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Abstract 

This thesis examines the stochastic models which reproduce chain-ladder estimates used in 

reserve estimation for nonlife insurance. The chain-ladder method provides no information 

regarding the variability of the outcome, thereby adding uncertainty to future claim 

estimations. Prediction errors can be found using a variety of stochastic chain-ladder models, 

but the different models are based on different assumptions. The relationship between some 

of these models was explored, and it was demonstrated how the models are defined for a run-

off triangle of insurance claims. Two of these models, Mack’s model and the normal 

approximation to the negative binomial model, were applied to a data set consisting of auto 

liability insurance claims. This was done in order to find the prediction error of their chain 

ladder estimates, as well as verify their ability to handle negative values. The two models 

used in the analysis were found to produce nearly identical prediction errors, and both were 

able to handle negative insurance claims, which were present in the data set. A number of 

similarities were found between the models, to the degree that the normal approximation to 

the negative binomial model should be considered as underlying Mack’s model. However, 

since it is based on a generalized linear model, the normal approximation to the negative 

binomial model offers greater flexibility in applied calculations than Mack’s model.  
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1. Introduction 

1.1 Background 

An insurance company has a portfolio of customers. Some of them will never make a claim, 

while others might make one or multiple claims. The insurer makes reserves to be able to 

cover these claims. In casualty insurance, the policy period is usually one year. After this 

year, the policy could either be renewed or terminated. If the policy is cancelled, this does 

not necessarily mean that the insurer’s liability has ended, however. Since the insurance 

company has agreed to a defined policy period, all claims incurred within this period (and the 

policy conditions) are the insurer’s responsibility. Among these are claims that have been 

reported but have not been settled (IBNS) and claims that have incurred but have not been 

reported (IBNR).  

 A claim adjuster at an insurance company should be able to determine approximately 

how much to set aside for IBNS-claims. However, IBNR-claims are far more difficult to 

assess. In some cases even the customer might not know that he or she has a claim to make. 

This could for example occur in cases of traumatic injuries such as whiplash, where the 

customer does not become aware of the severity of the injury until several weeks after the 

initial trauma. Another type of IBNR-claim could be water damage to a home, where the leak 

was not discovered before much later. 

 A common method used to estimate IBNR-claims is the chain-ladder method. This is 

based on an algorithm which makes a point estimate of future claims. The chain-ladder 

method is simple and logical, and is widely used in casualty insurance. Despite its popularity, 

there are weaknesses inherent to this method. Most importantly, it does not provide 

information regarding the variability of the outcome. With the processing power of today’s 

computers, the simplicity of the method is no longer a valid argument. All the same, the 

chain-ladder method is frequently used by actuaries.  

 Improvements to the chain-ladder method have been made through the development 

of stochastic models which support the chain-ladder technique (England & Verral 2002;Hess 
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& Schmidt 2002;Mack 1994a;Mack 1994b;Neuhaus 2006;Renshaw 1998). Prediction errors 

can be obtained when a stochastic model is used, allowing greater knowledge of the reserve 

estimate. 

1.2 Aims and outline 

The main objective of this thesis is to demonstrate methods used to determine the variability 

of the outcome (prediction error) in a chain-ladder calculation. This will be achieved by 

describing the chain-ladder algorithm, reviewing the most important stochastic chain-ladder 

models, examining the connection between the stochastic models, fitting the models to run-

off triangle of insurance claims, and applying two of these to a data set consisting of 

automobile insurance claims. The model assumptions in the two models will also be tested. 

The results from the analysis will be used to discuss the two stochastic models and the chain-

ladder method.  

1.3 Definitions, notation and limitations 

A stochastic chain-ladder model is defined as a stochastic model that produces the same 

estimates of future claims as the chain-ladder method.  

 

The chain-ladder method will be introduced using lower case letters. In this case, the chain-

ladder method is considered a deterministic method where the variables are known. The 

stochastic chain-ladder models will generally use capital letters when the variables are to be 

considered as stochastic variables, and the known variables are written by using lower case 

letters. Estimators will generally be written with capital letters, and will be denoted with the 

hat operator.    

 There are numerous stochastic models that can be used to support the chain-ladder 

method. Only models that produce estimates equivalent to the chain-ladder method are 

included in this thesis. These are the multiplicative model, the Poisson model, the Negative 
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Binomial Model and Mack’s model. Since the data set contained negative claims only two 

models will be used in the analysis. Only two of these models will be used in the analysis as 

a result of negative claims.  

1.4 The chain-ladder algorithm 

Incremental claims are defined by 
ij

c  where i denotes the accident year and j the 

development year. Let 
ij

d  denote the cumulative claims. The accident year is the year the 

accident occurs and the development year represents the reporting delay from when the claim 

occured. The cumulative claim  
ij

d  is 

 

1

j

ij ik

k

d c
=

=∑           (1.1)  

 

Observed claims can be illustrated as a run-off triangle, as illustrated in figure 1. 

 

 

 

 

Figure 1: Two run-off triangles, where the left triangle displays the observed incremental claims, and the right 

triangle displays the observed cumulative claims. The rows display the accident year (i)  and the columns 

display the development year (j), when n = 4. The claims in the north-western triangle are known values; the 

chain-ladder algorithm seeks to estimate future claims in the south-eastern (empty) triangle.  

 

The individual development factor can be defined as 
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, 1

ij

ij

i j

d
f

d −

=            for    2 1j n i≤ ≤ − + .     (1.2) 

     

The observed values of 
ij

f  can now be seen in figure 2 such as the ones shown for 

incremental and cumulative claims in figure 1. The unknown values for 
ij

f  will leave empty 

spaces in the south-eastern triangle. Figure 1 has the dimensions 4x4, which will create a 

triangle of 
ij

f  with the dimensions 3x3. It should be noted that because of the definition in 

(1.2) the first column in the run-off triangle of
ij

f
 
has column index 2.  

 

 

 

Figure 2: A run-off triangle of development factors
ij

f  which corresponds to a run-off triangle of claims with 

the dimensions 4x4.  

 

The ultimate claim is for accident year 2i ≥  defined as 

 

, 1

2

n

in i n i ij

j n i

d d f− +
= − +

= ∏ .         (1.3) 

 

The individual development factors ijf  are not observable for 2j n i≥ − + . They represent the 

south-eastern corner of figure 2. To be able to find the ultimate claim ind  the non-observable 

individual factors need to be estimated. An obvious approach would be to use the average of 

the observed development factors in development year j. This will produce identical 

individual development factors within development year j for the accident years in the south-

eastern run-off triangle. However, the development factor used in the chain-ladder algorithm 

is not a simple average of the individual development factors. It is rather a weighted mean of 

12 13 14

22 23

32

f f f

f f

f

 
 
 
 
 
 
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the observed individual development factors
1

1

ˆ
n j

j ij ij

i

f w f
− +

=

= ∑ , where ijw denote the weights. 

Furthermore, this development factor is only a function of the development year j, and is 

therefore identical to development year j, for all accident years in the south-eastern run-off 

triangle. The hat operator is used since ˆ
jf  is considered an estimator of the individual 

development factors. By choosing the appropriate weighting, it becomes clear that the 

development factor in the chain-ladder method is a weighted mean of the individual 

development factors. The chain-ladder development factor is 

 

1

1 1 1
, 1 , 11

1 1 1
1 1 1, 1

, 1 , 1 , 1

1 1 1

ˆ

n j

ij n j n j n j
i j ij i ji

j ij ij ijn j n j n j
i i ii j

i j h j h j

i h h

d
d d d

f f w f
d

d d d

− +

− + − + − +
− −=

− + − + − +
= = =−

− − −
= = =

= = = =
∑

∑ ∑ ∑
∑ ∑ ∑

    (1.4) 

 

The individual development factor 
ij

f  is weighted by the proportion of the claims in accident 

year i, in development year j-1. The grounds for using a weighted average will be discussed 

later. Since the chain-ladder development factor is central to the models described in this 

thesis, it is repeated:  

 

1

1

1

, 1

1

ˆ .

n j

ij

i
j n j

i j

i

d

f

d

− +

=
− +

−
=

=
∑

∑
   for j = 2,….n     (1.5) 

 

The ultimate claim is the cumulative claim in the final development year. This is seen in the 

last column of the run-off triangle for cumulative claims (
ij

d ). The ultimate claims can now 

be calculated in the next simple step: 
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, 1

2

ˆ ˆ
n

in i n i j

j n i

d d f− +
= − +

= ∏         for i = 2,…..,n    (1.6) 

 

Equations (1.5) and (1.6) form the basis of the chain-ladder technique. The last observed 

claim , 1i n i
d − +  is used as a basis for all future estimations for accident year i. Implicitly, the 

previously observed claims that accident year are assumed to add no further information for 

the purpose of estimating future claims. 

1.5 Use of stochastic models in the chain-ladder method 

The primary weakness in the chain-ladder method is that it is a deterministic algorithm, 

which implies that nothing is known about the variability of the actual outcome. To amend 

this shortcoming, stochastic models have been developed which provide the same estimates 

as in the chain-ladder method. These models make it possible to find the variability of the 

estimate. A stochastic model can also be used to assess whether the chain-ladder method is 

suitable for a given data set. However, it is important to scrutinize the specific stochastic 

model chosen for the analysis, since each model is based on a number of assumptions (Verral 

2000).  

1.6 Formulating a stochastic model based on the chain-ladder 

method 

Since the chain-ladder method is a deterministic method, a very simple stochastic model that 

is derived through the chain-ladder method is presented. Assume that claims
ij

D , for 

1,...,i n=  and 1,...,j n=    are stochastic variables, and are therefore written with the capital 

letter 
ij

D . The north-western triangle in figure 1 is a realization of the stochastic variables 

ij
D . 

j
f  is considered as an unknown parameter. A linear relationship between the 

development years is assumed. For 2 j n≤ ≤  the linear relationship is:   



 12 

 

, 1ij i j j
D D f−=                                (1.7) 

        

By calculating expectation on both sides of equation (1.7) the expression becomes 

 

, 1( ) ( )
ij i j j

E D E D f−=                                                (1.8) 

 

When predicting the ultimate claim (or just a claim several development years ahead) a 

formula corresponding to the chain-ladder method can be used: 

 

, 1

2

( ) ( )
n

in i n i j

j n i

E D E D f− +

= − +

= ∏         (1.9) 

  

In equation (1.9) the expectation of a previous claim ( ), 1i n i
E D − +  can be used to predict the 

future. The chain-ladder method, however, uses the last observed claim , 1i n i
d − +  and not the 

expectation of it. The chain-ladder model assumes that the latest observation is more relevant 

than the expectation of it, and a stochastic model equivalent to the chain-ladder method can 

be derived by conditioning on the latest observed claim. Let , 1i j
d −  be the last observable 

claim. If it is conditioned on , 1i j
d −  in (1.8) the expression is:    

 

, 1 , 1( )
ij i j i j j

E D d d f− −=                                                                                                   (1.10) 
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There have not yet been made any assumptions about the distribution of 
ij

D .The model 

presented in formula (1.10) is a simple stochastic model of the chain-ladder algorithm (Mack 

1994b). 

 Introducing the stochastic variables 
ij

D  some more notational points are now to be 

made. These will be used later when introducing the stochastic models. The run-off triangle 

for 
ij

D  can be displayed with the stochastic variables 
ij

D  for 1 ,i j n≤ ≤ . It is not actually a 

triangle, since the empty places in the south-eastern triangle are also present. 

  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

D D D D

D D D D

D D D D

D D D D

 
 
 
 
 
 

 

Figure 3: Run-off triangle of the cumulative claims as stochastic variables, when n = 4. The rows display the 

accident year (i)  and the columns display the development year (j).  

 

To make it easier to find the conditional expectations, the variables 
ij

K  and 
j

K  and K are 

introduced. Let k be the realization of the stochastic variable K, and  

{ }, 1,..., , 1,..., 1
ij

k d i n j n i= = = − + . K is the information of the cumulative claims in the 

north-western corner of the run-off triangle. Let 
ij

k  be the realization of the stochastic 

variable 
ij

K , and { }1,...,ij i ij
k d d=  for accident year 1,...,i n= . Let 

j
k  be the realization of 

the stochastic variable 
j

K  and { }1,..., , 1,...,
j i ij

k d d i n= = .  
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1.7 Stochastic chain-ladder models   

When finding a stochastic model that reproduces chain-ladder estimates, some assumptions 

must be made about the insurance claims. It is possible either to specify the distribution of 

the insurance claims, or merely state the two first moments (Verrall & England 2002).  

 The Poisson distribution may be appropriate when events are to be counted during an 

interval. During an insurance period accidents occur and claims are made. A number of 

authors propose a Poisson model in this situation (Hess & Schmidt 2002;Renshaw 

1998;Verral 2000). Other distributions are closely linked to the Poisson distribution, and will 

therefore also be examined. These distributions are the negative binomial distribution, the 

multiplicative distribution and Mack’s model (Verrall & England 2002). In contrast to the 

Poisson and negative binomial model, the multiplicative model and Mack’s model only 

specify the first two moments. 
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2. Stochastic models  

An underlying property to a claim is the amount of a claim. The number of claims is also 

relevant. An introduction to the claim number and claim amount process introduces this 

chapter. A few formulas relevant to these processes are presented and will also be used later 

in this thesis.  

 When presenting the stochastic models, the aim is to show that they indeed provide 

the same estimates as the chain-ladder method. There is also a close connection between the 

models, which will be demonstrated. The multiplicative model is presented first. Only the 

first moment, which has a multiplicative structure, is specified in the model. Some of the 

models to be presented later can be viewed as special cases of the multiplicative model. Also 

an alternative way of expressing the chain-ladder development factor arises from the 

multiplicative model and will be reviewed.  

 The Poisson model is a special case of the multiplicative model. It has the same 

multiplicative structure in the first moment. Using the maximum likelihood estimator creates 

the same development factor as the chain-ladder development factor and this will be proven. 

The relationship between the Poisson and the negative binomial model will be demonstrated 

using the notation for insurance claims.  

 Mack’s model is the last model to be presented. Mack’s assumptions state that the 

first moment is equivalent to the chain-ladder estimate, so the connection between the 

stochastic model and the chain-ladder method is trivial. In attempt to further understand 

Mack’s model, the reasons behind the assumptions are explored. 

2.1 Claim number and claim amount process 

The incremental claim 
ij

C  or the cumulative claim 
ij

D  have not yet been specified any 

further. It may represent the number of claims an insurance company has received or can be 

the total amount tused to settle the insurance claims.  
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 The total amount of claims is clearly also a function of the number of claims, which 

introduces the compound Poisson distribution. Let ( )N t  be the number of claims which is a 

Poisson distributed variable, and it is a function of the continuous time t. ( )N t  counts the 

number of claims in the interval ](0, t . ( )N t  increases in steps, and is a non-decreasing 

function of time t. Let 
k

Y  be the amount of claim number k. The total amount ( )X t  of the 

( )N t  claims up to time t is  

 

( )

1

( )
N t

k

k

X t Y
=

= ∑            (2.1) 

 

If 
k

Y is independent and identically distributed, then ( )X t  follows a compound Poisson 

distribution. The expectation and variance can be found through calculations of double 

expectation:  

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
X N X N Y k N Y k

E X t E E X t N t E N t E Y E N t E Y= = =   (2.2) 

 

and double variance: 

 

( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( )
X N X N X

Var X t E Var X t N t Var E X t N t= +    (2.3) 

       
( ) ( )( )

( ) ( )( ) ( )
2

( ) ( ) ( )

( ) ( ) ( )

N Y k N Y k

N Y k Y k N

E N t Var Y Var N t E Y

E N t Var Y E Y Var N t

= +

= +
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As ( )N t  and ( )X t  are function of the continuous time t, 
ij

C  or 
ij

D  are measures of either 

of these sizes at a specific time. Fixing the accident year, 
ij

C  and 
ij

D  only change between 

the development years. They can either be a measure of claim number or total claim amount. 

For later purposes, when 
ij

C or 
ij

D  represents the total amount of claims, it will only be 

denoted the amount of claims and not the total amount of claims.  

2.2 The multiplicative model and the chain-ladder method 

The multiplicative model can be seen as underlying both Mack’s model and the Poisson 

model. The multiplicative model is presented below, where the connection to the chain-

ladder method is clarified. In this chapter the symbols 
i

x  and 
j

y  will be used. These are 

parameters in the multiplicative model (and not realizations of  ( )X t  and 
k

Y  which were 

introduced in the previous chapter).  

 

The multiplicative model is defined by the first moment, and for 1 ,i j n≤ ≤  it is 

 

( )
ij i j

E C x y= ,                           (2.4) 

 

where 
ij

C  is a stochastic variable, 
i

x  and 
j

y  are unknown parameters, and 

1 2 ..... 1.
n

y y y+ + + =   

 

By the definition in (2.4) and the property that the sum of 
j

y  equals one, gives that 

( )i inx E D= . Expressed in words, (2.4) says that the expectation of the incremental claim can 

be written as a product of an accident year dependent parameter ix  and a development year 
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dependent parameter jy . Since ix  is the expected ultimate claim, it is logical that the sum of 

jy  is one. If ijC  represents the number of claims, jy  is the probability that a claim incurred 

in accident year i, is reported in development year j. This interpretation implicitly lays 

another restriction on jy , 0jy ≥  for j= 1,...n. 

 A very simple stochastic model of the chain-ladder method was derived in (1.8). 

Mack (1994) stated that this was equivalent to the multiplicative model. This can be proven 

by finding appropriate candidates for ix  and jy .  

 

By using (1.9)  the expectation of the incremental claim can be written:  

 

, 1( ) ( ) ( )ij ij i jE C E D E D −= −         (2.5) 

           1 1

1 2 1( ... ) ( ) ( ... ) ( )j j n in j j n inf f f E D f f f E D
− −

+ + += −                 

           ( )1 1

1 2 1( ) ( ... ) ( ... )in j j n j j nE D f f f f f f− −
+ + += −  

 

The next step is to recognize what the variables jy  must be so that (2.5) equals i jx y . The 

variable ix  has already been recognized, ( )i inx E D= , and clearly 

jy = 1 1

1 2 1( ..... ) ( .... )j j n j j nf f f f f f
− −

+ + +− . For development year 2 j n≤ < , the variables jy  

are: 

 

1

1 2 3( .... )ny f f f
−=  

1 1

1 2 1( ..... ) ( .... )j j j n j j ny f f f f f f
− −

+ + += −                                       (2.6)  

11 ( )n ny f
−= −           
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If the newly defined variables jy  meet the constraint 
1

1
n

j

j

y
=

=∑ , they can be accepted. 

Summing up the terms in (2.6), a telescoping series is revealed, and using this property it is 

clear that 
1

1
n

j

j

y
=

=∑ . Additionally 0jy ≥  if 1jf ≥  for j = 1,...,n. This definition of  jy  seems 

to be a good choice. The cumulative claim in accident year i and development year j can be 

written as a sum of the incremental claims, and using the constraint laid upon jy  one can see 

that for accident year i = 2,…,n: 

 

1( ) ( ..... )in i nE D x y y= + +              (2.7)  

            1 2 .....i i i nx y x y x y= + + +  

            1( ) ..... ( )i inE C E C= + +  

 

By appropriately choosing ix  and jy , it is clear that the simple stochastic model from 

chapter 1.4 is equivalent to the multiplicative model (Mack 1994b).  

 

The development factor can be derived by rewriting expression (1.8) and using the identities 

from the multiplicative model. For 2 j n≤ ≤  the expression is  

 

, 1

( )

( )

ij

j

i j

E D
f

E D −

=                                  (2.8) 
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( )
( )

1 2

1 2 1

1 2

1 2 1

...

....

...

....

i j

i j

j

j

x y y y

x y y y

y y y

y y y

−

−

+ + +
=

+ +

+ + +
=

+ +

 

 

This development factor does not have the same appearance as the chain-ladder development 

factor, but it is the same. This can be proven by induction.   

2.3 The Poisson model and the chain-ladder method 

The Poisson model can be viewed as a special case of the multiplicative model. It has the 

same basic multiplicative structure of the first moment, but in addition a Poisson distribution 

of the incremental claims ijC  is assumed. Verral (2000) claimed that the Poisson model will 

produce exactly the same reserve estimates as the chain-ladder method. This is true when 

maximum likelihood estimators (MLE) are used , which will be proven.  

 

ijC  are incremental claims, and let ijC be independent Poisson distributed with 

( )ij i jE C x y= , and  
1

1
n

j

j

y
=

=∑ . From the multiplicative model the parameter ix  was 

determined; ( )i inx E D= .  ix  is the expected value of cumulative claims up to the latest 

development year observed so far.  

 

The first moment can be parameterized as   
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( ) ( )
( ), 1

1

1

1

i n i j i j

ij i j in j n i

n i
j

j

E D y z y
E C x y E D y

s
y

− +

− +
− +

=

= = = =

∑
                 (2.9) 

 

where ( ), 1i i n i
z E D − +=  and 

1

k

k j

j

s y
=

=∑  

 

Since 
j

y  can be interpreted as the proportion of the ultimate claim in development year j, it 

is logical that ( ), 1i n i
E D − +  divided by the proportion of claims until 1j n i= − +  equals 

( )inE D .  

 

Equation (2.9) can be written so that it is a formula for predicting the expectation of the 

ultimate claim ( )inE D . Approximating ( )inE D  with ˆ
in

D  the equation is: 

 

1

1 2

ˆ

1

i i
in in i n i n

k k

k k n i

z z
D ED x

y y
− +

= = − +

= = = =

−∑ ∑
.      (2.10) 

 

Verral (2000) claims this is equivalent to the chain-ladder estimator: 

 

1, 1, 1 2
ˆ ˆ ˆˆ .....n j n n j j j j nD d f f f− + − + + +=      where 

1

1

1

, 1

1

ˆ

n j

ij

i
j n j

i j

i

d

f

d

− +

=
− +

−
=

=
∑

∑
 .   (2.11) 
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To see that (2.10) and (2.11) are in fact equivalent, it is natural to look for estimators of the 

unknown parameters in (2.10). The maximum likelihood function will be used to find 

estimators. In this case the observations 
ij

c  are considered known, and the parameters are 

considered as the variables. The maximum likelihood function can be written as: 

 

1/
1

1

1 1

( / )

!

ij i j n ic z y s
n n i

i j n i

i j ij

z y s e
L

c

− +−− +
− +

= =

 
=  

 
 

∏ ∏                                                                (2.12) 

 

It is the maximum likelihood function of a Poisson distributed variable with parameter 

1

i j

n i

z y

s − +

. Further calculations show that this can be written as 

 

, 1 1
, 1

1
1 1, 1 1

1

!

!
!

ij
i n i i

cd zn n i
ji n ii

c dn i
i ji n i n i

ij

j

ydz e
L L L

d s
c

− + − − +
− +

− +
= =− + − +

=

  
     = =    
  

  

∏ ∏
∏

     (2.13) 

 

where  
1

, 1

1
1 1 1

1

!

!

ijc
n n i

ji n i

c n i
i j n i

ij

j

yd
L

s
c

− +
− +

− +
= = − +

=

 
   =  
  
 
 

∏ ∏
∏

   and 
1

1 , !

i n i id zn
i

d

i i n i

z e
L

d

− − + −

= −

 
=   

 
∏ .  (2.14) 

 

c
L  is the conditional maximum likelihood function, where 

ij
C  conditioned on , 1i n i

d − +  is 

multinomially distributed with probabilities 
1

j

n i

y

s − +

 (see Appendix 2). The multinomial 

distribution is reasonable considering the possibility of a claim/or several claims being 

reported in increment (i,j). The multinomial distribution represents the probability of 



 23 

ij
C claims, which incurred in accident year i, will be reported in development year j. 

d
L  is 

the maximum likelihood function where , 1i n i
D − +  is Poisson distributed with mean 

i
z ,  and by 

this expression the maximum likelihood estimator (MLE) of 
i

z  is found. The MLE of 
i

z  is 

, 1i n i
d − + , since , 1i n i

D − + , is Poisson distributed.  

 

Using the MLE of 
i

z  the estimator of the ultimate claim becomes: 

 

, 1

2

ˆ

1

i n i

in n

k

k n i

d
D

y

− +

= − +

=

− ∑
                        (2.15) 

 

For accident year n-j+1 this expression is 

 

1,

1,

1

ˆ

1

n j j

n j n n

k

k j

d
D

y

− +

− +

= +

=

− ∑
         (2.16) 

 

In expression (2.16) the only unknown parameter is ky . This can be determined by finding 

the MLE by using  L, but cL  may just as well be used. The logarithm of cL  is found, and the 

resulting expression is differentiated with respect to ky , for k = 1,…,n. This needs to be done 

recursively, in a procedure described by Renshaw (1998). The parameter ˆ
ny  is determined 

first, then 1
ˆ

ny −  and so on. The calculations of finding ˆ
ny  and the general formula for ˆ

jy  are 

shown below: 

 



 24 

( )
1 1 1

1
1 1 1 1 1

1

ln log log log
n n i n n i n i

j

c c ij ij j kn i
i j i j k

k

k

y
L l c c y y

y

− + − + − +

− +
= = = = =

=

 
    
 = ∝ = −  
    
 
 

∑ ∑ ∑∑ ∑
∑

  

1 11 1

1 1

1

0 0
ˆ ˆ 1

ˆ

n n
j jc n n

n
j jn n n

k

k

c cl c c

y y y
y= =

=

∂
= ⇒ − = − =

∂
∑ ∑
∑

 

 1 1

1
1

1

ˆ n n
n n

n
j

j

c c
y

d
c

=

⇒ = =

∑
                                                                          (2.17) 

1

1 1 1
, 11

1 1
1 1 1

1 1

0 0
ˆ ˆ

ˆ ˆ

n i

ijn j n j n j
ij ij i n ic k

n i n i
i j ij j j

k k

k k

c
c c dl

y y y
y y

− +

− + − + − +
− +=

− + − +
= = =

= =

   
   ∂
   = ⇒ − = − =

∂    
   
   

∑
∑ ∑ ∑

∑ ∑
 

1

1 1,1

1,2, 1

11
, 1 1

1
1

1

...
ˆ

...
ˆ ˆ ˆ1 1 ..

ˆ

n j

ij
j n j ji

j
n j jn

nn j
i n i n j n

n i
i

k

k

c
c c

y
dd

d
d y y y

y

− +

− +=

− +−

− +
− + +

− +
=

=

+ +
⇒ = =

 
+ + +  − − − −

 
 
 
 

∑

∑
∑

    (2.18) 

 

A maximum likelihood estimator of jy , for j =1,….,n is expressed in (2.18). The next step is 

to find an expression for the development factor ˆ
jf , by using the MLE ˆ

jy . By rearranging 

the chain-ladder equation in (2.11), it becomes an expression of the product of the 

development factors:  

 

1,

1 2

1,

ˆ
ˆ ˆ ˆ.....

n j n

j j n

n j j

D
f f f

d

− +

+ +

− +

=  
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Inserting the expression for 1,
ˆ

n j nD − +  from equation (2.16) and using the estimator ˆ
jy  instead 

of jy , the product of the development factors becomes:  

 

1 2

1 2

1ˆ ˆ ˆ....
ˆ ˆ ˆ1 ....

j j n

j j n

f f f
y y y

+ +

+ +

=
− − − −

      (2.19) 

 

and 

 

1

1

1ˆ ˆ ˆ....
ˆ ˆ ˆ1 ....

j j n

j j n

f f f
y y y

+

+

=
− − − −

       (2.20) 

 

By rearranging (2.19) an expression for 1 2
ˆ ˆ ˆ1 ....j j ny y y+ +− − − −  is derived, and this can be 

inserted in (2.20). Thus 

 

1

1 2

1ˆ ˆ ˆ....
1

ˆ
ˆ ˆ ˆ....

j j n

j

j j n

f f f

y
f f f

+

+ +

=

−

        (2.21) 

 

Finally an estimator of the development factor ˆ
jf  is found  

 

1 2

1ˆ
ˆ ˆ ˆˆ1 ....

j

j j j n

f
y f f f+ +

=
−

         (2.22) 
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Using the MLE of ny  from (2.17) the expression becomes 

 

1 1

1 1 1 1, 1

1

1 1ˆ
ˆ1

1

n n
n

nn n n n

n

d d
f

cy d c d

d
−

= = = =
− −

−

.      (2.23) 

 

The estimator obtained in (2.23) is the same as the chain-ladder estimator for j = n. To show 

that the rest of development factors in the Poisson model are the same as the chain-ladder 

development factors, induction can be used. Since it has been proven for j = n, the first part 

of the induction is completed. The next step is to find the general formula for ˆ
jf . To do this 

the expression for ˆ
jy  needs some simplification. Equation (2.18) gives an expression for 

ˆ
jy and the fractions in the denominator can be rewritten by using (2.19), (2.20) and 

equivalent. Thus: 

 

1 2 1,

1 1, 1 1, 1 2

...
ˆ

ˆ ˆ ˆ ˆ... ...

j j n j j

j

n n n n j j j j n

c c c
y

d d f d f f f

− +

− − + + +

+ + +
=

+ +
      (2.24) 

 

By examining the expression for ˆ
jy  one can also see that it is the proportion of the ultimate 

claim. The numerator counts incremental claims over all observed accident years for 

development year j, and the denominator counts the estimated ultimate claims over same 

accident years. Equation (2.22) is a general expression for ˆ
jf . The newly derived expression 

for ˆ
jy  is inserted in (2.22). Thus  

 

1 2 1,

1 2

1 2, 1 1, 1 2

1ˆ
.... ˆ ˆ ˆ1 ...

ˆ ˆ ˆ ˆ.... ...

j
j j n j j

j j n

n n n n j j j j n

f
c c c

f f f
d d f d f f f

− +

+ +

− − + + +

=
+ + +

−
+ + +

              (2.25)  
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This is the general formula. It has already been proven that the estimator for ˆ
nf is the chain-

ladder development factor.  

As part of the induction it is assumed that for k = j+1, …,n, ˆ
kf  equals the chain-

ladder development factor. The last step is to prove that ˆ
kf  equals the chain-ladder 

development factor for k = j.  

 

The denominator in (2.25) needs to be simplified, which can be done by showing that  

 

1

1 2, 1 1, 1 2 1 2

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ.... ... ...
n j

n n n n j j j j n j j n ij

i

d d f d f f f f f f d
− +

− − + + + + +
=

+ + + = ∑     (2.26) 

 

This is true for j = n-1 

 

( ) ( )1, 1,

1 2, 1 1 2, 1 1, 1 2, 1 1, 1 2, 1

1, 1 1, 1

ˆ ˆn n

n n n n n n n n n n

n n

d d
d d f d d d d f d d

d d
− − − − − −

− −

+ = + = + = +  

 

Similarly for j = n-2 the same relationship exist  

 

( )1 2, 1 3, 2 1 1, 1 2, 1 3, 2 1
ˆ ˆ ˆ ˆ ˆ

n n n n n n n n n n nd d f d f f f d d d f− − − − − − −+ + = + +  

                                          
( )

( )

1, 1 2, 1

1, 1 2, 1 3, 2 1

1, 2 2, 2

1 1, 2 2, 2 3, 2

ˆ ˆ

ˆ ˆ

n n

n n n n n

n n

n n n n n

d d
f d d d f

d d

f f d d d

− −

− − − −

− −

− − − −

+
= + +

+

= + +
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By performing this n-j times (2.26) is proven, and the equation for ˆ
jf  in (2.25) can be 

reduced to  

 

1 2 1,

1 21

1 2

1

1ˆ
.... ˆ ˆ ˆ1 ...

ˆ ˆ ˆ...

j
j j n j j

j j nn j

j j n ij

i

f
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f f f

f f f d

− +

+ +− +

+ +
=

=
+ + +

−

∑

 

                                   

1 1

1 1

1 1 1

, 1

1 1 1

n j n j

ij ij

i i

n j n j n j

ij ij i j

i i i

d d

d c d

− + − +

= =
− + − + − +

−
= = =

= =

−

∑ ∑

∑ ∑ ∑
                              (2.27) 

 

The induction proof is fulfilled since ˆ
jf  equals the chain-ladder development factor. It has 

been proved that using MLE in a Poisson model will produce exactly the same estimates as 

the chain-ladder method. 

2.4 The Poisson model and its relation to the negative binomial 

model 

The previous chapter started by considering ijC as a Poisson random variable. This is also the 

case here, but in this case the intensity of the Poisson distribution will also be stochastic. 

Through the following definitions Verral (2000) made a recursive model that connected the 

Poisson model and the Negative Binomial model.   

ijC  conditioned on ij ijZ z=  is Poisson distributed with mean 
ij j

j

z y

s
 where ( )ij ijz E D=  and 

1

j

j k

k

s y
=

=∑ . 



 29 

 

The variable ijZ  is denoted with the index j (in addition to index i) since this is a conditional 

model, where ( )ij ijz E D=  changes with development year j. Before any assumptions are 

made about ijZ ,  the relationship between ijZ  and , 1i jZ −  will be established:  

                 

( ) ( ) ( ), 1ij ij i j ijZ E D E D E C−= = + , 1

ij j

i j

j

Z y
Z

s
−= +  

                               

, 1

1

i j j

ij

j

Z s
Z

s

−

−

⇒ =                                                                                       (2.28) 

 

Given this relationship the distribution of ijC is: 

 

ijC  conditioned on , 1i jz −  is Poisson distributed with mean 
, 1

1

i j j

j

z y

s

−

−

    

  

The parameter jy  can still be considered as the column parameter, and is the probability of a 

claim to be reported in development year j. The factor 
, 1

1

i j

j

z

s

−

−

 gives the expected ultimate 

claim.  

 

The aim is to see that ijC  conditioned on the earlier observed claims 1 , 1,...,i i jc c −  is negative 

binomially distributed. In order to do this, it is necessary to make some assumptions about 
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, 1i jZ − . It is assumed that the distribution of , 1i jZ −  is known, so this model takes a Bayesian 

approach. In development year j, there are observations of claims up to development year j-1.  

It is assumed that: 

 

, 1i jZ −  conditioned on 1 , 1,...,i i jc c −  is gamma distributed with parameters α  and β   

 

By using standard Bayesian analysis one can find the distribution of , 1i jZ − conditioned on 

1 ,,...,i i jc c . In this case, the prior distribution ( )
, 1 1 , 1

, 1 1 , 1,...,
,...,

i j i i j
i j i i jZ C C

z c cπ
− −

− −  is the gamma 

distribution, the conditional distribution ( )
, 1

, 1
ij i j

ij i jC Z
f c z

−
−  is the Poisson distribution. The 

Bayesian formula is used to solve this problem is 

 

( )
, 1 1
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,...,

i j i ij
i j i ijZ C C
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( ) ( )

( ) ( )

, 1 , 1 1 , 1
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0
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,...,
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1
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−

 
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1

,
j
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j

y
c

s
α β

−

 
= Γ + +  

 
      (2.29) 
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The distribution of , 1i jZ − conditioned on 1,...,i ijc c  is found, and Verral (2000) proceeds by 

finding the distribution of ,i jZ  conditioned on 1,...,i ijc c . The relationship between , 1i jZ −  and 

jZ  is given by (2.28). By the simple transformation used below one can find 

 

( )
1 , 1 1

1 , 1

1 , 1 1,..., ,...,
,..., ,...,

ij i ij i j i ij

j i j

ij i ij i j j i ijZ C C Z C C
j ij

s dz
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s dz
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1

1
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s y
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s s
α β−

−

  
= Γ + +    

  
    (2.30) 

 

 

The calculations above yield the distribution of ijZ  conditioned on 1,...,i ijc c  and next it is 

interesting to find the distribution for every j, where j = 1,…,n. It is natural to start by finding 

the distribution for j =1. To do this it is necessary to assume a prior distribution of 1iZ . 

Verral (2000) assumes that ( ) ( )
1

1

1 1iZ i iz zπ
−

∝ . As in (2.29) the Bayesian formula can be used 

to find the distribution of 1iz  conditioned on 1ic : 
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1 1 1

1 1 1
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  (2.31) 
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The general formula was found in (2.30), and the specific formula is now found for the first 

case, (2.31). This distribution is the case when j = 2, and α = 1ic  and β  =1 in (2.30). Since 

(2.30) will produce the distribution for j = 3, when α  and β  is known, it is only necessary 

to insert these values so one can see that 

 

( ) ( )
2 1 2

1

2 1 2 1 2 2,

1

, , 1 ,1
i i i

j j

i i i i i iZ C C

j j

y s
z c c c c d

s s
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  
= Γ + + = Γ    
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   (2.32) 

 

To prove this for all j, induction can be used. The formula is assumed for k = j-1, that is 

( ) ( )
, 1 1 , 1

, 1 1 , 1 , 1,...,
,..., ,1

i j i i j
i j i i j i jZ C C

z c c dπ
− −

− − −= Γ . As done above, formula (2.30) can be used to 

prove it when k = j. 
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1

1
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,..., , 1 ,1
ij i ij
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   (2.33) 

 

The run-off triangle only have known values in the north-western corner, and to predict the 

rest of the values of ijC , it is desirable to find the distribution of ijC  conditioned on 

1 , 1,...,i i jc c − . This can be found by this calculation: 
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( )

( )

, 1

, 1 1 1

, 1

1 !
1

! 1 !

i j ij

ij

d c

i j j j

j jij i j

c c s s

s sc d

−

− − −

−

+ −    
= −      −    

    (2.34) 

 

Thus  

ijC conditioned on 1 , 1,...,i i jc c −  is negative binomial with mean 
, 1

1

i j j

j

d y

s

−

−

 and variance 

( )
, 1

2

1

i j j

j

d s

s

−

−

    

 

The chain-ladder development factors could also be expressed as a function of the column 

factors jy , where 
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1

1

1

1

j

k
jk

j j

j
k

k

y
s

f
s

y

=
−

−

=

= =
∑

∑
         (2.35) 

 

Accepting the definition in (2.35) reveals that the distribution of ijC  conditioned on 

1 , 1,...,i i jc c −  can be written only as a function of observed cumulative claims, and the 

development factors. The distribution of ijC  conditioned on 1 , 1,...,i i jc c −  is 

 

( )
( )

, 1

, 1

, 1

1 ! 1 1
1

! 1 !

i j ij

ij

d c

i j

j jij i j

d c

f fc d

−

−

−

+ −    
−      −    

       (2.36) 

  

where the mean and variance are ( ) , 11j i jf d −−  and ( ) , 11j j i jf f d −− .  

 

Since , 1ij i j ijD D C−= + , the distribution of ijD conditioned on 1 , 1,...,i i jc c −  is also negative 

binomially distributed, and the distribution is:   

 

( )
( )

, 1

, 1

, 1

1 ! 1 1
1

1 1! 1 !

i j ij

ij

d c

i j

j jij i j

d c

f fc d

−

−

−

+ −    
−      + +−    

      (2.37) 

 

and can be written as 
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( )
( ) ( )

, 1 , 1

, 1 , 1

1 ! 1 1
1

1 1! 1 !

i j ij i jd d d

ij

j jij i j i j

d

f fd d d

− −−

− −

−    
−      + +− −    

 

 

where the mean and variance is , 1j i jf d −  and ( ) , 11j j i jf f d −−     

  

The formulas in (2.36) and (2.37) show that it is unnecessary to condition on all the earlier 

incremental claims ( )1 , 1,...,i i jc c − , the distribution of ijD conditioned on , 1i jd −  is identical to 

(2.37). 

2.5 Mack’s model 

Mack  (1994b) proposed a distribution free stochastic model which produces equivalent 

results to the chain-ladder algorithm. As before, ijC  represents incremental change between 

development years j, and ijD  represents cumulative claims that occurred in accident year i 

and that are reported within development year j. The variable ijK  was defined in chapter 1.6, 

and the same definition is still valid. It is assumed that the first accident year is fully 

developed.  

 

Mack made three assumptions to define this model. They are as follows: 

 

1. There exist constants 2 ,..., nf f  such that ( ), , 1 , 1 , 1i j i j i j j i jE D K k f d− − −= =  for 2,..,j n=  

2. There exists constants 2 ,..., ng g  such that ( ), , 1 , 1 , 1i j i j i j j i jVar D K k g d− − −= =  for 2,..,j n=  

3. inK  and knK  are stochastically independent for i k≠ .  
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(Mack 1994b) 

 

The estimator ˆ
jf  in Mack’s model is the same as the chain-ladder development factor. The 

development factor ˆ
jf  is the same for all accident years within development year j, and 

because of this an assumption of independence between the accident years is made.  

 

The parameter jg  can be estimated by: 

 

2
1

,

, 1

1 , 1

1 ˆˆ
n j

i j

j i j j

i i j

d
g d f

n j d

− +

−
= −

 
= −  −  

∑  

 

Mack’s model is defined only by the three assumptions above. By looking into the identities 

( ),
j j

f g introduced in the assumptions it is possible to get a further understanding of the 

model. Mack presented this model in his paper (Mack 1994a), and the following results are 

from this article. The chain-ladder development factor will be examined first: 

  

The development factors ˆ
jf are unbiased estimators of 

j
f . Using the rule of double 

expectation it is clear that 

 

( ) ( )( )

1

,

1
1 11

, 1

1

ˆ ˆ

n j

i j

i
j j j jn j

i j

i

D

E f E E f K E E K

D

− +

=
− −− +

−
=

 
 
 = =
 
 
 

∑

∑
     (2.38) 
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∑

 

 

The last calculation used assumption 3. Since there is independence between inK  and knK , 

for i k≠ , it is only necessary to condition on the unknown values in the relevant accident 

year. Using assumption 1 it is easy to see that (2.38) equals 

 

                                             
1

, 11
1

, 1

1

1 n j

i j j jn j
i

i j

i

E D f f

D

− +

−− +
=

−
=

 
  
  = 
  
 
 

∑
∑

   (2.39) 

 

 This proves that ˆ
jf  is unbiased (Mack 1994a).  

 

The individual development factors are uncorrelated. This can be proved by showing that  

 

, 1 , 1

, 1 , 1

i k i kik ik

ik i k ik i k

D DD D
E E E

D D D D

+ +

− −

    
=       

    
                                   (2.40) 

 

For j k≤  it can be seen by using the rule of double expectation that 
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( ), 1 , 1

1 , 1 1

1
,..., ,...,

i k i k

i ik i k i ik

ij ij ij

D D
E E E D D E E D D D

D D D

+ +

+

      
= =            

      
   (2.41) 

                  1 1

1 ik
ik k k

ij ij

D
E D f f E

D D
+ +

   
= =      

   
 

 

From the second to the third step in (2.41), the conditioning makes ijD  known for j k≤ . 

The next step uses Mack’s first assumption. When  j = k , equation (2.41) is  

 

, 1

1 1

i k ik
k k

ik ik

D D
E f E f

D D

+

+ +

   
= =   

   
                             

 (2.42) 

 

When  j = k-1  (2.41) is 

 

, 1 , , 1

1

, , 1 , 1 , 1

i k i k i kik ik
k

i k i k i k ik i k

D D DD D
E f E E E

D D D D D

+ +

+

− − −

      
= =           

      
    (2.43) 

 

The first step in (2.43) used the identity found in (2.41), and the second step used the identity 

found in (2.42). This proves that the individual development factors are uncorrelated. This 

means that if it is natural to assume a small amount of claims after a development year with a 

large amount of claims, the chain-ladder development factor would not be suitable to predict 

future claims.  
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 The chain-ladder development factor is a weighted mean of the individual 

development factors. It is unbiased, and a desirable quality of an unbiased estimator is small 

variance. The unweighted mean of the individual development factors is also unbiased, 

which implies that the reason for using the chain-ladder development factor is because of a 

smaller variance. Mack’s second assumption determines the second moment. This is now 

explored:  

 

When ijD  are considered to be stochastic variables for i = 1,…,n and j = 1,…,n-i+1 also the 

development factor 

1

1

1

, 1

1

ˆ

n j

ij

i
j n j

i j

i

D

f

D

− +

=
− +

−
=

=
∑

∑
 for j = 2,…,n are stochastic variables. The individual 

development factor is written with capital letter ijF  when it is considered a stochastic 

variable. The chain-ladder development factor is a weighted mean of the individual 

development factors, and in general this can be written like: 

 

1

1

ˆ
n j

j ij ij

i

f W F
− +

=

= ∑    where  
1

1

1
n j

ij

i

W
− +

=

=∑       (2.44) 

 

The individual development factors ijF  are assumed to be uncorrelated and unbiased for 

1 i n≤ ≤ .The variance of ˆ
jf  conditioned on 1jk −  is 

 

( ) ( )
1 1

2

1 1 1

1 1

ˆ
n j n j

w

j j ij ij j ij ij j

i i

Var f k Var W F k w Var F k
− + − +

− − −
= =

 
= = 

 
∑ ∑    (2.45)  
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(2.45) is minimized with respect to ijW  where j = 1,…,n where the letter i denoting the 

accident year could have been removed since the variance is assumed to be equal for all 

accident years. The minimization must be done under the constraint on ijW (see (2.44)), and 

the method of Lagrange multipliers can be used. The Lagrangian function is defined as 

( ) ( ) ( ),L x k x g xλ λ= + , where k is the function to be minimized with respect to x, and g is 

the constraint, and λ  is the Lagrange multiplier. The minimum of (2.45) is: 

 

( )
1 1

2

1

1 1

1 0
n j n j

ij ij j ij

i ii

w Var F k w
w

λ
− + − +

−
= =

  ∂
+ − =  

∂   
∑ ∑  

 

This minimum of this function is found when the weights are inversely proportional to the 

variance of ijF : 

 

( )12
ij

ij j

w
Var F k

λ

−

=          (2.46) 

 

The weight should be inversely proportional to the variance if minimum variance is a goal. In 

other words, the variance of the individual development factors should be inversely 

proportional to the weights. The weight of the chain-ladder development factor is 
, 1

1

, 1

1

i j

n j

i j

i

d

d

−

− +

−
=

∑
.  

Thus, the variance of the individual development factor is inversely proportional to , 1i j
d − . 

The denominator in the fraction above can be replaced by a proportionality constant.  Mack’s 

third assumption can be rewritten so that it is clear that the chain-ladder factor actually is the 

estimator with minimal variance:   
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1

, 1 , 1

ij j

j

i j i j

D g
Var k

D d
−

− −

 
=  

 
        (2.47) 

 

(2.47) is inversely proportional to the weight , 1i j
d − , and is multiplied with a proportionality 

constant 
j

g .  

 

The parameter 
j

g  needs to be estimated. The proposed estimator is for j = 2,…n 

 

2
1

, 1

1 , 1

1 ˆˆ
n j

ij

j i j j

i i j

d
g d f

n j d

− +

−
= −

 
= −  −  

∑          

 

This estimator is unbiased, and it will be proven that ( )ˆ
j j

E g g= . First the identity 

( ) ( )1
ˆ

j j
n j E g k −−  will be recovered, and this property can be used to see that 

( ) ( )( )1
ˆ ˆ

j j j jE g E E g k g−= = . The well known trick of adding and subtracting a constant will 

be used. In this case the constant
j

f  will be used. 
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The chain-ladder factor is a weighted mean of the individual development factors. Using 

Mack’s third assumption it is clear that ( ), 0
kj lj

Cov F F =   for k l≠ , and because of this it can 

be seen that 

( ) ( ) ( ), 1 , 1

1 1 1 11 1

, 1 , 1

1 1

ˆ, , ,
i j i j

ij j j ij ij ij j ij ij j ij jn j n j

l j l j

l l

D d
Cov F f k Cov F w F k Cov F F k Var F k

D d
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− − − −− + − +

− −
= =

 
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 
 
 

∑ ∑
 

By using this property and Mack’s first and second assumption equation (2.48) can be 

written as  

 

( ) ( ) ( )
1

1

1

ˆ 2
n j

j j j j j j

i

n j E g k g g g n j g
− +

−
=

 
− = − + = − 

 
∑  

 

Using the rule of double expectations, it is clear that ˆ
j

g  is an unbiased estimator for 
j

g  

  

( ) ( )( ) ( )1
ˆ ˆ

j j j j jE g E E g k E g g−= = =  



 43 

2.6 Mack’s model and its connection to the compound Poisson 

distribution 

Neuhaus (2006) states that if the incremental claims 
ij

C , conditioned on the development up 

to year 1j − , is distributed as compound Poisson variables, this will imply the same model 

assumptions as Mack suggested. Let 

 

ij
C  conditioned on 

j
k  be compound Poisson ( )j

H distributed   (2.49) 

 

and 

 

1 ( )
j j

f udH u

∞

−∞

− = ∫  and 2 ( ).
j j

g u dH u

∞

−∞

= ∫       (2.50) 

 

U is the intensity of the claim, and U has the distribution 
j

H . It will now be proven that 

using (2.49) and (2.50) will lead to Mack’s assumptions. 

 

The definition of the cumulative and incremental claims gives 

 

( ) ( ) ( ) ( ), 1 , 1 , 1 , 1 , 1 , 1ij i j i j i j ij i j i j ij i j
E D k E D k E C k d E C k− − − − − −= + = + .  (2.51) 
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By Mack’s model we have that  ( ), 1 , 1ij i j j i j
E D k f d− −=  and this assumption combined with 

the formula above gives us  

 

, 1 , 1( ) ( 1)
ij i j j i j

E C k f d− −= −         (2.52) 

 

Since 
ij

C  is a compound Poisson variable we have from (2.2) that ( ) ( ) ( )ij
E C E N E U= , 

where N is the number of claims. We may condition on , 1i j
k − , since the claim number 

process have independent increments and the claim number process is independent of the 

claim amount process. Since U  has distribution 
j

H  we find that  

 

( ) ( ) ( ), 1 , 1 , 1ij i j i j i j
E C k E N k E U k− − −=                                                                    (2.53) 

                     
( ), 1

, 1

( )

( 1)

i j j

i j j

E N k UdH U

d f

∞

−

−∞

−

=

= −

∫
 

 

The last calculation is obtained since ( ) 1j jUdH U f

∞

−∞

= −∫  and by letting the Poisson 

parameter be proportional or equal to , 1i jd − . By adding , 1i jD −  on both sides of (2.53) we have 

confirmed assumption number 1. 

 

Assumption nr 2 can be shown in a similar way. We have that 

 

( ) ( ) ( ), 1 , 1 , 1 , 1( )ij i j i j ij i j ij i jVar D k Var D C k Var C k− − − −= + =  .    (2.54) 
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The variance of a compound Poisson variable is stated in formula (2.3). If we let ijD  be the 

claim amount, λ  is the parameter of the Poisson distributed variable N, and U is the size of a 

claim, we have that 

 

( ) ( )
2 2( )ijVar D VarU EU E Uλ λ λ= + =       (2.55) 

 

In order to see the how the compound Poisson model and Mack’s model are related, these 

two properties can be compared:  

 

( ) ( ), 1 , 1 , 1ij i j ij i j i j jVar D k Var C k d g− − −= =                                        (2.56) 

 

 

( )2 2 ( )j jE U U dH U gλ λ λ
∞

−∞

= =∫         (2.57) 

 

The Poisson intensity is proportional or equal to , 1i jd − , and this shows that the compound 

Poisson model also satisfies Mack’s second assumption.  

2.7 Negative incremental claims 

Negative incremental claims are a consequence of already reported claims which are being 

reduced or diminished. By this definition no cumulative claims can occur. Negative 

incremental claims can occur because of salvage, conservative case estimates or subrogation 
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(Kunkler 2006). Subrogation is a technique that insurance companies use when a claim has 

been covered, but there is a third party who can be held responsible for the claim. The 

insurance company makes a claim for compensation by the third party.  

There have been proposed different solutions on how to handle negative incremental 

claims. One method involves adding a positive constant to all incremental claims. After the 

analysis is completed, the constant is subtracted. This method provides suitable results as 

long as there are not too many negative claims. On the other hand, this procedure makes the 

variability of the result depend on the constant added earlier, which cannot be considered 

reasonable (Kunkler 2006). If the negative claims are not manipulated as suggested above, 

the model to be used needs to handle negative claims. If the distribution is specified in the 

model, it needs to be defined for negative as well as for the positive numbers. A suitable 

candidate is the normal distribution, which is defined for both positive and negative 

numbers.  

2.8 Predictions and prediction errors 

The south-eastern corner of the run-off triangle is filled with point estimates, ˆ
ijD . The last 

development year represents the ultimate claim ˆ
inD  for i = 2,...,n. It is desirable to find a 

measure of the variability of this point estimate. The mean squared error (MSE) might be an 

appropriate measure. The formula for the MSE of ˆ
inD  will be found below.  Root mean 

squared error of prediction (RMSE) will be used as a measure of prediction error. MSE will 

also be referred to as the prediction variance. 

  

There are already observed values in the north-western corner in the run-off triangle. The 

MSE should take these into account, and because of this the MSE is conditioned on k. To 

simplify notation, it will only be referred to as MSE of ˆ
inD (not the conditional MSE). The 

MSE of ˆ
inD  is: 
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( )( ) ( ) ( )( )( )2 2
ˆ ˆ

in in in in in inE D D k E D E D E D D k− = − + −                                        (2.58) 

         ( ) ( )( )
2

ˆ
in in inVar D k E E D k D= + −     (2.59) 

         ( ) ( )( )
2

ˆ
in in inVar D k E D k D= + −     (2.60) 

 

Since ( )inE D k  and ˆ
inD  only are a scalars, the outer expectation is removed in the second 

term of (2.59), and it is only necessary to condition on k on the stochastic variable inD . The 

first term in (2.60) is the variance around the true value inD , and it will always be present.   

The second term in (2.60) is a measure on how much the predictor ˆ
inD  misses its target 

( )inE D k , and is referred to as the estimation variance (Mack 1994a). 
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3. Analysis of data from auto liability insurance claims 

using stochastic chain ladder models 

3.1 Sample 

The data set used in the analysis is a set of claims data for auto liability insurance from 

TrygVesta. The insurance claims were organized by accident year and development year. It 

contained the number of reported claims, the amount of claims that had been paid, the 

number of RBNS- claims, the amount of reserves for RBNS-claims combined with paid 

claims and the number of settled claims. 

The data set containing the number and amount of claims will be used when fitting 

the stochastic chain-ladder models. No analysis has been made on this set of data and no 

reserve has been added, and because of this, these observations seem to be the most 

appropriate for further analysis. By using these observations I will make predictions of total 

number and total amount of future claims. The data sets are presented in Appendix 1.  

As mentioned in the introduction it is the IBNR-claims that are interesting to predict. 

The paid amount in an early development year is used to predict total future payments. The 

prediction of amount of claims contains both the RBNS-payments and the IBNR-payments. 

The insurance company might have been notified of a claim and have made a reserve 

estimate for this claim. Finding the IBNR-claims one simply has to withdraw the RBNS-

claims. Since the insurance company has no information before the first notification of the 

claim, the number of claims from the set of data is equal to the number of IBNR-claims. 

 Given the run-off triangle as illustrated in figure 1, it is natural to calculate the rest of 

the triangle, but more importantly the ultimate claim ˆ
inD . The insurance company needs a 

reserve, iR ,  to cover future claims. We have that , 1
ˆ ˆ

i in i n iR D D − += − . The estimates of iR  with 

corresponding prediction errors will be presented in tables. 
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3.2 Stochastic models in the analysis 

Both sets of data contain negative incremental claims. This limits some of the stochastic 

models introduced earlier. Neither the Poisson model nor the negative binomial model can 

contain negative incremental claims if the regular maximum likelihood estimator of the 

parameters is used. As long as the sum of the incremental claims belonging to one 

development year is not negative, this problem can be solved by using a quasi log-likelihood 

(Renshaw 1998). In the data set to be used in this analysis, several negative claims occur, 

particularly in development year two. Even the sum of number of incremental claims turns 

out to be negative, which excludes the possibility of using the Poisson or the negative 

binomial model. The close connection between the Poisson and Negative Binomial model is 

described earlier, and a normal approximation to the Negative Binomial model can be used. 

This model can handle the negative numbers, and can also generate reserve estimates and 

prediction errors.  

Mack’s model is also used to find reserve estimates and prediction errors. Mack’s 

model only makes assumption regarding the two first moments, and there seem to be no 

obvious reason why this would be a problem when negative claims occur as long as the 

cumulative claims are positive.  

3.3 A critical view on the stochastic chain-ladder assumptions 

The two models used in the analysis make similar assumptions regarding the two first 

moments. First, it is assumed that a linear relationship between an insurance claim in 

development year j+1 and a claim in development year j exists, and that the factor in the 

linear relationship is the chain-ladder factor. A corresponding linear relationship is assumed 

to exist for the second moment as well. Before applying the models to the data set, these 

assumptions will be explored. 
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3.3.1 The chain-ladder bias 

The chain-ladder model assumes a linear relationship in claims between the development 

years where the chain-ladder development factor is used. The chain-ladder method contains 

no intercept, and in this situation it is interesting to see whether a linear model with intercept 

would predict future claims even better. Halliwell (2007) suggested that the bias of chain-

ladder method could be tested by comparing the more general linear model where the 

intercept was not forced to pass through origin.  

 

The linear relationship that is assumed in the two models is: 

 

( ), 1 , 1ij i j j i jE D d f d− −=                                                                                                  (3.1) 

 

A more general linear model could be expressed like 

 

, 1ij o j i jD dβ β ε−= + +          (3.2) 

 

where ijD  is a stochastic variable, , 1i jd −  is considered known, 0β  and jβ  are parameters 

which need to be estimated, ε  is the error term and must follow the same distribution as ijD . 

Three models will be fitted to the data. The difference between the three models is the 

change of estimators of 0β  and jβ . The estimators that will be used is the chain-ladder 

development factor ˆ
jf  and the least square estimators  0

ˆ LS
f  and ˆ LS

jf . The three models are 

 

• The chain-ladder model, ˆ 0oβ =  and ˆˆ
j jfβ =  

• The general model, ˆˆ LS

o jfβ =  and ˆˆ LS

j jfβ =  
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• The restricted model, ˆ 0oβ =  and ˆˆ LS

j jfβ =  

 

The general model offers more flexibility because of the possibility of a second parameter, 

the intercept. It is logical to assume that this model can better be fitted to a data set than the 

two other models. This assumption is the basis for assessing the bias of the chain-ladder 

method.  

 The three models were fitted to the data set of the number and the amount of claims. 

The two data sets have 18 development years which can be compared with the previous 

development year. At least three observations are needed in each development year, so it is 

possible to make 16 plots, but the analysis with just a few observations are less trustworthy. 

The general linear model and the restricted linear model are made in R by using the 

following commands: 

 

lm(developmentyear(j+1)~developmentyear(j)-1) 

lm(developmentyear(j+1)~developmentyear(j)) 

 

The graphic results are presented below. Although the models were tested for all 

development years only a few plots are presented. The three different models ended up 

having almost identical estimates of the parameters in the plots of the following development 

years. 
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Figure 4. Three linear models fitted to the cumulative data of the number of claims. The data of development 

year 2 are plotted as a function of the date in development year 1. 
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Figure 5. Three linear models are fitted to the cumulative data of the amount of claims. The data are plotted as 

a function of the previous development year. The three different plots are made for development year 2, 3 and 

4. 

  

The assumption regarding linearity of the first moment has not really been challenged.  

However, by examining the graphic results visually, it seems that a linear model of the form 

(3.2) fits the data sets well. If further investigation seemed necessary an analysis of variance 

could have been performed. The linear relationship in the first moment is accepted, and the 

focus of this analysis is the chain ladder bias.    
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 The linear models of the number of claims are almost identical already in the first 

development year, but some differences can be mentioned. Both the chain-ladder and the 

restricted model are forced to pass through origin, and seem to result in a slight 

underestimation of the claims of the early accident years compared to the general model. It 

could also be an underestimation of the small claims, since claims in the early accident years 

seem to be smaller than claims in the late accident years. The derivative (gradient) of the 

chain-ladder model and the restricted model is greater to compensate for the positive 

intercept in the general model, and the two models might overestimate claims either in the 

late accident years or the greater claims than the general model.      

To examine the chain-ladder bias, it is assumed that the general model is better than 

the two others. If 0β  is significantly different from zero, it would give reason to believe that 

the chain-ladder method is biased. To make inferences regarding the first parameter 0β  a 

distribution of the claims ijD  can be assumed. If  ijD  is assumed to follow a normal 

distribution, the t-values of the parameter would a follow a students t-distribution with  n-2 

degrees of freedom. Using a level of significance of 0,1 development year 2 and 9 showed 

significant results for the first parameter 0β  (see Appendix 3). This implies that a linear 

model containing an intercept that is different from zero would fit the data even better for 

these development years.  

 The three plots for the amount of claims show that for a higher development year the 

models become more similar. After development year 3 they are almost identical. The linear 

models of the amount of claims show more diverging behaviour than the models for the 

number of claims. The same trend is apparent as for the number of claims. The general 

model has a positive intercept for all the three development years displayed above, which 

forces the chain-ladder model and the restricted model to compensate with a higher gradient. 

The gradient of the chain-ladder model even exceeds the gradient of the restricted model.  

 If the claims ijD  are assumed to follow a normal distribution, estimates of 0β  that are 

significantly different from zero were obtained for development year 2 and 3 (using a level of 

significance of 0,1). Only 5 of 16 parameter estimates were negative for the number of 

claims. Three negative estimates of the parameter 0β   were calculated for the data set of the 

amount of claims. This implies that the intercept should be positive. Whether it is 
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underestimation of small claims and overestimation of larger claims, or underestimation in 

the early accident years and overestimation in the late accident years is difficult to determine 

from these analyses.  

 

3.3.2 The variance of claims 

The two models to be used in the analysis have the same formulation in the variance 

assumption:  

 

( )1 , 1ij j j i jVar D k c d− −=    where jc  is a constant     (3.3) 

 

The chain-ladder development factor is a weighted mean of the individual development 

factors, and it was proved in (2.46) that the variance of the chain-ladder development factor 

needed to be inversely proportional with the weights. The equivalent variance assumption of 

ijD  is given in  (3.3). If another development factor is chosen, the variance assumption might 

need to be altered to attain minimum variance. Two other development factors are suggested 

as alternative development factors, and they are also a weighted mean of the individual 

development factors. These are   
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             where 2

, 1ij i jw d −=  for i = 1,...,n-j+1  

 

ˆ mean

jf  is the mean of the individual development factors and ˆ ls

jf  is the least square estimator 

of the individual development factors. A residual analysis can be performed using the 

different development factors and the belonging variance assumption that can be derived 

from (2.46).  

 

The three residual plots become 

 

, 1

, 1

, 1

, 1

, 1

ˆ

1

ˆ

ˆ
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The three residual plots are produced for all j.  mean

ijr  assumes ijD  has constant variance, ijr  

assumes ijD has variance proportional to , 1i jd −  and ls

ijr  assumes ijD has variance proportional 

to 2

, 1i jd − . If one of the residuals above seems to have a more random behaviour, the choice of 

development factor should be reconsidered.  

 

These residual plots were created for the data set of number and amount of claims. Of the 19 

development years in the data set, 14 have 6 or more observations and residual plots were 

created for these. It was searched for a possible development in the variance, a trend or 
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difference between the development factors. The three residual plots for development year 2 

and 3 are presented below for the number of claims. The residual plots are by visual 

examination identical for the three different development factors (only the scale of the y-axis 

deviates). Because of the likeness of the plots, only the results using ijr is included in 

Appendix 4 for the rest of the development years for the number of claims and the amount of 

claims. 
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Residuals of development year 2   Residuals of development year 3 

 

 

 

 

 

Figure 6. The three residual plots on the left side are 2

mean

ir , 2ir  and 2

ls

ir  plotted against claims of development 

year 1 for the number of claims. The three residual plots on the right side are 3

mean

ir , 3ir  and 3

ls

ir  plotted against 

claims of development year 2 for the number of claims. The variance assumption belonging to the residual is 

written above all the plots.     
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The residual plots for the number of claims are examined first. The three different 

development factors create strikingly similar residual plots. It seems there is no difference in 

the random behaviour of three development factors. There is an overrepresentation of 

positive residuals for small claims, and negative residuals for large claims. This suggests that 

there is a trend, which also was barely visible in the linear model created in the previous 

chapter. This trend is equally present for all development factors. After development year 9 

the trend is no longer visible, but at that point the run-off triangle is almost fully developed. 

In development year 6, 7 and 8 the residuals are larger for small claims and the residuals are 

smaller for large claims, and this is equally present for the three development factors.  

 In the data set of the amount of claims the downward trend is visible for the first two 

development years and development year 6. Other than this the data set shows are more 

random behaviour in the residual plots. The exception is development year 7 which seems to 

show a non-random behaviour.  

 Neither of the development factors compute purely random residual plots. The trend 

could probably be removed by including a second parameter in the model, the intercept. 

Since there is almost no difference between the development factors ˆ
jf , ˆ mean

jf  , ˆ ls

jf , the 

usage of the chain-ladder development factor and its corresponding variance assumption will 

be continued.  

3.4 Normal approximation to the negative binomial distribution 

3.4.1 The model 

A normal approximation to the negative binomial model was used to analyze that data set 

from TrygVesta. First the model is introduced generally. A linear and a generalized linear 

model will be fitted to the data in the process of predicting future claims. This will be 

presented in general formulas, but it will also be exemplified by using the dimensions of the 

data set from TrygVesta.  
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The negative binomial model was presented in (2.37), and the mean and variance of ijD  

conditioned on , 1i jd −  was: 

 

( ), 1 , 1ij i j j i jE D d f d− −=   and ( ) ( ), 1 , 11ij i j j j i jVar D d f f d− −= −   2,...,j n=  (3.4) 

 

Because of the negative incremental claims in the data set the development factor becomes 

smaller than one, and this produces negative variance. The model to be used needs to handle 

positive and negative values of incremental claims. The normal distribution is a possibility. 

Since the negative binomial model does not fit the data set, the conditional distribution of 

ijD  is instead assumed to approximately follow a normal distribution.  

 In this analysis the focus will be on the quantities ijf , the individual development 

factors. In the model ijF  is considered a stochastic variable, and from the data set there are 

observed values of ijf  which are realizations of ijF . ijf  is observed in the north-western 

corner of the run-off triangle. ˆ
ijf  is the predicted value of ijf  which will replace the empty 

spots in the south-eastern corner of the run-off triangle. These are approximately 

independently and normally distributed within the development year j.  

 

Let 
ij

ij

ij

D
F

w
=   where , 1ij i jw d −= . The mean and variance are 

 

, 1

ij

i j j

ij

D
E d f

w
−

 
=  

 
 and  , 1

ij j

i j

ij ij

D
Var d

w w

φ
−

 
=  

 
         (3.5)   
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The variable ijw  has been introduced because  a weighted linear model will be used in the 

analysis of finding the unknown individual development factors. The weights in the analysis 

are 
ij

ij

j

w
W

φ
= . The weights are inversely proportional with the variance, so that data with a 

greater variance is less weighted. The variance component depends on the development year, 

and will also need to be estimated.  

 

The linear model is as follows 

 

( ) 1ij jE F c α −= +  for 2j ≥ ,  and with a restriction  1 0α =    (3.6) 

 

It is assumed ijF  is independent, and it should be noted that the model does not condition on 

the latest observation in accident year i, , 1i n id − + .  Since ijF  is normally distributed, the link 

function is only the identity function. In order to find estimates of both ijf  and jφ  joint 

modelling can be used. This technique is described in (Renshaw 1994;Verrall & England 

2002). The technique will be described here using the data set from TrygVesta.  

 Figure 1 displayed two run-off triangles for claims ijc  and ijd , and the belonging run-

off triangle for development factors, ijf , had a smaller dimension by one.  A run-off triangle 

of cumulative claims, ijd , with dimension 19x19 has a corresponding run-off triangle of ijf  

with dimension 18x18. Only the values in the north-western corner are known values, and 

these will be used as response variables as shown in the linear model in (3.6). There are 171 

( )19i j+ ≤  known values of ijf , and there are 153 ( )2, 18j i j≥ + <  values of ˆ
ijf  to be 

predicted in the south-eastern corner of the run-off triangle. For development year j all 

predicted values, ˆ
ijf ,  will be equal, and the subscript i could have been left out.  

 The two data sets from TrygVesta containing the number and the amount of claims 

both have an empty spot for accident year 1 and development year 1. This means that there 
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are only 170 observations as opposed to 171 which one generally would have from a run-off 

triangle with dimension 19x19. This results in a missing observations in the vector f and one 

less row in the design matrix. When fitting the linear model in the statistical software 

programme R, ijf  is rearranged as a vector of dimension 170x1. The linear model in (3.6) 

can be written on vector form 

 

( )E =F Xθ                                                                                                       (3.7) 

     

where F is the response variable. X is the design matrix, andθ is the parameter to be 

estimated. The vector f and the parameter,θ  will be  

 

      2,2 18,2 1,3 17,3 1,19... ... ...f f f f f =  
Tf    and    

      [ ]2 3 4 5 18... ...c α α α α α=T
θ                                                             (3.8)   

    

The vector θ  has dimension 18x1. The design matrix can now be defined. In this format the 

linear model will have a design matrix of dimension 170x18.  In the vector f there are 18 

development years. The design matrix can be presented for each development year, and the 

corresponding dimension is written on the right hand side 

   

Development year  1  [ ]1 0 0 .. .. 0  ( )17 x18     (3.9) 

Development year  2   [ ]1 1 0 .. .. 0   ( )17 x18  

Development year  3  [ ]1 0 1 0 .. 0   ( )16 x18  

…. 

Development year  18  [ ]1 0 0 .. 0 1   ( )1x18  
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The weights used in the linear model may be formulated as a vector. It will have a similar 

structure as f. Notice that in addition to the known values of ijw , the variables jφ  are 

unknown, but they are only dependent on the development year. W can be written like this: 

 

1,2 18,2 1,3 17,3 1,19

2 2 3 3 19

... ... ...
w w w w w

φ φ φ φ φ

 
=  
 

TW                                                                                                                      

 

Arbitrary values for jφ  are chosen. To make it simple, the first set of jφ  are set equal to 1. 

The linear model in (3.7) can be solved in R by the command: 

 

lm.wfit(f, W, X) 

 

This command produces an estimate for the parameter θ , and by the linear combination an 

estimate for f can be obtained. Since the values of jφ still are unknown, a second linear 

model needs to be fitted. The second model uses the residuals squared as the new response 

variables. Let 2

ijr  be the residuals squared, and they are defined as 

 

2 2ˆ( )ij ij ij ijr w f f= −                                                                                                         (3.11)  

 

The generalized linear model to be fitted is 

 

( )( )2

2 1ij jg E R c γ −= +    for i = 1,...,n-j+1   and  j = 1,...,n                                         (3.12) 
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This is a “generalized” linear model since 2

ijR  can not be directly explained through a linear 

model. A link function (g), makes it possible to let 2

ijR  be explained through a linear model. 

This link function is closely related to the distribution of the response variable.   

 

Since 
ijF  is normally distributed with mean jf  and variance

j

ijw

φ
, ( )ˆ

ij ij ij ijR w f f= −  is 

normally distributed with ( )ijE R = 0 and ( )ij jVar R φ= . Thus 
( )

2
2 ˆ

ij ijij

ij

j j

f fR
w

φ φ

−
=  is chi-

squared distributed with 

2

1
ij

j

R
E

φ

 
=  

 
 and 

2

2
ij

j

R
Var

φ

 
=  

 
. The mean and variance of the 

response variable 2

ijR  is ( )2

ij jE R φ=  and ( )2 22ij jVar R φ= . Let c be the chi-squared 

distribution of the variable 

2

ij

j

R

φ
, and let the new variable 2

ijZ R=   be distributed with function 

f.  The distribution f can be found through a linear transformation of c 

 

( ) 2

1/2 1
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/
1/2

1 1

1
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j j j
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           (3.13) 

           

( )

21/2

1/2

1

1
2

2

j

z

j

z e
φ

φ

 
− 
 −  =

 
Γ  
 

 

 

It is now clear that (3.13) is the gamma distribution with parameters 
1

2
 and 2 jφ . The 

canonical link function of a gamma distribution is the inverse function (McCullagh & Nelder 

1989). There are other possible link functions to the gamma distribution. This is the identity 

and the log function. Verral (2000) suggested using the log function. The different link 
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functions were tested for the data sets from TrygVesta. Using the log link function indeed 

showed a linear relationship as opposed to the other link functions.  

 

The generalized linear model written in vector form is 

 

( )2( )g E g  = =  1R µ Xθ                    (3.14) 

 

where g is the link function and ( ) ( )logg =µ µ . The response variable 2R  and the parameter 

vector 1θ , have the same format as the response variable  f and the parameter vector θ in  

(3.7). The identity matrix X is equivalent to the identity matrix in (3.7). 

 

In R this can be done with the function: 

 

glm.fit( R,W,X, Gamma(link = log)  

 

New values for jφ
 
, j = 2,...,18 can be obtained. 19φ  can not be obtained since there is only 

one residual in the general linear model. The results that are presented later use two different 

options, 19 18φ φ=  and 19 17φ φ= .  

 

The weight W is updated with new values of jφ .  Estimates of c and jα  for j = 2,..18 are 

derived through the first linear model yet another time. The development factors can be 

calculated from these estimates. This is the joint modelling process.  
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The predicted values of ijf  can now be found through 

 

( ) ( ) ( )153x1 153x18 18x1

ˆ ˆ=p pf X θ          (3.15) 

 

where pf  is the vector of the predicted values of f, pX  is the design matrix of the predicted 

development factors and θ̂ is the vector of the parameter estimates. Like the observations of 

ijf , the predicted values of ijf  will be lined up as a vector. The vector pf  and θ̂  can be 

written like 

 

( ) 19,2 18,3 19,3 17,4 18,4 19,4 19,19...f f f f f f f =  
T

pf   and 

     [ ]2 3 4 5 18
ˆ ˆ ˆ ˆ ˆ ˆˆ ... ...c α α α α α=T
θ  

 

The design matrix for the different development years of the predicted values are presented 

below with the corresponding dimension written on the right hand side. 

 

Development year  2   [ ]1 1 0 .. .. 0   ( )1x18  

Development year  3  [ ]1 0 1 0 .. 0   ( )2 x18  

…. 

Development year  18  [ ]1 0 0 .. 0 1   ( )17 x18  
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It is desirable to find the standard errors of the parameters and of the development factors in 

the linear model. The theoretical calculation is shown below.
 

 

Let -1Σ  be a matrix with dimension 170x170. All the elements are zero except the diagonal 

which is the weight W. The variance of the parameter θ  can be found from the diagonal of 

the matrix ( ) ( )Var =
-1

T -1θ X Σ X . This is a matrix of dimension 18x18, and the square root of 

the diagonal produces the standard error.  

 

It is also interesting to find the variance of f. The covariance matrix of f, with the 

corresponding dimensions written underneath the matrices, is  

 

( )
( )

( ) ( )
18x18 18x153153x18153x153

ˆCov
-1 T

p T -1 pf = X X Σ X X          (3.16) 

 

Joint modelling have produced estimates of the parameters in the first linear model, of the 

development factor jf   and of the variance component jφ . It has been demonstrated how to 

find the standard errors of the parameters in the first linear model and the development 

factors. The results are presented below in tables 1-6. 
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Parameter Estimate Standard 

error 

 

C 

 

0,947 

 

0,014 

Alfa2 0,060 0,014 

Alfa3 0,080 0,014 

Alfa4 0,075 0,014 

Alfa5 0,070 0,014 

Alfa6 0,064 0,014 

Alfa7 0,064 0,014 

Alfa8 0,062 0,014 

Alfa9 0,061 0,014 

Alfa10 0,059 0,014 

Alfa11 0,057 0,014 

Alfa12 0,057 0,014 

Alfa13 0,054 0,014 

Alfa14 0,055 0,014 

Alfa15 0,056 0,014 

Alfa16 0,056 0,014 

Alfa17 0,056 0,014 

Alfa18 0,057 0,014 

Table 1. Estimates of the parameters for 

the number of claims in the linear model. 



 69 

 

Parameter Estimate  Parameter Estimate Standard 

error 

  

 

    

Phi2 3,678   Dev. Factor 2 0,947 0,006 

Phi3 0,320   Dev. Factor 3 1,007 0,004 

Phi4 0,328   Dev. Factor 4 1,027 0,004 

Phi5 0,125   Dev. Factor 5 1,022 0,003 

Phi6 0,056   Dev. Factor 6 1,017 0,002 

Phi7 0,012   Dev. Factor 7 1,011 0,001 

Phi8 0,032   Dev. Factor 8 1,010 0,002 

Phi9 0,017   Dev. Factor 9 1,009 0,001 

Phi10 0,021   Dev. Factor 10 1,008 0,001 

phi11 0,009   Dev. Factor 11 1,005 0,001 

phi12 0,002   Dev. Factor 12 1,004 0,001 

phi13 0,007   Dev. Factor 13 1,003 0,001 

phi14 0,002   Dev. Factor 14 1,000 0,001 

phi15 0,000   Dev. Factor 15 1,001 0,0003 

phi16 0,004   Dev. Factor 16 1,002 0,001 

phi17 0,005   Dev. Factor 17 1,003 0,002 

phi18 0,001   Dev. Factor 18 1,002 0,001 

phi19 -   Dev. Factor 19 1,003 0,001 

Table 2. Estimates of phi                 Table 3. Estimates of the development factors  

for the number of claims                   and their standard errors for the number of claims 

 

Parameter Estimate Standard 

error 

C 3,215 0,163 

Alfa2 -1,252 0,190 

Alfa3 -1,553 0,169 

Alfa4 -1,827 0,163 

Alfa5 -1,976 0,163 

Alfa6 -2,067 0,163 

Alfa7 -2,133 0,163 

Alfa8 -2,152 0,163 

Alfa9 -2,183 0,163 

Alfa10 -2,180 0,163 

Alfa11 -2,193 0,163 

Alfa12 -2,203 0,163 

Alfa13 -2,193 0,163 

Alfa14 -2,207 0,163 

Alfa15 -2,211 0,163 

Alfa16 -2,214 0,163 

Alfa17 -2,207 0,163 

Alfa18 -2,215 0,163 

Table 4. Estimates of the parameters for the amount of claims in the linear model. 
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Parameter Estimate Parameter Estimate Standard error 

Phi2 2,266 

 

Dev.factor 2 3,215 0,163 

Phi3 2,498  Dev.factor 3 1,963 0,098 

Phi4 0,934  Dev.factor 4 1,663 0,045 

Phi5 0,199  Dev.factor 5 1,388 0,017 

Phi6 0,208  Dev.factor 6 1,239 0,015 

Phi7 0,219  Dev.factor 7 1,148 0,015 

Phi8 0,099  Dev.factor 8 1,083 0,010 

Phi9 0,08  Dev.factor 9 1,063 0,009 

Phi10 0,021  Dev.factor 10 1,032 0,005 

phi11 0,029  Dev.factor 11 1,036 0,006 

phi12 0,021  Dev.factor 12 1,022 0,005 

phi13 0,006  Dev.factor 13 1,013 0,003 

phi14 0,001  Dev.factor 14 1,023 0,002 

phi15 0,003  Dev.factor 15 1,008 0,003 

phi16 0,010  Dev.factor 16 1,005 0,006 

phi17 0,0002  Dev.factor 17 1,002 0,001 

phi18 0,004  Dev.factor 18 1,008 0,007 

phi19 -  Dev.factor 19 1,000 0,011 

Table 5. Estimates of phi                        Table 6.Estimates of the development factors  

for the amount of claims                          and their standard errors for the amount of claims 

 

3.4.2 Reserve predictions and prediction errors 

When estimates of the development factors are found, claim estimates can be made. The 

empty spots in the run-off triangle can be estimated using the model in (3.4). The ultimate 

claim estimate ˆ
inD  is calculated using the chain-ladder equation (1.6).  The reserve estimate 

can be calculated since there is a simple connection between the reserve and the ultimate 

claim. The reserve is , 1i in i n iR D d − += − , and equivalently the reserve estimate  is 

, 1
ˆ ˆ

i in i n iR D d − += −  for i = 2,...,n, where ˆ
inD  has been calculated and , 1i n id − +  is observed on the 

diagonal of the run-off triangle. 

 

The variance factors ( )jφ  have been found. The model in (3.4) determines the variance of 

the estimated claims , 2
ˆ

i n iD − +  for i = 2,...,n. To find the prediction error and the reserve of the 
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ultimate claim and some more calculations are needed. Equation (2.59) gave an expression 

for the MSE of ˆ
inD : 

 

( ) ( ) ( )( )
2

ˆ ˆ
in in in inMSE D k Var D k E E D k D= + − .  

 

If independence between the accident years is assumed, it is not necessary to condition on all 

the observations. Furthermore, it is only the last observation in every accident year that is 

used in model (3.4). It suffices to condition on , 1i n id − +  in this case. Approximating 

( ), 1
ˆ

in i n iE D d − +  with  ( ), 1in i n iE D d − +  makes a new expression: 

 

( ) ( ) ( ), 1 , 1 , 1
ˆ ˆ

in i n i in i n i in i n iMSE D d Var D d Var D d− + − + − +≈ +     (3.17) 

 

The MSE of the reserve is the same as MSE of the ultimate claim. This is clear since 

 

( ) ( ) ( ), 1 , 1 , 1 , 1i i n i in i n i i n i in i n iVar R d Var D D d Var D d− + − + − + − += − =   and  

( ) ( ) ( ), 1 , 1 , 1 , 1
ˆ ˆ ˆ ˆ

i i n i in i n i i n i in i n iVar R d Var D D d Var D d− + − + − + − += − =  

 

Thus ( ) ( ) ( ) ( ), 1 , 1 , 1 , 1
ˆ ˆ ˆ

i i n i in i n i in i n i in i n iMSE R d MSE D d Var D d Var D d− + − + − + − += ≈ +   (3.18) 
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Verral (2000) denotes ( ), 1in i n iVar D d − + as the process variance and ( ), 1
ˆ

in i n iVar D d − +  as the 

estimation variance, and these terms will also be used here. To obtain the prediction error 

two recursive approaches will be used, which are presented in Verral (2000).  

 

The estimation variance can be found for accident year 2,…,n, and it is 

 

( ), 1 , 1 , 1

2

ˆˆ
n

in i n i i n i j i n i

j n i

Var D d Var D f d− + − + − +
= − +

 
=  

 
∏                                                       (3.19) 

                            = 2

, 1 , 1

2

ˆ
n

i n i j i n i

j n i

d Var f d− + − +
= − +

 
 
 

∏           

 

The second accident year can be found directly, since (3.19) only becomes 

( )2

2, 1 2, 1
ˆ

n n nd Var f d− − . The estimation variance of the third accident year is more complicated 

since it is necessary to find the variance of a product of two development factors. The fourth 

accident year requires an estimate of the variance of the product of three development years, 

and so on. In order to find these variances independence or at least uncorrelated development 

factors must be assumed. Assuming independence or at least no correlation between the 

development factors the variance of the two last development factors is: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n n n n n n n n

Var f f E f Var f E f Var f Var f Var f− − − −
   = + +            (3.20) 

                    ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ
n n n n n n

f Var f f Var f Var f Var f− − −≈ + +  
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Appendix 5 proves the formula used in (3.20) . It is not the conditional variance 

( )1 , 1
ˆ ˆ
n n i n iVar f f d− − +  that has been recovered but it is ( )1

ˆ ˆ
n nVar f f− . In the actual calculation of 

the prediction error it is the numerical result of (3.16) that will be used, which is the 

unconditional variance.  

 

When finding the variance of the product of the last three development factors, the previous 

result (variance of two development factors) will be used. Thus 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 1 2 1 1 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n n n n n n n n n n n nVar f f f f Var f f f f Var f Var f Var f f− − − − − − − −

  ≈ + +    

 

The last step is found when 
2

ˆ
n

j

j

Var f
=

 
 
 
∏  is found.   

                         

To find the process variance, ( ), 1in i n iVar D d − +  a recursive procedure can be used. This 

procedure uses the rule of double expectation and double variance. The model gives that 

( ), 1 , 1ij i j j i jVar D d dφ− −= , so the process variance for the next development year is already 

defined. Leaving out the subscript i, the process variance two steps ahead is 

 

( ) ( ) ( )1 1 1 1 1 1j j j j j j j jVar D d E Var D D d Var E D D d+ − + − + −
   = +     

                        

( ) ( )

( ) ( ) ( )

( )

1 1 1 1

2

1 1 1 1

2

1 1 1 1

j j j j j j

j j j j j j

j j j j j j

E D d Var f D d

E D d f Var D d

f d f d

φ

φ

φ φ

+ − + −

+ − + −

+ − + −

= +

= +

= +
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The process variance three steps ahead is 

 

( ) ( ) ( )2 1 2 1 1 2 1 1j j j j j j j jVar D d E Var D D d Var E D D d+ − + + − + + −
   = +     

                         

( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1 1 2 1 1

2

2 1 1 2 1 1

2

2 1 1 2 1 1

2

2 1 1 2 1 1

2 2 2

2 1 1 1 2 1 2 1 1

j j j j j j

j j j j j j

j j j j j j j

j j j j j j j

j j j j j j j j j j j j

E D d Var f D d

E D d f Var D d

E E D D d f Var D d

E f D d f Var D d

f f d f f d f f d

φ

φ

φ

φ

φ φ φ

+ + − + + −

+ + − + + −

+ + − + + −

+ + − + + −

+ + − + + − + + −

= +

= +

= +

= +

= + +

 

 

This procedure can be performed for three years a head and so on. The intention of using this 

recursive approach is to find the variance of the ultimate claim. The second accident year 

needs no more than one step, the third accident year needs two steps of the recursive 

approach and so on.  

The overall MSE of the reserve is the sum of the estimation and process variance, but 

also a covariance element is added because of the covariance between the estimated values. 

The overall estimation and process variance is: 

 

( ) ( ) ( ) ( ), 1 , 1 , 1

2 2 2

ˆ ˆ ˆ ˆ2 ,
n n n

in i n i in i n i in ln i n i

i i i
l i

MSE R k Var D d Var D d Cov D D d− + − + − +
= = =

>

= + +∑ ∑ ∑    (3.21) 

The estimation and process variance was calculated for the data set from TrygVesta in R. 

Since the calculation of the estimation variance required uncorrelated development factors 

the covariance matrix of f̂  was examined. f̂ is a vector of 153 elements. The 153 elements 

can be placed in the south east corner of the run-off triangle, and the elements situated in the 

same development year are equal. It was checked that only the covariance elements of the 
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matrix were different from zero, and the rest were zero. This was the case for both the 

number and the amount of claims.  

 The estimation variance was found by making a loop for every accident year in R. 

The recursive procedure used the previously discovered variance of a product. The second 

accident year required only one calculation while accident year 19 required the same 

calculations done in a loop 18 times until the variance of the predicted ultimate claim could 

be obtained. To find the process variance a loop was also made for this calculation. Like the 

estimation variance, the loop ran a single time for accident year 2, and 18 times for accident 

year 19 to obtain the variance of the ultimate claim.  

 The total estimation and process variance was calculated by summing up the 

estimation and process variance. Great care was taken when finding the last term in (3.21). 

3.4.3 Results  

Reserve estimates with their respective prediction errors are presented in tables 7 and 8.  

Accident 

year 

Reserve Prediction error Prediction 

error % 

2 2,2696 0,901 39,698 

3 5,0462 1,440 28,536 

4 8,5419 3,031 35,484 

5 9,3872 3,554 37,860 

6 10,4740 3,594 34,314 

7 12,3098 4,263 34,631 

8 15,9718 5,265 32,964 

9 24,7007 6,426 26,015 

10 33,7194 7,738 22,948 

11 47,9351 10,177 21,231 

12 59,6699 11,453 19,194 

13 73,0450 13,474 18,446 

14 93,8263 14,769 15,741 

15 121,8697 18,137 14,882 

16 162,3809 24,390 15,020 

17 208,6802 35,895 17,201 

18 211,5965 43,583 20,597 

19 118,2655 93,339 78,923 

 

Overall 

 

1 219,6896 

 

78,571 

 

6,442 

Table 7. Reserve and prediction error for the number of claims 
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Accident 

year 

Reserve Prediction error Prediction 

error % 

2 0,000 0,756 315539,2 

3 0,596 1,222 205,0647 

4 0,980 1,605 163,8432 

5 1,725 2,304 133,5831 

6 2,302 2,163 93,96275 

7 6,109 2,7573 45,13254 

8 8,155 3,058 37,4985 

9 12,553 3,954 31,49889 

10 14,976 4,137 27,62489 

11 22,616 5,126 22,66539 

12 26,523 5,918 22,31235 

13 31,296 6,754 21,58113 

14 64,976 11,289 17,37403 

15 67,443 11,523 17,08554 

16 115,679 15,368 13,28507 

17 163,470 24,899 15,23153 

18 168,715 41,325 24,49396 

19 171,178 52,306 30,55655 

 

Overall 

 

879,291 

 

56,541 

 

6,430291 

Table 8. Reserve and prediction error for the amount of claims 

3.5 Mack’s model 

3.5.1 The model 

Mack’s model consisted of three assumptions. The two first assumptions concerned the two 

first moments, and they are for j = 2,…,n: 

 

( ), 1 , 1 , 1ij i j i j j i jE D K k f d− − −= =   

( ), 1 , 1 , 1ij i j i j j i jVar D K k g d− − −= =   
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The parameters have estimators: 

 

1

1

1

, 1

1

ˆ

n j

ij

i
j n j

i j

i

d

f

d

− +

=
− +

−
=

=
∑

∑
            and        

2
1

, 1

1 , 1

1 ˆˆ
n j

ij

j i j j

i i j

d
g d f

n j d

− +

−
= −

 
= −  −  

∑  

 

These estimators were found for the data set from TrygVesta. These calculations were done 

in a spread sheet in excel, and the results are presented in table 9, where ˆ
jf  is denoted as the 

development factor and ˆ
jg  as the variance factor. There is not enough information to 

calculate 19ĝ , and for later purposes 19ĝ  will be set equal to either 18ĝ  or 17ĝ .  

 

Number of claims Amount of claims  

 

Accident 

year 

 

Dev.factor 

 

Variance 

factor 

 

Dev. Factor 

 

Variance 

factor 

1 - - - - 

2 0,947 3,678 3,215 2,266 

3 1,007 0,340 1,963 2,654 

4 1,027 0,328 1,663 0,996 

5 1,022 0,119 1,388 0,179 

6 1,017 0,059 1,239 0,221 

7 1,011 0,012 1,148 0,232 

8 1,010 0,032 1,083 0,099 

9 1,009 0,019 1,063 0,080 

10 1,008 0,023 1,032 0,023 

11 1,005 0,008 1,036 0,033 

12 1,004 0,003 1,022 0,024 

13 1,003 0,006 1,013 0,007 

14 1,000 0,003 1,023 0,001 

15 1,001 0,000 1,008 0,004 

16 1,002 0,002 1,005 0,002 

17 1,003 0,007 1,002 0,0002 

18 1,002 0,001 1,008 0,004 

19 1,003 - 1,000 - 

Table 9. Estimates of the development factor ˆ
jf  and variance factor ˆ

jg   
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for the number and the amount of claims. 

3.5.2 Reserve predictions and prediction errors  

The development factor is equivalent to the chain-ladder development factor. Future claim 

estimates can be made by using Mack’s first assumption, and the empty spots in the run-off 

triangle can be filled with estimated values. Reserve estimates are found like they were when 

using the model of normal approximation, that is , 1
ˆ ˆ

i in i n iR D d − += − . Since the development 

factor is equivalent to the previous model, the results are obviously identical.  

 Mack’s second assumption determines the variance of the estimated claims. To find 

the prediction error of the ultimate claim more calculations are needed. It is clear from 

chapter 3.4.2 that the prediction error of the reserve is the same as the prediction error of the 

estimated ultimate claim. The MSE of ˆ
iR  is  

 

( ) 2

12
2 , 1

, 1

1

ˆ 1 1ˆ ˆ
ˆ ˆ

n
j

i in n j
j n i i jj

i j

i

g
MSE R k D

Df
d

− +
= − + −

−
=

 
 
 ≈ +
 
 
 

∑
∑

       (3.22)                                                             

                     

The overall prediction error of the reserve is 

( ) ( ) ln 1
22 1 2

1

ˆ2ˆ ˆ ˆ ˆ

ˆ

n n n
k

i in n k
i l i k n i

j lk

l

g
MSE R k MSE R k D D

f d
− +

= = + = − +

=

  
     ≈ +  

   
    

∑ ∑ ∑
∑

   (3.23) 

 

It is a quite an extensive task to find the estimators in (3.22) and (3.23), and it has recently 

been done in another master thesis (Gangsøy 2008).  The calculations are because of this 

only included in Appendix 6. 
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 The calculations of finding ( )ˆ
iMSE R k   and ( )ˆMSE R k  for the data set from 

TrygVesta were done in an Excel spread sheet. The reserve estimates with the respective 

prediction errors are presented below in tables 10,11,12 and 13. The overall reserve, which 

simply is the sum of the reserves and the overall prediction error are also included.  

 For both the number of claims and the amount of claims, there are two tables. Since 

the variance factor 19ĝ  can not be calculated, it has been set equal to 18ĝ  and 17ĝ , and there 

is one table for each approximation. 

3.5.3  Results 

Reserve estimates with their respective prediction errors are presented in tables 10-13.  

Accident 

year 

Reserve Prediction 

error 

Prediction 

error % 

1 0,000                             -         - 

2 2,270 0,870 38,333 

3 5,046 1,390 27,545 

4 8,542 3,440 40,272 

5 9,387 3,680 39,202 

6 10,474 3,690 35,230 

7 12,310 4,400 35,744 

8 15,972 5,250 32,870 

9 24,701 6,430 26,032 

10 33,719 7,660 22,717 

11 47,935 10,320 21,529 

12 59,670 11,700 19,608 

13 73,045 13,720 18,783 

14 93,826 14,980 15,966 

15 121,870 18,470 15,156 

16 162,381 24,440 15,051 

17 208,680 35,900 17,203 

18 211,596 44,060 20,823 

19 118,265 95,550 80,793 

 

Overall 

 

1219,690 

 

139,140 

 

11,408 

Table 10. Reserve estimates for the number of claims, and their prediction errors. For accident year 19 

19 18g g= .  
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Accident 

year 

Reserve Prediction 

error 

Prediction 

error % 

1 0,000           -      - 

2 2,270 3,030 133,503 

3 5,046 3,840 76,096 

4 8,542 5,250 61,462 

5 9,387 5,240 55,821 

6 10,474 5,240 50,029 

7 12,310 6,030 48,985 

8 15,972 6,750 42,262 

9 24,701 8,230 33,319 

10 33,719 9,370 27,788 

11 47,935 11,840 24,700 

12 59,670 13,020 21,820 

13 73,045 14,830 20,303 

14 93,826 16,120 17,181 

15 121,870 19,440 15,951 

16 162,381 25,250 15,550 

17 208,680 36,500 17,491 

18 211,596 44,510 21,035 

19 118,265 95,730 80,945 

 

Overall 1219,690 158,930 13,030 

Table 11. Reserve estimates for the number of claims,  

and their prediction errors. For accident year 19
19 17g g= . 
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Accident 

year 

  Reserve Prediction   

error 

Prediction 

error % 

1 0,000      -   - 

2 0,000 0,680 283818,339 

3 0,596 1,110 186,270 

4 0,980 1,460 149,041 

5 1,725 1,800 104,362 

6 2,302 1,760 76,456 

7 6,109 2,280 37,320 

8 8,155 2,620 32,128 

9 12,553 3,640 28,997 

10 14,976 3,980 26,577 

11 22,616 5,000 22,108 

12 26,523 5,830 21,981 

13 31,296 6,700 21,409 

14 64,976 11,350 17,468 

15 67,443 11,690 17,333 

16 115,679 15,340 13,261 

17 163,470 25,330 15,495 

18 168,715 42,420 25,143 

19 171,178 53,110 31,026 

 

Overall 879,291 89,860 10,220 

Table 12. Reserve estimates for the amount of claims,  

and their prediction errors. For accident year 19 
19 18g g= . 
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Accident 

year 

  Reserve Prediction   

error 

Prediction 

error % 

1 0,000         -     - 

2 0,000 0,160 66780,786 

3 0,596 0,710 119,146 

4 0,980 0,930 94,937 

5 1,725 1,230 71,314 

6 2,302 1,330 57,776 

7 6,109 1,720 28,154 

8 8,155 2,100 25,751 

9 12,553 3,190 25,413 

10 14,976 3,680 24,573 

11 22,616 4,670 20,649 

12 26,523 5,630 21,227 

13 31,296 6,560 20,961 

14 64,976 11,180 17,206 

15 67,443 11,580 17,170 

16 115,679 15,210 13,148 

17 163,470 25,230 15,434 

18 168,715 42,370 25,113 

19 171,178 53,070 31,003 

 

Overall 879,291 86,340 9,819 

Table 13. Reserve estimates for the amount of claims  

and their prediction errors. For accident year 19
19 17g g= . 
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4. Discussion 

The Poisson model is a special case of the multiplicative model, and it was shown that using 

the maximum likelihood estimator in the Poisson model was equal to the chain-ladder 

method (Verral 2000). The negative binomial model can be derived from the Poisson model 

by letting the intensity be a stochastic variable as well as the claim (Verral 2000). When a 

normal approximation to the negative binomial model and Mack’s model were fitted to the 

data, both models produced identical development factors. These were also both identical to 

the chain-ladder development factors.  

 Among the models that were introduced only one of them could handle negative 

incremental claims, Mack’s model. As an alternative to the negative binomial model, a 

normal approximation was used since this would solve the problem with negative 

incremental claims. It is less attractive to use this approximation since more parameters need 

to be estimated (the variance factors). Mack’s model only defines the two first moments, 

while the normal approximation to the negative binomial model also defines the individual 

development factors to be normally distributed. It is possible to create confidence intervals 

using the normal approximation, while Mack’s model requires further assumptions to do 

this.  

 The two models used in the analysis both assume a symmetrical distribution around 

the mean. The two models were chosen because of their capability of handling negative 

incremental claims, and not because it is assumed that the claims indeed are symmetrically 

distribute around the mean. This has not been explored in this thesis. 

 The chain-ladder method is a linear model, and can be viewed as linear regression 

when the regression line is forced through origin. It seems that in the early development 

years a model also including an intercept different from zero would fit the model even better. 

The result of forcing the regression line through origin is that claims in the early 

development years are underestimated, and claims in the late development years are 

overestimated. This trend was also apparent when examining the residuals, and it was more 

dominant for the number of claims than for the amount of claims. The variance assumption 

in Mack’s model can be viewed as a choice of an unbiased estimator carrying minimal 
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variance (Mack 1994a). This assumption was tested by comparing it with other development 

factors which need other variance assumptions to attain unbiased estimators with minimal 

variance. Neither of the least square estimator or the simple average estimator proved any 

more random behaviour in the residual plots.   

 Estimates of the development factor, reserve estimates and prediction error were 

calculated using the normal approximation and Mack’s model. The first moment of the two 

models was identical. The second moment had a different letter giving the variance 

component. The results show very similar estimates for the two variance components, but 

they are not identical. The variance component jg  in Mack’s model was proved to be 

unbiased, and it can be viewed as an unbiased, weighted average of the residuals (Mack 

1994a). The variance component jφ  in the normal approximation was found by fitting a 

generalized linear model to the squared residuals. It is simply an average of the residuals, but 

it is not unbiased. The variance factor jg  would have been biased as well if the factor 
1

n j−
 

had not subtracted the estimated parameters in the denominator.  

 The reserve and the prediction error in the two models were found algebraically. The 

reserve and prediction error estimates have also been obtained empirically using both 

models. The reserve estimates grow larger for higher accident years, since there are a 

growing number of undeveloped years. Naturally the prediction errors also grow larger for 

higher accident years. The empirical results are almost identical for the two models, and the 

difference can be assumed to be a cause of two different variance factors. To obtain exactly 

the same result, an unbiased version of jφ  must be used. Because of the similarities between 

the two models the normal approximation to the negative binomial model can be assumed to 

underlie Mack’s model. The normal approximation to the negative binomial model uses a 

generalized linear model in the estimation, and this approach offers more flexibility in the 

analysis than Mack’s model. A generalized linear model could have been fitted to the 

Poisson and the negative model if it had not been for the presence of negative incremental 

claims. 

 The variance factor of the last development year needed to be approximated. Mack’s 

model was used twice using two different approximations. The difference was small, but this 
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could have been tested further by using other approximations and a greater difference might 

have appeared.  

 There are some weaknesses in the chain-ladder method. The estimators of the last 

development factors are calculated using only a small number of observations. Furthermore, 

the last accident years require predictions of many development years ahead. This makes the 

ultimate claim prediction uncertain, and this is evident in the prediction error.  

 The data set from TrygVesta showed a large number of negative incremental claims 

in development year two. This could be a consequence of a large number of reported claims 

in the development year ahead, and would indicate that the individual development factors 

are correlated. Mack’s model implies uncorrelated individual development factors, and the 

normal approximation assumes independent individual development factors. If this is not the 

case, the models are not appropriate for the data set.  

 It seems that the models have detected that negative incremental claims will occur 

after the first development year for accident year 19, since the reserve is smaller than for 

accident year 18. More empirical research should be done to reveal whether the individual 

development factors between development years truly are uncorrelated when there is a large 

frequency of negative incremental claims.     
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5.   Conclusions 

This thesis has showed theoretically that the multiplicative model, the Poisson model, the 

negative binomial model and Mack’s model produce equivalent results to the chain-ladder 

method. A normal approximation to the negative model and Mack’s model are two possible 

models when there are negative incremental claims in a data set. The two models create 

almost identical results, and the normal approximation can be seen as an underlying model of 

Mack’s model. 
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Appendix I 

 

AY/DY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 - 522 535 536 538 544 547 549 554 558 564 567 566 567 567 570 571 573 575 

2 663 596 595 592 607 610 618 625 633 634 641 643 646 647 648 649 649 650  

3 691 690 710 749 765 775 788 804 818 826 829 833 840 838 839 841 846   

4 757 787 831 855 880 899 908 929 939 945 953 958 959 960 962 961    

5 648 756 753 795 815 833 848 859 864 881 881 884 888 887 888     

6 823 771 767 803 825 852 855 859 871 871 874 878 881 883      

7 913 801 819 871 920 953 961 974 986 994 1001 1001 1002       

8 929 897 915 954 987 1000 1009 1012 1019 1027 1031 1034        

9 1136 1147 1156 1207 1231 1248 1264 1272 1282 1291 1297         

10 1387 1298 1267 1289 1301 1322 1338 1353 1359 1369          

11 1448 1374 1377 1403 1425 1447 1460 1473 1478           

12 1467 1351 1338 1352 1386 1409 1426 1438            

13 1345 1275 1301 1337 1360 1382 1396             

14 1545 1402 1414 1427 1457 1472              

15 1631 1452 1440 1466 1486               

16 1612 1473 1497 1532                

17 1648 1537 1535                 

18 1511 1474                  

19 1431                   

 

Table 14. Run-off triangle of the  number of claims from auto liability insurance  from TrygVesta. The rows display the accident years (AY),  

and  the columns display the development years (DY). 
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AY/DY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 0,000 5,200 10,600 17,300 21,133 27,125 29,825 30,604 30,944 31,896 33,383 33,967 34,067 35,008 35,359 36,644 36,642 37,392 37,393 

2 0,700 6,000 17,100 21,557 27,980 30,980 34,236 38,795 43,551 47,320 48,807 50,881 51,496 52,805 52,646 52,695 52,695 52,699  

3 2,000 7,700 13,654 26,334 38,734 48,492 52,685 57,677 61,664 62,646 64,204 66,754 68,493 69,570 70,418 70,217 70,462   

4 2,500 9,458 25,658 39,001 50,045 63,106 71,721 79,218 85,239 89,252 90,710 92,559 93,815 96,383 97,981 98,052    

5 2,688 11,958 25,241 38,562 53,836 70,607 83,326 92,246 100,784 104,161 107,791 111,542 114,025 116,686 117,068     

6 2,560 9,448 21,037 38,454 49,875 67,396 76,950 81,942 87,534 90,925 96,038 96,957 98,121 100,063      

7 2,795 10,220 27,252 54,768 81,070 100,423 115,359 118,617 121,727 126,110 132,068 131,688 131,801       

8 3,778 11,072 28,103 51,360 73,364 95,403 108,446 117,982 121,342 124,977 132,322 136,538        

9 5,083 15,237 35,488 65,717 92,923 106,712 116,284 132,801 146,637 149,505 151,035         

10 3,996 12,764 28,641 53,651 75,726 90,144 109,356 115,232 120,466 122,910          

11 5,451 17,508 39,835 67,750 89,010 112,132 123,015 134,509 142,955           

12 5,146 17,896 33,035 49,087 68,793 84,154 107,485 114,596            

13 8,264 19,681 29,160 44,865 63,715 80,831 93,745             

14 8,569 23,860 45,769 69,704 101,389 122,228              

15 7,088 21,831 33,254 55,304 75,132               

16 9,580 26,534 45,800 70,765                

17 9,172 32,395 48,358                 

18 6,393 22,201                  

19 6,423                   

 
Table 15. Run-off triangle of the amount of claims from auto liability insurance  from TrygVesta. The rows display the accident years (AY),  

and  the columns display the development years (DY). 



Appendix II 

 

Show that CL , the maximum likelihood function of ijC  conditioned upon , 1i n id − + , is 

multinomial distributed with parameter 
1

j

n i

y

s − +

. 

 

 We had from formula (2.14) that 

 

 ( ), 1 , 1

( )1 1
1 1 1 11

1 1

! !

! !
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c
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c c
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− + − +
= = = =− +
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   
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    
   
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∏ ∏ ∏ ∏
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where ( )i jy  is the probability for a claim that incurred in year i, will be reported in year j.   

 

Let ijC , for i = 1,...,n and j = 1,....n-i+1 be independent Poisson random variables, with 

expectation ( ) 1

1

j

i j n i

k

k

y
y

y
− +

=

=

∑
. Since this is a parameter, we give this term new letters, just to 

make it look more familiar ( ) ( ) 1

1

j

i j i j n i

k

k

p
y p

p
− +

=

= =

∑
 . 
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We then have that ijD , for i =1,...n and j = 1,....,n-i+1 are independent Poisson random 

variables, with expectation (1) (2) ( 1)( ...... )i i i n ip p p − ++ + + . This is a result of ijD  being a sum 

of Poisson random variables. 

 

The conditional distribution is as follows 

 

( ) ( ) , 1 1 1

, 1

( .. )1
1 1

, 1

1 , 1

....
/

! !

i n iij j n i

ij i n i

dc p p pn i
j n i

ij i n iC D
j ij i n i

p e p p e
f c d

c p

− + − +

− +

− − + +− +
− +

− +
= − +

   + +
 =  

   
   
∏  
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d pp

p pc
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= ==

   
   
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   
   
∑ ∑∏

  

                               
, 1

(1) (2) ( 1)1

1

!
....

!

i n i

i i i n in i

ij

j

d
p p p

c

− +

− +− +

=

=

∏
 

 

The last expression we now recognize as the multinomial distribution for ijC  conditioned on 

, 1i n id − + . 
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Appendix III 

 

 

Dev. Year  Estimate  St. Error   t-value    

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

  

0,939                       0,011                           82,24 

1,005                        0,004                           250,6 

1,025                        0,004                           254,2 

1,021                        0,003                           384,1 

1,017                        0,002                           556,8 

1,011                        0,001                           1154 

1,010                        0,002                           655,6                           

1,008                        0,001                           773,7 

1,008                        0,001                           700,4 

1,005                       0,001                            978,7 

1,003                       0,001                            1499 

1,003                       0,001                            881,6 

1,000                       0,001                            1306 

1,001                       0                                   3309 

1,001                       0,001                            803,6 

1,003                       0,002                            532,9 

                                                             

Table 16. Estimates, standard errors and t-values of the parameter for the restricted linear 

model for the total amount of claims. 
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Dev. Year          Parameter         Estimate  St. Error  t-value        

 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

11 

11 

12 

12 

13 

13 

14 

14 

15 

15 

16 

16 

  

                Beta 0   97,727                      42,424                        2,304 

 Beta 1  0,864   0,034    25,293 

 Beta 0   22,412                  14,179     1,581  

 Beta 1  0,986                  0,013    77,776  

 Beta 0  23,791                   14,077     1,69 

 Beta 1  1,004  0,013    78,02  

 Beta 0  13,346   23,791    1,365  

 Beta 1  1,009  0,013    112,328  

 Beta0  5,894   9,779     0,835 

 Beta 1  1,011   0,009    154,749  

 Beta0                 -0,115   7,056     -0,033 

 Beta 1  1,011   0,007    308,659  

 Beta 0  4,167   5,868      0,71 

 Beta 1  1,006   0,005    178,95 

 Beta 0   10,442   3,702     2,821  

 Beta 1  0,998  0,004    272,847  

 Beta 0                   -0,571   5,921     -0,096 

 Beta 1  1,008   0,006  163,894  

 Beta 0  4,888   4,112     1,189  

 Beta 1  1,000   0,005    222,491  

 Beta 0  3,154   3,193     0,988  

 Beta 1  1,000   0,004    169,611  

 Beta 0                  -0,111   5,865     -0,019  

 Beta 1  1,003   0,007    143,126  

 Beta 0  1,866   3,856    0,484 

 Beta 1  0,998   0,005   209,414  

 Beta 0                  -1,773   1,070    -1,657 

 Beta 1  1,003   0,001    744,479  

 Beta 0  6,736   3,330     20,023 

 Beta 1  0,993   0,004    229,461  

 Beta 0                   -9,541   6,050    -1,577  

 Beta 1  1,007   0,009   116,967  

 

Table 17. Estimates, standard errors and t-values of the parameter for the general model for 

the number of claims. 
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Dev. Year  Estimate  St. Error   t-value     

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

 

3,074                    0,115    26,828  

1,837                    0,090    20,322   

1,652                    0,043    38,511     

1,395                    0,016    86,281      

1,233                    0,015    82,725    

1,148                    0,016    73,027   

1,083                    0,010    104,990  

1,062                    0,009   116,790  

1,030                    0,004   258,571  

1,035                    0,007   153,678 

1,020                    0,006   170,537 

1,012                    0,004   277,756  

1,023                   0,002   613,585 

1,008                    0,003   302,115 

1,002                    0,005   186,429 

1,002                   0,001   810,478 

Table 18. Estimates, standard errors and t-values of the parameter for the restricted linear 

model for the total amount of claims. 
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Dev. Year          Parameter         Estimate  St. Error  t-value        

 

1 

1 

2 

2 

3 

3 

4 

4 

5 

5 

6 

6 

7 

7 

8 

8 

9 

9 

10 

10 

11 

11 

12 

12 

13 

13 

14 

14 

15 

15 

16 

16 

  

                Beta 0   3,268   1,174     2,783  

 Beta 1  2,568   0,206    12,477 

 Beta 0   9,949   2,525     3,940  

 Beta 1  1,310   0,149     8,786  

 Beta 0  2,849   4,074     0,699  

 Beta 1  1,563   0,134    11,658  

 Beta 0  -2,822   2,436    -1,158  

 Beta 1  1,449   0,050    29,031  

 Beta0  3,189   2,884     1,106  

 Beta 1  1,189   0,043    27,850  

 Beta0  0,299   3,968     0,075  

 Beta 1  1,144   0,050    22,964  

 Beta 0  0,450   2,861     0,157  

 Beta 1  1,078   0,031    34,409  

 Beta 0   0,706   2,591     0,273  

 Beta 1  1,055   0,027    39,665  

 Beta 0   1,673   0,992     1,687  

 Beta 1  1,014   0,010   100,891  

 Beta 0  0,491   1,907     0,258  

 Beta 1  1,030   0,019    53,463  

 Beta 0  1,196   1,611     0,743  

 Beta 1  1,008   0,017    59,245  

 Beta 0  0,507   0,971     0,522  

 Beta 1  1,007   0,011    92,721  

 Beta 0  0,052   0,444    0,117  

 Beta 1  1,022   0,005   187,784  

 Beta 0  -0,045   0,833    -0,053  

 Beta 1  1,009   0,010    96,506  

 Beta 0  1,389   0,883     1,572  

 Beta 1  0,983   0,013    75,856  

 Beta 0   -0,316   0,219    -1,446  

 Beta 1  1,007   0,004   252,931  

 

Table 19. Estimates, standard errors and t-values of the parameter for the restricted linear 

model for the number of claims. 
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Appendix IV 
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Plot A to M. Residuals, ijr  plotted against the the claims of development year j-1, , 1i jd −  for the number of 

claims. Plot A to M display the residual plots for development year 2 to development year 14, as a function of 

the claims in the previous development year.  
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Plot A* to M*. Residuals, ijr  plotted against the claims of development year j-1, , 1i jd −  for the amount of 

claims. Plot A* to M* display the residual plots for development year 2 to development year 14, as a function of 

the claims in the previous development year. 
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Appendix V 

Let X and Y be independent random variables. The formula to be proven is:  

 

( ) [ ]( ) ( ) [ ]( ) ( ) ( ) ( )
2 2

Var XY E X Var Y E Y Var X Var Y Var X= + +  

 

Let 
X EX

X
EX

δ
−

=  and 
Y EY

Y
EY

δ
−

=  

 

It can then be seen that: 

 

[ ][ ]( ) ( )1 1 1XY EXEY EXEY X Y EXEY X Y X Yδ δ δ δ δ δ− = + + − = + +  

 

The first relation is easily proved by using the definitions for Xδ  and Yδ . To find the 

( )Var XY  it is possible to use the well known identity, which for the variable X is 

( ) ( )
2

Var X E X EX= − . Thus  

 

( ) [ ]( ) [ ] [ ]( )2 2 2
Var XY E XY EXEY E EXEY X Y X Yδ δ δ δ= − = + +  

                

[ ]
( )( )

[ ]
( )( )

2

2

22 2
2

X EX Y EYX EX Y EY
EXEY E

EX EY EXEY

X EX Y EYX EX Y EY
EXEY E

EX EY EXEY

 − −− −
= + + 

 

  − −− −   = + +     
     
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2 2

2 2 2
X EX Y EY X EX Y EY Y EY X EX

EX EY EX EY EY EX

− − − − − −          
+ + +           

          
 

 

The three last elements disappear because of independence between X and Y, and the 

expression becomes: 

 

( ) [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2

Var XY E XY EXEY EX Var Y EY Var X Var X Var Y= − = + +  

 

(Goodman 1960) 
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Appendix VI 

This proof is reproduced from Mack (1994a). 

 

Given Mack’s three assumptions 

1. There exist constants 2 3, ,..., nf f f  such that ( ), 1 , 1ij i j j i jE D k f d− −=  for 2,...j n=  

2. There exists constants 2 3, ,...., ng g g  such that ( ), 1 , 1ij i j j i jVar D k g d− −=  for 2,....j n=  

3. inK  and knK  are stochastically independent for i k≠ .  

 

The MSE of the reserve is  

 

( )ˆ
iMSE R k =  

2

2

12
2 , 1

, 1

1

ˆ 1 1ˆ
ˆ ˆ

n
j

in n j
j n i i jj

i j

i

g
D

Df
d

− +
= − + −

−
=

 
 
 = +
 
 
 

∑
∑

     (A.1) 

    

Proof: 

The MSE of the reserve is the same as the MSE of the ultimate claim ˆ
inD , this result is 

proved in (3.17) and (3.18) . 

 

( ) ( )ˆ ˆ
i inMSE R k MSE D k=                                                   (A.2) 
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The aim is to find the MSE of the reserve, it is equivalent to find the MSE of the ultimate 

claim ˆ
inD  which will be done here. The prediction variance of the ultimate claim was in 

(2.60) found to be 

 

( ) ( ) ( )( )
2

ˆ ˆ
in in in inMSE D k Var D k E D k D= + −                 (A.3) 

 

By Mack’s third assumption it suffices to condition on the observations within the accident 

year i. It is only necessary to find ( ), 1in i n iVar D k − +  and ( )( )
2

, 1

ˆ
in ini n i

E D k D
− +

− . 

  

The term ( ), 1in i n iVar D k − +  will be considered first. This can be written as:  

 

( ) ( )( ) ( )( )
2

2

, 1 , 1 , 1in in ini n i i n i i n i
Var D k E D k E D k

− + − + − +
= −     (A.4) 

 

The second term of (A.4) will be determined first. By using the rule of expectation the 

expected values of the claims in the south-eastern corner of the run-off triangle ( 1j n i≥ − + ) 

are determined. The expected claims of the two last development years in accident year i are 

 

( ) ( )( ) ( ), 1 , 1 , 1 , 1, 1in i n i in i n i n i n i n ii n
E D k E E D D k f E D k− + − + − − +−

= =      and           

( ) ( )( ) ( ), 1 , 1 , 1 1 , 2 , 1, 1 , 2i n i n i n i n i n i n ii n i i n
E D k E E D D k f E D k− − − + − − − +− + −

= =      A.5) 
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Inserting the first expression derived in (A.5) in the next a new expression is obtained 

 

( ) ( )1 , 2 , 1, 1in n n i n i n ii n i
E D k f f E D k− − − +− +

=  

 

Performing this step several times makes it possible to find ( ), 1in i n iE D k − +  or the expectation 

of any future claim in the south-eastern corner of the run-off triangle. Generally for accident 

year 2,...,i n=  and development year 2j n i≥ − +  the formula is: 

 

( ) ( ), 1 2 1 , 1 , 1 2 1 , 1... ...ij i n i n i j j i n i i n i n i j j i n iE D k f f f E D k f f f d− + − + − − + − + − + − − += =       (A.6) 

 

The general formula for ( ), 1ij i n iE D k − +  is recovered, and it is trivial to determine 

( ), 1in i n i
E D k

− +
 and ( )( )

2

, 1in i n i
E D k

− +
. The second part of (A.4) is determined.  

 

The next step is to find ( )( )2

, 1in i n i
E D k

− +
. To recover ( )( )2

, 1in i n i
E D k

− +
 the identity 

( )( )2

, 1ij i n i
E D k

− +
 will be calculated first by using the rule of double expectation and Mack’s 

two first assumptions. 

 

 

( ) ( )( )2 2

, 1 , 1 , 1ij i n i ij i j i n i
E D k E E D D k− + − − +

=                 (A.7) 
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( )( ) ( )( ){ }

( ){ }

2

, 1 , 1 , 1

2

, 1 , 1 , 1

ij i j ij i j i n i

j i j j i j i n i

E Var D D E D D k

E g D f D k

− − − +

− − − +

= +

= +

 

                            ( ) ( )2 2

, 1 , 1 , 1 , 1j i j i n i j i j i n ig E D k f E D k− − + − − += +  

 

( )2

, 1ij i n iE D k − +  can be determined by using (A.7) and (A.5). The calculations can be seen 

below, and the formulas used are written on the right hand side.  

 

( ) ( ) ( )2 2 2

, 1 , 1 , 1 , 1 , 1in i n i n i n i n i n i n i n iE D k g E D k f E D k− + − − + − − += +                   (A.7) 

   ( )2 3 1 , 1...n n i n i n i n ig f f f d− + − + − − += +       (A.5) 

                        ( ) ( )2 2 2 2

1 , 2 , 1 , 2 , 1 1n i n i n i n i n i n i n ng E D k f E D k f f− − − + − − + −= +                  

(A.7) 

                        ( ) 2

2 3 1 , 1 1 , 1 2 3 2... ...n n i n i n i n i n i n i n i n i n ng f f f d g d f f f f− + − + − − + − − + − + − + −= +   (A.5) 

                           ( ) ( )2 2 2 2 2 2

2 , 3 , 1 1 , 3 , 1 2 1n i n i n i n n i n i n i n n ng E D k f f E D k f f f− − − + − − − + − −+ +   (A.7) 

  ( ) 2

2 3 1 , 1 1 , 1 2 3 2... ...n n i n i n i n i n i n i n i n i n ng f f f d g d f f f f− + − + − − + − − + − + − + −= +  

    2 2

2 , 1 2 3 3 1...n i n i n i n i n n ng d f f f f f− − + − + − + − −+        (A.5) 

                         ( ) 2 2 2

3 , 4 , 1 2 1n i n i n i n n ng E D k f f f− − − + − −+                             (A.7) 

                         ( )2 2 2 2 2

, 4 , 1 3 2 1i n i n i n n n nE D k f f f f− − + − − −+  

etc. 
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The results from (A.5) and (A.7) are used until the last step when it is clear 

that ( )2

, 1 , 1i n i i n iE D k− + − +  = 2

, 1i n id − +  since , 1i n ik − +  is known. This can be written as: 

 

( ) ( )2 2 2 2 2 2

, 1 , 1 2 3 1 1 , 1 2

2

... ... ...
n

in i n i i n i n i n i j j j n i n i n i n

j n i

E D k d f f f g f f d f f− + − + − + − + − + − + − +
= − +

= +∑  (A.8) 

 

We have established estimators for ( )2

, 1in i n iE D k − +  and ( ), 1in i n iE D k − + , and (A.4) can be 

written like 

 

( ) ( ) ( )( )
2

2

, 1 , 1 , 1in i n i in i n i in i n iVar D k E D k E D k− + − + − += −  

                           
( )

( )

2 2

, 1 2 1 1

2

2
2 2 2

, 1 2 , 1 2

... ...

... ...

n

i n i n i j j j n

j n i

i n i n i n i n i n i n

d f f g f f

d f f d f f

− + − + − +
= − +

− + − + − + − +

=

+ −

∑
 

                           2 2

, 1 2 1 1

2

... ...
n

i n i n i j j j n

j n i

d f f g f f− + − + − +
= − +

= ∑     (A.9)        

 

By rewriting (A.9) first and then replacing the parameters jg  and jf  with ˆ
jg  and ˆ

jf  the 

process variance is: 

 

( )
2 2

2 1 12 2 2 2

, 1 , 1 2 3 2 2 2
2 , 1 2 3

... ...
ˆ ˆ ˆ...

ˆ ˆ ˆ...

n
n i j j j n

in i n i i n i n i n i n

j n i i n i n i n i n

f f g f f
Var D k d f f f

d f f f

− + − +

− + − + − + − +
= − + − + − + − +

= ∑  
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                           2 2 2 2

, 1 2 3 2
2 , 1 2 3 1

ˆ
ˆ ˆ ˆ...

ˆ ˆ ˆ ˆ...

n
j

i n i n i n i n

j n i i n i n i n i j j

g
d f f f

d f f f f
− + − + − +

= − + − + − + − + −

= ∑  

      

2

2

2 , 1

ˆ

ˆ
ˆ

ˆ

j

n
j

in

j n i i j

g

f
D

D= − + −

 
 
 
 = ∑        (A.10) 

 

 

To reach the last expression, (A.10), we have used the fact that  , 1
ˆ ˆˆ ...in i j j nD D f f−= , when 

, 1i jD −  is estimated, and , 1 2
ˆ ˆˆ ...in i n i n i nD d f f− + − +=  where , 1i n id − +  is considered known.  

 

The first part of (A.2) has been found, and the next we are interested in finding 

( )( )
2

, 1
ˆ

in i n i inE D k D− + − . By using the formula found in (A.6) we have that 

 

( )( ) ( ) ( )( )
22

, 1 , 1 2 , 1 2
ˆ ˆˆ ... ...in i n i in i n i n i n i n i n i nE D k D d f f d f f− + − + − + − + − +− = −             (A.11) 

                                      ( )
2

2

, 1 2 2
ˆ ˆ... ...i n i n i n n i nd f f f f− + − + − += −  

 

Unlike what was done from (A.9) to (A.10), it is not a good idea to replace the parameter jf  

with ˆ
jf . If this had been done it is implicitly assumed that the estimator ˆ

jf  actually is the 

same as the true value jf , but it is more realistic that there is a difference between the 

estimator and the parameter. To solve this problem Mack (1994a) introduced a new identity, 

F. This F has nothing to do with the individual development factor. It is defined as  
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2 2 2
ˆ ˆ... ... ...n i n n i n n i nF f f f f S S− + − + − += − = + +       (A.12)  

 

where  

 

2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ... ... ... ...j n i j j j n n i j j j nS f f f f f f f f f f− + − + − + − += −      (A.13) 

    ( )2 1 1
ˆ ˆ ˆ... ...n i j j j j nf f f f f f− + − += −  

 

The new identity F squared can be written like: 

 

( )
22 2

2

2 , 2 2

... 2
n n n

n i n j k j

j n i j k n i k n i
k j

F S S S S S− +
= − + = − + = − +

<

= + + = +∑ ∑ ∑     (A.14) 

 

2

jS  and j kS S  can be approximated with ( )2

1j jE S k −  and ( )1j k jE S S k − . By using this 

approximation the observations are taken into account, this would not be the case when 

approximating ( )ˆ
jE f  to jf . Since ˆ

jf  is an unbiased estimator (see chapter 2.6),  

( )
2

1
ˆ 0

j j j
E f f k −

 − = 
 

 and also ( )1 0
j l l

E S S k − = . To see this clearly the calculations are 

done underneath, where still j<l: 

 

 ( )1j l l
E S S k − ( )( ) ( )( )( )2 1 1 2 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ... ... ... ...
n i j j j j n n i l l l l n l

E f f f f f f f f f f f f k− + − + − + − + −= − −  
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   ( )( ) ( )( )( )2 1 1 2 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ... ... ... ...

0

n i j j j j n n i l l l l n l
f f f f f f E f f f f f f k− + − + − + − + −= − −

=

.  

 

The identity ( )2

1j l
E S k −  can be found by first examining ( )

2

1
ˆ

j j j
E f f k −

 − 
 

: 

 

( ) ( )
2

1 1
ˆ ˆ

j j j j j
E f f k Var f k− −

 − = 
 

1

1
11

, 1

1

n j

ij

i
jn j

i j

i

D

Var k

D

− +

=
−− +

−
=

 
 
 =
 
 
 

∑

∑
    (A.15) 

                                

         
1

12
1

1

, 1

1

1 n j

ij j
n j

i

i j

i

Var D k

d

− +

−
− +

=

−
=

 
=  
   
 
 

∑
∑

 

                                 
1

, 12
1

1

, 1

1

1 n j

i j j
n j

i

i j

i

d g

d

− +

−
− +

=

−
=

=
 
 
 

∑
∑

 

                                 
1

, 1

1

j

n j

i j

i

g

d
− +

−
=

=
 
 
 
∑

       (A.16) 

 

The expression in (A.16) was only a part of what is needed to find ( )2

1j l
E S k − , but by using 

(A.16) it is clear that ( )2

1j l
E S k −  can be expressed as: 
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( ) ( )
2

2 2 2 2 2 2 2 2 2

1 2 1 1 1 2 1 11

, 1

1

ˆ ˆ ˆ ˆ ˆ... ... ... ...
j

j j n i j j j j j n n i j j nn j

i j

i

g
E S k f f E f f k f f f f f f

d

− − + − − + − + − +− +

−
=

 = − = 
 

∑
 

ˆ
l

f  for l<j us a scalar because it is conditioned on 1j
k − .  

 

By replacing the parameters 
j

f  and 
j

g  with ˆ
jf  and ˆ

j
g  in the expression above an estimator 

for ( )( )
2

, 1
ˆ

in i n i in
E D k D− + −  is derived: 

 

( )( ) ( )
2

2 2 2 2

, 1 , 1 , 1 1

2

ˆ
n

in i n i in i n i i n i j j

i n i

E D k D d F d E S k− + − + − + −
= − +

− = = ∑        (A.17) 

    

2

2 2 2

, 1 2 1
2

, 1

1

2

2

1
2

, 1

1

ˆ

ˆ
ˆ ˆ...

ˆ

ˆ
ˆ

j

n
j

i n i n i n n j
j n i

i j

i

j

n
j

in n j
j n i

i j

i

g

f
d f f

d

g

f
D

d

− + − + − +
= − +

−
=

− +
= − +

−
=

 
 
 
 =

 
 
 
 =

∑
∑

∑
∑

 

 

Finally, the estimator of the prediction variance is available. By using the formulas from  

(A.2), (A.10) and (A.17) one can see that the prediction variance of ˆ
inD  is:  

 

 ( ) ( ) ( )( )
2

ˆ ˆ
i in in inMSE R Var D K E D K D= + −  
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2 2

2 2

1
2 2, 1

, 1

1

ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ

j j

n n
j j

in in n j
j n i j n ii j

i j

i

g g

f f
D D

D
d

− +
= − + = − +−

−
=

   
   
   
   = +∑ ∑

∑
 

                2

12
2 , 1

, 1

1

ˆ 1 1ˆ
ˆ ˆ

n
j

in n j
j n i i jj

i j

i

g
D

Df
d

− +
= − + −

−
=

 
 
 = +
 
 
 

∑
∑

     (A.18) 

 

In addition to the prediction variance of ˆ
inD  it is essential to find the prediction variance of 

the total reserve estimate.  

 

The explanations are shorter when proving this formula since the same calculations have 

been done when finding the prediction variance of every accident year. Instead, the already 

established identities of formulas that are being used will be written on the right hand side of 

the calculation. The identity to be proven is  

 

( ) ( ) ln 1
21 1 2

1

ˆ2ˆ ˆ ˆ ˆ

ˆ

n n n
k

i in n k
i l i k n i

j lk

l

g
MSE R k MSE R k D D

f d
− +

= = + = − +

=

  
     = +  

   
    

∑ ∑ ∑
∑

 

 

Proof: 

( )
2

ˆ ˆ
n

i

i

MSE R k MSE R k
=

 
=  

 
∑         (A.19) 

                

2

2 2

ˆ
n n

i i

i i

E R R k
= =

  
= −     

∑ ∑     



 112 

                

2

2 2

ˆ
n n

in in

i i

E D D k
= =

  
= −     

∑ ∑        (3.18) 

                

2

2 2 2

ˆ
n n n

in in in

i i i

Var D k E D k D
= = =

    
= + −    

    
∑ ∑ ∑      (2.60) 

                 ( ) ( )1 2= +  

 

The two expressions ( )1  and ( )2  will be determined separately. 

 

( ) ( )
2 2

1
n nindependence

in in

i i

Var D k Var D k
= =

 
= = 

 
∑ ∑       (A.10) 

 

( ) ( )( )
2 2

2 2 1

ˆ ˆ2
n n n

in in in in

i i i

E D k D E D k D
= = =

    
= − = −    

    
∑ ∑ ∑  

      ( )
2

, 1 2 , 1 2

2

ˆ ˆ... ...
n

i n i n i n i n i n i n

i

d f f d f f− + − + − + − +
=

 
= − 
 
∑      (A.11) 

      ( )
2

, 1 2 2

2

ˆ ˆ... ...
n

i n i n i n n i n

i

d f f f f− + − + − +
=

 
= − 
 
∑  

      

2

, 1

2

n

i n i i

i

d F− +
=

 
=  
 
∑  

      2 2

, 1 , 1 , 1

2 2 2

2

i l

n n n

i n i i i n i l n l i l

i i l

d F d d F F

<

− + − + − +
= = =

= +∑ ∑∑  
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The variable F was introduced in (A.12) and it was defined as ( )2 2
ˆ ˆ... ...n i n n i nF f f f f− + − += − . 

In this case this variable is needed for i = 2,…,n, so a subscript i  is included, the variable 

becomes  

 

( )2 2
ˆ ˆ... ...i n i n n i nF f f f f− + − += − . 

 

To find a simpler expression for ( )2  an estimator for i lF F  needs to be determined. This is 

done by using the same procedure as in (A.12-A.16). The estimator for i lF F  is 

 

 

2 2

12 2

2 1 2 1 1
1

, 1

1

ˆ ˆˆ ...
ˆ ˆ ˆ ˆ... ...

n
q q n

n l n l n l q n q
q n i

i q

i

g f f
f f f f

d

+

− + − + − + − − +
= − +

−
=

∑
∑

     (A.12-A.16) 

 

 

The two identities ( )1  and ( )2  is added and the estimator above is used. Remembering the 

expression of ( )ˆ
iMSE R k  it is clear that:    

 

( ) ( ) ( )ˆ 1 2MSE R k = + ( ) 2 2

, 1 , 1 , 1

2 2 2 2

2

i l

n n n n

in i n i i i n i l n l i l

i i i l

Var D k d F d d F F

<

− + − + − +
= = = =

= + +∑ ∑ ∑∑  
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                                    ( ) ln 1
21 1 2

1

ˆ2ˆ ˆ ˆ

ˆ

n n n
k

i in n k
i l i k n i

j lk

l

g
MSE R k D D

f d
− +

= = + = − +

=

  
     = +  

   
    

∑ ∑ ∑
∑

 


