table of the Farms feature 

class, we calculate the farm area (again, it is an automated process). Then, we build 

the topological layer (the geometric network) that describes the relationship between 

the features in the three feature classes. Second, the SD model is developed based on 

our knowledge regarding the number of canals, their connectivity, and the flow 

direction. Once completed, the model can be run and tested. These two steps are 

executed outside the SDGIS application.   

Several functions have been created to facilitate the connection between the 

features in the three feature classes and their counterparts in the simulation model. 

These functions are organized in modules alongside with the GUI of the application. 

Therefore, the SDGIS application can be seen as consisting of three modules (the GIS 

module, the SD module, and the application functions module). The first step to run 

the SDGIS application starts with loading both models (the SD model and the GIS 

model) into the application. In the GIS module, the user selects the canals he/she 

desires to observe its behaviour. The application functions-module, that contains 

routines to retrieve information from the GIS maps, obtains the values of the selected 

canals (e.g., canal length, cross section, etc.,) and communicates them to the SD 

module to initialise the SD model. In the same time, the user can assign values for the 

decision variables within the SD model (e.g., the initial water volume, the delivering 
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efficiency of each canal, etc.) using the control objects provided in the application 

interface. The user can set the simulation setup values (i.e., the start time, stop time, 

and the DT). These steps are represented in the Figure 4-17 with blue arrows. The 

simulation model would run for one time step. The new values of the stocks (canals) 

are then communicated back to the GIS module through the functions-module. Using 

a predefined colour set, the application redraws the selected features according to 

their new values obtained form the simulation model. The user has the option to save 

the output map as a new map every time step until the end of simulation where he/she 

can display the output maps as series of snapshots.  

Based on the observed behaviour and the aim of the simulation, the user may 

take a number of decisions to test policies’ performance under a variety of scenarios. 

For example, for water preservation purposes, the user can adjust a control-gate to 

regulate the flow of the water through a certain canal (as a short-term action), change 

the cropping pattern (as a mid-term action), or upgrade the efficiency of a certain 

canal (as a long-term action). The decision taken by the user alters the values of the 

model variables. As the simulation continues for one more time step, the model 

calculates the new values and communicates them back to the GIS module for 

display. This loop continues until the end of simulation. This loop is represented in 

the Figure 4-17 with red arrows.  

Thus, the GIS model provides the spatial information to the SD model. Then, 

SD model, through simulation, identifies changes in spatial features over time and 

communicates them back to the GIS model. These changes in space in turn affect 

decisions taken by the user. In this way, the operations within the irrigation system 

can be modelled in time and space in an integrated way while capturing underlying 

accumulation process, the feedback, and nonlinearities. 
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Figure 4-17: The conceptual framework for SDGIS Architecture. 
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4.4.2 Development Approaches 

Conceptually, the integration strategies range from loosely coupled to fully 

integrated system as Nyerges and Goodchild identified them. In a loosely coupled 

system, GIS software is used to construct input files that a simulation program can 

read. The result of the simulation is then read back into the GIS software for display 

and analysis. The loosely coupled system may be developed using existing 

technologies, but this type of integration lacks in providing: (1) A consistent user 

interface; (2) A consistent data structure; (3) the support for development and 

modification of models and; (4) the user interaction during the simulation runtime.  

In tightly coupled system, the GIS user has access to the simulation model 

through software hooks and/or built-in macro languages. This type of integration can 

provide access to a consistent user interface and data structure, but currently available 

software does not support model development/modification and user interaction 

during the simulated event.  

Ideally, in a fully integrated system, the simulation model and the GIS 

capabilities would be part of the same geo-processing software. Such software should 

support the construction, execution and manipulation of a geographical simulation 

model in seamless, user-friendly environment. Unfortunately, such a software 

package does not exist; the user has to tailor it for applications of his interest as we 

discussed in the cases of GRASS and SME. 

Despite the various integration strategies, the methodology for linking a 

simulation model (or any computational model) to a GIS is conceptually simple. A 

GIS-based front-end processor will analyse the input map layer(s) and extract the 

distributed parameter information based on the data in each map layer. The data are 

then formatted into an input file structure that the model can use and the model is 

then run. Depending on the capabilities of the GIS and the model, the GIS can also be 

used to spatially display output information. This can be accomplished by either 

using GIS tools to build output map layers or by viewing text or graphical (line) 

outputs. In fact, the majority of computational applications on water resources utilize 
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information prepared by the GIS. The data is pre-processed in the GIS and then 

exported to a separate program where the bulk of the computations are carried out. In 

some cases, the computational model is built within the GIS (e.g., using Map Algebra 

to simulate the wildfire spread or the oil spill29). This approach tends to avoid some 

of the errors or difficulties that may arise when attempting to establish a 

communication between two different software packages. In this scenario, the 

computational model could directly access features in the ArcGIS data model. Some 

basic concepts behind developing an internal or external computational model are 

discussed below.  

External Model 

Creating a simulation model (whether a computational model or SD model) 

for an irrigation system (or water resources management) that runs independently of 

ArcGIS provides the model-developer with much freedom of design. In fact, this is 

the route that most hydrologic simulation models have taken. The disadvantage of 

this approach is that the developer may have to “recreate” some of the core 

functionality provided by ArcGIS, such as a network model and editing routines30. 

While some of this functionality can be added using ArcObjects components 

(viewing, querying, etc.), the more powerful GIS operations can take place only 

within an ArcGIS application.  

Since the simulation model is designed to run independently (externally) from 

the GIS, some routines would have to be developed within the linkage (e.g., the 

SDGIS application) to export data from the GIS to a format that the simulation model 

can understand. Note that import/export routines may not be required if the model (or 

precisely, the linkage) utilizes the ESRI Object Library (which is of a COM-

compliant nature). However, an external model should be expected to run in the 

                                              
29 For more information see the illustrated models shipped with ArcGIS 8.3, Spatial Analyst Module 
Tutorial. 
30 This is exactly the situation that took place when we developed the complete SD model explained 
in chapter six. 
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absence of GIS data or even a GIS system, so the ESRI object library would most 

likely not be included in the model. This is the case implemented in this research, and 

it is also the case in HEC-RAS, which allows for the user to either create the 

components for the model simulation in RAS user interface, or import the 

information required to create the components from exported GIS data [HEC, 1999]. 

The simplest approach is to import from and export to a file format that is both 

compatible with and efficient to access from the GIS and the simulation model (in 

case of ArcGIS, the file types are database files and/or text files). In this research, 

however, we took the advantage of using object orientation that enabled us to create 

common objects and associate them with the GIS features and the simulation model 

components. 

Internal Model  

If the simulation model is built to operate from within the GIS, then the 

problem of creating export routines is avoided since the model components can 

communicate directly with ArcGIS components. An internal model can also 

incorporate the functionality provided by the GIS. In this case, the graphic simulation 

software (e.g., Vensim) can not be used and the model should be written as text then 

the model would be created as an ActiveX DLL that utilizes the ESRI Object Library. 

The DLL can then be added to an ArcMap document as a custom tool. The 

disadvantage of this approach is that the computational model’s operation must 

follow the rules of the ArcMap application; otherwise, it may generate an error that 

causes ArcMap to halt.  

Interface Design  

There are two main alternatives to create the graphic user interface (GUI) for 

the integrated system. The first one involves utilising the ArcObjects. In this case, the 

developer would use for example Visual Basic or Visual C++, and has complete 

freedom in designing the interface. However, the developer should still follow 

guidelines of sound interface design, such as those outlined by Hartley (1998).  
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The second alternative is to create a custom graphical user interface within the 

ArcGIS (i.e., within the ArcMap module) utilising the internal VBA Editor. This is 

the approach that ArcFM has used with its special ArcFM Viewer. The Viewer is 

built from the basic ArcGIS GUI components, with additional tools and buttons 

designed to work with the ArcFM software [ESRI, 1998]. By developing the user 

interface within the GIS, many of the basic interface components (such as file menus, 

selection tools, etc.) from the ArcGIS may be used, resulting in a shortened 

development time for a given application.  

Development Environment 

In the following paragraphs, we highlight some of the considerations when 

choosing a development environment. In principal, developing with ArcObjects does 

not restrict the developer to a proprietary development environment, and any 

compiler capable of working with COM can be used. However, the choice of 

development environment is not a simple task, and is influenced by many factors. 

Many developers would select either: the Visual Basic for Applications, Visual Basic, 

or Visual C++, while others may use Delphi, C++ Builder, or similar languages. The 

primary driving force is the experience and skill level of the developer(s) that will 

write the code. Other issues worth considering are the requirements, performance, the 

development process, and security of code. 

The performance issues of choosing the development language are not as 

significant as a developer might think. Since the majority of the work will be 

performed within the ArcObjects objects, which are all written in C++, the 

developer's customisation language is for the most part used to control the program 

flow and user interface interaction. Since Visual Basic uses the same optimised back-

end compiler technology that Visual C++ uses, the generated machine code performs 

at a comparable level. Tests have shown that to perform typical actions on features 

contained within a database (drawing, querying, editing, and so on), Visual Basic is 

approximately 2% slower than optimised Visual C++ code, and Visual Basic for 

Applications is 2% slower than Visual Basic [Microsoft website; ESRI, 2001]. 
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Visual Basic is a very productive tool, especially for user interface 

development, but there are limitations to what can be done in Visual Basic. In the 

majority of cases, these limitations will not affect developers customizing and 

extending ArcObjects, with the exception of Custom Features. Many of the 

limitations have to do with the development environment itself. Debugging Visual 

Basic code is not as flexible as Visual C++. Using Visual Basic in a large 

development environment with many developers is not as productive as Visual C++, 

since partial compilations of projects are not supported. If one file is changed in a 

Visual Basic project, all the files must be recompiled. Since Visual Basic hides much 

of the interaction with COM away inside the Visual Basic Virtual Machine, low-level 

COM plumbing code cannot be written in Visual Basic. 

Since Visual Basic for Applications does not support the creation of DLLs, all 

the source code must be shipped inside a document. It is possible to lock the source 

code projects with a document to stop third parties from seeing the customisation 

code. However, this locking of the project also prevents third parties from using VBA 

to customize the application further. VBA is an ideal prototyping environment that 

provides the means for deploying lightweight customisations, but for other more 

elaborate customisations Visual Basic should be considered. VBA also suffers from 

having its own form designer, meaning the UI source cannot be shared between VBA 

and Visual Basic. In addition, the controls used by VBA do not expose their window 

handles, which further limits their use. 

To use ArcObjects in a standalone Visual Basic application, the developer 

must first add a reference to the ESRI Object Library (esriCore.olb). Using 

ArcObjects inside ArcMap or ArcCatalog, a reference to the esriMx.olb and 

esriGx.olb libraries is automatically made when the user start the application. Thus, 

no external referencing to the ESRI Object Library (esriCore.olb) is required. These 

technical issues will be explained in more details in the next chapter.  
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Concluding Remarks 

For the SDGIS application presented in this research, different architectures 

for coupling SD with GIS (embedded coupling, tight coupling, and loose coupling) 

were considered. Finally the integration under a common interface, also known as 

tight coupling, is used. The selection of the tight coupling is based largely on the 

functionality requirements depending on the purpose of the system. One requirement 

was a dynamic data exchange (DDE) between the SD model and the GIS to provide a 

feedback between time and space (DDE is not possible with loose coupling). Another 

important aspect was to keep the SD modelling tool as the main model development 

environment because of its ability to build models using graphical icons (not possible 

with embedded coupling). The link is provided through a common interface (that is 

the SDGIS application) that supports the integration of the spatial features (e.g., lines, 

and polygons) with the simulation model components (stocks and flows).  

4.5 Conclusions 

Object-oriented methods cover methods for design and methods for analysis. 

Sometimes there is an overlap, and it is really an idealization to say that they are 

completely separate activities. Design encompasses the process of decomposition and 

a notation for depicting logical and physical as well as static and dynamic models of 

the system under design. Analysis examines requirements from the perspective of the 

classes and objects found in the vocabulary of the problem domain. Within the object 

orientation paradigm, methods developed for design are frequently applicable to 

analysis, and vice versa.  

Object-orientation does not just mean that there is a database with objects in it, 

but that the system is organised around the concept of objects that have properties and 

behaviour (methods). The main advantage of the Object Oriented paradigm is its’ 

easy of understanding; it enables natural representation of real world objects, their 

mutual relationships and behaviour is therefore close to end-users. Object oriented 

applications are easy to maintain because they are modular and objects are 
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independent of each other; a change in one object should not affect other objects in 

the system. The paradigm supports reusability too; objects are self-contained and may 

be reused effectively in other similar applications. It also supports distributiveness 

and parallelism. 

Within the Object Oriented framework, the entities of the phenomena of 

interest form the essential objects. These objects are linked through associations. The 

location (represented by geographical coordinates) and the time (represented by date 

or time step) are the properties of the objects. Methods are actions that objects 

execute when certain event occurs. Thus, with the time advance (event), object can 

easily change/update its location (method) that explicitly leads to state-change of an 

object. Issues such as incompatibility in data resolution, spatial-temporal handling, 

and dynamic (runtime) simulation can be adjusted due to the flexibility of this 

framework.  

Object-oriented GIS allows for encapsulation of geospatial entities so that all 

of its geometry, data, and behaviours are contained in a single object. Hierarchies or 

networks of objects can be constructed to represent complex objects (e.g. 

hydrological network) and the interrelations between objects. The objects can also be 

related via a layer hierarchy based on any relationship. 

The object-oriented paradigm originated in computer simulation domain. 

Simula has been considered as the first object-oriented programming language and 

the predecessor to Smalltalk, C++, Java, and all modern class-based object-oriented 

languages. Simula was designed to perform discrete simulation. Object orientation 

has been added to continuous simulation in two different ways: As a library of classes 

usable from a general purpose OO language (usually C++) and as a language with 

built-in OO constructs.  

The essence of the object-oriented paradigm has been applied to a number of 

simulation software in different ways. Molecules and Components are two of them. 

Molecules are associated with Vensim while Components have been implemented in 

Powersim Studio. Molecule is a portion of a well-tested and documented model. 
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Molecules are made of primitive stock and flow (or auxiliary) elements and are, in 

turn, the building blocks of superior models. One of the simplest molecules, and one 

that probably appears in most models, is the decay process. Components are similar 

to molecules although they may have more complex structure. The component is the 

counterpart of the class in object-oriented world. It has a customisable interface for 

communicating with the rest of the model. Thus, the component encapsulates the 

entire elements (variables) of the submodel, and can be used to create instances. The 

component has methods to import and export the values of its entire variables. 

Polymorphism could be achieved through the component interfaces, as components 

with equal interfaces are interchangeable.  

A number of commercial simulation software, commonly come with DDE or 

DLL, is available. However, there is a significant difference in the DLL’s capabilities 

and not all of them can communicate with external applications. Vensim DSS 

provides enhance features and strong DLL with enhanced functions.  

The focus in this research is to integrate the simulation models with the GIS. 

SD models may be built using Powersim, Vensim, Stella or any other visual SD 

software. The challenge lays in the link between the SD and GIS. Such a link can be 

established thought the use of DDLs. Although Powersim Studio provides the 

opportunity to build more hierarchally structured models compared to the flat ones in 

Vensim, Vensim DLL offers more capabilities to control the model from external 

applications such as Visual Basic. Both software have been used to develop a 

simulation model for the irrigation system and have been tested to work with our 

application SDGIS that has been built using Visual Basic. Based on our experience, 

we decided to proceed and develop the final application SDGIS using Vensim DLL 

as we then obtain more flexibility and control over the simulation model. Since the 

hierarchal structure is not provided in Vensim, building a flat model was the only 

option. However we make use of the concept of reuse and created a simple model to 

work as a molecule that would be use in developing the complete model in the 

coming chapters.  
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In this chapter, we introduced the conceptual framework to integrate a 

simulation model for an irrigation system with a GIS model encompasses various 

feature classes representing the spatial network of the irrigation system. The 

framework (or the conceptual design) will be implemented using Visual Basic in the 

next chapter. Vensim® software is used to develop the simulation model for the 

irrigation system, and ArcGIS software for the geographic data processing and 

visualization. The GIS provides irrigation network characteristics (e.g., connectivity 

rules, branching, flow direction, and sink points) and information on canals (e.g., 

name, location, length and cross-section) from which other variables can be 

calculated.  Whereas, the SD model describes the flow process, the accumulation 

and/or discharge of water in/from the canal, and calculates: water volume; water 

availability; water demand according to the farm area, crop type, and crop water 

needs per growing period, water coverage, and actual farmed areas. There is a 

dynamic data exchange between the SD model and GIS to simulate the water flow 

process and to calculate any spatial and temporal variation in agriculture area and 

water coverage. 
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5.1 Introduction 

The primary goal of this chapter is to explain the integration method using 

simple examples. First, we document the creation of the SDGIS application that is the 

common interface that facilitates the integration of the simulation model with the GIS 

model by converting the conceptual framework to an application software31 (i.e., 

SDGIS). This application is developed using Microsoft Visual Basic. We describe the 

application structure and its components through a comprehensive set of figures and 

diagrams. A number of functions that facilitate the connectivity between the 

simulation model and the GIS model are described in this section. The functions are 

described in the same sequence of their execution as the user runs the application and 

establishes the connections between the two models. The complete source code of the 

application is provided in Appendix A.  

Second, we run the application and test its performance using: (1) the 

simulation model developed in chapter four (section 4.3.2) that represents the 

interaction between the water distribution process and the water utilization in 

agricultural processes; (2) an enhanced version of the GIS model that includes a 

number of feature classes that represent the components of the irrigation system and 

the corresponding pieces of agriculture land. The two models are tightly connected 

through the SDGIS application. It is very important to test the operability of the 

SDGIS application with a real data from the real world. To do so, we used a part of 

the data collected during the fieldwork.  

Third, having tested the application and become confident of its operability, 

we took a step further and developed another larger simulation model using 

molecules as building blocks and the array structure to cover the entire irrigation 

                                              
31 Application software is a subclass of computer software that employs the capabilities of a 
computer directly and thoroughly to a task that the user wishes to perform. This should be contrasted 
with system software which is involved in integrating a computer's various capabilities, but typically 
does not directly apply them in the performance of tasks that benefit the user. In this context the term 
application refers to both the application software and its implementation [Wikipedia: the free 
encyclopaedia, Accessed 2007]. 
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system. We also used a new version of the GIS model that covers the entire area of 

study (i.e., the Nile Delta region). The new models made it necessary to introduce 

some changes within the GUI of the SDGIS to comply with the array structure. 

Therefore, we developed a new version of the SDGIS application and described the 

changes that were introduced and the associated test results at the end of this chapter. 

The SDGIS Array Application source code, the associated SD array model and the 

Canal Classes Map are provided in Appendix B. 

This development has proved that SDGIS, and consequently our method of 

integration, is not limited to a certain simulation model or to certain maps. The 

SDGIS application supports efficiently any SD simulation model and any number of 

maps associated with such a model. The key issue is the matching, and the concept 

behind this matching, between the SD model components and their counterparts (i.e., 

the spatial features) in the GIS model. 

 

5.2 The Implementation of the SDGIS 

In software engineering, the implementation (also known as programming or 

coding) is the process of writing, testing, debugging, and maintaining the source code 

of a computer program. This source code is written in a programming language. The 

purpose of the programming is to create a program that exhibits a certain desired 

behaviour. Implementation is regarded as one phase in the software development 

process, and it is the phase that follows the conceptual design [Wikipedia: the free 

encyclopaedia, Accessed 2007].  

In this context, Microsoft Visual Basic 6.0 was employed to implement the 

SDGIS application and to create the GUI. The application is implemented as a stand-

alone application that runs on the Windows platform. The aim of the SDGIS 

application is to facilitate the integration of the simulation model with the GIS model 

by establishing connectivity between the simulation model components (stocks and 

flows) and the features in the landscape (using their unique key attributes). The 
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specific procedure followed in this case for creating the SDGIS is described below, 

followed by a description for the implementation of this application based on 

empirical data. 

The main interface of the SDGIS application consists of one Form module 

contains a number of panels that are generally a Tab dialogue created with the SSTab 

Control component and they are designed to group related functions together. 

Components such as Frame and Label are used mainly to set the appearance of the 

dialogue box whilst Edit-Boxes serve as the major source of the user input. Slider 

Controls and Check-Boxes are used to indicate the user choices and Combo-Boxes 

present a list of items for the user to choose from. To accept input from a component 

such as an Edit-Box and assign the value to a property, it was necessary to write few 

lines of code in the component’s procedure page. Some panels also include Tool-Bars 

made up of Command Buttons that are used mainly as shortcuts to execute various 

functions that organized in Standard and Class Modules within the application.  

5.2.1 Creating the SDGIS Project 

The SDGIS is created as a Standard EXE Project within the environment of 

the Visual Basic (VB) software. It is worthwhile to remember that VB is an 

independent software that should be installed on the computer, alongside with the 

Vensim and ArcGIS software, in order to create such integrated application as 

SDGIS. To create a new Standard EXE Project, simply start Visual Basic, when 

prompted for the type of project to create, select Standard EXE and click Open. 

Visual Basic prepares the project for the creation of an EXE application. In the 

Project Explorer window shown in Figure 5-1, a single empty Form with a default 

name Form1 has been automatically created by the software. Form1 is the default 

Start-up component for the EXE project, which serves as a link between various 

Objects. In the Properties window, several properties for Form1 are listed. For the 

purpose of our application, Form1 has been renamed into “FrmMain” by editing the 

Name field in the property page of the Form.  
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Figure 5-1: Properties of SDGIS application. 

 

Setting References for the Application 

In order to make Visual Basic recognize the various Object-Classes included 

in the ArcObjects Developer Kit, a reference to the ESRI Object Library must be 

added to the Project’s References as shown in Figure 5-2. ESRI Object Library 

contains a standard set of Object-Classes and Interfaces used to perform various tasks 

associated with the ArcGIS. The Interface is simply a declaration of related 

properties and methods that may be used by a Class. No implementation code exists 

in the interface. The implementation details are left up to the class that implements 

the interface. For example, the properties and methods of the MapControl are used to 

define a map in the project. Before the MapControl interface can be implemented, the 

project must obtain a reference to the ESRI Object Library. In the Project’s Menu, 

click References to open the references window, place a check mark by: ESRI Object 

Library, ESRI AF Commands (VB) Library, and ESRI AF Commands (VC) Library. 

The project can now access all the Public components of the ESRI Object Library.  
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Figure 5-2: Adding a Reference to the ESRI Object Library. 

 

A reference to the Vensim® software must be added too, however, Vensim can 

be run, and communicate directly with the application, through its Dynamic Link 

Library (i.e., the file called “vendll32.dll” installed on the computer and located in the 

directory C:\windows\system32). In this case, we only need to declare the functions 

that included in this DLL as shown in Figure 5-3. Note that Vensim DLL is an 

independent library that can be called from other applications such as Visual Basic, 

Visual C++, Delphi, etc. The details of the functions that included in the DLL are 

explained in the Vensim Manual. The declaration of the functions can take place on 

either the Form “FrmMain” procedure’s page or in another Module. To have a well-

organized project, we chose to declare the functions associated with each model (SD 

model, and GIS model) in an independent module. 
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Figure 5-3: Adding Reference to the Vensim software. 

 

The Project Layout 

In Visual Basic, the source code is stored in modules. There are three kinds of 

modules: Form modules, Standard modules, and Class modules. Form modules are 

visible to the user while other modules contain code only and are invisible. Simple 

applications can consist of just a single Form, and all of the code in the application 

resides in that form module. As the application gets larger and more sophisticated, 

additional forms maybe added. Eventually we might find that there is a common code 

we want to execute in several forms. We do not want to duplicate the code in both 

forms, so we create a separate module containing a procedure that implements the 

common code. This separate module should be a Standard module. Over time, we 

can build up a library of modules containing shared procedures. Each standard, class, 

and form module can contain:  

• Declarations: Where we can place constant, type, variable, and DLL procedure 

declarations, as we did with Vensim. 
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• Procedures: A Subroutine, Function, or Property procedure contains pieces of 

code that can be executed as a unit.  

Form modules (.FRM file name extension) are the foundation of most Visual 

Basic applications. They can contain procedures that handle events, general 

procedures, and form-level declarations of variables, constants, types, and external 

procedures. If we were to look at a form module in a text editor, we would also see 

descriptions of the form and its controls, including their property settings. The code 

that we write in a form module is specific to the particular application to which the 

form belongs; it might also reference other forms or objects within that application. 

Standard modules (.BAS file name extension) are containers for procedures 

and declarations commonly accessed by other modules within the application. They 

can contain global (available to the whole application) or module-level declarations 

of variables, constants, types, external procedures, and global procedures. The code 

that we write in a standard module is not necessarily tied to a particular application. It 

could be reused in many different applications if we were careful not to reference 

forms or controls by name. 

Class modules (.CLS file name extension) are the foundation of object-

oriented programming in Visual Basic. We can write code in class modules to create 

new objects. These new objects can include our own customized properties and 

methods. Actually, forms are just class modules that can have controls placed on 

them and can display form windows. 

In this application, SDGIS, we chose to create one Form module 

(FrmMain.frm) and three Standard modules (SDModel_Functions.bas, 

GIS_Functions.bas, and ErrorHandling.bas) that contain source code associated with 

the functions related to each model (SD model and GIS model). the project layout is 

represented in Figure 5-4. 
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Figure 5-4: The SDGIS application Layout. 

 

The Form Module (FrmMain.frm) includes five panels. Each panel has a 

number of control objects (e.g. Command Buttons, Picture-Box, List-Box, Text-Box, 

etc.) to facilitate the connectivity between the SDGIS application, the simulation 

model, and the GIS model, and to provide the user with a full control over the 

models, the simulation performance, the map display, and the creation of reports. The 

panels and the control objects included in the FrmMain are described in details in the 

GUI Architecture section. 

The Standard Module (SDModel_Functions.bas) contains a number of 

functions and subroutines associated with the simulation model. The functions were 

declared as Public functions to make them accessible from any point in the 

application. For example, command buttons placed on the FrmMain can call the 

functions in this module to load the simulation model, to retrieve the variable’s names 

and values, to trigger the simulation, to retrieve the results, and to display the graphs 

as they are produced by the simulation software. 

The Standard Module (GIS_Functions.bas) contains a number of Public 

functions and subroutines associated with the GIS model. For example, the function 

BuildCommandCollection creates a toolset that contains 23 tools (e.g. add/remove 

layer, zoom in/out, select feature, query attribute, etc.) and places them on a Tool-Bar 

that works with the feature classes loaded into the project’s MapControl.  

The Standard Module (ErrorHandling.bas) contains a variety of functions to 

handle the errors that may arise as a result of the user’s incorrect actions. Handling 
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the errors properly is very important because : (i) If a tool, for example, produces an 

error and does not adequately handled, ArcMap considers the tool as a “broken” tool 

and will not allow further calls to it; (ii) If a tool is broken, then it will not function 

again until the tool’s DLL is reinstalled on the computer. In this application, errors 

were addressed in two ways: error prevention and error handling.  

A useful method to prevent errors is to limit the range of inputs allowed by the 

user. For instance, if a tool adds values from a user-specified field to produce a total 

value, then the input form should limit the choice of fields to those that store numeric 

values. Similarly, functions that perform operations on lines (e.g. stream, canal) 

should only display Polylines layers as choices on the input form. Limiting user 

inputs to feasible values can save many hours of error handling work later on. 

Limiting user selections also benefits the user by removing many of the fields or 

layers that the user would not select anyway.  

Another method for preventing errors is to check the nature of each value 

before processing that value. For instance, before an operation is performed on a 

value in a field, the tool should check to see if that value is valid. Otherwise, the tool 

may attempt to perform an operation on a null value, resulting in an error. While this 

method is a more secure way of preventing errors than the previous method, it can 

also add an enormous amount of code to the project. A combination of both methods 

was found to be the best approach to error prevention.  

If errors do occur during a tool’s operation, a message box appears displaying 

a description and a number for the error. In some cases, the location of the error 

within the code is also specified. While this technique may not be the best strategy for 

handling errors, it is easy to implement and satisfies ArcMap so that the tool is not 

considered broken and the execution terminates. 
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The GUI Architecture 

The main Form (FrmMain) in the application is shown in Figure 5-5. The 

Form includes five Panels named as following: “SD Model”, “GIS Tools”, “Graphics 

and Charts”, “Tables”, and “Reports” respectively. The panels were created by 

adding an SSTab Control Object to the Form and setting the number of Tabs equal to 

five in the properties’ window of the SSTab. We designed the Form in this way in 

order to organize the appearance of the application according to the functions 

associated with each model (the simulation model and the GIS model).  

On the code page of the FrmMain, a number of global variables were declared. 

These variables are used to store the values of the intended features from the GIS 

model and their counterpart components from the SD model in order to couple them. 

For example, CanalLengthVal, CanCroSecVal, are variables declared to store the 

values extracted from the fields “Canal Length” and “Canal Cross Section” in the 

attribute table of the irrigation network layer and to push them to the simulation 

model to initialize the variables “Canal Length” and “Canal Cross Section” in the 

model. Similarly, CurCanWaterVol is a variable that stores the value of the “current 

canal water volume” extracted from the stock “Canal” in the simulation model and 

send it back to the map in order to draw/redraw the canal feature with a new symbol 

and colour suited for this value. CanIntWaterVolVal, CanMaxCapVal, are variables 

that hold values of the “initial water volume” (to initialize the canal stock) and the 

“maximum capacity” of the canal. The values of these variables can be assigned in 

two ways: (i) The user can edit the associated Text-Box on the FrmMain and set the 

value or; (ii) It can be automatically calculated by the application. For example, the 

“initial water volume” can be calculated as a percentage of the “maximum capacity” 

of the canal (e.g., 30%), the maximum capacity in turn can be calculated as: the 

“canal length” times the “canal cross section”. By default, the application calculates 

the values of these variables first (when the map is loaded) and displays these values 

in the associated Text-Boxes. Then, the user has the choice to modify these values. 

Finally, the application pushes these values to the simulation model. 
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Figure 5-5: The GUI of the SDGIS application (SD Model Panel). 
 

5.2.2 The “SD Model” Panel 

The first panel in the SDGIS interface is called “SD Model”. As its name 

implies, the panel contains a number of control objects such as: a PictureBox working 

as a viewer to display the model sketch/views and the output graphs during and after 

the simulation. Two List-Boxes are located on the left hand side of the panel: The 

upper one is used to display the model variables’ names (i.e., the names of the stocks, 

flows, and auxiliaries). The total number of variables is shown in the Text-Box right 

below this List-Box. When the user selects a variable from this List-Box, the equation 

associated with this variable is displayed in the Status-Bar under the Picture-Box. 

This give the user access to the equation related to each variable. The lower List-Box 

is used to display the constants. We chose to put them in a separate List-Box because 

the user might want to change their numerical values by editing the content of the 

Text-Boxes placed below the list or by the way of any map related to the model.  
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Figure 5-6: Loading the simulation model into the SDGIS application. 
 

In this panel, the “SD Model” panel, there is a number of control objects (e.g., 

Command Buttons, Text-Boxes, Combo-Box, and Slider) organized in several 

Frames. The role and the functions associated with these control objects are described 

in the following paragraphs.  

Command Button: Add SD Model 

This command button launches a dialog box (popup window) and requires the 

user to select a simulation model to be imported into the application. The application 

then calls seven functions to extract information about the selected model. These 

functions are used in other procedures within the application. Therefore, we made 

them Public functions and kept them in the SDModel_Functions Module. The 

functions are described in their order of execution in the Add SD context: 
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GetModelName: This function retrieves the name of the selected model from the 

popup window appearing when the user clicks the button and sets the model’s name 

and path into the application as the target model to work with. 

GetModelVariableNames: This function retrieves a vector of the levels’ and 

auxiliaries’ names from the target model and puts them as single items into the upper 

List-Box. The property Click of the List-Box has a method to call the function 

GetModelVariableValues to retrieve the string value (the equation) of the selected 

item from the model and display it in the Status-Bar right below the Picture-Box. 

GetModelVariableValues: This function retrieves the numeric values of the variables 

that will be connected to the associated features in the map. The function can retrieve 

the numeric values as well as the string values (the equations); therefore, the same 

function works with the upper List-Box described above.  

GetModelConstantNames: This function retrieves a vector of the decision variables’ 

names (gaming variables), the constants, initials, and lookup tables. The function 

then puts these names as separate items into the lower List-Box. The property Click 

of the List-Box has a method to call the function GetModelVariableValues to retrieve 

the value (numerical/string) of the selected item and display it in the Status-Bar. 

GetModelConstantValues: This function deals with the simulation Start time, Stop 

time, and Step time. The function retrieves the value of the simulation times and put 

each of them into a separate Text-Box located in the Frame labelled “Simulation 

Setup” shown in Fig. 5-9. The Text-Box is also editable, meaning that the user can 

change the value of the Start, Stop, and Step time before the simulation is triggered. 

GetModelViews: SD models may contain multiple diagrams, windows, or views. This 

function gets a vector of diagrams’ names and put them as individual items into the 

List-Box located in the Frame labelled “Model Views” under the Status-Bar and to 

the left of the Frame labelled “Simulation Setup”. The property Click of the List-Box 

has a method to call the function WinnitHandel that displays the selected view in the 

Picture-Box as shown in Figure 5-6. 
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Command Button: Quit 

This command button checks the status of the simulation, terminates the 

running simulation if it is in an active mode, unloads the simulation model from the 

application, resets all the control objects to the default position (e.g., evacuates the 

Picture-Box, List-Boxes, Combo-Box, etc.). Sets the values of the global variables to 

Null and recovers the memory space. This command button is used if the user wants 

to change/remove the simulation model without terminating the application itself. 

The Combo-Box: Model Views 

Usually, a large and well-organized SD model contains a number of views (or 

diagrams). When the user loads the simulation model, the application retrieves the 

names of the views included in the simulation model and lists them in this Combo-

Box. When the user selects a certain view from the Combo-Box, the application 

displays the selected view in the Picture-Box.  

The Slider: Control Gate  

One of the significant decisions that the user may take during the simulation is 

to regulate the flow of water into the canal. In the original model, the control gate is 

set completely open. During the simulation, the user may choose to reduce the 

quantity of water that passes through the control gate, or to close it completely to stop 

the flow of water. For this purpose, a Slider control object is provided to receive the 

user’s decision as a percentage of the full opening valve capacity. For example, 

Figure 5-7 shows the behaviour of the system without any intervention from the user. 

In Figure 5-8, the simulation has been started with a complete open valve (100%), the 

water inflow (represented by the green line) followed the same course. At simulation 

Time = 4, the control gate has been closed completely (0.0%). Obviously, the water 

supply curve dropped to zero, and the course of the canal volume and water demand 

curves has changed. Then, at simulation Time = 6, the control gate has been opened 

half way (50%) until the end of the simulation. The effect of using the control gate 

slider on the behaviour of the system can be seen by comparing the two figures. 
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Figure 5-7: The behaviour of the system without intervention. 
 

 

Figure 5-8: The effect of using the control gate slider during the simulation. 
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The Frame: Simulation Setup  

This frame contains three Text-Boxes associated with the simulation time 

settings. The Text-Boxes are editable, meaning that the user can modify their values. 

Editing the values in these Text-Boxes triggers the call for a number of functions to 

get, set, and check the Start, Stop, and Step time.  

    
Figure 5-9: The simulation setup controls before and after loading the model. 

 

When the user loads the simulation model into the application, the function 

GetModelConstantValues makes further calls for three other functions: StartTime, 

StopTime, and TimeStep. These functions perform the following tasks: 

The StartTime function obtains the value of the “start simulation initial time” 

from the original model and puts it into the upper Text-Box. The user can then edit 

the Text-Box and change the Start time value. When the Text-Box value changes, the 

function SetModelSimulationTime is called to set the new value into the simulation 

engine that will run the model. The original value of the Start time in the original 

model remains unchanged (as a default value) so that the next time we load the model 

into the application we retrieve the same value. 

The StopTime function obtains the value of the “stop simulation final time” 

from the original model and puts this value into the middle Text-Box. The user can 

change the Stop time value the same way s/he did in the StartTime. However, the 

function first checks the user’s input to prevent conflict with the value of the start 

time. The user cannot set the value of the stop time less than the value of the start 

time. If the user’s input passed the check, the function makes a call for the function 

SetModelSimulationTime to set the new value into the simulation engine.  
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The TimeStep function obtains the value of the “simulation time step” from 

the original model and puts it into the lower Text-Box. The user can edit the Text-

Box to change the Step time value. When the Text-Box value changes, the function 

SetModelSimulationTime is called to set the new value into the simulation engine. 

The Frame: Simulation Controls  

This frame encompasses a collection of Command Buttons associated with the 

execution of the simulation. The buttons perform functions to run the simulation at 

once, step by step forward and backward, and to reset all initial values of the model 

variables if the simulation is interrupted for any reason.  

 
Figure 5-10: The simulation setup frame and simulation controls frame. 

 

As shown in Figures 5-5, 5-6, and 5-10, before the model is loaded, all the 

command buttons in the “Simulation Controls” frame are initially deactivated. Only 

Play, Start Simulation, and Reset buttons become active immediately after the model 

is loaded (see Figure 5-11). The rest of the command buttons (Step Back, Step 

Forward, and End Simulation) become active only after the Play or Start Simulation 

button is triggered. In this case, the Play and Start Simulation buttons become 

inactive again until the simulation ends. Switching between active and inactive modes 

was for a mean to prevent errors.   
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Figure 5-11: The simulation run controls before and during the model run. 

 

Command Button: Play 

The button Play triggers the simulation and runs the model. However, the user 

has no control over the model until the simulation ends and the cursor control is 

returned to the user. Pushing the button Play performs the following steps: 

• Retrieve the name of the targeted model and push it into the simulation engine. 

• Read the output custom graph (or creates a new one if necessary) and create a 

name for the RUN. 

• Call the function SetModelSimulationTime that retrieves the values of the 

Start, Stop, and Step time, entered by the user into the associated Text-Boxes 

and pushes these values to the simulation engine. 

• Call the function SetModelValues, which obtains the values of the initials and 

constants changed either by the user or by the application, and pushes them to 

the simulation engine. Note that if the user did not change these values in the 

associated Text-Boxes, then the function takes the default values from the 

original model. If the model is connected to the GIS model, the function takes 

these values from the map. 

• Assign the Picture-Box control object to display the simulation results. 

• Run the simulation, obtain the new values of the targeted variables, and put 

them into the associated control objects (e.g., Text-Box, Picture-Box, etc). 
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Running the simulation under the user’s control 

Apart from the command button Play, there are four command buttons 

provided to control the simulation progress. These buttons have given the names Start 

Simulation, Step Forward, Step Backward, and End Simulation respectively.  

Start Simulation button performs the same steps from 1 to 5 described in the 

command button Play paragraph. The main task of this button is to launch the 

simulation. This is a mandatory step in Vensim. Then, the cursor is returned back to 

the user waiting for interaction.  

Step Forward button performs the following steps: 

• Check the current time value. By default, if the current time value equals to the 
Stop time value the simulation will terminate. Otherwise, the simulation will 
continue for one more step time.  

• Call the function WinnitHandle to draw the simulation results in the Picture-
Box. 

• Call the function GetModelValues to retrieve the values of the intended 
variables and put them into the associated control objects. 

Step Backward button checks the current time value. If the current time value equals 

to the Start time value, the function will do nothing, otherwise, the function decreases 

the current time value by one step time, retrieve the values of the intended variables 

at that time, and call the function WinnitHandle to redraw the simulation results on 

the Picture-Box. 

End Simulation: Pushing this button, at any time, will end the simulation 

immediately and call the function Reset. 

Reset button executes the function Reset that checks the status of the simulation 

engine. If there is an active simulation, the function ends the simulation, and then 

resets all values of the variables to default values extracted from the original model. 

The Display Function (WinnitHandel): This function is a Public function that can be 

called by other functions to display the model sketch and the output graphs. 
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Figure 5-12: Display function that shows the model’s output graphs. 
 

 

Figure 5-13: The model output graphs. 
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5.2.3 The “GIS Tools” Panel 

The Second panel in the SDGIS interface is called the “GIS Tools”. This panel 

contains several control objects (e.g. MapControl, Tool-Bar, Command Buttons, List-

Boxes, and Text-Boxes) to facilitate operations with the GIS model. The primary 

control object is the “ESRI MapControl” that appears in the middle of the panel 

(Figure 5-14). The MapControl acts as the main viewer (i.e. the data view in 

ArcMap) where the map is displayed and the user can interact with the map. In fact, 

all processes associated with layers are executed using this control object.  

 

Figure 5-14: The GUI of the SDGIS application (GIS Tools Panel). 
 

Creating Spatial Tools to use with SDGIS  

A custom Tool-Bar menu contains 23 tools have been created using ESRI 

Object Library, AF Commands (VB) Library, and AF Commands (VC) Library. The 

toolbar, shown in Figure 5-15, is placed at the top of the MapControl. The tools are 

created during runtime by calling four functions: “Build Command Collection”, “Add 
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Command”, “Setup Button Characteristics”, and “Refresh Tool Button Locations”. 

The tools interact with MapControl to perform tasks specific to the user’s needs such 

as: open/save map document, add/remove layer, configure layer, launch table of 

content (as a legend), zoom in/out, pan, measure, identify feature, select features by 

shape, query geodatabase, export and print maps. The general procedure used to 

create these tools and the details of the functions executed by these tools can be seen 

in the code page of the “GIS_Functions” module provided in Appendix A. For the 

purpose of this dissection, we focus on “Open/Add Map” tool and the “Selection 

tool”; these are the starting points to connect the two models. 

 

Figure 5-15: A collection of 23 tools is created as a custom Toolbar. 
 

Open Map and Add Layer Tools 

The command buttons Open Map and Add Layer, the first and third buttons 

from the left hand side on the toolbar, launch a dialog box and call for the user to 

select a map document or layer to load into the application. The application then calls 

the function RefreshList to extract information about the layer(s) contained in the 

selected map. The function iterates through the layers, retrieves their names and 

properties, and puts their names in the List-Box placed on the “Active Layers” Frame 

at the lower-left of the panel as shown in figure 5-16. We added a pull-down menu to 

the properties of the List-Box as shown in figure 5-17 to create a convenient and fast 

way for the user to interact with the layers. The menu appears when the user selects 

an item (i.e., a layer’s name) from the List-Box and presses the right button of the 

mouse. The user can use this pull-down menu to re-arrange the layers, remove any 

layer from the application, or to retrieve the layer’s properties (the properties dialog 

box). These functions, included in the pull-down menu, are common functions 

shipped with ArcGIS that we have composed for our specific purpose and established 

a link to the reference of their class ID (CLID) in the Windows Registry file.  
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Figure 5-16: Loading the map document into the SDGIS application. 
 

 
Figure 5-17: The pull-down menu associated with the Active Layers List-Box. 
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The Selection Tool 

The selection tool, appears at the end of the toolbar (the second button from 

the right hand side), calls SearchShape function. The function provides the user with 

a “circle shape” cursor to select features from the layer(s) displayed on the screen so 

as to connect these features to their counterparts in the simulation model. The ArcGIS 

makes a copy from the selected features and store them in a new container created by 

the application known as collection. The collection is created “on the fly” specifically 

for the purpose of keeping the selected features on focus and ready to perform 

actions. It is a temporarily collection that normally collapse (or destroy by the 

application) when the purpose of creating this collection is met (usually when the 

lifetime of the selection tool ends by shifting the focus to another tool). The selected 

features are then redrawn with a different colour to distinguish them from the 

unselected features. The user may use the command buttons labelled “Get Stream 

Values”, “Get Farm Values”, or “Get Farm-Canal Spatial Relation” to retrieve the 

values of the selected features from the geodatabase (Figure 5-18). The functions 

associated with these command buttons are described in the following paragraphs. 

 

Figure 5-18: The attributes of the selected features. 
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Command Button: Get Stream Values 

This command button calls the function GetStreamValues. The function 

obtains the canals only from the collection by examining the geometry type for every 

feature in the collection. In ArcGIS, as soon as any feature is selected, its record in 

the attribute table is highlighted. This makes the function retrieve easily the feature’s 

ID by search only the highlighted records. Then, the function collects the record of 

values associated with the canal, instantiates a new object collection, copies the data 

record and pastes it into the new object collection. The extracted values (e.g., canal 

name, canal length, etc.) are then set to the global variables associated with them in 

the application. The function also displays these values in the associated Text-Boxes. 

Note that, for simplicity, we used unified names among the three parts of the 

application. For example, the term “canal length” is used in the attribute table of the 

layer as a field name, the same term is declared as a global variable in the application, 

and the same term is used as a variable in the simulation model.  

Command Button: Get Farm Values 

This command button calls the function GetFarmValues. The function obtains 

only the farms (which, by default, have polygon as a geometry type) from the 

collection. The function retrieves the selected Farm ID, obtains its record of values, 

instantiates a new object collection, copies the data record and pastes it into the new 

object collection. The extracted values (e.g., farm name, farm area, etc.) are then set 

to the global variables associated with them in the application. The function also 

displays these values in the associated Text-Boxes. 

Command Button: Get Farm-Canal Relation 

This command button executes the same functions GetStreamValues and 

GetFarmValues, as explained above with one more sophisticated step. To explain this 

step in a simple way, we consider the following situation: If the user selected only a 

canal, the function checks the spatial relationship between the layers and retrieves the 

value of the farm irrigated from this canal and vice versa. In this way, the user can 
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easily recognise which canals deliver water to a certain farm and/or which farms are 

irrigated from a certain canal.   

Command Button: CONNECT  

This command button checks the selected features from the map. If there is no 

selected feature(s) stored in the collection, a message box appears to inform the user 

to select at least one feature to connect it with the simulation model. If the user did 

select a feature, but has skipped the GetStreamValues function, the command button 

executes the same steps that the function performs. In other words, it obtains the 

values of the selected features from the collection and assigns them to the global 

variables and displays them in the associated text-boxes. At the end of the process, 

the application gives a feedback informing the user that the two models are now 

connected and the application is ready to start the simulation. The feedback appears 

in a message box as shown below 

 
 

Before starting the simulation, the user can see and check the following: 

There are two frames on the panel, each of them containing a number of labels and 

text-boxes. The left frame shown in Figure 5-19, lists the attributes of the selected 

canal. These values will be used in the simulation model. If the user wants to change 

these values s/he can use the text-boxes in frame to the right.   

  
Figure 5-19: Two frames show the values of the selected Canal. 
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On the “SD Model” panel as shown in figure 5-20, the user can notice that the 

values have changed from the original values extracted from the simulation model to 

the new values extracted from the map. Now, the model is ready to simulate. 

  
Figure 5-20: The SD model variable values have changed after connection. 

 

The Simulation Run Controls 

These controls are enabled only after the connection process takes place. 

Unlike the simulation controls in the “SD Model” Panel, they call extra functions to 

display the simulation results in the associated maps.  

 
Figure 5-21: The simulation controls on “GIS Tools” Panel. 
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Command Button: RUN 

This command button performs the following steps: 

1. Check the connection with the simulation model.  

2. Call the function SetModelSimulationTime to obtain the values of the Start, Stop, 

and Step time from the associated text-boxes (in case the user has changed them) 

and send the new values to the simulation engine. 

3. Assign the Picture-Box control object to display the simulation results. 

4. Send a command to the simulation software to start the simulation. 

5. Check the current time value, by default the simulation will continue for one more 

step time if the current time value is less than the Stop time value, otherwise the 

simulation will terminate.  

6. Retrieve the value of the “current water volume”, that is, the value of the stock 

“Canal”. The value is set into the global variable that is used to redraw the canal 

on the map with a new line width and colour using the function DrawWithSymbol. 

7. Call the function DrawWithSymbol: This function performs the following steps: 

• Retrieve the new value of the Canal and transform it into suitable line width. 

• Using a predefined table of colours, the function picks the suitable colour. 

• Using a predefined set of symbols, the function picks the appropriate symbol 
(e.g. simple line for canals, filled area for farms) 

• Draw the selected feature(s) with the selected colour and symbol. 

8. Call the function Display to draw the simulation results in the Picture-Box. 

9. Check the current time value to decide either to continue the simulation for one 

more time step or to end the simulation. 

Noticeably, pushing the command button RUN will execute the simulation 

very fast at once and the user would not be able to get the cursor before the 
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simulation is terminated. This means that the user can not stop the simulation during 

runtime and study the changes. For this reason, we chose to create four command 

buttons to run the simulation step by step to give the user the chance to watch and 

study the changes in the status of the canal. The four command buttons are similar to 

those buttons in the SD Model panel. However, in their code page they include calls 

for the function DrawWithSymbol to redraw the canal on the map with suitable line-

thickness and colour according to its value every time step.   

5.2.4 The “Graphs and Charts” Panel 

This panel includes four Picture-Boxes to display graphs that are being 

produced by the Vensim simulation software (see Figure 5-22). The user should build 

such graphs using Vensim and mark them as Work In Progress graphs (WIP). Within 

the SDGIS application, the user has the option to build up to six graphs and display 

them in the six Picture-Boxes provided in the application (one in the SD Model panel, 

the second in the GIS Tools panel, and four in the Graphs and Charts panel). The user 

can decide the location where a certain graph will be displayed by naming the graphs 

sequentially within the Vensim (as Graph1, Graph2, …and Graph6). Therefore, the 

first graph will appear in the first Picture-Box on the SD Model panel and the second 

will appear in the GIS Tools panel and the rest in the Graphs and Charts panel from 

upper left to lower right order. The Picture-Boxes are interactive, they are updated 

every time step. Thus, the progress of the simulation can be observed in the Picture-

Boxes during runtime. 

5.2.5 The “Tables” Panel 

This panel provides the user with pilot tables containing: the common crop 

rotations and cropping patterns; the water needs for most popular crops and their 

growing period (see Figure 5-23). Using these tables, the user can choose and assign, 

for example, a certain cropping pattern to a certain farm, calculate the water demand 

and initialize the simulation model. It also assists in designing policies for cropping 

patterns and water allocation.  
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Figure 5-22: The Graphs and Charts Panel. 
 

 

Figure 5-23: The Tables Panel. 
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5.3 Testing the SDGIS Application Performance 

It is very important to test the performance of the application with a realistic 

data. During the fieldwork, a massive volume of data was collected including maps of 

various scales of the study area, technical and analytical reports, and statistical data. 

In this section, we describe how the SDGIS was put into operation based on the 

empirical data collected during the fieldwork. 

The simulation model developed in chapter four, that is the irrigation molecule 

model, is employed in this test. No major modifications have been made to the model 

structure. However, the GIS model has been improved in several ways. First, we 

verified the water flow directions in the irrigation network according to the data 

gathered during the fieldwork. Second, we added important tabular data into the 

attribute tables associated with each feature class. For example, in the Canal feature 

class we have added the fields “Canal Cross Section”, “Initial water Volume”, 

“Efficiency” to the attribute table to store data associated with each canal. Similarly, 

in the Farm feature class, the fields “Irrigated From” and “Crop Type” have been 

added. These fields appear with asterisks in the association table illustrated in Figure 

5-24. The table indicates the link between the fields from the attribute table of the 

map and their counterpart variables in the SD model. 

 
Figure 5-24: The Association Table. 
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This data processing, designed to ensure that the data fed to the simulation 

model is accurate, was particularly demanding. Most of the natural canals vary in 

their width and depth from site to site along the course of the canal. We calculated the 

average values of the width and depth to obtain the average cross section. The 

averaging process was repeated for the canal efficiency. The initial water volume was 

calculated as a percentage of the canal carrying capacity, modified by the monthly 

average water level in the canal.  The crop type accounts for the majority of the crops 

planted within the boarders of the administrative area. For example, in some 

provinces the majority of farms plant cotton where fruits are rarely planted, this is not 

necessarily the case in other provinces. The simulation was based on the dominant 

cropping pattern in each province. The data processing leading up to this initialization 

was initially conducted for one province at the centre of the Delta region shown in 

Figure 5-25, and was subsequently repeated for all provinces in the Delta.  

 
Figure 5-25: The central part of the Delta. 

 

Given the SD model and the maps representing the irrigation network and the 

agriculture areas, we start the SDGIS application and perform the following steps:  
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In the first panel, we load the simulation model into the application by pushing 

the “Add SD Model” button. The application will call the functions associated with 

that button. As shown in Figure 5-26, we can notice that: 

• The model diagram appears in the Picture-Box 

• The name of the model appears in the second panel of the Status-Bar placed 

under the Picture-Box. 

• The names of the model’s stocks and flows are listed in the upper List-Box, 

and the number of these variables appears in the small Text-Box under the 

List-Box.  

• The names of the model’s constants, initials, and lookup tables are listed in the 

lower List-Box in the frame labelled “Decision Variables”. An item from that 

List-Box has been selected, that is the canal cross section, and its value 

appears in the first panel of the Status-Bar (as shown, it equals to 35 m2). 

• In the “Decision Variables” Frame, there are seven Text-Boxes associated with 

the seven variables so that the user can change their values by editing these 

Text-Boxes. Before the map is connected to the simulation model, the values 

appear in these Text-Boxes are the default values obtained from the simulation 

model. After the intended canal to be modelled is selected by the user and the 

map is connected to the simulation model, the values in these Text-Boxes will 

change to represent the true values of the canal obtained from the attribute 

table of the layer. 

• The model’s views appear in the Combo-Box placed in the Frame labelled 

“Model Views” under the Status-Bar. 

• The Slider of the control gate indicates that it is fully opened. 

• The values of the Start time, Stop time, and Time Step appear in the associated 

Text-Boxes placed in the Frame labelled “Simulation Setup”. The user can 

change these values by editing the Text-Box next to each variable. 
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In the “Simulation Controls” Frame, we notice that Play button and Start 

Simulation button are enabled. This indicates that the model is ready to run. Pushing 

the button Play will trigger the simulation, change the Picture-Box view to display 

the output graph, and display the value of the stock Canal (as the changes take place 

during the simulation) in the Text-Box labelled “current water volume”. The result is 

shown in Figure 5-27. However, the simulation is running very fast and the user 

cannot change the control-gate value before the simulation ends and the cursor 

control is returned to the user. Therefore, we switch to the Start Simulation button to 

run the simulation step by step using Step Forward, Step Backward, and End 

Simulation buttons. In this way, the user can change the value of the control-gate as 

desired and observe the resulting behaviour. The results are shown in Figure 5-28. 

 
Figure 5-26: loading the SD Model into SDGIS application. 
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Figure 5-27: Running the simulation model from SDGIS. 
 

 

Figure 5-28: Running the model step by step. 
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In the second panel, that is the “GIS Tools”, we load the map document into 

the application by pushing the first button on the toolbar menu placed on the top of 

the MapControl Viewer. When the dialog box is opened as shown in Figure 5-29, we 

select the map document named “Gharbiya.mxd” and press OK. The map is loaded to 

the application as shown in Figure 5-30. Notice that, since there is no feature 

selected, the Text-Boxes in the panel appear empty. The “CONNECT” command 

button also appears inactive. To select features, we push the “Select Feature” button, 

the second from the end of the toolbar as shown in Figure 5-31, and then point to the 

Viewer and select the desired canal. The farm irrigated from this canal will be 

selected automatically. The selected features immediately appear with red colour. 

Pushing the command button “Get Farm-Canal Spatial Relation” will extract the 

attribute data associated with the selected features from the geodatabase and display 

them in the Text-Boxes in the Frames “Canal Attributes” and “Farm attribute” as 

shown in Figure 5-31. The “CONNECT” button is now enabled. This indicates that 

the application is ready to connect the selected features with the simulation model. 

 
Figure 5-29: Open map dialog box is opened to select the map document. 
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Figure 5-30: The Text-Boxes appear empty where no features are selected. 

 

Select Feature Button 

Figure 5-31: The selected features and their attributes. 
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Figure 5-32 shows the Frame “Decision Variables” on the “SD Model” panel 

to the left hand side, and the Frames “Canals Attributes” and “Farm Attributes” on 

the “GIS Tools” panel to the right hand side. Before the simulation model and the 

map are connected, the values that appear in the Text-Boxes on the two panels are 

different. For example, the Canal Length on the left side equal to 5950 while on the 

right side it equals to 6844. Similarly, the Canal Efficiency on the left side equal to 

95% while on the right side it equals to 85%. This is because the values of the text-

boxes on the SD Model panel has been obtained from the SD model (the default 

initial values of the decision variables), while the values that appear in the text-boxes 

on the GIS Tool panel have been obtained from the attribute table associated with the 

map (this is the real data associated with the selected canal that intended to be 

modelled). By pushing the command button “CONNECT”, the application will assign 

the values that appear on the right side (the attributes of the canal) to the associated 

variable in the simulation model and alter the values in the text-boxes on the left side 

as shown in Figure 5-33.  

 
Figure 5-32: Before connecting the two models. 
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Figure 5-33: After connecting the two models. 

 

Having connected the two models, the simulation can be started now. We 

chose to simulate the model step by step using the command buttons “Start 

Simulation”, “Step Forward”, “Step Backward”, and “End Simulation”. Figures 5-34 

to 5-39 demonstrate the simulation as time advances. The selected canal appears in 

Figure 5-34 with a thin line having a light blue colour. Note that the line thickness 

and the blue colour ramp represent the water coverage in the canal so that the thicker 

and the darker the line, the high is the water coverage. The numeric value of the water 

coverage is displayed in the Status-Bar below the MapControl Viewer. As the time 

advances, the state of the canal is changing and the line that represents the canal 

becomes thicker with blue as illustrated in Figure 5-35. The water coverage in the 

canal reaches the pike point at simulation Time = 9, as shown in Figure 5-37. 

Obviously, the water demand is very low while the water available in the canal is 

very high as we can see in the graph appears below the MapControl Viewer. From 

this time (Time = 9) and until the end of the year (the end of the simulation), the 

status of the canal appears to be stable as shown in Figures 5-38 and 5-39.  
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Figure 5-34: The behaviour at Time = 3. 
 

 

Figure 5-35: The behaviour at Time = 4. 
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Figure 5-36: The behaviour at Time = 8. 
 

 

Figure 5-37: The behaviour at Time = 9. 
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Figure 5-38: The behaviour at Time = 11 
 

 

Figure 5-39: The behaviour at the end of Simulation.  
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5.4 Developing the Array Application 

In the previous section, we make use of the molecule model developed in 

chapter four to test the performance of the SDGIS application. In this section, we take 

a step further toward improving the simulation model to cover the entire irrigation 

network. One way of doing this is to create array stock with elements equal to the 

number of canals in the network. Since each canal has its initial value, inflow, and 

outflow, and serves a certain agriculture area, these variables must also be modelled 

as arrays. In fact, the whole model thus becomes an array model.   

5.4.1 The SD Array Model 

At the head of the Delta, to the north of Cairo, the Nile splits into two main 

branches: Rashid Branch (235 kilometres long) to the west and Damietta Branch (240 

kilometres long) to the east forming the Nile Delta. The Delta Barrage, known as Al 

Qanatir Al Kheiriya located at the head of the Delta, distributes the Nile flow across 

the two branches as well as three main Canals (Behary, Monofya, and Sharkawya). 

From this barrage the water flows into the main canal system (first level) that 

comprises 31200 km of canals and takes its water from head regulators. The irrigation 

system is a combined gravity and water lifting system. There are several small 

barrages to facilitate water abstraction. From the main canal system (first level), 

water is distributed along branches (second level) where the flow is continuous. At 

the third level, distributaries receive water according to a rotation schedule. Water is 

pumped from the distributaries to irrigate fields (lift about 0.5-1.5 m). In the remote 

areas located at the end of the system (at the edges of the Delta), the irrigation system 

is based on a cascade of pumping stations from the main canals to the fields, with a 

total lift of up to 50 m. Surface irrigation is banned by law in such areas. Farmers 

have to use sprinkler or drip irrigation, which are more suitable for the mostly sandy 

soil of those areas. If used efficiently, sprinkler and drip irrigation need less water 

than surface irrigation. 
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Consequently, the Delta can be divided into three geographical zones: West of 

Delta to the west of Rashid branch (8974 sq km), Middle of Delta embraced between 

Rashid and Damietta branches (9792 sq km), and East of Delta to the east of 

Damietta branch (7099 sq km). To model this landscape, we added the script “Delta 

Zones” to the simulation model and added the script to the variable “Farm area” as 

shown in Figures 5-40 and 5-41. 

 

Figure 5-40: Adding geographical zones as a script in the model. 
 

 

Figure 5-41: Modelling the Agriculture land as an array variable. 
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On the other hand, the irrigation system encompasses three levels of canals. 

Thus, another script named “Canal Classes” has been added to the model as shown in 

Figure 5-42. If we aggregate the canals within each level for each zone, we end up 

with nine canal classes. This is represented in the model as an array stock with nine 

elements as shown in Figure 5-43. 

 

Figure 5-42: Adding Canal Classes as a script to the model. 
 

 
Figure 5-43: Modelling the Canals as an array stock. 

 

As mentioned earlier, there are three cropping patterns (again added as a script 

in the model, see Figure 5-44). We can allocate one cropping pattern to each zone. 
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However, in the reality, the three cropping patterns may be found, and actually do 

exist, within the single zone. Therefore, each zone may include the three cropping 

patterns in various areas allocated across the zone. For this purpose, we added a new 

variable to the model called “policy variable for area allocation” to give the user the 

option to decide the area of the land planted with each cropping pattern. For example, 

within East of Delta zone, 20% of the land maybe planted with the first cropping 

pattern, 30% with the second cropping pattern, and 50% with the third cropping 

pattern (see Figure 5-45). The user can change these values through the “policy 

variable for area allocation”. This led to a further subdivision of the Delta to become 

nine clusters. The water demand in each cluster must be calculated from the area of 

the land and the cropping pattern. This implies that the dynamics of each variable 

called “Water Needed for Planting Agr Land” is governed by nine equations, as 

illustrated in Figure 5-46.   

 

Figure 5-44: Adding Cropping Patterns as a script to the model. 
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Figure 5-45: Adding Policy Variable. 

The Policy variable has been added to assign various cropping patterns to the 

agriculture lands in the three geographical zones. 

 
Figure 5-46: Adding nine equations to calculate the water demand in each area 

separately. 
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The same procedures have been applied to the rest of the variables in the 

model. The following assumptions have been made during the formulation of the 

equations associated with the variables Water Supply, Canal Efficiency, Canal Cross 

Section, and Canal Length:  

• The water supply is equally distributed across the canal classes in all zones. 

However, the variable “Water Quote” has been added to the model to enable 

the user to alter the amount of water assigned to each canal class as desired 

in further runs. 

• The Efficiencies of the canals are accounted for 95% for the first level, 90% 

for the second level, and 85% for the third level in the three zones. 

• The average canal cross sections are 250, 125, and 50 sq meters for the first, 

the second, and the third level respectively in all of the three zones. 

• The canal lengths have been calculated from the map and their values have 

been assigned manually to the associated variables in the model.  

The array model, as developed in the Vensim software, is shown in Figures 5-47. 

 

Figure 5-47: The array model with the associated scripts. 
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The model has been simulated for one year. The results of the simulation 

appear in the graphs collected in two columns in Figure 5-48. The graphs on the left 

hand side column portray the behaviour of the canal classes in the tree zones. The 

graphs on the right hand side column illustrate an example for the water demand and 

supply in the first canal class in the East of Delta (T.R.), the water requirements for 

each crop type (M.R.) and the three levels of canal classes in East of Delta (D.R.). 

 
Figure 5-48: The array model results. 
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5.4.2 The New Classified Map 

The original map of the irrigation network included an enormous number of 

canals (about 4277 canal) that generally have width attributes (e.g., canals more than 

25m, canals from 10-25m, and canals from 5-10m). The canal width indicates the 

canal class (e.g., first level, second level, or third level). Using Select by Location tool 

and Dissolve Features from the Geo-Processing tools, we aggregated the canals 

within each zone based on their width. Consequently, we produced nine canal classes 

as shown in the attribute table in Figure 5-49. 

 

Figure 5-49: Reclassifying the irrigation network. 
 

In the attribute table above, the values that appear in the CODE field represent 

the level of the canal (i.e., 301 for first level, 302 for the second level, and 303 for the 

third level). The field First_Zones points to the geographical zone. Thus, the canal 

classes within each zone can easily be identified. The field Link Key that holds 

explicitly the canal identification name has been added for convenient matching 

between the canal (object) on the map and the “full scripted name” of the stock in the 

simulation model. 
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5.4.3 The SDGIS Array Application 

The improvements that have been made to the simulation model and the GIS 

model necessitated modifying the interface of the SDGIS to comply with the array-

structure of the simulation model and the new classified map32. For example, in the 

first panel, the SD Model panel shown in Figure 5-50, two major changes have been 

made. First, the Frame “Model Arrays” that contains a List-Box to display the array 

variables has been added. When the user selects a variable from this List-Box, the 

scripts included in that variable are displayed in the Combo-Box right below the List-

Box, and the Text-Box to the right will display the value of that specific script (one 

element of the array). The Text-Box is editable, which means that the user can change 

the value of that specific element of the scripted variable. The label below the Text-

Box shows the “Units” of the selected variable as shown in Figure 5-51. Second, the 

“Current Water Volume” Frame, Figure 5-52, has been added with nine Text-Boxes 

to display the values of the nine elements of the array stock. Before triggering the 

simulation, these values represent the initial values. During the simulation, theses 

values are updated every time step to represent the current state. 

In the second panel, the GIS Tools panel shown in Figure 5-53, the SSTab 

control object has been added to display the values of the nine canal classes retrieved 

from the map. The SSTab contains three tabs regarding the geographical zones. The 

tabs are labelled Delta East, Delta Middle, and Delta West, respectively. Within each 

tab there are three Frames, - each of them including three Text-Boxes to display the 

attributes of a specific canal class, - as demonstrated in Figure 5-54. 

 

 

                                              
32 The source code of the application and the equations of the SD Array model and the new classified 
map are provided in Appendix B. 
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Figure 5-50: The SDGIS Array Application (SD Model Panel). 
 

   
Figure 5-51: Model Arrays Frame. 

 

 

Figure 5-52: Current Water Volume Frame. 
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Figure 5-53: The SDGIS Array Application (GIS Tools Panel). 
 

 
Figure 5-54: SSTab control object. 
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The “Active Layer” Frame that appears in the lower left corner on the panel 

has been modified to include:  

The All Canals Attributes command button may be activated to execute the 

function that selects all the canals from the layer called “Canal Classes”, gets the 

canal script name, and put it in the frame title. The function retrieves the number of 

the canals within that class and displays it in the upper label33. The function retrieves 

also the canal length, the canal cross-section, and the initial water volume and 

displays them into the associated Text-Boxes. 

The Display Canals command button has been added after testing the 

application. Due to the large number of canals, in particular the third level canals, the 

map becomes unreadable. Therefore, we decided to display only a few canals that the 

user must select before triggering the simulation. Yet, all canals are connected to the 

simulation model and the model simulates the entire irrigation network. During the 

simulation, the values of all canals are displayed into the SSTab, but only the 

behaviour of the selected canals is displayed on the map.  

The selected canals List-Box is located to the right of the “Display Canals” 

command button. When the user selects canals for display, the full scripted name of 

these canals is displayed in this List-Box (see Figure 5-55).  

The selected canals values List-Box: During the simulation, the values of the 

selected canals are displayed in this List-Box.  

In the Drawing Combo-Box in the previous SDGIS application, the canals 

were drawn on the map according to their current water volume only. In this 

application, we evolved the visualization capabilities to draw the canals’ current state 

of affair. For example, the canals can be drawn according to the values of their water 

volume, water coverage, water inflow (supply), water outflow (consumption), or 

water leakage due to efficiency.  In the Figure 5-55 the selected canals are the “first-
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level” and the “third-level” canals in “West of Delta” zone. These canals will be 

drawn according to their “water coverage” value that amounted to 0.66 and 0.32 

respectively.  

The Line Thickness Combo-Box: the user has also the option to choose the 

line thickness with which to draw the canals. This enhances the map visualization and 

makes it easy to read. The number that appears in the Combo-Box represents the 

number of pixels used to portray the canal in the map.  

 
Figure 5-55: Active Layer Frame during the simulation. 

 

5.4.4 Testing the SDGIS Array Application 

To test the operability and functionality of the application, we load the array 

model into the application using the command button “Add SD Model”. The 

application calls the functions associated with that button and the model diagram 

appears in the Picture-Box as shown in Figure 5-56. We can now see the following: 

• The model’s name appears in the second panel of the Status-Bar. 

• The model stocks’ and flows’ names are listed in the upper List-Box and the 

number of variables appear in the small Text-Box under the List-Box.  

• The models’ constants, initials, and lookup tables are listed in the lower List-

Box in the frame labelled “Model Arrays”. One item from that List-Box, that 

                                                                                                                                            
33 Notice that the Dissolve process produces one object with multi-parts. The canals still exist with 
their geometry and location on the map, but have a single record in the attribute table. 
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is the “Canal Cross Section” has been selected and its scripts appears in the 

Combo-Box below the List-Box. The value and units of the first script, [East, 

First], appears in the Text-Box next to the Combo-Box (250 sq meters as 

shown in Figure 5-56). 

• In the “Current Water Volume” Frame there are nine Text-Boxes associated 

with the nine elements of the array stock. The values that appear in these Text-

Boxes are the initial values. During the simulation theses values are 

simultaneously updated. 

• The model views appear in the Combo-Box placed in the Frame labelled 

“Model Views” under the Status-Bar. 

• The values of the Start time, Stop time, and Time Step appear in the associated 

Text-Boxes placed in the Frame labelled “Simulation Setup”. The user can 

change these values by editing the Text-Box next to each variable. 

 

Figure 5-56: load the array Model into SDGIS Array application. 
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After loading the SD Array Model, the various control objects in the panel 

have been tested. Figure 5-57 shows that: (1) the “Available Water” variable has been 

selected from the upper List-Box and the associated equation appeared in the Status-

Bar below the Picture-Box. (2) The “Canal Length” variable has been selected from 

the lower List-Box and the associated scripts are displayed in the Combo-Box. The 

second level canal class in the Middle of Delta has been selected and its length (with 

Units) appeared in the Text-Box placed next to the Combo-Box. (3) The simulation 

has been started using the Simulation Controls and the behaviour is represented in the 

Picture-Box as illustrated in Figure 5-57. 

 

Figure 5-57: Running the Array model from SDGIS Array application. 
 

In the second panel, GIS Tools Panel, we load the new classified map into the 

application by pushing the first button on the toolbar menu placed on the top of the 

MapControl. When the dialog box is opened as shown in Figure 5-58, we select the 

map document named “ArrayCanalClasses.mxd” and press OK. The map is loaded 

into the application as shown in Figure 5-59. Notice that the Text-Boxes on the 
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SSTab are empty. Pushing “All Canals Attributes” command button will select all the 

canals and display their attributes in the SSTab as shown in Figure 5-60. Now we can 

click on the “CONNECT” command button to connect the two models. Then using 

the select tool, we select two canals from the screen to display their behaviour (of 

course, we can select any number of canals and the application will display all of 

them). Pushing the “Display Canals” command button retrieves the scripted names of 

each of the selected canals and displays them in the Combo-Box next to the button, as 

they appear in the Figure 5-60, the selected canals are [West, First] and [West, 

Second].  

We must also decide on the value and the line thickness that will be applied to 

draw the map. To do so, we select one of the items listed in the Combo-Box (in this 

case we selected the “water coverage”) and the line thickness (five pixels). Now we 

can start the simulation by pushing either the RUN button or the Start Simulation and 

Step Forward. The simulation advance is shown in Figures 5-61 to 5-64. 

 

Figure 5-58: Loading the new classified map document. 
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Figure 5-59: The Text-Boxes in the SSTab before retrieving the canals’ attributes. 
 

 

Figure 5-60: the selected canals’ names appear in the Combo-Box. 
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The following figures demonstrate the behaviour of the model as time 

advances. In Figure 5-61, the first level canal class appears with darker colour than 

the second level. The values of the “water coverage” that appear in the List-Box 

indicate that the water coverage is below 100% for both canal classes. 

 

Figure 5-61: The model behaviour at Time = 3. 
 

In Figure 5-62, the first level canal class has turned to black colour, while the 

second level appears with blue. This is because the values of the water coverage for 

both canal classes has become over 100%. As the simulation continues, the state of 

the canal classes is changing. Figure 5-63 shows the state of the canal classes at 

simulation Time = 11. The first level canal class appears with blue colour, as the 

water coverage has decreased, and the second level also appears with light blue 

colour. At the end of the simulation the first level canal class has turned to dark blue 

while the second level has slightly changed towards blue colour as illustrated in 

Figure 5-64. 
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Figure 5-62: The model behaviour at Time = 9. 

 

Figure 5-63: The model behaviour at Time = 11. 
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Figure 5-64: The model behaviour at the end of Simulation. 
 
Figure 5-65 shows the simulation results in the “Graphs and Charts” panel that 

includes four Picture-Boxes display the graphs as being produced by Vensim 

simulation software.  

 
Figure 5-65: The model result graphs as appeared in the Graphs Panel. 
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One of the significant distinctions of this application from the previous one is 

that we can draw the map according to different parameters such as the current water 

volume in the canal, the water coverage, the water inflow (supply), the water leakage 

due to the efficiency of the canal, and the water consumed. In this sense, the map is 

employed to display a variety of different variables during the simulation. Another 

distinction is the colour sets used to draw the various canal classes. In the first 

application, only one canal was connected to the molecule model and so we used one 

colour set to represent the changes in the canal status. However, in this application, 

because there is more than one canal that may be selected for display, a number of 

colour sets were needed. In fact, the user can select all the canal classes (the nine 

canal classes) and display them using nine different colour sets that were created 

within the application. 

It is noteworthy that, in the second application, the entire irrigation system is 

simulated when the map is connected to the simulation model. Only the selected 

features (canal classes) are drawn every time step on the map. This concept is similar 

to the concept found in Vensim where the user can choose one variable or more and 

assign it/them to a graph to draw its/their behaviour.  

 The development of this array application and its operability and performance 

is evidence that our method of integration is not limited to a certain simulation model 

or to a certain map. The user can develop several simulation models using different 

structures (i.e., single or array stocks and variables) and any number of maps can be 

used. The key issue here is the matching between the model components and the 

spatial features, and most significant is the logic behind such matching. 
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5.5 Conclusions 

The SDGIS application, documented in this chapter is, in part, based on 

Microsoft Visual Basic. The documentation speaks to the feasibility and effectiveness 

of tightly coupling the simulation model with the GIS model for an irrigation system. 

The application has good potentials for extending the functionality of the current 

ArcGIS and enhancing the analysing capability and the visualization of the SD 

models. The application performance worked sufficiently fast.  

Once the developer overcomes the hurdle of learning to program with Visual 

Basic, programming with ArcObjects and using the DLLs can be fairly simple, and in 

fact applications can be developed in a matter of a few hours.  

The use of parallel models (built in their original software such as Vensim and 

ArcGIS) instead of embedded models gives the modeller the freedom to alter the 

simulation model as well as the GIS model at any time in response to the needs 

arising. There is no need to rebuild the entire core of the SDGIS application, only few 

adjustments to the GUI may be required.  

During the development of the SDGIS application, we created a number of 

public functions to (a) match the SD model components with their counterpart spatial 

features in the GIS model; (b) define the connectivity rules; (c) perform user-

selections and queries; and (d) handle graphs and adjust display of layers. These 

functions are stored in Standard Modules that can be used in other applications as 

well. In that sense, the concept of reuse, rooted in object orientation, is achieved.  

During the simulation runtime, the SDGIS application enables the user to 

emulate the modification of the water distribution process and/or water allocations. 

These changes may be made in a variety of ways. The user can regulate the water 

volume that flows into the canal using the control gate slider (in this case the user 

controls the water supply), can change the cropping patterns (control the water 

demand), can change the delivering Efficiency (the quantity of water lost during 

conveyance), can increase the canal cross-section (increase the carrying capacity of 
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the canal), and can specify release discharges from the reservoir (alter the annual 

schedule of the water releases) in the system. Thus, a number of different scenarios 

for new or planned water allocations can be developed and tested using the SDGIS 

application.  

The SDGIS application developed in this chapter was improved and applied to 

the entire irrigation system in the Nile Delta region. The water scarcity problem is 

studied in light of this application and a number of water preservation policies are 

examined and discussed in the next chapter.  
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6.1 Introduction 

This chapter is the first part of our case study that deals with the application of 

the SDGIS to the irrigation system in the Nile Delta, Egypt. The aim of this case 

study is to demonstrate the capabilities of the SDGIS application and the feasibility of 

its application to a real problem in the real world. Although a number of water 

preservation policies have been discussed in the second part (i.e., chapter seven), the 

case study is not intended to draw a specific conclusion regarding how to solve the 

water scarcity problem. The case study has been undertaken only as a “proof-of-

concept” for the ideas developed in this research.  

In this part, we first describe the water scarcity problem that may emerge in 

the near future in Egypt, analyse its driving forces and highlight the factors that tend 

to intensify and possibly escalate the problem. Second, we describe the geographical 

and topological characteristics of the study area focusing on the irrigation system. 

Third, we explain the adaptation of the SDGIS application to the present irrigation 

system. This includes adapting the three components of the application: the SD 

model, the GIS model, and the integrating SDGIS interface. The SD molecule model, 

discussed in chapter four (see Figure 4-14), has been modified and used as a building 

block to develop the comprehensive SD model that covers the entire irrigation system 

within the study area (hereafter, we refer to that as the SD Spatial Model). The GIS 

model, that includes the various features of the irrigation system, has been improved 

by reclassifying the canals within the irrigation network according to their rank-order 

and geographical location. The interface of the SDGIS has been improved by adding: 

a number of control-objects distributed across, and organized into, four additional 

panels; and a number of functions that improve the visualization and the analytical 

capabilities of the application. Finally, we document the results of running the SDGIS 

application to test its operability and performance. 

In the second part of this case study, that is chapter seven, we demonstrate the 

capabilities of the SDGIS application through illustrative examples for employing the 

SDGIS as: (i) an interactive learning environment for the educational purpose of 
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explaining the complex irrigation system behaviour and management to non-technical 

individuals; (ii) an optimization tool for the irrigation network and the agriculture 

lands to attain the ultimate utilization of water and land resources; (iii) a spatial 

decision support system (SDSS) for supply, demand, and water allocation 

management and as a policy assessment tool for the water preservation measures.  

Before we proceed further, it is worthwhile to mention that the analysis 

reported in this chapter, and in the next chapter as well, resulted from using the 

SDGIS application, and the approach behind the application, in studying the water 

scarcity problem and analysing the irrigation system dynamics. The SDGIS 

application has a unique advantage, that is, it includes the two analytical techniques 

provided in an integrated way. These techniques are: (i) the System Dynamics 

techniques for analyzing complex dynamic systems and problems with the aid of 

computer simulation software as a tool and; (ii) the GIS capabilities for spatial 

analysis. Using this application has enabled us to study and analyse the irrigation 

system in space and time, and to obtain a better understanding of the dynamics 

associated with the irrigation system operations and, at large, the water scarcity 

problem and its driving forces. We need this application because large irrigation 

systems, like the one being studied in this research, are usually complex, dynamic, 

and spatially distributed. Its operation and maintenance include both temporal and 

spatial aspects. Therefore, both analytical techniques are inevitably needed.  

Irrigation, by definition, is the artificial application of water to the soil for 

assisting in growing crops. It is mainly used in dry regions that receive low annual 

rainfall, with specific quantities at certain periods of time during the crop growing 

period. The irrigation system is a composite of canals, laterals, structures, and 

equipments involved in the transport of water from where it is available to where it is 

required. The larger the volume or capacity of the irrigation system, the more 

sophisticated its various supporting components, and the greater is the skill that is 

required to operate and maintain it. It is complex because of the large variation in the 

interactions between the components of the system. These interactions in many 

respects are characterized by nonlinearities (e.g., the effect of climate on crop 
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production, use of fertilizers on land yields) and uncertainties (e.g., the water supply 

from the Nile flood season in terms of timing and quantities), and affected by external 

factors such as topography, the local economy, and the nature of the agriculture and 

industry of the area. Consequently, the experience gained in operating some parts of 

the system can not be repeated or being applicable to other portions. 

A common source of dynamics within the irrigation system is the interaction 

between the various groups of actors involved in the system such as: the water users, 

the government officials, the operators, and stakeholders. The objective of any 

irrigation system is to serve the water-users who may have conflicting interests. It is 

managed by government officials who attempt at retaining their political power 

through subsidizing the irrigation operations and affording irrigation water for free. 

The irrigation system is operated by teams of operators who must be able to respond 

rationally and not be prone to panic when they run into such problems as equipment 

failures, power outages, canal bank failures or confronting furious farmers.  Because 

the system is spatially distributed and consists of subsystems, each of them in many 

respects unique, effective and efficient operation depends on each team of operators 

knowing how to balance their portion of the system to deliver water as required. 

Operators must know how their operations fit in and are affected by or affect other 

portions of the system. They must realize, for example, that the location of their 

portion of the system – e.g., at the head or at the tail of the system, has a direct 

influence on the water supply that affects the farmers’ decisions to plant certain 

crops. Therefore, operators must learn by the fundamental structural insight the 

peculiarities of their portion of the system.  

The analytical capabilities associated with the SD approach enable us to 

analyse the irrigation system and the water scarcity problem over time, and to 

understand, for example: (i) the process of water accumulation in the various parts of 

the system; (ii) the effects of the resulting delays in water delivery; (iii) the effects of 

uncertainty of water delivery in terms of volume and timing; and (iv) the feedback 

loops and nonlinearities of the underlying causal structure that governs the behaviour 

of the system. Yet, it is equally important to analyse the system in the space. Spatial 
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analysis focuses on the spatial bounds between the components of the system and the 

properties that vary with the geographical location. A fundamental concept in 

geography is that nearby entities often share more similarities than entities which are 

far apart [Goodchild, 1987]. This idea is often referred to as “Tobler's first law of 

geography” and may be summarized as “everything is related to everything else, but 

nearby objects are more related than distant objects”. This means that characteristics 

at proximal locations appear to be correlated, either positively or negatively. There 

are at least three possible explanations. One possibility is there is a simple spatial 

correlation relationship: whatever is causing an observation in one location also 

causes similar observations in nearby locations. For example, planting certain crops 

in nearby areas within a province tend to be similar due to factors such as socio-

economic status, the features that attract one farmer will also attract others. Another 

possibility is spatial causality: something at a given location directly influences it in 

nearby locations. For example, the broken bank of a canal due to the farmers’ 

misbehaviour resulted from the unequal distribution of water between farms tends to 

breed more violation of this kind of behaviour due to the apparent breakdown in order 

and the lack of maintenance. A third possibility is spatial interaction: the movement 

of people, goods or information creates apparent relationships between locations. For 

example, the emergence of certain crop-markets occurs as a result of “friction of 

distance” to where these crops are produced, or other key locations in farmers’ daily 

activities. Another example is the distance decay: a wide variety of services are 

characterised by the phenomenon of distance decay, including retail, health care, 

education, and many others. This simply means that individuals are less likely to 

utilize a service if it provided at a distance.  

The above discussion is an example for the temporal and spatial aspects that 

are involved in the irrigation system operation. To obtain a better understanding of 

the irrigation system dynamics, both temporal and spatial analyses are needed. The 

SDGIS application provides the user with the tools to perform these analyses. This is 

why using this synergizing application is more favourable and valuable than using a 

single method of analysis.  
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6.2 Water Scarcity Problem 

“As water is the font of life, irrigation has been the font of civilization. It 

underlay the rise of the first sedentary societies organized on a large scale, in 

Mesopotamia, Egypt, the Indus Valley and China. Irrigated agriculture appears to 

have been developed as early as the 7th century B.C.” [Roger D. Norton, 2004]. It has 

been estimated that: 2.4 billion people depend on irrigated agriculture for jobs, food, 

and income; and over the next 30 years, an estimated 80 percent of the additional 

food supplies required to feed the world will depend on irrigation [FAO, 1993]. In 

playing this fundamental role for food production, irrigation has become the largest 

consumer of fresh water worldwide, accounting for more than 80 percent of water use 

in Africa [World Bank, 1994] and comparably high percentages in other developing 

regions of the world. In the year 1992, for low-income countries as a whole, irrigation 

accounted for 91 percent of water withdrawals, and for medium-income countries the 

corresponding figure was 69 percent [World Bank, 1992]. 

In the past, many irrigation strategies tended to treat water as an inexhaustible 

resource, and the emphasis was placed on the construction and financing of new 

systems to serve farmers. Now the growing demands for water in all sectors 

(agriculture, urban, and industry) have made it clear that water is a scarce resource, 

and the former irrigation strategies are no longer viable in many areas.  

Ever larger numbers of countries are seeing their annual renewable water 

supplies fall below the critical level of 1000 m3 per capita, below which they become 

a severe constraint on development prospects. Some of those countries, and their 

projected renewable water supplies per capita for the year 2000, in cubic meters, are: 

Saudi Arabia (103), Libya (108), United Arab Emirates (152), Yemen (155), Jordan 

(240), Israel (335), Kenya (436), Tunisia (44-5), Burundi (487) and Egypt (934)34.  

                                              
34 These figures include river flows from other countries, some of which may not be reliable sources 
in the future [FAO, 1993, p. 238]. 
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Per capita fresh water availability in Egypt dropped from 1893 m3 per person 

in year 1959 to 934 m3 in year 2000 and tends to decline further to the values of 670 

m3 by 2017 and 536 m3 by 2025 [UNCCA 2001; UNCSD 2003; MWRI 2002a; 

Abdel-Hai 2002]. The obvious reason behind this rapid fall is the predetermined 

quota of water from the Nile (55.5 BCM) and the raising pressure from population 

growth. The last is not the only reason, behind the scene, there are significant driving 

forces escalating the water stress in Egypt. These driving forces fall into four 

categories:  Social, Economical, and Political forces, as well as forces arising from 

Natural Resources (i.e., agricultural lands and water).   

Social Forces comprise the population growth impacts, poverty in rural 

territories, cropping patterns, unequal distribution of water for irrigation, and the 

farmers’ behaviours. These forces affect the Natural Resources (i.e., land and water) 

establishing enormous pressure for agricultural land expansion, which in turn exhaust 

the current water resources and boost the demand for water. The incremental demand 

for domestic water consumption due to the population growth makes the situation 

even worse. Economical Forces indicated that the annual freshwater consumption 

for agriculture sector in year 2001 amounted 83 percent of the freshwater available. 

Despite its high water consumption levels, the agriculture contribution to the GDP 

accounts only for 16.5 percent versus the industrial and service sectors with 33.3 and 

50.2 percent share in GDP respectively. Agriculture can be affected by increasing 

water scarcity due to growing demands from other sectors that seem to be more 

profitable and thus increased water costs. Political Forces attempt at keeping these 

driving forces in balance. Political power representatives apply an “Irrigation 

subsidies strategy” claiming that there are positive social effects from irrigation 

subsidies that have influence on the generation of social benefits such as increments 

in employment and income. Through the “affordability” of water for irrigation, 

agriculture absorbs 50 percent of the labour force in rural areas, and prevents rural 

households from being pushing out of agriculture and into cities that cannot provide 

shelter, jobs, and food for millions more. 
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6.2.1 Analysing the Driving Forces  

6.2.1.1 The Social Forces  

Social forces include: (i) the population growth that considered as the obvious 

primarily cause of the problem. However, its impacts are likely to take place in the 

future; (ii) Farmers and farms’ conditions (i.e., quality of farmers’ life, poverty, 

unequal distribution of water between farms, cropping patterns, and farmers’ 

misbehaviours). The impacts of these factors contribute to the water shortages already 

in the present. Water stress influenced by those factors has discreet character in space 

even within boundaries of one village. These factors (farmers and farms’ conditions) 

are influenced by other factors, such as awareness and cultural patterns. The latter can 

be seen as a consequence of information availability, literacy and education-level.   

The Population Growth 

The growing population of Egypt and the associated industrial and agricultural 

activities has increased the demand for water to a level that reaches the limits of the 

available supply [ICID, 2005]. The population of Egypt has been growing in the last 

25 years from a mere 38 million in year 1977 to 78 million in 2007 and is expected to 

grow up to 83 million in year 2017. The present population is concentrated in the Nile 

Valley and the Delta. About 95% of the population lives on 4% of the land of Egypt. 

To relieve the pressure on the Nile Valley and the Delta, the government has 

embarked on an ambitious plan to increase the inhabited area by means of horizontal 

expansion projects in agriculture and the creation of new urban and industrial areas in 

the desert. The expansion of the agriculture land and the reclamation projects are also 

needed to increase the food production to support the increasing population. 

Undoubtedly, these projects require additional water. However, the water availability 

from the Nile River is not increasing and opportunities to gain additional supply are 

very limited. Up till now, Egypt had sufficient water available and the current 

management is very successful in distributing the water to all its users. Thanks to the 

enormous storage capacity of the High Dam Lake. The supply of water to these users 

is fully provided and nearly constant. Now that Egypt is reaching its limits of 
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exploiting the water available, the country will have to face the consequences of 

scarce supply.  

Quality of Life 

The standard of living has improved remarkably over the last 30 years due to 

the accelerated economic growth. The main indicators of the social and human 

development programs and health services have made advances in life expectancy, 

from 55 years in 1976 to 67.1 years in 2001. Infant mortality was subjected to more 

than a three fold reduction during the same period. The fraction of population who 

has access to the piped water has increased from 70.9% in 1976 to 91.3% in 2001. 

Almost 100% of urban households have access to sanitation facilities versus 78.2% in 

rural areas [HDR, 2003]. However, in terms of access to piped water and sanitation, 

there is a great disparity between the regions behind the average figures. For 

example, in some provinces only 79.6% of the population are being supplied with 

piped water and 18.6% do not have access to sanitation. These figures are among the 

lowest in the country, leaving room for further improvements in life quality. These 

improvements can impose additional constraints on the water supply at large in Egypt 

as a result of a boost in the water consumption levels. Advancements in standards of 

living, together with population growth, have already been reflected in the expansion 

of water consumption levels for domestic use. Water consumption rose from 3.1 

BCM in year 1990 [Abu-Zeid, 1991] to 5.23 BCM in year 2000 [FAO-ASD, 2003]. 

Further augmentation of the life quality and the population growth will push water 

demands up even further. 

Poverty 

In contrast to the significant changes in the quality of life, poverty is still a 

problem in Egypt. The Human Development Report (2003) estimated that 20.4% of 
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total rural population of Egypt is poor and 6.1% is ultra poor35. The high poverty 

incidence in rural parts of the country indicates a concentration of poverty in the rural 

areas. The distribution of poor households in Egypt is quite uneven and shows 

significant differences among regions. For example, some provinces in the Delta have 

higher poverty rates that reach 35.4% while the ultra poor people account for 10.9 % 

of population. In other provinces in South Egypt, the proportion of poor is as high as 

58.1 percent. Often low-income levels and poverty in rural areas trigger the increase 

of water use through shifting the cropping patterns towards the water thirsty crops 

(e.g. rice, sugarcane) that do not require large investments (cheap seeds and very low 

running cost for growing).  

Cropping Pattern 

Cropping pattern plays a vital role in determining the irrigation water demand. 

During the 1950s, 1960s, and 1970s, the agricultural sector was characterized by 

heavy government interventions in the production, trade and prices. The reform in the 

1980s resulted in liberalization of prices and government control of the cropping was 

abolished. Consequently, some changes in cropping patterns have occurred favouring 

the production of high value-added crops. Among them are the rice and the 

sugarcane, resulting in the highest water requirements among the crops cultivated in 

Egypt. For example, the annual production of rice rose from 2.4 to 4.5 million tons 

[UNCCA, 2001] and fields of rice expanded by almost 50 percent (from 1 million to 

1.5 million faddan36) [MWRI 2002a]. The cropping patterns that sometimes lead to 

water shortages, serve the welfare interests of rural families. According to the 

UNCCA (2001), 57 percent of the population lives in rural areas, and a major portion 

of them are engaged in the agricultural activities. As the agriculture is completely 

dependent on irrigation, it becomes the largest user of water with 83 percent share in 

water consumption.  

                                              
35 The poverty line used in HDR 2003 for rural area is 3963 EGP (Egyptian Pound). Poor is defined 
person whose expenditure is less than specified poverty line. Those who are bellow food poverty line 
(3752.6 EGP) are considered as ultra poor. 
36 One faddan equals 4200 square meters or 0.42 hectare. 
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Expanded fields of rice require additional amounts of water and, therefore, rice 

cultivation is restricted by the state. However, the fields of rice sometimes are out of 

control and there are observed violations of the quotas set by the government. Even 

though official reports explain the increase in the cultivated rice areas by the increase 

in Nile flows during the 1990s [MWRI, 2002a], the national survey (1998) shows that 

the main incentive behind the choice of crops to be cultivated is the profitability of 

those crops compared to other crops. The explanation based on a profit driven 

cropping pattern, seems more relevant in this case if we take into account the poverty 

levels in rural areas that forces people to take benefit of crops that yield high profit. 

The rice is a high value crop and is likely to be an important contributor to raising the 

income [Poverty Reduction in Egypt, 2002]. Thus, the fields of rice and sugarcane 

tend to expand, driven by the welfare needs of farmers.37 

Unequal Distribution 

The unequal distribution of irrigation water is another factor that contributes to 

the emerging water stress conditions. This is a result of water overuse at the head of 

the canal bringing less water toward its tail. Thus, the farmers at the tail of the canal 

and downstream suffer from water shortages and are forced to abandon cultivation of 

some part of their land in order to avoid yield losses, whereas at the head of the canal 

peasants enjoy the abundance of irrigation water.  

Unequal distribution of water can be linked to the bounded behaviour of 

farmers who cannot see far reaching consequences of their actions (i.e. behaviour 

such as mistreatment of irrigation infrastructure in order to get wider access to water. 

The low cooperation levels and the low communication facilities preventing 

spreading the feedback of downstream farmers to the upstream ones is another aspect 

                                              
37 Some argue that not only the low-income farmers stand behind the rice filed expansions but profit 
driven motivation of big farmers can lead to the same result as well. However, we must note here the 
subsistence character of the farms in Egypt with the average landholdings of 2.6 faddan and 40 
percent of farmers hold less than one faddan [Malashkhia, 2003]. Therefore it has been assumed that 
main contributor to augmentation of high water demanding crop fields is the low income levels, 
beside the “free water” factor which will be discussed later on in the Political forces paragraph. 
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of this complicated issue. Farmers cannot always be blamed for their ignorance or 

low consciousness since the over-irrigation practices that lead to water shortages 

downstream are often induced by the unreliability of the water provision in canals. 

Uncertainty in water availability pushes them to over-irrigate, as they are not sure of 

the water delivery (volume and timing) next time [Holmen, 1991]. Obviously, the 

water scarcity, in this sense, is not bounded in time or space. Water shortage can 

occur in the present within one village boundary, masking an abundant fresh water 

availability at the head of canal.  

Consumers’ Behaviours 

The water stress conditions are also tied to the conscious behaviour of the 

consumers (i.e., the farmers) emerging from the level of education, accessibility and 

availability of information and cultural patterns. A good example of the education 

level effect is the resistance of the farmers to use the new irrigation methods. 

Regardless of the presence of new irrigation systems in the new cultivated lands, 

farmers are still using the “surface flood irrigation method” [MWRI, 2002a]. They 

prefer the old methods they had used to and resist the innovations.  

Another example is the difficulties to expand the cultivation of “the short-

duration rice” despite its lower water requirement. One of the reasons is the taste of 

rice that Egyptian farmers do not like. Thus, they refuse to cultivate rice for taste 

preference reasons, - i.e. in part for cultural reasons. A second main reason for such a 

bias against this kind of rice is the lack of information about availability of such 

varieties. Moreover, this behaviour is enhanced by the accessibility to the inexpensive 

(almost free) irrigation water.  

Lack of information among the farmers causes lack of awareness. A national 

survey was carried out in year 1998 intended to identify the farmer’s awareness, 

attitudes and practices concerning the water resource management. The study shows 

that about 61% of male and 29% of female farmers know that the available water 

resources in the country are fixed. The “inexhaustible resource” perspective 

mentioned above is widely spread throughout the country. Only 21% of the farmers 
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consider the scarcity problem that can emerge in the future as serious, whilst 23.6% 

do not see the problem at all. 57% of the farmers hold the hopes that a larger water 

quota is negotiable. The response of the farmers differs significantly according to the 

education levels, pointing to higher awareness of the problem among higher-educated 

respondents. The low awareness can be explained with the low literacy level (53.1%) 

in the rural community [HDR, 2003], and the poor accessibility to the information.  

Awareness about water preservation measures is low as well. Farmers are 

poorly informed about opportunities available to decrease the water consumption. As 

the survey indicates, only 20% of male and 4% of female farmers had ideas about 

how to irrigate with less water, however about half of the respondents were aware of 

advantages of night-irrigation and almost all of the farmers use land levelling [El-

Zanaty & Associates, 1998]. 

6.2.1.2 The Natural Resources 

The natural resources include water resources and agricultural land. The Nile 

River is the main source of fresh water in Egypt and most fertile agricultural lands lay 

on the Nile banks alongside its course from the south of the country to the north of 

Cairo where the diverge into two main branches forms the Delta to the north.  

Water Resources 

The Nile River provides more than 96 percent of all fresh water resources in 

Egypt [UNCCA, 2001]. Egypt is entitled to 55.5 BCM of water from the Nile 

annually [Abu-Zeid, 1991]. The current water demand in Egypt is estimated at 67.47 

BCM annually. Therefore the Nile becomes the almost exclusive source of water for 

the country. The rest of the water demand is met by: the renewable groundwater (4.8 

BCM), the drainage-water reuse (4.5 BCM), and the treated municipal (0.7 BCM) 

and industrial wastewater (6.5 BCM), which returns to the closed system. About three 

BCM out of the 55.5 BCM is lost in the surface evaporation from the irrigation 

network [MWRI, 2002a]. Water demand is expected to rise up to 87.9 BCM by year 

2017. It has been planned to meet the rapid growth of water demand partly from 
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additional water resources that can be obtained from non-renewable groundwater 

aquifers in Sinai Peninsula and the Eastern and Western deserts [UNCCA, 2001].  

Table 6-1 indicates the present and the projected water resources. The water 

balance for year 2017 can meet the demand if the irrigation improvements plan, 

drainage water reuse, and treated wastewater reuse achieve the target figures. The 

objectives cause some concern regarding whether meeting these targets is realistic. In 

particular this is true in the case of the 2.35 BCM possibly provided by the Jonglei 

canal in Sudan38 that has not been completed, and the drainage water reuse (4.7 BCM 

in 1990) which should reach up to 7 BCM in year 2000, Unfortunately the figure has 

remained 4.5 BCM even in year 2001, [Malashkhia, 2003].  

Table 6-1: Present and projected water resources in BCM based on CCA materials. 

Source 1990 2001 2017 
The Nile River 52.5* 52.5* 55.5** 
Renewable ground water 2.6 4.8 7.5 
Agricultural drainage water 4.7 4.5 8.4 
Treated domestic waste water 0.2 0.7 2.5 
Treated industrial waste water 6.7 6.7 6.7 
Desert aquifers 0.5 0.57 3.77 
Rainfall and flush harvesting - - 1.5 
Saving from management - - 1.5 
Total 67.20 69.77 87.37 

* The 3 BCM of surface evaporation is subtracted. 
** Including the 2.35 BCM possibly yield from Jonglei project. 
 

Land Expansion 

Due to the present development of the manufacturing sector and the land 

reclamation projects, a considerable increment in water demand is emerging in the 

agriculture and industry sectors. Despite the present conditions of continuous 

declining “per capita crop area” and “per capita crop production”, the current 

                                              
38 The Jonglei Canal, started in 1980, is a hydro-construction project in Upper Nile Province of 
southern Sudan designed to reduce the evaporation by altering the course of the White Nile as it 
passes through a swampy area in southern Sudan known as the Sudd. According to Egyptian 
officials, the purpose of the canal was to ensure the flow of 4.7 BCM of water annually, to be equally 
distributed between Egypt and Sudan. However the project was put to a halt in 1983 following the 
outbreak of the North-South civil war. 
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population growth rate (1.721%) obliges the agriculture sector to provide food for a 

considerably larger number of people in the near future.  

The problem of “limited land resources” is not only restricted to the food 

security issue, but linked to the employment issue as well. The rural area 

accommodates 57% of the population, 50% of them are engaged in the agricultural 

sector [HDR, 2003]. The food demand, the habitation requirements, and the increased 

demand for jobs, force the government to adopt land reclamation policy. Such a 

policy has been considered the most realistic and effective way to generate jobs to 

meet the population growth problem. The national plans promise to add 3.4 million 

faddan of desert land to the cultivated land area [UNCCA, 2001]. This means that, 

given the present water use practices, land expansion would place an enormous stress 

on water supply.  

 
Figure 6-1: The CLD for Social forces and Natural resources. 

 

The causal loop diagram shown in Figure 6-1 has been developed to describe 

the causal relationships between the social forces and natural resources (water and 

land). As the population continues to grow, the demand for food will increase. This 
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puts more pressure on both the government and the private sector to adopt a land 

reclamation policy and to expand the agriculture land. Such reclamation projects raise 

the demand for irrigation water significantly and exhaust the current water resources. 

At the same time, the inadequacy of the present irrigation system infrastructure leads 

to unequal water distribution service, and large quantities of water are lost as a result 

of the conveyance process. These water losses decrease the opportunity to cultivate 

even the present agricultural land that suffers from land-yield deterioration. As a 

result, the food production will slow down in these areas, a slow-down that may only 

partly be compensated by production in the new areas. This will increase the poverty 

leading to inadequate cropping patterns and inefficient farming. Consequently, the 

water consumption will boost adding additional stresses and shortages.  

6.2.1.3 Economic forces 

As supplies fail to catch up with the growing demands, the competition for 

water will intensify. As illustrated in Table 6-2, the agricultural sector is the largest 

consumer of water resources in Egypt (and so it is worldwide) with a contribution to 

the GDP of only 16.5 percent share. In comparison, the industrial and services sectors 

contribute with 33.3 and 50.2 percent share respectively. Thus, from a macro-

economic perspective, the agriculture sector is the most vulnerable one to loose its 

share in the water resources being the one that utilizes water the least effectively. As 

some analysts point out, agriculture can be affected by increasing water scarcity due 

to growing demands from other sectors. It has to compete with high value consumers. 

In the long run, this may lead to the release of water from agriculture to the other 

sectors [Engelbert et al, 1984]. The consideration about water reallocation becomes 

relevant taking into account the Egyptian government’s support to the development 

of the industrial sector [MWRI, 2002a]. 
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Table 6-2: The present water distribution between various sectors 39 

Water Users Worldwide (%)          Egypt (%) 
 1999 1990 2001 
Agriculture 65 84 83 78 
Industry 25 7.8 10 14 
Domestic use 10 5.2 6 8 
Total water use in BCM - 59.2 67.47 68.67 

 

The water demand from the industry sector has increased in the last decade 

from 7.8% to 10% (to 14% according to FAO), mainly at the expense of other 

sectors. The water demand from the domestic sector has increased from 5.2% to 6% 

(8% according to FAO) while the water used for agriculture declined by one percent 

(6% according to FAO) during the same period. Thus, the impacts of increased 

competition among sectors are already becoming evident. It is important to 

emphasize the fact that, for economic reasons, the water reallocation may shift 

towards a use of water characterized by a higher productivity. This may lead to the 

emergence of a water scarcity condition in the agriculture sector resulting from the 

fact that it is the least effective water consuming sector.  

The economic forces have been added to the causal loop diagram portrayed in 

Figure 6-1 to produce Figure 6-2. The figure shows that the improvement of the 

irrigation system and the water distribution services are driven by the investments in 

the operation and maintenance processes. With a delay, these investments lead to an 

increase in the efficiency of the irrigation system and to a minimization of the water 

losses, resulting in more water being provided for cultivation and reclamation 

processes. This will provide more food for export, which, in turn, will help in cost-

recovery and magnify the contribution of the agriculture sector to the GDP, 

encouraging for additional investments for water preservation purposes.  

 

                                              
39 Based on [Abu-Zeid, 1991] and [UNCCA, 2001]. Figures given by FAO are indicated in italics. 
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Figure 6-2: The CLD for Social and Economic Forces. 

6.2.1.4 Political Forces 

Although water is crucial for the sustainable development in Egypt, the limited 

water resources are not treated as scarce commodity. On the contrary, the government 

is heavily subsidizing the water supply. This action unintentionally induces wasteful 

practices and hinders the emergence of rational use of resources [Ahmad, 2002]. The 

subsidy issue, and its removal, would have a wide variety effects on the whole 

society. The interactions of subsidy-related variables are shown in Figure 6-3. 

Subsidies mean to grant water for free. This strengthens the present political power, 

which aims at providing more employment in agriculture sector and improving 

farmers’ welfare. The higher the income, the more satisfied the farmers are.  This 

facilitates the retaining of the present political power. The urban low and middle-

income classes benefit from the subsidy as well, as they are provided with relatively 

inexpensive food. On the other hand, the higher the subsidies are, the lower is the cost 

recovery and the less the governmental ability to grant public funds. Therefore, the 

incentive to invest in agriculture diminishes. It negatively affects the performance of 

the irrigation system and decreases its efficiency which in turn intensifies the water 

stress conditions. The subsidies also promote water intensive crops, which aggravate 
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the water scarcity problem even more. Scarcity leads to lower income and poverty. 

The more severe the poverty the more subsidies are needed. The relationships here 

are reinforcing. The subsidies in the irrigation sector are aimed at sustaining the 

agriculture economy, ensuring the self-sufficiency of farmers. However, the heavily 

subsidized access to the irrigation service boosts water demand and discourages 

farmers from investing in efficient technologies and carrying out water saving 

practices [Postel, 1996, 1997; Rogers et al., 2002]. 

 

Figure 6-3: The CLD for Subsidies 
 

Different sources give diverse information about the price of water delivery for 

irrigation. [Postel, 1997; Wichelns, 1998; Ahmad, 2002] state that the provision of 

water in irrigation canals is free of charge, whereas the representatives of NGOs 

operating in some provinces indicate that farmers are charged for irrigation services 

through land tax. However, the current land tax is 22 EGP per faddan annually40. The 

newly reclaimed lands are not subjected to land tax. While the annual investment 

budget for operating and maintaining irrigation and drainage system (including main 

canal system and distribution works) amounts to 100 EGP per faddan annually  

[MWRI, 2002b]. The figures give evidence to the fact that water and irrigation 

services are largely subsidized regardless of the operating costs. 
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The main justification behind the subsidy reasons pointed out by the 

government officials and NGO’s representatives was the affordability41 [Malashkhia, 

2003]. However, the affordability is not the single driving force behind the 

government policy. There are other social benefits from subsidizing the irrigation 

water. From a food security perspective, irrigation subsidy is instrumental since food 

production is completely dependent upon irrigation. Subsidy causes the price of food 

produced sufficiently low to benefit the urban poor and the middle class [El-Quosy et 

al., 1999]. Increments in employment and income per capita are other positive social 

benefits. Through the affordability of irrigation water, agriculture employs 50% of 

labour force in rural Egypt [HDR, 2003] and prevents rural households from being 

pushed out of agriculture into cities that cannot provide shelter, jobs, and food for 

millions. Thus, the subsidy on irrigation prevents increasing poverty, crime, and 

social unrest that can lead to political instability in the cities. As Young (1992) stated, 

farming serves as an instrument of public policy, “the farmers and the public are in 

food producing and employment creating partnership and the government’s (tax-

payer’s) part of the bargain is to provide the water.” Here one can assume that the 

government retaining the power is part of the bargain as well. There are very few 

incentives that promote cost recovery, and concerns regarding the farmers’ welfare 

might not be the only reason behind the low political will [Young, 1992; Shatanawi 

and Salman, 2002]. Removal of subsidies becomes politically infeasible for the 

political elite as it might threaten to cause a change in the political power and 

stability.  

There are other aspects of subsidy that, in the long run, will result in harmful 

effects on the environment, the economy, and the society. “Free water” conditions 

                                                                                                                                            
40 22 Egyptian Pounds equal 22 Norwegian Kroner which equal 3.8 USD 
41 Affordability means the ability of the farmers to bear the costs of the agriculture inputs including, 
in this case, the water charges. In housing sector for example they say: “the price to income ratio is 
the basic affordability measure for housing in a given area”. It is generally the ratio of median house 
prices to median familial disposable incomes (i.e., the gross income minus tax on that income), 
expressed as a percentage (e.g., no more than 30% of household income should be allocated to 
housing Principal, Interest, Taxes and Insurance). Typically, pricing calculations that define 
"workforce housing" use 30% of household income as the maximum threshold of affordability. 
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contribute to the rising demand against the limited supply options and therefore are 

considered to be one of the driving forces behind water scarcity [Myers and Kent, 

1998; Rogers et al., 2002]. As discussed in the paragraph on social forces, some 

wasteful practices and the cultivation of high water demanding crops are deeply 

rooted not only in the income levels or behaviour as such, but are reinforced by the 

subsidy policy. A “free” resource sends misleading signals to the farmers and serves 

as an incentive to grow water inefficient crops and overuse the water imposing water 

scarcity conditions to future generations. Moreover, this also gives rise to negative 

environmental effects such as drainage problems, water-logging, and salinization [Sur 

et al., 2002]. 

There is a need for investments in improving the maintenance of irrigation 

schemes. Because of the very low cost recovery, the main source for the operation 

and maintenance (O&M) is the public fund causing additional pressure to arise and a 

diversion of the financial sources from other social or human development programs 

that might have a higher priority if the agriculture would fully recover its costs. Tight 

public funds do not allow carrying out improvement plans, resulting in a further 

deterioration of the system. This leads to lower efficiency rates and to fostering the 

water shortages, having a direct negative impact on the farmer’s welfare. The 

relationships are illustrated in Figure 6-3 and show the impact of subsidies on 

farmers’ welfare in the long run causing the problems to effect not only the present 

generation, but future generations as well. 
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6.3 Adapting the SDGIS to the Nile Delta 

As part of this research, we developed a number of simulation models using a 

variety of software (i.e. Powersim and Vensim) to demonstrate the interactions 

between the main driving forces and their influence on the water stress conditions. By 

default, the simulation models included the irrigation network. Several aggregation 

levels had been used (e.g. aggregating the irrigation network into a single stock, a 

stock array, and a single stock for each canal) to study the effect of the spatial 

dimension on the behaviour of the system. Eventually, we concluded that: (1) driving 

forces such as farmers’ behaviour, economic forces, and political forces do not have 

significant spatial characteristics, while cropping pattern, irrigation network 

components, and agriculture lands do share a spatial significance. Quality of life and 

poverty distribution could be presented on administrative maps; however, such a 

representation requires a very detailed demographic data and sophisticated statistical 

analysis. (2) The irrigation network is the dominant sector in the model. In fact, it is 

the core of the model because most variables in other sectors are directly influenced 

by modest changes in the characteristics of that network. Therefore, we decided to 

focus on the irrigation network and developed the spatial model that represents 

comprehensively the irrigation system (a very modest aggregation was applied). In 

the following paragraphs, we first describe the study area, the characteristics of the 

irrigation system, and the spatial simulation model resulting from the careful analysis 

of the irrigation system that we have undertaken using the system dynamics 

approach, the GIS spatial analytical tools, and the modelling skills gained through the 

development of the pervious models (i.e., the first simple model, the molecule model 

and the array model). We also describe the improvements added to the previous 

SDGIS application to comply with the newly developed simulation model (spatial 

model) and the classified maps. Finally, we run and test the performance of the 

SDGIS spatial application and discuss some of the most interesting observations.   
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6.3.1 The Study area 

The Nile Delta region is located in the northern Egypt. North of Cairo the Nile 

spreads out over what was once a broad estuary that has been filled by silt deposits to 

form a fertile, fan-shaped delta about 300 kilometres wide at the seaward base and 

160 kilometres from north to south (see Figure 6-4). The Nile Delta extends over 

approximately 25,000 square kilometres with about 34 million inhabitants, meaning 

that about half of Egypt's population live there. This figure does not include Cairo's 

inhabitants that account for about 16 million who depend on Delta for food supplies. 

It is among the most densely populated agricultural areas in the world, with 1360 

inhabitants per km2. According to historical accounts from the first century A.D., 

seven branches of the Nile once ran through the Delta. Later accounts stated that the 

Nile had only six branches by around the twelfth century. Since then, nature and man 

have closed all but two main outlets: the east branch Damietta (240 kilometres long), 

and the west branch Rosetta (235 kilometres long). Both outlets are named after the 

ports located at their mouths. A network of drainage and irrigation canals 

supplements these remaining outlets.  

 
Figure 6-4: Map of Egypt and satellite image for Delta region. 

 

The area belongs to the Mediterranean climate with two main seasons: hot dry 

summers and cool winters, with 20.7oC average air temperature and a total of 38 mm 

precipitations per year. The area contains different types of land cover and land use: 

(1) the central area is the old agricultural land with the traditional irrigation system 
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(flood surface) cultivated with annual crops, fruits, and vegetables following two 

main agricultural rotations (two years and three years rotations). The main soil type in 

this area is Vertisols42 [Abdulla et al., 1997]; (2) surrounding the central area is the 

old reclaimed lands that are totally cultivated also using traditional irrigation 

methods. The major soil type is Aridisols43 [Abdulla et al., 1997]; (3) then there is the 

new, reclaimed areas with modern irrigation system (e.g. circular pivot) cultivated 

with different crop types; (4) then comes the Desert that have not been included in 

any reclamation effort; (5) at the north of Delta there are a series of salt marshes and 

lakes; most notable among them are Idku, Al-Burullus, and Al-Manzilah. The Delta 

is remarkably flat, with a gentle gradient slope to the north. The Nile mainstream 

descends only about fifteen meters along its course from Cairo to Damietta, a 

distance of about 160 km. This topography is easily adapted to irrigation-based 

agriculture.  

In terms of fertility, productivity, land integration, population density, and the 
existence of large industries related to agriculture sector (such as textile), the land of 
the Delta is considered the primary agriculture land in Egypt. It is a highly productive 
land serving local, regional, and international food needs. The Nile Valley from 
Aswan in the south to Cairo in the north comes in the second category while the 
Fayoum depression, the New Valley, and the Oases in the Western Desert come in 
the third category.  

6.3.2 The Irrigation System Characteristics 

Although irrigation has taken place in Egypt for nearly 5000 years, it is only in 

modern times, starting around 1850, that the erection of water control structures such 

                                              
42 In both the FAO and USA soil taxonomy, a vertisol is a soil in which there is a high content of 
expansive clay known as montmorillonite that forms deep cracks in drier seasons or years. Alternate 
shrinking and swelling causes self-mulching, where the soil material consistently mixes itself, 
causing vertisols to have an extremely deep A horizon and no B horizon. (A soil with no B horizon is 
called an A/C soil). This heaving of the underlying material to the surface often creates microrelief 
known as gilgai. [From Wikipedia, the free encyclopaedia] 
 
43 Aridisols (or desert soils) are a soil order in USA soil taxonomy. 
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as barrages, canals, and weirs was begun. Except for the Nile itself and the two main 

branches, Rashid and Damietta, every fragment of the irrigation system is man-made.  

The Egyptian irrigation system is tremendous in size and complexity. It 

consists of the Aswan High Dam, eight main barrages, approximately 30,000 km of 

public canals, 17,000 km of public drains, 80,000 km of private canals (mesqas) and 

farm drains, 450,000 private water-lifting devices (sakias or pumps), 22,000 public 

water-control structures, and 670 large public pumping stations for irrigation. By way 

of this system, about 59 BCM of water is distributed annually, not only for cultivated 

land, but also for municipal and industrial use, for the generation of hydro-electricity, 

and for the navigation of freighters and tourist boats on the Nile [Hvidt, 1998]. 

The simple scheme of the irrigation system can be portrayed as following: 

Water is released from the main reservoir (i.e., the High Dam Lake) flow to the Nile 

mainstream that contains a number of barrages at certain locations, commonly at the 

head of the main branches. The water flows from the mainstream and the branches 

into the main canals from which the water is delivered to the farms passing the 

secondary canals and the water distribution system that consists of tertiary canals and 

ditches [Holmen, 1991; Tiwari and Dinar 2002]. Part of the water carried by the 

irrigation scheme is lost to seepage and percolation as a result of topography and 

another part evaporates during conveyance.  

After transmission, the water is allowed into and spent in the fields. The 
planting process consumes part of it, another fraction ends up in the drainage network 
and a third part is lost to seepage. Thus, considering the structure of the irrigation 
scheme, the efficiency of water utilization can be split into conveyance (or 
distribution) efficiency and application efficiency. Whereas the conveyance 
efficiency refers to the ratio between “the quantity of water released from the storage 
facilities and the quantity of water received at farm level” [Martinez, 1994], the 
application efficiency refers to the water utilization at the farm level [Tiwari and 
Dinar, 2002]. For the purpose of this research, we consider only the conveyance 
efficiency, since that is directly related to the irrigation network, which we have 
represented in our simulation model. The application efficiency may well be 
considered in further work. 
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The Nile flood season usually begins in July when the water rushes from the 

Ethiopian highlands into the Nile mainstream. The floodgates of the High Dam are 

left open44, as well as the main barrages alongside the Nile course. By first of 

December, the muddy flow is practically ceased, so that the Nile flow depends on the 

continuous supply from Victoria Lake through the White Nile. The floodgates are 

closed to accumulate water behind the High Dam. The sluices are closed gradually to 

allow a sufficient quantity of water for irrigation purposes to escape. Normally, the 

dam is filled to capacity by first of March. The Nile becomes very low by April and 

consequently, it is necessary to support the flow from the stored up water in the 

reservoir (High Dam Lake). From this time until the next flood season in July, 

irrigation is carried on largely using dammed-up water.45 

6.3.3 The GIS Irrigation Model 

The original map of the irrigation network has been reclassified according to 
the rank-order of the canals (hereafter, we refer to that as Canals’ levels) and their 
geographical locations. Regarding the canals’ levels, the classification resulted in five 
canals at the first level, eight canals at the second level, and eleven canals at the third 
level. The canals are distributed across three geographical zones: the West of Delta 
(the area located to the west of Rashid Branch); the Middle of Delta (the area 
between Rashid Branch and Damietta Branch); and the East of Delta (the area located 
to the east of Damietta Branch). The original map included an enormous number of 
private canals (mesqas) as shown in Figure 6-5. These canals have been extracted and 
saved in another map layer (i.e., Feature Class in terms of GIS terminology). 
Therefore, we have retained the main layer that contains only the various canals in 
the three levels as shown in Figure 6-6. 

                                              
44 Floodgates are left open for the double purpose of keeping the reservoir free from silt and allowing 
the sediment to enrich the lower country land, as it has done for centuries. 
45 It is estimated that a flow of 905 cubic meters of water per second throughout the year is necessary 
to provide perennial irrigation. Since the river supplies a constant flow of only 226.4 cubic meters per 
second, while the flood flow of from 8490 to 14150 cubic meters per second, the High Dam making 
up the deficiency in constant flow by storing a surplus in flood season. 
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Figure 6-5: The irrigation network in Delta including the private canals. 

 

Figure 6-6: The irrigation network in Delta. 
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This layer, that includes the three levels of canals, also includes some 

fragmented canals (i.e., represented by several polylines, meaning that there are 

several objects that have several records in the attribute table). This is because these 

canals were distinguished by their names when the map was originally produced. 

However, these canals are physically one canal even though it passes through several 

provinces and take on different names. Therefore, the map was processed to merge 

such canals into one object that has only one record in the attribute table. A new field 

labelled NCode (appearing in the attribute table in Figure 6-7 and in Table 6-3) has 

been added as a unique key identifier that is used to connect each canal with its 

associated molecule-model in the SD spatial model. The new classified map that 

includes only the three levels of canals (24 canals) is shown in Figure 6-6.  

 

 

Figure 6-7: The attribute table of the reclassified map. 
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6.3.4 The SD Spatial Model 

In chapter four we developed the molecule model that represents a single canal 

and the agriculture land associated to it in one-to-one relationship. The model also 

included three cropping patterns that may be assigned to the agriculture land to study 

the variation in the water demand and the behaviour of the canal over time. The 

model was improved in chapter five by: (i) adding the control-gates (as a gaming 

variable that provides the user with the capability to regulate the water flow during 

the simulation runtime); (ii) connecting several agriculture lands to the same canal in 

one-to-many relationship. The model has been coupled with the Gharbiya map that 

covers the central province in the Delta (i.e., the Gharbiya province) and both models 

were used to test the operability and the performance of the SDGIS application. 

Based on that SD model, we developed the Array Model that covers the entire 

irrigation network using array structures. For simplicity, we aggregated the canals 

based on their geographical location (i.e., Delta zones) and their rank in the irrigation 

system (i.e., first level, second level, and third level). The Array Model included nine 

canal classes. On the other hand, the agriculture area was divided into nine clusters 

reflecting their location and cropping pattern. The relationship in that model is many-

to-many. The Array Model was coupled with the new classified map that covers the 

entire Delta. A new version of the SDGIS application was developed (i.e., SDGIS 

Array Application) to comply with the new model structures. In this chapter, we took 

a step further and develop: (i) a new classified map includes the three levels of canals 

and covers the entire irrigation system in Delta; (ii) the spatial simulation model that 

includes the 24 canals listed in Table 6-3; and (iii) a new version of the SDGIS 

application (hereafter, we referred to it as SDGIS Spatial Application) associated with 

the newly developed classified maps and the SD spatial model. In the following 

paragraphs, we briefly provide an overview of the structure of the spatial simulation 

model by way of illustrative diagrams. The equations and formulations included in 

the model are fully described in Appendix C. 
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Table 6-3: The canals represented in the spatial model 
First Level  Second Level  Third Level   
Canal Name Ncode Canal Name Ncode Canal Name Ncode 

Hager Canal 1301 Rayah Nasiry 1201 
Noubarya Canal 1302 
Khandak Canal 1303 Rayah Behary 1202 
Baharya Gharbya Canal 1304 

Delta West Rashid Main Branch 1101 

Mahmoudya Canal 1203   
Kased Canal 1305 
Meet Yazed Canal 1306 
Bahr Tera Canal 1307 

Bahr Shebin 1204 

Belkass Canal 1308 
Bagorya Canal 1205   

Delta Middle Rayah Monofya 1102 

Rayah Abbasy 1206   
Bohya Yosra Canal 1309 
Bahr Muways Canal 1310 

Rayah Tawfiky 1207 

Abu Akhder Canal 1311 

Damietta Main Branch 1103 

Mansorya Canal 1208   
Sharkawya Canal 1104     

Delta East 

Ismaelya Canal 1105     
No. of Canals 5  8  11 24 

 

Table 6-3 shows the names and the codes assigned to the 24 canals considered 
in the spatial model.  There are five main canals at the first level that convey the 
water to eight canals at the second level which in turn distribute water among eleven 
canals in the third level. The table is organized in a way that reflects the connectivity 
of these canals. For example, in the West of Delta there is the Rashid branch (with 
Ncode 1101) at the first level that delivers the water to the three canals at the second 
level (Rayah Nasiry 1201, Rayah Behary 1202, and Mahmoudya canal 1203). These 
canals deliver the water to the canals at the third level in the following way: (i) The 
Rayah Nasiry 1201 convey the water to the Hager canal 1301 and the Noubarya canal 
1302. (ii) The Rayah Behary 1202 conveys the water to the Khandak canal 1303 and 
the Baharya Gharbya canal 1304. (iii) The Mahmoudya canal 1203 delivers the water 
directly to the private canals (mesqas) before it, eventually, drains to the Sea. The 
connectivity between these canals and the directions of the water flow are sketched in 
Figure 6-8.  

The molecule model, developed in Chapter four, is used as a building block in 

this SD spatial model, to represent the canals that deliver the water to the private 

canals (i.e., mesqas that irrigate the fields) and, eventually, drain to the sea (these 

canals are shaded in the Table 6-3). These canals are mainly at the third level and the 

Sharkawya canal 1104 and the Ismaelya canal 1105 are at the first level. The four 

canals at the second level (shaded in the Table 6-3) have multiple sources of water 
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supply (e.g., Mahmoudya canal receives water from three sources) and some of them 

drain to other canals (such as the Rayah Abbasy that drains to the Bahr Shebin). 

Therefore, the molecule model applied for these canals has been modified slightly to 

reflect the variation in structure in these canals.  

The water demands from various agriculture lands in different locations are 

calculated in the reverse direction of the water distribution. In this sense, the water 

demands from agriculture lands irrigated from the canals at the third level are 

calculated first and added up to the demands from those lands irrigated from the 

canals at the second level and so forth upstream to the main distribution point (the 

Delta Barrage). Consequently, the molecule model has been modified to include the 

structures that represent: (i) the distribution of the water between the successor canals 

according to their water shares, and (ii) the accumulation of the water demand from 

the lower levels. This modified model is applied to the main canals at the first level 

(except the Sharkawya and the Ismaelya canals) and to the rest of the canals at the 

second level.  

 

Figure 6-8: The irrigation network diagram. 
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Figure 6-9: The Canals in the First Level46. 
 

The SD spatial model is organized in several views due to its size. The views 

are developed according to the geographical 

tly from the Nile through the Delta 

                                             

location and the levels of canals (e.g., 

Delta West-Second Level, Delta West-Third Level, Delta Middle-Second Level, etc.). 

In the following figures, the model views are exhibited with brief descriptions. The 

first view in the model, shown in Figure 6-9, includes the sub-models of the first level 

canals. These canals are: the Rashid Branch (T.L.), the Rayah Monofya (T.M.), the 

Damietta Branch (T.R.), the Sharkawya canal (M.R.), and the Ismaelya canal (D.R). The 

view includes also the water distribution (Centre) and the water demand calculations 

(D.L.)47. These canals receive the water direc

Barrage. The distribution of water between these canals is shown in Figure 6-10. In 

the initial state, we assumed that the quantity of water released from the reservoir 

equals to the quantity of water needed (i.e., the supply equals the demand). However, 

when the demand exceeds the supply (e.g., the water coverage is less than 100%) the 

water is distributed between these canals according to the water shares that calculated 

 
46 In the electronic copy, for the Figures 6-8 to 6-42, double click on the figure to enlarge, Acrobat 
Reader 4 or later is needed. 
47 Abbreviations: Top Left (T.L), Top Middle (T.M), Top Right (T.R), Middle Right (M.R), Down 
Left (D.L), Down Right (D.R). 
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reflecting the demands associated with each agriculture zone. The water demand 

calculations for each zone are shown in the sub-model of each canal and collectively 

in Figure 6-11. 

 
Figure 6-10: The water distribution among the first level canals. 

 

 
Figure 6-11: The water demands calculation diagram. 
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To trace k, we consider 

the thr

West of the Delta  

This is the area located to the west of the Rashid branch that is considered the 

main s

 

the distribution of water through the irrigation networ

ee geographical zones of the Delta in the following section.  

ource of water supply. The area includes two man-made canals, built in the 19th 

century, the Rayah Nasiry and the Rayah Behary. These two main canals further split 

into the Noubarya canal and the Hager canal. There is also Mahmoudya Canal (which 

takes water directly from the Rashid Branch) that has been excavated to server the 

north part of the West of the Delta (to the south to Alexandria city). These are the 

primary canals that support the irrigation at the West of the Delta. Figure 6-12 shows 

the sub-model that represents the Rashid branch (appearing in the top left corner in 

Figure 6-9). This branch receives its water directly form the Nile and delivers the 

water to the three canals at the second level, i.e. to the Rayah Nasiry, the Rayah 

Behary, and the Mahmoudya canal as shown in Figure 6-13.  

  
Figure 6-12: The Rashid Branch sub-model. 
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Figure 6-13: The second level canals at West of the Delta. 

 
This view includes the sub-models that represent: Rayah Nasiry (T.L.), Rayah Behary 

(T.R.), and Mahmoudya canal (D.L.). Closer shots are shown in Figures 6-14 to 6-16. 

 

 
Figure 6-14: The Rayah Nasiry sub-model. 
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Figure 6-15: The Rayah Behary sub-model. 

 
Noteworthy, both Rayah Nasiry (Figure 6-14) and Rayah Behary (Figure 6-15) 

receive water from the Rashid branch at the first level. However, Rayah Nasiry 

delivers the water to the Hager canal (1301) and the Noubarya canal (1302), whilst 

Rayah Behary delivers the water to the Khandak canal (1303) and the Baharya 

Gharbya canal (1304) at the third level. The calculations of water demands appear at 

the bottom of each figure.  

The third canal in this second level is the Mahmoudya canal (see Figure 6-16). 

This canal receives water form three different sources. The main source is the Rashid 

branch (1100) at the first level, but the Khandak Canal (1303) and the Baharya 

Gharbya canal (1304) at the third level drain to this canal as well. The canal serves 

only the agriculture lands located to the north of the Behara province and to the south 

of Alexandria and, eventually, it drains to the Sea.  
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Figure 6-16: The Mahm udya canal sub-model. 

 
o

 
 

 

Figure 6-17: The third level canals at West of the Delta. 
 

This view, shown in Figure 6-17, includes four canals; the Noubarya Canal 

(T.L.), the Kha

(D.R.)

ndak Canal (T.R.), the Hager Canal (D.L.), and the Baharya Gharbya 

. These are the canals at the third level West of the Delta. The Figures from 6-18 

to 6-21 show the sub-models associated with each of these canals. 
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Figure 6-18: The Noubarya Canal sub-model. 
 

 

Figure 6-19: The Hager Canal sub-model 
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Figure 6-20: The Khandak Canal sub-model. 

 

 
 

Figure 6-21: The Baharya Gharbya Canal sub-model. 
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The Middle of the Delta 

This is the most fertile land in the Nile Delta region. The area is seized 

between the two main branches of the Nile River, Rashid and Damietta. The main 

source of water supply is Rayah Monofya (1102) represented by the sub-model 

shown in Figure 6-22. It is relatively short in length but carries a significant amount 

of water to supply Bahr Shebin (at the second level) which supports alone four further 

canals at the third level. A considerable part of the agriculture area in the Middle of 

the Delta is also irrigated form Rayah Abbasy which originates from East of the Delta 

but serves the Middle and ends to Bahr Shebin to support the flow. 

 

 
 

Figure 6-22: The Rayah Monofya sub-model 
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Figure 6-23: The second level canals in the Middle of the Delta. 
This view includes the sub-models that represent: Bahr Shebin (T.L.), Bagorya canal 

(D.L.), and Rayah Abbasy (D.R.).  

 
Figure 6-24: The Bagorya canal sub-model. 

This canal provides water for large agriculture area in the Middle of Delta and 

ultimately drains to Rashid branch near to its end before it drains to the Sea.  
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Figure 6-25: The Rayah Abbasy sub-model. 
 

Rayah Abbasy is the only canal at the second level that receives the water from the 

Damietta branch at East of the Delta. However, it serves the lands in the Middle of 

the Delta and drains to Bahr Shebin (Figure 6-26). Its supply is critically needed 

because Bahr Shebin supports almost all the canals at the third level as shown in the 

Figures 6-27 and 6-28. 

 

Figure 6-26: The Bahr Shebin sub-model. 
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Figure 6-27: The water demand accumulation form the third level canals. 
 

 

 

Figure 6-28: The third level canals at Middle of Delta. 
 

This view includes four canals; the Kased canal (T.L.), the Meet Yazed canal (T.R.), the 

Bahr Tera canal (D.L.), and the Belkass canal (D.R.). These are the canals at the third 

level at Middle of Delta. The Figures from 6-29 to 6-32 show the sub-models 

associated with each of these canals. 
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Figure 6-29: The Kased canal sub-model. 

 

Figure 6-30: The Meet Yazed canal sub-model. 
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Figure 6-31: The Bahr Tera canal sub-model. 
 

  

Figure 6-32: The Belkass Canal sub-model. 
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East of the Delta  

This is the area that expands from Damietta branch at the east to Suez Canal at 

the west. The area is irrigated from the Damietta branch, the Sharkawya canal, and 

the Ismaelya canal at the first level. While the Ismaelya canal drains to the Bitter 

lake, connected to the Suez Canal, and the Sharkawya canal drains to the Abu Akhder 

canal at the third level, the Damietta branch supports the flow of water to the second 

level canals, the Mansorya canal and Rayah Tawfiky, that deliver the water to the 

third level canals as shown in Figures 6-33 to 6-35. 

 

 
Figure 6-33: The Damietta branch sub-model. 
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Figure 6-34: The second level canals at East of the Delta. 

 

This view includes the canals at the second level: Rayah Tawfiky (Top), and 

the Mansorya canal (Down). Noteworthy, Rayah Tawfiky drains to the Mansorya canal 

which is at the same level but receives the major part of water from the Damietta 

branch.  
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Figure 6-35: The third level canals at East of Delta. 
 

This view includes three canals: Bahr Muways (T.L.), Bohya Yosra canal (T.R.), and 

Abu Akhder canal (D.L.). Closer shots are shown in Figures 6-36 to 6-38. 

 

 

Figure 6-36: The Bahr Muways Canal sub-model. 
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Figure 6-37: The Bohya Yosra Canal sub-model. 
  

 

Figure 6-38: The Abu Akhder Canal sub-model. 
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The Figures 6-39 and 6-40 portrays the sub-model of the first level canals Sharkawya 

and Ismaelya, respectively.  

 

Figure 6-39: The Sharkawya Canal sub-model. 

 

Figure 6-40: The Ismaelya Canal sub-model. 
 

There is one more view worth exhibiting in this section. That is the model 

initialization view shown in Figure 6-41. The aim of this view is to provide the user 

with a convenient way to set the initial values for the model decision variables that 

are distributed across the various model views.  
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Figure 6-41: The model initialization view 
 

In this section, we have provided an overview of the model structure. More 

details regarding the model equations and formulas are provided in Appendix C.  In 

the following section, we describe the adaptation of the SDGIS application to the 

irrigation system in the Nile Delta.   

6.3.5 The SDGIS Application Improvements 

This is the third version of the SDGIS Application. The application has been 

improved mainly to host the SD spatial model and the last version of the classified 

map. In addition to the modifications of the “SD Model” panel and the “GIS Tools” 

panel, four additional panels were introduced to provide more control over the 

models and to improve the visualization. These panels are labelled the “More 

Graphs”, the “Delta Image”, the “Model Initialisation”, and the “Control Gates” 

panel, respectively.  

 



The Adaptation of the SDGIS 305

The “SD Model” Panel 

In the first panel, shown in Figure 6-42, a new SSTab control object has been 

added. It includes 25 Text-Boxes to display the values of the 24 canals and the stock 

associated with the Nile. The Text-Boxes are organized in three columns with respect 

to the three geographical zones, and distributed across three tabs corresponding to the 

three levels of canals within the irrigation system (see Figure 6-43). For example, the 

Nile River, the two main branches, and the three main canals appear in first tab, while 

in the second tab the eight canals at the second level are organized in three columns 

corresponding to their location. The third tab includes the eleven canals at the third 

level and they are organized in three columns as well. These Text-Boxes show the 

“Initial values of the canals” (i.e., the initial water volume) resulting from the user 

loading the simulation model and before the simulation has been started. The Text-

Boxes are editable so that the user can set the desired initial value for any canal. 

During the simulation, the application retrieves the current water volume in each 

canal and displays it in the associated Text-Box. In the code page, the functions 

Vensim_get_val and FOR, and a fixed size array have been used to retrieve the values 

of the canals. Noteworthy, the function Vensim_get_val retrieves the values of the 

canals in an alphabetical order, meaning that the canal named Abu Akhder for 

example will be retrieved before Rashid Branch despite its lower level in the 

irrigation system, its geographical location, or its place in the model (in which view it 

is located). Consequently, a few lines of code have been added to trace the order of 

value retrieving, associate the Text-Boxes with the canals, and to reorganize the Text-

Boxes on the SSTab. 

The frame labelled “The Model Canals” appearing above the new SSTab (see 

Figure 6-42) contains a List-Box and another frame labelled “Canal Attributes” to 

display the characteristics of a single canal. Unlike the List-Box in the previous 

application, this List-Box shows only the stocks in the simulation model, that is the 
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24 canals and the stock associated with the Nile River48.  The List-Box has a method 

added to its properties that enables the user to select an item (a canal) from the List-

Box. The attributes of the selected canal are then shown in the frame “Canal 

Attributes” and the view containing this canal is displayed in the Picture-Box. 

 
Figure 6-42: The “SD Model” Panel 

 
Figure 6-43: The new SSTab. 

                                              
48 The List-Box in the previous application shows the model variables. In this spatial model, there are 
more than seventy variables most of them are shown in other panels. Therefore, there is no need to 
display all of them in this List-Box. 
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The “GIS Tools” Panel  

In the second panel, shown in Figure 6-44, two frames labelled “Selected 

Canal Attributes” and “Selected Farm Attributes” have been added to the left side to 

display the attributes of one single canal and its associated agriculture land. In fact, 

because of the number of the canals included in the SD spatial model  (i.e., 24 

canals), the SSTab appearing in the previous application (see Figure 5-48) that 

encompass only nine canal-classes, has been removed and a new panel labelled 

“Model Initialisation” has been added to accommodate the attributes of the 24 canals. 

The “Model Initialisation” panel is described later in this section.  

 
Figure 6-44: The GIS Tools Panel 

The Frame, labelled “Active Layers”, appearing at the bottom on the left hand 

side (see Figures 6-44 and 6-45), has been reorganized and the functions associated 

with the command buttons have been modified49.  For example, the function 

                                              
49 For more information, see the detailed code in Appendix C 
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associated with the command button “All Canals Attributes” has been modified to 

access the attribute table of the layer Canals, to retrieve the attributes of the 24 canals 

and the Nile River, and to display these attributes in the “Model Initialization” panel 

(Figure 6-48). 

 

Figure 6-45: The Active Layers Frame 
 

 

The Additional Panels: 

1. “More Graphs” Panel 

Because the SD spatial model includes 24 canals, classified in three categories, 

a larger number of graphs were needed to exhibit the behaviour of the system. 

Therefore, six graphs have been added in a separate panel labelled “More Graphs” in 

addition to the previous four graphs in the “Graph” panel. The graphs should be 

created using the Vensim simulation software and marked as WIP graphs. In fact, the 

six Picture-Boxes that appear in the panel are programmed to display any six graphs 

named as [Graph1, Graph2…Graph6] from the upper-left to the lower-right corner. 

The user can create any number of graphs in the Vensim software, and then select the 

desired graphs to be displayed and their location by way of naming them [Graph1, 

Graph2…Graph6]. If the user chooses to display less number of graphs, the rest of 

the Picture-Boxes will appear empty. 
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Figure 6-46: The new panels “More Graphs”. 

 

2. The “Delta Image” Panel 

This panel contains an image control object to display a static image for the 

irrigation network. The image is a snapshot from the ArcGIS for the irrigation Map. 

On top of the image, copies of the Text-Boxes associated with the current water 

volume of the canals have been added and placed over the corresponding canal. 

During runtime, the values of the canals are displayed at every time step. Thus, the 

user can observe the changes in all canals’ volumes simultaneously. The four 

command buttons appear in the lower-left are copies of the simulation control 

buttons, so that the user can run the simulation from this panel and watch the change 

in the state of the canals.  
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Figure 6-47: The Delta Image Panel 

 

3. The “Model Initialisation” panel 

This panel, shown in Figure 6-48, has been created to provide an easy access 

to the initial values of the 24 canals included in the SD spatial model and the GIS 

model. This panel is multi purpose panel.  

First, it can be used as an input tool to set the initial values to the simulation 

model. Before the simulation is started, the user can develop a scenario and assign the 

desired values for the decision variables associated with the canals in the various 

Text-Boxes. These Text-Boxes are associated with the variables associated with each 

sub-model of the target canal. The initial values include: the canal length, cross-

section, efficiency, crop type, and the area of the agriculture land irrigated from this 

canal. There are three command buttons at the bottom of the panel: “Fill Panel From 

Model” to obtain the original values of the variables from the SD spatial model; 
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“RESET” to evacuate the Text-Boxes; and “Set These Values To Model” to insert the 

new initial values into the simulation model.  

Second, the panel is used as an intermediate platform facilitating the 

communication between the Map and the simulation model. When the user loads the 

irrigation network map into the application through the “GIS Tools” panel, the 

application retrieves the attributes of the canals from the attribute table and displays 

them in the associated Text-Boxes. Then, when the user uses the command button 

CONNECT in the GIS Tools panel, these values are written into an array and sent, as 

a vector of data, to the simulation model.  

Third, the panel is used as a display screen. When the user selects more than 

one canal from the map and uses the command button “Get Features Attributes”, and 

because the GIS Tools panel can display the attributes of only one canal, the rest of 

the canals’ attributes are displayed on this panel in the associated Text-Boxes. The 

panel is also used to display the values of all canals when the command button “All 

Canals Attributes” is used. Finally, the user may need to reset the original values of 

the canals if these values must been changed to represent various scenarios. 
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Figure 6-48: The model initialisation Panel 

4. The “Control Gates” Panel 

This panel has been created to host the control gates included in the irrigation 

system. During the simulation, the user can change the state of a certain control gate 

to adjust the flow of water into the canal. This is one of the most significant decisions 

that the user may take to analyse and study the behaviour of the system or to test a 

certain policy. In fact, these controls have been extensively used, to steer the water 

supply and to adjust it to the demand, during the testing of policies for water 

preservation.    
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Figure 6-49: The “Control Gates” Panel 

 

The control gates are represented with Slider control objects where the user can move 

the slider in both directions to regulate the volume of the water passing through it. 

The application converts the value of the slider to a numeric value and assigns it to 

the target control gate in the simulation model. For example, the value appears on the 

screen as 100% means full open valve capacity. This value is converted to one and 

multiplied by the volume of the water inflow. The sliders are organized in the order 

of the water flow directions within the irrigation network starting from the High Dam 

gates, that is the main source of water, and through the main branches and canals 

ending up to the canals at the tail of the system that drain to the sea. 
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6.4 Running the SDGIS Application  

The SD spatial model and the new classified map is being loaded and 

connected through the SDGIS application using the SD Model panel and GIS Tools 

panel. The simulation model is calibrated with the initial values that are reported in 

Table 6-4. The application retrieves the Canals’ attributes such as Name, Length, 

Cross Section, and the Area of the agriculture lands associated with each canal, from 

the attribute table of the new classified map. In this run, The Base Run, an assumption 

has been made concerning the cropping patterns. That is, all the agriculture areas 

have the same cropping pattern (i.e., group one of crop rotation that includes clover, 

cotton, and rice have been used in all Delta zones). The conveyance efficiency is 

calibrated according to the empirical data available obtained during the fieldwork 

(i.e., 90%, 80%, and 70% for the canals at the 1st, 2nd, and 3rd levels respectively).  

Table 6-4: The initial values used in the first simulation 
Ncode Canal Name Length (m) Cross 

Section(m2)
Efficiency Agr. Land 

Area (m2) 
Crop 
Type 

1100 Nile River** 47833.62 500 90% 963874714 1 
1101 Rashid Branch 227984.08 500 90% 1314847737 1 
1102 Rayah Monofya 23584.46 250 90% 316560763 1 
1103 Damietta Branch 237812.77 500 90% 1368092441 1 
1104 Sharkawya Canal 164615.89 250 90% 718076315 1 
1105 Ismaelya Canal 128537.99 250 90% 2031608848 1 
1201 Rayah Nasiry 101820.53 250 80% 2774561112 1 
1202 Rayah Behary 98626.29 250 80% 289718344 1 
1203 Mahmoudya Canal 79387.62 125 80% 1718329504 1 
1204 Bahr Shebin 163578.18 250 80% 1588156544 1 
1205 Bagorya Canal 138296.99 250 80% 714632483 1 
1206 Rayah Abbasy 10144.36 250 80% 215808681 1 
1207 Rayah Tawfiky 68842.60 250 80% 570782696 1 
1208 Mansorya Canal 219934.64 250 80% 1898035125 1 
1301 Hager Canal 86860.03 250 70% 658528785 1 
1302 Noubarya Canal 138812.64 250 70% 2651194589 1 
1303 Khandak Canal 43897.08 125 70% 698547274 1 
1304 Baharya Gharbya  54297.11 125 70% 233193442 1 
1305 Kased Canal 106993.73 125 70% 1183120292 1 
1306 Meet Yazed Canal 60094.57 125 70% 527628910 1 
1307 Bahr Tera Canal 79122.94 125 70% 1117583594 1 
1308 Belkass Canal 65008.57 125 70% 761650788 1 
1309 Bohya Yosra Canal 44861.65 125 70% 888892874 1 
1310 Bahr Muways Canal 122335.39 125 70% 1262890810 1 
1311 Abu Akhder Canal 97184.58 125 70% 620491648 1 

**The length of the Nile indicated in this table is the length of that part of the Nile appears in the 
map and the associated agriculture area. 
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The model is simulated for one year using DT equal to one day where the 

model’s time corresponds to one month. The output map was saved at every time step 

and after the simulation has produced the maps displayed sequentially in Figure 6-50. 

 
Figure 6-50: The output maps of the simulations50 

 

Close-up snapshots taken during the simulation runtime are shown in Figures 
6-52 to 6-57. Figure 6-52 shows the state of the canals at the beginning of the 
simulation. The canals are represented by a blue colour ramp corresponding to their 
initial values of water volume (notice that the initial value of the canal is calculated as 
a percentage of its carrying capacity, e.g., 30% of the carrying capacity). The dark 
colours indicate large volumes and visa versa. The lighter the colour the less are the 
volumes. The canals are labelled with their Ncodes for the purpose of easy 
identification51. A part from the Nile River appears at the bottom of the map in dark 
blue as it carries the largest volume of water being the source of the water supply. 
Then, the Rashid branch appears with a blue colour as the second largest volume, and 
then the rest of the canals with different range of blue colour ramp. As the simulation 
advances, the canals, particularly those at the first level, start to receive an additional 
supply as shown in Figure 6-53.  

                                              
50 F is the frame number and D is the time (in seconds) the frame is displayed on the screen in a 
slideshow presentation. 
51 A guide map for the canals’ names is shown in Figure 6-52. Reader can use it to follow description 
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Figure 6-51: A guide map for the canals’ names 

 

Figure 6-52: The state of the Canals at simulation Time = 1. 
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Figure 6-53: The state of the Canals at simulation Time = 4. 

Using the zoom-in tool, a closer view of the map is shown in the figure below. 

The view reveals, for example, that: at West of the Delta, Rayah Nasiry 1201 became 

dark blue, while Rayah Behary 1202 appears in light blue. At the Middle of the Delta, 

Bahr Shebin 1204 became blue. At East of Delta, the Damietta branch 1103 has 

turned to dark blue while Rayah Tawfiky 1207 became light blue.  

 
As the simulation continues, the state of the canals is changing as shown in the 

Figures 6-54 to 6-57.  
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Figure 6-54: The state of the Canals at simulation Time = 6. 
 

 
Figure 6-55: The state of the Canals at simulation Time = 8. 
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Figure 6-56: The state of the Canals at simulation Time = 10. 

 

 
Figure 6-57: The state of the Canals at simulation Time = 12 
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The model has been simulated for 24 months and then for 36 months using the 

same initial values we listed in the Table 6-4. Two snapshots for the two runs, at the 

beginning of the second year and the beginning of the third year, are shown in 

Figures 6-58 and 6-59 respectively. By comparing these two figures, we found that 

they are identical. Notice the graph in the Picture-Box placed below the MapControl 

Viewer, in Figure 6-58, the graph shows one year simulation while in Figure 6-59 the 

graph shows the simulation for two years. Noticeably, the behaviour of the model 

exhibits identical cycles repeated over a period of time equals to one year. This 

means that the model behaviour is stabile (steady state behaviour). However, both 

figures are dissimilar to the state of the canals at the beginning of the first year shown 

in the Figure 6-52 (above). To test the model sensitivity to the initial conditions, we 

recorded the initial values of the canals and run the model for one year (we called this 

run the Original Initial) then we saved the values of the canals at the end of the 

simulation (end values) as shown in Table 6-5.  

Table 6-5: The Initial and the End values of the water volume in the canals 
Time (Month) Initial Value 

(MCM) 
End Value 
(MCM) 

Nile River 249.59  291.39  
Rashid Branch 40.92  166.43  
Rayah Monofya 4.465  67.38  
Damietta Branch 42.65  113.03 
Ismaelya Canal 27.23  30.49  
Sharkawya Canal 17.07  18.22  
Rayah Behary 8.901  25.58  
Rayah Nasiry 35.32  105.75  
Mahmoudya Canal 18.71  37.26  
Noubarya Canal 33.72  70.61  
Hager Canal 11.65  20.81  
Khandak Canal 7.973  15.39  
Baharya Gharbya Canal 3.900 6.379  
Bahr Shebin 25.23  69.38  
Bagorya Canal 15.39  16.64  
Rayah Abbasy 2.673  3.524  
Kased Canal 14.52  22.13  
Meet Yazed Canal 6.864  10.25  
Bahr Tera Canal 13.03  20.21  
Belkass Canal 9.229  14.12  
Rayah Tawfiky 9.696  60.10  
Mansorya Canal 31.68  45.57  
Bahr Muways Canal 15.75  42.43  
Bohya Yosra Canal 9.801  28.58  
Abu Akhder Canal 8.900 35.97  
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Figure 6-58: The state of the canals at the beginning of the second year 

 

 
Figure 6-59: The state of the canals at the beginning of the third year 
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Then, we used the end values of the canals to initialize the model, and run it 

for three years (we called this run the Modified Initial). Remarkably, the model 

exhibited the same pattern of behaviour (i.e., the repeated cycles) after a very short 

period of time from the simulation starting point (transient state) as illustrated in 

Figures 6-60 to 6-64. Figure 6-60 shows that the behaviour of the Nile River, for 

example, has not been affected by changing the initial value except in the first two 

months. Moreover, the behaviour of the two main branches, Rashid and Damietta 

shown in Figures 6-61, 6-62, and 6-63 respectively, has also been stabilized shortly 

after the simulation has started (about four months after the simulation starting point). 

To gain more confident in the behaviour of the model, we run also this sensitivity 

analysis using the Vensim software. Figure 6-62 illustrates an example for the 

sensitivity graphs produced by Vensim. This graph shows the sensitivity of the 

Rashid Branch to the initial condition.   

 

 
Figure 6-60: The behaviour of the Nile with two different initial values. 
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Figure 6-61: The behaviour of the Rashid Branch. 

 

 

Figure 6-62: The sensitivity graph for the Rashid Branch 
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Figure 6-63: The behaviour of the Damietta Branch. 

The rest of the canals in the model have shown a similar behaviour. Figure 6-

64 shows some selected graphs illustrating the behaviour of some canals at the 

second and the third level at the three Delta zones. For example, graphs (a) and (b) 

show the Rayah Nasiry at the second level and the Hager Canal at the third level at 

the West of the Delta, respectively. Graphs (c) and (d) show the Bahr Shebin at the 

second level and the Kased Canal at the third level at the Middle of the Delta 

respectively, while graphs (e) and (f) show the Mansorya Canal and Bahr Muways at 

the second and the third level at the East of the Delta. As a general observation, 

changing the initial values have affected the behaviour of the canals at the second 

level only during the first seven months (transient state) and then the behaviour 

stabilized, while in the third level canals the behaviour have been affected during the 

first eight months and after that the behaviour of the canals has stabilized. We 

concluded that the model is insensitive to the initial conditions (i.e., the initial values 

of the water volume in the canals). In fact, this is very significant because it indicates 

the quality of the model. In other words, the model is robust and has successfully 

reflected the real structure of the irrigation system accurately. The behaviour of the 

model repeats the same cycles after one year, which is relatively a short period of 
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time. Indeed, Egypt with nearly 5000 years of agriculture and irrigation practices, it 

was expected that the behaviour of the irrigation system is very stable and is not 

vulnerable to sever disturbance as a result of fluctuation in water flows. 

     
(a) The Rayah Nasiry at the 2nd level, WoD.       (b) The Hager Canal at 3rd level, WoD 

     
(c) The Bahr Shebin at the 2nd level, MoD       (d) The Kased Canal at 3rd level, MoD 

     
(e) The Mansorya Canal at 2nd level, EoD       (f) The Bahr Muways at 3rd level, EoD 
 
Figure 6-64: The behaviour of the canals at 2nd and 3rd levels in the three Delta zones. 
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6.4.1 Testing the control gates sliders 

In this run, we chose to start the simulation by closing the main gate of the 

High Dam. The aim is to test the performance of the application and to observe the 

behaviour of the system under this extreme condition. As we anticipated, the water 

supply dropped dramatically and most of the canals ran dry in a very short period of 

time. Figure 6-65 shows the canals’ status at the beginning of the simulation. 

Obviously, there are many canals that appear with green colour indicating the low 

level of the water volumes in these canals.   

 

Figure 6-65: the state of the canals with main control gate closed. 
 

Figure 6-66 shows that: (a) the water supply from the Nile continued to run for 

five months before it drops to zero. This is because the Nile initially had a large 

volume of water that continued to drain to the first level canal. (b) The first level 

canals, in particular the Rashid and Damietta branches, continued to supply the 

second level canals and, for this reason, the second level canals appeared to receive 

water during the period from the mid of the first month to the end of the second 

month (as shown in c), while the third level canals, that drain to the sea, drop 
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dramatically and almost run out of water by the end of the third month as shown in d. 

This example has demonstrated the effect that closing the main control gate has on 

the behaviour of the system. Obviously, there are unlimited number of scenarios that 

can be developed using the 25 gates for the purposes of the adjustment of water 

supply with the demand and the water conservation at large.  

     

(a) The water supply        (b) The state of the first level canals 

     
(c) The state of the second level canals      (d) The state of the third level canals 

Figure 6-66: The results of the simulation with the main control gate closed. 
 

6.4.2 The effect of changing the efficiency 

In this run, the conveyance efficiency in the second level canals and the third 

level canals has been upgraded to 90% instead of 80% and 70%.  To demonstrate the 

effect of improving the conveyance efficiency on the behaviour of the system, two 

Figures, 6-67 and 6-68, are provided to compare the results of this run with the results 

of the Base Run.  
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Figure 6-67: The behaviour of the system without applying efficiency improvements 

 

 
Figure 6-68: The behaviour of the system with applying Efficiency improvements. 
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(a) The change in Noubarya canal status      (b) The difference in the canal leakage 

     
(c) The difference in the water demand        (d) The difference in water consumption 
Figure 6-69: A selected graphs to demonstrate the effect of the efficiency upgrading. 

 
In the above figure, the Noubarya canal at the third level at West of the Delta 

has been selected to demonstrate the change in the behaviour of the system by 

improving the conveyance efficiency. Noteworthy, the water volume in the canal has 

decreased. This is because the leakage from the canal has been reduced and the water 

needed in the field is now delivered as required. The water saved by improving the 

efficiency decreases the gross demand which includes the water for irrigation and the 

water lost during conveyance. Consequently, the overall water consumption in the 

system has been reduced by improving the second and third level canals.  
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6.4.3 The effect of changing the Cropping Pattern 

In the Base Run, one cropping pattern has been applied to all agriculture lands 

in the three Delta zones. In this run, we chose to change the cropping pattern in the 

Middle of the Delta to group two of crop rotation (that includes wheat, rice, and 

corn), and East of the Delta to group three of crop rotation (that includes beans, corn, 

potato, and tomato). The cropping pattern in West of the Delta remained unchanged 

(the group one of crop rotation). The aim is to demonstrate the effect of changing the 

cropping pattern on the behaviour of the system. Note that there are 25 agriculture 

areas associated with the canals in the model. The application enables the user to 

assign various cropping patterns for each agriculture land. However, for the purpose 

of this test, in this example we simply changed the cropping patterns at the level of 

the three geographical zones and did not proceed to a more detailed level.  

Figure 6-70 shows the behaviour of the system in the Base Run (i.e., at Time = 

10, with one cropping pattern assigned for all zones) while Figure 6-71 shows the 

behaviour of the system in this run (at Time = 10, with the newly assigned cropping 

pattern). The difference in the canals’ status can be seen in the Middle and East of 

Delta, and particularly, in the second and third level canals. Figure 6-72 includes a 

series of graphs that demonstrate the change in the state of some selected canals 

between the two runs. For example: (a) the water volume in Rayah Monofya 1102 at 

the first level at the Middle of the Delta, has generally decreased, particularly in the 

last quarter of the year, indicating that cropping pattern group 2 consumes less water. 

(b) On the contrary, the water volume in the Damietta branch at the first level at the 

East of the Delta has increased during the last quarter of the year. (c) A similar 

development took place in the second and third level canals (graphs c and d). This 

indicates that the cropping pattern group 3 consumes more water. As a general 

observation, the total water demand (shown in graph e) has remained the same during 

the two runs. This is also true for the total water consumption (shown in graph f). 

However, there is a shift in the timing of the peak and drop points which is very 

significant considering the water availability at these times. 
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Figure 6-70: Same cropping pattern one in all areas. 

 

 
Figure 6-71: Cropping pattern 1 in the west, 2 in the middle, and 3 in the east. 
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(a) First level canal at Middle of Delta      (b) First level canal at East of Delta 

     
(c) Second level canal at East of Delta     (d) Third level canal at East of Delta 

     
(e) Total water demand in Delta zones.     (f) Water consumption in Delta zones. 

Figure 6-72: Changing the cropping pattern in Middle and East of Delta. 
 

 

 



The Adaptation of the SDGIS 333

6.5 Conclusion  

Water is a finite resource and is essential for agriculture, industry, and human 

existence. In arid and semi-arid countries, such as Egypt, the water resources are 

quite limited. The challenges for achieving the highest possible water use efficiency 

are particularly significant. It is important to save and conserve water while providing 

necessary quantities to satisfy irrigation as well as domestic and industry 

requirements. However, due to the increase in population and associated rise in the 

standards of living and human social and economic activities, the demands on water 

are significantly intensifying. 

The water resources in Egypt are for all practical purposes limited to the Nile 

River. The average annual yield of the Nile is estimated at 84 BCM at Aswan. The 

discharge of the Nile is subject to wide seasonal variation. Egypt’s annual share of 

the river water is determined as 55.5 BCM. Egypt’s water requirements is increasing 

over time due to the increasing population and the associated food security issues, as 

well as the government policy to reclaim new lands and expand the agriculture areas 

that accommodate half of the population and absorbs the 50% of the labour force. 

The cultivated and cropped areas have been increasing over the past few years and 

will continue to increase due to the increase in food demands. The irrigation system 

and its performance has been the focal point in tackling the water scarcity problem. 

The Egyptian irrigation system is tremendous in size and complexity. Throughout this 

system, about 59 BCM of water are distributed annually, not only for cultivated land, 

but also for municipal and industrial use, and for the navigation purposes. In the 

future, irrigation water, which is the absolutely crucial part of Egypt’s agriculture, has 

to satisfy demands of even larger population. Given the water determined quota, 

water saving and conservation is the only option available to confront the potential 

water shortages.   

The system dynamics approach and the spatial analysis capabilities associated 

with GIS have been used to illustrate the dynamic interactions between the irrigation 

system components and the driving forces that tend to intensify and possibly escalate 
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the water scarcity problem. The SDGIS application developed in this research has 

been adapted to the irrigation system in the Nile Delta region. The associated 

simulation model and the GIS model have been developed and integrated into this 

application. The GUI of the application has been designed in a friendly way to enable 

the user to interact with the models and obtain better understanding to the dynamics 

and complexity associated with the irrigation system operation.  

Several runs have been carried out to test the behaviour of the system, the 

operability and the performance of the application using various scenarios. The 

SDGIS application enables the user to emulate the irrigation system operations. The 

user can alter the conveyance efficiency of any distributor canal, assign different 

cropping patterns to various agriculture lands, and alter the control gates to regulate 

the water flow or redirect the flows in the network. Thus, experiments with new 

scenarios or planned policies to the irrigation system can be assessed using the 

application. 

In the next chapter, we demonstrate the capabilities of the SDGIS application 

through illustrative examples for employing the SDGIS as: (i) an interactive learning 

environment for the educational purpose of explaining the complex irrigation system 

behaviour and management to non-technical individuals; (ii) an optimization tool for 

the irrigation network and the agriculture lands to attain the ultimate utilization of 

water and land resources; (iii) a spatial decision support system (SDSS) for supply, 

demand, and water allocation management; and as a policy assessment tool for water 

preservation measures.  
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7.1 Introduction 

The aim of this chapter is to demonstrate the capabilities of the SDGIS 

application through illustrative examples for employing the SDGIS as: (i) an 

interactive learning environment for the educational purpose of explaining the 

complex irrigation system behaviour and management to non-technical individuals; 

(ii) an optimization tool for the irrigation network and the agriculture lands to attain 

the ultimate utilization of water and land resources; (iii) a spatial decision support 

system (SDSS) for supply, demand, and water allocation management, and as a 

policy assessment tool for water preservation measures.  

This chapter includes three sections. In the first section, we provide a brief 

discussion concerning the SD based interactive learning environment (ILE); and an 

example for using the SDGIS application as an ILE. In the second section, we 

provide an example for a canal-performance optimization. This highlights the 

potentials of using the SDGIS application to perform various optimization processes 

regarding the irrigation system components. Although the optimization has mainly 

been implemented using the Vensim software (which is one of the three components 

that form the application), the spatial component in the SDGIS application has played 

a vital role in defining the target variables in the system to be optimized. In the third 

section, we first define the Decision Support Systems (DSS) and the Spatial DSS that 

is a special case of the DSS. SDSS consider the location and the spatial relationships 

between objects in their analysis. We highlight the relationship between the GIS and 

the DSS and discuss the arguments claim that GIS is a DSS. This greatly helps in 

evaluating the SDGIS application as a true SDSS. Second, we illustrate some 

examples for using the SDGIS application in decision making process and the 

assessment of water preservation policies. The section also includes a valuable 

dissection regarding the water scarcity problem, the water preservation policies 

recognized worldwide, and the suitability and feasibility of applying such policies in 

case of Egypt. Four water preservation policies have been chosen to be evaluated 

using the SDGIS application. These policies are:   
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1. Improving the conveyance efficiency of the irrigation network to reduce the 

quantity of water lost in canals during the delivery process that currently 

amounted for 10 BCM annually as stated by [Imam, 2003 cited by 

Malashkhia, 2003] and in particular, between the main canals and the outlets 

and between the outlets and the fields. 

2. Adjusting the water supply and demand to closely match each other (i.e. to 

deliver the right quantity of water at the right time and save water in harvest 

seasons with less water demand). 

3. To apply cropping pattern optimisation to maximise the benefits of water 

utilisation (e.g., to minimize planting of water thirsty crops and maximise the 

areas of high value crops that magnifies the agriculture share in GDP). 

4. To apply water pricing policies, if necessary, to avoid sending a wrong 

massage to the farmers and consumers by affording free water, and use these 

charges to maintain and improve the operation of the irrigation system. 

It is worth noticing that in most cases applying a single policy is not enough to 

successfully achieve the ultimate goal. We typically need to combine two or more 

policies to achieve our goals. For example, upgrading the efficiency may be coupled 

with a cropping pattern optimization policy for more efficient water saving 

achievements. The chapter is closed with a brief discussion regarding the potential 

benefits of utilizing the SDGIS application in water resources planning and 

management.  
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7.2 Utilizing the SDGIS as a learning tool 

Computer-based simulations are important tools to support learning. In the 

literature, several terms have been used to describe these computer-based simulations 

that support learning processes. Maier and Größler (2000) analyzed some of these 

terms and proposed a taxonomy for computer-based simulations. They distinguished 

between modelling- and gaming-oriented tools. According to their taxonomy, the 

modelling-oriented tools included two types of models: (1) the models that are built 

using Vensim, Powersim, Ithink or DYNAMO. These models are classified under 

feedback-oriented continuous simulations; (2) the models that are created with Taylor 

or Simple++, and they are classified as discrete, process-oriented simulations. Maier 

and Größler stated that “The main goals of feedback-oriented continuous simulations 

are learning, problem solving and gaining insights. Their usefulness and their efficacy 

in achieving these goals are virtually undoubted within the system dynamics 

community. In contrast, the aim of process-oriented discrete simulation environments 

is mainly to optimize process layouts and visualize the behaviour of the system 

processes under consideration. Their main real world domain is business, especially 

manufacturing and logistic processes”. Obviously, the first type of models mentioned 

above is system dynamics models. Davidsen (1996) offers a summary of important 

educational features of system dynamics.   

In the system dynamics community, one term that is used to describe such 

simulators designed for learning purposes is “Interactive Learning Environment” 

(ILE). Maier and Größler argued that this term usually contains more than a pure 

computer simulation model. One or more simulation models are embedded into the 

learning environment, which may also include background information, source 

material and working instructions integrated into a single computer application (See 

for example [Paich and Sterman, 1993]). The term “system dynamics based 

interactive learning environment” makes clear that the simulation model is a central 

part of such learning tools (see [Davidsen and Spector, 1997]). Maier and Größler 

concluded that an interactive learning environment is a computer-based simulation 
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with additional components. These components are assumed to be necessary for its 

effectiveness [Spector and Davidsen, 1997]. A summary of Maier and Größler’s 

taxonomy is portrayed in Figure 7-1. 

 
Figure 7-1: Taxonomy of computer simulations to support learning processes in 

socioeconomic systems.  
Source: Maier and Größler (2000). 

Davidsen (2000) further explained the kind of learning that occurs by using 

these ILEs. He distinguished between two kinds of purposes for using ILEs: learning 

and research validation. Davidsen stated that “learning is to influence the formation 

of mental models governing human decision making and action in complex, dynamic 

domains. The learning takes place in the form of the dissemination of the insight 

originally gained by the researchers or in the form of the development of new 

knowledge”. While “the purpose of ILE based research and validation is to identify 

the mental models governing human decision making and action in complex, 

dynamic domains”. Davidsen concluded that “we are using ILEs to find out what 

kind of information is being used and how that information is being applied when 
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people make decisions and take action. Having done so, we may form hypotheses as 

to why people fail to succeed when operating in such domains”. 

In this context, the SDGIS application can be described as an ILE. The SDGIS 

application consists of three main components; the SD simulation model, the GIS 

model, and the modules that include functions facilitating the integration between the 

two models in addition to the GUI. The SD simulation model has been built using the 

Vensim software (classified under software that facilitates feedback-oriented 

continuous simulations, see [Maier and Größler, 2000]) in a way that allows the 

managers and the operators of the irrigation system to test and evaluate alternative 

management policies. The GIS model provides information regarding the structure of 

the irrigation network, the spatial location of the irrigation system components and 

their attributes, required to undertake this management task. The modules of the 

SDGIS application and the GUI  facilitate the connection between the SD model and 

the GIS model, provide several features (i.e., control objects) to receive the user’s 

inputs and to execute the simulation under the user’s control, and provide significant 

supplementary information such as the cropping patterns, the crop-water demand, the 

pattern of water releases, etc.,. Therefore, we can say, with confidence, that the 

SDGIS application is an Interactive Learning Environment that comprises 

background and supplementary information, source materials (e.g., maps, canal 

attributes), and working instructions (e.g., how to connect the models and display the 

results using different colour ramps and line thicknesses) integrated into a single 

computer application. 

The SDGIS application, as an ILE, provides the potentials for teaching and 

training the irrigation system operators and managers to understand the dynamics of 

the system, e.g. including the delays, and how the performance of their portion of the 

system is affected by or affect other portions of the system. For example, let us 

consider the situation where we have three teams representing the operators in the 

three Delta zones (East, Middle, and West of the Delta). The operators in the East and 

the Middle of the Delta have chosen to close the control gates in their portions of the 

system at the beginning of the simulation. Naturally, the water flow will divert 
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towards the canals at the West part of the Delta. The operators in this portion will 

face a situation where an extra flow of water is approaching. They may become 

aware of such a situation in the early stages if the facilitator chooses to inform them 

about it or allowed for communication between the operators. But if the facilitator, 

for example, chooses not to allow for such a coordination and decided that the three 

teams must work separately, they may not realize the situation arising from the water 

redistribution before the simulation has reached Time = 5. Whether informed or not, 

the managers of the irrigation system at the West part of the Delta must develop plans 

to confront the overflow and increase the benefits from the extra water they receive 

by allocating this water in areas that suffer from water shortages.  

The scenario described here has been simulated and the output maps and 

graphs have been compared with the Base-Run. Figures 7-2 (a) and (b) show the state 

of the canals at West of the Delta at the Time = 4 with closed control gates at East 

and Middle of the Delta, and in the Base-Run respectively. Both figures, to some 

extend, look similar although the Noubarya canal 1302 appears with thicker line 

which indicates that it contains a larger volume of water. In Figures 7-3 (a) and (b), as 

the time advances (i.e., Time = 8) canals such as the Mahmoudya 1203 and the 

Noubarya 1302 appear to approach to their maximum capacity, while the water 

volumes in canals such as the Hager canal 1301 and the Khandak canal 1303 have 

significantly increased compared with their status in the Base-Run. 

The difference in the states of the canals becomes clear in Figures 7-4 (a) and 

(b) at Time = 12. The canals at the West of the Delta in the Base-Run (Figure 7-4 b) 

appear with lighter colours and thinner lines, while the same canals appear in Figure 

7-4 (a) with darker colours and thicker lines (notice in particular the Mahmoudya 

canal 1203, the Hager canal 1301, and the Khandak canal 1303). This indicates the 

large volumes of water delivered to these canals as a result of diverting the water 

flow from East and Middle of the Delta to the West. 
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Figure 7-2 (a): The state of the canals at WoD at Time = 4 

 
Figure 7-2 (b): The state of the canals in the Base Run at Time = 4. 
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Figure 7-3 (a): The state of the canals at WoD at Time = 8. 

 

Figure 7-3 (b): The state of the canals in the Base Run at Time = 8. 
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Figure 7-4 (a): The state of the canals at WoD at Time = 12. 

 

Figure 7-4 (b): The state of the canals in the Base Run at Time = 12. 

 



Chapter Seven 346

Figure 7-5 includes some selected graphs that were produced using the 

Vensim software to illustrate the effect of diverting water to the agriculture areas. For 

example, graph (a) shows the Actual Farmed Areas irrigated from the Rayah Nasiry 

(a second level canal at West of the Delta). In the Base-Run (appearing with red line) 

the land suffered some losses as a result of water shortages. These losses were 

eliminated by the end of the third month. However, in the Divert-Run (appearing with 

blue line) these losses were eliminated one month earlier (by the end of the second 

month). The diversion of water assisted these lands to recover faster, but has no effect 

after the first three months.  

Graph (b) shows the Actual Farmed Areas irrigated from the successor canal 

at the third level (i.e., the Noubarya Canal). Obviously, The diversion of the water 

has a more significant effect on the agriculture areas irrigated from the canals at this 

level (the third level) than it has on those areas irrigated from the canals at the second 

level. The losses in the Actual Farmed Areas were eliminated by 3.5 months earlier. 

The effect of water diversion is more influential in these agriculture lands. 

Graphs (c) and (d) show the water availability in Rayah Nasiry and Noubarya 

Canal respectively. The water availability reflects the situation of water diversion. In 

graph (c), the change in the water availability in Rayah Nasiry, in the Divert-Run 

compared with the Base-Run, started at Time = 2 and had an immediate effect on the 

agriculture land that has fully recovered at Time = 3 (see graph (a)). This effect has 

diminished after that time although the water availability continued to increase. 

However, this effect has extended to the successor canal (i.e., Noubarya Canal). The 

change in the water availability in the Noubarya Canal started at Time = 3 (after the 

agriculture lands in the second level have fully recovered) and had a more significant 

effect on the agriculture lands (irrigated from Noubarya Canal) that have fully 

recovered at Time = 5 (see graph (b)). 
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(a) - A second level canal at WoD      (b) - A third level canal at WoD. 

     
(c) - A second level canal at WoD.      (d) - A third level canal at WoD. 

     
(e) - The first level canal at MoD.      (f) - The second level canal at MoD. 
Figure 7-5: The effect of diverting water from the East and the Middle of the Delta to 

the West of the Delta on the agriculture lands. 
 

Graphs (e) and (f) show the Actual Farmed Areas irrigated from the second 

and the third level canals in Middle of the Delta where the water supply has been 

curtailed. Not surprising, the Actual Farmed Areas have dropped dramatically to zero 

in just five months in the first level and 2.5 months in the second level.  
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The behaviour of the rest of the canals at the second and third levels at the 

West of the Delta (e.g., Rayah Behary, Mahmoudya Canal, etc.) can be studied as 

well. The team of operators who control all canals at the West of the Delta can 

collaborate to achieve the best utilization of delivered water. This can be seen as 

learning/support at the micro-level. On the macro-level, however, they may 

collaborate with the other teams of operators who control other portions of the system 

(i.e., the canals at the Middle and East of the Delta) and all-together can achieve the 

best strategy for water utilization.  

This example demonstrates the potential benefits of using the SDGIS 

application as an ILE to support learning and training for the operators and the 

managers of the irrigation system to understand their part of the system in the context 

of the system as a whole, - through providing a virtual world and the capability to test 

alternative management scenarios in an inexpensive and risk free context. 
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7.3 Utilizing the SDGIS as an optimization tool 

The reader may have noticed that, in Figure 7-5 (a, b, and f), the Actual 

Farmed Areas irrigated from some canals at the second and the third level have 

suffered some losses in the beginning of the simulation. Similar losses have been 

observed in the Total Farmed Area (from the entire Delta zones) even when the 

model has been simulated for long periods, as shown in Figure 7-6 (a) and (b), so that 

the possibility of interpreting this behaviour as a result of the model being sensitive to 

the initial conditions is excluded. To understand the cause behind such behaviour, we 

performed the steps described in the following paragraphs.  

 
Figure 7-6 (a): The Model simulation for one year. 

 

 
Figure 7-6 (b): The Model simulation for three years. 
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The unit-models that collectively form the comprehensive model have been 

examined individually. The variable Actual Farmed Area is calculated as a function 

of Agriculture Area and the Water Coverage in that area. The water coverage in turn 

is the ratio between the water available in the canal for irrigation and the water 

demand. Therefore, the focus is on the water coverage. Two canals at the second 

level, that have similar Water Coverage behaviour in the Base-Run as shown in 

Figure 7-7, have been selected to study their behaviour in more details (at micro-

level). The first canal is the Mahmoudya Canal 1203 at the West of the Delta, and the 

second canal is the Mansorya Canal 1208 at the East of the Delta. The values of the 

Water Coverage in both canals appear to be under 100% for the first eight months of 

the first year and six months in the years thereafter.  

 

Figure 7-7 (a): Water Coverage Comparison (Base-Run). 

 

Figure 7-7 (b): Water Coverage Comparison in three years simulation. 
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The two unit-models have been isolated from the comprehensive model and a 

slight modification has been made in their structure to substitute the source of water 

supply from upstream, as shown in Figure 7-8. In this example, the water supply is 

assumed to be equal to the water demand, and therefore the value of the Water 

Coverage will be, and should be, equal to one (i.e., a hundred percent covered). 

Consequently, the Actual Farmed Area should equal to the Agriculture Area. The two 

unit-models have been simulated and the Water Coverage in both canals was 

compared as shown in Figure 7-9. The Water Coverage in the Mansorya Canal 

appeared to be above one the whole year and, consequently, the Actual Farmed Area 

is fully productive as demonstrated in Figure 7-10 (the blue line). This means that the 

previous behaviour, of Water Coverage being under one exhibited in Figure 7-7, was 

due to the less quantities of water delivered to the canal from upstream (i.e., the first 

level canal). When the model has been isolated and the water supply matched the 

water demand, this inadequate behaviour disappeared. While in the Mahmoudya 

Canal, which has the same model-structure as the Mansorya Canal, the Water 

Coverage goes below one during the second and the third month and from middle of 

the fifth to middle of the seventh month. This means that the inadequate behaviour is 

originating from within the system.  

 
Figure 7-8: Modifying the structure of the unit-models. 

 



Chapter Seven 352

 
Figure 7-9: The Water Coverage in Mahmoudya and Mansorya Canals. 

 
Figure 7-10: The Actual Farmed Area irrigated from Mahmoudya and Mansorya. 

 

The values of the decision variables (i.e., Canal Length, Cross Section, 

Efficiency, the area of the Agriculture Land irrigated from the canal, and the Crop 

Type) in both unit-models are compared and represented in Table 7-1. The values of 

the Efficiency and Crop Type variables in both unit-models are identical, while the 

values of the variables Canal Cross Section, Canal Length, and Agriculture Area are 

different. This is not surprising because these values are real numbers obtained from 

the map. In fact, these numbers, to some extent, seem to make sense (shorter length 

with less cross section in Mahmoudya and longer length with larger cross section in 

Mansorya). However, the Agriculture Areas that each canal serves seem to be close 

(1718 sqkm at Mahmoudya and 1898 sqkm at Mansorya) which adds an advantage to 
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Mansorya Canal. Despite the fact that Mahmoudya Canal receives the water required 

by the associated Agriculture Land (e.g., the water supply matches the water 

demand), there still some inadequacy in its performance indicated as losses in the 

associated Actual Farmed Area as illustrated (with a red line) in Figure 7-10. 

Table 7-1: The attributes of Mansorya and Mahmoudya Canals 
Canal Name Mansorya Canal Mahmoudya Canal 
Canal Cross Section (sq. m) 250 125 
Canal Length (m) 219935 79387.6 
Agriculture Area (sq. m) 1.89804e+009 1.71833e+009 
Canal Efficiency (%) 80% 80% 
Crop Type (Dmnl) Group 1 Group 1 

 

Obviously, the cause of this inadequacy is caused by the canal’s insufficient 

carrying capacity. By increasing the carrying capacity of the canal, the losses in the 

associated Actual Farmed Area may be eliminated. The question here is how much 

this capacity should be increased? The answer to this question can be obtained by 

performing an optimization process for the carrying capacity.  

The Carrying Capacity is a function of Canal Volume and the River Velocity. 

The water velocity through the Nile River is estimated as one to two metres per 

second [UNEP Report 2000]. However, the water velocity is unified (constant) in all 

parts of the system. Therefore, the variable in focus is the Canal Volume that is 

calculated as a function of Canal Length times the Canal Cross Section. At this point, 

the significance of considering the spatial dimension becomes clear. Within the 

framework of SD, the optimization process would be made for the Canal Volume 

(which includes the Canal Length). This optimization will produce the optimum value 

for the Canal Volume that may imply an extension for the Canal Length as well as an 

increase in the canal Cross Section. But in reality, extending the Canal Length will 

not solve the problem of the Farmed Areas who needs a certain quantity of water at 

certain locations. The SDGIS application that incorporates the spatial dimension with 

the temporal dimension makes clear that the only solution is to optimize the Canal 

Cross Section.   
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The Vensim DSS software package includes an algorithm that can be used to 

perform optimization (linear programming52). The Vensim optimizer produces the 

same results that are produced by many commercial linear programming solvers 

[Elmahdi et al., 2005]. However, before we perform the optimization using Vensim, 

we may increase the Cross Section of the Mahmoudya Canal from 125 to 250 (sqm) 

and study the effect of this change on the Actual Farmed Area. 

 
Figure 7-11(a): The water coverage with Canal cross section = 250 sqm. 

 
Figure 7-11(b): The Actual Farmed Area with Canal cross section = 250 sqm. 

                                              
52 It is linear because optimization in Vensim requires that you define a payoff function that 
summarizes how good a simulation with a single number. The payoff is always integrated using 
Euler integration [Ref. Vensim manual]. The Euler method is a first order numerical procedure for 
solving ordinary differential equations with a given initial value. It is the most basic kind of explicit 
method for numerical integration for ordinary differential equations. 
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Figure 7-11 shows a comparison between two simulation-runs. The first one, 
with the Mahmoudya Canal Cross Section equals 125 sqm (the blue line) and the 
second run with Cross Section equals 250 sqm (the red line). It is clear that the Actual 
Farmed Areas have recovered some losses, but that there is still room for more 
improvements. This proves, at least, that the inadequate behaviour was due to the 
infrastructure. Therefore, we performed the optimization for the Canal Cross Section 
using Vensim. The result, in the form of a text-file produced by Vensim, is illustrated 
in Figure 7-12.  

 

Initial point of search: 
Mahmoudya Cross Section = 125. 
Simulations = 1. 
Pass = 0. 
Payoff = -2.1806e+017. 
---------------------------------. 
NOTE Payoff (-1.30389e+016) realized at multiple parameter values. 
With Mahmoudya Cross Section = 450.047 and 483.754. 
NOTE Payoff (-1.30389e+016) realized at multiple parameter values. 
With Mahmoudya Cross Section = 483.754 and 466.9. 
NOTE Payoff (-1.30389e+016) realized at multiple parameter values. 
With Mahmoudya Cross Section = 466.9 and 464.962. 
NOTE Payoff (-1.30389e+016) realized at multiple parameter values. 
With Mahmoudya Cross Section = 464.962 and 457.504. 
NOTE Payoff (-1.30389e+016) realized at multiple parameter values. 
With Mahmoudya Cross Section = 457.504 and 454.91. 
NOTE Payoff (-1.30389e+016) realized at multiple parameter values. 
With Mahmoudya Cross Section = 454.91 and 447.888. 
Maximum payoff found at: 
*Mahmoudya Cross Section = 447.888. 
Simulations = 20. 
Pass = 3. 
Payoff = -1.30389e+016. 

Figure 7-12: Text file output for optimization result. 
 
It is obvious that the cross section of the Mahmoudya Canal was unsuitable to 

supply sufficient water to the associated Agriculture Areas and the canal cross section 
should be increased to 448 sqm. This could be achieved by increasing the width 
and/or the depth of the canal. The optimal value of the Canal Cross Section has been 
tested though the simulation and the result, represented by a green line, is shown in 
Figure 7-13 that indicates a full utilization of the Actual Farmed Areas.  

It is important to notice that the optimization has been made on the basis that 
the Crop-Type used in this example is “group one” and the Efficiency is 80%. 
Changing the Crop-Type and/or the delivery Efficiency of the canal would generate a 
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different behaviour. In reality, Efficiency improvements require large funds and may 
be achieved only in the long run, but changing the Cropping Patterns has an 
immediate influence on the water demands and can be achieved in the short term. 
Both policies, upgrading the Efficiency and optimizing the Cropping Pattern, are 
discussed in more detail in the next section.  

 
Figure 7-13(a): The water coverage in the Mahmoudya canal with various cross sections.  

 

Figure 7-13(b): Actual Farmed Areas irrigated from the Mahmoudya canal. 
 
This example demonstrated the potential benefits of using SDGIS as an 

optimization tool. Although the optimization process has been performed using the 
SD modelling tool (i.e., Vensim) which is one of the three components that form the 
SDGIS application, the other components such as GIS (that represents the spatial 
dimension), played a significant role in deciding the target variables to be optimized, 
and draw the attention towards the potentials of optimizing the cropping patterns that 
have a sever effect on water demands. The GUI of the SDGIS application facilitated 
testing the optimal values. 

 



Illustrating the SDGIS Capabilities 357

7.4 Utilizing the SDGIS as a SDSS 

This section includes some illustrative examples for using the SDGIS 

application as a Spatial Decision Support System and as a policy assessment tool. 

First, we define the DSS and the Spatial DSS that is a special case of the DSS. We 

highlight the relationship between the GIS and the DSS and discuss the claim that 

GIS is a DSS. This greatly helps in the evaluation of the SDGIS application as a true 

SDSS. Second, we illustrate, by way of some examples, the SDGIS application in a 

decision making process and the assessment of water preservation policies. This 

section includes some discussions regarding the water scarcity problem at large, the 

need for water preservation policies, and the suitability and feasibility of applying 

such policies in the case of Egypt.  

Sprague and Carlson (1982) described Decision Support Systems (DSS) as 

“computer-based systems that help decision makers confront ill-structured problems 

through direct interaction with data and analysis models”. Sprague (1980) defined 

three elements that form an operational DSS; the data subsystem, the model 

subsystem, and the user interface. These elements are presented in Figure 7-14.  

 

Figure 7-14: Components of the decision support system 
Source: Sprague and Carlson (1982) 
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The first step in the decision making process begins with the creation of a 

decision support model using an integrated DSS program (DSS generator) such as 

Microsoft Excel, Lotus 1-2-3, Interactive Financial Planning Systems (IFPS), etc. 

[Sean, 2001]. The user interface subsystem (i.e., the Dialogue Generation and 

Management Systems (DGMS) shown in Figure 7-14) is the gateway to both 

database management systems (DBMS) and model-based management systems 

(MBMS). DBMS are a set of computer programs that create and manage the 

database, and control access to the data stored within it. The DBMS can be either an 

independent program or embedded within a DSS generator to allow users to create a 

database file that is to be used as an input to the DSS. MBMS are a set of computer 

programs embedded within a DSS generator that allow users to create, edit, update, 

and/or delete a model.  

Users create models and the associated database-files to make specific 

decisions. These models, alongside with database-files, are stored in the direct access 

storage devices. The users will only have to deal with the interface subsystem, - one 

of several component in the DSS. Therefore, in providing an effective user interface 

we must address several important issues, including the design of input/output 

devices, the screen layout (e.g. the use of colours), the data format, and the interface 

style (e.g., menu-based interaction style, command language style, natural language 

processing based dialogue, and graphical user interface GUI). GUIs use icons, 

buttons, pull-down menus, toolbars, and textboxes extensively and have become the 

most widely implemented and versatile type. The interface subsystem allows users to 

access; (1) the data subsystem (i.e., the database and the database management 

software) and (2) the model subsystem (i.e., the model base and the model base 

management software) [Sean, 2001]. 

Decision support systems (DSS) cover a wide variety of systems, tools and 

technologies. Some researchers argued that the term DSS is outdated and that it has 

been replaced by a "new type" of system called on-line analytical processing or 

OLAP [Power, 1997]. Others seem to emphasize creating knowledge-based DSS as 

the "state-of-the-art" in decision support systems. Operations researchers primarily 
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focus on optimization and simulation models as the "real" DSS. However, the term 

decision support system and its acronym DSS remains a useful and inclusive term for 

many types of information systems that support decision making.  

Within the field of GIS, there are many GIS practitioners who consider GIS 

software to provide decision support. Indeed, as Maguire et al., (1991) pointed out, 

some authors have argued that the GIS is a DSS. A substantial number of GIS based 

applications are described as being DSS. A recent GIS conference was entitled “DSS 

2000”. This view of GIS as a DSS may originate from the ability of the GIS to create 

templates and conduct “what-if’ analysis that allow for some support of decision 

making activities. We believe, however, that the GIS might resemble the DSS but in 

fact, the lack of an integrated spatial model management subsystem keeps the GIS at 

the threshold below the true DSS. GIS does seem suited to help decision makers 

explore and understand a certain class of problems, but the current level of system 

complexity that requires expert skill level precludes widespread exploitation of this 

capability today. 

Analyzing the literature, the overwhelming number of cases that claim DSS 

status refer to relatively simple information and model systems that focus on problem 

representation and in most cases, “what-if” type scenario analysis. A considerably 

smaller group addresses optimization tools with usually a strong Operations Research 

and mathematical programming focus. Another group go beyond the traditional DSS 

definitions and describe GIS as a Spatial DSS. The SDSS include spatially distributed 

criteria, -i.e., they use the location and spatial relationships between objects in their 

analysis [Fedra, 2006]. A good starting point to understand the characteristics of the 

SDSS can be found at [http://isworld.org/dss/sdss.htm]. However, the important point 

that we want to emphasize here is that the GIS alone (as a static representation for the 

features found in the real world) may not be sufficient to warrant the term “true DSS” 

(or SDSS). The GIS may form an important tool when used as part of a decision 

process, but the dynamic aspect should be incorporated. As Samuel (1996) has 

concluded “What is need in SDSS is also the dynamics, in particular, if we design the 

SDSS for Environmental problems”. Burrough and Frank (1995) argued that “there is 
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a large gap between the richness of the ways in which people can perceive and model 

spatial and temporal phenomena and the conceptual foundations of most commercial 

GIS. Unless this gap can be closed, GIS may remain unsuitable for more complex 

area such as Regional Environment Decision Making”. Murphy (1995) supported this 

approach when stating that: “Information has three dimensions (each of which may 

have more than one internal dimension): theme or content (also known as attribute), 

space or location, and time. Many information systems explicitly or implicitly deal 

with two out of the three dimensions. Transaction processing systems, for example, 

explicitly manage attribute data and implicitly manage time (i.e., through time 

stamping). Typical DSS may have mechanisms to represent time (i.e., simulation) 

and strong attribute manipulation tools, but have no spatial representation. GIS have 

explicit mechanisms for attribute and spatial data management and may contain 

implicit tools for managing temporal data (such as versioning or time-slices) while a 

few leaders are attempting to merge simulation into GIS” [Murphy, 1995].  

In this context, the SDGIS application, that tightly couple the GIS models with 

the SD models under one common interface, may be considered a true SDSS. The 

application includes explicit mechanism for attribute and spatial data management 

(through its GIS component), as well as the mechanism to represent time (through 

simulation using its SD component). By using the SDGIS application, irrigation 

system managers and decision makers can develop water allocation plans and easily 

test and assess several water preservation policies. In fact, in this research, we have 

carried out several runs to test alternative water management scenarios. The 

application enabled us to study and analyse the behaviour of the irrigation system at 

micro and macro levels. For example, at the micro level, the user can examine the 

behaviour of one single canal and/or one main branch and its dependent canals. On 

macro level, the user can study the behaviour of a group of closely related canals 

and/or the complete system of canals. The development of this application has also 

provided the opportunity to study and analyse the feasibility of applying water 

preservation policies in case of Egypt. In the following paragraphs, we demonstrate 

the potentials of using the SDGIS as a SDSS for the assessment of such policies by 
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providing a simple example first and, subsequently, discuss the situation in case of 

Egypt in general. Three examples are presented in this section. In the first example, 

we illustrate the efficiency upgrading policy. In the second example, we illustrate the 

water supply/demand adjustment policy and exhibit the effect of changing the water 

release patterns on the behaviour of the system. In the third example, we introduce a 

proposed cropping pattern, and discuss the cropping patterns optimization policy. A 

further discussion concerning the water pricing policy in case of Egypt is provided at 

the end of this section.  

Water Preservation Policies  

Scarcity, by definition, is a function of demand and supply. The major water 

preservation policies recognized worldwide are working on either the demand side or 

the supply side. The demand side encompasses policies such as cropping patterns 

optimization and water pricing, whereas policies like upgrading the efficiency of the 

irrigation system, water allocation, and the adjustment of the water supply with the 

water demand come under the supply side. From a broader perspective, the concept 

of demand management implies that any increase in a specific sector (agriculture, 

industry and domestic) demand must be met through an equivalent reduction in other 

sectors. From agriculture viewpoint, as mentioned earlier, subsidies of irrigation have 

participated in emergence of water scarcity conditions. Free resources send 

misleading message to the consumers about the abundance of water. The illusion of 

affluent resources finds its confirmation in the high rates of farmers (43 percent) who 

simply do not know if there is likely to be a problem with enough water supplies in 

the future [El-Zanaty & Associates, 1998].  

Although in the long term there is a little doubt that attention needs to be 

focused on demand management strategies, there is a sufficient evidence to indicate 

that significant savings can be made by improvements in the control and management 

of existing irrigation supplies. Thus, we start by discussing the policies that can be 

applied in the supply side then the other policies in the demand side. 
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7.4.1 Improving the irrigation system Efficiency 

From the supply side, most studies focus on efficiency. The irrigation 

efficiency improvements are seen as an effective tool for increasing the water supply 

sources. As Norton (2004) stated “Increasing the efficiency of the irrigation system 

has two different meanings. Technically, it refers to the reduction of water losses at 

each level of the irrigation system. In a broader sense, it refers to increasing net 

economic returns for the system users taking full account of externalities” [Norton, 

2004].  

Efficiency can be carried out through irrigation improvement plans and better 

land management. Externalities include a wider set of factors that comes into play. 

Therefore, the concept of efficiency may be seen in its broad meaning which entails 

the technical and environmental efficiency aspects. In the following paragraphs, first 

we provide a simple example for using the SDGIS application to test the efficiency 

upgrade policy and then discus the limitations of the efficiency definition applied to 

Egypt. Although the environmental impacts, in their broad meaning, are beyond this 

study, we will mention some of them very briefly. 

Considering the structure of the irrigation scheme in the Delta (as described in 

chapter 4 section 4.3.2), the water use efficiency can be split into conveyance (or 

distribution) efficiency and application efficiency as shown in Figure 7-15. In this 

research, the conveyance efficiency is explicitly represented in the SD spatial mode 

(by the variable called canal Efficiency and the variable Leakage due to Efficiency 

that calculates the amount of water lost). In the GIS model, the attribute table 

associated with the Canals Layer included the field titled Efficiency that includes the 

values of the canals’ delivering efficiency. The application efficiency, however, is not 

considered in this research due to the enormous amount of data required regarding the 

methods of water application within each field. Nonetheless, it can be easily included 

implicitly in the calculations of the “crop-water needs” and consequently it would be 

accounted in the water demand calculations.   
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Figure 7-15: Irrigation water distribution scheme 

Based on [Tiwari and Dinar, 2002] 
 

The SDGIS application has been used to study the effect of upgrading the 

conveyance efficiency on the system performance and the effectiveness of such a 

policy in water saving. For this purpose, two simulation runs have been performed. In 

the first run, called Efficiency_75, we set the Efficiency value equals to 75% for all 

canals forming the irrigation network. This percentage simply means that 25 percent 

of the quantity of water carried though the canal is lost and 75 percent is received at 

the farm. In the second run, called Efficiency_90, we set the Efficiency value equals 

to 90% for all canals. For both runs, the model has been calibrated on the basis that 

the cropping pattern in all agriculture areas within the three Delta zones is unified 

(i.e., Crop-Type group one).  

Using the “Model Initialization” panel, these values, shown in Figure 7-16 

were assigned to the model (the figure shows the values assigned to Efficiency_75 

Run). The results from the two runs are shown in Figures from 7-18 to 7-22. Notice 

that, for the purpose of comparing the results, we chose to draw the map according to 

the values of the water leakage (i.e., we chose the water leakage item from the Draw 

combo-box placed in the Active Layers Frame as shown in Figure 7-17). This is one 

way of drawing the map out of six alternatives that the SDGIS application provides. 
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Figure 7-16: the model initialization panel 

 

Figure 7-17: the active layers Frame 
 

By comparing the Figures 7-18 and 7-19, we can notice the difference in the 

canals’ performance. As a general observation, canals in the Efficiency_75 Run 

appear with darker colours and thicker lines indicating the large amount of water lost. 

Notice in particular the Rayah Nasiry, the Rayah Behary, and the Noubarya Canal at 

West of the Delta. These canals serve large agriculture areas that require enormous 

amount of water to be delivered, consequently, a massive amount of water is lost.  
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Figure 7-18: Efficiency75 Run at simulation Time = 3 

 

Figure 7-19: Efficiency90 Run at simulation Time = 3 
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Figure 7-20: Efficiency75 Run at simulation Time = 7 

 

Figure 7-21: Efficiency90 Run at simulation Time = 7 
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Figure 7-22: A comparison between water leakages in two runs. 

 

Figures 7-20 and 7-21 portray the state of the system at Time = 7, that is the 

month that witnesses the highest demand of water. It becomes clear that by improving 

the efficiency, a significant amount of water can be preserved for effective use. This 

can also be seen in Figure 7-22 where the water losses in the two cases (75% and 

90% efficiency, respectively) are being compared. Notice that changing the cropping 

pattern will change the water demand values through the system and, consequently, 

the water lost due to lack of efficiency will be altered. This example can be repeated a 

number of times to study the effect of changing the efficiency on water saving under 

different cropping patterns scenarios, and can be conducted on the micro or macro 

levels (e.g., for one canal at a time or for the whole system of canals). 

Discussion: 

The worldwide overall surface irrigation efficiency is estimated at 37-50% 

[Carruthers et al., 1997; Tiwari and Dinar, 2002]. Conveyance efficiency is around 

60% [Martinez, 1994], application efficiency while using the traditional methods of 

irrigation accounts for 40%, whereas advanced systems of irrigation exhibit a high 

performance with 60-70% efficiency [Martinez, 1994; Myers and Kent, 1998]. In 

Egypt, the average leakage during conveyance from outlets to the fields is 11% and 

between outlets and main canals 25% [Tiwari and Dinar, 2002]. About 10 BCM are 

lost annually in canals [Imam, 2003 cited by Malashkhia, 2003]. These figures may at 
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first be interpreted as an indication for a poor performance of the distribution system, 

- leading us to the suggestion that improvements in efficiency rates may lead to a 

significant potential for water preservation. However, the data obtained from the field 

shows a different scene. 

Irrigation efficiency figures in Egypt seem surprisingly high, taking into 

account the fact that the most common method of irrigation used in farms is surface 

flood irrigation. According to the information obtained from MWRI, the average 

(overall) efficiency rate of the irrigation system is around 75%, which makes it 

highest in the world. Much the same is observed in the detailed figures of the 

conveyance and application efficiency. The conveyance efficiency on the old lands is 

70% and on new lands it reaches 80%. Application efficiency rates are higher – 80% 

and 90% on the old land and the new land respectively. Keller (1992) claimed similar 

rates in his study. He points out to the fact that the efficiency rates in Egypt are 

remarkably high (89%). These high efficiency figures create much confusion on the 

background of the worldwide irrigation efficiency rates. The significant difference 

between the worldwide average and the Egyptian figures can be explained by the 

different methods applied to calculate the efficiency rates [Malashkhia, 2003].  

The first method, which refers to the ratio between the amount of water 

discharged at the root zone (used by the plant) and the amount of water delivered, 

produces low irrigation efficiency rates [Tiwari and Dinar, 2002]. The second 

method, which considers the natural water-recycling factor in its equations, produces 

higher efficiency rates. This method, which is drawn from the so-called “IWMI 

paradigm”53, claims that water lost to seepage and percolation during conveyance and 

application cannot be considered as loss. Water diverted from the reservoir and other 

sources is partly evaporated. Some fraction of water is consumed by plants and used 

for evapotranspiration. The other fraction of water is lost to seepage from canals and 

fields. This fraction percolates to the deep aquifers and groundwater where it is 

                                              
53 IWMI – International Water Management Institute. The Paradigm was based on studies of Keller. 
D and Willardson, L.S. 
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recaptured and recharges the ground water and aquifers. Thus, the lost water is reused 

as additional source of supply later on, recovered from wells or aquifers. The drained 

water, which is collected in drains, is returned to the irrigation system as well. So the 

water can be returned to the system again and go through the same cycle until almost 

all of the water is consumed. [Keller, 1992; Perry, 1999] Therefore, the efficiency 

rates still go high despite the great losses during the conveyance and field application.  

The calculations of efficiency suggested by IWMI, which include the natural 

recycling factor, lead to very controversial conclusions. In fact, it diminishes the 

importance of efficiency improvement measures. So the study of Keller concludes 

that due to high irrigation efficiency rates in Egypt, the potential for improving the 

system performance from a physical water use efficiency standpoint is limited. So 

does Seckler (1992) in his article when stating “The benefits of investing in on-farm 

efficiency in such systems are substantially reduced by system wide effects, perhaps 

even to zero”. 

The logic of the paradigm is convincing unless we also pay attention to the 

deterioration of water quality that accompanies each cycle of reuse. Going through 

the continuous recycling phase, the water picks up considerable amounts of salt from 

the soil, saline sinks, fertilizers, and pesticides [Keller, 1992]. The reused water 

quality becomes so deteriorated that it is questionable whether water can be used for 

irrigation or not [Martinez, 1994]. In the literature, there is a significant debate 

concerning the water quality issue. Here we just emphasize the fact that estimates 

offered by the “IWRI Paradigm” eliminate important factors such as the 

environmental efficiency54. 

As mentioned earlier, the concept of efficiency may be viewed in its broad 

meaning that entails the technical and environmental efficiency aspects and water 

reuse as well. It seems more appropriate to save water through increasing technical 

                                              

 

54 The paradigm has some other objections as well [Tate, 1994]: Brooks questions the assumption of 
natural recycling. He finds that the idea about effective natural recycling must be proven and cannot 
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efficiency of irrigation system so that the high quality fresh irrigation water from the 

Nile River is not lost. Here, we may suggest (in the application efficiency/on-farm 

side) to convert “gradually” the traditional irrigation method used (i.e., the surface 

flood) into modern irrigation methods like low-pressure sprinklers and/or drip-

emitters systems (with 90% efficiency for both systems). The funds to build such a 

modern irrigation system (to replace the old one) may be provided from subsidy 

budgets. The government (i.e., MWRI) may use part of the budget assigned for 

operation and maintenance (O&M) for this purpose. The benefit in the short term is 

saving water, and in the long term are eliminating subsidies and increasing the 

agricultural capital (in terms of advanced irrigation system network). Unfortunately, 

it is impossible to carry out further studies in the limited time available, to study the 

feasibility of this proposal. However, the concept of efficiency must be seen in its 

broad meaning which entails the technical and environmental efficiency aspects in 

order to understand the reality and consider all side effects. 

 

7.4.2 Water Supply-Demand Adjustment Policy 

In this section we represent the current water release policy conducted by 

MWRI, and compare it with the water demand-driven supply policy (hereafter we 

call it Adjusted-Release Run). Based on the evaluation of the two policies and their 

suitability for the present situation that largely affected by the delivery delays and the 

infrastructure deficiencies that characterize the irrigation system, and the arbitrary 

cropping patterns, we introduce a new policy where we try to synchronize the water 

supply with the demand. The purpose of the latter policy (called Test-Synchronization 

Run) is to utilize the water considerably more efficiently. The side effect of such a 

policy is to provide the opportunity to utilize the water for other purposes, such as 

expanding the agriculture area through reclamation projects. 

                                                                                                                                            
be just assumed. Another point is considerably inefficient use of capital, as the less efficient on-farm 
consumption needs larger supply and effluent facilities. 
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The information obtained from MWRI regarding the water release pattern 

indicates that the average water release from Aswan High Dam is 220 MCM per day. 

The maximum release of water takes place in June (the high demand season) and 

accounts for 270 MCM per day. On some occasions, when there is a surplus of water 

(accumulated from previous years) the MWRI releases 240 MCM per day for a 

period of three months (June, July, and August) to wash up the canals and reduce the 

soil salinity. This may occur one time every three or four years.  

This information regarding the average water release (i.e., 220 MCM/day), has 

been included in the model and a new run, called Vast-Release Run, has been 

completed and documented. Another run, called Adjusted-Release Run, has been 

simulated where we assigned the water supply (i.e., the water released from the High 

Dam) corresponding to the Total Water Demand (from the agriculture lands in the 

Delta) as long as the demand does not exceed the maximum allowable release (that is 

calculated as the annual quota 55.5 BCM distributed over 12 months and taking into 

consideration the water demand of other sectors). 

To include the information obtained from MWRI (i.e., 220 MCM/day) into the 

model, four variables have been added as shown in Figure 7-23. These variables are: 

Average Water Release per day, Converter to Monthly Release, Agriculture Sector 

Water Share, and Delta Water Share, respectively. As their names imply, the first 

variable stores the value 220 MCM/day. The second variable is created to convert this 

value from a daily to a monthly rate. The third variable sets the agriculture sector 

water share (i.e., 83% see Table 6-2). The fourth variable sets the Delta water share. 

Notice that the total agriculture area is about 35,000 sqkm which includes the Nile 

Valley (about 10,000 sqkm) and the Delta region (about 25,000 sqkm). This means 

that the Delta constitutes about 71.5% of the total agriculture land. Therefore, the 

water supply represented in the model for the Vast-Release Run is the Delta water 

share (71.5%) from the Agriculture sector water share (83%), (i.e., this is equal to 

220 MCM/day * 30 days/month * 0.83 * 0.715 = 3.912 BCM/month). 
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The first variable is modelled as a parameter in the model to allow for 

changing its value during runtime. In the GUI of the application, a new Slider control 

object has been added in the Additions panel to receive the user’s input and change 

the value of the water release during the simulation if the user wishes to do so. The 

new Slider (called Supply Slider) is shown in Figures 7-24 and 7-25. 

 

 
Figure 7-23: The added variables. 

 

 
Figure 7-24: The new added Supply Slider 
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Figure 7-25 shows the last panel called Additions, where the Supply Slider 

appears at the right-hand-side. Notice that Additions panel has been added recently to 

the application interface for the purpose of representing the current scenario (e.g., 

allowing for a change in the Average Water Release during simulation runtime by 

way of the Supply Slider). In fact, this is one of the advantages of this application. 

That is, its flexibility allows for adaptations to represent various situations. The only 

limitation is that the user needs to have the open source code and the programming 

skills to alter the interface of the application. 

 

Figure 7-25: The Supply Slider appears in the Additions panel. 
 

For both runs, the Vast-Release and Adjusted-Release, the model has been 

simulated for two years under the same initial conditions (i.e., using the same 

cropping patterns and the conveyance efficiency rates). The results from the two runs 

are compared and exhibited in Figures from 7-26 to 7-31.  
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Figure 7-26 shows the result from the Vast-Release Run. Obviously, the water 
supply (appearing with blue line) is very high compared to the water demand (the red 
line). The water consumption (the green line) matches exactly the water demand. The 
water consumption is the actual water delivered to the farm and utilized for irrigation 
in addition to the water lost in canals due to lack of efficiency. Notice that, if the 
water supply is sufficient, the agriculture land will acquire its demand, otherwise, it 
will receive only the available water in the canal.  In this run, we notice that an 
enormous amount of water drains to the Sea (the grey line) as the supply exceeded 
the demand to an extreme extent. This confirms the over-supply status that concluded 
by Lutfi Radwan (1998) in his study that will be described later in this section.   

In the Adjusted-Release Run, shown in Figure 7-27, the water supply 
(appearing with blue line) matches exactly the water demand (the red line). The water 
that drains to the Sea (appearing with grey line) is very low, indicating the fact that 
all the water supplied is consumed in the cultivation process. However, the water 
consumption (the green line) appears lower than the water demand (the red line) for 
the first half of the year (notice that we focus on the steady-state behaviour in the 
second year and ignore the transient behaviour at the start of the simulation). This 
indicates that the water available in the canal is not sufficient. This is due to the 
delivery delays and, more essentially, the inefficient infrastructure (e.g., the canal 
cross section). This affects the Actual Farmed Area that, consequently, suffers losses 
during this period (see Figure 7-29 (d)). In the second half of the year, the effective 
water supply (i.e., the supply resulting from the current infrastructure deficiencies) 
and, therefore, the water consumption catches up with the demand and the surplus 
water drains to the Sea. It seems that MWRI attempts to avoid the agricultural losses 
by over-supplying water in the way represented by the Vast-Release Run. 

Figure 7-28 shows a comparison between the “total water drain to the Sea” 
(from all canals) in the Vast-Release Run (appearing with blue line) and in the 
Adjusted-Release Run (the red line), respectively. Obviously, the difference in water 
quantity released and lost to the Sea is huge and causes major concerns regarding 
whether releasing such an amount of water is rational, and whether the objective is to 
avoid agricultural losses (or say, to regulate the water level in accordance with the 
High Dam storage capacity, or to feed the hydro-electric power-stations along the 
Nile downstream).  

 



Illustrating the SDGIS Capabilities 375

 
Figure 7-26: The results of the Vast-Release Run. 

 
Figure 7-27: The results of the Adjusted-Release Run. 

 
Figure 7-28: A comparison between Total water drain in both runs. 
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Figure 7-29 includes two sets of graphs. The set on the left-hand-side shows 

the result of the model simulation in the Vast-Release Run (MWRI information) 

while the set of graphs on the right-hand-side portrays the results from the Adjusted-

Release Run. Graph (a) shows the state of the water volume in the Nile River (the 

blue line), the constant water supply from the High Dam (i.e., 3.912 BCM/month, 

appearing with fuchia line), and the water drains from the Nile to the successor canals 

(first level canals). After a transient period of six months, the Nile behaviour 

stabilizes indicating that the inflow (the supply from the High Dam) equals the 

outflow (the drain to the canals at the first level). The outflow from the Nile drains to 

the canals at the first level, from which it continues to supply the second level and 

then the third level canals. Portions of this water are consumed at each level for 

irrigation purposes and, eventually, after the agriculture lands have acquired their 

water demand, the surplus water drains to the Sea. This explains the huge amount of 

water that observed drains to the Sea in the above Figures 7-26 and 7-28. In contrast, 

in the Adjusted-Release Run, the water volume in the Nile River is lower than it is in 

the Vast-Run and fluctuates in accordance with the water demand as shown in graph 

(b). Consequently, the water that drains to the Sea is relatively small because the 

water supply equals the demand and theoretically there is no extra water left. 

However, the water that drains to the Sea, observed at the end of the year in the above 

Figure 7-27 is due to the delivery delays and infrastructure deficiencies (mainly in the 

canals at the third level) combined with the drop in the demand, while a large volume 

of water still remains in the canals upstream. 

Graphs (c) and (d) show the state of the Total Actual Farmed Area in both 

runs. In the Vast-Release Run, there are no losses of agricultural production in the 

Farmed Areas, obviously because of the huge amount of water supply. In the 

Adjusted-Release Run, there are some agricultural losses as the third level canals do 

not receive the sufficient amount of water at the right time. Finally, graphs (e) and (f) 

show the difference in the behaviour of the water levels in the first level canals in 

both runs. 
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Vast-Release Run    Adjusted-Release Run 

     
(a) The water supply at 1st level canals Vast-Run     (b) The behaviour of the same canals in Adj-Run 

     
(c) The Actual Farmed Area in the Vast-Run      (d) The Actual Farmed Area in the Adj-Run. 

     
(e) The behaviour of the 1st level canals Vast-Run   (f) First level canals’ behaviour in Adj-Run. 

Figure 7-29: The difference in the model behaviour. 
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Figures 7-30 shows the behaviour of the canals at the second level. In the 

Adjusted-Run (on the right-hand-side), the canals fluctuate in accordance with the 

water demands. In the Vast-Run, canals at the East of the Delta oscillate with small 

amplitude, while the canals at the Middle and West of the Delta are stable regardless 

of the change in the water demands.  

 

Vast-Release Run    Adjusted-Release Run 

     

     

     
Figure 7-30: The behaviour of the second level canals in the Vast-Release Run (Lift) 

and in the Adjusted-Release Run (Right). 
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Figure 7-31 shows the behaviour of the canals at the third level. In the 

Adjusted-Run, the canals are fluctuating in response to the fluctuation in the water 

demand. Notable, the oscillation behaviour has larger amplitude than it has in the 

second level canals. These canals are at the tail of the system, meaning that it receives 

their water supply after the canals upstream have acquired their demands. The effect 

of the delivery-delays in this part of the system becomes more influential resulting in 

these high fluctuations. In contrast, the canals at the three Delta zones in the Vast-

Run appear stable.  

Vast-Release Run    Adjusted-Release Run 

     

     

     
Figure 7-31: The behaviour of the third level canals in the Vast-Release Run (Left) and 

in the Adjusted-Release Run (Right). 
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Let us contrast the results form the two runs: the behaviour of the system in 

the Vast-Release Run, results from a release of 220 MCM/day, exercised by MWRI. 

Obviously, the water supply is very high and a large quantity of water is wasted. On 

the contrary, the behaviour of the system shown in the Adjusted-Release Run (where 

the supply equals the demand) exhibits a considerable water saving. However, the 

simulation did not produce the favourable behaviour regarding the agriculture lands 

irrigated from the canals at the third level (e.g., there are agricultural losses in the 

Actual Farmed Area).  

To solve this dilemma, we used the SDGIS application to simulate the model 

step-by-step seeking to synchronize the supply with the demand in a way that 

satisfies both our goals (i.e., to save water and at the same time provide sufficient 

water for the canals at the third level). The results from this run, called Test-

Synchronization Run (abbreviated as TestSync in the following graphs), are shown in 

Figures from 7-32 to 7-37.   

 
Figure 7-32: The Test-Synchronization Run results.   
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In Figure 7-32, we start the simulation by releasing 160 MCM/day (instead of 

220 MCM/day) and gradually reduce the release to 90 MCM/day while observing the 

behaviour of the Total Water Consumption and the Actual Farmed Area every time 

step. As shown in Figure 7-33, the water consumption (appearing as the green line in 

this run) has been lifted to meet the water demand. Consequently, the Actual Farmed 

Area, shown in Figure 7-34, does not suffer any losses and at the same time, we have 

obtained a significant reduction in water drained to the Sea (i.e., water losses) as 

illustrated in Figure 7-35. 

 

Figure 7-33: The water consumption comparison 

 

Figure 7-34: Actual Farmed Area in Test-Sync Run. 
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Figure 7-35: The total water drain comparison 
 

More results are shown in Figures 7-36 and 7-37. Figure 7-36 includes three 

graphs illustrating the behaviour of the water demand and the water consumption in 

the Rayah Nasiry (at the second level), the Noubarya Canal (at the third level), and 

the Hager Canal (also at the third level), respectively at the Test-Synchronization 

Run. We compare these graphs with their counterparts in the Adjusted-Release Run. 

In both runs, the canals at the second level, appearing in graph (a) and (b), have a 

satisfactory behaviour (the water consumption matches the water demand), and 

therefore, there are no agriculture losses in the Actual Farmed Area, appearing in 

Figure 6-37 (a). However, the inadequate behaviour of third level canals in the 

Adjusted-Run (see graph (d) and (f) in Fig. 7-36), has been significantly improved in 

the Test-Synchronization Run (see graph (c) and (e) in Fig. 7-36). Consequently, the 

Actual Farmed Areas irrigated from the Noubarya and Hager canals for example, 

have avoided the agriculture looses witnessed before in the Adjusted Run as 

illustrated in Figure 7-37 graph (b) and (c). This means that our policy to synchronize 

the supply with the demand has successfully achieved our two goals (i.e., to save 

water and at the same time provide sufficient water for the canals at the third level). 
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Test-Synchronization Run    Adjusted-Release Run 

     
(a) Rayah Nasiry Water Demand & Consumption  (b) Pervious behaviour in Adjusted-Run 

     
(c) Noubarya Water Demand & Consumption  (d) Noubarya behaviour in Adjusted-Run 

     
(e) Hager Canal Water Demand & Consumption  (f) The Hager behaviour in Adjusted-Run 

 

Figure 7-36: the water shortages in canals at 2nd and 3rd Levels. 
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(a) The Actual Farmed Area irrigated from the Rayah Nasiry. 

 
(b) The Actual Farmed Area irrigated from the Noubarya Canal. 

 
(c) The Actual Farmed Area irrigated from the Hager Canal. 

Figure 7-37: A comparison between the AFA behaviour in both runs. 
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This example demonstrates the potential benefits of using the SDGIS 

application. During the simulation runtime the user may choose to change the amount 

of water released from the High Dam using the Supply Slider. As illustrated in the 

first two runs (Vast-Release, Adjusted-Release), the behaviour of the system is 

largely influenced by the amount of water released. In that, the system may exhibit 

either an over-supply and sever waste of water or, water shortages and agricultural 

losses in Farmed Areas. In such a situation, the irrigation system operators and 

managers must seek the best strategy to satisfy the water users and at the same time 

save water. They may use this application to develop and test such strategy. The 

application provides various tools such as the Supply Slider (to change the water 

release), the control gates (to divert water within the network), Text-Boxes to set 

cropping patterns, etc., to adjust the supply with the demand, and ultimately, to 

develop and test such a strategy which we consider to be a real challenge.  

In our subsequent discussion, we try to shade light on the relationship between 

the water supply and the water demand in the case of Egypt.  

Discussion: 

Considering the Nile flood season described in chapter six (section 6.3.2), the 

Egyptian agricultural calendar is divided into three seasons: the summer season from 

1st of April to 1st of August; the flood season from 1st of August to 1st of December; 

and the winter season from 1st of December to 1st of April. The chief crops of the summer 

are corn, cotton, sugarcane, and rice. Corn and rice are cultivated in the flood season 

too. Wheat, barley, beans, and clover are the most important winter crops. Winter 

was formerly the principal agricultural season, following the rise of the Nile as it did 

before the High Dam construction. But under perennial irrigation, crops can be grown 

all the year round. We must notice that seasons sometimes overlap; crops are 

frequently sown before those of the previous season are harvested. In this way, about 

one-half of the agriculture land of the Delta is made to produce two crops a year. In 

the case of cotton, for example, the planting process begins in February and lasts until 

early April. The land is watered once before planting, and again after the seed is 
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sown. Thereafter it is watered at intervals of fifteen to forty days. Between late 

August and early November the fields are picked over two or three times; and 

when the cotton has been removed, clover is usually sown as a winter crop, also 

under irrigation. Some fields are made to yield three crops annually, if carefully 

selected crops are planted. 

The flood calendar describes the supply side while the agriculture calendar 

represents the demand side. The two calendars are, to large extent, correlated and 

there is a lag / shift between them. In fact, the agricultural calendar depends on the 

flood calendar. Any slight disturbance in the flood inflow will result in a magnified 

disturbance in the agricultural rotation. Farmers may not be able to cultivate the land 

if the water inflow is curtailed, or they may miss the opportunity to cultivate the 

desirable crops if the water inflow is delayed, forcing them to plant alternative crops. 

This compulsory shift in the cropping pattern feeds back to alter the water demand 

plans that were previously prepared by the MALR and delivered to the MWRI to set 

the water release schedule.  

Based upon the cropping pattern submitted by MALR, the national water 

demands for irrigation are calculated by the MWRI who sets the corresponding 

schedules for water release (water supply). However, regarding the cropping pattern 

plans prepared by MALR, the process by which the data is gathered at the 

cooperative level, one may experience significant over-estimates of cultivated land 

area and inaccuracies in cropping patterns. Evasion of regulations concerning land use 

is commonplace, particularly in the transferral of agricultural land to residential use, 

and it is estimated that arable land area may be overestimated by up to five percent 

[Radwan, 1997]. 

In addition to the overestimation of available land, the MALR conducts only a 

general overall recording of farmers' cropping patterns, - one that covers only the 

principal crops (maize, wheat, clover, cotton). The minor vegetable crops are not 

recorded, nor the short season corn fodder crop grown from October to December. 

This imprecision in the recording process goes back to the era of the quota system, -
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i.e., when farmers were forced to deliver a certain quota from their land yield to the 

landlords (or to the regime). This legacy has led farmers to supply inaccurate data 

about their cropping patterns and encouraged cooperative officials to concentrate on 

recording areas for only a narrow range of specified crops. Such inaccuracies give rise 

to important variations between the actual and officially calculated crop water 

requirements. This is most significant, for example, for the corn fodder. If official 

calculations were to be applied precisely, there would be a deficit during that period 

(from October to December) of 22% of the water requirements. Furthermore, when 

using regional cropping patterns as a basis for deciding water requirements, one 

ignores requirements caused by the canal/mesqa level variations. Finally, it was 

noted that the optimal planting and harvesting dates were assumed to be valid 

across the various regions, yet observations in the field indicates that farmers' 

actual planting and harvesting dates would often be delayed or put forward up to one 

month as a result of various localized factors. 

[Radwan, Lutfi 1998] studied the water flow patterns along the ditches and the 

main distributor canal in the Monofya province (at the Middle of the Delta). 

Measurements of flows indicated that the inflows to the majority of ditches were 

above the demand throughout the entire year (see Figure 7-38).  

 
Figure 7-38: Total water requirements, farmer use and canal inflow at Um-Aisha Mesqa. 

Source: Radwan, Lutfi 1998 

He compared the actual inflow into one mesqa, called Um-Aisha, to the 

observed farmer use patterns and both were contrasted with: (i) the total water 

requirements calculated from local data on cropping patterns, (ii) planting/harvesting 
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dates and conveyance efficiency. He found that whilst farmer use patterns exhibited 

a high degree of correlation with estimated total water requirements, the actual 

releases into the canal were 64% higher than the total water requirements for this 

period (including all conveyance requirements). He concluded that this pattern of 

over-supply was largely the result of the mismatch between the supply and demand, 

and that there is a need to ensure that sufficient water is available when farmers 

need to irrigate.  

The irrigation department officials defend such behaviour (over-supply 

patterns) by claiming that individual farmers at the head of the canal are over-using 

and wasting water. Therefore, additional water is supplied to ensure that sufficient water 

reaches farms located further along the canal (tail-enders). In reality, field observation 

have indicated that this argument could not be applied to most of the ditches 

where tail-end water levels were generally high and few tail-enders mentioned any 

serious occurrences of shortage.  

Most of the discrepancies between supply and demand result from the 

variance between the officially estimated cropping patterns, planting/harvesting 

dates, and those actually observed. Briefly, the origin of the problem lays in the lack 

of integration between the MWRI-administered rigid patterns of supply and the 

informal farmer patterns of demand. 

To close, the SDGIS application has been employed to test various scenarios. 

Each scenario includes a different cropping pattern and different conveyance 

efficiencies for the canals. Using the Supply Slider to change the water release 

(supply schedule) and the control gates to steer the water flow (to divert water from 

one portion to another), several runs have been performed and analysed. As a general 

observation, we found that if supply patterns more closely matched the demand 

patterns, it would be possible to obtain a significant reduction in total water 

consumption and the water losses could be minimized. However, it is unlikely that 

demand patterns be greatly modified and the change must, therefore, occur in the 

supply pattern. This is due to a number of reasons, one of them is the popular crop-
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rotations inherited and used by farmers and, therefore, it would be difficult to 

impose a rigid structure of patterns of demand as these are varying in response to a 

wide range of social, physical and economical influences. Planting and harvesting 

dates can be delayed or brought forward for many reasons and consequently, 

rotational and daily irrigation patterns will be affected. It is necessary, therefore, 

that the supply patterns be in some way modified to match more closely the demand 

pattern. This is likely to be effective only if farmers are involved in defining the 

actual agricultural water requirements (i.e., water demand plans). 

 

7.4.3 Cropping Pattern Policy 

The effect of changing the cropping pattern has been demonstrated in 

chapter six (section 6.4). For the purpose of this chapter (i.e., to demonstrate the 

capabilities of the SDGIS application), a new map called Crop-Distribution has 

been developed to represent our scenario of redistributing various crops on the 

agriculture land55. The map is based on our personal knowledge regarding the 

popular dominant crops in each province in the Delta. In this map we tried to 

achieve a balance in distributing the three cropping patterns considered in the SD 

spatial model in each zone in the Delta. Figure 7-39 shows the agriculture lands 

and their corresponding canals (i.e., the number appears on each land is the Ncode of 

the canal that serves this land). Figure 7-40 shows the Crop-Distribution map where 

the number appearing on each land is the Crop-Type assigned to that land (e.g., Crop-

Type group one, two, or three).  In fact, we can use the Model Initialization panel to 

assign the various Crop-Types to the agriculture lands and will obtain the same 

results, but we chose to do it in this way to demonstrate the flexibility of the 

application to allow for the integration of new maps. In real world, managers and 

planners (water allocation planners, agriculture planners, or agro-economists) 

                                              
55 Notice that we do NOT suggest a certain cropping pattern to be implemented. Rather, we just 
developed the map to demonstrate the capabilities of the application. 
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usually need to develop a number of maps, each of them representing an 

alternative for crop distribution. Such maps are developed based on a certain 

criteria (e.g., the dominant crop). It might be useful to provide each map with a 

unique name and store it alongside with its simulation results for further 

comparison and evaluation. Thus, using the SDGIS application will greatly help 

managers and planners to test and evaluate each alternative (map). In this 

example, we have distributed the three cropping patterns over the three Delta 

zones as shown in Figure 7-40. Then, the Crop-Distribution map has been loaded 

into the application as shown in Figure 7-42. The model has been simulated for 

one year and a new run called CropDistribution has been created. 

 
Figure 7-39: The Agriculture land and the correspondent canal. 

 
Figure 7-40: The Crop Distribution Map. 
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Figure 7-41: cropping patterns initialization. 

 
Figure 7-42: The crops distribution map. 
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Figure 7-43 show the results of the CropDistribution Run compared to the 

Base-Run. Graph (a) shows the difference in the quantity of water released from the 

High Dam with respect to the change in the water demands. In general, there is some 

overall water saving over a period of a year, except in August and September months, 

which can be compensated by the Nile flood. This can also be noticed in graph (b) 

that illustrates the behaviour of the Nile River. Graph (c) shows the difference in 

water consumption in the agriculture lands irrigated from Rayah Monofya (a first 

level canal at Middle of the Delta). There has been a significant water saving. In 

graph (d), the water consumed by the agriculture lands irrigated from the Damietta 

Branch has been almost the same. However the pattern of water release has changed. 

There is an increase in water demand in September and October (which can also be 

covered by the Nile flood). Much the same is noticed in graph (e) that portrays the 

change in water consumption in the agriculture lands irrigated form the Ismaelya 

Canal (a first level canal at East of the delta). Some may argue that this cropping 

pattern scenario (represented in the Crop Distribution map) has not significantly 

changed the overall situation regarding the water consumption (i.e., the Total Water 

Consumption shown in graph (f) has not been changed significantly). However, the 

overall behaviour of the system shows an important shift in the time that the water 

demand presents itself and, consequently, the water requirement is moved towards 

the flood season period. This lifts the burden from the months when the supply of 

water is supported by the dammed up water.   

In the following paragraph, we discuss the feasibility of applying a 

cropping pattern optimization policy in the case of Egypt. We do so from a 

somewhat broader perspective. 

Discussion: 
Historically, the single most important change in the cropping pattern in 

Egypt's modern history was the introduction of cotton during the reign of Muhammad 

Ali (1805-1849), because it led to the transformation of irrigation methods. Cotton 

requires a good deal of water in summer when the Nile water is low, and it must be 

harvested before the flood season. This necessitated the regulation of the Nile flow 
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and shifting the irrigation method from basin (flood) to perennial (roughly, on 

demand) irrigation. Perennial irrigation not only made cotton growing possible, it 

also permitted double and even triple cropping on most of the arable land. 

Furthermore, it enabled farmers to switch the crop rotation from three-year cycle to 

two-year cycle. The original three-year cycle included clover and cotton in the first 

year, beans and fallow in the second year, and wheat/barley and corn in the third year.  

    
(a): The difference in the water supply.               (b): The Nile behaviour in both Runs. 

    
(c): consumed water in Monofya Agr. Land        (d): consumed water in Damietta Agr. Land 

    
(e): consumed water in Ismaelya Agr. Land        (f): The total water consumption. 

 
Figure 7-43: The CropDistribution Run results compared to Base-Ran results. 
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The two-year cycle consisted of clover or fallow followed by cotton in the first 

year, and wheat/ barley or beans followed by clover and corn in the second year. By 

year 1890 about 40 percent of the land was put on a two-year rotation. The biennial 

rotation was believed to be harsh for the land, and the government tried to eliminate it 

in 1950s. In 1990s, farmers have resorted to both rotations flexibly. 

Using the SDGIS application to study the effect of applying various 

cropping patterns on water consumption, the application exhibited a significant 

change in the patterns of water demand when we assigned different crops for 

agriculture lands (see the example above and the example in section 6.4.3). This 

has raised the question “what is the optimum cropping pattern that will achieve: 

(i) the ultimate utilization of water and the agricultural land, and (ii) the highest 

profitability for farmers’ welfare and the economy of the country at large?” 

[Saleh and Bayoumi, 2004] have tried to answer this question. They 

conducted a remarkable study concerning the optimum cropping patterns that 

may be applied in Egypt. They state that “the current cropping pattern is not 

economically efficient in terms of the utilization of the available water resources, and 

major improvements should be done”. They suggested a certain cropping pattern that 

would achieve the best economic utilization of water resources. They developed an 

“optimization model” to obtain the optimal cropping pattern for Egypt, which 

maximizes the net income return per cubic meter of water. The results of their study 

are summarized in Table 7-2. 

As Saleh and Bayoumi pointed out, the proposed improvements would save 

around 4.2 BCM of irrigation water. However, the net agriculture income would 

decrease by 100 million pounds. Nevertheless, the 4.2 BCM water saved can be used 

to cultivate new reclaimed land, which in turn will generate an additional agriculture 

income. This newly reclaimed land can be planted with wheat in the winter season 

and maize in the summer season [Saleh and Bayoumi 2004]. 

 

 



Illustrating the SDGIS Capabilities 395

Table 7-2: Optimal Results of the FPP56 (thousand faddans) 
Optimal Land indicated  Crop Land planted 

in year 2002 Local Scenario International Scenario 
1 Wheat 2450 2869.4 2400 
2 Barley 79 72 72 
3 Broad bean 303 165 165 
4 Chickpeas 17 11 11 
5 Fenugreek 16 3 20 
6 Lupine 9 6 6 
7 Lentil 5 4 4 
8 Sugar beet 300 300 300 
9 Winter clover 1960 2000 1800 
10 Flax 21 21 21 
11 Winter onion 64 25 80 
12 Garlic 21 30 30 
13 Winter tomatoes 173 173 173 
14 Winter potatoes 77 77 77 
15 Maize 2078 2078 2078 
16 Sorghum 382 251 251 
17 Rice 1340 811 811 
18 Peanut 151 78 82.957 
19 Sesame 68 52 52 
20 Soya bean 13 9 9 
21 Summer onion 24 15 30 
22 Sunflower 46 32 32 
23 Summer potatoes 113 130 130 
24 Summer tomatoes 273 300 300 
25 Cotton 731 600 600 
26 Sugarcane 312 222 222 
27 Summer clover 44 50 17 

Source: Saleh and Bayoumi, 2004 

Despite the significant results of this study, it does not consider the 

geographical distribution of the crops, which is affected by many factors such as the 

land availability in different zones, the local climate variation between north and 

south, the land fragmentation and the size of farms, the soil quality and fertility, and 

above all, the farmers’ acceptance. Here we may recall the spatial correlation 

relationship mentioned in the introduction paragraph of chapter six -i.e., whatever is 

causing an observation in one location also causes similar observations in nearby 

locations. For example, the planting of certain crops in nearby areas within a province 

tend to caused by factors such as socio-economic status; so that the features that 

attract one farmer will also attract others. Second, in terms of land availability for 

                                              
56 FPP stands for Function Programming Problem. This is the main function that has been used in 
their optimization model. For more details see [Saleh and Bayoumi 2004].  
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example, the Nile banks in the south range from 4-18 kilometres span and are 

surrounded by plateaus and mountains which limit the expansion of agriculture, 

unlike what is the case  in the Delta region, which is widely open, flat, and have no 

barriers for expansion. These issues should be considered when studying the cropping 

pattern policies. Moreover, the differences in climate conditions (rainfall, 

temperature, moisture, etc.) between the north and the south have, in many respects, 

an impact on the geographical distribution of crops. For example, humidity in the 

Delta suits long-staple cotton while the dry-hot climate of the south favours planting 

sugarcane, onions, and lentils.  

In terms of land fragmentation57, cropping patterns and crop yields differ 

depending on the farm size. It is difficult to describe farming patterns in more detail, 

because the available information is inconclusive and sometimes contradictory. A 

survey of three Delta villages conducted in the year 1984 indicated that farmers who 

cultivated one faddan or less were more likely to grow cotton than those with 

holdings greater than ten faddans, a conclusion that contradicted findings of an earlier 

study. It also revealed that yield levels of different-sized farms varied by crop. For 

instance, wheat yields were higher on small farms, while the opposite was true for 

rice. The reasons were not clear, and the findings contradicted a large body of 

evidence from other countries that showed yields were invariably greater on small 

farms. There was an agreement, however, that larger farms produced proportionally 

more fruit crops, probably because the large capital investment and the long-term 

                                              
57 In 1950s and 1960s, agrarian reforms undertook the land redistribution and set the ceiling for 
individual land holdings by the average of 2.1 faddans per landholder for the whole country. The land 
is continuously subjected to subdivision through inheritance [Holmen, 1991]. Notice that cultural 
patterns also facilitate further fragmentation. The farmers prefer to buy a plot in the old lands where 
the size of the land is already small neglecting the possibility to purchase the lands in reclaimed areas 
where the size of landholdings are considerably higher. Thus at present 7.8 million faddans are under 
cultivation of 10 million landholders with average less than one faddan per landholder. Trends of 
land fragmentation is more severe in old lands where only 10% of landholdings exceed 3 faddans, 
and 7% of landholdings from 3 to 5 faddans, and the rest is less than 3 faddans [DWIP, 1997]. It is 
expected that due to population increase and limited land availability, the size of the farms might 
further decline. This will negatively affect the efficiency of the irrigation system, as a part of water is 
lost during the distribution to each small tiny plot [MWRI, 2002a].  
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commitment required would be prohibitive to small farmers, who needed more 

flexibility.  

Despite our concerns mentioned above, Saleh and Bayoumi’s study is 

valuable and maybe applicable if the agriculture lands and their suitability for various 

crops are carefully selected.  

7.4.4 Water pricing policy 

Irrigation water pricing is one of the widely recognized measures for demand 

regulation. The main objective of the water pricing policy is maximizing efficient 

allocation of water resources and promote water conservation, while at the same time 

not compromise the social objectives such as affordability of water resources [Rogers 

et al., 2002]. According to Rogers, the full price of water consists of “operation and 

maintenance” cost together with capital charges, adding economic and environmental 

externalities. Different methods have been used for pricing, which can be classified 

into four major categories: volumetric pricing, non-volumetric pricing (based on land 

size or crop cultivated on land), quotas, and water markets [Johansson, et al., 2002; 

Yang et al., 2003]. During the fieldwork, we have focused on the first two pricing 

mechanisms leaving out the quota and market considerations. 

[Ahmad, 2000; Mahmood, 2000; Bazza and Ahmad, 2003; Massarutto, 2002, 

2003] argued that charging farmers for water, would induce incentives for eliminating 

wasteful irrigation practices and alter the cropping patterns, shifting it towards crops 

that consume less water but have high values.  

In view of the water scarcity threats in Egypt, limited and almost exhausted 

sources for supply and heavily subsidized irrigation service raise the question why 

this economic instrument has not been implemented in Egypt? 

Water pricing has many constraints. First of all, it is the cultural perception, 

believes sanctioned by religion and tradition, which perceive water, not as a 

commodity, but one of the basic human needs. It is a free gift from God for all to 
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share and, therefore, can not be traded. Thus, the perception of water as a non-

commodity resource averts the introduction of charging for irrigation services [Abu-

Zeid, 1998; Rogers et al., 2002]. 

Water pricing was unacceptable for Egyptian reality in most of the discussions 

that were conducted during the fieldwork. The representatives of MWRI, Ministry of 

Social Affairs, and farmers were opposed to the idea of imposing the irrigation 

service charge due to affordability reasons. However, there were some respondents 

who do recognize the significance of a water pricing policy for valuing water, to 

convey the main massage to the users regarding the water scarcity problem, and to 

reduce the burden of subsides. 

[Perry, 2001; Rogers et al., 2002] argued that water pricing policy as an 

effective measure for water conservation causes some doubts, as the practice (in 

various countries) does not confirm the emergence of water saving habits among 

farmers if they have to pay a fixed price/charge for water per hectare. In this situation 

the cost for maintenance and operation might be recovered, but the main objective of 

water saving is not achieved, as farmers do not have the motivation for optimizing the 

water use. Only high prices would result in substantial water saving levels, but will 

compromise the social welfare of user groups.  

From a personal perspective, high charges for water will increase farmers’ 

payments and negatively affect their income levels. The majority of the poor 

population is settled in rural area and is mainly involved in agricultural activities. The 

average land size is quite small (see land fragmentation notes above) and the majority 

of farms are subsistence farms. Produced food in such farms is mainly for family 

uses; the surplus is sometimes sold on markets. Therefore, the vulnerability of such 

farms, i.e., the probability that they will be abandoned, is quite high and can easily be 

affected by a small changes in the price of agriculture inputs, - including water for 

irrigation.  

Even though the water provision in canals is free of charge, farmers have to 

bear indirect cost of water supply, which includes the expenses for transporting water 
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from the mesqa to the fields. The government finances all costs only below the 

delivery point [MWRI, 2002a]. But most of farmers do need to pump the water from 

the canal to deliver it to fields. The annual expenses of the farmer in irrigation and 

drainage services countrywide are estimated to be from 350 to 400 LE [MWRI, 

2002b]. The main cost elements are; pumping water (250 LE), cleaning mesqas (60 

LE), and land tax (30 LE). The total farm production cost is about 3000 LE per 

faddan, which makes the irrigation and drainage cost only 12 percent of the total 

production cost [MWRI, 2002b]. The introduction of a charge for irrigation service 

would increase the expenses. To a certain extent, farmers can bear these costs, but 

then they would give up cultivation for economic reasons [Bazza and Ahmad, 2003]. 

This would create negative social effect and force the society towards a more severe 

economic and social situation. Imposing the charge for the irrigation service could 

result in a decrease in water consumption levels, - but at what expenses? As 

suggested by respondents of interviews, yields might be subjected to reductions, as 

low affordability of farmers would not allow for purchasing the water. The farmers 

would rather shrink the crop area, which will result in a further worsening the 

farmers’ income as net-returns will drop. Poor yields limit the ability for proper farm 

management, this may lead farmers to abandon agriculture and immigrate to the cities 

with the hope of better life. Overpopulated cities cannot carry large numbers of 

immigrants from rural areas and immigration will cause major social problems, which 

may cause negative consequences for national interests.  

Declining water consumption levels enhanced by imposed user charges will 

negatively contribute to emerging soil salinity problems, which has harmful effects 

on the yield and the farmer’s income as well [Umali, 1993; Hillel, 2000]. Under such 

conditions, the gloomy scene perspective makes the water pricing policy politically 

unacceptable due to its potentially harmful social implications. 
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Concluding Remarks  

The water preservation policies recognized worldwide are working on either 

the supply side or the demand side. On the supply side, there is the upgrading of the 

irrigation system efficiency policy and the adjustment of the supply to closely match 

the real demand policy. On the demand side, there is the cropping pattern 

optimization policy and the irrigation water pricing policy. Each of these policies has 

advantages and disadvantages. The key issue in applying any of these policies in any 

country is the potential negative impacts of that policy on the local society, the 

environment, and the economy.  

In the supply side, most studies focus on irrigation efficiency. Efficiency 

includes the conveyance efficiency and the application (on-farm) efficiency. In the 

case of Egypt, the figures of the irrigation efficiency seem to be very high (i.e., 75% 

overall efficiency rate). However, the detailed figures show that the conveyance 

efficiency in the old lands (i.e., most of the Delta) is 70%. This means that there is 

still a good potential for improvements in the conveyance efficiency, leaving a 

significant potential for water saving. Equally important, one may consider the 

improvements in the application efficiency that might be vulnerable to more 

deterioration due to the land fragmentation.  

One of the policies that we consider very effective in water saving is the 

synchronization between the supply and the demand. The mismatch between the 

supply and demand has been demonstrated in empirical studies (e.g., Lutfi Radwan 

study, 1998); by using actively the water release pattern (e.g., 220 MCM per day) as a 

regulator, - tested through the SDGIS application; and by analysing ways to prepare 

the cropping pattern by MALR, the national water demands prepared by MWRI, and 

the pattern of water release conducted (also by MWRI). The origin of the problem is 

believed to be in the lack of integration between the MWRI-administered rigid 

patterns of supply and the informal farmer patterns of demand. We believe that if the 

supply pattern in some way be modified to match more closely the demand pattern, a 

considerable amount of water saving could be achieved. This is a real challenge, 
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but not impossible. This policy is likely to be effective only if farmers are involved 

in defining the agricultural water requirements.  

The demand side management entails some potential for water saving which 

might be possible though cropping patterns optimization. Cropping patterns play a 

vital role in defining the water demands. However, cropping patterns are vulnerable to 

unexpected shifts due to a wide range of social, natural, and economical influences. 

Selecting a crop to be planted is mainly subject to the farmers’ expenditure capacity, 

water availability, and crop profitability, - besides many other natural factors, including 

the soil and climate suitability. To some extent it might be easy, theoretically to 

propose a certain cropping pattern or to develop an optimization model to obtain the 

optimum cropping pattern that would result in the ultimate utilization of agriculture 

land and available water resources. But it is more difficult to apply such a pattern in 

reality (i.e., to impose a certain cropping patterns on farmers), unless we establish 

favourable preconditions for the cropping pattern policy. Preconditions imply 

dissemination of information regarding the crop profitability, food market needs, 

community involvement in canal management, and improving farmers’ awareness, 

attitudes, and practices concerning the water resource management. 

The irrigation water pricing policy is one of the financial instruments for water 

conservation. Although it has been discussed in this chapter, it was impossible to test 

this policy using the application (or the SD model) because of the uncertainty 

associated with the society’s reaction to such a policy. The main objections to the 

water-pricing policy are the negative social effects that may result, and the 

environmental implications of such a policy. The introduction of water charges at this 

stage might inevitably cause social unrest and political problems.  

It is worth noticing that applying a single policy is not sufficient to 

successfully achieve significant water savings. We typically need to combine two or 

more policies. In this context, we believe that, in the short term, applying the supply-

demand adjustment policy alongside with a cropping pattern optimization policy may 

result in a significant reduction in water consumptions. The appropriate cropping 
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patterns will lead to a more accurate determination of the irrigation water demand. In 

the long run, upgrading the conveyance efficiency may be applied alongside the 

upgrading of the application efficiency. Converting, gradually, the traditional 

irrigation methods (i.e., surface flood) to modern irrigation systems will increase the 

water availability. The water thus made available may be utilized for additional land 

reclamation processes.  

It is not an easy task to address the water scarcity problem, but still there is a 

hope that the negative effects of mitigating policies may be minimized. To address 

such a problem, we must have an inclusive picture of the problem with all factors 

involved. In the current study, we have taken a step to show some fragments of the 

whole picture, but for further understanding of the problem, other factors must be 

added, this could be a subject for future studies.   

7.5 Conclusion  

The SDGIS application consists of three main components; the SD simulation 

model, the GIS model, and the modules that include functions facilitating the 

integration between the two models in addition to the GUI. The SD simulation model 

has been built using the Vensim software (classified under software that facilitates 

feedback-oriented continuous simulations) in a way that allows the managers and the 

operators of the irrigation system to test and evaluate alternative management policies 

under various scenarios. The GIS model provides information regarding the structure 

of the irrigation network, the spatial location of the irrigation system components and 

their attributes, required to undertake this management task. The modules of the 

SDGIS application and the GUI provide significant supplementary information such 

as the cropping patterns, the crop-water demand, the pattern of water releases, etc.,. 

Therefore, the SDGIS application is an Interactive Learning Environment that 

comprises background and supplementary information, source materials, and working 

instructions integrated into a single computer application. The SDGIS application, as 

an ILE, provides the potentials for supporting learning and training for the operators 

and the managers of the irrigation system so that they understand their part of the 

 



Illustrating the SDGIS Capabilities 403

system in the context of the system as a whole, - through providing a virtual world 

and the capability to test alternative policies in various contexts in an inexpensive and 

risk free environment. This has been demonstrated through an example that 

represents a case of diverting water from one portion of the system to other portions.  

The SDGIS application, including the three components, has been used as an 

optimization tool. Although the optimization process has been performed using the 

SD modelling tool (i.e., the Vensim software), the GIS component (that represents the 

spatial dimension), plays a significant role in deciding the target variables to be 

optimized. This has been demonstrated using an example of optimizing the 

performance of one canal within the irrigation network. The example draw the 

attention towards the potentials of optimizing the cropping patterns that have a sever 

effect on water demands.  

The SDGIS application, that tightly couples the GIS models with the SD 

models under a single common interface, may be considered a true SDSS. The 

application includes explicit mechanisms for attribute and spatial data management 

(through its GIS component), as well as the mechanism to represent time (through 

simulation using its SD component). By using the SDGIS application, irrigation 

system managers and decision makers can develop water allocation plans and easily 

test and assess several water preservation policies. The potential benefits of using the 

SDGIS application as a SDSS have been demonstrated through three examples. The 

first example represents the efficiency upgrading policy. In the second example, we 

illustrated the water supply/demand adjustment policy and exhibit the effect of 

changing the water release patterns on the behaviour of the system. In the third 

example, we introduced a proposed cropping pattern, and discussed the cropping 

patterns optimization policy. The development of this application has also provided 

us with the opportunity to study and analyse the feasibility of applying water 

preservation policies in the case of Egypt.  

Our use of the SDGIS application has demonstrated its flexibility with regard 

to integrating new components so as to represent various scenarios. For example, we 
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have added the Supply Slider control object, the Additions panel, and a new Crop-

Distribution map to test various scenarios. Similarly, the user may add desired control 

objects, panels, and/or menus to provide additional control mechanisms to the 

models, to test scenarios, to improve visualization, and to create the desired graphs. 

Only moderate programming skills and the open source code are required to 

accomplish this. 
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8.1 CONCLUSION 

The main contribution of this research is the SDGIS application. This 

application tightly couples the SD simulation models with the GIS spatial models. 

The tight coupling method, also known as the integration under one common 

interface, facilitates the direct communication between the SD model and the GIS 

model through the dynamic data exchange (DDE) without the need for an 

intermediate program (or software such as Excel) and data import/export operations. 

It allows for “the user interactions” to take place during the simulation runtime, and 

consequently, provides a continuous feedback between time and space. These 

features are not possible with the loose coupling method. On the other hand, the 

application has been developed using the current available technologies (software) 

with less effort, time, and cost compared to the mega projects intended to perform 

similar operations such as SME, IDLAMES, and WaterWare. Because the tight 

coupling method has been used, we were able to keep the SD modelling tool (e.g., 

Vensim) as the main model development environment which provides the 

opportunity to build models using graphical icons. At the same time, there was no 

need to translating the SD model equations into a programming language to run in the 

GIS. These features are not possible when employing the embedded coupling 

method. The various objects, -i.e., the SD model components and the GIS spatial 

features, are linked explicitly through the SDGIS application that employs the Object 

Orientation as a common platform for the integration process. This type of integration 

(i.e., tight coupling) provides: (1) a consistent user interface and data structure (that 

cannot be implemented when using a loose coupling); (2) the support for 

development and modification of models (not possible with embedded coupling) and; 

(3) the user interaction during the simulation runtime (again, not possible with loose 

coupling).  

The SDGIS application is developed using Microsoft Visual Basic. It consists 

of three Standard Modules and one Form Module. The Standard modules include: (1) 

the “SD Model Functions” Module that includes functions to facilitate 
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communication with the simulation model through the dynamic link library (DLL) of 

the Vensim software; (2) functions that provide the spatial and visualization tools 

implemented through the embedded ArcObjects (this module is called the GIS 

Functions Module); (3) functions for handling the errors that may arise as a result of 

the user’s incorrect actions (Error Handling Module).  

The Form module, that is the GUI of the application, includes Objects and 

Functions. The Objects explicitly connect the SD model components with their 

associated spatial features in the GIS model (e.g., the canal stock is linked to the 

canal feature and the flow-rates are linked to the control-gates). The Functions 

facilitate the user’s interaction during the simulation runtime; provide the user with a 

full control over the models and the simulation performance, the map display, and the 

creation of reports. 

Three versions of the SDGIS Application have been created. The first version 

is intended to incorporate a simple SD simulation model (i.e., the molecule model 

that includes one single canal) and a simple map covers one administrative area (i.e., 

Gharbya province at the Middle of the Delta). This version of the application includes 

most of the primary Objects and Functions that are required for the integration 

process (a sizable number of functions were designed to integrate the models). The 

application was successfully able to connect, simulate, and display the results on the 

map. The application performance worked sufficiently fast. 

The second version of the application was developed to cope with the Array 

structure of the SD model, and the network of canals that are classified in accordance 

with their geographical locations and rank-order and cover the whole study area. The 

map includes nine canal classes and three different types of cropping patterns. In this 

version, the visualization capability was improved by providing various alternatives 

to represent the results from the simulation run on the map - i.e., the map may be 

drawn so as to represent the values taken at any time by various model variables, such 

as the current water volume in canals, the water coverage, the water supply, the water 

leakage due to lack of efficiency, and the water consumption. In this sense, the map is 
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employed to display a variety of different variables during the simulation runtime. 

This is one of the significant distinctions of this version from the previous one. 

In the third version, that is the SDGIS Spatial Application, we extended the 

functionality of the application in compliance with our case study. The application 

has been adapted to the irrigation system in the Nile Delta region. The adaptation 

process included adapting all three components of the application; the SD model, the 

GIS model, and the associated modules of the SDGIS. The GUI has been improved 

by adding a number of control-objects and functions to improve the visualization and 

the analytical capabilities of the application. Finally, the capabilities of the SDGIS 

application have been demonstrated through some illustrative examples. The 

application can be used as an interactive learning environment ILE, an optimization 

tool, a Spatial Decision Support System SDSS, and as a policy assessment tool 

through providing a virtual world and the capability to test alternative management 

scenarios in an inexpensive and risk free context. 

The development of the three versions of the SDGIS (with different structures 

- i.e., simple structure and Array structure; and different extent – i.e., one province 

and/or the complete irrigation system within the study area) has demonstrated that the 

application, and, consequently, our method of integration, is not limited to a 

particular simulation model and/or to certain maps. The SDGIS application supports 

effectively any SD model and any number of maps associated with such a model.  

The underlying approach, resulting in the creation of the SDGIS application, 

provides a much-needed capability to model spatially distributed, dynamic feedback 

processes in time and space, while facilitating an understanding of the interactions 

between various components within the system. The main strength of this approach is 

the two-way simultaneous exchange of data between the SD and GIS, providing 

feedback in time and space. The technique used to build the SDGIS application is 

different than existing techniques for dynamic modelling such as Cellular Automata; 

Agent-Based simulation and GIS Model-Builder, and addresses most of the 

limitations present in these techniques.  
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The implementation of the SDGIS Application and its adaptation to the case 

study has many consequences. It improved our analytical capabilities and enhanced 

our understanding of the dynamics of the water scarcity problem. Incorporating the 

spatial dimension in the SD model and the temporal dimension in the GIS model, and 

integrating both models in a single system demonstrated clearly the significance of 

considering simultaneously Time and Space when we model spatially distributed 

dynamic systems.  

The SDGIS application is not the only contribution of this work. There are at 

least four other tasks have been implemented in this research by which we believe 

this research contributes to the science, i.e. is original in its nature.  

First, synthesizing SD models with GIS (in particular, the vector-based GIS) in 

a tightly coupled way using Object-Orientation, has, to our best of knowledge, not 

been made before. 

Second, the technique used to tightly couple the SD model components with 

the spatial features as explained in the conceptual framework, and implemented in the 

SDGIS and its application in the irrigation system, is original as we see it. 

Third, in terms of cross-disciplinary studies, this research crosses several 

disciplines including system dynamics, geographical information systems, and object 

orientation in the context of Environmental modelling. The essential literature of the 

four disciplines has been covered in chapter two. However, in terms of the employed 

methodology, we developed two different models for the study area (SD model and 

GIS model) and developed the SDGIS application that integrated both models and 

applied this application for the water scarcity problem. As Phillips (2000) put it 

“Being cross-disciplinary and using different methodologies is considered original”.  

Finally, the empirical work that has been conducted regarding the analysis of 

the water scarcity problem and the current irrigation system in the Nile Delta region; 

and the evaluation of the water preservation policies, and the assessment of their 

feasibility in the case of Egypt, is again original as we see it.   
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8.2 Summary 

This thesis includes eight chapters. In the first chapter, we described the 

research problem, the aim of the research, our motivation, the research approach, and 

the outline of the research. The objective is to set the framework of the research and 

to provide the context of the study. In this chapter, (i) we have identified the need for 

the integration of SD and GIS and the potential benefits resulting from such an 

integration; (ii) we have drawn a clear picture, and outlined the relationship between 

the four disciplines considered in this study. 

In the second chapter, we discuss the essential literature regarding the main 

disciplines related to this research: the Environmental Modelling domain, the 

Geographic Information System, the System Dynamics, and the Object Oriented 

Paradigm.  

In the first section of this chapter (i.e., the environmental modelling domain), 

we describe the state of the environmental modelling domain with respect to 

modelling the environmental problems with GIS and the environmental simulation 

models. We conclude that in more sophisticated environmental models there is a call 

for the system dynamics approach to deal with the temporal dimension, feedback 

loops and overall the dynamics and complexity of the environmental systems. There 

is also the need for the GIS to represent the spatial dimension. Simulation, spatial 

distribution, increased dimensionality and resolution, are one straightforward way of 

"improving" environmental modelling domain.  

In section two (i.e., the GIS domain), we shed light on the origins and nature 

of the GIS, emphasized the significant of time in GIS, and reported the attempts at 

incorporating the temporal dimension into the GIS. The conclusion made is that, until 

the GIS explicitly integrate the temporal dimension in its data structures, its role will 

largely be limited to an input data provider and an output display and mapping 

device.  
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In section three (i.e., the SD domain), several simulation modelling techniques 

were described. The strength and weaknesses of each technique were reported. We 

concluded that the main differences between these techniques originate from the 

different theories underlying each of them (i.e., the control theory and the complexity 

theory). All the techniques have produced rich bodies of research and literature on 

widely overlapping fields of application. A cross study of these bodies of literature is 

overdue. Results on identical or neighbouring research topics should be compared. 

The comparison of results in the same subject areas will most probably lead to some 

fine insights. It would also be desirable to see, for example, an Agent-Based 

implementation for some SD classic models such as the "beer game" which, in 

particular, may have the potential to become a classic in the agent-based modelling 

field as well.  

In the last section of chapter two (i.e., the object oriented domain), we gave a 

brief overview of the history of the object oriented paradigm, and the main concept 

and terms used. We concluded that Object-orientation is perhaps the most effective 

framework that can embrace both System Dynamics and GIS models in a single 

coherent information system because both geographical features (spatial entities) and 

system components can be represented as Objects that have properties and behaviours 

(methods). 

In chapter three, we reported, to our best of knowledge, the significant prior 

attempts at integrating the simulation models (in broader context), with GIS.  These 

attempts have made use of different integration strategies (ranging from loose to 

embedded coupling), and different simulation approaches and GIS representations. 

We addressed the gap found in the literature, and clarified the position of this 

research. 

Chapter four was the point of departure to develop the new application SDGIS 

from which we explain our new method of integration. First, we provided a brief 

description of Object Oriented GIS (OOGIS) and explain the differences from the 

traditional GIS. Then, we highlighted the relationship between the Object Oriented 
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paradigm and System Dynamics. The result of this chapter was the design of the 

Conceptual Framework of the SDGIS application.  

In chapter five we developed the SDGIS application. We described in detail 

the steps of creating the application, the connection between the SD model and the 

GIS model, and the representation of the simulation results. A number of custom 

tools were built to: (1) facilitate access to and communication between the two pieces 

of software used to build the models, (2) control the simulation process, and (3) 

handle the display of the results in two ways (i.e., on maps and graphic charts). 

Chapter six is the first part of our case study that deals with the application of 

the SDGIS to the irrigation system in the Nile Delta, Egypt. In this chapter, we first 

described the water scarcity problem that may emerge in the near future in Egypt, 

analysed its driving forces and highlighted the factors that tend to intensify and 

possibly escalate the problem. Second, we described the geographical and topological 

characteristics of the study area focusing on the irrigation system. Third, we 

explained the adaptation of the SDGIS application to the present irrigation system. 

Finally, we documented the results of running the SDGIS application to test its 

operability and performance. 

In chapter seven, that is the second part of the case study, we demonstrate the 

capabilities of the SDGIS application through illustrative examples for employing the 

SDGIS as: (i) an interactive learning environment for the educational purpose of 

explaining the complex irrigation system behaviour and management to non-technical 

individuals; (ii) an optimization tool for the irrigation network and the agriculture 

lands to attain the ultimate utilization of water and land resources; (iii) a spatial 

decision support system (SDSS) for supply, demand, and water allocation 

management and as a policy assessment tool for the water preservation measures.  

Chapter eight includes the research conclusions, this summary for the research, 

its anticipated impact, and a vision for the future work. 
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8.3 The Research Impact 

The first impact that we may witness in the near future is that a considerable 

number of system dynamists would consider and represent explicitly the spatial 

dimension in their models. The spatial dimension may constitute a substantial part of 

the structure of the system and may be considered as a structural component that 

significantly affects the behaviour of the system. So far, a few system dynamists 

seem to concern themselves with the space as a structural component to the extent 

that they take the spatial dimension explicitly into consideration the way the 

geographers typically do when they utilize GIS. The reason for that might be the lack 

of a mechanism that represents the spatial dimension explicitly, properly and 

effectively in system dynamics. Developing such a mechanism is a major challenge. 

But we have taken a significant step in this research and demonstrated that the 

integration of SD with GIS is possible, and, more significantly, can be implemented 

using currently available software. The advent of technology (particularly, object 

orientation and COM compliant objects) made it possible to develop an application in 

a matter of a few hours. We have also demonstrated the potential benefits of the 

integration for both SD and GIS technologies.  

There will be a good response also from the geographers and GIS practitioners 

who are eager to add the dynamics to their static GIS maps, and consider the temporal 

dimension in their spatial analysis. Needless to say, many processes in nature are 

time-varying. Such variations are often obvious, say, in hydrology studies where 

temporal analysis for surface water flow is in demand. GIS really does not lend itself 

to time-varying studies because there is no explicit representation of time in the data 

structures. This is why one cannot readily model the evolution through time of 

spatial variation in a phenomenon within GIS. For this reason, we have seen, in the 

literature, serious attempts at incorporating temporal data models into GIS. Despite 

these attempts, two facts remain clear. First, GIS users are no longer satisfied with 

their access to static data. From wildfire management to urban growth models, 

scientists and GIS users are wondering what GIS can offer. There is significant 
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demand for adding the temporal dimension to the GIS and users lay a heavy burden 

on the shoulders of the GIS Technology developers to continue evolving the GIS. 

This research may constitute a point of departure for them to accomplish that mission.  

This research may stimulate many IT developers to strive to create new Spatial 

Dynamic Objects that incorporate the characteristics of the SD building blocks (Stock 

and flow) and the characteristics of the spatial features (geometry shape and 

coordinates). For example, if the object will act as a stock, it may include (in addition 

to the initial value, the integration method, and/or the equation) the geographical 

location (in terms of X, Y, and Z points) in addition to a geometry shape (point, line, 

or polygon). The modeller will then have the choice to add these values to the stock if 

the model represents a spatially distributed system, or to use the default values (say 

for example (X,Y,Z)=(0,0,0) and the geometry shape is point). Such objects will 

significantly influence the evolution of both technologies (the SD and the GIS). 

It is also possible to imagine that similar applications to the SDGIS will be 

developed, using the same method of integration, to study and analyse a variety of 

systems that are spatially distributed, dynamic feedback systems such as urban 

sprawl, transportation, flood disasters management and the flood planes.  

It is anticipated that the SDGIS Application (and the underlying approach used 

to develop it) will capture the eyes of the politicians, decision-makers, executive 

managers, and operators who would like to improve the performance of the irrigation 

systems. It will also attract researchers who try to find out solutions and to design 

strategies to cope with water scarcity problem.  
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8.4 Future Work  

In the future, it is highly desirable to see more improvements to be added to 

the SDGIS application. Improvements may include, for example, using satellite 

images to identify various crop-types that are currently planted. Satellite images 

(usually) include a thermal band layer that can be used to identify/classify the planted 

crops, calculate their actual areas and, subsequently, constitute the foundation for 

very accurate actual water demand calculations. The satellite image may then be 

integrated into the application, and the water releases can be adjusted to match the 

demands, displaying the results simultaneously on the map. Using the satellite 

images, the actual water demand for irrigation can be calculated for, at least, three 

months ahead (i.e., the shortest crop growing period). That will greatly help managers 

and decision makers to design and implement better water release/saving policies. In 

addition to the satellite images, several other layers can be added to the application 

such as the soil-types layer, aquifers, and the drainage network, all subject to a 

development (dynamics) over time. 

There are many water preservation policies recognized worldwide. Only four 

of them have been discussed and three have been evaluated in this research. More 

policies and water management strategies need to be tested and evaluated using this 

application in the future. 

The application has been developed as a standalone using Microsoft Visual 

Basic. It is likely to see the implementation of this application, and its functions, 

using Visual Basic for Applications (VBA), as a custom ArcMap extension that 

provides the foundation for integrated water resources management.  

Currently, this application has been designed for a specific case (i.e., the 

irrigation system in the Nile Delta region) using a modest level of aggregation. The 

application has been built, however, using modules to enhance its extendibility to 

other cases. More generic modules need to be developed to populate and generalise 

the application.  
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8.5 Final Remarks 

Although the computer technology for Spatio-Temporal analysis exists, the 

GIS community must undergo a paradigm shift to fully appreciate “spatial dynamic 

GIS” benefits. It is not just a matter of collecting time-based data within the GIS, but 

also developing - a new way of thinking about time in a spatial sense; - a new way of 

thinking about feedback loops and delays; and - a new vision to the cause and effect 

(causality relationships) that draw changes in geographic processes. Correspondingly, 

the SD community must appreciate the spatial dimension in their models, taking into 

consideration the spatial bounds between the components of the system and their 

properties that vary with the geographical location. Equally important is that both 

communities must start working together. I was fortunate to incorporate the benefits 

of the SD and GIS in my work only because I studied both disciplines in previous 

stages of my education and gained sufficient understanding of the capabilities of 

both technologies, as well as a good experience in software application 

development.  

It is not difficult to imagine that a conclusive synergy may combine the spatial 

representations of GIS with the temporal characteristics of SD models in a single 

integrated software. To find out how these tools should be made more interdependent 

and interactive, more research efforts should be undertaken. To solve pressing 

environmental problems, we will need different tools than currently available that 

work effectively together and are easy to use, and may be employed in a flexible 

manner to address complicated problems that arise in the context of multidisciplinary 

dynamic, spatially distributed feedback systems. Without taking the first step, the 

allure of constantly improving technologies will continue to draw both SD and GIS 

along separately. Without formalization of an effort to achieve integration, only the 

very fortunate individuals will be able to incorporate the benefits of SD and GIS in 

their work because only they will have sufficient understanding and resources to 

overcome the difficulty of coupling tools that remain in many respects dissimilar. 
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9. Appendices 

Due to the large size of the appendices (over 400 pages), we decided to keep 

them on a Compact Disk (CD) attached to the Thesis at the end. The CD includes five 

folders, three folders for the appendices A, B and C; a folder contains a digital copy 

of the thesis, and “EgyptMaps” folder that contains the maps, the SD models, and the 

three versions of the SDGIS Application. To install and run any of these applications 

the user should have the following software installed on the machine: 

1. Vensim DSS 32 version 5.2a or higher. 

2. ArcGIS 8.1 (recommended) with ArcObjects Developer Kit (the objects 

should be registered in Windows registry file before running the application. 

ArcGIS 8.3 may be used but the user may need to change the name of the 

MapControl object in the Form Module (GUI) from “ESRI MapComtrol 8.1” 

to ESRI MapControl 8.3). However, in the later releases of ArcGIS such as 

ArcGIS 9.x ESRI has changed the names of some Objects and divided some 

Objects to two. Advanced programmers may need to change the Object names 

in the code page of the application (in the Form Module and the GIS Functions 

Module). 

3. Microsoft Visual basic version 6.0 (higher versions may be operate but it has 

not been tested) 

It is highly recommended to copy the folders from the CD (with the same 

folder’s structure) to the drive “D:\” on the machine otherwise you may need to 

change the path and/or the driver letter in some maps.  

For any further information and/or assistance to install and run the application, 

please email to: sameh.gharib@ifi.uib.no ; samehgharib@gmail.com  
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