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Summary 
 

SUMMARY 
 

 
The different cells in an organism need to know which genes to be active and which to be 

inactive. A central mechanism that contributes to regulate gene expression is the 

organisation of DNA into dense and less dense forms. This form of epigenetic gene 

regulation can be brought about by the attachment of epigenetic marks to chromatin. 

Epigenetic marks can be copied to daughter cells. Some of these marks are also inherited, 

through germ cells, to a new generation. Proteins exist that can recognize the epigenetic 

marks. A protein domain present in several proteins implicated in chromatin mediated gene 

regulation is the PHD finger, but so far, no such evidence has been provided confirming 

that the PHD finger can actually interact with chromatin. The PHD finger often occurs next 

to one or more other domains, some of which have known chromosome-binding activities. 

In the cofactor p300, the PHD finger occurs next to a bromodomain. The region of p300 

including both of these domains (p300BP) is found to bind to acetylated mononucleosomes 

in vitro and that the PHD finger is essential for the interaction. In this study, the relation 

between the domains was investigated to examine the contribution of the PHD finger. 

Recombinant proteins were made by swapping the PHD finger in p300BP with a PHD 

finger from a heterologous protein, but no nucleosome interaction was detected with the 

recombinant proteins. p300BP, and probably also the protein p300, therefore seems to be 

dependent on a specific interaction between its bromodomain and PHD finger to give a 

functional protein able to interact with nucleosomes.  
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Populærvitenskapelig sammendrag 
 

POPULÆRVITENSKAPELIG SAMMENDRAG 
 

Cellene til alle levende organismer inneholder DNA. I noen posisjoner av DNA finnes 

områder som kan, ved hjelp av blant annet mange ulike enzymer, utrykke et protein. Et slikt 

område kalles et gen. DNA kan beskrives som et alfabet som består av fire ulike bokstaver, 

der et ord på tre bokstaver utgjør en kode som passer til en gitt aminosyre. Rekkefølgen av 

bokstavene i DNA bestemmer rekkefølgen på de korresponderende aminosyrene. Et gen 

fungerer altså som en oppskrift på ulike typer proteiner. Når en organisme utvikler seg, blir 

cellene mer og mer spesialisert. Til tross for ulike funksjoner og utseende, beholder cellene 

det samme DNA. En av grunnene til at cellene blir forskjellige er at noen gener blir skrudd 

av mens andre blir skrudd på. Dette mønsteret blir deretter arvet til dattercellene.  

 DNA er kveilet rundt spesielle proteiner, og én slik kveil med protein i midten 

kalles et nukleosom. Nukleosomene ligger etter hverandre som perler på en snor, og danner 

kromatin, som er den formen DNA opptar i cellene. Ulike merker kan festes på kromatinet, 

merker som forteller om genene skal være av eller på. Flere ulike proteiner er vist å kunne 

lese og tolke disse merkene. Et protein kan bestå av flere områder som har særegne 

funksjoner. Disse områdene kalles domener. Et eksempel på et domene er PHD fingeren. 

Det er mulig at dette domenet deltar i å lese merkene som er festet på kromatinet, men så 

langt har ingen klart å bevise dette. Et protein som heter p300 inneholder en slik PHD 

finger. PHD fingeren sitter i dette proteinet ved siden av et annet domene, bromodomenet. 

Området av p300 som inneholder disse to domenene kan binde til nukleosomer. Det er 

mulig at de to domenene samarbeider for å få til denne bindingen. For å undersøke dette 

nærmere laget jeg proteiner der PHD fingeren fra p300 var byttet ut med en PHD finger fra 

ett av tre andre proteiner. Evnen til å binde til nukleosomer ble deretter testet for disse 

proteinene. Jeg fant ut at det ikke var mulig å bytte ut PHD fingeren i p300 med andre PHD 

fingre uten at evnen til å binde til nukleosomer forsvant. Det er derfor sannsynlig at det er 

en interaksjon mellom bromodomenet og PHD fingeren i p300 som er spesifikk for dette 

proteinet. Dette kan bety at PHD fingeren samarbeider med bromodomenet og på denne 

måten bidrar til å lese et merke som er festet til kromatinet. 
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Abbreviations 
 

ABBREVIATIONS 
 

A  
ADA Adaptor 
ASH1 Absent, small or homeotic 

discs 
 

B  
BAH Bromo-adjacent homology 
Brm Brahma 

 
C  
CAF Chromatin associated factor 
CBP CREB binding protein 
CHD Chromo-ATPase/helicase-

DNA-binding domain 
CHRAC Chromatin accessibility 

complexes 
CREB cAMP response element 
Chromo Chromatin organisation 

modifier 
 

E  
ESC Extra sex combs 
E. coli Escherichia coli 

 
E(Z) Enhancer of zeste 

 
F  
FYVE Fad 1 p, YOTB, Vac 1 p, EEAI

 
H  
HAT Histone acetyl transferase 
HDAC Histone deacetylase 
HRX Human trithorax 
HMG High mobility group 
HP1 Heterochromatin protein 1 

 
I  
In prep In preparation 
ISWI Imitation switch 

 
M  
MLL Mixed lineage leukemia 
MWS Molecular weight standard 

 
N  
N-CoR Nuclear receptor Co-repressor 
NoRC  Nucleolar remodelling 

complex 
NuRD Nucleosome remodelling 

deacetylase 
NuRF Nucleosome remodelling factor

 
 

 

 
 
 
 
 

 

P  
Pc Polycomb 
PcG Polycomb group 
Pcl Polycomblike 
PCAF p300/CBP associated factor 
PCNA Proliferating cell nuclear 

antigen 
Pers. comm. Personal communication 
ph polyhomeotic 
PHD Plant homeo domain 
PEV Position effect variegation 
Psc Posterior sex comb 

 
R  
RbAp Retinoblastoma associated 

protein 
 

S  
SET SUV39, E(Z), TRX 
Sir Silent information regulator 
SNF sucrose non-fermenting 
SUV Suppressor of variegation 
SWI Switching mating type 

 
T  
TIP5 TTF-I interacting protein 5 
TTF-I Trancription termination 

factor I 
TRX Trithorax 
trxG Trithorax group 

 
U  
UBF Upstream binding factor 

 
W  
WSTF  Williams syndrome 

transcription factor 
WD  Tryptophan (W)-aspartic 

acid (D) 
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1. Introduction
 
 

1.1 Differential gene expression and chromatin structure  
In all living organisms, a new generation starts with a single cell, the zygote. This cell is a 

totipotent stem cell, meaning it has the capacity to develop into all other kinds of cells made 

at later stages of development. The DNA will therefore, with a few exceptions, be identical 

in all the cells of the organism. Despite this genetic equality, the cells in multicellular 

organisms have a wide range of distinct characteristics. One explanation for this diversity is 

that different genes are expressed in the different kinds of cells, which gives the cells 

distinct functions and morphology (Figure 1.1).  

 

 
 

 
 
 
 
 
 
 
 
 

 

 

Erythrocytes 

Erythrocyte genes turned off 

Muscle cell genes turned off 

Muscle cellStem cell 

Figure 1.1 Differential gene expression and cell development. One stem cell is the origin of other 

cells developing in an organism. Genes are turned on and off as the cells differentiate.  

 

What is it that determines if a gene is turned on or off, and how is the expression status for 

each gene maintained? Stable gene regulation is the result of a number of complex 

mechanisms, many which are not well understood. To understand how these mechanisms 

work, it is important to know the organisation of the DNA in the cell. In most organisms the 

DNA is packed into several chromosomes, 23 in humans, that are present in two copies in 

diploid cells. In eukaryotes, the chromosomes are located in the cell nucleus. 

 

1.1.1 Nucleosome structure 

It was proposed in 1974 that eukaryotic chromosomes consist of a repeating unit containing 

DNA and protein. This unit was named the nucleosome (Kornberg, 1974). The nucleosome 

consists of 147 base pairs of DNA wrapped around a core of eight proteins, the core 

histones; H2A, H2B, H3 and H4, each in two copies (Figure 1.2). A linker histone, such as 

H1, can stabilize the nucleosomes and help to establish higher-order structures 

characteristic of chromatin (see Section 1.1.2). Several groups contributed to solving the 

structure of the nucleosome (Arents et al., 1991; Luger et al., 1997; Richmond et al., 1984), 

revealing its molecular composition in atomic detail. Each core histone forms a helical 

region that constitutes the histone fold, which interacts with DNA. The histone fold 

comprises about 75 % of the amino acid content of the histone and forms the interior core 
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of the nucleosome particle. The remaining amino-terminal part of the histone protein 

contains a basic and flexible tail region that protrudes from the nucleosome. Both the 

histone fold region and the N-terminal region are highly conserved across eukaryotic 

species.  

 

H2A 

H4 H2B 

H3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.2 Structure of the nucleosome. Model of the molecular structure of the nucleosome (Luger 
et al., 1997). The different colours represent the different histones, H2A, H2B, H3 and H4, and each 
histone exists in two copies. The ends pointing outwards are the N-terminal tails of the histones (only 
parts of the tails are visible in the model). The DNA helix is coiled around the histones and is shown 
in black (Figure provided by Rein Aasland). 

 

Several side chains on the N-terminal tails are subject to one or more post-translational 

modifications, including acetylation, methylation, ADP-ribosylation, phosphorylation and 

ubiquitylation. An overview of selected histone modifications is given in Table 1.1. Only 

the histone modifications acetylation and methylation are further discussed (Section 1.2.2). 
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Table 1.1 Selected histone modifications a 
    

Modification Occurs on Enzyme adding Enzyme  
removing 

Associated protein 
module b 
 

Function of the 
modification c 

Acetylation Lysine  HAT HDAC Bromodomain Mainly 
activation 

Examples 
 

H3:K9 
H3:K8/16 

Gcn5,  
p300/CBP,  
TAFII250,  
PCAF 

RPD3/HDAC1 Gcn5,  
p300/CBP, 
TAFII250,  
P/CAF 
 

 
 

Further reading (Kuo et al., 
1996) 

(Marmorstein and 
Roth, 2001; Roth 
et al., 2001) 
 

(Thiagalingam et 
al., 2003) 

(Haynes et al., 
1992) 
 

(Struhl, 1998) 

Methylation Lysine 
Arginin 

HMT Unknown Chromodomain 
 

Activation and  
repression 

Examples 
 

H3:K4, K9, 
K27 
H4:K20 

SUV39 

        - 

HP1, PC,  
RBP1, SUV39, 
CHD, MOF,  
MSL-3, dMi2 
 

 

Further reading (Morales 
and 
Richard-
Foy, 2000) 

(Peters et al., 
2001) 

 (Eissenberg, 2001; 
Jones et al., 2000) 

(Jenuwein and 
Allis, 2001; 
Zhang and 
Reinberg, 2001) 
 

Phosphorylation Serin 
Threonin 

Kinases Phosphatases Unknown Activation and 
repression 

Examples 
 

H3:S10 
H3:T11 
 

Dlk/ZIP 
The aurora family
CDKs 
 

Glc7/PP1 

       - 

 

Further reading (Hendzel et 
al., 1997) 

(Preuss et al., 
2003) 

(Hsu et al., 2000)  (Davie et al., 
1999) 
 

Ubiquitinylation Lysine 
 

E1+E2+ligase E3 Ubiquitin-
processing 
protease? 

Unknown  Activation and 
repression 
proposed 

Examples 
 

H2A:K120 
H2B:K120 

Rad6b/Ubc2p 
Cdc34p/Ubc3p 
 

UbpM  
       - 

 

Further reading (Belz et al., 
2002) 

(Jason et al., 
2002) 

(Jason et al., 
2002) 

 (Jason et al., 
2002; Moore et 
al., 2002) 

a The table does not give a complete picture of histone modifications but provides some examples. 
b The examples of proteins mentioned under the associated protein module are proteins containing the respective  
domain that do not necessarily have a nucleosome binding function. 
c New functions for a certain modification is continuously being elucidated. In addition, the function can be altered 
when combined with one or more other modifications. 
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1.1.2 Chromatin structure 

The nucleosomes eventually contribute to form DNA into a structure called chromatin. 

Chromatin is composed of nucleosomes following after one another as ‘beads on a string’ 

(Figure 1.3).  

 

 

 

 

 

 

 Nucleosome 
Histone  tail Histones Linker DNA 

Figur 1.3 The repeating unit, the nucleosome, forms chromatin. The purple string represents DNA 
whereas the green core represents the histones. The N-terminal tails of the histones can be seen 
protruding from the nucleosomes. 

 

Chromatin can exist in two cytologically very different forms, a condensed form and a 

decondensed form. The condensed form, called heterochromatin, is so compact that 

transcription is most likely not possible since there is no space for RNA polymerase or 

transcription factors to bind. The decondensed form, named euchromatin, is a form that is 

generally open for transcriptional activation (Figure 1.4). An interesting issue is that in 

regions of euchromatin, heterochromatin-like structures can be formed, making inactive 

genes in regions of active ones. This leads to the important question: how is chromatin 

modulated for the regulation of transcription of specific genes? One answer may be that 

certain proteins specifically modulates chromatin for gene activation, gene silencing or 

chromosome condensation, reviewed in (Marmorstein, 2001).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figur 1.4 Structure of chromatin. The picture shows the organisation of DNA into euchromatin and 
heterochromatin in the nucleus of the cell (http://cellbio.utmb.edu/cellbio/nucleus.htm). 
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1.2 Epigenetic gene regulation 
A dense form of chromatin makes it less accessible to transcriptional activators, and a 

hypothesis is that converting a part of chromatin into a dense from contributes to silencing 

the genes in this area (Turner, 1993). A number of phenomena that are caused by a change 

in the condensation state of chromatin have been discovered. Examples of such 

mechanisms are given in Section 1.3. A change in the condensation state can be brought 

about by several mechanisms. In addition to the already mentioned histone modifications, 

the most extensively studied mechanism is DNA-methylation. The modifications 

contribute to a form of gene regulation named epigenetic gene regulation, which is defined 

by (Russo et al., 1996) as; “ Mitotically and / or meiotically heritable changes in gene 

function that cannot be explained by changes in DNA sequence.” The modifications printed 

in chromatin can thus serve as epigenetic marks. 

 

1.2.1 DNA methylation  

In mammals, the methylation of DNA is a post replicative modification that occurs mainly 

on cytosines of the dinucleotide sequence CpG. DNA methylation in non-embyonic cells is 

distributed on about 80% of the CpG dinucleotides. An exception to the methylation of 

CpGs is the so-called CpG islands. These are short clusters of CpGs, proposed to function 

as promoters or replication origins that avoid methylation by a yet unknown mechanism. 

What is known, however, is that when the CpG islands are accidentally methylated, this can 

cause silencing of adjacent genes, a process that can contribute to cancer, reviewed in 

(Jaenisch and Bird, 2003; Jones and Takai, 2001). The pattern and degree of DNA 

methylation changes dramatically during the development of an organism. It has been 

reported that in mammals, shortly after fertilisation, the entire genome is demethylated, 

‘resetting’ this epigenetic mark (Davis et al., 2000; Mayer et al., 2000; Oswald et al., 2000). 

When the fertilized egg attaches to the uterine wall, the genome is gradually methylated de 

novo, resulting in new, individual epigenetic marks. After this, de novo methylation 

decreases during differentiation and is, except for a few cases, rare after full differentiation 

(Ehrlich et al., 1982).  

 Methylation of DNA is an important contributor to stable gene expression patterns, 

and together with chromatin modifying enzymes it can contribute to maintain the silent 

state of chromatin (Urnov and Wolffe, 2001; Wolffe and Matzke, 1999). The methyl group 

is attached to DNA by DNA methyl transferases (DNMTs), several of which have been 

identified. Some of the DNMTs have roles in the maintenance of the methylation pattern 

after cell divisions and some function in de novo methylation. DNA methylation has mainly 

a negative effect on the transcription rate and causes repression for three main reasons: (a) 

several transcriptional repressors can bind to methylated DNA (Hendrich and Bird, 1998; 

Lewis et al., 1992; Prokhortchouk et al., 2001), (b) proteins that bind to DNA, such as 

transcription factors, can be excluded (Tate and Bird, 1993; Watt and Molloy, 1988) and  

(c) DNMTs can be recruited to histone deacetylases (HDACs) and cause de novo 

  
 

      9 



1. Introduction
 
 

methylation in regions already silenced by co-repressors. This can result in a permanently 

silenced gene (Bachman et al., 2001; Fuks et al., 2001). Even though normally linked to 

gene silencing, an example of DNA methylation resulting in gene activation is the 

exclusion of a transcriptional repressor, CTCF, resulting in an active gene (Hark et al., 

2000; Ohlsson et al., 2001).  

 

1.2.2 Histone modifications 

As mentioned above, the N-terminal histone tails can be modified in several different ways. 

Here, I will discuss only acetylation and methylation (see Table.1.1) since these are 

considered to be the most common modifications. 

 

Histone acetylation is the post-translational histone modification that has been most 

extensively studied. This modification occurs on lysine residues, particularly on histones 

H3 and H4. It is a transient, short term regulation that occurs at a low level throughout 

much of the genome (primarily in euchromatin), resulting from a balance between the 

activities of histone acetyl transferases (HATs) and histone deacetylases (HDACs) 

(Vogelauer et al., 2000). In the absence of histone acetylation, the basic histone tails are 

firmly associated with the acidic DNA backbone. This firm association can prevent 

transcriptional activators and polymerases getting access to DNA. Histone acetylation can 

neutralize the charge of the N-terminal histone tails and relieve the association between 

histones and DNA. The relieved association would in turn ease the access to DNA for 

transcriptional activators and polymerases (Hansen et al., 1998; Wolffe and Hayes, 1999). 

A more recent report suggests an alternative way for histone acetylation to alter the 

conformation of chromatin; by causing an increase of the α-helical content of the histone 

tails (Wang et al., 2000).  A link between DNA methylation and histone acetylation has 

been proposed. It is shown that DNA methylation can lower the level of histone acetylation 

(Eden et al., 1998). This connection is probably caused by the ability of the methyl-binding 

protein MeCP2 to recruit HDACs (Jones et al., 1998; Nan et al., 1998). A protein domain 

called the bromodomain has been shown to be able to bind to acetylated lysines and it can 

contribute to epigenetic gene regulation (Haynes et al., 1992) (see section 1.4.1).  

 

Histone methylation occurs on arginine and lysine residues. Histone methylation is 

associated with both activation and repression of genes; methylation of Lys4 on H3 has 

been linked to transcriptionally active genes, whereas methylation of Lys9 on H3 has been 

associated with transcriptional silencing (Jenuwein and Allis, 2001; Zhang and Reinberg, 

2001). Several histone methyl transferases (HMTases) have been identified, most of them 

containing the SET domain (named for its presence in SUV39, E(Z) and TRX, members of 

the PEV group, the PcG and the trxG of genes in Drosophila respectively, see section 1.3.1 

and 1.3.2).  
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 The SET domain was first recognized as a conserved pattern in a few chromatin-

associated proteins (Tschiersch et al., 1994). Later observation of homology between the 

SET domain and a plant enzyme led to the characterization of a number of SET domain 

containing proteins also as enzymes; namely HMTases (Rea et al., 2000). The SET domain 

is now identified in several hundred proteins (Schultz et al., 2000). Histone methylation is, 

in contrast to the more transient histone acetylation, a stable and long term modification, 

and no histone demethylases have yet been identified. Analyses have indicated that there is 

a link between histone methylation and DNA methylation through heterochromatin protein 

1 (HP1). HP1 binds specifically to methylated Lys9 on H3 in vitro and recruits a DNA 

methyl transferase (Jackson et al., 2002; Tamaru and Selker, 2001). HP1 contains a protein 

domain, the chromodomain (see Table 1.1 and Section 1.4.2) which is able to recognize this 

histone modification (Nielsen et al., 2002). 

 

1.2.3 The histone code hypothesis 

There are several examples that different epigenetic marks are linked to each other, some of 

which have been mentioned above. The enormous potential of different modification 

patterns, both on histones and DNA, makes chromatin modification a very complex issue 

and gives a wide range of possible regulation mechanisms (Turner, 1993). More recently, 

the different DNA- and histone modifications were proposed to function separately or in 

combinations as a ‘histone code’ that may be interpreted in various ways by different 

proteins (see Section 1.4) (Strahl and Allis, 2000). The idea is that the ‘histone code’, by 

being a cause of alteration in the chromatin structure, eventually contributes to epigenetic 

gene regulation. 

 

1.3 Examples of epigenetic gene regulation  
There are a number of interesting and important phenomena linked to epigenetic gene 

regulation. Below are given a few typical examples of epigenetic regulation and some 

examples of diseases caused by epigenetic malfunction. 

 
1.3.1 Epigenetic gene regulation in Drosophila Melanogaster 

The expression state of chromatin in Drosophila (Drosophila melanogaster) has been found 

to be altered by the absence of proteins expressed from two groups of genes; the PcG 

(Polycomb group) and the trxG (trithorax group) (Eissenberg, 1999; Orlando, 2003; 

Turner, 2001). The PcG and trxG proteins are involved in the regulation of the homeotic 

genes, which specify the development of the body segments in most animals. Correct 

expression patterns are ensured in part by the proteins of the PcG genes. These proteins are 

involved in chromatin condensation and gene silencing of the homeotic genes. The PcG of 

genes encodes several proteins, such as PC (Polycomb), E(Z) (Enhancer of zeste), PCL 

(Polycomblike), PSC (Posterior sex combs), ESC (Extra sex combs) and ISWI (Imitation 

switch). Proteins expressed from the trxG genes counteract the silencing effects of the PcG 

  
 

      11 



1. Introduction
 
 

proteins to maintain a decondensed form of chromatin, and thus gene activity. This group 

includes proteins like TRX (Trithorax), Brm (Brahma), Zeste and the ASH proteins ASH1 

and ASH2 (Absent and small homeotic discs). Homologues of PcG and trxG genes have 

been identified in a number of other species, including mammals and other vertebrates and 

it is probable that they exist in all eukaryotic organisms.  

 

1.3.2 Heterochromatic position effect variegation (PEV) 

A group of genes related to the trxG and the PcG genes are the PEV (Position effect 

variegation) genes, linked to the epigenetic phenomenon PEV. Examples of proteins in 

Drosophila encoded by these genes is the heterochromatin protein HP1, and the suppressor 

of variegation proteins, included SUV39 (Brody, 1995; Brown, 1999; Orlando, 2003). PEV 

was first discovered by H J Muller in 1930. He discovered that the white eye-colour in 

Drosophila varied among the cells of the eye, giving a pattern of red and white. The cause 

of this variation is explained by a rearrangement of the white gene (which is required for a 

red eye colour) resulting in an inactive gene. The activity of a gene can vary according to its 

chromosomal position. By different mechanisms, for example chromosomal rearrangement 

by inversions or translocations, a euchromatic gene can be placed next to a region of 

heterochromatin, resulting in silencing in regions of originally active genes. The main 

reason for the silencing is the cis spreading of condensed heterochromatin condition past 

the breakpoint of euchromatin, (Eissenberg, 1999; Turner, 2001; Wakimoto, 1998).  

 

1.3.3 Imprinting and X-inactivation  

Genomic imprinting is a phenomenon in which one of a pair of genes is being silenced. The 

phenomenon is exclusively found in mammals and it involves several mechanisms, 

including DNA-methylation, histone acetylation and histone methylation. Only a small 

number of genes are subjected to genomic imprinting (Brown, 1999; Jaenisch, 1997). X-

inactivation is a special form of imprinting. In humans, females have two X-chromosomes 

whereas males have only one. If both of the female X-chromosomes were active, proteins 

encoded by genes on the X-chromosome would be synthesized at a higher level in females 

as compared to males. To avoid this, one of the female X-chromosomes is converted to a 

condensed and transcriptionally silent state of chromatin and is seen in the nucleus as a 

structure called the Barr body. This condensation occurs through several steps, including 

DNA methylation, histone modification and the coating of the X-chromosome by Xist RNA 

expressed from the X-chromosome that is to be inactivated. DNA methylation and histone 

deacetylation is important for maintenance of the inactivated X-chromosome. Only a few 

short segments containing small clusters of genes remain active, reviewed in (Brown, 1999; 

Li, 2002).  
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1.3.4 Epigenetic mechanisms and human disease 

There are several examples of malfunction of epigenetic mechanisms leading to disease in 

human. A few interesting cases are discussed below. Two major reasons for epigenetic 

malfunction are: (a) mutation in a gene encoding a chromatin-modifying protein and (b) 

mutation in a gene encoding a protein involved in binding to an epigenetic mark. ICF 

syndrome and Rett syndrome are examples of the two cases, respectively. ICF syndrome 

involves a mutation in a de novo DNA methyl-transferase (Xu et al., 1999) and Rett 

syndrome can be caused by mutations in the gene encoding a methyl-cytosine-binding 

protein (Amir et al., 1999). The ATRX gene is a gene encoding a chromatin-modifying 

protein in the SNF2 family (proteins involved in chromatin remodelling). A mutation in this 

gene can cause, among other things, mental retardation (Gibbons et al., 2000). In the area of 

cancer, epigenetics is playing an important role. Alterations in DNA-methylation was 

found in human cancer cells in 1983 (Feinberg and Vogelstein, 1983) and since then it has 

been a vast area of research examining epigenetic alterations in human tumours and their 

role both in the activation of tumour promoter genes and the silencing of tumour suppressor 

genes (Feinberg et al., 2002). The proteins MLL (1.9.2) and CBP (1.6.1) are both proteins 

linked to epigenetic regulation, that in cancer cells can be translocated. There are 

indications that cancer can be promoted also by malfunction in histone acetylation 

(Mielnicki et al., 1999) and histone methylation (Nguyen et al., 2002).  

 

1.4 Proteins that bind to nucleosomes 
As was mentioned in Section 1.2.3, epigenetic marks printed in chromatin can be 

interpreted by proteins recognizing the marks. Usually these proteins contain one or more 

of the domains found to interact with nucleosomes. Some of the domains are shown to 

interact with modified histone tails (the bromodomain and the chromodomain) and others 

are proposed to have a similar function (the SANT domain and the PHD finger). In 

addition, there are a few proteins binding to nucleosomes by other domains and motifs 

(RbAp and SIR). 

 

1.4.1 The bromodomain 

The bromodomain was first discovered in the Drosophila protein brahma and in the yeast 

transcriptional activator SWI2/SNF2 (Haynes et al., 1992; Tamkun et al., 1992). It is an 

evolutionarily conserved domain of ~110 amino acids, found in several chromatin-

associated proteins and in many of the known HATs. The structure of a bromodomain is 

shown in Figure 1.5. The bromodomain adopts a left-handed four-helix bundle with long 

intervening loops, termed the ZA loop and the BC loop, between the helices A, B, C and Z 

(Dhalluin et al., 1999). The hydrophobic cleft between the BC and the ZA loop has been 

proposed to be the recognition site for acetylated histone tails (Dhalluin et al., 1999; 

Hudson et al., 2000; Jacobson et al., 2000; Owen et al., 2000). Some proteins containing the 

bromodomain are listed in Table 1.1. 
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Figure 1.5. The structure of the bromodomain of p300/CBP-associated factor, P/CAF. The 
bromodomain is a ~110 amino acid module found in chromatin-associated proteins (Dhalluin et al., 
1999). 

 

1.4.2 The chromodomain 

The chromatin organisation modifier, the chromodomain, is a conserved ~50 amino acids 

long motif that is found in a variety of proteins from different species (Paro and Hogness, 

1991), reviewed in (Brehm et al., submitted; Eissenberg, 2001). In mammals, most proteins 

containing chromodomains are part of large macromolecular chromatin complexes, or they 

are proteins involved in chromatin remodelling. Some examples are HP1, Pc and SUV39 

(Section 1.3.1 and 1.3.2). The chromodomain (Figure 1.6) has been found to contain three 

anti parallel β-sheets and a C-terminal α- helix (Ball et al., 1997). Several research groups 

have suggested a link between the chromodomain and epigenetic mechanisms: The 

chromodomain of HP1 has been shown to be responsible for binding to a methylated lysine 

9 at histone H3 (Bannister et al., 2001; Lachner et al., 2001; Muchardt et al., 2002). There 

are also reports indicating that some chromodomains can bind to RNA (Akhtar et al., 2000) 

or to DNA (Bouazoune et al., 2002). Some proteins containing the chromodomain are listed 

in Table 1.1. 
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Figure 1.6 The structure of the chromodomain of HP1. The chromodomain contains three anti 
parallel β-sheets, ending with an α- helix (Nielsen et al., 2002). 
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1.4.3 The SANT domain 

The SANT domain is a small protein domain present in proteins from organisms varying 

from viruses to vertebrates (Aasland et al., 1996). Its precise function has not yet been 

convincingly documented, but there are strong indications that it has a function linked to 

chromatin. It is present in several proteins involved in transcriptional regulation, for 

example SWI3 (Switching mating type), ADA2 (Adaptor), N-CoR (Nuclear receptor co-

repressor) and ISWI, all of which are contained in chromatin remodelling complexes. A 

fact supporting the chromatin related implication is its relatedness to the DNA binding Myb 

domain (Aasland et al., 1996) and the SWI/SNF complex (which includes SWI3) that are 

reported to have DNA binding activity (Quinn et al., 1996). Evidence also indicate that 

SANT-regions in several co-repressors can bind, and some also activate, HDACs (Guenther 

et al., 2001; You et al., 2001). Two parts of the SANT domain (SANTa and SANTb) of 

Ada2 have been studied, where SANT b was shown to interact with the acetylase Gcn5 and 

SANTa was thought to recognize or interact with chromatin (Sterner et al., 2002). Other 

experiments have indicated that the SANT domain interacts with the N-terminal tails of the 

histones (Boyer et al., 2002). No structure is yet available for the SANT domain 

 

1.4.4 RbAp46/48 

There are a few examples of proteins binding to nucleosomes without the presence of any 

of the domains mentioned above. The mammalian nuclear protein RbAp48 

(Retinoblastoma-associated protein 48) is one example. Evidence suggests that RbAp48, 

and the closely related protein RbAp46, interacts with core histones H2A and H4 (Verreault 

et al., 1998). RbAp48 from Xenopus laevis has been suggested to bind to a segment of the 

N-terminal tail close to the histone fold domain of histone H4 in vivo (Vermaak et al., 

1999). The RbAps are present in several protein complexes involved in mechanisms such as 

histone acetylation and deacetylation, nucleosome disruption and assembly (for example 

the NuRD complex). RbAp48 contains seven copies of a motif named the WD repeat 

(from the amino acids Trp and Asp) which is predicted to form a β-propeller structure 

(Sondek et al., 1996; Wall et al., 1995). The amino acids between each WD-repeat are 

speculated to be solvent exposed and involved in protein-protein contact. These WD-

repeats are common also in other proteins, such as the chromatin association factor CAF1 

and the nucleosome remodelling factor NuRF (Vermaak et al., 1999).  

 

1.4.5 SIR-proteins 

Another group of proteins binding nucleosomes is the Sir-group of proteins (silent 

information regulators), which contain four proteins; Sir1p-Sir4p. They are not structurally 

homologous, but they are known to form a complex with each other. The Sir2/Sir3/Sir4 

complex has been shown to be able to repress transcription, particularly in regions close to 

telomeres, by modulating chromatin structure. Evidence indicates that Sir3p and Sir4p are 

involved in the repair of double stranded breaks in DNA (Astrom et al., 1999). Sir3p and 
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Sir4p have also been reported to interact with the N-terminal part of H3 and H4 (Gasser and 

Cockell, 2001; Hecht et al., 1995; Nicolas et al., 2001). Recent data identified the protein 

domain BAH, Bromo-Adjacent Homology (Nicolas and Goodwin, 1996) in Sir3p and it has 

been suggested that this domain is responsible for interaction with chromatin at the H4 N-

terminal tail (Zhang et al., 2002). 

 

1.4.6 The PHD finger  

The PHD finger (Plant Homeo Domain) was discovered as a motif Cys4-His-Cys3 in the 

homeodomain protein HAT3.1 from Arabidopsis thaliana (Schindler et al., 1993). The 

motif resembled the metal binding domains RING (Cys3-His-Cys4) and LIM (Cys2-His-

Cys5), but strong evolutionary conservation suggested that this was a novel domain. The 

conserved motif is indicated in the alignment in Figure 1.7. The PHD finger, which 

contains 50-80 amino acids, is found in >400 proteins, several of which are nuclear proteins 

involved in regulation of transcription, including the proteins TRX and PCL. It has 

therefore been proposed that the PHD finger may play a role in chromatin-mediated 

transcriptional regulation (Aasland et al., 1995). The crystal structure of the PHD finger 

from WSTF (Williams Syndrome Transcription Factor, Figure 1.8) show that the conserved 

cysteins cooridinate two Zn2+ ions that fold the PHD finger into a zinc finger structure 

(Capili et al., 2001; Pascual et al., 2000). Several diseases are linked to mutations in PHD 

fingers of varying proteins (Capili et al., 2001), suggesting a vital role for this domain. A 

further discussion on the possible roles for the PHD finger is given in Section 1.5.  

 

 
 
 
 
 
 
 
 
 
 
 Loop 2 Loop 1

932
871 
670 
1697
270 
1110
1232
977 
1137
1625
1276 
1312
1934
1101 

Consensus:  C  C          C   C      H   C                       C   C 

Hu p300    1200 
Hu CBP     1236 
Dm CBP     1858 
Ce CBP     1025 

Hu WSTF    1186 
Hu ALR      926 
Hu MLL3    1086 
Hu HRX/MLL 1568 

Hu TIP5    1651 
Xl ACF1     224 
Dm ACF1    1064 

Hu TIF1α    828 
Hu TIF1β    627 

Hu TIF1γ    889 

 
 
Figure 1.7 Multiple alignment of selected PHD fingers. The figure shows an alignment of PHD 
finger encoding sequences from the proteins discussed in Section 1.6.1 and 1.9.2 (p300, TIF1γ, TIP5 
and MLL) and their close relatives. The pattern Cys4-His-Cys3 is indicated as the consensus below the 
alignment. These amino acids coordinate two zinc atoms. The alignment was made using Clustal X 
(default parameters), and the sequences with accession numbers are listed in Table 2.5. 

  
 

      16 



1. Introduction
 
 

Loop 1 

Loop 2 

 
 
 
 
 
 

 
 

 

 

 
Figure 1.8 Structure of the PHD finger in WSTF. The two blue balls represent zinc ions 
coordinated by the seven cysteins, indicated in orange, and a histidine, indicated in puple (Pascual et 
al., 2000). 

 

1.5 Possible functions for the PHD finger  
Several functions have been proposed for the PHD finger (Aasland et al., 1995).  

 (a) As other classes of zinc-containing domains, for example the DNA binding 

domain of nuclear receptors and GAL4 related proteins, one might speculate that the PHD 

finger can bind to nucleic acids (Marmorstein et al., 1992).  

 (b) Other protein domains that are, as the PHD finger, rich in cystein have been 

suggested to have a protein-protein interacting function. This has been suggested for the 

LIM domain (Schmeichel and Beckerle, 1994) and also indicated for the RING finger 

(Burd and Emr, 1998). Several PHD finger proteins exist in complexes, like transcriptional 

cofactors and epigenetic regulators. The PHD finger might in these cases interact with other 

protein domains often present in these types of proteins, such as chromodomains, 

bromodomains or other PHD fingers, situated in juxtaposition or in another protein. An 

example is the data showing that the PHD finger in the protein KAP1 can interact with the 

KID domain of Mi2α (Schultz et al., 2001). Also in the protein PCL, the PHD finger is 

proposed to function as an independent protein interacting domain (O'Connell et al., 2001). 

Furthermore, the PHD finger in MLL is suggested to interact with the cyclophilin Cyp33 

(Fair et al., 2001).  

 (c) A third possible function is that the PHD finger may recognize a specifically 

modified histone tail, although there is no data to support this yet.  

 It has been indicated that the PHD fingers in the closely related proteins p300 and 

CBP (Section 1.6.1) are not of the same importance in their respective proteins. In p300, the 

PHD finger is dispensable for histone acetyl transferase (HAT) activity, whereas for CBP it 

is essential (Bordoli et al., 2001; Kalkhoven et al., 2002). These results propose a new 

possible function for the PHD finger; (d) as a domain required for HAT activity.   

 Yet another function was recently proposed for the PHD finger; (e) in the protein 

ING2, the PHD finger was identified as a nuclear phosphoinositide receptor (Gozani et al., 

2003).  
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 Several articles have in the recent past claimed that the PHD fingers of certain 

protein families have ubiquitin ligase activity (Coscoy and Ganem, 2003; Lu et al., 2002). 

Bioinformatical analysis has shown that these domains are, in fact, RING fingers (Section 

1.4.6) not PHD fingers (Aravind et al., 2003). 

 

1.6 Experimental background 
My project has been a part of the research group’s main aim of elucidating the function(s) 

of the PHD finger. As mentioned earlier, the PHD finger is present in several proteins 

involved in epigenetic gene regulation, including TRX and PCL (Section 1.3.1). The focus 

in our group has therefore been on the PHD finger as a putative nucleosome interacting 

domain. The PHD finger studied in the research group originates from the protein p300. 

Other PHD fingers have been explored but were found difficult to express in vitro (Rein 

Aasland, pers. comm.). In p300, the PHD finger is situated next to a bromodomain. Variants 

of the region containing these two domains (p300BP, p300P and p300B) have been used in 

nucleosome binding experiments in our group (see Figure 1.9). 
 
1.6.1 Function and structural organisation of p300 

The human protein p300, and the very similar protein CBP (CREB binding protein), were 

initially identified as proteins interacting with the viral oncoprotein E1A and the cellular 

cAMP-response element CREB (Chrivia et al., 1993; Eckner et al., 1994). The two 

proteins, often referred to as p300/CBP, originate from genes on two different 

chromosomes but have nearly identical DNA sequence. Their functions are partly 

overlapping although some differences have been found (Bordoli et al., 2001; Kawasaki et 

al., 1998; Kung et al., 2000; Yao et al., 1998). p300/CBP participates in several 

physiological processes resulting in severe consequences when inactivated, for instance by 

binding of E1A. One consequence is the loss of controlled cell proliferation, indicating that 

the proteins may function as tumour suppressors, reviewed in (Chan and La Thangue, 

2001). Evidence has shown that the proteins are transcriptional coactivators and that they 

can activate transcription through several different mechanisms. One route involves the 

intrinsic HAT domain (Figure 1.9) through which the proteins are found to be capable of 

acetylating all four core histones (Ogryzko et al., 1996). There are indications that the PHD 

finger (in CBP) is an integral part of the HAT domain (Kalkhoven et al., 2002), but it is still 

not clear, however, whether the HAT activity of p300/CBP is directly involved in 

chromatin remodelling. It has been reported that p300 can interact and form a stable 

complex with chromatin and that the bromodomain, situated next to the PHD finger, is 

required but not sufficient for the interaction (Manning et al., 2001). It has for this reason 

been proposed that the PHD finger might contribute in the binding of p300 to chromatin 

(Kalkhoven et al., 2002).  
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Figure 1.9 Domain organisation of p300. Explanations: TAZ, zinc finger; KIX, CREB binding 
domain; B, bromodomain (see Section 1.4.1); P, PHD finger (Section 1.4.6 and 1.5); HAT, histone 
acetyl transferase; ZZ, zinc finger. The region as used as GST-fusion protein (GST-p300BP) and the 
PHD finger used in the domain swapping experiments (p300P) is indicated below the sequence. The 
figure is modified from Rein Aasland. 
 

1.6.2 Relation between the bromodomain and the PHD finger in p300 

The nucleosome retention assay (see Section 3.8.1) has been used in our group to show that 

GST-p300BP can bind to acetylated nucleosome in vitro. Since several bromodomains are 

shown to interact with acetylated lysines, (Section 1.4.1) it seems reasonable that the 

bromodomain in p300 has the same function. It the same assay it was found, however, that 

both the PHD finger (p300P) and the bromodomain (p300B) is required to detect the 

nucleosome interaction (Ragvin et al., in prep.). No nucleosome interaction has been 

detected with this assay for neither of the domains separately, possibly because the binding 

by only the bromodomain is not strong enough. These data show that the bromodomain in 

GST-p300BP is dependent on the PHD finger, but it is unclear how the PHD finger 

contributes to nucleosome binding.  

 However, more recently it was found that in the electrophoretic mobility shift assay 

(EMSA, see Section 3.8.2), both p300P and p300B are on their own able to interact with 

nucleosomes (Ragvin et al., in prep.). In the same assay, it was also shown that a region of 

the murine protein Requiem, containing two PHD fingers, is able to bind to nucleosomes 

without any other domains present (Anja Ragvin pers. comm.). These findings suggest that 

not only the bromodomain, but also the PHD finger, might have a nucleosome interacting 

activity, and that the stringency of the EMSA makes the weak interaction of only one 

domain detectable.  

 Despite the findings that both domains interact with nucleosomes, it is still 

reasonable to assume that in vivo, the domains must cooperate to achieve nucleosome 

binding. Based on the findings listed above, there seem to be two main ways in which 

p300P can contribute to the binding of GST-p300BP to the nucleosome (Figure 1.10). 

Either (Figure 1.10, A) the domains function individually and both domains are required 

simply to get a sufficiently strong interaction or (Figure 1.10, B) an internal interaction 

between the domains is required for the domains to be able to interact with the nucleosome. 

For further details, see Figure 1.10, figure text.   
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1.8 Aim 
Two different polypeptidesa, GST-p300BP and GST-TIFPB, were the starting points of the 

experiments. GST-p300BP, with bromodomain and PHD finger from p300, has been 

extensively studied in the group and is confirmed to bind to nucleosomes. The other, GST-

TIFPB, with PHD finger and bromodomain from TIF1γ (Section 1.9.2), has not been tested 

previously. Different domain recombinantsb generated from the two basis vectors pSXG-

p300B and pSXG-TIFB (encoding only the respective bromodomains, see Table 2.4) were 

going to be made by inserting a PHD finger encoding sequence from each of three 

heterologous proteins (see Section 1.9.2 and Table 2.1). Finally, the nucleosome binding 

activity of each of the resulting six domain recombinants was going to be tested. The aim 

was to find out whether other PHD fingers were able to replace the originals in GST-

p300BP and GST-TIFPB without loosing the polypeptides’ ability to interact with 

nucleosomes.  

 

1.9 Strategies 
1.9.1 Experimental strategy 

The plasmids encoding the domain recombinants were to be made by insertion of PHD 

finger encoding sequences into a linkerc that had been inserted in the two basis vectors 

(pSXG-p300B and pSXG-TIFB) in advance. Sequences encoding PHD fingers from p300 

(Figure 1.9), TIP5 (Figure 1.11), TIF1γ (Figure 1.12), and the last of the three PHD fingers 

in MLL (Figure 1.13) were to be used as PHD finger substitutes. The resulting eight 

recombinant plasmids would encode six domain recombinants and two controls that would 

have their original PHD finger reinserted (Table 4.1). All polypeptides were to be purified 

by affinity purification and were then going to be tested for nucleosome binding. Different 

methods could have been used to detect this interaction, such as BIAcore, sucrose gradients, 

or protease cleavage. The nucleosome retention assay and the EMSA are good and sensitive 

methods for such detection, and were also already established in the group. These two 

methods were therefore chosen to test nucleosome binding in this work. To make an easier 

comparison to the previous experiments in the group, the same kind of nucleosomes 

(mononucleosomes, see Table 2.3) were going to be used in these experiments. 

 

1.9.2 PHD finger substitutes 

The various PHD finger substitutes in p300 were chosen for different reasons. The ones 

from TIF1γ and TIP5 were chosen because they are originally situated next to a 

bromodomain. The idea was that they for this reason might functionally resemble the PHD 

 
a Since all plasmids used in this project encode only parts of proteins, e.g. the bromodomain region from p300, all 
products of the plasmids are referred to as polypeptides instead of proteins.  
b A domain recombinant refers to a polypeptide that has had one of its domains swapped with the corresponding 
domain from a foreign protein. In these experiments, the domain is a PHD finger. 
c The oligonucleotides used in the experiments referred to as linkers, should in fact be called adaptors, since they 
have cohesive ends and not blunt ends. To be able to refer to these oligonucleotides with the same name before and 
after insertion into a plasmid, they are called linkers in all cases. 
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finger of p300. The PHD finger from MLL was chosen because it is not originally situated 

next to a bromodomain, to see if this PHD finger might behave differently than the other 

three. Some information about the function and structural organisation of these proteins is 

given below.  

 

TTF-I interacting protein 5 (TIP5) 

The gene encoding the human protein TIP5 is a recently cloned gene (Strohner et al., 2001). 

Together with SNF2h, the mammalian homolog of ISWI (Section 1.3.1), TIP5 forms a 

complex named NoRC, nucleolar remodelling complex. As the name indicates, NoRC is 

localized in the nucleolus, where it is involved in the regulation of the transcription of 

rRNA genes (Strohner et al., 2001). Transcription of these genes is dependent on binding of 

the transcription terminator factor TTF-1 to the RNA polymerase I transcription site. TTF-1 

recruits remodelling complexes to the rDNA promoter, such as NoRC (Längst et al., 1997). 

TIP5 is the largest unit in the complex (205 kDa) and can interact with TTF-1 (Strohner et 

al., 2001). By recruitment of HDAC, NoRC works as a repressor, probably through 

nucleosome sliding. Over-expression of TIP5 is related to an increase in deacetylation, 

correlating with the report of interaction between TIP5 and HDAC1 (Zhou et al., 2002). In 

the C-terminal, TIP5 contains a PHD finger and a bromodomain (Figure 1.11). Deletion of 

this region abolishes the interaction with HDAC1 (Zhou et al., 2002) indicating that this 

region is involved in the interaction. In addition to recruiting HDAC, NoRC is also found to 

recruit DNMTs (Santoro et al., 2002). The central part of TIP5 is thought to interact with 

chromatin and is possibly dependent on histone acetylation for this binding. It has been 

suggested that the BAZ motif, bromodomain adjacent zinc-finger, is involved in this 

interaction (Strohner et al., 2001).  
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Figure 1.11 Domain organisation in TIP5. Explanations: MBD, methyl-C
LH/DDT, LH rich DNA binding domain often present in chromosome remo
conserved region of unknown function, BAZ, Bromodomain adjacent to Zn fin
conserved motif also present in Acf1 and WSTF; P, PHD finger (Section
bromodomain (Section 1.4.1). The PHD finger used in domain swapping exp
indicated below the sequence. The figure is modified from Rein Aasland. 
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Transcription intermediary factor 1 γ (TIF1γ) 

Transcription intermediary factors (TIFs) are proteins that can influence a gene’s activity by 

being mediators between transcription factors and components of the general transcription 

machinery or proteins involved in chromatin remodelling. The human gene encoding TIF1γ 

was cloned in 1999. The protein is structurally and functionally related to the other 

members of the TIF1 family, TIF1α and TIF1 β, but a few functional properties are clearly 

distinct (Venturini et al., 1999). TIF1α and TIF1β might be involved in heterochromatin-

induced gene repression by the interaction with a DNA binding domain, for example the 

KRAB silencing domain or a protein in the HP1-family (Friedman et al., 1996; Kim et al., 

1996; Le Douarin et al., 1996; Moosmann et al., 1997). TIF1α also interacts with several 

nuclear receptors, which are ligand dependent transcription factors (Le Douarin et al., 1995; 

vom Baur et al., 1996). Evidence suggests that TIF1α is able to interact with chromatin 

(Remboutsika et al., 1999), supporting the hypothesis of a link between the TIF1 proteins 

and chromatin. Furthermore, there are indications that TIF1γ (and the other two TIF1s) can 

silence genes when recruited to a promoter region of a reporter gene, but no evidence exist 

indicating that TIF1γ interacts neither with KRAB, the HP1s nor any nuclear receptors. 

TIF1γ may thus cause repression by a yet unidentified partner (Venturini et al., 1999). The 

three proteins of the TIF1 family all contain the same protein domains (Figure 1.12). In the 

central part of the proteins, there is a region of less conservation. In the N-terminal part of 

this region, though, it is found a conserved sequence named TSS (TIF1 signature sequence). 

Mutation in this region disrupts repression by TIF1γ and may thus be important for its 

function (Venturini et al., 1999). A PHD finger and a bromodomain are situated in the C-

terminal of the protein. 
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 Leukemia (MLL) 

man protein MLL (HRX or ALL-1) is one of four mammalian homologues 

ila protein TRX (Section 1.3.1). Studies have shown that MLL, as TRX, is 

aintenance of the transcription of the HOX genes (Yu et al., 1998). As the 
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name implies, MLL is linked to different variants of leukaemia. Leukemia in these cases is 

a result of various translocations of the MLL gene. The 5’ part of the gene has been found 

fused with more than 30 different genes (Gu et al., 1992), expressing fusion proteins 

interfering with the normal function of MLL. MLL is proteolytically cleaved in two parts 

that together with at least 27 other proteins form a multiprotein super complex, MLL-

MPSC (Nakamura et al., 2002; Yokoyama et al., 2002). The different variants of fusion 

proteins can either enter the complex, or compete with it for the binding to DNA and 

thereby disturb its function (Yano et al., 1997).  

 The normal function of MLL is less understood, but a recent report suggests that the 

protein might have both (a) activating and (b) repressive roles (Schraets et al., 2003). (a) 

Genes encoding proteins affecting vital organs and cells, such as muscles, limbs, bones and 

blood cells were found to be activated in the presence of MLL. (b) In the absence of MLL, 

several genes in malignant cancer cells seem to be over-expressed, indicating that these 

genes might normally be repressed in the presence of MLL. MLL contains, in the central 

part, three adjacent PHD fingers (Figure 1.13) . In contrast to TIP5 and TIF1γ, the protein 

does not contain any bromodomains.  
 
 
 
 
 
 
 
 
 
 
 
 

MLLP 

Post SET 

SET FYRC FYRN 

Extended PHD

P  P    PCXXC  
3969 

 
Figure 1.13 Domain organisation of MLL. Explanations: CXXC, Zn finger; P, PHD finger (see 
Section 1.4.6 and 1.5); B, bromodomain (see Section 1.4.1), Extended PHD finger, special kind of 
PHD finger; FYR, Phe-Tyr rich region; SET, histone methyl transferase. The PHD finger used in 
domain swapping experiments is indicated below the sequence. The figure is based on information 
given in the databases SMART and Pfam. 
 
 
1.9.3 Possible outcomes  

There are several possible outcomes for the experiments outlined in Section 1.9.1:  

 

(a) All the domain recombinants may bind. This may raise the question whether GST-

p300BP would be able to bind to nucleosomes with all kinds of PHD finger substitutes 

or maybe even with other kinds of domains, similar in size or structure. A possibility in 

this case might be that the bromodomain is flexible in its binding; if the PHD finger 

has a structure that does not fit with the normal binding point of the bromodomain, a 

possible scenario is that the bromodomain finds ‘something else’ to bind to, in a 

position that makes the PHD finger fit better to the nucleosome. This could indicate 

that also other PHD fingers might have a chromatin binding activity. 
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(b) Only some of the domain recombinants bind. This could indicate that the PHD 

fingers in the positive domain recombinants have a nucleosome binding activity, and it 

would make it interesting to see if there are common properties among these specific 

PHD fingers, or the proteins that they originate from, that could make them more likely 

to bind than the others. 

 

(c) None of the domain recombinants bind. This could be the result if there is a specific 

interaction between the bromodomain and the PHD finger that prohibits other PHD 

fingers to replace it, or that the unnatural combination makes the domains not able to 

cooperate. This result would also appear if the inserted PHD fingers do not have a 

nucleosome binding activity. One could not exclude, however, that the heterologous 

domain makes the polypeptide dysfunctional due to improper folding. 
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2.1 PHD fingers, bacteria, nucleosomes and plasmids  

 
Table 2.1 PHD fingers used in domain swapping experiments 

      
Origin 
protein 
 

Refe- 
rencea 

Origin 
plasmid 
(Table 2.4) 

Name of 
PHD 
finger 

Amino acid sequence b encoded by 
the DNA sequence inserted in 
acceptor vector  

Bases 
 

Amino
acidsc 

Mw 
(kDa) 
 

        
Hu TIP5 1.9.2 pBSII sk (+) 

KIAA0314 
TIP5P FQLERSIAWEKSVNKVTCLVCRKGD 

NDEFLLLCDGCDRGCHIYCHRPKME 
AVPEGDWFCTVCKAQQVEGEFTQV 
 

222  
 

74 ~8 

Hu TIF1γ 1.9.2 pBSII sk (+) 
KIAA1113 

TIFP FNNKDDDPNEDWCAVCQNGGDLLCC 
EKCPKVFHLTCHVPTLLSFPSGDWI 
CTFCRDIGKPEVEYDV 
 

198  
 

66  ~7 

Hu MLL 1.9.2 pSXG-MLLP MLLP FPGTTPGKGWDAQWSHDFSLCHDCA 
KLFAKGNFCPLCDKCYDDDDYESKM 
MQCGKCDRWVHSKCESLSGTEDEMY 
EILSNLPESVAYTCVNCTERV 
 

288 
 
 

96 ~10 

Hu p300 1.6.1 pSXG-p300P p300P FIPRDATYYSYQNRYHFCEKCFNEIQ
GESVSLGDDPSQPQTTINKEQFSKRK 
NDTLDPELFVECTECGRKMHQICVLH
HEIIWPAGFVCDGCLKKSARTRKEV 

309 
 
 

103 ~12 

 
a The reference refers to information about the origin protein, not the plasmid or the PHD finger 
b The conserved PHD finger pattern is indicated in bold types 

 
 
Table 2.2 Escherichia coli strains 
Bacteria Genotype Use Supplier 
    
DH5α supE44 supF58 hsdS3(rB-mB) dapD8 lacY1 

glnV44∆(gal-uvrB)47 tyrT58 gyrA29 tonA53∆(thyA57) 
 

Purification of 
plasmid 

Clontech 

BL21 (DE3) pLysS  B F- dcm ompT hsdS(rB-mB-) gal λ (DE3)[pLysS Camr]a 

 
Protein expression Stratagene 

XL1-Blue 
supercompetent 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ 
proAB lacqZ∆M15 Tn10 (Tetr)] 
 

Mutagenesis Stratagene 

 
 
Table 2.3 Nucleosomes 

 
The nucleosomes used in the experiments were purified from human SupT-cells by Anja Ragvin. These cells 
were used because they are easy to grow in suspension and they have large nuclei. The cells were grown in the 
presence of Trichostatin A (TSA), which is an inhibitor of deacetylases. This made the isolated nucleosomes 
hyperacerylated. Fractions containing ~80 % mononucleosomes were selected and used in these experiments. 
The nucleosomes were radiolabelled in one of two ways; (a) By incorporation of {methyl-3H} thymidine in DNA 
during cell growth or (b) by 5’ phosphorylation of DNA with {γ-32P} ATP after purification.  
 
The procedures are described in (Ragvin, 2001). 
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Table 2.4 Plasmids 

Name Base- 
pairs Explanation Source 

pSGX        4994 pGEX2TK vector from Pharmacia modified by
adding a polylinker named ESBSP (EcoR I, Sma
I, BamH I, Sal I and Pst I) between the BamH I
and EcoR I sites 
 

Sigrid Erdal, MBI, UiB 
 

pSGX-p300P 5287 pSXG vector with PHD finger encoding
sequence from p300 inserted between the EcoRI
and Sal I sites 
 

Sigrid Erdal, MBI, UiB 

pSGX-p300B 5458 pSXG vector with Bromodomain encoding
sequence from human p300 inserted between the
EcoRI and Sal I sites 
 

Sigrid Erdal, MBI, UiB 

pSGX-p300BP 5725 pSXG vector with both PHD- and Bromodomain
encoding sequences from p300 inserted between
the EcoRI and Sal I sites 
 

Sigrid Erdal, MBI, UiB 

pBSII sk (+) KIAA1113  9385 cDNA encoding TIF1γ inserted in the Sal I and
Not I sites of a p Bluescript II sk+  vector 
 

pBSII sk (+) KIAA0314 7422 cDNA encoding TIP5 inserted in the Sal I and
Not I sites of a p Bluescript II sk+  vector 
 

 
Takashiro Nagase, Kazusa 
DNA research Intitute, 
Japan 

pSGX-TIF1γB 5548 pSXG vector with Bromodomain encoding
sequence from TIF1γ  added in the BamH I site  
 

Sigrid Erdal, MBI, UiB 

pSXG-mTIFB 5548 pSGX-TIF1γB with the EcoR I site in position
957 removed by site directed mutagenesis 
 

Section 3.1 and 4.1.1 

pSXG-PHDc / 
pSXG-MLLP 

5270 pSXG vector containing the last of the three PHD
coding regions (PHDc) of MLL inserted between
the EcoR I site and the Sal I site 
 

Sigrid Erdal, MBI, UiB 

pSXG-p300Blink 
 

5482 pSXG-p300B vector containing the linker MS 
(see Table 2.6)  inserted in the Sal I site 
 

Section 3.3 
 

pSXG-p300BlinkP 
 

5773 pSXG-p300Blink containing the PHD finger
encoding sequence from p300 inserted in the
Mun I and Sal I sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-p300B-TIFP 
 

5662 pSXG-p300Blink containing the PHD finger
encoding sequence from TIF1γ inserted in the
Mun I and Sal I sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-p300B-MLLP 
 

5756 pSXG-p300Blink containing the PHD finger 
encoding sequence from MLL inserted in the 
Mun I and Sal I sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-p300B-TIP5P 
 

5686 pSXG-p300Blink containing the PHD finger
encoding sequence from TIP5 inserted in the
Mun I and Sal I sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-TIFlinkB 
 

5572 pSXG-mTIFB vector containing the linker SE 
(see Table 2.6)  inserted in the EcoR I site 
 

Section 3.3 

pSXG-TIFPlinkB 
 

5764 pSXG-TIFlinkB containing the PHD finger
encoding region from TIF1γ  inserted in the EcoR
I and Xho I sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-MLLP-TIFB 
 

5858 pSXG-TIFlinkB with the PHD finger encoding
region from MLL added in the EcoR I and Xho I
sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-p300P-TIFB 
 

5875 pSXG-TIFlinkB containing the PHD finger
encoding region from p300 inserted in the EcoR I
and Xho I sites in the linker 
 

Section 3.4, Table 4.1 

pSXG-TIP5P-TIFB 
 

5788 pSXG-TIFlinkB containing the PHD finger
encoding region from TIP5 inserted in the EcoR I
and Xho I sites in the linker 
 

Section 3.4, Table 4.1 
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Table 2.5 PHD finger sequences used in alignment in Figure 1.7 

Proteina 
SwissProt 
Accession 
number 

Protein 
length 
(aa) 

Position of  
PHD finger  Explanation 

 
p300 family 
 

    

Hu p300 Q09472 2221 1200-1276 E1A- associated protein  

Hu CBP Q92793 2442 1236-1312 CREB binding protein  

Dm CBP Q9W321 3276 1858-1934 CREB binding protein 

Ce CBP P34545 2056 1025-1101 CREB binding protein 

 
TIF1 family 
 

    

Hu TIF1α O15164 1050 828-871 Transcription Intermediary Factor 1 α  

Hu TIF1β Q13263 835 627-670 Transcription Intermediary Factor 1 β  

Hu TIF1γ Q9UPN9 1127 889-932 Transcription Intermediary Factor 1 γ  

 
TIP5 family 
 

    

Hu TIP5 Q9UIF9 1872 1651-1697 TTF-interacting protein 5  

Hu WSTF Q9UIG0 1483 1186-1232 Williams Syndrome Transcription Factor  

Xl ACF1 Q8UVR5 627 224-270 ATP-utilizing Chromatin assembly and remodelling 
Factor 1, ISWI ortholog 

Dm ACF1 Q9V9T4 1476 1064-1110 ATP-utilizing Chromatin assembly and remodelling 
Factor 1, ISWI ortholog 

 
MLL family 
 

    

Hu HRX/MLL Q03164 3969 1568-1625 Human trithorax protein 

Hu ALR O14687 4957 926-977 Homolog of ALL1 and trx 

Hu MLL3 Q8NEZ4 4911 1086-1137 Mixed Lineage Leukemia 3 
 

a The two-letter code in front of each protein name indicates the organism; Hu (Homo sapiens), Dm (Drosophila 
melanogaster), Ce (Caenorhabditis elegans), Xl (Xenopus laevis). 
 
 
2.2 Molecular weight standards 

 
Table 2.6 Molecular weight standards 

Name Cat. no Supplier 
   
DNA markers   

1 kb-ladder 15615-024 GibcoRBL 

φX174 DNA Hae III Marker G176A Promega 

   

Protein markers   

BenchMarkTM Protein Ladder 10747-012 GibcoRBL 

SDS-PAGE Standards, low range 161-0304 Bio-Rad 
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2.3 Enzymes and buffers, and reagents for PCR and sequencing 
 
Table 2.7 Enzymes 

Enzyme Concentration Cat No Supplier 
Restriction enzymes 

BamH I 10 U/µl  R6021 Promega 

EcoR I 12 U/µl R6011 Promega 

Sal I 10 U/µl R6051 Promega 

Spe I 10 U/µl R6591 Promega 

Xho I 10 U/µl R6161 Promega 

Mfe I  10 U/µl R0589 NEB 

Dpn I  10 U/µl 200518 Stratagene 

Ava I 10 U/µl R609A Promega 
 

Phosphatase 

Calf Intestinal Alcaline Phosphatase (CIAP) 1 U/µl M1821 Promega 
 

Kinases 

T4 polynucleotide kinase 3 U/µl M180A Promega 
 

Ligase 

T4 DNA ligase 3 U/µl M1801 Promega 
 

Polymerase 

50 x Advantage ® cDNA polymerase mix a  S0595 Clontech 

Pfu Turbo® polymerase 2.5 U/µl 200518 Stratagene 
 

Others 

Thrombin 1 U/µl 27-0B46-01 Amershan 
Biosciences 

a Contains 1.1 µg/µl KlenTaq-1 DNA polymerase and 1.1 µg/µl TaqStart antibody in storage buffer. 
 
 

Table 2.8 Buffers and reagents for PCR, sequencing and enzymes 

Buffer Cat.no Supplier 
 
For PCR   

10 x cDNA PCR Reaction Buffer S0596 Clontech 

10 x reaction buffer for site directed mutagenesis 200518 Stratagene 

Deoxynucleotide Triphosphates (dNTPs) U1201, U1211, U1221, U1231 Promega 
 

For sequencing   

BigDyeTM Terminator a 4314421 Perkin Elmer 
 

For enzymes   

10 x Multicore buffer R9991 Promega 

10 x CIAP buffer M1833 Promega 

10 x T4 DNA ligase buffer C1263 Promega 

10 x NEB Buffer 4 B7004S NEB 

10 x T4 polynucleotide kinase buffer C131B Promega 

10 x Buffer B, Buffer D, Buffer E, Buffer H  Promega 

a Terminator Ready Reaction Mixture containing A, C, G and T -Dye terminators labelled with different dichloro-
exitation labels, dNTPs (dATP, dCTP, dUTP and dITP, in place of dGTP), AmpliTaq DNA polymerase with 
thermally stable pyrophosphatase, MgCl2 and TrisHCl buffer, pH 9.0. 
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2.4 Oligonucleotides 
 

Table 2.9 Oligonucleotides a used for linkers, sequencing and PCR 

Name Sequence b Explanation 
 
Used for ligation to form a linker 
 
SalEco-Upper 5’ AATTC CTCGAGGGTCCGACTAGTC 3’ 

   <EcoR I>    Xho I 
 

Can anneal with SalEco-Lower to form a 
linker, SE, that fits in a plasmid opened 
with EcoR I (see Figure 4.6) 
 

SalEco-Lower 5’ AATTGACTAGTCGGACCCTCGAGG 3’ 
   <EcoR I>                                   Xho I 
 
 

Can anneal with SalEco-Upper to form a 
linker, SE, that fits in a plasmid opened 
with EcoR I (see Figure 4.6). 
 

MunSal-Upper 5’ TCGAG CAATTGGGTCCGACTAGTG 3’ 
     <Sal I>     Mun I 

Can anneal with MunSal-Lower to form a 
linker, MS, that fits in a plasmid opened 
with Sal I (see Figure 4.5). 
 

MunSal-Lower 5’ TCGACACTAGTCGGACCCAATTGC 3’ 
     <Sal I>                                     Mun I 
 

Can anneal with MunSal-Upper to form a 
linker, MS, that fits in a plasmid opened 
with Sal I (see Figure 4.5). 
 

Used as primers for PCR 

TIP5Eco5 5’ GGCGGAATTCCAGCTGGAGAGGTCCATT 
                 EcoR I                                     
GCCT 3’ 

PCR primer binding at 5’ side of the PHD 
finger encoding sequence in pBSII sk (+) 
KIAA0314. The PCR product can be 
digested to get an EcoR I sticky end. 
 

TIP5Sal3 5’ GCGCGTCGACCTGAGTGAATTCTCCCTCC
                    Sal I 
ACCTG 3’ 

PCR primer binding at 3’ side of the PHD 
finger encoding sequence in pBSII sk (+) 
KIAA0314. The PCR product can be 
digested to get a Sal I sticky end. 
 

TIF1GEco5 5’ GCGGAATTCAACAATAAAGATGATGACC
              EcoR I 
CAAAT 3’ 

PCR primer binding at 5’ side of the PHD 
finger encoding sequence in pBSII sk (+) 
KIAA1113 PCR. The PCR product can 
be digested to get an EcoR I sticky end. 
 

TIF1GSal3 5’ 
GCGCGTCGACATCATATTCAACTTCTGGC 
                   Sal I 
TTTCC 3’ 

PCR primer binding at 3’ side of the PHD 
finger encoding sequence in pBSII sk (+) 
KIAA1113. The PCR product can be 
digested to get a Sal I sticky end. 
 

Used as primers for sequencing 

5PGEX 5’ GGGCTGGCAAGCCACGTTTGGTG 3’  5’ sequencing primer binding pSXG. 

   

3PGEX 5’ CCGGGAGCTGCATGTGTCAGAGG 3’ 3’ sequencing primer binding pSXG. 

   

300 P5 5’ GGCCATATGGAATTCATACCTCGTGATG 
CCACTTA 3’ 

5’ sequencing primer binding to 
sequence in front of the PHD finger 
encoding region in pSXG-p300BP. 
 

Used in Site directed Mutagenesis 

Lower EcoMut 5’ GAAGCAGGAACAGGCTCCTG 
GAACTCAATACTTAATTCATGG 3’ 
  (EcoR I) 

5’ PCR primer annealing over the EcoR 
I site in position 1071 of pSXG-TIFB, 
containing a mismatch mutating T 1073 
to a C (see Figure 4.2) 
 

Upper EcoMut 5’ CCATGAATTAAGTATTGAGTTCCAGGAG 
                                                 (EcoR I) 
CCTGTTCCTGCTTC 3’ 

3’ PCR primer annealing over the EcoR I 
site in position 1071 of pSXG-TIFB, 
containing a mismatch mutating A 1073 
to a G (see Figure 4.2) 

a All oligonucleotides were supplied by MedProbe AS, Oslo 
b Relevant restriction sites are underlined, compatible sites indicated with arrow brackets and sites with mismatches in 
parenthesis. 
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2.5 Chemicals 
 

Table 2.10 Chemicals 
Chemical name Formula Supplier 
Acrylamide, 30% solution (contains 7.8 g/l bisacrylamide 4K) C9H7NO AppliChem 
Acetic acid C2H2O2 KeboLab 
Adenodine 5’ triphosphate - Pharmacia 
Agar - Merck 
Agarose - GibcoBRL 
Ammoniumperoxodisulphate (APS) - Merck 
Ampicillin - Astra 
Bis-acrylamid C7H10O2N2 Kodak 
Boric Acid H3BO3 Merch 
Bovine Serum Albumin, acetylated (BSA-Ac) - Promega 
Bovine Serum Albumin (BSA) - Promega 
β-Mercaptoethanol HSCH2CH2OH Merck 
Bromphenol blue - Merck 
Chicken Egg  Albumin (CEA) - Sigma 
Chloramphenicol C11H12Cl2N2O3 Sigma 
Chloroform CHCl3 Merck 
Comassie Brilliant Blue - Merck 
D(+)-Glucose monohydrate C6H12O6 · H2O Merck 
Dithiothreitol (DTT) C4H10O2S2 Sigma 
Ethylene dinitrilo tetraacetic acid (EDTA) C10H17N2Na2O8 · H2O Merck  
Ethanol 96 % C2H6O Arcus producter AS 
Ethanol 100 % C2H6O Arcus producter AS 
Ethidium Bromide (EtBr) C21H20BrN3 Merck 
Glutathione sepharose TM 4B - Amrsham 
Glutathione, reduced form C10H17N3O6S Sigma 
Glycerol, 87 % C3H8O3 Merck 
Glycin H2NCH2COOH Merck 
IPTG - Promega 
Isoamyl alcohol C5H12O Merck 
Isopropanole C3H8O Arcus produkter AS 
L-glutamat C5H9NO2 Merck 
Magnesium dichloride hexahydrate MgCl2 · 6 H2O Merck 
Magnesium sulphate heptaahydrate MgSO4 · 7 H2O Merck 
N,N,N’,N’-tetra methyl ethylene diamine (TEMED) C6H16N2 Merck 
NZ amine, casein hydrolysat - Sigma 
Potassium chloride KCl Merck 
Potassium dihydrogen phosphate KH2PO4 Sigma 
Pyronin B - Janssen Chimica 
Sodium acetate NaCH3COO Merck 
Sodium hydroxide NaOH Merck 
Sodium hydrogen phosphate dihydrate NaHPO4 · 2H2O Merck 
Sodium chloride NaCl Merck 
Sodium dodecylsulphate (SDS) C12H25O4SNa Sigma 
TEMED C6H12N2 Merck 
Trichostatin A (TSA) C17H22N2O3 Wako 
Trimethyl chlor silan (TMCS) (CH3)3SiCl Fluca Chemie 
Tris-(hydroxymethyl)-aminomethane (Tris) NH2C(CH2OH)3 USB 
Triton X-100 - Sigma 
Tryptone / Tryptone Peptone - DIFCO 
Ultima Gold TM Liquid Scintillation Coctail (LSC) - Packard 
X-gal - Melford Laboratories 

Xylene Cyanol FF - Internarional  
Biotechnologies INC 

Bacto TM YeastExtract - DIFCO 
Zinc acetate dihydrate (CH3COO)2 Zn · 2 H2O Merck 
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2.6 Kits, consumables and apparatus 
 

Table 2.11 Kits 

Kit Cat. no Supplier 

   

QuikChange® Site-Directed Mutagenesis Kit  200518 Stratagene 

QIAfilterTMPlasmid Maxi Kit 12263 Qiagen  

Wizard®Plus Minipreps  A7510 Promega 

DcProtein Assay 500-0114 Bio-Rad 

QUIAEX®II Gel Extraction Kit 20051 Qiagen 

   

 
 

Table 2.12 Consumables a 

Product Cat. no Supplier 

   

Amicon Ultrafree-MC 0.2 µm Filter Unit, nonsterile UFC30GV00 Millipore 

Centricon®Centrifugal Filter Devices 4205 Millipore 

Slide-A-Lyzer dialysis cassette, 10000 MWCO 66425 Pierce 

   

a Other consumables were standard laboratory equipment 
 
 

Table 2.13 Apparatus a 
Type of equipment Name 
  
Centrifuges  
Nanofuge Labnet minifuge  
Microfuge Sigma 112  B. Brown Biotech International, 12026 rotor 
Megafuge Megafuge 1.0 R refrigerated, Rotor 3360 Heraeus instruments  
Biofuge Biofuge fresco, refrigerated microfuge, Heraeus instruments 
Sorvall centrifuge RC5C refrigirated 
  
Other equipment  
DNA sequencer Seq ABI 377 ABI PRISM 
French Press French®Pressure Cell Press, SIM AMINCO, 20 K Cell 
PCR machine Gene Amp PCR System 2400, Perkin Elmer 
Scintillation counter TRI-CARB® 4530, Packard 
Phosphoimager FLA 2000 IP, Fujifilm 
Sonicator  Micro Ultrasonic Cell Disrupter, Kontes 
DNA/RNA spectrophotometer GeneQuant II RNA/DNA calcultaor, Pharmacia 
Cell spectrophotometer  CO 8000 Cell Densitymeter, WPA biowave 
Gel Dryer Model 583, Biorad 
Electroporator Gene PulserTM, BioRad 
Microplate absorbance reader  Labsystem Multiscan MS 
  

a Other apparatus were standard laboratory equipment 
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2.7 Buffers, solutions and cell media 
 

Table 2.14 Cell media 
 
 LB medium a 
1 % (w/v) Tryptone  
0.5 % (w/v) Yeast extract 
1 % (w/v) NaCl 
 

 

SOB a 
2.0 % (w/v) Tryptone  
0.5 % (w/v) Yeast extract 
10 mM NaCl 
2.5 mM KCl 

 
 

SOC b 
SOB 
5 mM MgCl2 

5 mM MgSO4 
20 mM Glucose 
 

2 x YT a 
1.6 % (w/v) Tryptone  
1.0 % (w/v) Yeast Extract 
0.5 % (w/v) NaCl 

 

2 x YT-G b 
2 x YT 
2 % (w/v) Glucose 

 

GYT a 
10 ml 87 % (v/v) 
Glycerol 
0.125 g Yeast extract 
0.259 g Tryptone  

NZY+ broth a 
10 mg/ml NZ amine  
(casein hydrolysate) 
5 mg/ml Yeast extract 
5 mg/ml NaCl 
12.5 mM MgCl2 

12.5 mM MgSO4      c 
20 mM Glucose 
 
 

   

a Sterilized by autoclaving 
b Prepared immediately before usage 
c Added immediately before usage 
 
 
Table 2.15 Agarose gel electrophoresis  

 
5 x TBE  
0.5 M Tris 
0.5 M Boric acid 
10 mM EDTA pH 8.0 
 

6 x Loading buffer 
0.25 % (w/v) Bromphenole blue 
0.25 % (w/v) Xylene cyanol FF 
30 % (v/v) Glycerol 

1 % Agarose 
0.5 x TBE 
1 % (v/v) Agarose 
0.1 % (v/v) Ethidium bromide a 

   
a Added immediately before use 
 
 
Table 2.16 SDS-PAGE 

 
10 x Running buffer 
0.25 M Tris 
2 M Glycine 
1 % (w/v) SDS 
 

12 % SDS separation gel 
0.25 M TrisHCl pH 8.8 
0.1 % (w/v) SDS 
12 % (v/v) Acrylamide 
0.2 % (v/v) TEMED 
0.05 % (w/v) APS 

4 % SDS stacking gel 
0.25 M TrisHCl pH 6.8 
0.1 % (w/v) SDS 
4 % (v/v) Acrylamide 
0.2 % (v/v) TEMED 
0.05 % (w/v) APS 
 

4 x Sample buffer a 
125 mM TrisHCl pH 6.8 
20 % (v/v) Glycerol 
4 % (w/v) SDS 
Pyronin B 
Bromphenolblue 
5.7 mM β-mercaptoethanol 
 

Coomassie brilliant blue stain solution 
0.1 % (w/v) Coomassie brilliant blue 
40 % (v/v) EtOH 
10 % (v/v) Acetic acid 

 
 
 

a Stored at –20 °C before adding β-mercaptoethanol, afterwards at 4 °C. 
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Table 2.17 Purification of polypeptides 

 
TZNK a,b 

50 mM Tris-HCl pH 8.5 
12 mM NaCl 
100 µM ZnAc 
150 mM KCl 
2.0 mM MgCl2 

TZNK/β/T 
TZNK 
10 mM β-Mercapto- 
ethanol 
0. 1 % Triton X-100 
 

GST elution buffer c 
15 mM  reduced glutathione 
50 mM Tris-HCl pH 8.0 
100 µM Zn acetate 

PBS, pH 7.4 a, b 
140 mM NaCl 
30 mM KCl 
10 mM Na2HPO4 

2 mM KH2PO4 
 

   
a Stored at 4 °C. The buffers should not be more than 2-3 months 
b Sterilized by autoclaving  
c Stored in aliquots of 2 ml at –20 °C 

 
 

Table 2.18 Nucleosome binding assays 

 
TGDZ80 a 
20 mM TrisHCl pH 8.0 
80 mM NaCl 
0.1 % Triton X-100 
1 mM DTT 
100 µM ZnAc 
1 mM L-glutamat 

Elution buffer b 
15 mM Reduced glutathione 
50 mM TrisHCl pH 8.0 

4.5 % PAA gel 
0.4 x TBnoE c 
4.5 % (v/v) Acrylamide 
0.17 % (v/v) APS 
0.07 % TEMED 

   

Added through 
steril filter 

Autoclaved 

a  Stored at 4 °C. The buffer should not be older than 2-3 months. 
b Stored at –20 °C 
c TBE (Table 2.15) without EDTA  
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Overview of methods and experiments 

 
 
 
 
 

  
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Overview of methods and experiment
transition steps in light blue, and techniques for vector
and green respectively.  

Nucleosome bindin

Mutagenesis
Transformation 

Miniprep 

Preparation of linkers 
Mutated (a) /orig

basis vecto

Collecting PHD finger encoding regions 

Basis vectors  

DNA finger printing

Acceptor vect

Miniprep 

Electroporation 

DNA finger printing 

Electroporation 

Miniprep 
DNA finger printing 

Ligation with linkers 

Inserting PHD finger encoding

Recombinant pla
Pilot expression 

Analysis 

Recombinant poly

)

(a) 

Main steps 
Transition steps 

 

Sequencing
 

s. Main steps are s
 construction and po

g  assays

inal (b) 
rs 

 Maxiprep 
Estimation of concentration

ors 

Sequencing 

Sequencing 

Restriction cutting 

 regions

smids 

peptides 
Gel extraction

Removal of 5’ P 
(b
h

Estimation of concentration 
 Maxiprep 

n 

Restriction cutting 
Gelextractio
own in 
lypeptides

Larg

Estim
Plasmid techniques 

Polypeptide techniques
n

e scale expression 

Purification 

ation of concentration 
 Maxiprep 
Estimation of concentratio
dark blue, 
 in purple 

    37 



3. Methods
 

3.1 Site-directed mutagenesis 
To remove an EcoR I site in pSXG-TIFB that interfered with the vector construction (see 

Section 4.1.1), a point mutation was introduced in the EcoR I recognition sequence using 

QuikChange® Site-Directed Mutagenesis Kit. Primers with mismatches were designed so 

that the PCR product would get a silent point mutation (see Figure 4.3). An explanation of 

the principles of the kit is given in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transformation 

Mutated plasmid DNA 
Parental plasmid DNA 

Primer with wanted mutation 

Base to be mutated 

XL1-Blue supercompetent cells 
repair nicks in the mutated plasmid 

Annealing of 
primers with 
wanted mutations 

Plasmid with  
unwanted base 

Mutated plasmid 

12 PCR-cycles 

Parental strand is 
methylated and 
degraded by DpnI

Figure 3.2 Site directed mutagenesis. The figure shows how a site directed mutation is achieved 
by the QuikChange® Site-Directed Mutagenesis Kit. Primers with wanted mutation anneal to the 
plasmid and the plasmid DNA is amplified by rounds of PCR. The parental DNA strand is removed 
from the reaction mixture by digestion with the enzyme Dpn I. Dpn I is specific for methylated and 
hemimethylated DNA and will therefore digest only the parental strand, witch is methylated, and 
not the new strand which has not yet been methylated. The mutated plasmid is transformed into 
XL1-Blue supercompetent cells for amplification and repairing of nicks from the PCR cycles. The 
figure is based on a figure in the mutagenesis protocol. 

 

The primers used for mutagenesis were Upper EcoMut and Lower EcoMut (Table 2.9). 

The mutagenesis was performed as described in the protocol, using the following PCR 

conditions: 95 ºC/ 30 sec and 12 cycles of {95 ºC/ 30 sec, 55 ºC/ 1 min and 68 ºC/ 12 

min}. After the mutagenesis, the mutated plasmid was transformed into XL1-Blue 

supercompetent cells by heat shock as described in the protocol, and the sells subjected to 

the steps outlined in Figure 3.1.  
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3.2 General techniques used during plasmid construction  
3.2.1 Transformation of electrocompetent cells 

A newly thawed batch of 40 µl electrocompetent E. coli DH5α cells was added 1 µl 

plasmid DNA (60-300 ng) from a miniprep (3.2.2) or a ligation mixture (3.3.3 and 3.4.2). 

Plasmids that were used for expression of polypeptides were transformed into E. coli 

BL21 (DE3) pLysS cells (cells are listed in Table 2.2). The mixture was incubated on ice 

for at least one minute and the sample transferred to a chilled cuvette. Electroporation was 

performed with a resistance of 200 Ohm, 25 mF capasistance and a pulse of 2.5 kV. After 

electroporation, 1 ml SOC (Table 2.14) was added, reagents were mixed and the whole 

volume transferred to a 1.5 ml microfuge tube. The cells were then incubated for 45-60 

minutes at 37 ºC and vigorous shaking, and 50 µl of the cell suspension was plated on 

LB-plates supplemented with ampicillin (100 µg/ml) and IPTG (25 µl 400 mM). Bacterial 

cells containing plasmids that were used for expression of polypeptides were collected by 

centrifugation in a microfuge at 13000 rpm for 1 minute and all cells plated on 2 x YT-G 

plates supplemented with ampicillin (100 µg/ml) and chloramphenicol (25 µl 25 µg/ml in 

100 % ethanol). The plates were incubated at 37 °C for at least 16 hours. 

 

3.2.2 Isolation of plamids 

Miniprep; small-scale isolation of plasmids 

Small-scale isolation of plasmids was performed according to the Promega Plasmid Mini 

Protocol. Briefly, plasmids were separated from genomic DNA, proteins and cell debris 

by centrifugation, and isolated by affinity purification. One bacterial colony from an LB 

plate (3.2.1) was inoculated in 5 ml LB-medium (Table 2.14) with 100 µg/ml ampicillin, 

and the bacteria were grown for 16 hours at 37 ºC and shaking at 250 rpm. Plasmids were 

isolated from 3 ml cell culture, using a vacuum manifold, according to the Promega 

protocol. Plasmids were stored at –20 °C. 

 

Maxiprep; large-scale isolation of plasmids  

Large-scale isolation of plasmids was performed using the QIAGEN Plasmid Maxi 

Protocol, which is based on separating precipitated genomic DNA, proteins and cell 

debris from plasmids through a cartridge, followed by affinity purification of plasmids. 

One bacterial colony from an LB plate was inoculated in 5 ml LB-medium with 100 

µg/ml ampicillin. After inoculation, the cells were grown at 37 ºC with shaking at 250 

rpm for 6-8 hours and 100 µl cell was culture transferred to an erlenmeyer in a 1:1000 

dilution in LB containing 100 µg/µl ampicillin. The bacterial cells were grown for at least 

16 hours at 37 °C with shaking at 250 rpm and plasmids purified from 100 ml cell culture 

according to the QIAGEN protocol. Plasmids were stored at –20 °C. 
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3.2.3 Restriction digestion of plasmids 

For DNA fingerprinting  

New plasmid constructs were analysed by DNA fingerprinting. Plasmids were treated 

with one or more enzymes giving a pattern different from the parental construct. The 

reactions were performed in a total volume of 10 µl containing 100-300 ng DNA, 1 µl of 

each enzyme and 1 x appropriate digestion buffer (Table 2.8). Digestion was performed at 

37 °C for 1 hour and the digestion pattern analysed on a 1 % agarose gel {7 x 10 x 0.5}a 

that was run at 70 V for about an hour in 0.5 x TBE.  

 

For further vector construction 

When linearizing a plasmid used for vector construction (as in Section 3.3.3), or when 

cutting out a fragment of DNA (as in Section 3.4.1), restriction digestion was performed 

in a total volume of 50 µl. The digestion mixtures contained 1-4 µg plasmid, 2-3 µl of 

each enzyme and 1 x appropriate digestion buffer, and were incubated at 37 °C for 3 

hours. The enzymes were inactivated by incubation at 70 °C for 10 min.  
 

3.2.4 Sequencing of plasmids 

All new plasmid constructs were, in addition to fingerprinting, verified by DNA 

sequencing. Sequencing reactions were performed in a total volume of 10 µl containing 

200-500 ng plasmid, 2.8 pmol appropriate primer (Table 2.9) and 4 µl Big Dye 

sequencing cocktail (Table 2.8). The sequencing was based on the chain termination 

principle and the termination nucleotides contained fluorescent tags detected with a Seq 

ABI 377 (ABI PRISM) in the sequencing facility. The PCR program used for sequencing 

was 96 °C/ 5 min and 25 cycles of {96 °C/ 10 sec, 50 °C/ 5 sec and 60 °C/ 4 min}. 

 

3.2.5 Estimating DNA concentrations  

By spectrophotometer 

Plasmid solutions were diluted 1:100 in ddH2O and absorbance measured at 260 and 280 

nm in a GeneQuant II RNA/DNA calculator spectrophotometer (Table 2.13). DNA 

concentrations were calculated assuming that 1 A260 unit corresponds to 50 µg/ml DNA. 

The purity of the sample was evaluated assuming that pure DNA has an A260/A280 ratio of 

1.83.  

 
By agarose-gel electrophoresis 

In order to prevent the retention that circular plasmids show on an agarose gel, plasmids 

were linearized (as in 3.2.3) with a suitable restriction enzyme before analysis on a 1 % 

agarose gel. A parallel with unlinearized plasmid was included on the gel as a control to 

verify that the test plasmid had been linearized. The electrophoresis was performed as in 

                                                 
a Length x breadth x thickness in cm 
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3.2.3. A band of the molecular weight standard (MWS) φX174 Hae III that was similar in 

intensity to the plasmid band was used to calculate concentrations:  
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3.3 Preparing acceptor vectors  
3.3.1 Annealing of primers to form linkers 

Two different sets of primers were used, SalEco-Upper / SalEco-Lower and MunSal-

Upper / MunSal-Lower (Table 2.9). Each upper primer (100 pmol) was mixed with the 

corresponding lower primer (100 pmol) and incubated at 85 °C for 5 minutes, at room 

temperature for 30 minutes and finally on ice for 30 minutes. The final concentration of 

each linker was 5 µM. The linkers (called SE, SalEco-Upper + SalEco-Lower, and MS, 

MunSal-Upper + MunSal-Lower) were stored at – 20 °C. 

 

3.3.2 Phosphorylation of 5’ ends  

Each linker was phosphorylated on the 5’ ends to ease ligation into plasmids. 

Phosphorylation was performed in a total volume of 40 µl containing 100 pmol linker, 1 

mM ATP, 1 x T4 polynucleotide kinase buffer (Table 2.8) and 6 U T4 polynucleotide 

kinase (Table 2.7). The reaction mixture was incubated at 37 ºC for 30 minutes and the 

phosphorylation reaction stopped by adding 2 µl 0.5 M EDTA. The reaction mixture was 

subsequently treated with 1 vol. phenol:chloroform:IAAa. The reagents were mixed by 

vortexing and the water phase separated from the phenol phase by centrifugation in a 

biofuge for 3 minutes at 13000 rpm and 4 °C. The water phase was transferred to a fresh 

1.5 ml microfuge tube and the linker DNA precipitated with 0.1 vol. 3 M Na acetate (pH 

5.2) and 2 vol. cold 100 % ethanol at –80 ºC for 30 minutes. Precipitated DNA was 

collected by centrifugation for 15 minutes as above. The DNA was washed with 70 % 

ethanol and collected by centrifugation for 15 minutes as above. Finally, the linkers were 

resuspended in 50 µl 10 mM TrisHCl pH 8.5. 

 

3.3.3 Inserting linkers into basis plasmids  

To start the construction of acceptor vectors, the basis vectors were opened in the sites in 

which the linkers were to be added. pSXG-p300B and pSXG-mTIFB (Table 2.4, see also 

footnote page 55) were linearised with Sal I and EcoR I, respectively (3.2.3), and 

subjected to further steps as outlined in Figure 3.1. Ligation of linkers into acceptor 

vectors was performed as follows: Mixtures with DNA from either Sal I cut pSXG-p300B 

or EcoR I cut pSXG-mTIFB were made in a total volume of 10 µl containing about 50 ng 

vector DNA, 3 U T4 DNA ligase, 1 x T4 DNA ligase buffer and appropriate linkers in 

varying amounts of 0-25 pmol. Mixtures with no linker served as negative controls. 

Ligation was performed room temperature for ~16 hours and subjected to subsequent 

steps as indicated in Figure 3.1. The resulting acceptor vectors were named pSXG-

p300Blink and pSXG-TIFlinkB.  

 

 

                                                 
a The reagents are mixed in ratios of 25:24:1 respectively 
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3.4 Construction of vectors encoding domain recombinants 
3.4.1 Isolation of PHD finger encoding sequences  

The PHD finger encoding sequences from pSXG-MLLP and pSXG-p300P (Table 2.4) 

were both isolated from the plasmids by restriction digestion (3.2.3) with EcoR I and Sal I 

and purified by gel extraction (3.2.7). To collect PHD encoding sequences from pBSII sk 

(+) KIAA 0314, TIP5P region, and pBSII sk (+) KIAA 1113, TIF1γP region (Table 2.4), 

the easiest approach was to use PCR. The primers TIP5Eco5, TIP5Sal3, TIF1γEco5 and 

TIF1γSal3 (Table 2.9) were designed flanking the PHD encoding sequences and with 5’ 

ends that after PCR could be digested to get Sal I and EcoR I ends that fit into the sites of 

the acceptor plasmids. PCR mixtures were prepared in a total of 50 µl containing 0.5 µg 

plasmid, 25 nmol of each of the appropriate primers, 20 nmol of each deoxynucleotide 

(dATP, dCTP, dGTP, dTTP), 0.5 µl 50 x Andvantage cDNA polymerase mix and 1 x 

cDNA PCR Reaction Buffer (Table 2.7 and 2.8). PCR was performed using this program: 

94 ºC/ 2 min, 25 cycles of {94 ºC/ 30 sec, 55 ºC/ 50 sec and 70 ºC/ 1 min} and a hold at 

70 ºC for 10 min. The PHD finger encoding sequences were isolated by gel extraction 

(3.2.7) and given Sal I and EcoR I compatible ends by restriction digestion (3.2.3).  

 

3.4.2 Inserting PHD finger encoding sequences into acceptor vectors  

Acceptor vectors were linearised by restriction digestion (3.2.3), pSXG-TIFlinkB with 

EcoR I and Xho I and pSXG-p300Blink with Mfe I (an isoschizomer of Mun I,) and Sal I 

(see Figure 4.5 and 4.6). Mfe I and Sal I do not have any suitable digesion buffers in 

common. pSXG-p300Blink was therefore treated with one enzyme at a time, and each 

digestion purified by gel extraction (3.2.7). Ligation of vectors with PHD finger encoding 

sequences was performed in a total volume of 10 µl. The ligation mixture contained 50 ng 

acceptor vector, 10 ng PHD finger encoding DNA, 3 U T4 DNA ligase and 1 x T4 ligase 

buffer (Table 2.7 and 2.8). Ligation was performed at room temperature for ~16 hours. 

An overview of the new vector construction is given in Figure 4.1 and the name of the 

resulting constructs listed in Table 4.1 
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3.5 General techniques used with polypeptides 
3.5.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Aliquots of 6 µl from the soluble and the insoluble fractions from pilot expression (3.6), 

10 µl polypeptide sample from large scale expressions (3.7) or 10 µl fractions from 

nucleosome retention assays (3.8.1) were added 1 x Sample buffer (Table 2.16) and the 

polypeptides denaturated by heating at 95 °C for 5 minutes. The aliquots were analyzed 

on 12 % SDS-polyacrylamide gels by the method of Laemmli (Laemmli, 1970). As 

molecular weight standard, 10 µl BenchMarkTM Protein Ladder or SDS-PAGE standards, 

Low range (Table 2.6) was applied. The gel {6 x 8 x 0.05}a was run at 200 V for about 50 

minutes and polypeptides visualized by staining with Coomassie brilliant blue stain 

solution by warming to boiling point. Gels were destained in water by warming to boiling 

point. 

 

3.5.2 Estimating polypeptide concentration 

Concentration of polypeptides was estimated using DC Protein Assay from Bio-Rad 

(Table 2.11). The principle of the assay is based on the elaborated method of Lowry; the 

BCA (bicinchoninic acid) method (Hill and Straka, 1988). In this method, the peptide and 

Cu2+ ions react to form a coloured product that is increased by the presence of BCA and 

can be detected by spectrophotometer. The β-mercaptoethanol present in the polypeptide 

solutions can interfere with this reaction and the kit is designed to tolerate this reagent by 

preincubation of the proteins with iodoacetamide in large excess.  

 Dilutions of polypeptides in TZNK/β/T (from 1:10 to 1:1) of unknown 

concentration and BSA with known concentration (from 200 to 1400 µg/ml) were added 

to a microplate, and the reaction performed as explained in the protocol, with the volumes 

adjusted to a microplate (to 1/2000 compared to the protocol which gave; 5 µl 

iodoacetamide, 25 µl reagent A’ and 200 µl reagent B). A Multiscan MS (Table 2.13) was 

used to measure the absorbance in the microplate and the software ‘Ascent Software for 

iEMSReader’ was used to interpret the results, create a standard curve from the BSA 

dilutions and from this calculate concentrations of polypeptides in the samples. In some 

cases, concentrations were also estimated by analysis by SDS-PAGE, by comparing 

bands containing polypeptides with bands containing known dilutions (as above) of BSA. 

 
3.5.3 Concentrating dilute polypeptides 

In cases where concentrations of polypeptides were too low for use in nucleosome 

binding experiments (below 14 µM, see Table 4.3), the polypeptides were concentrated 

using ‘Centricon Centrifugal Filter Devices’ (Table 2.12). The devices were used as 

described in the user guide. All centrifugations were performed in a megafuge at 4 °C. 

The device was equilibrated with 500 µl TZNK/β/T (Table 2.17) by centrifugation for 8 

minutes at 2400 rpm. The polypeptide sample was added to the column and an 

                                                 
a Length x breadth x thickness in cm 
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appropriate amount of buffer removed by centrifugation at 2400 rpm to achieve the 

desired concentration. Centrifugation for 45 minutes reduced the volume with ¾. Finally, 

the polypeptides were collected by centrifugation for 2 minutes at 1700 rpm and the new 

concentration estimated as in 3.5.2. 

 

3.5.4 Preparing 50 % glutathione sepharose 4B in TZNK or PBS 

The glutathione sepharose 4B beads (Table 2.10) for purification of polypeptides were 

delivered as a 75 % solution in ethanol, but were to be used in TZNK (Table 2.17) for 

polypeptide purification and in PBS (Table 2.17) for nucleosome retention assays. The 

ethanol was therefore removed by centrifugation and the glutathione sepharose 4B 

resuspended in TZNK or PBS. A volume of 1.33 ml glutathione sepharose 4B was added 

to a 15 ml polypropylene tube and separated from the ethanol by centrifugation in a 

megafuge for 5 minutes at 1700 rpm and 4 °C. The beads were washed twice in 10 ml 

cold TZNK or PBS and finally resuspended in 1 ml TZNK or PBS. Glutathione sepharose 

4B in TZNK or PBS was stored up to a month at 4 °C. 

 

3.5.5 Releasing fusion polypeptide from glutathione sepharose 4B 

The GST fusion polypeptide bound to glutathione sepharose 4B (about 500 µl, Section 

3.7) was added 1 ml GST elution buffer (Table 2.17) containing reduced glutathione 

(Table 2.10), and the resuspension transferred to a 2 ml microfuge tube. Elution of 

polypeptides from the beads was performed for 30 minutes at 75 rpm shaking, and the 

polypeptides separated from the beads by centrifugation in a biofuge for 1 minute at 

13000 rpm and 4 °C. A second elution was performed in 500 µl GST elution buffer. To 

remove the GST elution buffer (containing the reduced glutathione), the polypeptides 

were dialysed against TZNK/β/T (Table 2.17). Dialysis was performed in Slide-A-Lyser 

dialysis cassettes (Table 2.12) at 4 °C for minimum 4 hours with slow stiring and the 

polypeptides transferred to fresh 2 ml microfuge tubes. All polypeptides were stored at 4 

°C. The procedure is overviewed in Figure 3.3. 
 

3.5.6 Cleavage of polypeptides from fusion partner with thrombin 

Thrombin was delivered as a solid of 500 U, and was added 1 x PBS to a concentration of 

1 U/µl and stored at -80 °C. To release the polypeptide from GST, the fusion complex 

bound to glutathione sepharose (about 500 µl, Section 3.7) was resuspended in 1 ml 

TZNK/β/T and the polypeptide cleaved with 50 U thrombin in PBS. Digestion was 

performed for two hours with shaking at 75 rpm and room temperature. Beads bound to 

GST were removed by centrifugation in a biofuge for 1 minute at 13000 and 4 °C. 

Analysis by SDS-PAGE was included to test that the cleavage was complete. The free 

polypeptides were stored at 4°C. The procedure is overviewed in Figure 3.3. 
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Figure 3.3 Two ways of recovering polypeptides from glutathione sepharose. Polypeptides fused 
to GST were either eluted from sepharose with reduced glutathione (for nucleosome retention assay, 
Section 3.8.1) or cleaved from the fusion partner by thrombin treatment (for EMSA, Section 3.8.2).  

 
 

3.5.7 Scintillation counting 

Aliquots of 50 µl of fractions from the nucleosome retention assay (IN-N, FT-N, W1-W5, 

E1-E3 and R), including a sample only with 50 µl TGDZ80 (negative control), were added 

to a 5 ml polyethylene scintillation tube, mixed with 4.5 ml UltimaGold LSC (Table 2.7) 

and analysed for radioactivity by counting disintegrations of 3H-atoms in a scintillation 

counter. The energy range measured in the counting channel was 0–9 keV and in the 

correction channel 2-19 keV. The radioactivity in the input material was set to 100 %. 

Relative radioactivity in each fraction from the nucleosome retention assay was calculated 

as percent of input. 

 
3.6 Pilot expression  
To determine the expression conditions giving the largest amount of soluble polypeptide, 

pilot expression was performed for all the domain recombinants. For each temperature to be 

tested, about 50 colonies from a 2 x YT-plate (Section 3.2.1) was inoculated in 5 ml 2 x 

YT-G containing 100 µg/ml ampicillin, 25 µg/ml chloramphenicol and 2 µM Zn acetate. 

Cells were grown at 37 °C with shaking at 250 rpm. At the OD600s 0.2, 0.4 and 0.7, two 

aliquots of 1.5 ml were taken from the culture for expression of proteins, one treated with 

0,4 mM IPTG (for induction of the gene encoding the GST fusion polypeptide) and one 

negative control. Parallels of polypeptides were expressed for two hours at 26 °C or 37 °C. 

Polypeptides tested at 18 °C were expressed for ~16 hours. Bacterial cells in 1 ml sample 

were then collected in a 1.5 ml microfuge tube by centrifugation in a biofuge for 3 minutes 

at 13000 rpm and 4 °C. Finally, the cells were resuspended in 200 µl TZNK/β/T.  
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The cells were lyzed by sonication for 30 seconds at 30 - 40 intensity using a 2 mm tip, 

while kept in ice. Insoluble material was removed by centrifugation in a biofuge for 10 

minutes at 13000 rpm and 4 °C. The supernatant (soluble polypeptide fraction) was 

transferred to a fresh tube and the pellet (insoluble polypeptide fraction) was resuspended in 

200 µl TZNK/β/T. All aliquots were analyzed by SDS-PAGE (3.6.1). 

 

3.7 Large scale expression and -purification of polypeptides 
All colonies from a 2 x YT-plate (3.2.1) (>1000 colonies) were inoculated in 1000 ml 2 x 

YT-G (Table 2.14) containing 100 µg/ml ampicillin and 25 µg/ml chloramphenicol. The 

bacterial cells were incubated at 37 °C until the optimal OD600 of 0.7 (see Table 4.2) was 

reached. Expression of GST fusion polypeptides was induced by adding IPTG to 0.4 mM 

and Zn acetate to 2 µM. The polypeptides were then expressed at their optimal temperature 

of 26 °C (see Table 4.2) (37 °C for GST-p300BP, GST-TIFPB and GST) for two hours. 

The bacterial culture was divided on four GSA tubes and the cells harvested in a Sorvall 

centrifuge (Table 2.13) for 5 minutes at 8000 rpm and 4 °C, using a GSA rotor. The surface 

of each pellet was carefully washed twice with 5 ml cold 1 x PBS and the pellet 

resuspended in 3.75 ml cold 15 % glycerol in PBS. The cell suspension was divided on 

three 50 ml tubes and stored at –20° C over night.  

 The cell suspension was defrosted on ice and cells collected by centrifugation in a 

megafuge for 10 minutes at 5400 rpm and 4 °C. Each pellet was washed once by 

resuspention in 10 ml cold 1 x PBS and the cells collected by centrifugation as above. The 

pellets were then resuspended in 10 ml cold TZNK/β/T, collected in two 50 ml tubes and 

the volume adjusted to 25 ml with TZNK/β/T. The cells were lysed in the French Press 

(Table 2.13) by passing twice at 650 psi (pounds per inch), continuously kept on ice. To 

prevent precipitation, the lysate was incubated with a final concentration of 1 % Triton X-

100 (Table 2.10) for 30 minutes at 75 rpm shaking and room temperature. The lysate was 

then transferred to a fresh tube and cell debris and insoluble polypeptides were removed by 

centrifugation in a Sorvall centrifuge for 3 minutes at 10000 rpm and 4 °C, using an SS-34 

rotor.  

 The supernatant containing the polypeptides was transferred to a 50 ml tube and 

added 1 ml 50 % glutathione sepharose 4B in TZNK (3.5.4). The binding of the GST-tag to 

glutathione sepharose was allowed for 30 minutes at 50 rpm shaking and room temperature. 

The beads with polypeptides were collected by centrifugation in a megafuge for 6 minutes 

at 3500 rpm and 4 °C. The beads were washed twice with 20 ml TZNK/β/T with 

centrifugations as above, resulting in about 500 µl GST-fusion polypeptide bound to 

glutathione sehparose. At this stage, the polypeptides were either eluted from sepharose by 

free glutathione and kept bound to GST (3.5.5), or they were treated with thrombin to be 

released from GST (3.5.6), as shown in Figure 3.3. Size and quality of purified 

polypeptides were analysed by SDS-PAGE.  
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3.8 Nucleosome binding assays 
3.8.1 Nucleosome retention assay 

In the nucleosome retention assay, polypeptides are bound to glutathione sepharose 4B via 

the GST tag and 3H labelled nucleosomes applied. The binding reaction is performed in 

Amicon filter units, 20 µm filter (Table 2.12) placed in 1.5 ml microfuge tubes. By elution 

of polypeptides from glutathione sepharose, the retained nucleosomes can be detected by 

determining the radioactivity in the eluted material. The experiment is performed at room 

temperature, but all buffers added are cold (4 °C) except for the Elution buffer (Table 2.18), 

which has room temperature. An overview of the assay is given in Figure 3.4.  

 The filter in the Amicon filter unit was moistened with 50 µl TZNK/β/T pH 8.5 

before adding 150 µl 50 % slurry of Glutathione Sepharose beads in 1 x PBS (3.5.4). 

Redundant fluid was removed by centrifugation. All centrifugations in the assay were 

performed in a nanofuge at 6000 rpm for about 20 seconds. When adding solutions and 

during incubations, the tubes were rolled several times to ensure that the beads of 

glutathione sepharose were properly covered with solution. The beads were washed once 

with 50 µl TZNK/β/T pH 8.5 before adding 200 µl 12-20 µM polypeptide (see Table 4.3), 

polypeptide input (IN-P), to attach to the beads. The binding was allowed for 1 hour. Non-

binding polypeptides, polypeptide flow through (FT-P), was removed by centrifugation and 

kept for analysis. The beads with bound polypeptides were washed with 200 µl TGDZ80 pH 

8.0. To coat the beads not bound to polypeptides, 150 µl BSA-Ac (Table 2.10), diluted to 

10 ng/µl in TGDZ80, was added and allowed to bind for 30 minutes. The flow through was 

discarded. Nucleosomes, 200 µl 15-20 nM, labelled with 3H (Table 2.3), nucleosome input 

(IN-N), were then added to the polypeptides on the beads and the reaction incubated for 1 

hour. Non-bound nucleosomes, nucleosome flow through (FT-N), were kept for analysis. 

Bound material was washed four times with 200 µl TGDZ80 (Table 2.18) and once with 200 

µl 50 mM Tris-HCl pH 8.0, with incubation for 10 minutes at each washing. All wash 

fractions (W1-W5) were kept for analysis. The polypeptides bound (or not bound) to 

nucleosomes were then eluted with 200 µl Elution buffer (Table 2.18). Three elutions were 

performed, each with 20 minutes incubation. During elution, the mixture was gently 

vortexed every 5 minutes. Each fraction was kept for analysis (E1-E3). Finally, the beads 

left on the filter were resuspended in 200 µl Elution buffer and kept for analysis (R). The 

fractions were analysed by scintillation counting (3.5.7) and SDS-PAGE (3.5.1) and kept at 

–20 °C. 
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Figure 3.4 Overview of the main steps of the nucleosome retention assay. 
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3.8.2 Electrophoretic Mobility Shift Assay (EMSA) 

EMSA is a method for detecting the interaction between a protein and DNA, or as in this 

case, nucleosomes. The protein is incubated with 32P-labelled nucleosomes (Table 2.3). The 

protein-nucleosome complexes are separated from the free nucleosomes by migration 

through a native polyacrylamide (PAA) gel, with the complexes migrating more slowly.  

 

The glass plates used for electrophoresis were siliconated with 4 % TMCS (Table 2.10) in 

chloroform and polymerisation of the native 4.5 % PAA gel (Table 2.18) was performed 

o/n. The gel was prerun at 100 V for at least 1 hour in 0.4 x TBnoE (TBE, Table 2.15 

without EDTA). A mastermix was made sufficient for the number of reactions containing 

all reagents except polypeptide. For each binding reaction, the mixture contained 2 µl 

TGDZ80, ~2.5 fmol 32P- labelled nucleosomes (in my case 3 µl) and 0.3 µl 20 ng/µl CEA 

(Table 2.10). The mastermix (5 µl for each binding reaction) was added the polypeptides 

GST-TIFPB and TIFPBt (Table 4.3) in amounts of 100, 300, 500, 700 and 1000 pmol. A 

control reaction was included containing only mastermix. Reaction volumes with a total 

volume less than 20 µl were added TGDZ80 to increase the volume to 20 µl. The reaction 

volumes were thus between 20 µl and 80 µl. 

 

Binding was performed at room temperature for 20 minutes on a platform rocker at 20 

rev/min. Reaction mixtures were added 5 % glycerol and the entire reaction loaded on the 

native 4.5 % PAA gel. As positive and negative controls, 1000 pmol p300BPt and GST (not 

in Table 4.3, purified by Anja Ragvin) were used, respectively. To track the electrophoresis, 

6 µl 6 x loading buffer (Table 2.15) was added in two empty wells. The gel was run at 60 V 

for 1 hour and then at 100 V for about 5 hours, it was dried and subsequently exposed on a 

20 x 40 cm BAS Imaging Plate for 24 hours. The BAS Imaging plate was scanned using a 

FLA-2000 IP / Fluorescent Reader (Table 2.13) as described in the manual of MacBAS 

(Bio Imaging Analysing System) V2.x (Fujifilm). The scanned image was read and 

analysed using the software Image Reader V1.8J and Image Gauge V3.41 respectively. The 

softwares are described in the MacBAS V2.x operation manual. 
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4. Results
 

The aim of the project has been to test whether heterologous PHD fingers are able to 

replace the one in p300BP without loosing the nucleosome binding activity. Different 

domain recombinants were made containing PHD fingers from three heterologous proteins, 

using gene technology (Figure 4.1). The domain recombinants were expressed as GST-

fusion polypeptides and tested for nucleosome binding by the nucleosome retention assay 

(Section 3.8.1). Domain recombinants were also made by swapping the PHD finger in 

TIFPB. The results are divided in three parts. The first part includes the results from the 

vector construction and the expression of polypeptides from these. The second part includes 

the testing of nucleosome binding of polypeptides expressed from the control constructs 

and the last part shows the results from nucleosome binding of the domain recombinants. 
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Figure 4.1 Construction of vectors encoding domain recombinants. The figure shows the 
procedure used to swap the PHD finger encoding regions.  
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PART I, VECTOR CONSTRUCTION AND POLYPEPTIDE EXPRESSION 

4.1 Preparing acceptor vectorsa 
To make the domain swappingb easier, the basis vectors pSXG-p300B (the vector coding 

for the bromodomain region of p300) and pSXG-TIFB (the vector coding for the 

bromodomain region of TIF1γ) were added linkers with appropriate restriction sites for 

insertion of PHD finger encoding regions. This generated the acceptor vectors pSXG-

p300Blink and pSXG-TIFlinkB.  

 

4.1.1 Introduction of a silent mutation in pSXG-TIFB 

The linker in pSXG-TIFB was to be added in the EcoR I site in position 957-962. An 

additional EcoR I site existed in position 1071-1076 (Figure 4.2). This site therefore had to 

be mutated before starting the vector construction with pSXG-TIFB. The mutation was 

introduced using site directed mutagenesis (Section 3.1).  

 

Choice of strategy 

Instead of using mutagenesis, two alternative strategies were considered. (a) A new linker 

could have been designed, a linker that could be inserted into another site than EcoR I. The 

linker would have to contain new restriction sites for insertion of PHD finger encoding 

sequences, which in their turn would have to have ends corresponding to the new sites. 

Most primers (for linker and for PCR reactions) were already available, and this alternative 

would demand a range of different new primers. (b) The vector construction could have 

been done by insertion of sequences in a different succession, starting with an empty pSXG. 

The linker would have to be inserted first, followed by the PHD finger encoding sequences 

and finally the sequence encoding the bromodomain (containing the EcoR I site). This was 

not an ideal solution because the additional EcoR I site would still be present within the 

bromodomain encoding sequence (this also accounts for alternative a), and the enzyme 

EcoR I could not be used at later stages if further vector construction should be desirable. 

The alternative (c) of mutating the EcoR I site within the bromodomain was therefore 

chosen. 

 

                                                 
a Acceptor vector refers to a plasmid (pSXG-p300Blink or pSXG-TIFlinkB) that is to accept a sequence encoding a 
PHD finger. 
b Domain swapping refers to the method of swapping a domain from one protein with the corresponding domain 
from a foreign protein at the DNA level using plasmids, in these experiments the swapped domain is a PHD finger. 
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Site directed mutagenesis 

To make the mutation, primers, Upper EcoMut and Lower EcoMut, were designed 

containing a base mismatching a base in the EcoR I site of the plasmid sequence. Lower 

EcoMut contained a cytosine mismatching adenine number 1073 in the plasmid and Upper 

EcoMut contained a guanine mismatching the thymine 1073 (Figure 4.2). A mutagenesis kit 

was used to introduce a site directed, silent point mutation without destroying the reading 

frame for the bromodomain. 
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Figure 4.2 Plasmid sequence of pSXG-TIFB, and primers for site directed mutagenesis. (A) The 
sequence of pSXG-TIFB with the two EcoR I sites. The EcoR I site to be mutated is marked with a 
square and the bases to be mutated are shaded in grey. (B) The primer Upper EcoMut (anneals to 
lower strand of the plasmid) contained a mismatch of guanine against adenine of the original 
sequence. (C) The primer Lower EcoMut (anneals with upper strand of the plasmid) contained a 
mismatch of cytosine against thymine of the original sequence. The arrows indicate the direction in 
which the primers anneal. 
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The mutation was confirmed by DNA sequencing and sequence alignment of the mutated 

plasmid with the original plasmid. As can be seen in Figure 4.3, the mutagenesis procedure 

had been successful and the desired mutation of adenine 1073 to guanine was obtained. The 

mutated plasmid was called pSXG-mTIFBa and was used in subsequent cloning steps. 
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Figur 4.4 Confirmation of acceptor vectors by DNA sequencing. (A) Part of the sequence from 
pSXG-p300B before inserting linker. The linker was inserted in the Sal I site. To ease the comparison 
with B, complementary sequence is outlined in yellow and amino acids are indicated. (B) Sequencing 
results of pSXG-p300Blink. Note that the sequence must be read from right to left and compared with 
the complementary sequence outlined in yellow in A. The amino acids Val and Asp have been 
separated by the linker. (C) Part of the sequence of pSXG-mTIFB inserting linker. The linker was 
inserted in the EcoR I site. Amino acids are indicated to ease the comparison with D. (D) Sequencing 
results of pSXG-TIFlinkB. The two amino acids Glu and Phe have been separated by the linker. 

 

4.2 Construction of vectors for expression of domain recombinants 
 
PHD finger encoding sequences 

The presence of the entire amino acid sequence might be important for whether the PHD 

finger will function or not. A strategy has been used in the group to make sure that the 

whole sequence is present: The outer limits of the conserved pattern (see Section 1.4.6) are 

first detected. Next, the regions flanking the domain that seem flexible (regions of low 

conservation between different species and containing few hydrophobic residues and many 

polar residues; Glu, Ser, Thr and also Pro) are determined. In these flexible regions, the 

boundaries are placed. The whole PHD finger is therefore assumed to be present in the 

recombinant polypeptides. 
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Domain swapping 

The construction of recombinant plasmids based on pSXG-TIFB was performed in parallel 

with the construction of plasmids based on pSXG-p300B, therefore domain recombinants 

of pSXG-TIFlinkB were made even though the wild type pSXG-TIFPB had not been tested 

for nucleosome binding. An overview of the vector construction is given in Figure 4.5 and 

4.6. To make domain recombinants, the two acceptor vectors pSXG-p300Blink and pSXG-

TIFlinkB were opened with restriction enzymes within the linker, the first vector with Mun 

I (position 1441) and Sal I (position 1459) and the latter with EcoR I (position 957) and 

Xho I (position 963). Two PHD finger sequences were removed from a donor plasmid with 

enzymes (see Section 3.4.1): The PHD finger encoding sequence in pSXG-MLLP was 

collected with EcoR I (position 957) and Sal I (position 1249) and the sequence in pSXG-

p300P collected with the same enzymes (position 957 and 1266 respectively). The two last 

PHD fingers were collected by PCR (see Section 3.4.1); the TIP5P encoding region 

(position 3696-3918 in pBSII sk (+) KIAA 0314) and the TIF1γP encoding region (position 

4499-4697 in pBSII sk (+) KIAA 1113. The sequences were ligated into the acceptor 

plasmids (Section 3.4.2). The new plasmids and their expressed polypeptides were given 

names according to where their domains are taken from (Table 4.1.).  

 

Table 4.1 Overview of domain recombinants a 

        PHD 
Bromo p300P TIFP MLLP TIP5P 

p300B -p300BlinkP -p300B-TIFP -p300B-MLLP -p300B-TIP5P 

TIFB -p300P-TIFB -TIFPlinkB -MLLP- TIFB -TIP5P- TIFB 

a Domain recombinants were given names indicating where their domains are taken from. The names in red 
indicate a PHD finger and the names in blue indicate a bromodomain. The names are used for both plasmids and 
polypeptides, with the prefix pSXG- or GST- indicating if it is a plasmid or a GST-fusion polypeptide 
respectively. For example, pSXG-p300BlinkP refers to a plasmid and GST-p300BlinkP refers to its expressed 
polypeptide. 
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4.3 Pilot expression 
After the acceptor plasmids had been added the PHD finger encoding sequences, the 

polypeptides were expressed in small-scale bacterial cultures (pilot expression, Section 3.6) 

to find the best conditions for producing soluble polypepetides. Different culture densities 

and incubation temperatures during protein expression were tested since these are known to 

be critical parameters for protein yield and solubility. The polypeptides were analysed by 

SDS-PAGE and the size and intensity of the bands from the soluble fractions estimated and 

compared to find the band of highest intensity. The insoluble fractions indicated how much 

of the polypeptide that had precipitated. An example of a gel, to show the general amounts 

expressed, is given in Figure 4.7. An overview of results from pilot expression of all 

polypeptides is given in Table 4.2 A and 4.2 B. 
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Figur 4.7 Pilot expression of GST-p300BlinkP at 26 °C. Aliquots of 10 µl from soluble and 
insoluble fractions in pilot expression were analysed by SDS-PAGE and the gel stained in Coomassie 
brilliant blue stain solution. The gene encoding the polypeptide was induced for expression at three 
different cell densities (OD600): 0.2, 0.4 and 0.7. Abbreviations: St, BenchMarkTM Protein ladder; S, 
Supernatants, soluble fractions; P, pellets, insoluble fractions; Lane 8 and 9 are negative controls 
(polypeptides expressed without the inducer IPTG). The arrow indicates the position of GST-
p300BlinkP, which is 57 kDa, and is, as expected, not expressed in lanes without IPTG. Relative 
amounts were estimated by a plus as follows: Lane 1, +; lane 4, ++; lane 6, +++. These signs, 
representing approximately the same amounts, are used in table 4.2 A and B, to indicate amounts in 
fractions from pilot expression of the other polypeptides. 
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Table 4.2 A Pilot expression of domain recombinants based on pSXG-p300Blink a 

°C OD600 MLLP p300P TIFP TIP5P 
0.2   - - 
0.4  + - - 37 °C 
0.7 + + + + - - 
0.2  + +  
0.4 + + + + + + + 26 °C 
0.7 + + + + + + + + + + 
0.2  - - - 
0.4 + + - - - 18 °C 
0.7 + - - - 

 
 

Table 4.2 B Pilot expression of domain recombinants based on pSGX-TIFlinkB a 

°C OD600 MLLP p300P TIFP TIP5P 
0.2    + 
0.4  + + + + 26 °C 
0.7 + + + + + + + + + + 

 

a Note that the prefix GST-p300B- in Table 4.2 A and GST-TIFB- in Table 4.2 B is left out in the tables, only the 
name of the inserted PHD fingers are indicated. The relative amount of polypeptide is indicated by a plus. The 
amounts represented by the pluses are shown on the gel in Figure 4.7. The empty spaces in the table mean that no 
polypeptide appeared on the gel. The squares marked with – mean that expression was not performed under these 
conditions. 
 

 

All domain recombinants were expressed as soluble polypeptides in reasonable amounts. 

For each domain recombinant, the conditions resulting in the largest amount of soluble 

polypeptide were chosen for large-scale expression. For all domain recombinants, the 

conditions chosen were culture densities of OD600 0.7 and expression temperatures of 26 

°C. Optimal conditions for GST, GST-p300BP and GST-TIFPB had been determined 

previously in the group, and they were expressed at 37 °C and OD600 0.7.  
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4.4 Large-scale expression 
The polypeptides were expressed in large-scale bacterial cultures (large-scale expression, 

Section 3.7) at their optimal conditions, purified and analysed by SDS-PAGE to verify that 

a polypeptide of the correct size was produced (Figure 4.8). Concentrations were calculated 

by DcProtein Assay from BioRad and the results are shown in Table 4.3 together with the 

respective sizes of the polypeptides. GST-TIFPB and GST-TIFPlinkB were purified twice 

and fractions from both preparations are shown on the gel. In Table 4.3, one concentration 

value is given for each preparation, and the respective usage is indicated behind. 
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Figure 4.8 Large-scale expression of polypeptides. All polypeptides were purified from E. coli 
lysates (Section 3.7). Aliquots of 10 µl from eluate 1 and 2 (eluate 2 not shown) were analysed by 
SDS-PAGE (Section 3.5.1). The bands were visualised in Coomassie brilliant blue stain solution. The 
sizes of the bands (in kDa) of the BenchMarkTMProtein Ladder (St) are indicated to the left and is 
used on all gels except for D, where the SDS-PAGE Standards, low range (Bio-Rad) is used (Table 
2.6). (A) GST, (B) lane 1: GST-TIFPB, lane 2: GST-TIFPlinkB, (C) lane 1: GST-p300BP, lane 2: 
GST-p300BlinkP, (D) lane 1: GST-p300B-TIP5P, lane 2: GST-p300B-MLLP, (E) lane 1: GST-
TIFPB, lane 2: TIFPBta (thrombin treated GST-TIFPB from lane 1), lane 3: GST-TIFPlinkB, lane 4: 
GST-p300P-TIFB, lane 5: GST-p300B-TIFP. Note that GST-TIFPB and GST-TIFPlinkB was purified 
twice, once in B and once in E. The sizes and the estimated concentrations of the polypeptides are 
given in Table 4.3. 
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a The t represents the thrombin cleavage (Section 3.5.6) that has cleaved the polypeptide from GST. 
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Table 4.3 Concentrations a of polypeptides 
 
Polypeptide Concentration Size Reference 

Figure 4.8  
    
GST 40 µM  17 µM ~ 28 kDa A 
GST-TIFPBb 7 µM  ~ 57 kDa B, lane 1 
GST-TIFPlinkBb 20 µM  ~ 57 kDa B, lane 2 
GST-p300BP 32 µM  24 µM ~ 57 kDa C, lane 1 
GST-p300BlinkP 25 µM  20 µM ~ 59 kDa C, lane 2 
GST-p300B-TIP5P 5.5 µM 13 µM ~ 56 kDa D, lane 1 
GST-p300B-MLLP 15 µM ~ 55 kDa D, lane 2 
GST-TIFPBc 5.5 µM 12 µM ~ 57 kDa E, lane 1 
TIFPBtd 6.5 µM 17 µM ~ 30 kDa E, lane 2 
GST-TIFPlinkBe 6.5 µM ~ 57 kDa E, lane 3 
GST-p300P-TIFB 15 µM ~ 62 kDa E, lane 4 
GST-p300B-TIFP 14 µM ~ 55 kDa E, lane 5 
   

 

a Ideal concentrations for nucleosome binding assays are between 15 and 20 µM (see Section 3.8). Fractions with 
concentrations higher than 20 µM were diluted in TZNK/β/T to prevent precipitation, and most fractions with 
concentrations lower than 15 µM were concentrated using Centricon®Centrifugal Filter Devices (Section 3.5.3). 
The arrow represents dilution or concentration 
b Batch used in nucleosome retention assays (Figure 4.10) 
c Batch used in electrophoretic mobility shift assay (Section 4.11) 
d Thrombin treated GST-TIFPB in the line above (of concentration 5.5 µM, Figure 4.5 E, lane 1). 
e Batch not used  
 
 
Figure 4.8 and Table 4.3 show that all the polypeptides could be purified, but in quite 

varying amounts. GST gave best yield (40 µM). GST-p300BP and the control GST-

p300BlinkP were also slightly higher (32 µM and 25 µM respectively) than the other 

polypeptides (from 5.5 µM to 15 µM), indicating that the polypeptides with the low 

concentrations are more unstable, and might have precipitated during the purification 

process. All the polypeptides thus gave a concentration, or were adjusted to concentrations 

that could be used for nucleosome retention assays (ideally between 15 and 20 µM). 
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PART II, EVALUATING POSITIVE CONTROLS  
To be able to evaluate the ability of the domain recombinants to bind nucleosomes, it was 

necessary to determine whether the controls, GST-p300BlinkP and GST-TIFPlinkB that had 

their own PHD finger reinserted, bound to nucleosomes as well as their respective wild 

types. Nucleosome binding of the wild type GST-TIFPB had not been tested before, so this 

was tested at the same time as the recombinant, GST-TIFPlinkB. Nucleosome retention 

assays (Section 3.8.1) were therefore performed with GST-p300BlinkP, GST-TIFPB and 

GST-TIFPlinkB.  

 

4.5 Nucleosome retention assay with GST-p300BlinkP 
The polypeptide expressed from pSXG-p300BlinkP contained 33 additional amino acid 

residues between the bromodomain and the PHD finger (see figure text, Figure 4.5) 

compared to the wild type. To test whether this, or the vector construction procedure, could 

have interfered with the polypeptide’s nucleosome binding activity, a nucleosome retention 

assay was performed with GST-p300BlinkP, two different preparations of GST-p300BP as 

positive controls and with GST as negative control  (Figure 4.9).  
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Figure 4.9 GST-p300BlinkP binds to nucleosomes as well as GST-p300BP. The figure shows the 
results of the nucleosome retention assay (Section 3.8.1) testing the binding of GST-p300BlinkP to 
3H-labelled nucleosomes (Table 2.3). The amount of nucleosomes (percent of input) retained by four 
polypeptides (Table 4.3) is represented with different colours, as indicated on the figure: GST, 
negative control; two different preparations of GST-p300BP, positive controls; and GST-p300BlinkP. 
IN, input; FT, Flow Through (the nucleosomes not retained on the nucleosomes); W1-W5, Wash 1 – 
Wash 5; E1-E3, Eluate 1 – Eluate 3; R, material retained on the glutathione sepharose beads after 
elution. From all fractions, material was taken for scintillation counting (Section 3.5.7) and the 
radioactivity in the input material (862 dpm/µl) was set to be 100 %. The radioactivity of all fractions, 
in dpm and percent of input, is given in Appendix. 

 

The data show that GST-p300BlinkP binds to nucleosomes (27 %) as well as the wild type: 

The two different preparations of GST-p300BP both bind to nucleosomes (32 % and 29 %). 

GST does not reveal any nucleosome retention (0 %). For exact values, see Appendix 1. 

These results demonstrate that neither the extra amino acids inserted between the 

bromodomain and the PHD finger nor the procedure of vector construction have altered the 

ability of the protein to interact with nucleosomes. Further experiments testing nucleosome 

binding of the domain recombinants were therefore performed (Section 4.8). 

 

 64 



4. Results
 

 

4.6 Nucleosome retention assay with GST-TIFPB and GST-TIFPlinkB  
The polypeptide expressed from pSXG-TIFPlinkB had six additional amino acid residues 

between the PHD finger and the bromodomain compared to the wild type (see Figure 4.6). 

A nucleosome retention assay was performed with the wild type, GST-TIFPB, and GST-

TIFPlinkB (Figure 4.10). GST-p300BP and GST were used as positive and negative 

controls respectively. 
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Figure 4.10 No nucleosome binding was detected, neither for GST-TIFPB nor GST-TIFPlinkB. 
(A) Nucleosome retention assay (Section 3.8.1) testing the binding of GST-TIFPlinkB and GST-
TIFPB (Table 4.3) to 3H-labelled nucleosomes (Table 2.3). The diagram shows the amount of 
radioactivity (percent of input) in each fraction of the four polypeptides tested. The polypeptides are 
represented with different colours, as indicated on the figure: GST, negative control; GST-p300BP, 
positive control; GST-TIFPB (this polypeptide had a concentration of 7 µM (see Table 4.3), and in 
stead of concentrating the sample, a double volume, 400 µl, was applied); and GST-TIFPlinkB. 
Abbreviations, IN, FT etc, are as in Figure 4.9. The radioactivity of the input, 610 dpm/µl was set to 
be 100 %. (B/C) Aliquots of 10 µl of each fraction from nucleosome retention assay with GST-TIFPB 
and GST-TIFPlinkB analysed by SDS-PAGE (Section 3.5.1). The gels were stained in Coomassie 
brilliant blue stain solution. The sizes of the bands (in kDa) of BenchMarkTMProtein Ladder (St) are 
indicated to the left. Other abbreviations are as in Figure 4.9, except that IN and FT refers to the 
polypeptide fractions, IN-P and FT-P respectively (see Section 3.8.1). The radioactivity of all 
fractions, in dpm and percent of input, is given in Appendix. 

 

Neither GST-TIFPB nor GST-TIFPlinkB showed any ability to bind to nucleosomes. 

Compared to the input, 0.6 % and 0.4 % retained nucleosomes were obtained respectively, 

which was similar to the negative control, GST (0.2 %). In the eluate of the positive control, 

GST-p300BP, 19 % retained nucleosomes was detected compared to the input. The gels 
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shown in Figure 4.4 B and C confirm that the polypeptides appear in the eluate, E1+2, and 

not in the washing steps, W1-W4. This means that the polypeptides were bound in the 

column when the nucleosomes were applied, before the washing steps. Since neither GST-

TIFPB nor GST-TIFPlinkB showed any nucleosome binding in the nucleosome retention 

assay, an alternative method, electrophoretic mobility shift assay (EMSA) was tried.  

 

4.7 Electrophoretic mobility shift assay with GST-TIFPB and TIFPBt 
To test whether the EMSA (Section 3.8.2) could be used to detect binding of GST-TIFPB 

to nucleosomes, GST-TIFPB and TIFPBt were tested in this assay (Figure 4.11). TIFPBt 

has had its GST tag removed by thrombin cleavage (Section 3.5.6). TIFPBt was tested to 

see if GST could have any influence on the polypeptide’s ability to interact with 

nucleosomes. Increasing concentrations of polypeptides were incubated with 32P-labelled 

nucleosomes. The samples were analysed on a 4.5 % native PAA gel followed by 

visualizing by a radio phosphoimager. 
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Figure 4.11 No nucleosome binding was detected by EMSA, neither with GST-TIFPB nor 
TIFPB. An EMSA (Section 3.8.2) was performed testing the binding of GST-TIFPB and TIFPBt 
(Table 4.2) to 32P-labelled nucleosomes (Table 2.3). (A) Each binding reaction contained 
approximately 2.5 fmol nucleosomes and: lane 1, no polypeptide; lane 2, 1000 pmol GST, negative 
control; lane 3, 1000 pmol GST-p300BP, positive control; lanes 4-8 GST-TIFPB in amounts of 100, 
300, 500, 700 and 1000 pmol respectively; lane 9-13, TIFPBt in amounts of 100, 300, 500, 700 and 
1000 pmol respectively. Free nucleosomes and free DNA is visible as a band in the middle and on the 
bottom of the gel respectively. a, Nucleosome – GST-p300BP complex; b/c, with increased 
concentration of polypeptide, the bands containing nucleosome is seen further up in the gel, most 
probably caused by unspecific binding (Anja Ragvin pers. comm.).  (B) SDS-PAGE gel showing the 
polypeptides used in the EMSA (after concentration by Centricon®Centrifugal Filter Devices) stained 
in Coomassie brilliant blue stain solution. The sizes of the bands (in kDa) of BenchMarkTMProtein 
Ladder (St) are indicated to the left; Lane 1, 120 pmol GST-TIFPB; lane 2, 170 pmol TIFPB. 
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There is no visible complex formed between GST-TIFPB or TIFPB and nucleosomes (lanes 

4-13). With GST-p300BP a complex is visible as expected (lane 3) and GST shows no 

binding (lane 2). The negative results for GST-TIFPB and TIFPB indicated that most likely 

the other domain recombinants with an identical bromodomain would not bind to 

nucleosomes. These recombinants were therefore not tested for binding to nucleosomes. An 

exception is GST-p300P-TIFB (with PHD finger from p300); which was tested (Figure 

4.12 D-F) since this PHD finger causes binding in p300BP.  

 
 

PART III, EVALUATING DOMAIN RECOMBINANTS 

4.8 Nucleosome retention assay with domain recombinants 
Since GST-p300BlinkP showed efficient binding in the nucleosome retention assay, the 

panel of domain recombinants with the bromodomain from p300 and PHD fingers from 

heterologous proteins was evaluated (Figure 4.12). Even if the nucleosome retention assay 

with GST-TIFPlinkB was negative, one of the domain recombinants with TIFB, GST-

p300P-TIFB, was evaluated to see if the PHD finger of p300 could cause nucleosome 

binding in the context of another bromodomain. GST-p300BP and GST were used as 

positive and negative controls as in previous experiments. 
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Figure 4.12 No nucleosome interaction is detected for the domain recombinants. (A) Nucleosome 
retention assay (Section 3.8.1) testing GST-p300B-TIP5P and GST-p300B-MLLP (Table 4.2) for 
binding to 3H-labelled nucleosomes (Table 2.3). The diagram shows the amount of radioactivity in all 
fractions of the four polypeptides tested, represented with different colours, as indicated in the figure: 
GST, negative control; GST-p300BP, positive control; GST-p300B-TIP5P and GST-p300B-MLLP. 
The radioactivity in the input material, 528 dpm/µl was set to be 100 %. (B)/(C) Aliquots of 10 µl of 
each fraction from nucleosome retention assays with GST-p300B-MLLP (B) and GST-p300B-TIP5P 
(C) analysed by SDS-PAGE (Section 3.5.1) The gels were stained in Coomassie brilliant blue stain 
solution. The sizes of the bands (in kDa) of BenchMarkTMProtein Ladder (St) are indicated to the left. 
Other abbreviations are as in Figure 4.9, except that IN and FT refers to the polypeptide fractions, IN-
P and FT-P respectively (see Section 3.8.1). (D) Nucleosome retention assay testing GST-p300B-
TIFP and GST-p300P-TIFB for binding to 3H-labelled nucleosomes. The diagram shows the amount 
of radioactivity in all fractions of the four polypeptides tested, represented with different colours, as 
indicated in the figure: GST, negative control; GST-p300BP, positive control; GST-p300B-TIFP and 
GST-p300P-TIFB. The radioactivity in the input material, 836 dpm/µl was set to 100 %. (E)/(F) 
Aliquots of 10 µl of each fraction from nucleosome retention assays with GST-p300B-TIFP (E) and 
GST-p300P-TIFB (F), analysed by SDS-PAGE (Section 3.5.1). The gels were stained in Coomassie 
brilliant blue stain solution. The sizes of the bands (in kDa) of BenchMarkTMProtein Ladder (St) are 
indicated to the left, other abbreviations, IN, FT etc, are as described above. The radioactivity of all 
fractions, in dpm and percent of input, is given in Appendix. 

The results in Figure 4.12 show that the positive control in the assays, GST-p300BP, binds 

nucleosomes as expected (45 % and 20 % of the input nucleosomes were retained in A and 

D respectively), and GST is negative (0.9 % and 0.2 % of the input nucleosomes were 

retained in A and D respectively). For the domain recombinants, however, no significant 

nucleosome retention is detected (from 0.2 % to 1.3 % of input). The gels pictured in Figure 

4.12 B, C, E and F confirm that the polypeptides appear in the eluates, E1-3, and not in the 
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washing steps, W1-W4. This shows that the polypeptides were bound to glutathione 

sepharose when the nucleosomes were applied. These results indicate that the PHD fingers 

of TIP5, MLL and TIF1γ cannot replace the PHD finger of p300 without loosing the 

nucleosome binding activity, and that p300P is not sufficient for GST-p300P-TIFB to bind 

to nucleosomes.   
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5. Discussion
 

 
The PHD finger is a protein domain occurring in a number of proteins involved in 

epigenetic gene regulation. The bromodomain is another domain often present in such 

proteins. Several bromodomains occur next to a PHD finger, and it has been found by our 

research group that the bromodomain-PHD finger region of the protein p300 can bind to 

acetylated nucleosomes (Ragvin et al., in prep.). In experiments with this region of p300 in 

the nucleosome retention assay (Section 3.8.1) both domains are required to detect an 

interaction with nucleosomes (Ragvin et al., in prep.). No nucleosome interaction has been 

detected in this assay for each domain alone. In the EMSA however, nucleosome 

interaction has been detected for both domains separately. The aim of this project was to 

use nucleosome retention assay to study domain recombinants of GST-p300BP, in order to 

determine whether PHD fingers from heterologous proteins are able to substitute for the 

original. 

5.1  Nucleosome binding assays  

Six recombinant plasmids encoding domain recombinants were made by swapping the 

sequences encoding the PHD fingers in pSXG-p300BP and pSXG-TIFPB with other PHD 

finger encoding sequences. While GST-p300BP had been thoroughly tested for nucleosome 

binding in our laboratory previously, GST-TIFPB had not been tested. In my experiments, 

no nucleosome interaction was detected for GST-TIFPB. With one exception (see below), 

the domain recombinants of GST-TIFPB were therefore not further tested. The results of 

the nucleosome binding experiments are discussed in the following. 

5.1.1 Nucleosome interaction by the domain recombinants  

Three of the vectors encoding domain recombinants were made based on pSXG-p300B. 

The control polypeptide GST-p300BlinkP showed nucleosome retention similar to the wild 

type polypeptide (Figure 4.9), but when the PHD finger was swapped with a heterologous 

PHD finger, the nucleosome binding activity was lost (Figure 4.10 and 4.12). One domain 

recombinant of GST-TIFPB was also tested; the domain recombinant with the PHD finger 

from p300 and the bromodomain from TIF (GST-p300P-TIFB, Figure 4.12). No 

nucleosome interaction, however, was detected with this polypeptide. 

 

Interaction between the bromodomain and the PHD finger in p300 

The negative results of nucleosome binding assays with the domain recombinants of GST-

p300BP may suggest that there exists an interaction between the bromodomain and the 

PHD finger in p300. A negative result may thus implicate that the interaction between the 

domains is lost, giving a dysfunctional polypeptide.  

 The negative result in nucleosome binding also with GST-p300P-TIFB may further 

indicate that an interaction is needed between the two domains in p300. Both the 

bromodomain and the PHD finger in GST-p300P-TIFB may be expected to cause 

nucleosome binding; the PHD finger of p300 causes binding when situated next to its 
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original bromodomain and the bromodomain is expected to interact with an acetylated 

lysine. However, no interaction is detected when altering the domain combination. The 

negative result with GST-p300P-TIFB may, however, also be explained by the function of 

the bromodomain: Even though other bromodomains are known to bind to acetylated 

lysines, the one in TIF1γ might have another function. This possibility must be considered 

since no interaction was detected in the wild type GST-TIFPB (see Section 5.1.2). The 

putative interaction between the bromodomain and the PHD finger is further discussed in 

Section 5.3.2. 

 
Influence of the linkers inserted in the vectors on the expressed polypeptides’ function 

Experiments have been done in our research group extending the region between the 

bromodomain and the PHD finger in p300 (Tufteland, 2002). A region of as much as 77 

amino acids was inserted between the domains, but the insertion did not interfere with the 

polypeptide’s nucleosome binding activity. The inserted linker in pSXG-p300Blink 

therefore most likely has nothing to do with the loss of nucleosome binding of the domain 

recombinants. Furthermore, the positive control GST-p300BlinkP (which has 33 additional 

amino acids compared to GST-p300BP, see figure text in Figure 4.5) binds to nucleosomes 

essentially as well as the wild type, supporting that the linker does not affect the 

nucleosome binding activity.  

 The experiment with the extended region between the bromodomain and the PHD 

finger might be in conflict with the hypothesis of an interaction between the bromodomain 

and the PHD finger. Those results may indicate that the domains function independently. 

However, it is not unlikely that despite the extended region between the domains, they 

might still interact, only with a larger loop between them.  

 
Disruption of the putative interaction between the bromodomain and the PHD finger  

By performing domain swapping, the putative interaction between the bromodomain and 

the PHD finger may be disrupted because a heterologous PHD finger might not be able to 

interact with the bromodomain (see Figure 5.1).       

 The structure of the heterologous PHD fingers present in the domain recombinants is 

a factor that may affect the PHD finger’s cooperation with the bromodomain. Even though 

all PHD fingers contain the conserved pattern of Cys4-His-Cys3, there are non-conserved 

amino acids between these. It is therefore likely that each PHD finger adopts a 3D-structure 

slightly different from other PHD fingers. They may even be so divergent that the PHD 

fingers used in my experiments, when fused to the bromodomain of p300, do not physically 

fit to the bromodomain.  

 The size of the PHD finger might also be important in this context. The PHD fingers 

inserted are all smaller than the one in p300, which contains the stretch of amino acids 

situated after the first two cysteins of the conserved motif (see Figure 1.7 and Table 2.1).  
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Alternative explanations for the domain recombinants being dysfunctional 

The possibility cannot be excluded that the PHD fingers from TIF1γ, TIP5 and MLL do not 

have any nucleosome binding function in their natural contexts (see Section 1.9.2) and 

therefore do not bind in vitro. Alternatively, the PHD fingers do have nucleosome binding 

activity, but do not recognise their target on the nucleosome (such as a modification or a 

particular structure in the nucleosome) because the target is not present in the nucleosomes 

used in my experiments. Alternatively, the target is present but situated in a 

disadvantageous position compared to the binding site of the bromodomain. Perhaps 

nucleosomes purified from another type of cells than SupT-cells, grown under other 

conditions, would give nucleosomes containing the relevant epitopes. However, 

nucleosome interaction has been detected for GST-p300BP also with recombinant 

nucleosomes, containing acetylation as the only modification (Ragvin et al., in prep.). The 

PHD finger of p300 therefore does not seem to be dependent on other modifications.  

 An aberrant folding of the polypeptides might also explain the loss of nucleosome 

interaction. Since, however, the positive control, GST-p300BlinkP, was functional (in 

which the plasmid has been through the same process of vector construction) one can 

assume that they have proper folding. The folding is further discussed in Section 5.2. 

5.1.2 Nucleosome interaction by GST-TIFPB  

The polypeptide GST-TIFPB and the recombinant GST-TIFPlinkB did not show any 

nucleosome binding in the nucleosome retention assay. GST-TIFPB and TIFPB were also 

tested in EMSA, but no nucleosome interaction was detected. It is hard to make any 

assumptions based on these results because there is no positive control as with p300BP. An 

explanation may quite simply be that the PHD finger in TIF1γ does not interact with 

nucleosomes in vivo. It is also possible that there is a nucleosome interaction in vivo and 

that some of the factors mentioned in Section 5.2 (the nature of the nucleosomes, the 

experimental conditions or the folding of the polypeptides), made it difficult to detect the 

interaction in vitro.  

5.1.3 The degree of binding in the nucleosome retention assay 

In my nucleosome retention assays, the binding percentages of GST-p300BP vary 

significantly, from 19 % to 45 %. Previous experiments in our research group have shown 

binding percentages from 6 % and up to 39 % (Tufteland, 2002). It is not likely that this 

variation is caused by variable ability of GST-p300BP to bind to nucleosomes. Other 

experimental factors might, however, cause variation in the binding percentages: Variable 

concentrations and qualities of polypeptides and nucleosomes, variable results from the 

scintillation counter, varying pipetting accuracy and practical performance of the 

experiment. For these reasons it is hard to compare the degrees of nucleosome binding, 

especially between polypeptides that have not been tested in the same experiments. The 

experiments in this thesis were designed, however, to test qualitatively a panel of domain 

   73 



5. Discussion
 

recombinants for nucleosome binding. Therefore, no conclusions have been drawn on the 

degree of binding. Note also that each experiment has been performed only once. Since the 

controls have acted as expected, it is reasonable to assume that the experiments are 

representative.  

5.1.4 Determination of radioactivity in nucleosome retention fractions 

In the nucleosome retention assays, the binding of polypeptides to nucleosomes was 

determined by measuring radioactivity (3H) in each fraction (IN-N, FT-N, W1-W5, E1-E3 

and R) by scintillation counting. The input value was set to 100 % and the relative amount 

of radioactivity in the fractions was calculated based on this value (Section 3.8.1). When 

adding up the relative radioactivity in all fractions, one would expect to get a value close to 

100.  

 In previous experiments in our research group, a recovery of 61 % - 127 % has been 

observed (Tufteland, 2002). In my experiments, the recovery varied from 48 % with GST-

p300B-TIFP (Figure 4.12 D, Table A.4) to as much as 168 % with GST-p300B-TIP5P 

(Figure 4.12 A, Table A.3), although normally lying in the area 60-70 % (see Appendix). In 

two incidences, the FT value was even higher that the IN value (Figure 4.10 and 4.12 A).  

 The most obvious explanation for not recovering all the material is that the fractions 

taken for counting after nucleosome retention were not precise. When pipetting from 11 

different tubes, some material is lost in each pipette tip and the sum will be lower than the 

input. The reason for getting a recovery of higher than 100 % can also be explained by 

pipetting; the pipette might have been adjusted imprecisely when taking fractions for input 

compared to the rest of the fractions. Such inaccuracy may also result in a FT fraction that 

has a higher value than the IN.  

 3H is a low energy β-emitting nucleide and the radioactivity is therefore easily 

quenched. Corrections are made in the scintillation counter that converts cpm (counts per 

minute) to dpm (disintegrations per minute). The correction is done using a standard curve, 

assuming that the quenching is the same in all fractions. The quenching most likely varies, 

however, and in a fraction with high degree of quenching, not all disintegrations will be 

detected. The result will be a lowered cpm value. Another factor influencing with the 

counting is the sensitivity to static electricity, which could raise the observed cpm value. 

Quenching and static electricity are both factors that could have influenced the results of 

each counting.  

 The dpm values of the input fractions also varied. The input values in Figure 4.9 and 

Figure 4.12 D were approximately 43000 dpm and 42000 dpm respectively (see Appendix). 

However, in the cases where the flow through value was higher than the input, the dpm 

values in the input fractions were approximately 30000 dpm and 26000 dpm (Figure 4.10 

and Figure 4.12 A, respectively). Although the concentrations of the nucleosomes are 

slightly variable, this comparison suggests that the input value in the two latter cases might 

have been higher than detected. Quenching or static electricity might also account for the 
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particularly high binding percentage of the GST-p300BP (45 %) and the relatively high 

percentage in the R fraction of GST-p300B-TIP5P (7.6 %) in the same experiment (Figure 

4.12 A). 

 Despite the variable values of recovery, input material and binding percentages, the 

pattern of binding/not binding was easily detectable in all experiments. All experiments are 

therefore assumed to be reliable although the values may be somewhat imprecise. 

5.2 Folding and stability of the polypeptides 

The domain recombinants were obtained in quite low concentrations. Normally the 

concentrations were ~15 µM, but the lowest as low as ~5 µM. These concentrations are 

rather low compared to 25-40 µM in the wild types GST and GST-p300BP, as well as the 

control GST-p300BlinkP (Table 4.3). The polypeptides GST-TIFPB and GST-TIFPlinkB 

(which did not either show nucleosome binding) were also obtained at relatively low 

concentrations, with the exception of the latter polypeptide giving a concentration of 20 µM 

in one of two preparations, see Table 4.3).  

 Such low concentrations of polypeptides could be a result of either a decreased 

stability by introducing a heterologous domain or the expression conditions not being 

optimal. Most of the instable or erroneously folded complexes would be expected to 

precipitate during the purification process. A tendency of the recombinant polypeptides to 

precipitate from the buffer not long after purification suggests that some incorrectly folded 

polypeptides might have been present in the solutions. However, precipitation also occurred 

with GST, GST-p300BP and GST-p300BlinkP, which were functional and therefore were 

considered to have a proper folding. The reason for the precipitation in all solutions might 

therefore be that a proportion of the polypeptides formed complexes with each other or that 

they did not have the optimal conditions for storage.  

 The polypeptides used in the nucleosome binding assays were always freshly 

purified, being less than a couple of days old for the recombinants, and up to a month old 

for GST and GST-p300BP. It is therefore reasonable to believe that the polypeptides used 

in my experiments had proper folding.  

 To prevent precipitation, other conditions for storage could have been tried, but 

storage at 4 °C in TZNK/β/T had been satisfying with GST-p300BP previously in the 

research group, giving low level of precipitation. These conditions were therefore also used 

in my experiments. Storage at -20 °C had been tested (Tufteland, 2002) but small amounts 

of precipitation was also seen at this temperature  
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5.3 The role of the PHD finger in p300 and other proteins 

5.3.1 The role of the PHD finger in p300BP  

What do the experiments presented here say about the role of the PHD finger in p300? We 

already knew in our research group that the PHD finger had to be present to detect 

nucleosome binding by GST-p300BP in the nucleosome retention assay (Ragvin et al., in 

prep.). The fact that the PHD finger has been shown by EMSA to be able to interact with 

nucleosomes without the bromodomain suggests that the PHD finger in p300 alone has a 

nucleosome binding activity (Ragvin et al., in prep.). In my experiments, both the PHD 

finger and the bromodomain in the polypeptide had to originate from p300 to detect an 

interaction with nucleosomes in the nucleosome retention assay.  

 In the two nucleosome binding assays (Section 3.8), the nucleosomes and the 

polypeptides are treated differently. In the nucleosome retention assay, it seems like an 

interaction of only one domain is too weak to persist in all the centrifugations during the 

washing steps, explaining why the domains are dependent on each other in this assay. In the 

EMSA, however, the nucleosomes and the polypeptides are simply mixed and subsequently 

analysed by electrophoresis, no centrifugations are required. A weak interaction is therefore 

more easily detected in this assay.  

 Assuming that the domain recombinants in my experiments are folded correctly and 

that the inserted PHD fingers also have the ability to interact with nucleosomes, one should 

expect the domain recombinants to be able to interact with nucleosomes. However, they do 

not, possibly (as mentioned in Section 5.1.1) due to the binding between the bromodomain 

and the PHD finger being lost. A nucleosome binding by both the PHD finger and the 

bromodomain in p300 therefore seems to be difficult if the domains are not, at the same 

time, able to interact with each other. 

 Some of the models discussed in Figure 1.9, now seem less plausible. The findings 

mentioned above narrows down the most likely function of the PHD finger to two models; 

the models where the bromodomain and the PHD finger interact, and the PHD finger binds 

to either the histone tail (alternative A1) or somewhere in the histone core (alternative A2). 

When the results of my experiments are taken into account, some new models may be 

considered (Figure 5.1). A PHD finger from a heterologous protein may not be able to 

interact with the bromodomain in p300. The heterologous domain disrupts the cooperation 

between the bromodomain and the PHD finger, and thereby the binding by at least one of 

the domains to the nucleosome. The interaction between the domains gives p300BP 

binding-specificity and stronger affinity to the nucleosome. The cooperation between the 

domains is discussed below. 
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Figure 5.1. A heterologous PHD finger in p300 makes the cooperation with the bromodomain 
difficult. The PHD finger is illustrated in red and the bromodomain in blue. Only one of the eight 
histone tails are shown and the red ball refers to an acetylated lysine. (A) A protein with its two 
original domains present functions normally, both domains bind to their respective targets. (B) When 
a domain, in this case the PHD finger, from a heterologous protein replaces the original, the 
cooperation becomes difficult and only one domain is able to bind to its target. 
 

5.3.2 Cooperation between the bromodomain and the PHD finger in p300 

The PHD finger has, as mentioned in the introduction, two flexible loops of less 

conservation (see Figure 1.7 and 1.8). This region has in fact been suggested to be involved 

in the binding of the PHD fingers to other protein domains, and because of its low 

conservation, may serve to give each PHD finger an individual binding property (Capili et 

al., 2001; Pascual et al., 2000). If the flexible loop reflects a diversity and specificity of 

PHD fingers, this may give an obvious explanation for the results of my domain swapping 

experiments and would support the hypothesis presented in Figure 5.1; each PHD finger has 

a region that fits only its natural ligand, irrespective of whether it is a bromodomain or 

another domain.  

 The presence of two such flexible areas might in fact serve as an interaction point for 

the bromodomain in one loop and the nucleosome in the other. The ability to interact with 

two different ligands may reflect a function common for all PHD fingers.  

 An interaction between the domains is further supported by a very recent 

examination of the flexible loops. It is found that the PHD finger in Mi2β can tolerate 

extensive substitutions and expansions in this area without affecting the zinc finger fold 

(Kwan et al., 2003). Because of this stability, it was possible to insert a CtBP2 (a 

corepressor) binding site in this region. The result was a PHD finger that could specifically 
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interact with CtBP2, confirming that an interaction with a corepressor is possible in this 

region.  

 An article was published in 2000, showing the crystal structure of the two adjacent 

bromodomains of the human TAFII250 protein (Jacobson et al., 2000). In this protein, there 

are two points of interaction between the bromodomains. The first site is formed by 

electrostatic interactions between Glu residues on the one domain and Lys residues on the 

other. The second interaction point is formed between Tyr, Lys, Ile and Thr in one domain 

and Pro, Asn, Lys and Tyr in the other domain. When studying the sequence of the PHD 

finger from p300, some of these amino acids (Ile, Thr, Asn and Lys) are very frequent 

particularly in the flexible area between the second and the third Cys (Figure 1.9, loop 1). 

Perhaps some of these amino acids are involved in a similar interaction? 

 In the same article it was suggested that the substrate specificity of the double 

bromodomain would be expected to be tightly coupled to the relative orientation of the 

domains. The two binding pockets for the bromodomains span 28 Å, which require about 

seven amino acids (Jacobson et al., 2000). This is consistent with the distance between the 

acetylations seen on H4 in vivo (K5, K8, K12, K16). Possibly this is the case also with the 

bromodomain and the PHD finger; that the distance between the nucleosome binding sites 

of the domains reflects the distance between their epitopes on the nucleosome. In the same 

article, it was also suggested that the nucleosome binding could be enhanced by the 

cooperative binding by the first and the second pocket. These suggestions are consistent 

with the hypothesis presented about the PHD finger in p300. 

  As mentioned in the introduction, a number of transcriptional mediators/coactivators 

that function at the chromatin level has been found to contain PHD fingers (Aasland et al., 

1995). About ~30 PHD finger proteins also contain the bromodomain (Capili et al., 2001). 

It is possible that some, or even all of these PHD fingers, also function in the same way as 

the p300 PHD finger, being involved in both protein- and chromatin interaction. 

5.3.3 The role of the PHD finger in general 

Although most PHD fingers seem to contain two loops of low conservation, the putative 

function of the PHD finger as a nucleosome-binding domain may not be common for all 

PHD fingers. It is possible that (a) the function of a PHD finger in one protein differ from 

the function of a PHD finger in another protein, or that (b) the PHD finger in one protein 

can play several different roles. An alternative interpretation of my experiments may, as 

mentioned in 5.1.1, support the idea that the function varies among different proteins; that 

the function of the PHD finger in p300 might be different from the function in TIF1γ, TIP5 

and MLL.  

  In the Introduction, several suggested functions were outlined for the PHD finger 

(see Section 1.5). Some of these functions are supported by my experiments. Several groups 

have proposed that the PHD finger exhibit a protein-protein interaction (O'Connell et al., 
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2001; Schultz et al., 2001). My experiments may indicate that this is the case also with the 

PHD finger in p300.  

 Another possible function mentioned was that the PHD finger was a domain required 

for HAT activity (Bordoli et al., 2001; Kalkhoven et al., 2002). It was indicated that in CBP 

the PHD finger is required for HAT activity. In p300/CBP the HAT domain is situated 

close to the B-P region (see Figure 1.9) and it has in fact been proposed that the PHD finger 

is an integral part of this domain (Kalkhoven et al., 2002). If the B-P region of p300 is 

responsible for the binding of p300 to chromatin, the domains may in fact assist in 

recruiting HAT activity to chromatin. Even though it is found that the PHD finger in p300 

is not essential for HAT activity (Bordoli et al., 2001), it is obvious that a binding by the 

PHD finger to chromatin can ease histone acetylation by the HAT domain. Through the 

adjacent HAT domain, the PHD finger may actually contribute in histone acetylation, and 

thus serve a very important role in chromatin remodelling. 

5.4 Concluding remarks 

The aim of this project was to examine whether heterologous PHD fingers are able to 

replace the ones in GST-p300BP and GST-TIFPB without loosing the polypeptides’ ability 

to interact with nucleosomes. To test this, nucleosome binding experiments with domain 

recombinants that had had its original PHD finger swapped with one from another protein 

was performed. Some models for possible functions of the PHD finger in p300 were 

considered in Figure 1.10 and the results of my experiments led me to suggest a new model 

(Figure 5.1) for the role of the PHD finger in p300. The model may also be relevant for 

other proteins containing a bromodomain and a PHD finger. 

 The results indicate that the bromodomain in p300 is dependent on its original PHD 

finger present because of an essential interaction between the domains. Possibly this may 

reflect an individual pattern in the flexible loop of the PHD finger. An interaction between 

the domains could in turn give the protein an increased affinity and specificity in the 

nucleosome interaction. The results thus indicate that the PHD finger in p300 has a 

nucleosome binding and a protein binding activity. A final suggestion is that there may be a 

link between the PHD finger in p300 and the adjacent HAT domain, possibly indicating an 

involvement in chromatin remodelling.  

5.5 Future perspectives 

5.5.1 Interaction between the bromodomain and the PHD finger in p300  

In future experiments it would be interesting to explore the hypothesis that there is an 

interaction between the bromodomain and the PHD finger in p300. An effort was made in 

this study (results not shown) to detect this interaction. GST-p300P was attached to 

glutathione sepharose and p300B (GST-p300B cleaved with thrombin to release GST) was 

added. The complex was eluted and the eluate examined by SDS-PAGE. A similar 

experiment was performed with p300P added to GST-p300B attached to glutathione 
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sepharose. However, the experiments were inconclusive because when p300B and p300P 

were added to the GST-fusion polypeptides it looked like the thrombin left in the solutions 

cleaved also the polypeptides attached to the beads. The eluate (when adding p300Bt to 

GST-p300P) would therefore contain a mixture of (a) p300P cleaved from the GST tag (b) 

putative p300B that had interacted with the GST fusion polypeptide, and (c) GST. The 

polypeptides GST, p300B and p300P are of very similar sizes and cannot be distinguished 

on an ordinary 12 % SDS-PAGE-gel. The polypeptides should rather have been 

distinguished on another kind of gel (for instance a gradient gel) or by using antibodies. 

Alternatively, the experiment could have been repeated, and the thrombin removed from the 

polypeptide solution before the electrophoresis.  

 A second way to examine if an interaction exists between the domains could be to 

make domain recombinants of GST-p300BP with another PHD finger, a PHD finger that is 

shown by EMSA to interact with nucleosomes. If also this domain recombinant is negative 

in a nucleosome retention assay, the loss of binding in this case most probably is caused by 

a loss of interaction between the domains.  

 Point mutations could have been made in the flexible region of the PHD finger in 

p300BP, and the polypeptide tested for nucleosome binding. It would be difficult, using 

nucleosome retention assay, to decide whether a loss of nucleosome interaction is caused by 

a loss of the PHD finger’s ability to bind to the bromodomain or to the nucleosome. By 

using EMSA, however, a loss of nucleosome interaction would be much easier to interpret.  

 An interaction between the domains can also be examined using biacore (by keeping 

one domain immobilized and testing whether the other domain is able to attach to it) or by 

protease cleavage (to see if an area of one of the domains is protected from protease). 

Solving the crystal structure of the bromodomain-PHD finger region of p300 could of 

course provide direct evidence that the two domains interact. 

 An examination of the folding of the domain recombinants could have been 

performed to verify that they had folded properly. However, no particularly good 

procedures and equipment for this existed in the laboratory. (An effort had been done 

previously in the group with other recombinants (Tufteland, 2002), by treatment with 

trypsin and examination of the digesting product by SDS-PAGE. A conclusion in this 

experiment was hard to draw; a digestion pattern for GST-p300BP was not detected 

because most of the bands on the gel originated from GST.) 

 If the site of interaction between the domains lies within the flexible region, it is 

possible that inserting this region into one of the PHD fingers could in fact make this PHD 

finger functional together with the p300 bromodomain. 

5.5.2 The nucleosome binding site of the p300 PHD finger  

To test if the PHD finger interacts with a histone tail, experiments can be performed with 

recombinant or trypsin treated nucleosomes that have all the histone tails removed. 

Interaction with such histones have been tested previously with the ATPase ISWI (Clapier 
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et al., 2001). Alternatively, recombinant nucleosomes can be made with one or more tails 

missing, or they can be made containing specific modifications, as methylation or 

phosphorylation. By using EMSA and test the binding of the PHD finger to such 

nucleosomes, information can be obtained about a putative interaction with a histone tail.  

 An alternative would be to try to detect an interaction between the PHD finger and 

free histone octameres. (An interaction with free DNA has been tested and found negative, 

Ragvin et al., in prep.). A problem with an experiment with a free histone octamer is that 

this would be a somewhat artificial situation since histone octameres do not exist in vivo. In 

addition, histone octameres are positively charged and might attract more than its natural 

ligands. An alternative way to elucidate the binding site, though probably a difficult task, 

may be by trying to hide the prospective position on the nucleosome by covering the site 

with another protein or a chemical to see if the interaction is lost. 

5.5.3 Function of other PHD fingers  

The PHD fingers of MLL, TIP5 and TIF1γ can be tested by EMSA when not in construct 

with a bromodomain. By elucidating the functions of these PHD fingers, further 

information from the experiments presented in this thesis could be obtained.  

 Several diseases are linked to one or more mutations in a PHD finger, usually in one 

or more of the eight zinc-coordinating residues resulting in a wide variety of diseases 

(Capili et al., 2001), as mental retardation, cancer and immunodeficiency. Studying these 

diseases more carefully could provide more information about the function of the PHD 

finger. 
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Table A.1 Radioactivity in fractions from nucleosome retention assay in Figure 4.9 
 
 

Mean dpm values of two counts (of 3 minutes), minus blanc (13.6 dpm) 
   

 GST GST - p300BP a GST- p300BP b GST - p300BlinkP 
IN 43087.5 43087.5 43087.5 43087.5 
FT 28555.2 15256.3 12731.5 12112.2 
W1 4053.1 3373.4 3205.2 3024.0 
W2 755.9 1127.1 1192.5 1131.5 
W3 62.1 583.4 597.0 577.3 
W4 9.7 352.6 326.7 427.8 
W5 -8.9 555.5 495.3 423.6 
E1 97.1 13677.1 12655.3 11509.0 
E2 -13.2 1017.5 1435.3 1283.9 
E3 65.6 151.8 265.9 758.0 
R -2.5 232.1 1207.3 1628.5 
     
     
Values in percent of input 
    

 GST GST - p300BP a GST - p300BP b GST - p300BlinkP 
IN 100 100 100 100 
   
FT 66.3 35.4 29.5 28.1 
W1 9.4 7.8 7.4 7.0 
W2 1.7 2.6 2.8 2.6 
W3 0.1 1.3 1.4 1.3 
W4 0.0 0.8 0.8 1.0 
W5 0.0 1.3 1.1 1.0 
E1 0.2 31.7 29.4 26.7 
E2 0.0 2.4 3.3 3.0 
E3 0.1 0.3 0.6 1.8 
R 0.0 0.5 2.8 3.8 
   
Sum (FT to R):      77.8 84.1 79.1 76.3 

 
 
 
 
 
 
 
 
 

 94 



Appendix 
 

 
Table A.2 Radioactivity in fractions from nucleosome retention assay in Figure 4.10 
 

Mean dpm values of two counts (of 3 minutes) minus blanc (10.8) 
     
 GST GST-p300BP GST-TIFPB GST-TIFPlinkB 
IN 30542.0 30542.0 30542.0 30542.0 
FT 27241.9 16997.2 31729.7 34079.2 
W1 2778.4 3162.7 5365.6 3043.7 
W2 288.7 1297.4 822.3 376.1 
W3 77.1 657.4 180.5 100.1 
W4 53.1 329.1 50.5 42.1 
W5 27.5 564.3 43.5 60.1 
E1+2 50.7 5730.0 190.7 130.4 
E3 16.5 165.6 27.0 19.0 
R 26.9 1039.9 74.5 37.8 
     
     
Values in percent of input    
    
 GST GST-p300BP GST-TIFPB GST-TIFPlinkB 
IN 100 100 100 100 
   
FT 89.2 55.6 103.9 111.6 
W1 9.1 10.4 17.6 10.0 
W2 1.0 4.2 2.7 1.2 
W3 0.2 2.1 0.6 0.3 
W4 0.2 1.1 0.2 0.1 
W5 0.1 1.8 0.1 0.2 
E1+2 0.2 18.8 0.6 0.4 
E3 0.0 0.5 0.1 0.1 
R 0.1 3.4 0.2 0.1 
   
Sum (FT to R):           100.1 97.9 126.1 124.0 
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Table A.3 Radioactivity in fractions from nucleosome retention assay in Figure 4.12 A 
 

Main dpm values of two counts (of 3 minutes) minus blanc (8.3) 
    

 GST GST - p300BP GST - p300B-TIP5P GST - p300B-MLLP 
IN 26376.4 26376.4 26376.4 26376.4 
FT 28894.5 15728.4 31533.6 28606.5 
W1 4804.3 3851.8 8218.3 7865.7 
W2 638.7 1439.4 1702.2 1435.6 
W3 86.1 376.1 207.3 109.4 
W4 162.6 211.0 45.1 65.0 
W5 34.4 601.9 438.3 58.7 
E1 204.6 11958.7 345.9 169.8 
E2 36.9 1349.5 36.9 46.9 
E3 -5.3 189.4 10.6 19.5 
R 3.6 317.1 2014.2 654.2 
     
     
Values in percent of input 
    

 GST GST - p300BP GST - p300B-TIP5P GST - p300B-MLLP 
IN 100 100 100 100 
   
FT 109.5 59.6 119.5 108.4 
W1 18.2 14.6 31.1 29.8 
W1 2.4 5.5 6.4 5.4 
W3 0.3 1.4 0.8 0.4 
W4 0.6 0.8 0.2 0.2 
W5 0.1 2.3 1.7 0.2 
E1 0.8 45.3 1.3 0.6 
E2 0.1 5.1 0.1 0.2 
E3 0.0 0.7 0.0 0.1 
R 0.0 1.2 7.6 2.5 
   
Sum (FT to R):    132.1 136.5 168.7 147.93 
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Table A.4 Radioactivity in fractions from nucleosome retention assay in Figure 4.12 D 

 
Mean values of two counts (of 3 minutes) minus blanc (7.3) 
 
 GST GST-p300BP GST-p300B-TIFP GST-p300P-TIFB 
IN 41807.3 41807.3 41807.3 41807.3 
FT 29425.5 12945.8 15762.7 19080.2 
W1 4833.6 4913.4 3448.0 3324.3 
W2 398.5 879.8 755.8 741.5 
W3 69.0 585.7 134.3 301.4 
W4 39.2 298.1 65.8 82.1 
W5 11.9 554.4 67.2 4.7 
E1 95.2 8307.1 103.6 155.1 
E2 16.5 1450.5 12.5 581.5 
E3 -3.8 110.6 57.9 2.7 
R 3.2 136.0 6.2 204.1 
     
     
Values in percent of input   
    
 GST GST-p300BP GST-p300B-TIFP GST-p300P-TIFB 
IN 100 100 100 100 
   
FT 70.4 31.0 37.7 45.6 
W1 11.6 11.8 8.2 8.0 
W2 1.0 2.1 1.8 1.8 
W3 0.2 1.4 0.3 0.7 
W4 0.1 0.7 0.2 0.2 
W5 0.0 1.3 0.2 0.0 
E1 0.2 19.9 0.2 0.4 
E2 0.0 3.5 0.0 1.4 
E3 0.0 0.3 0.1 0.0 
R 0.0 0.3 0.0 0.5 
     
Sum (FT to R):      83.5 72.2 48.8 58.5 
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