
A Type System for Usage of Software
Components?

Dag Hovland

Department of Informatics, The University of Bergen,
PB 7803, N-5020 Bergen, Norway

dagh@ii.uib.no

Abstract. The aim of this article is to support component-based soft-
ware engineering by modelling exclusive and inclusive usage of software
components. Truong and Bezem describe in several papers abstract lan-
guages for component software with the aim to find bounds of the num-
ber of instances of components. Their language includes primitives for
instantiating and deleting instances of components and operators for se-
quential, alternative and parallel composition and a scope mechanism.
The language is here supplemented with the primitives use , lock and
free . The main contribution is a type system which guarantees the safety
of usage, in the following way: When a well-typed program executes a
subexpression use [x] or lock [x], it is guaranteed that an instance of x
is available.

Key words: Component Software, Type System, Parallel Execution, Compo-
nent Usage, Process Model

1 Introduction

The idea of “Mass produced software components” was first formulated by McIl-
roy [1] in an attempt to encourage the production of software routines in much
the same way industry manufactures ordinary, tangible products. The last two
decades “component” has got the more general meaning of a highly reusable
piece of software. According to Szyperski [2] (p. 3), “(. . .) software components
are executable units of independent production, acquisition, and deployment
that can be composed into a functioning system”. We will model software that
is constructed of such components, and assume that during the execution of such
a program, instances of the components can be created, used and deleted.

Efficient component software engineering is not compatible with program-
mers having to acquire detailed knowledge of the internal structure of compo-
nents that are being used. Components can also be constructed to use other

? S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497,
pp. 186-202, 2009. http://www.springerlink.com/content/w182776723804g60/.
c© Springer-Verlag Berlin Heidelberg 2009.

http://www.springerlink.com/content/w182776723804g60/

components, such that instantiating one component, could lead to several in-
stances of other components. This lack of knowledge in combination with nested
dependencies weakens the control over resource usage in the composed software.

The goal of this article is to guarantee the safe usage of components, such that
one can specify that some instances must be available, possibly exclusively to
the current thread of execution. In [3,4,5], Truong and Bezem describe abstract
languages for component software with the aim of finding bounds of the number
of instances of components existing during and remaining after execution of a
component program. Their languages include primitives for instantiating and
deleting instances of components and have operators for sequential, alternative
and parallel composition and a scope mechanism. The first three operators are
well-known, and have been treated by for example Milner [6] (where alternative
composition is called summation). The scope mechanism works like this: Any
component instantiated in a scope has a lifetime limited to the scope. Further-
more, inside a scope, only instances in the local store of the same scope can be
deleted. The types count the maximum number of active component instances
during execution and remaining after execution of a component program.

The languages described by Truong and Bezem lack a direct way of specifying
that one or more instances of a component must exist at some point in the
execution. In this paper we have added the primitives use , lock and free in
order to study the usage of components. The first (use) is used for “inclusive
usage”, that is, when a set of instances must be available, but these instances may
be shared between threads. The other form (lock and free) is used when the
instances must exclusively be available for this execution thread. The difference
between exclusive and inclusive usage can be seen by comparing the expressions
newx(use [x] ‖ use [x]) and newx(lock [x]free [x] ‖ use [x]). The first expression
is safe to execute, while executing the latter expression can lead to an error if x
is locked, but not freed, by the left thread before it is used by the right thread.
Instances of the same component cannot be distinguished, such that locking and
freeing is not applied to specific instances, but to the number of instances of
each component.

The type system must guarantee that the instances that are to be used are
available. The system will not test whether the deletion of instances in local
stores is safe, as this can be tested using the type systems in [7,3,4,5] together
with an easy translation described in Section 7. Only non-recursive programs
are treated, but an extension with loops and simple recursion, described in [7],
can also be applied to this system.

Section 2 introduces an example using C++, which is applied to the type
system in Section 6. The language of component programs is defined in Section
3, and the operational semantics is defined in Section 4. The types and the
type system are explained in Section 5. Important properties of the type system
are formulated in Section 7, while the main results concerning correctness are
collected in Section 8. The article ends with a section on related work and a
conclusion.

2

2 Example: Objects on the Free Store in C++

We will introduce an example with dynamically allocated memory in C++ [8]. In
Section 6 we will apply the type system to the example. The example is inspired
by a similar one in [7].

In the program fragment in Figure 1, so-called POSIX threads [9] are used for
parallelism. After creating an instance of the class C, the function pthread_create
launches a new thread calling the function which is third in the parameter list
with the argument which is fourth. This function call, either P1(C_instance)
or P2(C_instance), is executed in parallel to P3(C_instance), and the two
threads are joined in pthread_join before the instance of C is deleted.

The dynamic data type C and the functions P1, P2, P3 are left abstract.
We will assume the latter three functions use the instance of C in some way, and
that P2 needs exclusive access to the instance.

void EX(int choice) {

pthread_t pth;

C* C_instance = new C();

pthread_create(&pth, NULL, choice ? P1 : P2 , C_instance);

P3(C_instance);

pthread_join(pth, NULL);

delete C_instance;

}

Fig. 1. C++ code using threads and objects on the free store.

The question in this example is whether we can guarantee that P2 gets ex-
clusive access to the instance of C. In this small example it is possible to see
that this is not the case. After the grammar is explained in the next section we
will model the program in the language as shown in Figure 2, and use the type
system to answer the question and correct the program.

3 Syntax

The language for components is parametrized by an arbitrary set C = {a, b, c, . . .}
of component names. We let variables x, y, z range over C. Bags and multisets
are used frequently in this paper, and will therefore be explained here.

3.1 Bags and Multisets

Bags are like sets but allow multiple occurrences of elements. Formally, a bag with
underlying set of elements C is a mapping M : C→N. Bags are often also called
multisets, but we reserve the term multiset for a concept which allows one to
express a deficit of certain elements as well. Formally, a multiset with underlying

3

set of elements C is a mapping M : C→Z. We shall use the operations ∪,∩,+,−
defined on multisets, as well as relations ⊆ and ∈ between multisets and between
an element and a multiset, respectively. We recall briefly their definitions: (M ∪
M ′)(x) = max(M(x),M ′(x)), (M∩M ′)(x) = min(M(x),M ′(x)), (M+M ′)(x) =
M(x) + M ′(x), (M −M ′)(x) = M(x) −M ′(x), M ⊆ M ′ iff M(x) ≤ M ′(x) for
all x ∈ C. The operation + is sometimes called additive union. Bags are closed
under all operations above with the exception of −. Note that the operation ∪
returns a bag if at least one of its operands is a bag. For convenience, multisets
with a limited number of elements are sometimes denoted as, for example, M =
[2x,−y], instead of M(x) = 2, M(y) = −1, M(z) = 0 for all z 6= x, y. In this
notation, [] stands for the empty multiset, i.e., [](x) = 0 for all x ∈ C. We
further abbreviate M + [x] by M +x and M − [x] by M −x. Both multisets and
bags will be denoted by M or N (with primes and subscripts), it will always
be clear from the context when a bag is meant. For any bag, let set(M) denote
its set of elements, that is, M = {x ∈ C | M(x) > 0}. Note that a bag is
also a multiset, while a multiset is also a bag only if it maps all elements to
non-negative numbers.

3.2 Grammar

Table 1. Syntax

Expr ::= Factor | Expr · Expr
Factor ::= newx | delx | lockM | freeM | useM | nop

| (Expr + Expr) | (Expr ‖ Expr) | ScExp
ScExp ::= {M,Expr}
M ::= bag of elements from C
Prog ::= nil | Prog, x−≺ Expr

Component expressions are given by the syntax in Table 1. We let capital
letters A, . . . , E (with primes and subscripts) range over Expr . A component
program P is a comma-separated list starting with nil and followed by zero
or more component declarations, which are of the form x −≺ Expr , with x ∈
C (nil will usually be omitted, except in the case of a program containing
no declarations). dom(P) denotes the set of component names declared in P
(so dom(nil) = ∅). Declarations of the form x −≺ nop are used for primitive
components, i.e., components that do not use subcomponents.

We have two primitives new and del for creating and deleting instances of a
component, three primitives free , lock and use for specifying usage of instances
of components and four primitives for composition: sequential composition de-
noted by juxtaposition, + for choice (also called sum), ‖ for parallel and {. . .}
for scope. Note that instances of the same component cannot be distinguished.

4

The effect of lock is therefore to decrease the number of instances available for
usage, while free increases this number.

Executing the sum E1 +E2 means choosing either one of the expressions E1

or E2 and executing that one. Executing E1 and E2 in parallel, that is, executing
(E1 ‖ E2), means executing both expressions in some arbitrary interleaved order.
Executing an expression inside a scope, {[], E} means executing E, while only
allowing deletion of instances inside the same scope, and after the execution of
E, deleting all instances inside the scope.

The grammatical ambiguity in the rule for Expr is unproblematic. Like in
process algebra, sequential composition can be viewed as an associative multi-
plication operation and products may be denoted as E E′ instead of E ·E′. The
operations + and ‖ are also associative and we only parenthesize if necessary to
prevent ambiguity. Sequential composition has the highest precedence, followed
by ‖ and then +. The primitive nop models zero or more operations that do not
involve component instantiation or deallocation.

In the third clause of the grammar we define scope expressions, used to limit
the lifetime of instances and the scope of deletion. A scope expression is a pair
of a bag, called the local store, and an expression. Scope expressions appearing
in a component declaration in a program are required to have an empty local
store. Non-empty local stores only appear during execution of a program.

Definition 1. By var(E) we denote the set of component names occurring in E,
formally defined by var(nop) = ∅, var(newx) = var(delx) = {x},var(useM) =
var(freeM) = var(lockM) = set(M), var(E1+E2) = var(E1 ‖ E2) = var(E1E2)
= var(E1) ∪ var(E2) and var({M,E}) = set(M) ∪ var(E).

Definition 2. The size of an expression E, denoted σ(E), is defined by σ(newx)
= σ(delx) = σ(useN) = σ(lockN) = σ(freeN) = σ(nop) = 1, σ({M,E}) =
σ(E) + 1 and σ(A + B) = σ(AB) = σ(A||B) = σ(A) + σ(B) + 1. The size of
a program P , denoted σ(P), is defined by σ(P, x −≺ A) = σ(P) + 1 + σ(A) and
σ(nil) = 1.

3.3 Examples

We assume that a program is executed by executing newx, where x is the last
component declared in the program, starting with empty stores of component
instances. Examples of programs that will execute properly and will be well-
typed are

Example 1.

x−≺ nop, y −≺ newx use [x] lock [x] free [x]
x−≺ nop, y −≺ newx newx {[], (use [x] ‖ lock [x])} free [x]

Examples of programs that can, for some reason, produce an error are:

5

Example 2.

x−≺ nop, y −≺ newx newx {[], (use [x] ‖ lock [x])}
x−≺ nop, y −≺ newx lock [x] use [x] free [x]
x−≺ nop, y −≺ newx {[], (use [x] ‖ lock [x])} free [x]
x−≺ nop, y −≺ newx free [x] lock [x]
x−≺ nop, y −≺ newx {[], (use [x] + lock [x])} free [x]

The first program leaves one instance of x locked after execution. The second
will get stuck as no instance of x will be available for use by the use-statement.
The third might also get stuck. Note that there exists an error-free execution
of the third program, where the left branch of (use [x] ‖ lock [x]) is executed
before the right one. But as we do not wish to make any assumptions about
the scheduling of the parallel execution, we consider this an error. The fourth
program tries to free a component instance that is not locked. The fifth program
has a run in which free [x] is executed, but no instance of x has been locked.

C++ Example We now describe the model of the example program in Figure
1. Functions (such as EX) as well as objects on the free store (such as C_instance)
are modelled as components. We let callf abbreviate newf delf and use this
expression to model a function call. Note that f is deleted automatically by
callf , which models the (automatic) deallocation of stack objects created by
f . However, the subcomponents of f are not deleted by delf . We use small
letters for the component names and model functions as components, where the
function body is given by the right hand side of the declaration. Since P2 needs
exclusive access to an instance of C we add lock [c] free [c] to the declaration of
p2. For p1 and p3 we indicate the non-exclusive usage by use [c]. Collecting all
declarations we get the program in Figure 2.

c −≺ nop,
p1 −≺ use [c],
p2 −≺ lock [c] free [c],
p3 −≺ use [c],
ex −≺ newc ((callp1 + callp2) ‖ callp3) delc

Fig. 2. Program P , a model of the C++ program in Figure 1.

4 Operational Semantics

A state, or state expression, is a pair (Mu, {M,E}) consisting of a bag Mu (called
the global store) with underlying set of elements C, and a scope expression
{M,E}. The store M in this scope expression is called the local store of the

6

expression. An initial state is of the form ([], {[], newx}), and a terminal state
is of the form (Mu, {M, nop}).

A state (Mu, {M,E}) expresses that we execute E with a local bag M and
a global bag Mu of instances of components. The operational semantics is given
in Table 2 as a state transition system in the style of structural operational
semantics [10]. The inductive rules are osPar1, osPar2, osScp and osSeq. The
other rules are not inductive, but osNew, osDel, osLock, osUse and osPop are
conditional with the condition specified as a premiss of the rule. The transition
relation with respect to a program P is denoted by P , with transitive and
reflexive closure by ∗P .

Table 2. Transition rules for a component program P

(osNop)

(Mu, {M, nopE}) P (Mu, {M,E})

(osNew)
x−≺A ∈ P

(Mu, {M, newx}) P (Mu + x, {M + x,A})

(osDel)
x ∈ (M ∩Mu)

(Mu, {M, delx}) P (Mu − x, {M − x, nop})

(osLock)
N ⊆Mu

(Mu, {M, lockN}) P (Mu −N, {M, nop})

(osFree)

(Mu, {M, freeN})
 P (Mu +N, {M, nop})

(osUse)
N ⊆Mu

(Mu, {M, useN}) P (Mu, {M, nop})

(osScp)
(Mu, {N,A}) P (M ′

u, {N ′, A′})
(Mu, {M, {N,A}}) P (M ′

u, {M, {N ′, A′}})

(osPop)
N ⊆Mu

(Mu, {M, {N, nop}})
 P (Mu −N, {M, nop})

(osAlti)
i ∈ {1, 2}

(Mu, {M, (E1 + E2)}) P (Mu, {M,Ei})

(osSeq)
(Mu, {M,A}) P (M ′

u, {M ′, A′})
(Mu, {M,AE}) P (M ′

u, {M ′, A′ E})

(osParEnd)

(Mu, {M, (nop ‖ nop)}) P (Mu, {M, nop})

(osPar1)
(Mu, {M,E1}) P (M ′

u, {M ′, E′
1})

(Mu, {M, (E1 ‖ E2)})
 P (M ′

u, {M ′, (E′
1 ‖ E2)})

(osPar2)
(Mu, {M,E2}) P (M ′

u, {M ′, E′
2})

(Mu, {M, (E1 ‖ E2)})
 P (M ′

u, {M ′, (E1 ‖ E′
2)})

7

4.1 Unsafe States

A stuck state is usually defined as a state which is not terminal, and where there
is no possible next transition. We wish to use a different condition, because
we want to assure that all possible runs are error-free. This means that we do
not assume anything about the interleaving used in parallel executions. This
is more in line with how parallelism works by default in many environments,
for example with pthreads and C++ without mutex locking. Informally, we
call a state unsafe if there is at least one transition which cannot be used in
this state, but which would be possible with a larger global store. For example,
([], {[x], lock [x] ‖ free [x]}) is an unsafe state, because using osPar1 is only
possible with a larger global store.

Definition 3 (Unsafe states). Given a component program P , a state
(Mu, {M,E}) is called unsafe if and only if there exist bags M ′u, M and N and
an expression E′ such that (Mu +N, {M,E}) P (M ′u +N, {M ′, E′}), but not
(Mu, {M,E}) P (M ′u, {M ′, E′})

It is also possible to characterize the unsafe states with the following inductive
rules parametrized by a program P and bags Mu and M : for all x and N , where
x 6∈ Mu and N 6⊆ Mu, (Mu, {M, lockN}), (Mu, {M, useN}), (Mu, {M, delx})
and (Mu, {M, {N, nop}}) are unsafe, and for all expressions E and F , if (Mu, {M,
E}) is unsafe then for all bags N , also (Mu, {N, {M,E}}), (Mu, {M,EF}),
(Mu, {M,E ‖ F}) and (Mu, {M,F ‖ E}) are unsafe. Recall that deletion of
component instances in the local store is assumed to always be safe, as this can
be assured by the system in [7]. A state which is not unsafe is called safe.

4.2 Valid States

For some state (Mu, {M,E}) in a run, Mu models all component instances avail-
able for usage. We must therefore have Mu no larger than the sum of N in all
subexpressions {N,A} of E. For example ([x], {[], nop}) should not appear in a
run because Mu ⊃ []. Conditions for this to be true will be stated later. However,
there are transitions where the states in the transition fulfil this condition, while
the derivation of the transition contains states which do not fulfil the condition.
An example is the transition ([x], {[x], {[], use [x]}}) P ([x], {[x], {[], nop}}), in
which both states fulfil this condition, while it is the result of applying osScp
to the premiss ([x], {[], use [x]}) P ([x], {[], nop}), where none of the two states
fulfil the condition.

To express this property more formally we need a way to sum all the local
stores in an expression. In doing so, however, one counts in instances that will
never coexist, such as in {M1, E1}+{M2, E2} and {M1, E1} {M2, E2}. Therefore
we also define the notion of a valid expression, in which irrelevant bags are empty.

Definition 4 (Sum of local stores). For any expression E, let ΣE be the sum
of all N in subexpressions {N,A} of E. More formally: Σ{M,E} = M+ΣE and
Σ(E1 ‖ E2) = Σ(E1E2) = Σ(E1 + E2) = ΣE1 +ΣE2 and Σdelx = Σnewx =

8

ΣuseN = ΣlockN = ΣfreeN = Σnop = []. An expression E is valid if for
all subexpressions of the form (E1 + E2) we have Σ(E1 + E2) = [], and for all
subexpressions of the form F E′, F a factor, we have ΣE′ = [].

Note that an expression is valid if and only if all its subexpressions are valid.
We will say that a state (Mu, {M,E}) is valid if and only if E is valid. The
initial state is valid by definition. In any declaration x −≺ E, since only empty
bags are allowed to occur in E, E is obviously valid and ΣE = [].

5 Type System

5.1 Types

A type of a component expression is a tuple X = 〈Xu, Xn, X l, Xd, Xp, Xh〉,
where Xn, Xu and Xp are bags and X l, Xd and Xh are multisets. We use
U, . . . , Z to denote types. The properties of the different parts of the types are
summarized in Table 3, and will be explained below. The bag Xu (u for “usage”)
contains the minimum size the global store must have for an expression to be
safely executed.

Because of sequential composition, we also need a multiset X l. To run the
expression E1E2, we must not only know the minimum safe sizes for executing E1

and E2 separately, but also how much E1 decreases or increases the global store.
The multiset X l therefore contains, for each x ∈ C, the lowest net increase in
the number of instances in the global store after the execution of the expression.
(Where a decrease is negative increase.) This implies that, if the type of E is X
and if (Mu, {M,E}) ∗P (M ′u, {M ′, nop}), then X l ⊆M ′u −Mu.

The scope operator makes necessary the component Xd. When a scope is
popped with the rule osPop, the remaining bag in the scope is subtracted from the
global store. The difference between these two bags must therefore be controlled
by Xd. In addition, concerning the two alternatives joined in a choice expression,
the net effect on the difference between the global store and the local store
must be equal. An example of an invalid expression excluded by this rule is
(lockx+ usex). If the latter expression was allowed in a program, it would not

Table 3. The parts of the types

Xu: Minimum safe size of the global store.
Xn: Largest decrease of the global store during execution.

Xl: Lower bound of the net effect on the global store.

Xd: Net change in the difference between the local and the global store.

Xp:
Maximum increase, during execution, of the difference between
the global store and the sum of all local stores.

Xh:
Maximum net effect on the difference between
the global store and the sum of all the local stores.

9

be possible to give the guarantees needed for osPop to the number of instances of
x locked after execution. The multiset Xd therefore contains the exact change in
the difference between the local store and the global store made by execution of
the expression. This difference is independent of how the expression is executed.
This implies that, if the type of E isX and if (Mu, {M,E}) ∗P (M ′u, {M ′, nop}),
then Xd = (M ′u −M ′)− (Mu −M).

Parallel composition necessitates the bag Xn. The minimum safe size for ex-
ecuting (E1 ‖ E2) depends not only on the minimum safe size for executing each
of E1 and E2, but also on how much each of them decreases the global store. For
example, both usex and lockx freex need one instance of x, but usex ‖ usex
also needs only one, whereas lockx freex ‖ lockx freex needs two instances
of x. Xn contains, for each x ∈ C, the highest negative net change in the number
of instances in the global store during the execution of the expression. This im-
plies that, if the type of E is X and if (Mu, {M,E}) ∗P (M ′u, {M ′, E′}), then
−Xn ⊆M ′u −Mu.

As seen in Example 2 in Section 3.3, there are grammatically correct pro-
grams that “free” instances that are not locked. So far, we have not distin-
guished between free [x] lock [x] and lock [x] free [x]. Obviously, these expres-
sions cannot be assigned the same type. For example, the program x−≺nop, y−≺
newx free [x] lock [x] is wrong, and should not be well-typed, while the program
x−≺nop, y−≺newx lock [x] free [x] is correct and should be well-typed. There is
a need for types concerned with the difference between the number of instances
in the sum of all local stores and the number of instances in the global store.
If (Mu, {M,E}) is a state during the execution of a component program, then
the value of (Mu − Σ{M,E})(x) for a component x is negative if an instance
of x is locked, but not yet freed, and positive if it has been freed without be-
ing locked. The latter is seen as an error and should not occur in the run of a
well-typed program. The bag Xp and multiset Xh are used for keeping track
of the set Mu − Σ{M,E}, and contain, the highest positive net change during
execution and the highest net increase of this bag after execution. This implies
that if the type of E is X, then if (Mu, {M,E}) ∗P (M ′u, {M ′, E′}) then Xp ⊇
(M ′u−Σ{M ′, E′})−(Mu−Σ{M,E}), and if (Mu, {M,E}) ∗P (M ′u, {M ′, nop}),
we get Xh ⊇ (M ′u−M ′)−(Mu−Σ{M,E}). In the type of a well-typed program
these parts must be empty bags.

5.2 Typing Rules

The typing rules in Table 4 and Table 5 must be understood with the above
interpretation in mind. They define a ternary typing relation Γ ` E : X and
a binary typing relation ` P : Γ in the usual inductive way. Here Γ is usually
called a basis, mapping component names to the type of the expression in its
declaration. In the relation ` P :Γ , Γ can be viewed as a type of P . An expression
of the form Γ ` E :X or ` P :Γ will be called a typing and will also be phrased
as ‘expression E has type X in Γ ’ or ‘program P has type Γ ’, respectively.

A basis Γ is a partial mapping of components x ∈ C to types. By dom(Γ) we
denote the domain of Γ , and for any x ∈ dom(Γ), Γ (x) denotes its type in Γ .

10

For a set S ⊆ dom(Γ), Γ |S is Γ restricted to the domain S. For any x ∈ C and
type X, {x 7→ X} denotes a basis with domain {x} and which maps x to X. An
expression E is called typable in Γ if Γ ` E :X for some type X. The latter type
X will be proved to be unique and will sometimes be denoted by Γ (E).

Table 4. Typing Rules

(AxmP)

` nil :∅

(New)
Γ (x) = X

Γ ` newx :〈Xu, Xn, Xl + x,Xd, Xp, Xh〉

(Axm)

Γ ` nop :〈[], [], [], [], [], []〉

(Del)
Γ (x) = X

Γ ` delx :〈[x], [x], [−x], [], [], []〉

(Lock)
set(N) ⊆ dom(Γ)

Γ ` lockN :〈N,N,−N,−N, [],−N〉

(Use)
set(N) ⊆ dom(Γ)

Γ ` useN :〈N, [], [], [], [], []〉

(Free)
set(N) ⊆ dom(Γ)

Γ ` freeN :〈[], [], N,N,N,N〉

(Prog)
Γ ` E :X, ` P :Γ, x 6∈ dom(Γ)

` P, x−≺ E :Γ ∪ {x 7→ X}

Definition 5 (Well-typed program). A program P with at least one decla-
ration is well-typed if there are Γ and X such that ` P :Γ , Γ ` newx :X and
Xd = Xu = Xp = [], where x is the last component declared in P .

The condition in Definition 5 that parts Xd, Xu and Xp be empty deserves an
explanation. Xd must be empty, because the global and local store must be equal
in the final state, that is, no instances are still locked when the program ends.
Xu is the minimum safe size of the global store, and we assume the program is
executed starting with an empty global store, so Xu must be empty. Xp must
be empty, because this is the only way to guarantee that, during execution, no
instance is freed, unless there already is a locked instance of the same component.

Type inference in this system is similar to [7,3,4,5]. In particular, the type in-
ference algorithm has quadratic runtime. An implementation of the type system
can be downloaded from the author’s website.

6 C++ Example Continued

Recall the C++ program in Figure 1 and the component program in Figure 2.
Type inference gives the following results:

11

Table 5. Typing Rules (continued)

(Par)
Γ ` E1 :X1, Γ ` E2 :X2

Γ ` E1 ‖ E2 :

fi
(Xu

1 +Xn
2) ∪ (Xu

2 +Xn
1), Xn

1 +Xn
2 ,

Xl
1 +Xl

2, X
d
1 +Xd

2 , X
p
1 +Xp

2 , X
h
1 +Xh

2

fl
(Alt)

Γ ` E1 :X1, Γ ` E2 :X2, X
d
1 = Xd

2

Γ ` E1 + E2 :〈Xu
1 ∪Xu

2 , X
n
1 ∪Xn

2 , X
l
1 ∩Xl

2, X
d
1 , X

p
1 ∪X

p
2 , X

h
1 ∪Xh

2 〉
(Seq)

Γ ` E1 :X1, Γ ` E2 :X2

Γ ` E1E2 :

fi
Xu

1 ∪ (Xu
2 −Xl

1), Xn
1 ∪ (Xn

2 −Xl
1),

Xl
1 +Xl

2, X
d
1 +Xd

2 , X
p
1 ∪ (Xp

2 +Xh
1), Xh

1 +Xh
2

fl
(Scope)

Γ ` E :X, set(M) ⊆ dom(Γ)

Γ ` {M,E} :〈Xu ∪ (M −Xd), Xn ∪ (M −Xd), Xd −M,Xd −M,Xp, Xh〉

callp1 :〈[c], [], [], [], [], []〉,
callp2 :〈[c], [c], [], [], [], []〉,
callp3 :〈[c], [], [], [], [], []〉,
callex :〈[c], [], [], [], [], []〉

This signals in the first multiset (·u) of the type of callex that one instance
of c is needed before execution of callex. This is caused by the possible choice
of callp2 instead of callp1 by ex, whereby there could be parallel calls to
p4 and p5. One way to fix this is to instantiate two instances of C instead of
just one. Then one instance could be passed to P1 or P2 and the second to P3.
This means that P is changed by changing ex into ex′ −≺ newc newc ((callp1 +
callp2) ‖ callp3) delc. The type of callex′ is 〈[], [], [c], [], [], []〉 which signals
that the expression now can be executed starting with an empty store. But
the third multiset (·l) signals that there is one instance of c left after execu-
tion. This can be fixed by deleting one more instance, that is, changing ex′ to
ex′′ −≺newc newc ((callp1 +callp2) ‖ callp3 delc) delc. The type of callex′′

is 〈[], [], [], [], [], []〉.

Another way of solving the original problem is to remove the parallelism from
the program, such that ex is changed to ex′′′ −≺newc (callp1 +callp2) callp3

delc. The type of callex′′′ is also 〈[], [], [], [], [], []〉.

12

7 Properties of the Type System

This section contains several basic lemmas about the type system. Proofs in this
and the next section are omitted for space considerations. Contact the author
for a full version including proofs.

It should be noted again that the type systems in [7,3,4,5] can be used to test
whether the deletion of instances is safe, by first translating use , lock and free
to nop. We can therefore regard only the programs where deletion of instances
from the local store is safe.

Lemma 1 (Basics).

1. If Γ ` E :X, then var(E) ⊆ dom(Γ).
2. If ` P :Γ and Γ ` E :X, then dom(P) = dom(Γ) and −Xu ⊆ −Xn ⊆ X l

and Xh ⊆ Xp.

Lemma 2 (Associativity). If Γ ` A :X, Γ ` B : Y and Γ ` C :Z, then the
two ways of typing the expression ABC by the rule Seq, corresponding to the
different parses (AB)C and A (BC), lead to the same type.

The following lemma is necessary since the typing rules are not fully syntax-
directed. If, e.g., E1 = A ·B, then the type of E1 ·E2 could have been inferred by
an application of the rule Seq to A and BE2. In that case we apply the previous
lemma.

Lemma 3 (Inversion).

1. If ` P :Γ and Γ (x) = X, then there exists a program P ′ and an expression
A such that P ′, x −≺ A is the initial segment of P and ` P ′ :Γ |dom(P ′) and
Γ |dom(P ′) ` A :X.

2. If Γ ` newx :X, then X = 〈Γ (x)u, Γ (x)n, Γ (x)l + x, Γ (x)d, Γ (x)p, Γ (x)h〉.
3. If Γ ` delx :X, then X = 〈[x], [x], [−x], [], [], []〉.
4. If Γ ` lockN :X, then X = 〈N,N,−N,−N, [],−N〉.
5. If Γ ` freeN :X, then X = 〈[], [], N,N,N,N〉.
6. If Γ ` useN :X, then X = 〈N, [], [], [], [], []〉.
7. If Γ ` nop :X, then X = 〈[], [], [], [], [], []〉.
8. For ◦ ∈ {+, ‖, ·}, if Γ ` (E1 ◦E2) :X, then there exists Xi such that Γ ` Ei :

Xi for i = 1, 2. Moreover,
X = 〈Xu

1 ∪Xu
2 , X

n
1 ∪Xn

2 , X
l
1 ∩X l

2, X
d
1 , X

p
1 ∪X

p
2 , X

h
1 ∪Xh

2 〉 and Xd
1 = Xd

2

if ◦ = +,

X =
〈

(Xu
1 +Xn

2) ∪ (Xu
2 +Xn

1), Xn
1 +Xn

2 ,
X l

1 +X l
2, X

d
1 +Xd

2 , X
p
1 +Xp

2 , X
h
1 +Xh

2

〉
if ◦ = ‖, and

X =
〈
Xu

1 ∪ (Xu
2 −X l

1), Xn
1 ∪ (Xn

2 −X l
1),

X l
1 +X l

2, X
d
1 +Xd

2 , X
p
1 ∪ (Xp

2 +Xh
1), Xh

1 +Xh
2

〉
if ◦ = ·.

9. If Γ ` {M,A} : X, then there exists a type Y , such that Γ ` A : Y and
X = 〈Y u ∪ (M − Y d), Y n ∪ (M − Y d), Y d −M,Y d −M,Y p, Y h〉.

13

The last lemma in this section is concerned with three forms of uniqueness of
the types inferred in the type system. This is necessary in some of the proofs,
and for an algorithm for type inference.

Lemma 4 (Uniqueness of types).

1. If Γ1 ` E :X, Γ2 ` E :Y and Γ1|var(E) = Γ2|var(E), then X = Y .
2. If ` P :Γ and ` P :Γ ′, then Γ = Γ ′.
3. If ` P1 : Γ1 and ` P2 : Γ2 and P2 is a reordering of a subset of P1, then

Γ1|dom(P2) = Γ2.

8 Correctness

This section contains lemmas and theorems connecting the type system and the
operational semantics. Included are theorems comparable to what is often called
preservation and progress, for example in [11]. The following lemma implies that
all states in sequences representing the execution of a well-typed program are
valid, as defined in Definition 4.

Lemma 5. If ` P :Γ , Γ ` E :X, E is valid and (Mu, {M,E}) P (M ′u, {M ′,
E′}) is a step in the operational semantics, then also E′ is valid.

The next lemma fixes several properties of two states connected by a single step
in the operational semantics. This is used heavily in the main theorems below.
The first part is known under the names subject reduction and type preservation.
The remaining parts reflect the fact that every step reduces the set of reachable
states. Hence maxima do not increase and minima do not decrease.

Lemma 6 (Invariants). Let P be a component program, E a valid expression,
Γ a basis and U a type such that ` P : Γ , Γ ` E : U , and (Mu, {M,E}) P

(M ′u, {M ′, E′}) is a step in the operational semantics. Then we have for some
type V :

1. Γ ` E′ :V .
2. M ′u − V u ⊇ Mu − Uu, i.e., the safety margin of the global store does not

decrease.
3. M ′u−V n ⊇Mu−Un, i.e., the lower bound on the global store in all reachable

states does not decrease.
4. M ′u +V l ⊇Mu +U l, i.e., the lower bound on the global store in the terminal

state does not decrease.
5. M ′u−M ′+V d = Mu−M +Ud, i.e., the difference between the local and the

global store in the terminal state does not change.
6. M ′u −Σ{M ′, E′}+ V p ⊆Mu −Σ{M,E}+Up, i.e., the upper bound on the

difference, in any reachable state, between the global store and the sum of the
local stores, does not increase.

7. M ′u −Σ{M ′, E′}+ V h ⊆Mu −Σ{M,E}+Uh, i.e., the upper bound on the
net effect on the difference between the global store and the sum of the local
stores does not increase.

14

The following Theorem 1 is a combination of several statements which in com-
bination are often called soundness or safety. Items 1, 2 and 3 are similar to the
properties often called preservation, progress and termination, respectively. (See
for example [11]). Items 1, 4 and 5 assert that the parts of the types have the
meanings given in 5.1.

Theorem 1 (Soundness). If ` P : Γ , Γ ` E :X, E is valid and Xu ⊆ Mu,
then the following holds:

1. If (Mu, {M,E}) P (M ′u, {M ′, E′}) and Σ{M,E} −Mu ⊇ Xp, then there
is Y such that Γ ` E′ : Y , M ′u ⊇ Y u and Σ{M ′, E′} −M ′u ⊇ Y p.

2. If E is not nop, we have (Mu, {M,E}) P (M ′u, {M ′, E′}) for some (M ′u,
{M ′, E′}).

3. All P -sequences starting in state (Mu, {M,E}) are finite.
4. If (Mu, {M,E}) ∗P (M ′u, {M ′, nop}), then X l ⊆ M ′u −Mu, Xd = (M ′u −

M ′)− (Mu −M) and Xh ⊇ (M ′u −M ′)− (Mu −Σ{M,E}).
5. If (Mu, {M,E}) ∗P (M ′u, {M ′, E′}) then −Xn ⊆ M ′u − Mu and Xp ⊇

(M ′u −Σ{M ′, E′})− (Mu −Σ{M,E}).
6. All states reachable from (Mu, {M,E}) are safe.

Finally, we summarize the properties of the type system for well-typed programs,
as defined in Definition 5 on page 11. The reader is referred to the paragraph
following Definition 5 for an explanation of the three bags required to be empty,
to Section 4.1 and Definition 3 for an explanation of safe states, and to Section
4.2 for an explanation of why it is important that M ′u ⊆ Σ{M ′, E′}.

Corollary 1. If ` P : Γ and Γ ` newx : X, where x is the last component
declared in P and Xd = Xu = Xp = [], then

– All maximal transition sequences starting with ([], {[], newx}) end with
(M, {M, nop}) for some bag M .

– All states (M ′u, {M ′, E′}) reachable from ([], {[], newx}) are safe, and such
that M ′u ⊆ Σ{M ′, E′}.

The following theorem states that the types are sharp. Informally, this means,
they are as small as they can be, while still guaranteeing safety of execution. The
part Xd is not included as it is already stated in Theorem 1 to be exact. The
property is formulated differently for the part Xu because of its nature — the
other parts contain information about how some of the bags or the difference
between them change, while Xu only states the minimum safe size of the bag
Mu.

Theorem 2 (Sharpness). Assume some program P , bags M and Mu and valid
expression E such that ` P :Γ and Γ ` E :X and Mu ⊆ Σ{M,E}

1. If Mu 6⊇ Xu, then an unsafe state is reachable from (Mu, {M,E}).
2. If Mu ⊇ Xu:

n For every y ∈ C there exists a state (M ′u, {M ′, E′}) such that
(Mu, {M,E}) ∗P (M ′u, {M ′, E′}) and (M ′u −Mu)(y) = −Xn(y).

15

l For every y ∈ C there exists a terminal state (M ′u, {M ′, nop}) such that
(Mu, {M,E}) ∗P (M ′u, {M ′, nop}) and (M ′u −Mu)(y) = X l(y).

p For every y ∈ C there exists a state (M ′u, {M ′, E′}) such that
(Mu, {M,E}) ∗P (M ′u, {M ′, E′}) and (M ′u − Σ{M ′, E′}) − (Mu −
Σ{M,E})(y) = Xp(y).

h For every y ∈ C there exists a terminal state (M ′u, {M ′, nop}) such that
(Mu, {M,E}) ∗P (M ′u, {M ′, nop}) and (M ′u−M ′)−(Mu−Σ{M,E})(y)
= Xh(y).

9 Related Work and Conclusion

There is a large amount of work related to similar problems. Most approaches
differ from this article by using super-polynomial algorithms, by assuming more
on the runtime scheduling of parallel executions, or by treating only memory
consumption. For the functional languages, see e.g. [12,13,14,15]. Popea and
Chin in [16] also discuss usage in a related way. Their algorithm depends on
solving constraints in Presburger arithmetic, which in the worst case uses dou-
bly exponential time. Igarashi and Kobayashi in [17], analyse the resource usage
problem for an extension of simply typed lambda calculus including resource
usage. The algorithm extracts the set of possible traces of usage from the pro-
gram, and then decides whether all these traces are allowed by the specification.
This latter problem is still computationally hard to solve and undecidable in the
worst case. Parallel composition is not considered. For the imperative paradigm,
which is closer to the system described here, e.g. [18,19,20] treat memory usage.
The problem of component usage in a parallel setting is related to prevention of
deadlocks and race conditions. Boyapati et al. describe in [21] an explicitly typed
system for verifying there are no deadlocks or race conditions in Java programs.
In addition to the higher level of detail, the main difference from the system
described in this article is the assumptions on the scheduling of parallel execu-
tions, namely the ability of a thread to wait until another thread frees/releases
a lock. This scheduling has of course a cost in terms of added runtime and of
complexity of the implementation.

We have defined a component language with a small-step operational seman-
tics and a type system. The type system combined with the system in [7] or the
system in [4] guarantees that the execution of a well-typed program will termi-
nate and cannot reach an unsafe state. The language described in this article is
an extension of the language first described in [5], and uses the results from [5,7].
The properties proved in the current article are new, though, and in some ways
orthogonal to those shown in [5,7]. The language we introduced is inspired by
CCS [6], with the atomic actions interpreted as component instantiation, deal-
location and usage. The basic operators are sequential, alternative and parallel
composition and a scope operator. The operational semantics is SOS-style [10],
with the approach to soundness similar in spirit to [22]. We have presented a
type system for this language which predicts sharp bounds of the number of in-
stances of components necessary for safe execution. The type inference algorithm
has quadratic runtime.

16

References

1. McIlroy, D.M.: Mass produced software components. In Naur, P., Randell, B.,
eds.: Software Engineering: Report of a conference sponsored by the NATO Science
Committee, Scientific Affairs Division, NATO (October 1968) 79–87

2. Szyperski, C.: Component Software—Beyond Object–Oriented Programming. 2nd
edn. Addison–Wesley / ACM Press (2002)

3. Bezem, M., Truong, H.: A type system for the safe instantiation of components.
Electronic Notes in Theoretical Computer Science 97 (2004) 197–217

4. Truong, H.: Guaranteeing resource bounds for component software. In Steffen,
M., Zavattaro, G., eds.: FMOODS. Volume 3535 of Lecture Notes in Computer
Science., Springer (2005) 179–194

5. Truong, H., Bezem, M.: Finding resource bounds in the presence of explicit deal-
location. In Hung, D.V., Wirsing, M., eds.: Proceedings ICTAC. Volume 3722 of
Lecture Notes in Computer Science., Springer (2005) 227–241

6. Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science. Springer (1980)

7. Bezem, M., Hovland, D., Truong, H.: A type system for counting instances of
software components. Technical Report 363, Department of Informatics, The Uni-
versity of Bergen, P.O. Box 7800, N-5020 Bergen, Norway (October 2007)

8. Stroustrup, B.: The C++ Programming Language, Third Edition. Addison-Wesley
(2000)

9. IEEE: The open group base specifications issue 6 (2004)

10. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61 (July-December 2004) 17–139

11. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)

12. Crary, K., Weirich, S.: Resource bound certification. In: POPL ’00: Proceedings
of the 27th ACM SIGPLAN–SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM Press (2000) 184–198

13. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: POPL ’03: Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, New York, NY, USA, ACM
(2003) 185–197

14. Kobayashi, N., Suenaga, K., Wischik, L.: Resource usage analysis for the π-
calculus. Logical Methods in Computer Science 2(3) (2006)

15. Unnikrishnan, L., Stoller, S.D., Liu, Y.A.: Optimized live heap bound analysis.
In: VMCAI 2003: Proceedings of the 4th International Conference on Verification,
Model Checking, and Abstract Interpretation, London, UK, Springer-Verlag (2003)
70–85

16. Popeea, C., Chin, W.N.: A type system for resource protocol verification and its
correctness proof. In Heintze, N., Sestoft, P., eds.: PEPM, ACM (2004) 135–146

17. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Trans. Program. Lang.
Syst. 27(2) (2005) 264–313

18. Braberman, V., Garbervetsky, D., Yovine, S.: A static analysis for synthesizing
parametric specifications of dynamic memory consumption. Journal of Object
Technology 5(5) (June 2006) 31–58

19. Chin, W.N., Nguyen, H.H., Qin, S., Rinard, M.C.: Memory usage verification for
OO programs. In Hankin, C., Siveroni, I., eds.: SAS. Volume 3672 of Lecture Notes
in Computer Science., Springer (2005) 70–86

17

20. Hofmann, M., Jost, S.: Type-based amortised heap-space analysis (for an object-
oriented language). In Sestoft, P., ed.: Proceedings of the 15th European Sym-
posium on Programming (ESOP), Programming Languages and Systems. Volume
3924 of LNCS., Springer (2006) 22–37

21. Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: OOPSLA. (2002) 211–230

22. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1) (1994) 38–94

18

	A Type System for Usage of Software Components
	Dag Hovland

