Policy Specification Using
Sequence Diagrams

Applied to Trust Management

Bjoernar Solhaug

Dissertation for the degree philosophiae doctor (PhD)
at the University of Bergen

October 2009

Scientific Environment

The work leading up to this thesis has been conducted as part of the EN-
FORCE project which was funded by the Research Council of Norway. The
ENFORCE project was a joint initiative between Department of Information
Science and Media Studies, University of Bergen; Norwegian Research Cen-
ter for Computers and Law, University of Oslo; Department of Informatics,
University of Oslo; and SINTEF ICT in Oslo.

The work was conducted in affiliation with the Department of Informa-
tion Science and Media Studies at the Faculty of Social Sciences, University
of Bergen, and with SINTEF ICT. In partial fulfillment of the requirements
to the degree of PhD, the doctoral training program of the Faculty of Social
Sciences was completed during the project.

UNIVERSITY
OF OSLO

ii

Acknowledgments

First and foremost I want to express profound thanks to my supervisors Dag
Elgesem and Ketil Stglen for their willingness to and interest in spending
time and effort in guiding me in the work that has led to this thesis. The
many discussions on my work, as well as their suggestions, criticism and
encouragement have been decisive. Ketil Stglen’s dedication and drive as
leader of the ENFORCE project has also been invaluable and cannot be
appreciated enough.

I am grateful to Atle Refsdal and Tobias Mahler for our cooperation in
the ENFORCE project, and for their suggestions and ideas for how to improve
my work. Many thanks to Jon Bing for his involvement in and contribution
to the ENFORCE project, and for his comments on and suggestions to my
work.

Many thanks to Fabio Massacci, Jakka Sairamesh, Peter Wahlgren and
Christian Damsgaard Jensen for regularly visiting the ENFORCE project
and giving their valuable advices and suggestions from their outsider’s per-
spective. Thanks also to the ENFORCE advisory board for giving their
recommendations to the project.

I am thankful to Fredrik Seehusen and Tom Lysemose for our joint ef-
forts and fruitful cooperation. I am in debt to Mass Soldal Lund, Ragnhild
Kobro Runde, Judith Rossebg, Gyrd Braendeland and Ida Hogganvik for
their advice and criticism.

Thanks to Tor Hjalmar Johannessen and Cathrine Holst for their com-
ments on and suggestions to parts of my work. I am grateful also Arild
Waaler who inspired and encouraged me to begin as a doctoral research
fellow in the first place.

I also want to thank the people at the department of Cooperative and
Trusted Systems at SINTEF ICT where I have my office and have been car-
rying out the daily work on the thesis. Finally, I owe my thanks to the
academic staff and the administrative staff at Department of Information
Science and Media Studies and at the Faculty of Social Sciences at the Uni-
versity of Bergen.

The work on this thesis has been conducted within the IKT SOS project
ENFORCE (164382/V30) which was funded by the Research Council of Nor-
way.

Abstract

With the ever increasing importance of computer networks such as the In-
ternet, and the today almost ubiquitous online services, the needs for the
management of these networks and services, as well as the management of
the associated security, risk and trust are growing correspondingly.

Policy based management of information systems has the last decade
emerged as an adaptive and flexible approach to this challenge. Policies are
rules governing the choices in the behavior of systems, the enforcement of
which ensures that the system meets the relevant requirements. This thesis
addresses the problem of capturing, specifying and developing policies. We
propose a language suitable for the specification of policies across domains,
at various abstraction levels, and that facilitates human interpretation. At
the same time the language is underpinned by a formal semantics, allowing
precise and rigorous analysis.

Abstraction allows details about system functionality and architecture to
be ignored, thus facilitating analysis and supporting understanding, which
is beneficial and useful particularly during the initial phases of policy devel-
opment. From the initial, abstract levels, a policy specification is typically
further developed by adding details, making it more concrete and closer to
implementation and enforcement. This thesis proposes a notion of policy re-
finement that relates policy specifications of different abstraction levels, pre-
cisely defining what it means that a low-level, concrete policy specification
is a correct representation of a high-level, abstract specification. Refinement
allows policy specifications to be developed in a stepwise and incremental
manner, and ensures that the enforcement of the final, concrete specification
implies the enforcement of the previous, more abstract specifications.

The applicability of the approach is demonstrated within the domain
of policy based trust management. The thesis proposes a method for the
development of trust management policies that facilitates the modeling and
analysis of trust within systems, and the evaluation of the risks and op-
portunities to which the system is exposed as a consequence of trust-based
decisions. The method is supported by designated languages for the appro-
priate modeling and analyses, and aims at the capturing and formalization
of policies the enforcement of which optimizes the trust-based decisions by
minimizing risks and maximizing opportunities.

vii

List of Original Publications

1. Bjgrnar Solhaug, Dag Elgesem and Ketil Stglen. Why trust is not
proportional to risk. In Proceedings of the 2nd International Confer-
ence on Availability, Reliability and Security (ARES’07), pages 11-18.
IEEE Computer Society, 2007.

2. Bjernar Solhaug, Dag Elgesem and Ketil Stglen. Specifying policies
using UML sequence diagrams — An evaluation based on a case study.
In Proceedings of the 8th International Workshop on Policies for Dis-
tributed Systems and Networks (POLICY’07), pages 19-28. IEEE
Computer Society, 2007.

3. Bjgrnar Solhaug and Tor Hjalmar Johannessen. Specification of poli-
cies using UML sequence diagrams. Telektronikk, 105(1):90-97, 2009.

4. Bjgrnar Solhaug and Ketil Stglen. Compositional refinement of poli-
cies in UML — Exemplified for access control. In Proceedings of the
13th European Symposium on Research in Computer Security (ES-
ORICS’08), volume 5283 of LNCS, pages 300-316. Springer, 2008.

5. Fredrik Seehusen, Bjgrnar Solhaug and Ketil Stglen. Adherence pre-
serving refinement of trace-set properties in STAIRS: Exemplified for
information flow properties and policies. Software and Systems Mod-
eling, 8(1):45-65, 2009.

6. Bjgrnar Solhaug and Ketil Stglen. Preservation of policy adherence
under refinement. Technical report A11358, SINTEF ICT, 2009.

7. Atle Refsdal, Bjgrnar Solhaug and Ketil Stglen. A UML-based method
for the development of policies to support trust management. In Trust
Management II — Proceedings of the 2nd Joint iTrust and PST Con-
ference on Privacy, Trust Management and Security (IFIPTM’08),
volume 263 of IFIP, pages 33-49. Springer, 2008.

The publications are available as Chapter 9 through Chapter 15 in Part IT of

the thesis. In case of publication 2 and 4 we have included the full technical
reports rather than the published papers.

ix

Contents

I

1

Context and Overview

Introduction
1.1 Background
1.2 Contribution L Lo
1.2.1 The Policy Specification Language
1.2.2 The Policy Adherence Relations
1.2.3 The Policy Refinement Relations
1.2.4 The Method for the Development of Trust Manage-
ment Policies 0o,
1.3 Thesis Overview

Problem Characterization
2.1 Policy Based Management
2.2 Policy Specification L oL
2.3 Trust Management
2.4 Success Criteria L L
2.4.1 The Policy Specification Language
2.4.2 The Policy Adherence Relations
2.4.3 The Policy Refinement Relations
2.4.4 The Method for the Development of Trust Manage-
ment Policies 0o,

Research Method
3.1 A Technology Research Method,
3.2 How We Have Applied the Research Method
3.2.1 Developing the Policy Specification Language
3.2.2 Developing the Policy Adherence Relations
3.2.3 Developing the Policy Refinement Relations
3.2.4 Developing the Method for the Development of Trust
Management Policies

State of the Art
4.1 Policy Based Management

xi

xii

CONTENTS
4.1.1 Security Policies and Management Policies 37
4.1.2 Policy Refinement 39
4.1.3 Policy Conflict Analysis 41
4.2 Policy Specification L oL 42
4.2.1 Policy Specification Languages 42
4.2.2 Interaction Specifications 45
4.3 Trust Management 47
Overview of Invented Artifacts 51
5.1 Owverall Picture 51
5.2 The Policy Specification Language 56
5.2.1 Examples of Deontic STAIRS Specifications 57
5.2.2 Syntax and Semantics 59
5.3 The Policy Adherence Relations 61
5.3.1 Relating Policy Specifications to Systems 62
5.3.2 Relating Policy Specifications to System Specifications 64
5.4 The Policy Refinement Relations 66
5.5 The Method for the Development of Trust Management Policies 69
Overview of Papers 75
6.1 Paper 1: Why Trust is not Proportional to Risk 75
6.2 Paper 2: Specifying Policies Using UML Sequence Diagrams
— An Evaluation Based on a Case Study 75
6.3 Paper 3: Specification of Policies Using UML Sequence Dia-
GIalllS . . . v e e e e e e e e e e e e e 76
6.4 Paper 4: Compositional Refinement of Policies in UML —
Exemplified for Access Control 76
6.5 Paper 5: Adherence Preserving Refinement of Trace-set Prop-
erties in STAIRS: Exemplified for Information Flow Proper-
ties and Policies Lo oo 77
6.6 Paper 6: Preservation of Policy Adherence under Refinement 77
6.7 Paper 7: A UML-based Method for the Development of Poli-
cies to Support Trust Management 78
Discussion 79
7.1 Fulfillment of the Success Criteria. 79
7.1.1 The Policy Specification Language 79
7.1.2 The Policy Adherence Relations 81
7.1.3 The Policy Refinement Relations 82
7.1.4 The Method for the Development of Trust Manage-
ment Policies oL 83
7.2 Related Work oo 85
7.2.1 Specifications Using Interactions 85

7.2.2 Policy Refinement 87

CONTENTS xiii

8 Conclusion 89
8.1 Summary 89
82 Future Worko 91

Bibliography 93

IT Research Papers 105

9 Paper 1: Why Trust is not Proportional to Risk 107

10 Paper 2: Specifying Policies Using UML Sequence Diagrams
— An Evaluation Based on a Case Study 117

11 Paper 3: Specification of Policies Using UML Sequence Di-
agrams 151

12 Paper 4: Compositional Refinement of Policies in UML —
Exemplified for Access Control 169

13 Paper 5: Adherence Preserving Refinement of Trace-set
Properties in STAIRS: Exemplified for Information Flow
Properties and Policies 205

14 Paper 6: Preservation of Policy Adherence under Refine-
ment 229

15 Paper 7: A UML-based Method for the Development of
Policies to Support Trust Management 289

xiv CONTENTS

Part 1

Context and Overview

Chapter 1

Introduction

During the work that led up to this thesis we developed a number of related
artifacts that contribute to the domain of policy based management of infor-
mation systems, with particular focus on policy based trust management. In
this chapter we give some background and motivation for our work, briefly
present the artifacts, and give an overview of the thesis.

1.1 Background

The steady growth of the information society is strongly evident in all parts
of the world. Individuals, commercial enterprises, governmental institutions
and other organizations increasingly offer, consume and depend on electronic
services provided over computerized networks such as the Internet.

Statistics of Internet usage in the world [48] show that more than 20%
of the world’s population were in 2008 users of the Internet, which is an
increase of over 300% since 2000. 48% of the population in Europe are users
of Internet, which is an increase of 266% since 2000. In North-America and
Oceania/Australia, the usage is even more widespread. Statistics delivered
by the European Commission [20] show that in 2007, 30% of individuals aged
16 to 74 and 65% of enterprises in the EU interact with public authorities
over the Internet. Furthermore, over 25% of individuals have the last three
months in 2008 ordered/bought goods or services for private use over the
Internet; in 2007, 4.2% of enterprises’ total turnover were from e-commerce
via the Internet, which is an increase of 100% since 2004; the same year,
59% of 20 basic public services were available online.

The increasing importance of computer networks and Internet services
imposes a corresponding increase in the challenge of managing systems and
networks. Enterprise information systems must integrate local networks and
inter-organizational networks with Internet-based services [23], and organi-
zations and individuals need to cope with challenges related to security,
trust, privacy and risk. Statistics show that in 2005, 1.3% of individuals

3

4 CHAPTER 1. INTRODUCTION

with Internet access have encountered fraudulent payment card use within
the last year, which is an increase of 44% in one year. The corresponding
number for encountering abuse of personal information sent over the Inter-
net is 3.8%, and for encountering computer virus resulting in loss of data
or time is 34.4%. As for enterprises, 29% encountered a security problem,
where computer virus attack were most prominent [20].

Policy based management of information systems [16, 22, 45] has the
last decade emerged as an adaptive and flexible approach to this challenge.
A policy is commonly defined as a set of rules governing the choices in the
behavior of a system [102]. By separating the policy from the implementa-
tion of the system, the policy can be modified for dynamically changing the
behavior of the system, without changing the underlying implementation
[102]. Whatever the domain of management, e.g. security, access control,
trust or services, the correct enforcement of the policy rules ensures that the
system meets the relevant requirements.

Policy based management must be supported by adequate languages,
methods and tools for the specification, development, analysis and enforce-
ment of policies. Policies are derived from business goals, service level agree-
ments, or trust relationships [103], and during these initial phases of policy
capturing there is a need to ensure communication and common understand-
ing between the involved stakeholders, including decision makers, users, se-
curity officers and developers. A policy specification language aimed at
human interpretation and that support abstraction may fulfill such a need.

Abstraction allows details about system functionality and architecture to
be ignored, thus facilitating policy capturing at a high-level where the most
important and general requirements are taken into account. Abstraction is
desirable also because detection and corrections of errors, as well as policy
analysis, are cheaper and easier at an abstract and high level [113].

From the initial, abstract level, a policy specification is further developed
by adding details, making it more concrete and closer to enforcement. Policy
refinement has been recognized as an important feature of policy develop-
ment [80], and refers to the process of transforming a high-level, abstract
policy specification into a low-level, concrete one, ensuring that the latter
fulfills the requirements of the former.

In addition to refinement, decomposition has been recognized as one
of the most important features of system design and development [113].
Decomposition allows individual parts of a specification to be developed
separately, thus breaking the development problem down into manageable
pieces. In order to facilitate human understanding and communication, to
facilitate analysis, and to support the development process from policy cap-
turing to policy enforcement, we believe that refinement and decomposition
should be features of the policy development process.

A precise characterization of the notions of abstraction and refinement,
as well as the possibility of precise and rigorous analysis require a formal

1.1. BACKGROUND 5

basis of approaches to policy based management [43, 44, 63]. Such a formal
basis can be provided by a formal semantics for the policy specification
language. A formal semantics furthermore allows computerized tool support
to be developed, and allows a precise characterization of what it means that
a system fulfills a policy.

Another response to the challenges we are faced with in the information
society is that of trust management [56, 97]. The online environments of
today for interactions and transactions that traditionally have taken place
in face-to-face situations are increasingly also environments in which tradi-
tional social relations are established. Trust is very often a prerequisite for
interactions to take place, and is relevant for open, dynamic and distributed
systems, where entities collaborate, exchange information and rely on other
entities in situations where the identity, intentions, capabilities, etc. of oth-
ers may be uncertain. Risk is an inherent aspect of trust since there is
always a chance of deception or betrayal [19, 72]. The motivation to trust
others is the opportunities involved in successful trust-based transactions.

Policy based trust management seeks to capture and enforce rules that
govern trust-based decisions. These rules are intended to ensure that risks
are minimized and opportunities maximized in the trust-based interactions
and transactions. Methods for the capturing and specification of trust man-
agement policies must support the precise modeling, analysis and assessment
of trust, as well as the evaluation of the involved risks and opportunities.

This thesis addresses the challenges described in this section by proposing
a policy specification language that supports the formalization of policies at
various abstraction levels with the aim of facilitating human understanding
and communication. Notions of policy refinement are introduced that pre-
cisely capture what it means that one policy specification is more concrete,
i.e. less abstract, than another policy specification. The policy refinement
relations support a modular and stepwise policy development process where
individual parts of a policy specification can be refined separately and under
any number of refinement steps.

The proposed language is generic in the sense that it allows specification
of policies for various domains, such as security, access control, services
and trust. The thesis demonstrates the applicability of the language by
addressing the domain of policy based trust management. A method for
trust policy development is proposed for supporting the capturing of policies
that ensure optimization of the trust-based decisions within systems. As a
part of this method, the resulting trust policies are formalized using the
policy specification language put forward in this thesis.

6 CHAPTER 1. INTRODUCTION

1.2 Contribution

The main contribution of this thesis is a policy specification language with
support for policy capturing, policy abstraction and refinement, policy anal-
ysis, and analysis of the relation between a policy specification and systems
for which the policy applies. This contribution is manifested in three sepa-
rate, yet strongly related artifacts, namely the policy specification language,
the policy adherence relations and the policy refinement relations.

The fourth main artifact of the thesis is the method for the development
of trust management policies. This artifact is put into close interplay with
the other artifacts of this thesis by serving as a domain in which the appli-
cability of the policy specification language is demonstrated. However, the
method also represents a free-standing contribution to the domain of trust
management.

In addition to the four artifacts that constitute the main contribution
of the thesis, important work has been carried out in order to establish a
conceptual foundation for trust management. In the context of this thesis
and the method for trust policy development we have clarified what we
mean by trust management and precisely defined the notion of trust. We
have furthermore analyzed and precisely defined the relation between the
notion of trust on the one hand and the notions of risk and opportunity
on the other hand. Such a clarification is decisive for the establishment of
well-defined languages and methods for trust modeling and analysis, and for
communicating the analysis results.

In the remainder of this section we briefly present each of the four arti-
facts proposed in this thesis and explain how they are related.

1.2.1 The Policy Specification Language

A key feature of policies is that they “define choices in behavior in terms
of the conditions under which predefined operations or actions can be in-
voked rather than changing the actual operations themselves” [103]. This
means that the capabilities or potential behavior of the system generally
span wider than what is prescribed by the policy, i.e. the system can po-
tentially violate the policy. A policy can therefore be understood as a set of
conditional normative rules about system behavior, characterizing the ideal,
desirable or acceptable behavior of the system with respect to the domain
of management.

In this thesis we have taken a deontic approach (pertaining to norms of
duty or obligation) to policy based management, where each rule is classified
as a permission, an obligation or a prohibition. We propose a policy spec-
ification language, called Deontic STAIRS, which is a notation supporting
this approach by being equipped with language constructs customized for
the specification of each type of rule.

1.2. CONTRIBUTION 7

The deontic approach to policy specification is motivated by the norma-
tive character of the requirements imposed by the policy rules. The classi-
fication of rules into permissions, obligations and prohibitions is based on
Standard Deontic Logic [79] in which these notions and the relations between
them have been formalized. Other approaches to policy specification have
language construct of such deontic type [1, 61, 70], and the categorization
is furthermore implemented in the ISO/IEC standard for open distributed
processing [51].

In addition to allowing the specification of normative constraints on be-
havior, Deontic STAIRS supports the specification of the conditions under
which a policy rule applies through a so called policy trigger. The policy
trigger specifies system behavior the occurrence of which triggers the given
constraint.

Taken together, Deontic STAIRS supports the specification of policy
rules that consists of two parts, namely the triggering behavior and the
behavior that is constrained by the rule together with the type of constraint.
A policy specification is then given as a set of such policy rules.

The relevant behaviors are specified as scenarios that describe the en-
tities involved in the behavior and how these entities interact. By means
of abstraction, several parts of the system can be represented as one entity,
thus hiding details and internal aspects that are irrelevant from a certain
perspective or for a certain purpose.

Deontic STAIRS is based on STAIRS [41, 95], which is a formal approach
to system development with UML sequence diagrams, and is underpinned by
a formal semantics. The semantics explains the meaning of the policy spec-
ifications in precise, mathematical terms, and also supports formal analysis.
The formal semantics furthermore allows the development of tool support
for the specification, development and analysis of policy specifications.

Deontic STAIRS is not tailored for a specific type of policy, thus allowing
the specification of policies for various purposes, such as security, trust,
access control, service level and network management. A special purpose
policy language will typically have tailored constructs for its domain, but
a general purpose language is advantageous as it applicable across domains

and at various abstraction levels. Section 5.2 gives a presentation of Deontic
STAIRS.

1.2.2 The Policy Adherence Relations

Adherence of a system to a policy specification means that the system (im-
plementation) satisfies the policy. In order to ensure that a policy specifica-
tion is correctly interpreted and unambiguously understood, the notion of
adherence should be well-defined. This is ensured by the formalization of
the notion of adherence as a relation between a policy specification and a
system to which the policy is applied.

8 CHAPTER 1. INTRODUCTION

This is illustrated in Fig. 1.1, where the policy specification P is depicted
to the left and the system S is depicted to the right. Adherence relates the
two, where P —, S denotes that S adheres to P.

Policy System

P — 8§

Figure 1.1: Adherence of system S to policy specification P

The formalization of the notion of adherence also yields a notion of
policy consistency or policy conflict; a policy specification is inconsistent or
conflicting if there is no system that adheres to the policy specification. This
is the case if, for example, there is one rule that prohibits a given behavior
while another rule permits the same behavior under the same conditions.

In the development of a system to which a given policy applies, the
requirements imposed by the policy can be taken into account during or
even after system implementation. This may, however, be costly and time
consuming, and may also require parts of the system to be redesigned. Al-
ternatively, the policy requirements can be taken into account throughout
the system development process by integrating these requirements with the
requirements to the system design and functionality. Such an approach re-
quires the relation between a policy specification and a system specification
to be well understood. The relation is formalized by a notion of adher-
ence that defines what it means that a system specification satisfies a policy
specification, where both specifications may be at any level of abstraction.
Section 5.3 gives a presentation of the adherence relations.

1.2.3 The Policy Refinement Relations

Allowing policy specifications to be represented at various levels of abstrac-
tion requires a precise characterization of what it means for one specifica-
tion to be more or less abstract than another specification. This is captured
through the notion of policy refinement.

Refinement of a policy specification means to strengthen the specifica-
tion, taking into account more details about the system to which the policy
applies, making the specification more concrete, and bringing it closer to
implementation and enforcement. The formalization of refinement as a re-
lation between policy specifications precisely defines what it means that one
policy specification is a correct refinement of another.

This is illustrated at the left hand side of Fig. 1.2 with the relations
between the policy specifications P;, P, and P3. The policy specification

1.2. CONTRIBUTION 9

P is at a high-level of abstraction, and the squiggly arrow from P; to P
denotes that the latter is a refinement of the former.

Policy System

High level P,

=
/
\
\
\
\
\
\
\
\

1
I
I
I
|
I
I
I

\
|

\

PP
| 2 \
I
I
|
|
\
\

\
\
\
\
\
\
\ \
) ay

A

Low level qP3 — S

Figure 1.2: Refinement of policy specification

Policy refinement supports the policy development process by allowing
the development of a high-level, initial policy specification to a low-level,
finalized policy specification to be conducted under any number of refine-
ment steps. This is illustrated by the dashed, squiggly arrow relating the
policy specifications P; and Ps; since P, is a valid refinement of P; and Pj
is a valid refinement of P, the refinement relation ensures that Pj5 is a valid
refinement of P;. Fig. 1.2 illustrates this property with only two refinement
steps, but the property holds for any number of steps.

The refinement relation furthermore ensures that if a system adheres
to a concrete policy specification, it also adheres to all the previous, more
abstract specifications from earlier development phases. This is illustrated
in Fig. 1.2 with the dashed arrow from the abstract policy specification P; to
the system S; since S adheres to the low level policy specification Ps it also
adheres to the abstract specifications P, and P;. This means that the correct
enforcement of the final specification correctly enforces the requirements that
were captured and formalized during the very initial phases.

The notion of adherence relating policy specifications to system spec-
ifications allows the requirements imposed by the policy to be integrated
with the process of system development. Since this notion of adherence is
defined for policy specifications and system specifications at any abstrac-
tion level, policy adherence can be taken into account from the very initial
phases of the development of both the policy and the system. For analysis
of abstract specifications with respect to adherence to be meaningful, how-
ever, the analysis results must be preserved under refinement. Otherwise
the analysis must be conducted again after each refinement step. The in-

10 CHAPTER 1. INTRODUCTION

tegration of policy development with system development is supported by
results of preservation of adherence under refinement. Section 5.4 gives a
presentation of the policy refinement relations.

1.2.4 The Method for the Development of Trust Manage-
ment Policies

The method for the development of trust management policies aims at iden-
tifying and assessing the trust-based decisions within a system, and evalu-
ating the impact of these decisions in terms of the risks and opportunities
towards the system. On the basis of these assessments and evaluations the
most beneficial decisions are identified. Finally, a trust policy is captured
and formalized the enforcement of which ensures that precisely the most
beneficial trust-based decisions are made.

As illustrated in Fig. 1.3, the method is divided into three main stages,
namely system modeling, trust analysis and trust policy specification. The
activities of each stage are furthermore supported by adequate modeling
languages.

Trust policy

System modeling —»| Trust analysis —» e
specification

Figure 1.3: Method for developing trust management policies

In order to analyze something it is necessary to obtain a good under-
standing of what this something is. The goal of the system modeling stage
is to describe the behavior of actors and entities within the system that re-
sults from trust-based decisions. This modeling includes the basis of these
decisions, i.e. the evidence on which the actors base their estimation of the
trustworthiness of other entities. Additionally, the system modeling doc-
uments the requirements the actors make on the trustworthiness of other
entities for accepting a trust-based transaction, i.e. the trust thresholds.

The information documented in the system models obtained through
the first stage serves as input to the activities of the second stage, namely
the trust analysis. Since trust may be ill-founded, i.e. the evidence on
which trust-based decisions are made may be incomplete or even partially
false, these decisions must be evaluated with respect to this. Furthermore,
the impact of the trust-based decisions on the system in terms of risks and
opportunities must be evaluated. Additionally, the impact of alternative de-
cisions should be evaluated since it may be that the current system behavior
is not the optimal one. The goal of the second stage of the method is to
identify the system decisions that yield the most optimal system behavior
by minimizing risks and maximizing opportunities.

1.3. THESIS OVERVIEW 11

Having identified the optimal choices of behavior, these choices are cap-
tured in the form of a trust policy which is formalized during the third stage
of the method. This policy should describe the conditions under which trust-
based decisions should be made and also the requirements to the trust levels
for accepting or rejecting a trust-based transaction.

The latter stage of the method is supported by Deontic STAIRS and
demonstrates the suitability of applying Deontic STAIRS to the domain of
trust management. Section 5.5 gives a presentation of the method.

1.3 Thesis Overview

This thesis is based on a collection of 7 research papers and divided into
two parts. Part I presents the context and the overview of the work of the
thesis, whereas Part II contains the research papers.

In Chapter 2 we give a characterization of and motivation for the prob-
lems addressed by this thesis. We identify needs that the artifacts developed
as a part of this thesis intend to meet, and present a set of criteria that the
artifacts should fulfill for the successful accomplishment of our research ob-
jectives. Chapter 3 presents a method for technology research and explains
how we have applied the method in the work of this thesis. In Chapter 4
we present the state of the art of the research within the domain of this
thesis, and in Chapter 5 we present each of the artifacts of the thesis. An
overview of the research papers and their content is given in Chapter 6. In
the discussion of Chapter 7 we evaluate the artifacts with respect to the
success criteria of Chapter 2, and discuss related work. Part I is concluded
in Chapter 8, where we also discuss directions for future work.

The research papers of Part II can be read independently of each other,
but the recommended order is the order in which they are organized. Read-
ers that are only interested in the policy specification language can read
paper 3, and consult papers 4, 5 and 6 for the formal foundations and the
notions of refinement and adherence, as well as results of preservation of
adherence under refinement. Readers that are only interested in trust and
trust management can read paper 1 and paper 7.

Chapter 2

Problem Characterization

In this chapter we motivate and characterize the problems addressed by this
thesis. In Section 2.1 through Section 2.3 we present the background to this
thesis, thereby identifying needs that the artifacts presented in Section 1.2
aim to meet, as well as identifying requirements to these artifacts. In Sec-
tion 2.4 we summarize by giving for each artifact a set of criteria that should
be fulfilled for a successful accomplishment of our research objectives.

2.1 Policy Based Management

Policy based management of information systems [16, 22, 45] has the last
decade or so emerged as an adaptive and flexible approach to administer and
control distributed systems with respect to issues such as security, access
control, services, networks and trust. An international policy community
has continued to evolve, and much of the key activities has been centered
around the annual Policy Workshop [45] which recently has been lifted to
an IEEE Symposium and is arranged for the 10th time in 2009.

An important motivation for the use of policies for systems management
is that they allow systems to be dynamically changed in order to meet new
or different requirements, without stopping the system and without chang-
ing the underlying implementation. This is reflected in a widely adopted
definition of policies, namely that a policy is a set of rules governing the
choices in the behavior of a system [102].

As mentioned in the previous section, policies govern choices in behav-
ior by specifying the conditions under which predefined operations can be
invoked rather than changing the actual operations themselves [103]. This
means that the potential behavior of the system generally span wider than
what is prescribed by the policy and that the system can potentially violate
the policy. A policy can therefore be understood as imposing normative
constraints on system behavior, characterizing the ideal, desirable or ac-
ceptable behavior of the system with respect to the domain of management.

13

14 CHAPTER 2. PROBLEM CHARACTERIZATION

The deontic approach to policy specification of this thesis, in which policy
rules are classified as permissions, obligations or prohibitions, is based on
Standard Deontic Logic [79]. The classification is furthermore implemented
in the ISO/IEC standard for open distributed processing [51].

The deontic approach is suitable for specification and reasoning about
policies because of the normative character of policy rules. The formalization
of the deontic notions in Standard Deontic Logic is for reasoning about
normative expressions, the relation between them, and what can be deduced
from them. The deontic approach is furthermore generic in the sense that
it allows the specification of policy rules and the reasoning about them for
various domains of policy based management, such as security, access control
and trust.

Policy based management should be supported by adequate languages
and methods that facilitate the various phases of policy development, anal-
ysis and enforcement. With a deontic approach to policy specification, the
language must have the expressiveness to capture the modalities of permis-
sion, obligation and prohibition. Additionally, since policy rules are condi-
tional rules, the language must support the specification of the conditions
under which a given rule applies in the form of a triggering construct.

Policies may be derived from business goals, service level agreements,
trust relationships, security requirements, risk analyses, etc. During the ini-
tial capturing of a policy, various stakeholders are typically involved, such as
chief executive officers and other decision makers, data security officers, sys-
tem users and system developers. At this point, a policy language suitable
for capturing policies at the appropriate abstraction level, that is intuitively
understandable to all stakeholders, and that supports communication be-
tween stakeholders is desirable.

Abstraction means to identify and represent the essential aspects and
characteristics of the system under consideration, omitting details that are
unimportant or irrelevant from a certain perspective [94]. The higher the
level of abstraction, the less detail included. A policy language facilitating
abstraction addresses the problem of “closing the gap between business an
IT” [58], thereby avoiding misunderstandings and miscommunication be-
tween stakeholders.

From the initial and abstract phases, the policy specification is typically
further developed by making it more concrete; details and information are
added, specifics about system functionality and architecture are taken into
account, and the policy specification is brought closer to implementation
and enforcement. During such a process of lowering the abstraction level
it is important to ensure that the resulting policy specification is a correct
representation of the initial specification, i.e. that the concrete specification
fulfills the requirements of the abstract specification. This can be ensured
by a well-defined notion of policy refinement.

Although recognized as an important issue already during the very initial

2.1. POLICY BASED MANAGEMENT 15

research on policy based management [80], policy refinement still remains
poorly explored in the literature [6, 92]. Policy refinement is in [80] referred
to as the process of transforming a high-level, abstract policy specification
into a low-level, concrete one. By formalizing refinement as a relation be-
tween policy specifications, we obtain a precise characterization of what it
means that a concrete specification correctly represents or fulfills an abstract
specification.

In order to support the development process and make it more manage-
able, the refinement relation should be transitive. Transitivity ensures that
the result of any number of refinements is a valid refinement of the initial,
most abstract specification, thereby supporting a stepwise and incremental
development process. Furthermore, the refinement relation should ensure
that the enforcement of the final, most concrete policy specification implies
the enforcement of the initial, most abstract specification.

The correct enforcement of a policy specification means that the system
under management satisfies the policy, which we refer to as policy adherence.
In order to ensure a precise and unambiguous interpretation of policy spec-
ification and to support verification of systems against policy specifications,
the notion of policy adherence should be precisely defined. By creating a
model of the system under consideration, policy adherence can be defined
as a relation between a policy specification and the system model.

The deontic notions of permission, obligation and prohibition and the
relations between them have been formalized with Standard Deontic Logic
[79]. When adopting a deontic approach to policy specification and propos-
ing a language with support for the capturing of such deontic constraints, the
interpretation of these constructs should be validated against the axiomati-
zation of Standard Deontic Logic. The adherence relation should therefore
capture the properties of these notions as formalized in the logic.

For several reasons, and as indicated by the above discussion, a pol-
icy specification language should be underpinned by a formal semantics
[44, 63, 86]. A formal semantics yields a precise and unambiguous definition
of the meaning of a policy specification, thus avoiding misunderstandings be-
tween stakeholders, and avoiding further development or enforcement that
deviates from the intended interpretation. A formal semantics also facili-
tates reasoning about and analysis of policies, for example to ensure that
a refined policy specification fulfills the requirements expressed during the
initial policy capturing, to detect and resolve policy conflicts or inconsisten-
cies, or to monitor or analyze a system with respect to policy adherence. A
formal semantics furthermore facilitates the development of tool support for
automated development and analysis of policy specifications.

Decomposition is held as an important feature of system design and
development [113] since it allows specifications to be divided into several
separate modules that are analyzed or developed in isolation. We believe
that modularity of specifications may play an equally important role in the

16 CHAPTER 2. PROBLEM CHARACTERIZATION

development of policy specifications. The formal semantics of a policy speci-
fication language should therefore be compositional, such that the semantics
of a diagram can be determined from the semantics of the sub-diagrams and
the composition operators.

Modularity may also substantially facilitate the development process by
supporting modular refinement. This means that the policy specification
can be divided into manageable pieces that are refined separately, and that
the policy development can be divided between several developers or devel-
opment teams.

2.2 Policy Specification

Since its introduction in 1997, the use of the UML [83] has steadily grown,
and it is currently the de facto modeling standard in the industry. The
widespread use of and knowledge about the UML alone, as well as its intu-
itive and graphical appearance, makes it an interesting starting point in the
search for or development of a notation suitable for specification of policies
or aspects of policies.

More importantly, however, the UML is interesting for its support for
raising the level of abstraction and for being platform independent. The
latter means that the UML system and software models do not make any
assumptions about the hardware, programming language, operating sys-
tems, networks, etc. that implement them. The UML can furthermore be
used for the modeling of business processes, work processes and other non-
software systems, which is desirable for a general purpose policy specification
language. Finally, a policy specification based on the UML facilitates the
analysis of the relation between a policy specification and a system specifi-
cation, where the latter is given in standard UML.

The UML has been evaluated and utilized in various work on policies and
policy based management [1, 4, 12, 63, 70], but, as these works indicate, the
language offers little specialized support for the specification and analysis
of policies. There is therefore a need for extensions of the UML customized
for the domain of policy based management.

Policies are rules about system behavior, and since UML sequence di-
agrams describe dynamic/behavioral aspects of systems they can be con-
sidered for policy specification. As opposed to e.g. UML state machine
diagrams which describe the complete behavior of single system entities, se-
quence diagrams describe system behavior by showing how system entities
interact. The interaction perspective is suitable for expressing constraints
on the behavior in distributed systems.

Sequence diagrams are furthermore the most popular UML notation for
specifying and modeling dynamic aspects of systems [30, 111]. A conjec-
ture is that the popularity stems from the intuitive and easy to understand

2.2. POLICY SPECIFICATION 17

representations of interactions with sequence diagrams. Even with several
entities taking part in the interaction, a good sequence diagram facilitates
understanding and communication between various stakeholders such as de-
velopers, decision makers and security personnel.

Recall from the previous section that we define policy rules as conditional
deontic constraints in the form of permissions, obligations and prohibitions.
This means on the one hand that we must be able to specify the scenario
that triggers the rule, i.e. the condition for the rule to apply, and on the
other hand to specify the scenario that is constrained by the rule along with
the deontic modality.

Intuitively, a permission rule states that in case the triggering behavior
is fulfilled, the constrained behavior should be allowed. This means that
the permitted behavior must be offered as a potential choice, yet allow-
ing alternative behavior to be conducted instead. An obligation rule states
that if the triggering behavior is fulfilled, the obliged behavior must be con-
ducted. A prohibition rule states that if the triggering behavior is fulfilled,
the prohibited behavior must not be conducted.

In order to illustrate the required expressiveness and compare this with
the expressiveness of standard UML, we consider in the following some basic,
simplified examples of access control of users to an application, where user
access to services is granted on the basis of credentials presented to the
application by the users.

Assume a permission rule stating that a user U is authorized to access
services provided the user has presented a valid credential to the application
A. A proposal for capturing this rule is depicted in the diagram permit in
Fig. 2.1.

The entities participating in the interaction specified by a UML sequence
diagram are represented by lifelines with a head containing the name and/or
type of the entity. Messages are represented by arrows, where the arrow tail
represents the event of sending a message on a lifeline and the arrow head
represents the event of receiving a message on a lifeline. The events are
ordered from top to bottom along each lifeline, and the sending of a message
is ordered before the reception of the same message.

The annotations to the left of the diagram permit show which part that
constitutes the triggering behavior and which part that constitutes the con-
strained behavior. In standard UML there is no support for the specification
of the conditional relation between the two scenarios. Instead this diagram
specifies an example scenario, describing behavior that the system should
be able to conduct. Furthermore, a policy rule does not require that the
triggering behavior must occur. Instead it requires that if the triggering
behavior occurs, the rule imposes a corresponding constraint on the contin-
uation of the system behavior. In the case of a permission, there is also no
support in the UML to specify that the permitted behavior is behavior that
must be offered as a potential choice only.

18 CHAPTER 2. PROBLEM CHARACTERIZATION

sd permit J

request_service

request_credential

Triggering credential

behavior

P
credential_ok |
\%I

access_granted

Constrained

|

|

|

1

|

|

. |
access_service |
1

|

|

|

|

|

behavior provide_service
U
request_service _ !
|
request_credential }
|
Triggering credential !
behavior ‘

— 1
credential_invalid |
e

access_denied

neg access_service
Constrained
behavior provide_service
U
Triggering credential
behavior

| |

1 1

| |

Constrained { }
|

1
. verify_credential |
behavior e

Figure 2.1: Capturing policy rules for access control using standard UML
sequence diagrams

2.2. POLICY SPECIFICATION 19

Assume next a prohibition rule stating that a user is unauthorized to ac-
cess services in case the credential presented to the application is invalid. A
proposal for capturing this rule is depicted in the diagram deny in Fig. 2.1.
The expressiveness of UML sequence diagrams to specify illegal behavior
can be utilized, e.g. by using the neg construct as shown in the diagram.
The diagram then expresses that the triggering behavior followed by the
constrained behavior is illegal. The triggering behavior in isolation is, how-
ever, legal, which is not implied by the prohibition rule we try to specify:
The rule only requires that if the triggering behavior occurs, the constrained
behavior is not allowed to occur in the continuation.

Assume finally an obligation rule stating that if the application receives
a credential from a user, the application is obliged to verify, i.e. to check
the validity of, the credential. A sequence diagram specification of this rule
is proposed in the diagram verify in Fig. 2.1. As before there is no sup-
port for capturing the conditional relation between the two scenarios. More
importantly, there is also no support to properly distinguish obligations
from permissions. Standard UML sequence diagrams distinguishes between
positive and negative behavior, but lack the expressiveness to distinguish
between behavior that must occur (obligation) and behavior that must be
offered as a potential choice while accepting other choices to be made instead
(permission).

A further issue to consider is that UML sequence diagrams are normally
interpreted as describing exactly the behavior a system may or may not
conduct. Consider, for example, the diagram permit of Fig. 2.1. With re-
spect to this diagram, system behavior in which for example the user sends
several credentials or the application interacts with other entities in parallel
is inconclusive. This means that behavior that is not part of the diagram is
neither legal nor illegal. When specifying a policy, we should only have to
focus on the system behavior and entities of relevance for the policy, e.g. se-
curity, trust or service level. This means that for a system to fulfill behavior
as described in e.g. the diagram permit of Fig. 2.1, any additional system be-
havior can be interleaved, including behavior involving other system entities.
With the standard interpretation of sequence diagrams, the policy specifica-
tion would have to explicitly specify all the potential system behaviors that
fulfill the relevant behavior. Such an approach would not only be tedious
and user-unfriendly. It would also result in policy specifications containing
much irrelevant information blurring the important aspects, and it would
furthermore prevent the capturing and specification of policies without de-
tailed knowledge about the system architecture, entities and functionality.

A final, nevertheless important, concern is of a pragmatic nature, i.e. re-
lated to the use and users of the language. In order to support and facilitate
use of the language, both for specification and interpretation, a policy spec-
ification language should be equipped with intuitive and easily recognizable
syntactic constructs for capturing the various parts of a policy. This means

20 CHAPTER 2. PROBLEM CHARACTERIZATION

that a sequence diagram specifying a policy rule should have a keyword that
distinguishes it from other diagrams, there should be constructs that iden-
tifies and isolates the triggering behavior and the constrained behavior, and
there should be constructs for specifying each of the three deontic modali-
ties. Such an extension of the UML should, however, be conservative and
as modest as possible to ensure that people that are familiar with the UML
can easily understand and use the notation, and to avoid that the notation
is used erroneously.

2.3 Trust Management

When introduced in 1996 [14], the trust management problem was identi-
fied as an aspect of security in distributed systems, comprising collectively
the management of security policies, security credentials and trust relation-
ships in relation to access control. Since then, trust management has been
subject to increased attention and is addressed in a more general setting
than security alone. More recently, trust management has been described
as an activity “in the intersection between sociology, commerce, law and
computer science” [56], focusing on the need for a basis upon which trust
can be established and assessed in a setting of electronic interactions over a
distributed network such as the Internet.

Trust management involves making assessments and decisions regarding
transactions that involve risk [37, 56]. In a situation of trust there is always
a possibility of deception or betrayal, which means that there is an inevitable
relation between trust and risk [19]. In the management of trust, the level of
involved risk must be understood in order to make a well-founded decision
with respect to the transaction in question. It is, however, not enough to
evaluate the risk alone. The decision to accept the risk involved in trust-
based decisions is motivated by the potential reward, i.e. the opportunities
involved in the transaction. The management of trust must therefore sup-
port trust-based decision making by assessing trust and correctly estimating
the involved risks and opportunities.

For a system in which actors make decisions between choices of behavior
on the basis of trust, the trust relations have a direct impact on the level
of risk and opportunity to which the system as a whole is exposed. A
method for analyzing, evaluating and optimizing the trust-based decisions
within a system must be supported by adequate techniques and languages
for specifying and modeling the relevant parts and aspects of the system. In
particular there must be support for the specification of the potential trust
relations, the trust levels involved in these relations, as well as the involved
levels of risk and opportunity.

The identification and evaluation of all the potential trust-based transac-
tions in which a system can take part should determine the optimal choices

2.4. SUCCESS CRITERIA 21

of behavior, i.e. the system behavior that yields the minimum level of risks
and the maximum level of opportunities. A policy is a set of rules governing
the choices in the behavior of a system. In the setting of trust management,
a policy can be specified the enforcement of which ensures the optimization
of the trust-based decision within the system.

A language supporting the specification of trust management policies
must support the specification of the circumstances under which a trust-
based decision should be made. Since the level of trust is the decisive factor,
the language must also support the specification of the level of trust that is
required for a particular transaction to be accepted. Finally, the language
must support the specification of the transaction under consideration.

2.4 Success Criteria

The presentation in the above sections demonstrates the need for the arti-
facts presented in Section 1.2. In this section give a set of success criteria
that should be fulfilled by these artifacts, and in Chapter 7 we discuss to
which extent these criteria are fulfilled.

In order to identify and understand the requirements to the artifacts, we
need to understand who the intended user groups of the artifacts are. For
the four artifacts presented in this thesis we distinguish between two main
user groups.

On the one hand we have the user group we refer to as the intended
end-users. For the policy specification language together with the notions
of policy adherence and policy refinement, the typical end-users are person-
nel responsible for the capturing, specification, development, analysis and /or
enforcement of policy specifications. These end-users will typically also need
to be able to communicate the content of policy specifications as well as the
results of development and analysis processes to other stakeholders such as
decision makers and clients. In the same way, these other stakeholders need
to be able to communicate their requirements and wishes to the developers.
The underlying formalism of the language, as well as the formalization of the
adherence and policy refinement relations should be hidden from end-users.
Instead, understanding the basic meaning of the policy specifications and
what it intuitively means to adhere to and refine policy specifications should
be sufficient. In order to ensure that policy specifications are correctly de-
veloped and enforced, the end-users should be supported by methods and
tools. These may include development guidelines for language use and au-
tomated tools for verification of correctness of refinement and detection of
conflicts and other errors.

For the method for the development of trust management policies, the
typical end-users are trust and risk analysts. The analysts need a method
that is understandable, that is applicable, and that is supported by adequate

22 CHAPTER 2. PROBLEM CHARACTERIZATION

description techniques. Any underlying formalisms of the method and the
description techniques should be hidden from the analysts. Instead there
should be available tool support for activities such as creating models, de-
riving analysis results and checking consistency. The analysts furthermore
need support for interacting with clients and other stakeholders in gathering
the required information for the analysis and in documenting and commu-
nicating the analysis results.

On the other hand we have the user group that develop methods and
tools for supporting end-users in applying the artifacts. The underlying
formalisms of the artifacts are intended for this user group. The formal
foundation allows the soundness of any rules of policy development methods
and guidelines to be proved, and to verify that automated tool support, e.g.
for checking adherence and refinement, works correctly. Developers of tool
support for the method for the development of trust management policies
may prove that automation of analysis tasks such as risk and opportunity
estimation and consistency checking is correct.

The success criteria for each of the four artifacts are presented in the
following.

2.4.1 The Policy Specification Language

1. The language should have the expressiveness to capture the deontic
modalities of permission, obligation and prohibition.

A policy is a set of normative rules about system behavior, specifying
behavior that may, should or should not occur, and the deontic modal-
ities are appropriate for the specification of such constraints. For most
domains of management, such as security, access control, services and
networks, there is need for rules of all these three modalities.

For the domain of trust management, trust policies determine the
trust levels under which a trust-based transaction should be accepted
or rejected, which can be captured by obligations and prohibitions,
respectively. In cases where the decision has no impact on the overall
level of risk and opportunity, permission rules are suitable for specify-
ing that both acceptance and rejection should be available as allowed
choices.

2. The language should have the expressiveness to capture conditional
scenarios.

A policy specifies the conditions under which operations or actions can
be invoked, and a policy language must therefore support the specifi-
cation of these conditions. In particular, there should be support for
the specification of a triggering scenario that characterizes the circum-
stances under which the corresponding deontic constraint applies.

2.4. SUCCESS CRITERIA 23

3. The language should be intuitively understandable to end-users such as
decision makers, clients, developers and other stakeholders, including
personnel with little technical background.

During the process of capturing, developing and formalizing a pol-
icy many different stakeholders from various backgrounds may be in-
volved. An intuitively understandable notation facilitates the estab-
lishment of a common understanding of scenarios and requirements,
and supports communication between stakeholders.

4. The language should allow policy specifications to ignore behavior that
is mot relevant for the policy.

Policy specifications refer only to system entities and system behavior
of relevance to the policy, e.g. issues in relation to security, trust or
services. This means that the system to which the policy applies gen-
erally have entities and behavior that go beyond those mentioned in
the policy specification. As such, the scenarios described in a policy
specification can be understood as an abstraction of potential system
scenarios, thereby facilitating specification and interpretation of poli-
cies.

The language should allow for this in the interpretation of what it
means for the system to fulfill behavior as specified in the policy by
allowing any irrelevant behavior to be interleaved. Without this re-
quirement the policy would have to explicitly specify all the various
ways in which a system may fulfill a triggering behavior or a con-
strained behavior.

5. The language should be a conservative extension of standard UML.

By a conservative extension we mean that the use of standard UML
sequence diagram constructs within the policy specification language
complies with the standard, both syntactically and semantically. This
is to ensure that the language is easily understandable for people that
are familiar with the UML and to avoid that the language is used
erroneously.

Aligning the language with standard UML is desirable also because
it facilitates the analysis of the relation between a policy specification
and a system specification, when the latter is represented in UML.

6. The language should be underpinned by a semantics that is unam-
biguous, allows formal analysis of policy specifications, and allows the
development of tool support.

An unambiguous semantics is crucial in order to ensure that the im-
plementation and enforcement of a policy indeed is an enforcement
of the intended requirements, as different personnel may be involved

24

CHAPTER 2. PROBLEM CHARACTERIZATION

during the different phases of policy capturing, development and im-
plementation.

Formal analysis of specifications is beneficial for several reasons, such
as the detection of inconsistencies or errors, and the verification of
policy adherence. Tool support is desirable for facilitating the spec-
ification and development process and to do automated analysis of
policy specifications.

The semantics should be compositional, meaning that the semantics
of a composed diagram can be determined from the semantics of the
sub-diagrams and the composition operators.

A compositional semantics facilitates the parsing and interpretation
of specifications, allowing a specification to be understood by focusing
on individual parts separately. A compositional semantics furthermore
supports reuse of sub-diagrams and substitution of one sub-diagram
by another, without requiring all parts of the specification to be con-
sidered simultaneously.

2.4.2 The Policy Adherence Relations

8.

10.

The notion of policy adherence should be intuitively understandable
to end-users such as decision makers, clients, developers and other
stakeholders, including personnel with little technical background.

For end-users to correctly use the policy specification language and
correctly specify the desired requirements, the notion of policy ad-
herence must be understood. As the end-users are not supposed to
know or understand the underlying formalism the notion of adherence
should be understandable at an intuitive level and with reference to
the policy specification language. The formalization of the adherence
relations allows tool support to be developed for analyzing the rela-
tion between policy specifications and systems, aiding the end-users in
detecting policy breaches.

The adherence relations should capture the properties of the deontic
modalities as axiomatized in Standard Deontic Logic.

The deontic modalities have been studied and formalized in the con-
text of Standard Deontic Logic [79]. The adherence relations char-
acterize what it means to satisfy the deontic constraints of a policy
specification, and this interpretation should be validated against the
axiomatization of Standard Deontic Logic.

The notion of adherence of a system implementation to a policy spec-
ification should be independent of the system platform.

2.4. SUCCESS CRITERIA 25

Sequence diagrams and Deontic STAIRS specifications do not assume
any particular platform or programming language for the system in
question, and the formalization of the adherence relation should there-
fore allow for this.

2.4.3 The Policy Refinement Relations

11.

12.

13.

14.

The notions of policy refinement should be intuitively understandable
to end-users such as decision makers, clients, developers and other
stakeholders, including personnel with little technical background.

The correct development of policy specifications under the refinement
paradigm requires that the notion of refinement is correctly understood
by the end-users. As for the adherence relation, the notions of policy
refinement should be understandable without knowing the underlying
formalization. In order to ensure the correctness of policy refinement
steps, the end-users should be supported by development methods and
guidelines that ensure refinement, as well as automated tool support
for verifying that refinement steps are correct.

The policy refinement relations should ensure that all requirements
from the abstract policy specification are preserved in the refined policy
specification.

The very underlying idea of policy refinement is that the low-level, con-
crete policy specification that is developed from the high-level abstract
one gives a more detailed representation of the abstract specification
in the sense that it is closer to implementation and enforcement, while
guaranteeing that all requirements are preserved. This means that
adherence of a given system to a concrete policy specification should
imply adherence of the same system to the abstract specification.

The policy refinement relations should support the stepwise develop-
ment of policy specifications.

For feasibility reasons it should be possible to conduct the development
of a policy specification under any number of refinement steps. For
policy development under the refinement paradigm to support this,
the refinement relations must ensure that the result of any number
of refinement steps is a valid refinement of the initial, most abstract
specification.

The policy refinement relations should support modular development
of policy specifications.

Modularity of refinement is desirable as it facilitates the process of
developing a policy specification by allowing the specification to be
divided into manageable pieces that are refined separately. Modularity

26

CHAPTER 2. PROBLEM CHARACTERIZATION

furthermore allows the development of a policy specification to be
separated between several developers or development teams.

2.4.4 The Method for the Development of Trust Manage-

15.

16.

17.

18.

19.

ment Policies

The method should be applicable and understandable to end-users.

The value of the method relies on the feasibility of applying the method
for trust analysis and trust policy capturing. Analysts, i.e. the in-
tended end-users, must therefore understand each stage of the method
and how to conduct the tasks of the stages.

The method should offer description techniques that are understand-
able to all relevant stakeholders, including end-users, decision makers,
engineers and analysts.

In order to develop a good and adequate policy, it is essential that
decision makers, developers, analysts, etc. have a clear and shared
understanding of the system, the relevant scenarios and the alternative
policy rules. Moreover, the policy rules must be understandable for
those who are supposed to adhere to or implement them.

The method should support the modeling of the trust-based decisions
within a system, including the entity that makes the decision (the
trustor), the level of trust held by the trustor, and the basis upon which
the trustor determines this level of trust.

In order to understand the impact of trust-based decisions on the over-
all behavior of the system, the points in which these decisions are made
must be identified and described. Next, since the basis of the decisions
is trust, the trustor and the level of trust must be explicitly described
in order to explain the decision. Finally, in order to explain the trust
level and evaluate the well-foundedness of the trust, the evidence used
by the trustor for the determination of the trust level must be de-
scribed.

The method should support the evaluation of the well-foundedness of
trust.

Trust is a subjective notion, i.e. it is a belief held by the trustor. If
the evidence behind this belief is weak or false, the trust is ill-founded,
which means that critical decisions are made on failed assumptions.
In order to evaluate the well-foundedness of the trust-based decisions,
the extent to which trust is well-founded must be determined.

The method should support the evaluation of the risks and opportunities
associated with the trust-based decisions.

2.4. SUCCESS CRITERIA 27

20.

21.

Trust-based transactions involve both risks and opportunities. In or-
der to identify the most beneficial trust-based decisions, the levels of
risk and opportunity must be evaluated for each potential trust-based
transaction.

The method should support the capturing and formalization of trust
policies.

Having identified the most beneficial decisions, these choices of be-
havior can be ensured by capturing a policy the enforcement of which
minimizes risks and maximizes opportunities. This requires that there
is language support for the specification of trust policies, i.e. policies
that specify the conditions under which a given trust-based transac-
tion is acceptable. The condition must include the levels of trust under
which the rule applies.

The method should be based on well-defined notions of trust, risk and
opportunity, and the relations between the notions should be precisely
defined.

Trust is a complex and compound notion that may mean different
things in different contexts. As a result there exists a variety of defini-
tions of and approaches to trust. A trust management method must be
based on a precisely defined notion of trust in order to clarify what the
method addresses and evaluates. Since risk and opportunity are inher-
ent aspects of trust, these notions must also be precisely accounted for.
In particular, the impact of trust on the levels of risk and opportunity
must be precisely defined.

Chapter 3

Research Method

Computer science is a relatively young discipline, and it is even debated
whether computer science at all can be qualified as a science [2, 17, 28]. In
[2] the authors claim that computer science is not a science, and exemplify
this by contrasting computation with classical mathematics. The latter, they
claim, provides a framework for dealing precisely with notions of “what is”,
whereas the former provides a framework for dealing precisely with notions
of “how to”. A similar standpoint is found in [17], where it is argued that
science is concerned with the discovery of facts and laws, as opposed to
computer science which is an engineering discipline concerned with building
things.

The standpoint that computer science indeed is a science is, however,
widespread. The examination of computer science as a science in [28] points
out that the activities within the field of computer science is a blend of sci-
ence, engineering and mathematics, and that there are numerous examples
of computer science research that is settled in the scientific paradigm. The
scientific paradigm is the process of forming and testing hypotheses, where
successful hypotheses become models that explain and predict phenomena
in the world. Computer science follows this paradigm, the author claims, in
studying information processes.

In this chapter we present a method for technology research that rests
on the scientific paradigm. Subsequently we describe how we have applied
this method in the work that has led to this thesis.

3.1 A Technology Research Method

The scientific paradigm of forming and testing hypotheses is in [108] re-
ferred to as the classical research method, and the basic question for the
researcher is What is the real world like? This is distinguished from tech-
nology research, which is “research for the purpose of producing new and
better artifacts” [108]. Artifacts are objects manufactured by human be-

29

30 CHAPTER 3. RESEARCH METHOD

ings, and a technology researcher aims at creating new and better artifacts.
The basic question leading the technology researcher is How to produce a
new/improved artifact?

Despite the difference between the basic questions leading the classical
researcher on the one hand and the technology researcher on the other hand,
the authors assert that the research process in both cases follows the same
principal phases, and that technology research should be founded on the
classical research paradigm. In both cases, the starting point is an overall
hypothesis of the form “B solves the problem A”. In classical research A is
the need for a new theory, whereas in technology research A is the need for
a new artifact.

Having identified the need for a new artifact, the technology researcher
identifies requirements that the artifacts should fulfill in order to satisfy
the need. The requirements may for example be gathered from the intended
users of the artifacts or by considering the environment in which the artifact
is to be deployed.

The innovative phase follows the requirements gathering, where the re-
searcher goes about to invent the artifact that is intended to fulfill the re-
quirements. When the artifact is finalized, the researcher must substantiate
that the artifact indeed fulfills the identified requirements. The overall hy-
pothesis to be evaluated is the proposition that the artifact satisfies the need
that was initially identified.

In order to verify or substantiate that the overall hypothesis is satis-
fied, a set of more concrete sub-hypotheses must be formulated, the joint
satisfaction of which implies that the overall hypothesis is satisfied. By de-
riving a set of explicit predictions from the sub-hypotheses the falsification
of which discredits the overall hypothesis, the researcher is served a basis for
gathering evidence about the validity of the sub-hypotheses. Through sys-
tematic evaluation, the predictions are tested whereby the researcher builds
argumentation for the validity of the overall hypothesis.

In case of a successful evaluation, the researcher may conclude that the
invented artifact does satisfy the identified need, and that something new or
improved has been created. If, however, the overall hypothesis is falsified,
the researcher must go back to the invention phase and improve the artifact
or build a new artifact after which the evaluation is conducted again. The
innovation and evaluation phase may also lead to new insight that in turn
leads to a reformulation of the requirements to the artifact. The technology
research process is therefore an iterative process.

Figure 3.1 is adapted from [108] and summarizes the three main steps of
the iterative process:

1. Problem analysis: The need for a new artifact is identified and require-
ments to the artifact are gathered.

2. Innovation: An artifact intended to meet the identified need is created.

3.2. HOW WE HAVE APPLIED THE RESEARCH METHOD 31

3. Fwaluation: Predictions about the artifact are formulated based on
the hypothesis that the artifact fulfills the identified need. If the pre-
dictions come true, the researcher has substantiated that the artifact
fulfills the need.

Problem analysis

What is the
potential need?

y

How to make an artifact

Innovation that satisfies the need?

A J

How to show that the

Evaluation artifact satisfies the need?

]

Figure 3.1: Method for technology research — main steps

Technology development is closely related to technology research since
the one often includes activities or aspects of the other. According to [108],
technology research is distinguished from technology development by the
former giving rise to new knowledge of general interest. More precisely, this
means that to qualify as technology research, the invented artifact must
represent new knowledge, this knowledge must be of interest to others, and
the results and the new knowledge must be documented in a way that it
enables examination and evaluation by others.

3.2 How We Have Applied the Research Method

The method applied to the work leading up to this thesis is based on the
technology research method described in the previous section. The work
has been conducted as an iterative process in which the artifacts and the
requirements to them have been changed and improved as new insight was
gained while the work progressed.

Part T of this thesis documents the three phases of the research process
as illustrated in Fig. 3.1. Chapter 2 documents the problem analysis and the
requirements to the artifacts. Chapter 5 documents the innovation phase
by presenting the invented artifacts. Finally, Chapter 7 documents the eval-
uation of the artifacts. In the following we explain in more detail how the
method was applied in the development of each of the four artifacts.

32 CHAPTER 3. RESEARCH METHOD

3.2.1 Developing the Policy Specification Language

Success criteria 1 through 7 in Section 2.4 summarize the requirements to
the Deontic STAIRS language. These requirements were quite persistent
throughout the work, but it was initially no matter of course that UML
should serve as a basis for the language.

In the search for a suitable notation for our purposes the decisive criteria
were the expressiveness, the support for human understanding and commu-
nication, and the formal semantics. A natural starting point was to do a
broad survey of state of the art policy languages and evaluate these with
respect to our criteria. Common to most of the established and commonly
used policy specification languages, such as e.g. Policy Description Language
[71], Ponder [23], Rei [61] and XACML [82], is that they are purely textual
and generally require some formal or technical background for specification
or interpretation by humans.

The choice of the UML as a basis for the development of Deontic STAIRS
followed by the conjecture that policy development can benefit from estab-
lished techniques from system development. In particular we aimed to use
abstraction to facilitate representation of policies at levels of detail suitable
for all the various phases of the development process. As such, abstrac-
tion provides support for understanding and communication. We evaluated
UML sequence diagrams as a policy language with the STAIRS semantics
as a formal foundation. STAIRS [41, 95] formalizes the semantics that is
only informally described in the UML standard [83] and is also supported
with notions of refinement that we carefully considered as inspiration and
basis for policy refinement.

The evaluation of UML sequence diagrams were conducted against our
identified requirements to a policy specification language and were done by
testing the notation on various examples from the literature and on case
studies. As such, the sequence diagram notation were evaluated as one of
our artifacts, which helped to precisely identify the needs that this notation
does not fulfill. Through iterations of innovation and evaluation, customized
extensions were defined in the search for an appropriate language.

In addition to evaluating the Deontic STAIRS language by testing it on
examples and case studies, the language has been presented to and tested
on potential users of the language from various backgrounds, and it has
been presented to and commented on by researchers from various relevant
backgrounds. The evaluation of the policy specification language against
the success criteria is presented in Section 7.1.1.

3.2.2 Developing the Policy Adherence Relations

The development of the artifact of the policy adherence relations basically
amounted to propose and evaluate formal definitions. The application of the

3.2. HOW WE HAVE APPLIED THE RESEARCH METHOD 33

research method on the development of this artifact is illustrated in Fig. 3.2,
which is adapted from [87].

The process started with the identification of the requirements, which are
summarized as success criteria 8 through 10 in Section 2.4. After the identi-
fication of the requirements, definitions intended to fulfill these requirements
were proposed. The notion of adherence were formalized by searching for a
definition aligned with the axiomatization of the properties of the deontic
modalities in Standard Deontic Logic [79].

An important part of the evaluation of these definitions was to explore
their mathematical properties. This is illustrated in the right hand branch
of the diagram in Fig. 3.2. Partly, the evaluation was conducted through
precise mathematical proofs of properties we needed to verify, for example
that the adherence relation respect the axiomatization of Standard Deontic
Logic and that adherence to a refined, concrete policy specification implies
adherence to the previous, abstract specification. The proofs were structured
following the proof method of Lamport [67], which minimizes the chance of
doing errors. In case properties do not hold, i.e. there exists a counter ex-
ample, the proof method simplifies the identification of the counter example
and the identification of the proposed definition that is the source of the
failure of the property.

In addition to the mathematical exploration of the proposed definitions,
they were tested and evaluated against examples and against our own under-
standing and intuitions about what should be the desired properties. This
is illustrated in the left hand fork of the diagram in Fig. 3.2.

As the diagram further shows, the evaluation triggered new iterations
in two ways. On the one hand, evaluation could yield new insight to the
problem addressed, in which case the requirements from the initial phase
of problem analysis had to be considered again. On the other hand, the
evaluation could prove that the identified requirements were not fulfilled,
in which case the proposed formal definitions needed to be revised and re-
evaluated. The evaluation of the adherence relations against the success
criteria is presented in Section 7.1.2.

3.2.3 Developing the Policy Refinement Relations

The development and evaluation of the policy refinement relations followed
a strategy similar to the development and evaluation of the policy adherence
relations. The identification of the requirements are summarized as success
criteria 11 through 14 in Section 2.4. Existing literature on policy refinement
were surveyed in the search for an adequate definition of policy refinement,
and the refinement relations of STAIRS served as inspiration and basis. The
latter was based on our hypothesis that policy development can benefit from
established methods for system development, together with the fact that
policy refinement is not an established feature of policy based management

34

requirements to
artifacts

Propose formal
definitions

CHAPTER 3. RESEARCH METHOD

Identify

Check against

examples and own
understanding

Explore
mathematical
properties

Requ

New insight wrt.
requirements?

fulfilled?

Adopt definitions

irements

Problem analysis

Innovation

Evaluation

Figure 3.2: Research method for policy adherence and policy refinement

3.2. HOW WE HAVE APPLIED THE RESEARCH METHOD 35

and is not well addressed in the state of the art [6, 16, 92].

Similar to the development of the policy adherence relations, the iterative
process of developing the policy refinement relations followed the pattern
illustrated in Fig. 3.2. Mathematical properties such as transitivity and
modularity were explored by means of structured proofs and identification
of counter examples, and the definitions were tested on examples and our
own understanding. The evaluation of the refinement relations against the
success criteria is presented in Section 7.1.3.

3.2.4 Developing the Method for the Development of Trust
Management Policies

The requirements to the method for the development of trust management
policies are summarized as success criteria 15 through 21 in Section 2.4. The
proposed method consists of two main parts, namely the description of the
three stages of the method, and the specification languages supporting the
activities of each of the stages.

The innovation phase consisted of proposing a method intended to fulfill
the requirements. In order to demonstrate and evaluate the method, an
example case was constructed to which the method was applied and evalu-
ated against. The example is the bank case described in Chapter 15. This
particular case was chosen since it represents many key aspects of trust
management, such as the modeling and assessment of trust, risk and op-
portunity. In addition to the proposed method, modeling languages were
chosen that we hypothesized would adequately support the activities of the
various phases of the method.

The evaluation of the method and its languages was done by testing it
on the bank case and on potential users of the language. The most impor-
tant issue to address here was the usability of the method and its support
for assessing and evaluating trust, evaluating risks and opportunities, and
capturing a trust policy. The languages used, Subjective STAIRS [89] and
Deontic STAIRS, were evaluated with respect to expressiveness and support
for the activities of the method, as well as their support for human under-
standing and communication. Subjective STAIRS is a language for trust
modeling and has been developed as part of other work where it already has
been evaluated for its suitability to model and assess trust [87].

The first finalized version of the method with its modeling support is
documented as part of this thesis. Since then is has been tested in a field
study involving an industrial partner and an industrial case in which trust
and trust relations are the core issues to understand. The evaluation of the
method against the success criteria is presented in Section 7.1.4.

Chapter 4

State of the Art

This chapter presents state of the art within policy based management. Sec-
tion 4.1 addresses frameworks for and approaches to policy based manage-
ment, including strategies for policy refinement and policy conflict analysis.
Section 4.2 reviews some of the most commonly used policy specification
languages, and also presents the formalization of notations that are simi-
lar to the policy specification language proposed in this thesis. Section 4.3
addresses trust management, and reviews approaches to trust management,
trust analysis and trust policy specification.

4.1 Policy Based Management

The governing of system behavior by means of policy enforcement may fulfill
various purposes, and different frameworks and models have been developed
in order to support and facilitate the various activities involved in policy
based management. In this section we present some common approaches to
and strategies for policy based management.

4.1.1 Security Policies and Management Policies

Policies are commonly categorized into security policies and management
policies [103], and most approaches reside in only one of the categories,
although there also exist general purpose approaches [23, 103].

Security policies specify rules for authorization or access control, per-
mitting only authorized users to access services or resources. The rules
commonly describe the conditions under which a subject (the accessor) can
access an object (the resource), and also the type of access, e.g. read, write
or execute. A well known framework is the access control matrix [11, 68]
in which the rights of a set of subjects .S on a set of objects O are defined
by an access control matrix A. Each entry A(s,0), s € S and o € O, yields
the set of rights of s on o. Discretionary access control [11] is based on

37

38 CHAPTER 4. STATE OF THE ART

the identity of the subject and object. Access rights are constrained by the
owner of the object and cannot be passed by one subject to another subject.
With mandatory access control [11], access is controlled by system mecha-
nisms and individual users cannot alter the access rules. The Bell-LaPadula
model [8] is based on the assigning of security classification to subjects and
objects. Subjects can only access objects of equal or lower classification, so
the Bell-LaPadula model ensures confidentiality by preventing information
to flow from higher to lower levels of security. Biba’s model [10] is similar to
the Bell-LaPadula model, but is designed to ensure integrity of information
by restricting access to do data modification.

Management policies specify rules for management actions that are to be
taken in response to changing circumstances. They are used to, for example,
administer networks and services for quality of service, determine when to
make storage backups and determine when to do software configurations
[103]. The rules of a management policy is commonly of the event(s)-
condition(s)-action(s) form, requiring the performance of the action(s) by
the occurrence of the events(s) provided the condition(s) is fulfilled.

The Policy Core Information Model (PCIM) [81] is joint work between
the IETF [49] Policy Framework Working Group and the DMTF [29], and
provides a policy model in which each policy rule consists of a set of condi-
tions and a set of actions. The condition set can be expressed in disjunctive
or conjunctive normal form, and constraints on the ordering of the action
set can be imposed.

Support for various structuring techniques to facilitate the specification
of policies has been suggested as a requirement to policy languages [23]. The
PCIM policy model has several features that contribute to the fulfillment
of this requirement, such as the aggregation of policy rules into a group of
rules all pertaining to e.g. a specific department or set of related activities.
Furthermore, conditions and actions can be stored in a repository for reuse
by multiple rules, and resources can be assigned roles such that single policy
rules can be specified for several resources simultaneously.

Role-based access control (RBAC) [33] is a security policy framework
in which permissions are related to a position in an organization, rather
than to individual people. Separating the specification of policies from the
assignment of roles has the obvious advantage that policies do not have to
be changed when people are reassigned to other positions. Furthermore, the
structuring of roles into hierarchies allows permissions to be inherited by
senior roles (e.g. chief executive officer) from junior roles (e.g. employee).

In addition to roles, the use of domains has been proposed as a struc-
turing technique for facilitating policy specification [23]. A domain is in
[112] defined as a collection of elements and services that are administered
in a coordinated fashion. Single policy rules can then be defined for such
collections, e.g. the specification of access for all subjects in one domain to
all objects in another domain. Roles and domains typically reflect struc-

4.1. POLICY BASED MANAGEMENT 39

tures of systems and organizations and may facilitate both specification and
interpretation of policies.

The issue of enforcement of security policies is addressed in [98], where a
security policy is defined as a specification of system executions as unaccept-
able. The purpose of the work is to provide a precise characterization of the
class of security policies that can be enforced by so called execution mon-
itoring (EM). EM enforcement mechanisms work by monitoring execution
steps of a system, and terminating the execution if it is about to violate the
security policy being enforced. Mechanisms that use more information than
is available only from observing system execution steps are by definition not
EM mechanisms.

The problem of observability is addressed in [42] in the setting of speci-
fication and enforcement of policies for data protection requirements. Data
protection requirements impose constraints on how data may be used in the
future, e.g. the obligation that data must be deleted after some period of
time. The adherence to such an obligation may be impossible to observe,
and therefore impossible to enforce by EM mechanisms. The proposed solu-
tion in [42] is to transform non-observable obligations into observable access
control requirements and observable obligations. Examples of such trans-
formations are to demand the right to pull evidence from the user about
adherence, e.g. through audit, and to impose the duty on the user of push-
ing evidence. The authors stress, however, that the transformed policy may
weaken the goals of the original one, which is the cost of observability. The
notion of enforcement is also less strict than in [98] where an execution that
violates the policy is terminated; since violations of obligations may not be
prevented, enforcement includes the application of compensating actions,
such as penalties, to which the user has agreed. This notion of enforcement
is also used in [9].

Usage control [84] is an extension of access control by constraining not
only access to resources but also the subsequent usage of the resources. Us-
age control policies are more general than policies for data protection as
addressed in [42]. The Obligation Specification Language (OSL) presented
in [43] for expressing usage control requirements is underpinned by a for-
mal semantics, and a framework is proposed for specifying, analyzing and
enforcing usage control requirements.

4.1.2 Policy Refinement

Policy refinement has been recognized as an important research issue since
the initial research on policy based management [80], where it is referred to
as the process of transforming a high-level policy specification into a low-
level policy specification. A framework for policy refinement is proposed
in which policies are organized in a hierarchy in which each level in the
hierarchy is derived from the policy in the above level. The policy at the

40 CHAPTER 4. STATE OF THE ART

lower level represents a refinement of the policy at the higher level, and the
former should fulfill the latter. The relation between the hierarchy levels is,
however, not formalized and the judgment of whether a low-level policy cor-
rectly or appropriately represents a high-level policy must be left to human
managers.

One aspect of policy refinement as proposed in [80] is that of goal refine-
ment, where the set of low-level goals derived from a high-level goal intends
to fulfill the latter. Goal refinement has been further elaborated within
the area of requirements engineering and has served as basis for more re-
cent approaches to policy refinement. The KAOS method [25] is based on
identifying refinement patterns, where each pattern represents a possible de-
composition of a high-level goal into a set of low level-goals. The fulfillment
of the low-level goals of a pattern implies the fulfillment of the high-level
goal. Such patterns are proved correct once and for all, and can then form
a library that serve as basis for guiding the refinement process.

Goal refinement and the KAOS method have been adopted by several
approaches to policy refinement [4, 6, 91, 92, 93]. The approach presented
in [4, 6] identifies the policy refinement problem as composed of two parts.
The first part is the refinement of high-level goals into operations supported
by the concrete objects/devices, such that when performed will achieve the
high-level goal. The proposed solution to this problem is to combine the
KAOS goal elaboration method with techniques for deriving so-called strate-
gies, which are mechanisms by which a given system can achieve a particular
goal. A strategy is a relation between a formal description of the system for
which the policy applies and the goal, and is derived from the latter two by
abductive reasoning. The second part of the policy refinement problem is the
refinement of abstract entities into concrete objects/devices. The proposed
solution to this problem is a formal representation of object relationships
based on domain hierarchies with rules for deducing concrete objects/devices
for abstract ones. The formalism of the approach is implemented in event
calculus [65] which is held as suitable as it allows formal reasoning and fits
the event-driven nature of the systems that are addressed by the approach.

The policy refinement framework presented in [93] also uses the KAOS
method for goal elaboration to derive low-level goals from high-level ones.
The strategy for identifying the system execution traces that fulfill the low-
level goals is, however, based on linear temporal logic (LTL) formulas and
model checking. The requirements described by a set of low-level goals are
encoded into LTL formulas that describe the absence of the fulfillment of the
low-level goals. Through model checking, in which a formal system model
and the LTL formulas serve as input, a counterexample to the LTL formula
is identified, where the counterexample is a system trace. Since the LTL
formula describes the absence of the fulfillment of the desired goals, the
identified trace indicates system behavior that will achieve the desired goal.
The work in [92] extends [93] by introducing a mechanism for abstracting

4.1. POLICY BASED MANAGEMENT 41

policies from system trace executions in a systematic manner.

The investigation of policy refinement has gained interest only recently
[16], and the literature on further approaches to policy refinement is scarce.
The work in [109] proposes an approach to the refinement of access control
policies by decomposition. The idea is that instead of enforcing a policy
for a distributed system in a centralized manner, the enforcement should be
local and distributed in order to increase performance. At the abstract level
a policy is specified for controlling the access to a resource that represents
the resources of the distributed system. Based on a resource hierarchy that
describes how resource instances combine into abstract resources, the high-
level policy is decomposed (refined) so as to control access to specific, con-
crete resources such as servers and printers. The combined and distributed
enforcement of the low-level policies should then represent the enforcement
of the initial, high-level policy for the overall system. In [26] a framework
is presented in which low-level policies can be derived from high-level poli-
cies based on models of network systems at various abstraction levels. The
uppermost level of the network model offers a business oriented view of the
network, whereas the lowest level gives a technical view. A high-level policy
specified for the uppermost level is then subject to automatic refinement
when descending through the abstraction levels of the model. The formal-
ization of OSL [43] defines an ordering of events by a notion of refinement.
An event is a pair of an event name and a set of parameters, and an event
ey is refined by an event ey iff the events have the same name and the set of
parameters of ey is a subset of the set of parameters of e5. The refined event
is therefore more specific and low-level. This notion of refinement allows
the specification of requirements on an abstract event that apply to all its
refinements.

4.1.3 Policy Conflict Analysis

Policy analysis for the detection and resolution of conflicts or inconsistencies
has been recognized as an important research issue within policy based man-
agement [16, 103]. Policy conflicts are inherent to policy based management
of large distributed systems since different parts of a policy may be specified
by different managers, since policies are enforced in a distributed manner,
and since various rules may apply to the same entities [74]. A policy conflict
occurs, for example, when an obligation requires an activity to be conducted
for which there is no authorization. In [74] such conflicts are referred to as
modality conflicts and are inconsistencies that arise when two or more rules
with opposite modalities refer to the same entities and actions.

Some of the potential policy conflicts can be detected syntactically. An
example from [74] gives a pair of conflicting rules in which the first states
that users are prohibited from rebooting workstations, and the second states
that system administrators, which are also users, are permitted to reboot

42 CHAPTER 4. STATE OF THE ART

workstations. Such a conflict can be resolved by rewriting the first rule or by
excluding the system administrators from the user domain such that the first
rule does not apply to them. The authors argue, however, that rewriting
and reimplementing rules may be inconvenient since it possibly is resource
consuming and a lengthy activity. Excluding the system administrators from
the user domain is also not desirable since there may be several other rules
that apply to the users that also should apply to system administrators.
The two rules should therefore be allowed to coexist, and strategies must
be implemented to ensure that the first rule does not apply to system admin-
istrators. The suggested strategy is to impose a precedence relationship, for
which there are several principles. One such strategy is to have prohibitions
to take precedence over permissions. Such a strategy may be appropriate
for many situations, but may also be too inflexible. In the given example it
means that system administrators will not be permitted to reboot worksta-
tions, which is an undesirable interpretation. A second strategy is to assign
priorities to rules, thus defining a precedence ordering. This is implemented
in the policy model in [81]. A problem that may arise, however, is that the
specified priorities do not reflect the actual importance of the rules since
priorities may be assigned by different managers at different locations. The
third proposed strategy is to determine priority based on the distance be-
tween a policy rule and the managed objects, as suggested in [69] regarding
authorization policies for object-oriented databases. A policy rule for a sub-
class will take precedence over a conflicting rule defined for its superclass
since the former rule is closer to the entities for which the rule applies than
the latter rule is, i.e. the former is more specific. The fourth and final
principle for defining a precedence relationship proposed in [74] is similar to
the previous one. The principle is that rules for a sub-domain should have
precedence over its ancestor domain since the former is more specific. A rule
specified for a system administrator, for example, will then take precedence
over a rule specified for a user, since the system administrator domain is a
sub-domain of the user domain. In [5] policy specifications are formalized
using event calculus, which supports policy analysis for conflict detection.

4.2 Policy Specification

In this section we first present some of the most established languages that
have been developed for policy specification. Subsequently we present lan-
guages that are comparable to the policy specification language proposed in
this thesis.

4.2.1 Policy Specification Languages

The Policy Description Language (PDL) [71] is a declarative language that
was developed for network management. It is based on the event-condition-

4.2. POLICY SPECIFICATION 43

action format, which are rules that are triggered when the event occurs and
require the execution of the action provided the condition is true. Events
can be primitive, or they can be composed by e.g. disjunction, conjunction
(simultaneous occurrence) and sequencing. PDL is underpinned by an op-
erational semantics and has been implemented and demonstrated in use for
Lucent switching products [110].

Ponder [23] is a declarative, object oriented language with support for
the specification of both security policies and management policies. Secu-
rity policies are specified as positive or negative authorizations and define
activities that subjects can or cannot perform on targets, where a target is a
service or a resource. Management policies are specified as event-condition-
action rules, similar to PDL, and specified as positive or negative obligations.
Both authorization rules and obligation rules can optionally be specified with
a constraint that defines the conditions under which the rule applies.

An important feature of Ponder is that of domains, which are the group-
ing of subjects or targets to reflect geographical or organizational bound-
aries, object type, management responsibility, etc. for the convenience of
human managers. Domains are similar to directories, and can be organized
in hierarchies with sub-domains. Instead of specifying rules for individual
subjects and targets, rules are specified for domains, which may substan-
tially facilitate policy specification for large-scale systems. Ponder has also
support for the specification of information filtering policies, refrain policies
and delegation policies. Information filtering means to allow access only
to partial information, filtering away a subset of information that is held
as more sensitive. Refrain policies are similar to negative authorizations
and specify actions that subjects must not perform. The difference is that
whereas the former are enforced on the target side, the latter are enforced
by subjects. Refrain policies are relevant in situations in which the target
cannot be trusted to enforce policies. Delegation policies specify transfer
of access rights and are often relevant for access control systems. Finally,
Ponder supports the grouping and structuring of policies to facilitate man-
agement, as well as the specification of roles and role hierarchies.

The Policy Definition Language [64] (not to be confused with PDL de-
scribed above) precedes Ponder, and has a very similar syntax. Rules are
specified as obligations or authorizations, and define constraints on actions
performed by a subject on a target. As for Ponder, rules are event triggered
and may be specified with a condition. Additionally, there is support for
specifying domains of subjects and targets.

Rei [61] is a policy framework aimed at supporting the specification
and analysis of policies in pervasive computing environments. The policy
specification language is based on deontic concepts, and includes constructs
for rights, prohibitions, obligations and dispensations (deferred obligations).
Additionally, there are constructs for specifying meta policies that are in-
voked to resolve occurrences of policy conflicts. Policy rules apply to subjects

44 CHAPTER 4. STATE OF THE ART

that can be specified as individuals, roles or groups, or combinations of the
three.

LaSCO [44] is a graphical approach to the specification of security con-
straints on objects, where the constraints restrict access to system resources.
In this framework, a policy consists of two parts, namely a domain and a
requirement. The domain is a specification of assumptions about the sys-
tem, whereas the requirement is a specification of what is allowed assuming
the domain is satisfied. The system is represented by a set of objects that
interact through events, and the policy puts constraints on these events.

Syntactically, objects are represented by nodes and events relating ob-
jects are represented by directed edges. Both the entities whose access are
constrained and the entities representing the resources are represented as
objects. A user object can, for example, be related to a file object with a
read event. The objects and events together form the domain specification.
The requirement is specified as an annotation on the edge and is a predicate
that must evaluate to true for the event to be allowed. Such a predicate
may, for example, be that the security classification of the user must be
equal to or higher than the security classification of the file. The graphical
representation of policies is limited to nodes for specifying objects and edges
for specifying events that relate objects, and the notation relies heavily on
textual annotations. The approach is limited to access control since there is
no support for the specification of obligations.

XACML [82] is an OASIS standard for the specification of policies for
information access over the Internet. The language is an XML notation
that specifies authorizations to objects, themselves also represented in XML.
The policy rules in XACML specify the actions a subject can perform on
a resource. A subject can be represented as an identity, a group or a role,
and the resource can be specified at any granularity down to single elements
within the document. XACML also includes a request/response language
for specifying queries to check whether a given action should be allowed,
and to interpret the result. The notations are quite verbose and low level,
and not aimed at human interpretation.

The XACML framework assumes a policy architecture featuring a pol-
icy decision point (PDP), a policy enforcement point (PEP) and a policy
repository. An access request is presented by the subject to the PEP which
is the entity that protects the resource. The PEP formulates the request in
the XACML request language and forwards it to the PDP which compares
it with the XACML policies in the repository. The response, which may
be permit, deny, not applicable or indeterminate, is returned to the PEP
which, based on the response from the PDP, authorizes or denies access.

4.2. POLICY SPECIFICATION 45

4.2.2 Interaction Specifications

The policy specification language proposed in this thesis is based on UML
sequence diagrams [83] and its formalization with STAIRS [41, 95]. UML
sequence diagrams specify interactions between system entities by describ-
ing the exchange of messages between the entities. The sequence diagram
notation is largely based on the ITU recommendation message sequence
charts (MSCs) [47]. In the following we present various approaches to the
specification of interactions and their formalization.

The MSC notation is equipped with operators for sequential, parallel and
alternative composition, as well as operators for specifying loop and optional
interactions. The intuitive interpretation of these constructs is similar to
that of standard UML and STAIRS. There are, however, no constructs for
specifying illegal or prohibited behavior. MSCs are also not supported by
a well-defined notion of refinement. An operational semantics for MSCs is
provided by ITU [46], which is based on work by Mauw and Reniers [77, 78].

In [62], a compositional denotational semantics for MSCs based on the
notion of partial-order multi-sets is proposed. This denotational semantics
complements the standardized operational semantics, and does not aim to
introduce new expressiveness. Refinement is also not addressed.

The variant of MSCs presented in [66] is underpinned by a formal se-
mantics and supported by formal notions of refinement. Whereas the ITU
operational semantics is based on process algebra, the MSC semantics in
[66] is defined in terms of streams. Streams consist of a sequence of system
channel valuations and a sequence of state valuations. A specification is
represented by a set of streams, and the existence of more than one element
in the set indicates nondeterminism. The proposed notions of refinement
include the reduction of possible behavior and component decomposition.

A feature of this variant of MSCs that go beyond that of the ITU rec-
ommendation is a trigger construct that supports the specification of one
scenario causing the occurrence of another scenario, thus facilitating the
capturing of liveness properties. Additionally, the approach in [66] operates
with four different interpretations of MSCs, namely existential, universal,
exact and negated. The existential interpretation means that the behavior
described by the MSC should be possible, in the sense that the behavior
cannot, be prohibited in all executions. The universal interpretation means
that the specified behavior must occur in all executions. The exact interpre-
tation is a strengthening of the universal one, and means that all behaviors
that are not explicitly described by the MSC in question are prohibited.
The negated interpretation means that the specified behavior is unwanted
and should not occur.

Live sequence charts (LSCs) [24, 40] are an extension of MSCs that
particularly address the issue of expressing liveness properties. LSCs support
the specification of two types of diagrams, namely existential and universal.

46 CHAPTER 4. STATE OF THE ART

An existential diagram describes an example scenario that must be satisfied
by at least one system run, whereas a universal diagram describes a scenario
that must be satisfied by all system runs. Universal charts can furthermore
be specified as conditional scenarios by the specification of a prechart that, if
successfully executed by a system run, requires the fulfillment of the scenario
described in the chart body.

The universal/existential distinction is a distinction between mandatory
and provisional behavior, respectively. Such a distinction is also made be-
tween elements of a single LSC by characterizing these as hot or cold, where
a hot element is mandatory and a cold element is provisional. LSCs fur-
thermore have the expressiveness to specify forbidden scenarios by placing a
hot condition that evaluates to false immediately after the relevant scenario.
The condition construct of LSCs and MSCs corresponds to UML 2.1 state
invariants and is a condition that must evaluate to true when a given state is
active. If and when the system fulfills the given scenario, it is then required
to satisfy the false condition, which is impossible.

An operational semantics for LSCs is provided in [40]. The semantics
is tailored for a tool for requirements capturing and the execution of LSCs.
Whereas the semantics of MSCs is that of weak sequencing, which yields a
partial ordering of events, the semantics of LSCs requires the beginning of
sub-diagrams to be synchronization points between lifelines. As a result the
semantics of a loop, for example, is generally not the same as the semantics
of a diagram in which the iterations are written out as a series of interactions.

Modal sequence diagrams (MSDs) [39] are defined as a UML 2.0 pro-
file. The notation is an extension of UML sequence diagrams, and is based
on the universal/existential distinction of LSCs. The main motivation for
the development of the MSD language is the problematic definitions of the
assert and negate constructs of UML sequence diagrams. The authors ob-
serve that the UML 2.0 specification is contradictory in the definition of
these constructs, and also claim that the UML trace semantics of valid and
invalid traces is inadequate for properly supporting an effective use of the
constructs.

The semantics for MSDs is basically the same as for LSCs. The main
difference is that the LSC prechart construct is left out. Instead, a more
general approach is adopted in which cold fragments inside universal dia-
grams serve the purpose of a prechart. A cold fragment is not required to
be satisfied by all runs, but if it is satisfied, it requires the satisfaction of
the subsequent hot fragment. As for LSCs, MSDs are not supported by a
well defined notion of refinement.

Triggered message sequence charts (TMSCs) [101] are an approach in
the family of MSCs the development of which was motivated by the fact
that MSCs do not have the expressiveness to specify conditional scenarios,
i.e. that one interaction (the triggering scenario) requires the execution of
another (the action scenario). The work was also motivated by the observa-

4.3. TRUST MANAGEMENT 47

tion that MSCs are not supported by a formal notion of refinement, and that
MSCs lack structuring mechanisms for properly grouping scenarios together.

The triggering scenarios of TMSCs are similar to the trigger construct of
the MSC variant in [66] and the precharts of LSCs. An important semantic
difference, however, is that whereas the former are synchronized at the be-
ginning of precharts and main charts, TMSCs are based on weak sequencing
in the spirit of the MSC recommendation of ITU.

The semantics of TMSCs is defined in terms of so-called acceptance
trees. Acceptance trees record the traces that are defined by a specification,
and also distinguish between required and optional behavior. Similar to
STAIRS and Deontic STAIRS, TMSCs are supported by a formal notion of
refinement that is transitive and modular.

4.3 Trust Management

Trust management was first addressed as a separate problem in [14], where
it is referred to as the problem of authentication and authorization in dis-
tributed systems. The underlying idea of the approach is that a system does
not need to verify the identity of entities accessing system resources, only
trust them to do so. Rather than authenticating entities, the approach is
based on verification of credentials and the assignment of access rights to
these. Given an access request, the decision of whether access should be
granted or not depends on a policy and a set of credentials. The approach
is implemented in PolicyMaker [15] and further developed in KeyNote [13].

Trust negotiation, see e.g. [114], is an approach to automated trust
establishment between entities that are previously unknown to each other,
and that communicate over an electronic network. In this approach trust
is gradually built through the exchange of credentials and access control
policies. The negotiation begins with an entity A requesting access to a
resource controlled by an entity B. B may then reply by requesting A
to present a particular credential, as specified by B’s access control policy
regarding the resource in question. If the credential is held as sensitive by
A, A will reply by requesting a credential from B. Gradually, trust can be
established by such exchange of credentials and access control policies. In
practice the trust negotiation process is conducted by automated agents and
is transparent to users.

The above approaches to trust management address the preservation of
information security in relation to trust. As the interest in trust management
has evolved and increased the last decade, the scope of trust management has
also widened. Interactions that traditionally have taken place in face-to-face
situations increasingly occur over electronic networks such as the Internet.
This includes commerce, entertainment, social relations, public services, etc.
The approach presented in [85] suggests that what needs to be understood

48 CHAPTER 4. STATE OF THE ART

in relation to trust is the involved risks, and that trust management is “to
identify the circumstances under which we are prepared to accept risks that
may be exposed by relying on certain entities”. Such a broader scope is also
proposed in [56], where trust management is described as an activity “in
the intersection between sociology, commerce, law and computed science”,
and is “to make assessments and decisions regarding the dependability of
potential transactions involving risk”.

The works presented in [37, 38] take the view that trust management is
“the activity of collecting, codifying, analysing and presenting evidence re-
lating to competence, honesty, security or dependability with the purpose of
making assessments and decisions regarding trust relationships for Internet
applications”. The evidence may be certificates, risk assessments, usage ex-
perience or recommendations. The SULTAN framework presented in these
papers supports the specification and analysis of trust relations, as well as
the evaluation of associated risks. Trust is defined as a quantified belief,
where the quantification can be in a numerical range or classified as e.g.
low, medium and high.

The SULTAN language specifies trust relations as policy rules of the
following form: PolicyName: trust(Tr,Te,As,L) — Cs; , where PolicyName
is the name which is unique, Tr denotes the trustor, Te the trustee, As the
action set, L the trust level, and Cs the constraints that must be satisfied for
the trust relationship to be established. Notice that L ranges from complete
distrust to complete trust, so the rules may also specify the conditions under
which an entity should not be trusted.

SULTAN also captures positive and negative recommendations in the
following form: PolicyName: recommend (Rr,Re,As,L) «— Cs; , where Rr
is the recommendor, Re is the recommendee, and L is the recommendation
level, i.e. the level of confidence in the recommendation issued by Rr.

Recommendations and trust relations can in the SULTAN framework
be combined such that a recommendation serves as the basis for trust or
vice versa. Using this language a system manager can specify rules and
conditions for trust based decisions. The SULTAN framework also consists
of an analysis tool that can be queried about specifications, for example to
detect inconsistencies. The SULTAN risk service calculates risk levels by
returning the probability of an unwanted incident to occur, along with the
loss of asset value in case of the occurrence. The probabilities and degrees
of loss must be fed into the service, e.g. based on monitoring, studies and
statistics.

Recommendations can be gathered from known peers directly in order
to estimate the trustworthiness of other entities. In [57] this is brought a
step further where recommendations are passed from peer to peer and form
a basis for trust to propagate over networks. The problem addressed is that
of trust transitivity which implies that an entity A may trust an entity C
based on the fact that A already trusts an entity B that in turn trusts

4.3. TRUST MANAGEMENT 49

C. A framework is proposed for modeling and reasoning about transitive
trust in chains and networks, and for identifying the conditions under which
transitive trust may occur.

The approach in [57] uses subjective logic [53] for expressing trust and
computing trust transitivity. Subjective logic is a belief calculus which is
related to probability theory, but where the sum of the possible outcomes not
necessarily add up to 1. When rolling a die there are six possible outcomes,
the probabilities of which add up to 1. Subjective logic models the belief
held by an agent in the truth of a statement by a triple (b,d,u) where b
denotes the belief, d denotes the disbelief and w denotes the uncertainty,
such that b,d,u € [0,1] and b+ d+u = 1. Subjective logic can then be used
to represent trust as the belief held by the trustor in the trustworthiness of
the trustee with respect to a given transaction.

The work in [54] shows how trust modeling using subjective logic can be
combined with reputation systems to support users in assessing quality of
web-based services. Reputation is global and objective in the sense that all
users will see the same reputation score for a particular agent. Trust, on the
other hand, is local and subjective in the sense that different users generally
have different trust in the same agent. By combining the reputation systems
with trust analysis, the authors claim that we are provided a more powerful
and flexible framework for online trust and reputation management.

A method for belief-based risk analysis supported by the belief calculus of
subjective logic is presented in [55]. Traditional methods for risk analysis,
e.g. [3, 21, 27], follow a pattern of identifying assets, vulnerabilities and
threats, as well as evaluating the levels of risk the assets are exposed to as
a result of the threats and vulnerabilities. The claim in [55] is that such
methods can be more general and flexible by using subjective logic. The
idea is that the opinions gathered regarding threats and vulnerabilities may
include a degree of ignorance, which should be taken into account when
making assessments. The resulting risk assessments will then document the
degree of ignorance or uncertainty regarding the estimations, and thereby
give a more true picture than traditional methods are capable of.

The trust management method presented in [35] uses requirements en-
gineering methods that support the modeling of organizations and actors,
as well as the modeling of trust and trust relationships. The work is mo-
tivated by the observation that existing requirements engineering methods
treat non-functional requirements, such as security and trust, at a computer
system level, i.e. at the level of software, hardware and networks. The
claim is that this level is generally not appropriate for trust management,
which requires an understanding at an organizational level. The method
offers modeling languages for specifying issues such as dependencies, trust
and delegation. A dependency means that one actor depends on another
actor to accomplish a goal, execute a task or deliver a service. Trust is a
relation between two agents, where the trustor trusts the trustee with re-

50 CHAPTER 4. STATE OF THE ART

spect to the accomplishment of a goal. Delegation means that one actor
delegates to another actor a goal, the permission to execute a task, or access
to a resource. The models and their formalizations allow the analysis of
trust at early phases of requirements engineering with the advantage that
organization oriented requirements with respect to trust and security can
be captured, while ignoring details about the realization of these with, for
example, digital certificates or access control mechanisms. The method is
supported by automatic verification of requirements, and the authors claim
that the model can be enhanced to capture degrees of trust.

The method presented in [35] is further developed in [36] to take into
account two different levels of analysis, namely a social level and an individ-
ual level. The former addresses the structure of organizations, whereas the
latter addresses individual agents. This distinction is important, the author
states, where an organizational role that normally is trusted is played by an
untrusted individual. The approach offers techniques for the modeling and
analysis of the two levels, and the automatic detection of conflicts that may
arise.

Chapter 5

Overview of Invented
Artifacts

In this chapter we give an overview of the artifacts that are proposed in this
thesis. We begin by presenting the overall picture where we explain how
the artifacts are related and how they combine into a larger framework for
policy based management. Subsequently, each of the artifacts is presented
separately in more detail. We also give references to the chapters in Part II
for further details.

5.1 Overall Picture

Policy based management of information systems basically amounts to en-
forcing a set of rules for the purpose of fulfilling some critical requirements
to the systems. The process from the initial requirements capture down to
policy enforcement comprises a variety of activities, however, each of which
should be supported by adequate methods.

We refer collectively to the three first artifacts of this thesis, namely the
policy specification language, the policy adherence relations and the policy
refinement relations, as Deontic STAIRS. Deontic STAIRS is a domain in-
dependent approach to policy based management, with support for policy
capturing, formalization, development and analysis.

During the initial policy capturing, the policy rules are derived from busi-
ness goals, security requirements, trust relations, service level agreements,
etc. This activity typically involves personnel of various backgrounds, and
it is important to ensure communication between the participants and to
establish a common understanding of the requirements. The requirements
must furthermore be correctly communicated to the technical personnel re-
sponsible for developing and implementing the policy.

Deontic STAIRS facilitates this high-level phase of policy capturing by
the support for abstraction. Abstraction involves the perspective or purpose

51

52 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

of the viewer, and different purposes result in different abstractions [94].
During the initial activity of policy capturing, any details about system
entities, architecture and functionality that are irrelevant or unimportant
from the viewpoint of the involved personnel can be ignored.

The representation of policy specifications at various levels of abstraction
is depicted at the left hand side of Fig. 5.1. P; denotes the initial, most
abstract specification that results from the policy capturing phase.

Policy System
evel P S,
L L

P2 S2

& ‘ Adherence &

Abstraction ;
P3 .

i |

: S
oo ¢
Ie(\)/‘gl Py §

Figure 5.1: Overview of artifacts

The notion of abstraction also pertain to the relation between specifica-
tions [94]; in order to be able to represent policy specifications from differ-
ent viewpoints and at different levels of detail, it is necessary to precisely
characterize what it means that one policy specification is an abstraction of
another policy specification. This characterization is in Deontic STAIRS for-
mally captured through the notions of policy refinement. Policy refinement
is defined as a binary relation between policy specifications that precisely
captures what it means that one policy specification is more concrete and
low-level than another policy specification. In Fig. 5.1, the policy refinement
relation is represented by the squiggled arrows between the policy specifica-
tions P, and P», P, and Pj, etc., down to the most concrete and low-level
policy specification P,.

The policy refinement relations of Deontic STAIRS not only capture the
notion of abstraction. They also support the process of developing a policy

5.1. OVERALL PICTURE 93

specification from the initial and high-level to the final and low-level pol-
icy specification to be implemented. Firstly, the policy refinement relations
support an incremental development process where the policy specification
can be refined under any number of steps. Secondly, the policy refinement
relations support a modular development process where a policy specifica-
tion can be decomposed into several manageable pieces that are developed
separately, possibly by several development teams.

The correct formalization, development and enforcement of policies re-
quire that policy specifications are correctly and unambiguously understood.
It must therefore be precisely described what it means that a system sat-
isfies a policy specification. In Deontic STAIRS this is formalized through
the notion of policy adherence. This is illustrated in Fig. 5.1 by the arrow
from the policy representations on the left hand side to the system repre-
sentations at the right hand side. By S; through S,,, we denote various
system specifications, whereas S denotes a system that implements these
specifications.

The artifact of the adherence relation is directly related to the artifact of
the policy specification language since it defines how to satisfy specifications
in the language. It is, however, also related to the artifact of policy refine-
ment. Policy refinement means to bring a policy specification to a lower
level of abstraction, thus bringing it closer to implementation and enforce-
ment. A refined specification should fulfill the requirements represented at
the abstract level, which means that the enforcement of the concrete spec-
ification should imply the enforcement of the abstract specification. The
fulfillment of this property is demonstrated by showing that adherence to a
refined policy specification implies adherence to the previous, more abstract
policy specification. With reference to Fig. 5.1, if it is established that the
system S adheres to the concrete policy specification P, it follows that S
adheres to all of the more abstract policy specifications up to P;.

Through the adherence relation we also capture the notion of consistency
of policy specifications. Inconsistency of policy specifications arise from
conflicting policy rules, in which case the set of systems that adhere to the
policy specification is empty. The adherence relation therefore facilitates not
only the analysis of the relation between policy specifications and systems,
but also the analysis of policy specifications for detection of inconsistencies.

Deontic STAIRS furthermore allows analysis of the relation between pol-
icy specifications and system specifications by characterizing what it means
that a system specification adheres to a policy specification. Such a charac-
terization is important for situations in which a system is developed and an
existing policy imposes requirements to the system under development. In
Fig. 5.1, this means that for each of the policy specifications P; to the left
and each of the system specifications S; to the right, the adherence relation
characterizes what it means that S; satisfies F;.

The squiggled arrows from the system specification S; to the system

54 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

specification Ss and down to the system specification S, to the right in
Fig. 5.1 illustrate the process of system development under refinement. The
combined view of policy refinement and system refinement allows analysis
of the relation between a policy specification and a system specification at
all phases of the respective development processes. However, for analysis of
the relation between abstract specifications F; and S; to be meaningful, the
analysis results must be preserved under refinement. Otherwise the analysis
must be conducted from scratch after each refinement step [76]. In this
thesis we have addressed the issue of preservation of policy adherence under
refinement. By identifying the conditions under which policy adherence is
preserved under refinement of policy specifications and under refinement of
system specifications, analysis can be conducted at abstract phases when
it generally is easier and more efficient. Early analysis is beneficial also
because changes are generally quicker and cheaper to implement during the
early phases of the development process.

Policy refinement is not well addressed in the research on policy-based
management, which means that the problem of preservation of policy adher-
ence under refinement is also scarcely addressed. The problem of integrating
policy requirements with the requirements to system design and functional-
ity, and the preservation of these under the development process is, however,
recognized and well addressed. This is particularly the case for security re-
quirements.

In [76] it is argued that security requirements should be taken into ac-
count during the system development process. The reason is that enforcing
security only at the end of the development process “by preventing certain
behaviors. . . may result in a so useless system that the complete development
effort would be wasted” [76]. A further argument stated in [59] is that “it
would be desirable to consider security aspects already in the design phase,
before a system is actually implemented, since removing security flaws in
the design phase saves cost and time”.

The problem of security preservation under refinement addressed in e.g.
[62, 76] assumes that the security properties to be enforced are given al-
ready at the beginning of the system development process. The challenge
is therefore to ensure that these properties are preserved under refinement.
The capturing and specification of the desired security requirements is in
this case held separate from the system development in which these require-
ments are integrated. In the context of policy-based management this would
correspond to a development case in which the policy is captured and de-
veloped before the system to which the policy applies is developed while
ensuring that the system adheres to the policy.

The approach proposed in [7], on the other hand, is an integration of the
security model with the system model in a combined development process.
The system model specifies the system design and functionality, whereas the
security model specifies the access control policy for the system. A similar

5.1. OVERALL PICTURE 95

approach is proposed in [59, 60] for providing support for various security
aspects to be taken into account during the overall system development.

Fig. 5.2 illustrates these two development cases of taking the policy spec-
ification into account during the system development. Development case (a)
shows a separate development process in which the initial, most abstract pol-
icy specification P; is developed under refinement into the resulting, concrete
policy specification P3. Thereafter, the system is developed from the ini-
tial, abstract system specification S; down to the resulting, concrete system
specification S3. The solid, straight arrow denotes that S; adheres to the
final policy specification Ps, i.e. P3 —, S;. We show that the refinement
relation of STAIRS is adherence preserving, which means that if P3 —, Sp
holds, so do P3 —, S3, which is denoted by the dashed arrow of development
case (a) in Fig. 5.2.

Policy System Policy System
P; S P; B S
A
PZ Sg PZ SZ
P3 ****** >[’1 S3 P3 ””” >a Sg

(a) Separate development (b) Combined development

Figure 5.2: Development cases

In development case (a) the policy specification is fixed under refine-
ment of the system specification. Development case (b) in Fig. 5.2 shows
a combined development process in which both the policy specification and
the system specification may undergo refinement. As for development case
(a), if adherence is established at an abstract level the result of this anal-
ysis effort should be preserved under refinement. This is illustrated with
P —, S7 at the abstract level in Fig 5.2 and the dashed arrow relating P;
and S5 denoting preservation of adherence at the refined level. Since policy
refinement generally involves a strengthening of the requirements imposed
by the policy specification, adherence is not preserved in the general case.
The important thing, however, is to preserve the results of the analysis that
was conducted at the abstract level such that the same analysis need not be
conducted again after each refinement step. New requirements imposed by
the policy specification after a step of policy refinement yield a proof obliga-
tion that needs to be solved at the refined level. We show that under a set

56 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

of identified rules for the combined refinement of policy specifications and
system specifications, adherence results that are established at the abstract
level are preserved under refinement.

In summary, the three artifacts of the policy specification language, the
policy adherence relations and the policy refinement relations provide a
framework for the formalization, development and analysis of policies. The
framework is generic in the sense that it is applicable to various domains,
such as the management of security, trust, access control, and services. In
order to demonstrate the applicability of Deontic STAIRS we have in this
thesis addressed trust management as a particular case. As part of this, we
have proposed a method for the development of trust management policies,
which constitutes the fourth artifact of this thesis. The method is sup-
ported by appropriate modeling languages, including Deontic STAIRS. As
such, the method demonstrates the suitability of using our policy specifica-
tion language for the formalization of trust management policies.

5.2 The Policy Specification Language

The Deontic STAIRS language is a defined as an extension of the UML
2.1 sequence diagram notation [83] allowing the specification of conditional
rules in the form of permissions, obligations and prohibitions. With this
extension, we are providing support for the specification and development
of policies in the setting of UML.

Sequence diagrams capture dynamic/behavioral aspects of information
systems, and since policies express constraints on behavior, sequence dia-
grams are a suitable candidate for policy specification. This type of diagram
is also, together with use case diagrams, the most widespread UML nota-
tion for specifying dynamic aspects of systems [30, 111]. Since the policy
specification language is defined as a modest and conservative extension of
the UML, people that are familiar with the UML should be able to use and
understand the notation.

Deontic STAIRS is based on STAIRS [41, 95], which is a formal approach
to system development with UML sequence diagrams, and is underpinned by
a formal semantics. A formal semantics explains the meaning of the policy
specifications in precise, mathematical terms, and also supports formal anal-
ysis. A formal semantics furthermore allows the development of tool support
for the specification, development and analysis of policy specifications.

Deontic STAIRS is not tailored for a specific type of policy, thus allowing
the specification of policies for various domains. A special purpose policy
language may have tailored constructs for its domain, but a general purpose
language is advantageous as it applicable across domains and at various
abstraction levels.

5.2. THE POLICY SPECIFICATION LANGUAGE 57

5.2.1 Examples of Deontic STAIRS Specifications

We begin our presentation of the Deontic STAIRS language by giving an
example of policy rule specifications. Fig. 5.3 shows the specification of the
three rules for access control that we addressed in the setting of standard
UML in Fig. 2.1 of Section 2.2.

A policy rule is specified as a sequence diagram that consists of two parts,
namely the triggering behavior and the rule body. The keyword rule in the
upper left corner indicates the type of diagram and is followed by a chosen
name for the rule. The triggering behavior specifies the conditions under
which the rule applies and is captured with the keyword trigger. The rule
body specifies the behavior that is constrained by the rule and is captured
by one of the keywords permission, obligation or prohibition indicating the
modality of the rule.

The rule permit in Fig. 5.3 specifies that a user U is authorized to ac-
cess services on the application A provided that the user has presented a
valid credential to the application. As indicated by the keyword, this is a
permission rule. The interpretation is that whenever a system for which the
rule applies fulfills the triggering behavior, the permitted behavior must be
offered as a potential choice of behavior while allowing other behavior to be
conducted instead.

The rule prohibit addresses the case in which the user fails to authenticate
to the application. The authentication failure is the behavior that triggers
the rule, and the constraint is, as indicated by the keyword, that the user is
prohibited to access services on the application. The interpretation is that
whenever a system for which the rule applies fulfills the triggering behavior,
the prohibited behavior must not be conducted.

Finally, the rule verify is an obligation rule stating that whenever the
application receives a credential from the user, the application is obliged to
check the validity of the credential. The interpretation is that whenever a
system for which the rule applies fulfills the triggering behavior, the obliged
behavior must be conducted.

Deontic STAIRS is a quite modest extension of the standard UML se-
quence diagram notation; the only new constructs are that of the policy
trigger and the deontic modalities. The extension is, however, significant
for providing the UML sequence diagram notation with the expressiveness
required for policy specification. Firstly, the triggering construct allows the
specification of conditional scenarios, i.e. scenarios that should, may or
should not occur only if a certain condition given as a scenario is fulfilled.
Secondly, whereas standard UML sequence diagrams cannot distinguish be-
tween behavior that must occur and behavior that must be offered as a
potential choice, these two forms of valid behavior is with Deontic STAIRS
precisely captured by the deontic modalities of obligation and permission,
respectively.

58 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

rule permit

A
z

trigger request_service

i

request_credential

credential

|
|
|
1

—
credential_ok !

\%‘

access_granted

permission

access_service

provide_service

rule deny

e deny,

request_service

trigger J

request_credential

credential

|
|
|
1

—
credential_invalid !

- ;\

access_denied

prohibition J

| access_service

|

I . .

} provide_service
|

|

rule verify

il

H
I

trigger credential

i

i
|
|
1
obligation !
|
|

verify_credential
—

|

Figure 5.3: Capturing policy rules for access control using Deontic STAIRS

5.2. THE POLICY SPECIFICATION LANGUAGE 59

The extension of the UML sequence diagram notation is conservative in
the sense that to the extent that UML constructs are part of the Deontic
STAIRS language, the constructs are used in accordance with the UML
standard [83]. This is important to ensure that people that are familiar
with the UML should not be prone to use Deontic STAIRS erroneously.

As shown in Fig. 5.3, each diagram in the Deontic STAIRS language
specifies a single policy rule. By definition, a policy is a set of rules, so a
policy specification is in Deontic STAIRS therefore given as a set of dia-
grams. The policy specification P = {permit, deny, verify}, for example, is
the set that consists of the three rules depicted in Fig. 5.3.

5.2.2 Syntax and Semantics

In the following we introduce the textual syntax of the Deontic STAIRS
language that precisely defines the legal expressions in the language. We
furthermore explain the semantics. Since policy rules are specified using se-
quence diagrams we first give the definition of the textual syntax of sequence
diagrams as formalized in the STAIRS approach.

The set of legal expressions is defined using a textual representation of
specifications, where d denotes a sequence diagram. By £ we denote the set
of all events, where an event occurs on a lifeline and is either the transmission
of a message or the reception of a message. Formally, the set of syntactically
correct sequence diagrams D is defined as the least set such that

skipe DANECD
deD = optdeD
di,dy €D = dyseqdys € DAdy pardo € DAdy altdy € D
deDANSCNU{0,00} = loop SdeD

The set of syntactically correct Deontic STAIRS diagrams R is then
defined as the least set such that

di,dy € D = trigger d; permission do € R A
trigger d; obligation ds € R A
trigger d; prohibition dy € R

The inductive definition of the sequence diagram syntax shows that se-
quence diagrams are built by combining sub-diagrams using various compo-
sition operators. The base case shows that a single event e € £ is a valid
sequence diagrams, as is also the diagram skip, which is a STAIRS exten-
sion of the UML standard for expressing that nothing happens. The opt
operator specifies that the operand is optional, the seq operator specifies
the sequential composition of its operands, and the par operator specifies
the parallel composition of its operands. The alt operator is for specifying

60 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

alternatives, and the loop construct is for specifying several iterations of the
same diagram. Observe that the number of iterations may be underspecified
since S is given as a set rather than a single value.

The basic composition operators are seq, par and alt, since opt and loop
are syntactic sugar. The specification opt d is defined by d alt skip, whereas
loop is defined by alt and seq. The specification loop {1,2} d, for example,
is shorthand for d alt (d seq d).

Semantically, a sequence diagram is represented by a set of traces, where
a trace is a sequence of event occurrences ordered by time. As mentioned
above, an event occurs on a lifeline, and is either the transmission of an
message (represented by an arrow tail) or the reception of a message (rep-
resented by an arrow head). Events are ordered from top to bottom along
each lifeline, and the transmission of a message is ordered before the corre-
sponding reception of the message.

The event of sending a message m is represented by the pair (!,m),
whereas the event of receiving a message m is represented by the pair (?,m).
The message m is a triple (s, tr, re) that encodes the message content in the
form of a signal s, as well as the transmitter ¢r and the receiver re. Both tr
and re are lifelines.

As a basic example, consider the sequence diagram d of Fig. 5.4 showing
the transmission of the two messages m and n from lifeline L; to lifeline L.
The first event to occur is the transmission of the message m on lifeline
which we abbreviate !m. Next, either the reception of the message m occurs
on lifeline Ly, abbreviated ?m, or the transmission of the message n occurs
on lifeline L, abbreviated !n. There are therefore two traces representing the
interaction specified in Fig. 5.4, namely (!m, ?m,!n, ?n) and (Im, In, 7m, 7n).

Figure 5.4: Sequence diagram

Formally, the semantics of a sequence diagram d is defined by the func-
tion [] that yields the set of traces [d] representing the behavior specified
by the diagram. For an event e € £ and for the diagram skip the semantics
is defined as follows, where () denotes the empty trace.

[e] £ {(e)}
[skip] < {()}

5.3. THE POLICY ADHERENCE RELATIONS 61

These definitions serve as the base cases in the inductive definition of
the semantics of composed diagrams. Since opt and loop are syntactic sugar
it remains to define the semantics with respect to the operators par, seq and
alt. The reader is referred to Chapter 12 for these definitions.

In the semantics of the Deontic STAIRS language we need to capture
the triggering behavior, the constrained behavior and the deontic modality.
The specification of a policy rule is therefore semantically represented by a
triple as defined in the following.

[trigger dy permission d3] = (pe,[d1], [d2])
[trigger di obligation ds] &ef (ob, [d1], [da])
[trigger di prohibition da] «f (pr, [d1], [d2])

The semantics [P] of a policy specification P, i.e. a set of policy rule
specifications, is defined as the set of the semantic representation of each of
the rules in P, i.e. [P] ={[r] | r € P}.

The semantic representation of a policy specification as a set of semantic
representations of policy rule specifications facilitates the reasoning about
policies by consulting individual rules separately. Similarly, when analyzing
the relation between policy specifications, or between a policy specification
and a system for which the policy applies, this can be done by addressing
individual rules. However, the reasoning about all rules of a policy specifi-
cation in combination may not be straightforward. This is unfortunate for
cases in which there is a need to represent and understand the requirements
imposed by all rules simultaneously, for example to check whether one policy
specification is implied by another. We have therefore defined a combined
semantics for policy specifications which is presented in Chapter 14.

The presentation of the policy adherence relations and the policy refine-
ment relations below refers to the semantics presented above. The reader
is referred to Chapter 14 for details about the combined semantics, the cor-
responding definitions of policy adherence and policy refinement, as well as
results of the relations between the two approaches.

5.3 The Policy Adherence Relations

Adherence to a policy means to satisfy or fulfill the policy. In this thesis
we have captured a notion of policy adherence both with respect to systems
and with respect to system specifications. In the former case, the question
is what it means that a running system for which the policy applies satisfies
the policy specification. In the latter case, the question is whether the spec-
ification of a system under development satisfies a given policy specification.
In the following we present each of these adherence relations in turn.

62 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

5.3.1 Relating Policy Specifications to Systems

In order to formalize and reason about the relation between a system and a
policy specification we need to establish a representation of the system. Such
a representation can be the set of traces representing the possible system
executions. A given policy rule applies to a system trace if the triggering
scenario is fulfilled by the trace. In that case, the rule imposes a constraint
on the continuation of the system trace after the point in which the rule is
triggered. Adherence to the policy rule then depends on the continuation
of the system trace, the behavior that is constrained by the rule and the
modality of the rule.

Intuitively, adherence to a permission rule means that after the point
in which the rule is triggered, there must exist a possible continuation that
fulfills the permitted behavior. Adherence to an obligation rule means that
all possible continuations fulfill the obliged behavior, whereas adherence to
a prohibition rule means that none of the possible continuations fulfill the
prohibited behavior.

This can be illustrated by structuring the system traces into a forward
branching tree depicting how the system executions evolve. Assume, for
example, a system with three possible executions represented by the trace
set S = {h1,he,hs} and that hy and hg have a common prefix h,. The
structured representation of S is depicted in Fig. 5.5.

hy h; h;

hy h,

Figure 5.5: Structured traces

Recall that semantically, a policy rule is represented by a triple (dm, T, B),
where dm € {pe, ob, pr} denotes the deontic modality, T is the trace set rep-
resenting the triggering behavior and B is the trace set representing the
constrained behavior. The variation over traces in T and B represents the
various way of conducting the respective behaviors. Assuming that the sys-
tem trace hg € S does not fulfill any of the triggering traces T', the rule
(dm, T, B) does not apply and is trivially adhered to by the system execu-
tion.

In case the prefix h, fulfills a trace in T, the rule (dm, T, B) imposes a

5.3. THE POLICY ADHERENCE RELATIONS 63

constraint on the continuations hy and h.. For a permission, at least one of
hy and h. must fulfill a trace in the set B. For an obligation, both h; and h,
must fulfill a trace in B, and for a prohibition, none of these continuations
may fulfill any of the traces in B.

Adherence of a system S to a policy rule r is denoted r —, S. For a for-
mal definition, the reader is referred to Chapter 12. For a policy specification
P, adherence is denoted P —, S and defined Vr € P :r —, S.

An important feature of the adherence relation is that it takes into ac-
count that a policy specification refers only to the system entities and system
behavior of relevance to the domain of management. The rules in Fig. 5.3,
for example, refer only to issues in relation to authentication and authoriza-
tion. In general, a system for which these rules apply will have entities and
functionality that go beyond what is specified in the rules. The user may, for
example, interact with the application for other purposes than service con-
sumption, the application may interact with other entities, and there may
also be system behavior in which the user and application are not involved.

For a system trace h € S to fulfill a triggering trace ¢t € T, ¢t must be a
sub-trace of h, which is denoted ¢ < h. This means that sequence of events
t must occur in the same order in h, however allowing other events to be
interleaved. We have, for example that (a,b,c) < {e,a,b, e, f,c), but none of
(a,b,c) < {e,a,c, e, f,b) and (a,b,c) < (e, b, e, f,g,b). The sub-trace relation
< is formally defined in Chapter 12.

As a more specific example, consider again the rules in Fig. 5.3. The
triggering behavior of the rule permit is represented by the singleton set that
consist of the trace (Irs, 7rs,lre, 7re,le, 7¢, lco, 7co, lag, Tag). The rule body
is represented by the singleton set consisting of the trace (las, ?as, Ips, 7ps).
Assume, now that at some point during a system execution the following
sequence of events occurs.

(..., Irs e, Trs,lre, Te, Tre, e, e, L f e, g, Tue, Leo, Teo, lag, Tag,

?f,las, 7as,'ps,7g, Tps, ...)

It is easily verified that this system trace triggers the rule permit immediately
after the occurrence of the event 7ag, and that the continuation of the trace
fulfills the rule body. Incidentally, the system trace furthermore triggers the
obligation rule verify by the events !¢ and 7c and fulfills the obliged behavior
in the continuation by the events lvc and 7vc.

The formalization of the notion of policy adherence also yields a notion
of policy consistency or policy conflict. A policy is conflicting if, for example,
one rule specifies a certain behavior as permitted while the same behavior
is prohibited by another rule. In that case no system adheres to the policy
specification, and we say that the policy is inconsistent.

The problem of detecting and resolving policy inconsistencies is impor-
tant in policy based management of distributed systems [74], since policy

64 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

conflicts are likely to occur. Different policy rules may be specified by dif-
ferent managers and enforced in a distributed manner, and multiple policy
rules may apply to the same system entities. With a precise notion of pol-
icy consistency, tools and methods may be developed for the detection and
resolution of conflicts.

5.3.2 Relating Policy Specifications to System Specifications

Adherence of a system specification S to a policy specification P is defined
as a generalization of the adherence relation for systems. The important
difference between the representation of a system and the representation of
a system specification is that a system execution is represented by a trace in
the former case and by a trace set in the latter case. The representation of a
system execution as a trace set in the case of system specifications captures
a notion of underspecification in the sense that each trace is considered as
a valid fulfillment of a particular behavior.

In this thesis we use the STAIRS [41, 95] formalization of UML sequence
diagrams for representing system specifications. An important feature of
STAIRS is that it has the expressiveness to distinguish between underspec-
ification and inherent nondeterminism. Inherent nondeterminism captures
alternative behaviors each of which must be offered as a potential choice. In
the STAIRS syntax the alt operator is used for underspecification, whereas
the xalt operator is introduced for capturing inherent nondeterminism.

As an example, consider the specification of a beverage machine that
should offer both coffee and tea, where coffee can be offered as americano or
espresso. If this is specified by (americano alt espresso) xalt tea, the machine
must always offer the choice between coffee and tea since it is represented by
inherent nondeterminism. A machine that can only serve espresso if coffee
is chosen fulfills the specification since this alternative is represented by
underspecification. The reader is referred to Chapter 13 for further details
and for the formal semantics of the xalt operator.

The STAIRS expressiveness to capture inherent nondeterminism is cru-
cial in relation to permission rules of policy specifications, since permissions
specify choices that must be offered as a potential alternative.

In the following we explain adherence of a STAIRS system specification
to a Deontic STAIRS policy specification by giving an example. The se-
quence diagram application in Fig. 5.6 specifies the interaction between a
user U and an application A. After the user requesting a service and sending
a credential for verification, there are two alternatives. The first alternative
describes the situation in which the credential is invalid and the user access-
ing services is negative. The second alternative describes the situation in
which the credential is valid. In that case, three choices of behavior should
be available. The first one is simply skip, capturing that the user may refrain
from doing anything. The second specifies the user accessing services, and

5.3. THE POLICY ADHERENCE RELATIONS 65

sd application J sd administrator J

update_config

| |
1 ok 1
I |
| |

request_service

request_credential

credential

verify_credential
l%‘

credential_invalid
=

access_denied

access_service

provide_service

credential_ok

access_granted

access_service

provide_service

update_profile
ok

Figure 5.6: System specification

the third specifies the user updating its user profile on the application.

A full system specification will typically describe other interactions be-
tween the user and the application, and interactions between other system
entities. To keep the example small we have added only one diagram, namely
administrator, which is depicted to the right in Fig. 5.6. This shows the secu-
rity administrator SA updating the configurations of the application A. We
let the complete system specification S be given by application par adminis-
trator, i.e. the parallel composition of the two diagrams. Semantically, this
is represented by the interleaving of the traces from each of the operands.

Consider again the policy specification P given by the three rules in
Fig 5.3. It is easily verified that the first alternative of the diagram ap-
plication triggers the prohibition rule deny. Adherence of the specification

66 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

S to the rule deny then requires that the body of the prohibition rule is
not fulfilled by the alternative in question in the system specification. The
rule body describes the user accessing services, which is specified as nega-
tive using the neg operator on the relevant part of the system specification.
The system specification therefore adheres to the prohibition rule, which is
denoted deny —4 S.

In the same way, the second alternative of the system specification trig-
gers the permission rule permit. Adherence requires that after the message
access_granted in the system specification, the body of the permission rule
must be given as a potential alternative. This is indeed the case by the
second operand of the xalt operator that follows the message in question.
System adherence to the permission rule is denoted permit —, S.

Finally, the system specification S adheres to the obligation rule verify
since the triggering message credential is followed by the obliged message
verify_credential. This is denoted verify —, S.

Since the system specification S adheres to each of the rules, S adheres
to the policy specification P, which is denoted P —, S. For more details
and the formal definition of adherence of system specifications to policy
specifications, the reader is referred to Chapter 13. In Chapter 14 we show
that the adherence relation that is formalized on the basis of the combined
semantics of policy rules is equivalent to the adherence relation described in
this subsection.

5.4 The Policy Refinement Relations

Refinement of a policy specification means to strengthen the specification,
taking into account more details about the system for which the policy
applies, making the specification more concrete, and bringing it closer to
implementation and enforcement. The formalization of policy refinement as
a relation between policy specifications precisely defines what it means that
one policy specification is a correct refinement of another.

A policy specification is refined by refining individual rules in the speci-
fication or by adding rules to the specification. An individual rule is refined
by weakening the trigger or strengthening the rule body. Weakening the
trigger means to increase the set of traces that trigger the rule, thus mak-
ing the rule applicable under a wider set of circumstances. For permissions
and obligations, the rule body is strengthened by reducing the set of traces
representing the behavior, thus reducing underspecification. Since prohibi-
tions specify illegal behavior, the body of these rules are strengthened by
increasing the set of traces representing the rule body.

Refinement of policy rules by weakening the trigger or strengthening the
rule body is related to refinement in the context of assumption/guarantee
specifications [18] in which the assumption specifies properties of the envi-

5.4. THE POLICY REFINEMENT RELATIONS 67

ronment in which a component is supposed to execute, and the guarantee
specifies requirements to the component that must be fulfilled whenever
the component is executed in an environment that satisfies the assumption.
An assumption/guarantee specification can be refined by weakening the as-
sumption or strengthening the guarantee [18].

In the following we explain policy refinement by giving examples. The
reader is referred to Chapter 12 and Chapter 14 for the formal definitions
and for results on transitivity and modularity of refinement.

Let P, = {permit, deny, verify} be the initial, most abstract specification,
where each of the three rules are as specified in Fig. 5.3. The permission
rule permit specifies that the user U is permitted to access services from
the application A in case the user has presented a valid credential to the
application. Through refinement we may weaken the trigger and accept also
the presentation of a user id (e.g. a username and password) as sufficient for
getting access to services. This is specified in the rule permit2 in Fig. 5.7.
Semantically, the trace set representing the trigger of permit is a subset of
the trace set representing the trigger of permit2. The latter is therefore a
refinement of the former, which we denote permit ~» permit2.

Let Py = {permit2, deny, verify}. Since permit2 is a refinement of permit,
we also have that P, is a refinement of P;, which we denote P; ~ Ps. It is
easily verified that for any system S, if S adheres to P» it also adheres to
the more abstract specification P;.

In this case we have refined P; by refining a single rule only, but a
policy specification can be refined by refining any number of the rules and
by adding any number of rules.

Next, we further refine the specification P, by adding the obligation rule
disable of Fig. 5.7. This rule specifies that in case of three consecutive user
login failures, the application must disable the user, log the incident and
alert the user. Notice that the three obliged activities in the rule body are
composed using the par operator for parallel composition. This means that
there are no constraints on the ordering of these activities.

Let, now, P3 = {permit2, deny, verify, disable}. Since the adding of rules
is a valid refinement, we have that P, ~» P3. By transitivity we also have
that P, ~» P3. Moreover, adherence to P3 implies adherence to both P, and
Py.

Finally, we illustrate refinement by strengthening the body of the obli-
gation rule disable. By replacing the par construct with the seq construct for
weak sequencing, stronger constraints are placed on the ordering of the three
obliged activities. Semantically, the trace set of the sequential composition
of sequence diagrams is a subset of the trace set of the parallel composition
of the same sequence diagrams. The specification disable2 in which par is
replaced by seq is therefore a valid refinement of the specification disable,
i.e. disable ~~ disable2.

Let Py = {permit2, deny, verify, disable2}. Since disable ~ disable2 we

68 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

rule permit2 rule disable J
M request_service

| | ;
[| |
| | |
T t ;
alt } request_credential } loop(3) request_id 1
} credential | | id }
; 1—1‘ ; !
! credential_ok | | id_invalid |
! | | lﬁ
I T i ‘
! request_id ! ; i
| id } obligation }
[| |
‘ |
! id_ok |
] par disable_id |
| access_granted —=
|
|

disabled

|
| ‘
|
| |
| |
| |
: ;
‘ ! log_incident!
| | g_| |
permissionJ . \ \ —=
 access_service _ | ;
| L
| |
| |
T T

|

|
| provide_service |
| |
f f

Figure 5.7: Policy refinement

5.5. THE METHOD FOR THE DEVELOPMENT OF TRUST... 69

have that P; ~» P;. By transitivity Py also refines P, and P;. As before,
system adherence to P, implies adherence to all the previous, more abstract
specifications.

Policy specifications can also be refined by decomposing lifelines, referred
to as detailing [41]. At an abstract level several entities can be represented
by one lifeline, thereby ignoring details about internal behavior and about
architecture that are irrelevant for the given level of abstraction. By lifeline
decomposition, such details can be taken into account at later development
phases of lower levels of abstraction. The reader is referred to Chapter 12
for further details and examples.

The notion of policy refinement presented in this section is based on
a notion of refinement of policy rules, and the formalization refers to the
semantics of policy rules presented in Section 5.2.2. In Chapter 14 we define
a combined semantics for policy specifications in which the semantics of
individual rules are composed into one representation. The advantage of the
latter approach is that specifications that characterize the same requirements
to systems are also semantically equivalent. The notion of policy refinement
presented in Chapter 14 is based on the combined semantics, which yields
a more general notion of policy refinement than the one presented in this
section. The motivation for the generalization and the relation between the
two notions of refinement are discussed in detail in Chapter 14.

5.5 The Method for the Development of Trust Man-
agement Policies

The method for the development of trust management policies aims at un-
derstanding and constraining trust-based decisions within systems where
these decisions have direct impact on the risks and opportunities towards
the system. The application of the method should result in a trust policy
that governs the trust-based decisions, thus ensuring the most beneficial
overall level of risk and opportunity.

Such a method requires on the one hand that the notions of trust, risk
and opportunity are precisely defined and that the relations between these
notions are accounted for. On the other hand, such a method requires
adequate techniques for the modeling of the relevant aspects of the systems
under analysis.

The most basic concepts are defined in Chapter 15 where the method is
presented in detail. A more elaborate conceptual analysis and clarification
is given in Chapter 9 which is partially based on previous work [75]. In the
following we define and explain the most central concepts of relevance.

Our notion of trust is based on the definition proposed by Gambetta [34]
and defined as the subjective probability by which an actor (the trustor)
expects that another entity (the trustee) performs a given action on which

70 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

the welfare of the trustor depends. By this definition, trust is a probability
ranging from 0 (complete distrust) to 1 (complete trust). It is subjective,
which means that it is a belief held by the trustor about the trustee. The
welfare of the trustor refers to one or more assets of the trustor that is
affected; in case the trustee performs as expected it may have a positive
effect on the welfare of the trustor, otherwise it may have a negative effect.

The positive and negative outcomes are related to the aspects of op-
portunity and risk, respectively. In a situation of trust there is always a
possibility of deception or betrayal, which means that there is an inevitable
relation between trust and risk [19, 72]. In the same way, trust is always
related to opportunity, which is the dual to risk. In a trust based transac-
tion, the trustor may be willing to accept the risk considering the involved
opportunities.

A risk is defined as the probability of the occurrence of a harmful event
[50], i.e. an event with a negative impact on an asset. The level of risk is
given as a function from the consequence (loss) of the harmful event and
the probability of its occurrence [3]. The dual notion of opportunity is then
defined as the probability of the occurrence of a beneficial event, and the
level of opportunity is given as a function from the consequence (gain) of
the beneficial event and the probability of its occurrence.

As an example, assume a situation in which a person (the trustor) con-
siders to lend the amount of $80 to another (the trustee) with the promise
of being repaid the amount with 50% interest, i.e. with a gain of $40. The
trust level is 0.9, i.e. the trustor believes there is a 0.9 probability that the
trustee will pay the $120, and that there is a 0.1 probability that the $80
will be lost. Using multiplicity as the risk and opportunity function, the
opportunity level is 0.9 - 40 = 36 and the risk level is 0.1 - 80 = 8. Since the
opportunity outweighs the risk, the trustor should accept the transaction.

Importantly, however, trust is only a belief held by the trustor, so the
estimated trust level may be wrong, and therefore also the estimated levels
of risk and opportunity. Trust is important precisely in situations in which
decisions must or should be made, even if there is lack of evidence about
the future behavior of the trustee. In order to precisely assess and evaluate
trust-based decisions, the belief of the trustor and the basis for this belief
must be considered.

We say that trust is well-founded if the trust held by the trustor equals
the trustworthiness of the trustee. By trustworthiness we mean the objective
probability by which the trustee performs a given action on which the welfare
of the trustor depends. It is only in case of well-founded trust that the trustor
can correctly estimate the involved risks and opportunities.

To continue the example, assume the trustworthiness of the trustor is
only 0.65. The actual opportunity level is then 0.65-40 = 26, and the actual
risk level is 0.35 - 80 = 28, i.e. the risk is higher than the opportunity.

The method for the capturing and development of policies for trust man-

5.5. THE METHOD FOR THE DEVELOPMENT OF TRUST... 71

ssd est(out p)

subj

Figure 5.8: Modeling trust

agement is divided into three main stages, namely system modeling, trust
analysis and trust policy specification. The system models serve as a ba-
sis for the trust analysis and describe the behavior of system actors, the
decisions they make and the basis for these decisions. In particular, the
modeling describes decisions based on trust as well as the considerations
behind these decisions.

Subjective STAIRS [89] was selected for the purpose of system modeling.
The notation allows us to specify subjective beliefs about scenarios, as well
as actual (objective) scenarios, and also to show how the subjective beliefs
influence the choices made by actors.

Fig. 5.8 shows the modeling of a subjective belief of an entity R. The
keyword ssd in the upper left corner denotes the type of diagram (subjective
sequence diagram), and est is the chosen diagram name. Exactly one of the
lifelines in the diagram is annotated with the keyword subj, indicating the
actor whose beliefs are modeled.

The diagram models the belief held by R of the outcome of lending the
amount a of money to the actor E. The palt (probabilistic alternative)
operator specifies the probabilities of the various outcomes as subjectively
estimated by R. In this case R believes there is a probability p that E will
repay the loan amount « in addition to an interest 4, as specified in the first
operand of the palt operator. Furthermore, R believes there is a probability
1 — p that FE fails to repay, in which case the amount ¢ must be written off.

The outcomes of the scenario that is modeled affect an asset of R, which
is specified as R’s monetary values v. In the first outcome the value v
increases by the interest ¢, and in the second outcome the value decreases

72 CHAPTER 5. OVERVIEW OF INVENTED ARTIFACTS

rule r1 J rule r2 J
trigger trigger
request(a) request(a)
_
[

i i
1 I 1

[est.§=0.9] } [est.4<0.8] }
| | | |

| |

| |

| |

obligation prohibition
lend(a) lend(a)

Figure 5.9: Formalizing a trust policy

by the loan amount a.

The diagram in Fig. 5.8 specifies the trust held by the trustor R in the
trustee E. The value p is the trust level, and the statement out p means
that the value can be referred to from other diagrams. Specifically, the
subjective diagrams and their trust values are used as input to objective
models describing the actual behavior of the system under analysis. Using
the objective models, the trust based decisions made by entities within the
system are described, as well as the impact of these decisions on the overall
behavior of the system and the risks and opportunities to which the system
is exposed. The reader is referred to Chapter 15 for further details about
the system modeling.

During the analysis stage, the well-foundedness of the trust relations are
evaluated and the involved risks and opportunities are assessed. Potential
alternatives to the current choices of behavior are also evaluated in order
to identify the optimal system behavior. The activities and output of the
analysis stage are described in detail in Chapter 15.

The optimal system behavior is the one that yields a minimized overall
level of risks and a maximized overall level of opportunities. Having identi-
fied the optimal choices of behavior during the second stage of the method,
these choices are formalized as a trust policy during the third and final stage.
The trust policy governs trust-based choices of behavior where the decisive
factor for each rule is the level of trust.

The trust policy is specified using Deontic STAIRS as exemplified in
Fig. 5.9. The trigger specifies the scenario under which the rule applies,
including the relevant levels of trust. The rule r1 states that if the actor
E (the trustee) requests a loan of amount a and the trust level is 0.9 or
higher, the actor R (the trustor) is obliged to lend the money. Notice that
the use of a guard in the trigger, where the expression est.p refers to the
relevant trust levels as specified in a subjective sequence diagram. The

5.5. THE METHOD FOR THE DEVELOPMENT OF TRUST... 73

reason for formalizing such an obligation rule is that the trust analysis stage
concluded that the lending of the amount a under these levels of trust yields
an opportunity level that outweighs the risk level.

The rule r2 states that it is prohibited for R to lend the amount a to F
in case the trust level is lower than 0.8. This is because the risk in this case
is higher that the opportunity.

For the trust levels for which risks and opportunities even out, it may
be left to the trustor to make the decisions. In the example this can be
formalized by permission rules for the trust levels between 0.8 and 0.9 stating
that both lending the amount and refraining from lending the amount are
permitted. The use of such permission rules in trust policies is described
and exemplified in Chapter 15.

Chapter 6

Overview of Papers

The main results of the work presented in this thesis are documented in the
papers in Part II. In the following we give an overview of these research
papers, describing the topics of each paper and indicating how much of the
results are credited the author of this thesis.

6.1 Paper 1: Why Trust is not Proportional to
Risk

Authors: Bjgrnar Solhaug, Dag Elgesem and Ketil Stglen.
Publication status: Published as [105].

Contribution: Bjgrnar Solhaug was the main author, responsible for about

90% of the work.

Main topics: The paper gives a conceptual analysis of the notion of trust
and clarifies its relation to the notions of risk and opportunity. The
paper discusses notions of trust as presented within the disciplines of
economics and sociology and relates these notions to the domain of
trust management.

6.2 Paper 2: Specifying Policies Using UML Se-
quence Diagrams — An Evaluation Based on a
Case Study

Authors: Bjgrnar Solhaug, Dag Elgesem and Ketil Stglen.

Publication status: Technical report A1230, SINTEF ICT, 2007. The
report presented in this thesis is the full version of the paper published
as [104].

75

76 CHAPTER 6. OVERVIEW OF PAPERS

Contribution: Bjgrnar Solhaug was the main author, responsible for about
90% of the work.

Main topics: The paper presents an evaluation of standard UML sequence
diagrams as a notation for policy specification. Policy rules in the form
of conditional permissions, obligations and prohibition were captured
on the basis of a case study. The evaluation of sequence diagrams as
a notion for formalizing these rules focuses on requirements to expres-
siveness and human interpretation.

Note: A few misprints in the published technical report have been corrected
in the version presented in this thesis.

6.3 Paper 3: Specification of Policies Using UML
Sequence Diagrams

Authors: Bjgrnar Solhaug and Tor Hjalmar Johannessen.
Publication status: Published as [106].

Contribution: Bjgrnar Solhaug was the main author, responsible for about
95% of the work.

Main topics: The paper gives a presentation of policy based management
of access control in the context of remote electronic authentication. A
conceptualization of policy rules is given, and the paper demonstrates
the informal capturing of relevant policy rules that are subsequently
formalized using Deontic STAIRS.

6.4 Paper 4: Compositional Refinement of Poli-
cies in UML — Exemplified for Access Control

Authors: Bjgrnar Solhaug and Ketil Stglen.

Publication status: Technical report A11359, SINTEF ICT, 2009. The
report presented in this thesis is the full version of the paper published
as [107].

Contribution: Bjgrnar Solhaug was the main author, responsible for about
90% of the work.

Main topics: The paper presents the syntax and semantics of Deontic
STAIRS, the policy specification language developed as a part of this
thesis. The notion of policy adherence is formalized, precisely defin-
ing what it means that a system satisfies a policy specification. A

6.5. PAPER 5 7

notion of policy refinement is formally defined, and the properties of
transitivity and modularity of refinement are proved.

6.5 Paper 5: Adherence Preserving Refinement of
Trace-set Properties in STAIRS: Exemplified
for Information Flow Properties and Policies

Authors: Fredrik Seehusen, Bjgrnar Solhaug and Ketil Stglen.
Publication status: Published as [99].

Contribution: The paper was written in close collaboration between the
authors. Bjgrnar Solhaug was responsible for about 45% of the work.

Main topics: The paper gives a presentation of the STAIRS approach to
system development with UML sequence diagrams and shows that
trace-set properties are preserved under refinement in STAIRS. Trace
properties are properties that can be falsified on single traces, and
include safety and liveness properties. Trace-set properties are prop-
erties that can only be falsified on sets of traces, and include informa-
tion flow properties and permission rules of policies. It is known that
trace-set properties are not preserved under the standard notion of
refinement. The paper demonstrates the potential of STAIRS in this
respect by relating STAIRS specifications to information flow proper-
ties and policies.

6.6 Paper 6: Preservation of Policy Adherence un-
der Refinement

Authors: Bjgrnar Solhaug and Ketil Stglen.
Publication status: Technical report A11358, SINTEF ICT, 2009.

Contribution: Bjgrnar Solhaug was the main author, responsible for about
90% of the work.

Main topics: The paper addresses the challenge of integrating the devel-
opment of policies with the development of systems to which the policy
applies. Such an integrated process is beneficial since it allows the re-
quirements imposed by a policy to be taken into account throughout
the development process. Fulfillment of policy requirements may be
established at any stage of the integrated development process, and at
any level of abstraction, by the verification of adherence. The paper
characterizes the conditions under which adherence is preserved under

78 CHAPTER 6. OVERVIEW OF PAPERS

the combined development of policies and systems, and presents devel-
opment rules that guarantee adherence preservation under refinement.

6.7 Paper 7: A UML-based Method for the De-
velopment of Policies to Support Trust Man-
agement

Authors: Atle Refsdal, Bjgrnar Solhaug and Ketil Stglen.
Publication status: Published as [88].

Contribution: Bjgrnar Solhaug was one of two main authors, responsible
for about 45% of the work.

Main topics: The paper presents a method for capturing and formaliz-
ing trust policies the enforcement of which ensures that trust-based
decisions within systems minimizes the overall level of risks and max-
imizes the overall level of opportunities. The method is supported
by modeling languages for describing trust relations and their impact
on the behavior of systems. The models facilitate the evaluation of
well-foundedness of trust and of risks and opportunities. Based on the
evaluation, a trust policy is captured and formalized with an adequate
policy specification language.

Note: The published paper models the triggering scenario of policy rules
as the occurrence of an event. In the version presented in this thesis,
the specification of an event is replaced with the specification of an
interaction. This revision was done in order to align the notation with
final definition of the syntax of the policy specification language as
presented in this thesis, with no loss of or changes in the results. A
few misprints have also been corrected.

Chapter 7

Discussion

In this chapter we discuss and evaluate the contributions of this thesis. In
Section 7.1 we evaluate each of the invented artifacts against the success
criteria formulated in Chapter 2, and in Section 7.2 we discuss related work.

7.1 Fulfillment of the Success Criteria

7.1.1 The Policy Specification Language

1. The language should have the expressiveness to capture the deontic
modalities of permission, obligation and prohibition.

The fulfillment of this requirement is ensured by equipping the pol-
icy specification language with an explicit construct for each of the
deontic modalities. This is shown in the definition of the syntax in
Section 5.2.2 and in the presentation of Deontic STAIRS in Chap-
ter 12.

2. The language should have the expressiveness to capture conditional
scenarios.

This requirement is fulfilled since the trigger construct of the policy
specification language allows the specification of conditional scenarios.
The syntax is defined in Section 5.2.2 and presented in more detail in
Chapter 12.

3. The language should be intuitively understandable to end-users such as
decision makers, clients, developers and other stakeholders, including
personnel with little technical background.

The support for abstraction allows policies to be represented at var-
ious levels of detail, taking into account the viewpoint of particular
stakeholders. As such, abstraction contributes to understandability,
also for personnel with little technical background. The popularity

79

80

CHAPTER 7. DISCUSSION

of UML sequence diagrams for various uses [30, 111] may also indi-
cate that this type of notation is easy to use for most stakeholders.
A further conjecture is that a graphical notation is more intuitively
understandable than purely textual notations.

A proper evaluation of the requirement to understandability requires
thorough empirical investigations which have not been conducted dur-
ing the work on this thesis. The fulfillment of this success criterion
is, however, substantiated by demonstrating the formalization of high-
level, informal policy specifications in Chapter 11. The chapter de-
scribes a policy development case for access control based on electronic
authentication. The case addressed in Chapter 12 demonstrates the
formalization of access control policies and their development by policy
refinement.

The evaluation of standard UML sequence diagrams for policy speci-
fication presented in Chapter 10 showed that sequence diagrams as a
policy notation may not be easily understandable to end-users. The
identified weaknesses have been mitigated by language constructs of
Deontic STAIRS.

. The language should allow policy specifications to ignore behavior that

is mot relevant for the policy.

This requirement is satisfied by defining the fulfillment of policy sce-
narios in terms of the sub-trace relation. This allows the scenarios rel-
evant for the policy to be specified as abstractions of potential system
scenarios. This is explained in Section 5.3. The details and formaliza-
tions are presented in Chapter 12 and Chapter 14.

. The language should be a conservative extension of standard UML.

The language constructs of the policy specification language that go
beyond the UML sequence diagram notation are the triggering con-
struct and the deontic modalities as shown in Section 5.2.2 in the
definition of the syntax. To the extent that standard UML constructs
are part of the syntax, they are used in accordance with the UML.
Deontic STAIRS is therefore a modest and conservative extension of
standard UML.

Details about the language and its relation to standard UML are pre-
sented in Chapter 11 through Chapter 13.

. The language should be underpinned by a semantics that is unam-

biguous, allows formal analysis of policy specifications, and allows the
development of tool support.

The formal semantics of the policy specification language presented in
Chapter 12 through Chapter 14 ensures its unambiguity. As demon-

7.1. FULFILLMENT OF THE SUCCESS CRITERIA 81

strated by the formal proofs in these chapters, the denotational se-
mantics allows formal verification of properties such as transitivity
and modularity of refinement.

The development of tool support for policy specification and analysis
has been outside the scope of this thesis, but a denotational semantics
may nevertheless facilitate this objective. An operational semantics
may, however, be more suitable for tool developers [86]. Such a se-
mantics and tool support has been developed for STAIRS [73], and
we believe that this work, or at least parts of it, can be adapted to
Deontic STAIRS.

7. The semantics should be compositional, meaning that the semantics
of a composed diagram can be determined from the semantics of the
sub-diagrams and the composition operators.

This requirement is fulfilled since, for each composition operator, the
semantics of a composed specification is derived as a function from the
semantics of the sub-specification and the composition operator. This
is explained in Section 5.2.2 and presented in more detail in Chapter 12
through Chapter 14.

7.1.2 The Policy Adherence Relations

8. The notion of policy adherence should be intuitively understandable
to end-users such as decision makers, clients, developers and other
stakeholders, including personnel with little technical background.

A proper evaluation of this criterion requires thorough empirical in-
vestigations which have not been conducted during the work on this
thesis. Experience from presentations of the work to several potential
end-users from various backgrounds, however, indicates that the spec-
ifications of conditional scenarios as permitted, obliged and prohibited
and what it means to satisfy these are intuitively understood.

In a practical setting of policy development, analysis and enforcement,
the end-users should be supported by tools and methods facilitating
the testing and verification of adherence. The use of Deontic STAIRS
should therefore not depend on the end-users understanding the for-
malization of the notion of policy adherence.

9. The adherence relations should capture the properties of the deontic
modalities as axiomatized in Standard Deontic Logic.

The fulfillment of this requirement follows from the definition of ad-
herence and is shown by formal proofs in Chapter 12 of the relation
between the deontic modalities of the policy specification language.

82

10.

CHAPTER 7. DISCUSSION

The notion of adherence of a system implementation to a policy spec-
ification should be independent of the system platform.

The fulfillment of this requirement is ensured by defining adherence of
a system to a policy specification by referring only to the traces the
system may potentially produce, not assuming any other knowledge
about the system. This is explained in Section 5.3, whereas the formal-
ization of the adherence relations is presented in Chapter 12 through
Chapter 14.

7.1.3 The Policy Refinement Relations

11.

12.

13.

14.

The notions of policy refinement should be intuitively understandable
to end-users such as decision makers, clients, developers and other
stakeholders, including personnel with little technical background.

As for the notion of policy adherence, a thorough empirical investi-
gation of the fulfillment of this criterion has not been conducted and
is left for future work. We believe, however, that the idea of policy
refinement as a process of strengthening the policy specification and
making it more low-level is intuitively understandable. The develop-
ment of policies under the refinement paradigm is demonstrated for
an access control case in Chapter 12.

In a practical setting of stepwise and modular policy development,
the end-users should be supported by pragmatic methods that guide
the development process and ensure correctness of refinement. Tool
support should also be provided for testing and verification of policy
refinement. Policy development using Deontic STAIRS should there-
fore not depend on the end-users understanding the formalization of
the notion of policy refinement.

The policy refinement relations should ensure that all requirements
from the abstract policy specification are preserved in the refined policy
specification.

The fulfillment of this requirement is formally proved in Chapter 12
and Chapter 14 by showing that adherence to a refined policy specifi-
cation implies adherence to all more abstract policy specifications.

The policy refinement relations should support the stepwise develop-
ment of policy specifications.

Support for stepwise development of policy specifications is ensured
by transitivity of the policy refinement relation. The property of tran-
sitivity is formally proved in Chapter 12 and Chapter 14.

The policy refinement relations should support modular development
of policy specifications.

7.1

FULFILLMENT OF THE SUCCESS CRITERIA 83

The fulfillment of this requirement is shown in Chapter 12 by for-
mal proofs of monotonicity of the composition operators with respect
to policy refinement. Monotonicity of a composition operator with
respect to refinement implies that when the operands are refined sepa-
rately, the composition of the result is a valid refinement of the compo-
sition of the abstract operands. Modularity properties for the notion
of policy refinement presented in Chapter 14 are also established.

7.1.4 The Method for the Development of Trust Manage-

15.

16.

17.

ment Policies

The method should be applicable and understandable to end-users.

For end-users to be able to easily understand the method, the de-
scription of the method should be refined, and guidelines for how to
operationalize its various tasks should be provided.

The application of the method as presented in this thesis is, however,
demonstrated for a banking case in Chapter 15. The method has fur-
thermore been applied in a real setting for analyzing and evaluating
trust in a validation authority service for digital certificates. The an-
alysts, i.e. the end-users of our method, had some background in risk
analysis. The experiences from the trial are at the time of writing
under evaluation.

The method should offer description techniques that are understand-
able to all relevant stakeholders, including end-users, decision makers,
engineers and analysts.

The languages supporting the method are Subjective STAIRS for sys-
tem modeling and Deontic STAIRS for trust policy specification. De-
ontic STAIRS is discussed with respect to this requirement under suc-
cess criterion 3 above.

The method and its specification languages were presented to potential
end-users and stakeholders as part of the evaluation. An evident find-
ing was that even relatively small and simplified models using Subjec-
tive STAIRS were hard to understand without thorough explanations
and guidance. This indicates that other and more intuitive descrip-
tion techniques should be developed for a better support for the system
modeling stage, possibly in combination with Subjective STAIRS.

The method should support the modeling of the trust-based decisions
within a system, including the entity that makes the decision (the
trustor), the level of trust held by the trustor, and the basis upon which
the trustor determines this level of trust.

84

18.

19.

20.

21.

CHAPTER 7. DISCUSSION

Subjective STAIRS has the expressiveness to model the potential choices
of system behavior and their probabilities as shown in [89] and in Chap-
ter 15 of this thesis. Furthermore, when system behavior results from
trust-based decisions, this can be explicitly specified along with the
trustor, the trust level and the basis upon which the trustor makes its
estimations. This requirement is therefore fulfilled.

The method should support the evaluation of the well-foundedness of
trust.

The trust modeling conducted as part of the method specifies the sub-
jective probability estimates made by actors within the system, i.e. the
trust levels as explained in Chapter 15. The modeling of the system
behavior specifies the actual (objective) probability for scenarios to oc-
cur, and well-foundedness of trust can be evaluated by comparing the
subjective and objective probabilities. This requirement is therefore
fulfilled by the method.

The method should support the evaluation of the risks and opportunities
associated with the trust-based decisions.

This criterion is fulfilled since the method involves the identification
of both the beneficial events and the harmful events associated with
trust relations, as well as the probabilities for these events to occur
and their impact on assets in terms of gain and loss, respectively. The
levels of risk and opportunity are derived functionally from these data.

The method should support the capturing and formalization of trust
policies.

A trust policy is captured by comparing alternative choices of trust-
based behavior and identifying the choices that are most beneficial
with respect to risks and opportunities. The formalization of the trust
policy is supported by Deontic STAIRS as explained and demonstrated
in Section 5.5 and in Chapter 15. This requirement is therefore ful-
filled.

The method should be based on well-defined notions of trust, risk and
opportunity, and the relations between the notions should be precisely

defined.

This requirement is fulfilled by the establishment in Chapter 9 of a
conceptual foundation in which all the relevant notions and the rela-
tions between them are clarified and precisely defined.

7.2. RELATED WORK 85

7.2 Related Work

This section discusses work that is related to the work presented in this
thesis. In Section 7.2.1 we address various approaches to system specifi-
cation and development using notation comparable to Deontic STAIRS. In
Section 7.2.2 we address existing approaches to refinement of policy specifi-
cations. The reader is also referred to the related work section of the papers
presented in Part II of the thesis.

7.2.1 Specifications Using Interactions

UML sequence diagrams extends the ITU recommendation message sequence
charts (MSCs) [47], and both MSCs and a family of approaches that have
emerged from them, e.g. [39, 40, 62, 66, 101], could be considered as alter-
natives to notations for policy specification using interactions.

An MSC describes a scenario by showing how components or instances
interact in a system by the exchange of messages. Messages in MSCs are,
as for UML sequence diagrams, ordered by weak sequencing, which yields a
partial ordering of events. Several operators are defined for the composition
of MSCs, such as weak sequencing, parallel composition, and alternative
executions. ITU has also provided a formal operational semantics of MSCs
[46] based on work by Mauw and Reniers [77, 78].

The specification of policy rules as defined in this thesis requires the
expressiveness to distinguish between legal and illegal behavior, and to dis-
tinguish between behavior that must be conducted and behavior that should
be offered as a potential alternative. Illegal behavior can with MSCs be cap-
tured by the specification of a guard that evaluates to false, but there are
no explicit operators for specifying behavior as illegal, such as the UML neg
operator. More importantly, the distinction between obliged and permitted
behavior go beyond the standard MSC language. There is furthermore no
support for the specification of conditional scenarios which means that trig-
gering scenarios cannot be specified. MSCs are also not supported by a well
defined notion of refinement.

In [66], a variant of MSCs is provided a formal semantics and is supported
by a formal notion of refinement. MSCs are interpreted as existential, uni-
versal or negated (illegal) scenarios, which is related to the specification of
permissions, obligations and prohibitions, respectively, in Deontic STAIRS.
There are, however, no explicit constructs in the syntax for distinguishing
between these interpretations. Conditional scenarios with a triggering con-
struct are supported, facilitating the specification of liveness properties, but
the composition of the triggering scenario and the triggered scenario is that
of strong sequencing. This can be unfortunate in the specification of dis-
tributed systems in which entities behave locally and interact with other
entities asynchronously.

86 CHAPTER 7. DISCUSSION

Four different refinement relations for MSCs are defined in [66]. The
first is binding of references which allows a reference to an empty MSC (rep-
resenting complete underspecification) at the abstract level to be replaced
with a reference to a filled in, and thus more specific, MSC at the refined
level. The second is property refinement which removes traces, i.e. refine-
ment by reduction of underspecification. The third is message refinement
which means to substitute an interaction for a single message. The fourth is
structural refinement which means to replace a single instance (lifeline) with
a set of instances. The second and fourth notions of refinement are simi-
lar to the notions of refinement that are proposed in STAIRS and Deontic
STAIRS. In Chapter 13 we show that policy adherence is preserved under
refinement of STAIRS specifications. The corresponding property does not
hold in the work presented in [66], where it is shown that fulfillment of an
MSC under the existential interpretation is not preserved under property
refinement of system specifications.

The expressiveness of live sequence charts (LSCs) [24, 40] to capture
existential, universal and forbidden scenarios can be utilized for specifying
permissions, obligations and prohibitions, respectively. The lack of explicit
constructs for specifying forbidden scenarios is, however, unfortunate with
respect to user friendliness. Conditionality is, moreover, not supported for
existential diagrams, which means that diagrams corresponding to our per-
missions cannot be specified with triggers. LSCs are also not supported by
a precise or formal notion of refinement.

The semantics of LSCs is that of partial ordering of events defined
for MSCs [47]. However, the semantics of LSCs defines the beginning of
precharts and the beginning of main charts as synchronization points, mean-
ing that all lifelines enter the prechart simultaneously and that the main
chart is entered only after all lifelines have completed their respective activ-
ities in the prechart. As for the work on MSCs in [66], this yields a strong
sequencing between the prechart and main chart, which is not in accordance
with the weak sequencing of MSCs and UML sequence diagrams.

The discussion of LSCs with respect to policy specification carries over
to modal sequence diagrams (MSDs) [39]. As for LSCs the notation is based
on the universal/existential distinction, and the semantics is basically the
same.

The triggering scenarios of triggered message sequence charts (TMSCs)
[101] can be utilized for the specification of policy rules. There is, however,
no support for distinguishing between permitted, obligated and prohibited
scenarios; a system specification defines a set of valid traces, and all other
traces are invalid.

7.2. RELATED WORK 87

7.2.2 Policy Refinement

Although a variety of languages and frameworks for policy based manage-
ment has been proposed the last decade or so, policy refinement is still in
its initial phase and little work has been done on this issue. After being
introduced in [4] the goal-based approach to policy refinement has emerged
as a possible approach and has also later been further elaborated [6, 92, 93].

In the approach described in [4], system requirements that eventually are
fulfilled by low-level policy enforcement are captured through goal refine-
ment. Initially, the requirements are defined by high-level, abstract policies,
and so called strategies that describe the mechanisms by which the system
can achieve a set of goals are formally derived from a system description
and a description of the goals. Formal representation and reasoning are
supported by the formalization of all specifications in event calculus.

Policy refinement is supported by the refinement of goals, system entities
and strategies, allowing low-level, enforceable policies to be derived from
high-level, abstract ones. Once the eventual strategies are identified, these
are specified as policies the enforcement of which ensures the fulfillment
of the abstract goals. As opposed to our approach, there is no refinement
of policy specifications. Instead, the final polices are specified with Ponder
[23], which does not support the specification of abstract policies that can be
subject to refinement. The goal-based approach to policy refinement hence
focus on refinement of policy requirements rather than policy specifications.

The same observations hold for the goal-based approaches described in
[6, 92, 93], where the difference between [4, 6] and [92, 93] mainly is on
the strategies for how to derive the policies to ensure the achievement of a
given goal. The former two use event calculus and abduction in order to
derive the appropriate strategies, whereas the latter two use automated state
exploration for obtaining the appropriate system executions. All approaches
are, however, based on requirements capturing through goal refinement, and
Ponder is used as the notation for the eventual policy specification.

In [6] a policy analysis and refinement tool supporting the proposed
formal approach is described. In [4], the authors furthermore show that the
formal specifications and results can be presented with UML diagrams to
facilitate usability. The UML is, however, used to specify goals, strategies,
etc., and not the policies per se as in our approach. In our evaluation of
the UML as a notation for specifying policies [104] we found that sequence
diagrams to a large extent have the required expressiveness, but that the
lack of a customized syntax and semantics makes them unsuitable for this
purpose. The same observation is made in attempts to formalize policy
concepts from the reference model for open distributed processes [51] using
the UML [1, 70]. Nevertheless, in this thesis we have demonstrated that with
modest extensions, policy specification and refinement can be supported.

Chapter 8

Conclusion

This chapter concludes Part I of the thesis by summarizing the results and
pointing out directions for future work.

8.1 Summary

The steady growth of the information society throughout the world imposes
new and increased challenges with respect to the management of electronic
networks and services, as well as the management of the related risk and se-
curity issues. Policy based management of information systems has emerged
as an approach to these challenges, in which requirements to systems are
fulfilled through the enforcement of adequate policy rules. An important
feature of policies is that they allow systems to be dynamically changed by
modifying the policy, leaving the underlying implementation of the system
unchanged [102].

This thesis contributes to the domain of policy based management by
proposing a policy specification language with support for policy capturing,
policy abstraction and refinement, and policy analysis. The contribution is
manifested in the three artifacts of a policy specification language, formal
notions of policy adherence, and formal notions of policy refinement.

The policy specification language, called Deontic STAIRS, is defined as a
modest and conservative extension of the UML sequence diagram notation,
and its formalization is based on the STAIRS approach to system devel-
opment using sequence diagrams. The extension of the UML consists of
a triggering construct which allows the specification of conditional scenar-
ios, and constructs for specifying permissions, obligations and prohibitions.
As demonstrated in this thesis, this extension provides the UML with cus-
tomized support for the specification of policies.

The policy specification language proposed in this thesis has been de-
veloped with the aim of supporting human interpretation and communi-
cation. Policies are derived from business goals, service level agreements,

89

90 CHAPTER 8. CONCLUSION

trust relationships, security requirements, etc. During the phases of policy
capturing, formalization and implementation, various stakeholders with var-
ious backgrounds are involved, and measures should be taken to avoid mis-
understandings and miscommunications. An important feature of Deontic
STAIRS for facilitating human interpretation is the support for abstraction.
Abstraction allows details about system functionality and architecture that
are irrelevant from a certain viewpoint to be ignored. The proposed notions
of policy refinement precisely characterize what it means that one specifica-
tion is a correct representation of another specification at a different level
of abstraction.

The policy refinement relations also facilitate the development of policy
specifications by supporting a stepwise and modular development process.
Stepwise development means that a policy specification can be carried from
the initial, abstract and high-level to the final, concrete and low-level under
any number of refinement steps. Modularity means that a policy specifica-
tion can be refined by refining separate parts of the specification individually.
These two features together allow the problem of policy development to be
broken down into small and manageable problems.

A further advantage of abstraction is that it may facilitate efficiency of
analysis and verification, as well as early discovery of design flaws. However,
for analysis to be meaningful at an abstract level, the results must be pre-
served under refinement. Otherwise, the analysis must be conducted again
after each step of refinement. This problem has been addressed in this thesis
by establishing results of preservation of policy adherence under refinement.

The formalization of the notion of policy adherence yields a precise char-
acterization of what it means that a system or a system specification satisfies
a policy specification. This is important since it precisely and unambigu-
ously characterizes the correct enforcement of policy specifications. The
notion of policy adherence also yields a precise notion of policy consistency;
a policy specification is inconsistent if the set of systems that adhere to the
policy specification is empty.

Finally, the policy specification is underpinned by a formal, denotational
semantics. This is important since it defines a precise and unambiguous
meaning of policy specifications, and it also allows the formalization of no-
tions such as policy adherence and policy refinement. The formal semantics
furthermore allows rigorous analysis of policy specifications and verification
of properties of the policy specification language, and it facilitates the de-
velopment of tool support.

The policy specification language proposed in this thesis is generic in
the sense that it is applicable for various domains, such as security, access
control, services and trust. In order to demonstrate the applicability of the
language we have particularly addressed the domain of policy based trust
management. A method for the development of policies to support trust
management has been developed, in which the policy specification language

8.2. FUTURE WORK 91

is applied in the formalization of trust policies.

8.2 Future Work

This thesis is concerned with the development of languages to support policy
capturing, specification and analysis, as well as facilitating these activities
by proposing notions of abstraction and refinement. An interesting topic for
future work is to address the issue of policy implementation and enforcement.

In [100], a method is presented for the specification of high-level security
policies that can be enforced by run-time monitoring mechanisms. The only
type of policy rules relevant in this approach is prohibition rules, and there
is also no notion of policy trigger. The approach is therefore less general
than Deontic STAIRS, and the rules can be specified using standard UML
sequence diagrams. The method can nevertheless be considered as a starting
point for the development of enforcement mechanisms for Deontic STAIRS
specifications.

Policy conflicts or inconsistencies are inherent to policy based manage-
ment of large distributed systems since rules may be specified by various
managers, policies are implemented and enforced in a distributed manner,
several rules may apply to the same set of entities and behavior, etc. [74].
The notion of policy consistency is precisely captured in this thesis, and
a direction for future work is to investigate and develop methods for con-
flict detection and resolution. Existing approaches to this problem, such as
[31, 74], should be considered.

Semantically the sequence diagrams specifying the trigger and the body
of a policy rules are each represented by a set of traces. In the UML stan-
dard, however, a sequence diagram is explained in terms of a pair of trace
sets, one set of allowed traces and one set of forbidden traces. This bisec-
tion is also formalized in the STAIRS approach, and should be considered
for Deontic STAIRS. This would yield a more precise characterization of the
behavior specified by policy rules.

As an example, assume a permission rule is specified for defining user
access to a given service provided the user is authenticated through a secure
protocol. The specification of the protocol will then serve as the policy trig-
ger. Assume further that there are three different authentication protocols
under consideration, namely a1, as and ag. At the initial, abstract level it
may be decided that a; should be acceptable for authentication. At this
level, no decision has been made regarding as and as. With support for the
bisection of traces into two sets, we can then categorize the protocol as as
unacceptable for triggering the permission. Still, no decision has been made
regarding as, but through refinement as can be specified as acceptable or
unacceptable. The protocol as should never be redefined as acceptable since
it has been discarded as unacceptable.

92 CHAPTER 8. CONCLUSION

Notice, importantly, that operating with this bisection of traces in the
specification of policy rules does not imply the specification of forbidden
behavior. Specifying an authentication protocol as as negative in the trig-
ger of a permission rule, for example, does not mean that this behavior
should never be conducted. It only means that as is not acceptable as a
condition for allowing the behavior specified as permitted in this particular
rule. Customized constructs should therefore be introduced in order to avoid
confusion with standard UML in which negative traces are inadmissible.

The refinement of a policy rule is in this thesis defined as reduction of un-
derspecification in terms of trace set inclusion. Enriching the expressiveness
to allow the bisection between the two trace sets opens for richer notions of
refinement as investigated in the context of STAIRS [96]. Such an increased
expressiveness and richer notions of refinement may be useful, but possibly
at the cost of user friendliness and support for human understanding and
communication between stakeholders. This potential clash of interests must
therefore be carefully evaluated.

An important issue of development methods that has been outside the
scope of this thesis is that of complexity. The complexity metrics for model-
ing languages and the methods the languages support presented in [90] can
be used for evaluating the complexity of the framework for policy develop-
ment proposed in this thesis. The authors claim that the metrics can be
used to compare methods, and substantiate that one method is preferred
over another, since “the relative complexity of methods and techniques. . .is
expected to affect the learnability and ease of use of a method” [90]. In ad-
dition to usage, the complexity of methods may affect the development costs
[32]. The complexity of verification or testing of refinement, adherence and
consistency is also an important and interesting direction for future work.

The development of tool support is interesting as tools facilitate policy
specification, development and analysis, thereby increasing the practical ap-
plicability of the approach. A prototype tool has been developed for STAIRS
for generating the semantics of sequence diagrams, checking the correctness
of refinement steps and generating tests [73]. A similar tool should be devel-
oped for supporting specification and development of policy specifications.

Bibliography

1]

Jan @yvind Aagedal and Zoran Milosevié. ODP enterprise language:
UML perspective. In Proceedings of the 3rd International Conference
on Enterprise Distributed Object Computing (EDOC’99), pages 60-71.
IEEE CS Press, 1999.

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation
of Computer Programs. MIT Press, second edition, 1996.

AS/NZS. Australian/New Zealand Standard, AS/NZS 4360:2004,
Risk Management, 2004.

Arosha K. Bandara, Emil C. Lupu, Jonathan Moffet, and Alessandra
Russo. A goal-based approach to policy refinement. In Proceedings
of the 5th International Workshop on Policies for Distributed Systems
and Networks (POLICY’0/4), pages 229-239. IEEE Computer Society,
2004.

Arosha K. Bandara, Emil C. Lupu, and Alessandra Russo. Using event
calculus to formalise policy specification and analysis. In Proceedings
of the 4th International Workshop on Policies for Distributed Systems
and Networks (POLICY’03), pages 26-39. IEEE Computer Society,
2003.

Arosha K. Bandara, Emil C. Lupu, Alessandra Russo, Naranker Dulay,
Morris Sloman, Paris Flegkas, Marinos Charalambides, and George
Pavlou. Policy refinement for DiffServ quality of service management.
In Proceedings of the 9th IFIP/IEEE International Symposium on In-
tegrated Network Management (IM’05), pages 469482, 2005.

David Basin, Jiirgen Doser, and Torsten Lodderstedt. Model driven
security: From UML models to access control infrastructures. ACM
Transactions on Software Engineering and Methodology, 15(1):39-91,
2006.

D. Elliott Bell and Leonard J. LaPadula. Secure computer systems:
Mathematical foundations. Technical Report MTR-2547, MITRE Cor-
poration, 1973.

93

94

[9]

[20]

[21]

BIBLIOGRAPHY

Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wije-
sekera. Provisions and obligations in policy rule management. Journal
of Network and Systems Management, 11(3):351-372, 2003.

Kenneth J. Biba. Integrity considerations for secure computer systems.
Technical Report MTR-3153, MITRE Corporation, 1977.

Matt Bishop. Computer Security: Art and Science. Addison-Wesley,
2003.

Xavier Blanc, Marie-Pierre Geravis, and Raymonde Le-Delliou. Using
the UML language to express the ODP enterprise concepts. In Pro-
ceedings of the 3rd International Conference on Enterprise Distributed

Object Computing (EDOC’99), pages 50-59. IEEE CS Press, 1999.

Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote:
Trust management for public-key infrastructures. In Proceedings of
the 6th International Workshop on Security Protocols, volume 1550 of
LNCS, pages 59—63. Springer, 1999.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust
management. In Proceedings of the IEEE Conference on Security and
Privacy (SP’96), pages 164-173. IEEE Computer Society, 1996.

Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance check-
ing in the policymaker trust management system. In Proceedings of
the 2nd International Conference on Financial Cryptography (FC’98),
volume 1465 of LNCS, pages 254-274. Springer, 1998.

Raouf Boutaba and Issam Aib. Policy-based management: A historical
perspective. Journal of Network and Systems Management, 15(4):447—
480, 2007.

Frederick P. Brooks. The computer scientist as a toolsmith II. Com-
munications of the ACM, 39(3):61-68, 1996.

Manfred Broy and Ketil Stelen. Specification and Development of
Interactive Systems: Focus on Streams, Interfaces and Refinement.
Springer, 2001.

Cristiano Castelfranci and Rino Falcone. Social trust: A cognitive
approach. In Trust and Deception in Virtual Societies, pages 55-90.
Kluwer Academic Publishers, 2001.

European Commission. Eurostat. http://epp.eurostat.ec.europa.eu.

The UK Central Computer and Telecommunications Agency.

CRAMM User Guide, issue 5.1, 2005.

BIBLIOGRAPHY 95

[22]

[23]

[24]

[25]

[26]

[27]

[32]

[33]

Nicodemos Damianou, Arosha Bandara, Morris Sloman, and Emil
Lupu. A survey of policy specification approaches. Technical report,
Department of Computing, Imperial College of Science Technology
and Medicine, 2002.

Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Slo-
man. The ponder policy specification language. In Proceedings of the
2nd International Workshop on Policies for Distributed Systems and
Networks (POLICY’01), volume 1995 of LNCS, pages 18-38. Springer,
2001.

Werner Damm and David Harel. LSCs: Breathing life into message
sequence charts. Formal Methods in System Design, 19(1):45-80, 2001.

Robert Darimont and Axel van Lamsweerde. Formal refinement pat-
terns for goal-driven requirements elaboration. In Proceedings of the
Jth ACM Symposium on the Foundations of Software Engineering
(FSE4), pages 179-190, 1996.

Joao Porto de Albuquerque, Heiko Krumm, and Paulo Licio de Geus.
Policy modeling and refinement for network security systems. In Pro-
ceedings of the 6th International Workshop on Policies for Distributed
Systems and Networks (POLICY’05), pages 24-33. IEEE Computer
Society, 2005.

Folker den Braber, Ida Hogganvik, Mass Soldal Lund, Ketil Stglen,
and Fredrik Vraalsen. Model-based security analysis in seven steps — a
guided tour to the CORAS method. BT Techology Journal, 25(1):101—
117, 2007.

Peter J. Denning. Is computer science science? Communications of
the ACM, 48(4):27-31, 2005.

The Distributed Management Task Force. www.dmtf.org.

Brian Dobing and Jeffrey Parsons. How UML is used. Communications
of the ACM, 49(5):109-113, 2006.

Nicole Dunlop, Jadwiga Indulska, and Kerry Raymond. Dynamic con-
flict detection in policy-based management systems. In Proceedings of
the 6th International Enterprise Distributed Object Computing Con-
ference (EDOC’02), pages 15-26. IEEE Computer Society, 2002.

John Erickson and Keng Siau. Theoretical and practical complexity of
modeling methods. Communications of the ACM, 50(8):46-51, 2007.

David Ferraiolo and Richard Kuhn. Role-based access controls. In
Proceedings of the 15th NIST-NCSC National Computer Security Con-
ference, pages 554-563, 1992.

96

[34]

[40]

[41]

BIBLIOGRAPHY

Diego Gambetta. Can we trust trust? In Trust: Making and Break-
ing Cooperative Relations, chapter 13, pages 213-237. Department of
Sociology, University of Oxford, 2000. Electronic edition.

Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zan-
none. Requirements engineering meets trust management: Model,
methodology, and reasoning. In iTrust 2004, volume 2995 of LNCS,
pages 176-190. Springer, 2004.

Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zan-
none. Modelling social and individual trust in requirements engineer-
ing methodologies. In iTrust 2005, volume 3477 of LNCS, pages 161—
176. Springer, 2005.

Tyrone Grandison and Morris Sloman. Specifying and analysing trust
for Internet applications. In Proceedings of the Second IFIP Conference
on E-Commerce, E-Business, E-Government (I3E’02), pages 145-157.
Kluwer, 2002.

Tyrone Grandison and Morris Sloman. Trust management tools for
internet applications. In iTrust 2003, volume 2692 of LNCS, pages
91-107. Springer, 2003.

David Harel and Shahar Maoz. Assert and negate revisited: Modal se-
mantics for UML sequence diagrams. Software and Systems Modeling,
7(2):237-252, 2007.

David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer, 2003.

Dystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde, and Ketil
Stelen. STAIRS towards formal design with sequence diagrams. Soft-
ware and Systems Modeling, 4(4):355-367, 2005.

Manuel Hilty, David Basin, and Alexander Pretschner. On obligations.
In Proceedings of the 10th European Symposium on Research in Com-
puter Security (ESORICS’05), volume 3679 of LNCS, pages 98-117.
Springer, 2005.

Manuel Hilty, Alexander Pretschner, David Basin, Christian Schaefer,
and Thomas Walter. A policy language for distributed usage control.
In Proceedings of the 12th European Symposium on Research in Com-
puter Security (ESORICS’07), volume 4734 of LNCS, pages 531-546.
Springer, 2007.

James A. Hoagland, Raju Pandey, and Karl N. Levitt. Security policy
specification using a graphical approach. Technical Report CSE-98-

BIBLIOGRAPHY 97

[48]
[49]

50

[51

[52]

[55]

3, Department of Computer Science, University of California, Davis,
1998.

IEEE International Symposium on Policies for Distributed Systems
and Networks. www.ieee-policy.org/.

International Telecommunication Union. Recommendation Z.120 An-
nex B — Semantics of Message Sequence Chart (MSC), 1998.

International Telecommunication Union. Recommendation Z.120 —
Message Sequence Chart (MSC), 1999.

Internet world stats. www.internetworldstats.com/.
The Internet Engineering Task Force. www.ietf.org.

ISO/IEC. ISO/IEC 13335, Information technology — Guidelines for
management of IT security, 1996-2000.

ISO/IEC. FCD 15414, Information Technology - Open Distributed
Processing - Reference Model - Enterprise Viewpoint, 2000.

Jeremy Jacob. On the derivation of secure components. In Proceedings
of the IEEE Symposium on Security and Privacy (SP’89), pages 242—
247. IEEE Computer Society, 1989.

Audun Jgsang. A logic for uncertain probabilities. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

9(3):279-311, 2001.

Audun Jgsang, Touhid Bhuiyan, Yue Xu, and Clive Cox. Combining
trust and reputation management for web-based services. In Proceed-
ings of the 5th International Conference on Trust, Privacy and Secu-
rity in Digital Business (TrustBus’08), volume 5185 of LNCS, pages
90-99. Springer, 2008.

Audun Jgsang, Daniel Bradley, and Svein J. Knapskog. Belief-based
risk analysis. In Proceedings of the 2nd Workshop on Australasian In-
formation Security, Data Mining and Web Intelligence, and Software
Internationalisation (AISW’04), pages 63—68. Australian Computer
Society, 2004.

Audun Jgsang, Claudia Keser, and Theo Dimitrakos. Can we manage
trust? In iTrust 2005, volume 3477 of LNCS, pages 93—-107. Springer,
2005.

Audun Jgsang and Simon Pope. Semantic constraints for trust transi-
tivity. In Proceedings of the 2nd Asia-Pacific conference on Conceptual

98

[65]

[66]

BIBLIOGRAPHY

Modelling (APCCM’05), pages 59-68. Australian Computer Society,
2005.

Wolfram Jost. Closing the gap between business and IT. SOA World
Magazine, 2007.

Jan Jirjens. UMLsec: Extending UML for secure systems develop-
ment. In Proceedings of the 5th International Conference on the Uni-
fied Modeling Language (UML’02), volume 2460 of LNCS, pages 412—
425. Springer, 2002.

Jan Jirjens. Secure Systems Development with UML. Springer, 2005.

Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for
a pervasive computing environment. In Proceedings of the 4th Inter-
national Workshop on Policies for Distributed Systems and Networks
(POLICY’03), pages 63-74. IEEE Computer Society, 2003.

Joost-Pieter Katoen and Lennard Lambert. Pomsets for message se-
quence charts. In Formale Beschreibungstechniken fir verteilte Sys-
teme, pages 197-208. Shaker, 1998.

Manuel Koch and Francesco Parisi-Presicce. Visual specifications of
policies and their verification. In Proceedings of the 6th Interna-
tional Conference on Fundamental Approaches to Software Engineer-

ing (FASE’03), volume 2621 of LNCS, pages 278-293. Springer, 2003.

Thomas Koch, Christoph Krell, and Bernd Kramer. Policy definition
language for automated management of distributed systems. In Pro-
ceedings of the 2nd IEEE International Workshop on Systems Man-
agement (SMW’96), pages 55—64. IEEE Computer Society, 1996.

Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67-95, 1986.

Ingolf Heiko Kriiger. Distributed System Design with Message
Sequence Charts. PhD thesis, Institut fiir Informatik, Ludwig-
Maximilians-Universitat Miinchen, July 2000.

Leslie Lamport. How to write a proof. American Mathematical
Monthly, 102(7):600-608, 1993.

Butler W. Lampson. Protection. In Proceedings of the 5th Princeton
Symposium of Information Science and Systems, pages 437443, 1971.

Maria M. Larrondo-Petrie, Ehud Gudes, Haiyan Song, and Eduardo B.
Fernandez. Security policies in object-oriented databases. In Database
Security I1I: Status and Prospects, pages 257-268, 1989.

BIBLIOGRAPHY 99

[70]

[72]

Peter Linington. Options for expressing ODP enterprise communi-
ties and their policies by using UML. In Proceedings of the 3rd In-
ternational Conference on Enterprise Distributed Object Computing
(EDOC’99), pages 72-82. IEEE CS Press, 1999.

Jorge Lobo, Randeep Bhatia, and Shamim Naqvi. A policy description
language. In Proceedings of the 16th National Conference on Artifi-
cial Intelligence and the 11th Innovative Applications of Artificial In-
telligence Conference (AAAI’99/TAAI’99), pages 291-298. American
Association for Artificial Intelligence, 1999.

Niklas Luhmann. Familiarity, confidence, trust: Problems and alter-
natives. In Trust: Making and Breaking Cooperative Relations, chap-
ter 6, pages 94-107. Department of Sociology, University of Oxford,
2000. Electronic edition.

Mass Soldal Lund. Operational analysis of sequence diagram specifi-
cations. PhD thesis, Faculty of Mathematics and Natural Sciences,
University of Oslo, 2008.

Emil Lupu and Morris Sloman. Conflicts in policy-based distributed
systems management. IFEEE Transactions on Software Engineering,

25(6):852-869, 1999.

Tom Lysemose, Tobias Mahler, Bjgrnar Solhaug, Jon Bing, Dag Elge-
sem, and Ketil Stglen. ENFORCE conceptual framework. Technical
Report A1209, SINTEF ICT, 2007.

Heiko Mantel. Preserving information flow properties under refine-
ment. In Proceedings of the IEEE Symposium on Security and Privacy
(SP’01), pages 78-91. IEEE Computer Society, 2001.

Sjouke Mauw and Michel A. Reniers. High-level message sequence
charts. In Proceedings of the 8th SDL Forum, pages 291-306. Elsevier,
1997.

Sjouke Mauw and Michel A. Reniers. Operational semantics for
MSC’96. Computer Networks and ISDN Systems, 31(17):1785-1799,
1999.

Paul McNamara. Deontic logic. In Dov M. Gabbay and John Woods,
editors, Logic and the Modalities in the Twentieth Century, volume 7
of Handbook of the History of Logic, pages 197-288. Elsevier, 2006.

Jonathan D. Moffett and Morris S. Sloman. Policy hierarchies for
distributed systems management. IEEFE Journal on Selected Areas in
Communications, 11:1404-1414, 1993.

100

[81]

[92]

BIBLIOGRAPHY

Bob Moore, Ed Ellesson, John Strassner, and Andrea Westerinen.
RFC 3060 — Policy Core Information Model — Version 1 Specification,
2001.

OASIS. eXstensible Access Control Markup Language (XACML) Ver-
ston 2.0, 2005.

Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.1.1, 2007.

Jaehong Park and Ravi Sandhu. The UCON4p¢ usage control model.
ACM Transactions on Information and System Security, 7(1):128-174,
2004.

Dean Povey. Developing electronic trust policies using a risk man-
agement model. In Proceedings of the International Ezhibition and
Congress on Secure Networking (CQRE (Secure)’99), volume 1740 of
LNCS, pages 1-16. Springer, 1999.

Andreas Prinz. Formal semantics of specification languages. Telek-
tronikk, 4:146-155, 2000.

Atle Refsdal. Specifying Computer Systems with Probabilistic Sequence
Diagrams. PhD thesis, Faculty of Mathematics and Natural Sciences,
University of Oslo, 2008.

Atle Refsdal, Bjgrnar Solhaug, and Ketil Stglen. A UMIL-based
method for the development of policies to support trust manage-
ment. In Trust Management II — Proceedings of the 2nd Joint iTrust
and PST Conference on Privacy, Trust Management and Security
(IFIPTM’08), volume 263 of IFIP, pages 33-49. Springer, 2008.

Atle Refsdal and Ketil Stglen. Extending UML sequence diagrams to
model trust-dependent behavior with the aim to support risk analysis.
Science of Computer Programming, 74(1-2):34-42, 2008.

Matti Rossi and Sjaak Brinkkemper. Complexity metrics for sys-
tems development methods and techniques. Information Systems,
21(2):209-227, 1996.

Javier Rubio-Loyola. A Methodological Approach to Policy Refine-
ment in Policy-based Management Systems. PhD thesis, Departa-
ment de Teoria del Senyal i Comunicacions, Universitat Politécnica
de Catalunya, 2007.

Javier Rubio-Loyola, Joan Serrat, Marinos Charalambides, Paris
Flegkas, and George Pavlou. A functional solution for goal-oriented
policy refinement. In Proceedings of the 7th International Workshop

BIBLIOGRAPHY 101

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

on Policies for Distributed Systems and Networks (POLICY’06), pages
133-144. TEEE Computer Society, 2006.

Javier Rubio-Loyola, Joan Serrat, Marinos Charalambides, Paris
Flegkas, George Pavlou, and Alberto Lluch Lafuente. Using linear
temporal model checking for goal-oriented policy refinement frame-
works. In Proceedings of the 6th International Workshop on Policies
for Distributed Systems and Networks (POLICY’05), pages 181-190.
IEEE Computer Society, 2005.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified
Modeling Language Reference Manual. Addison Wesley, second edi-
tion, 2005.

Ragnhild Kobro Runde, @ystein Haugen, and Ketil Stglen. Refin-
ing UML interactions with underspecification and nondeterminism.
Nordic Journal of Computing, 12(2):157-188, 2005.

Ragnhild Kobro Runde, Atle Refsdal, and Ketil Stglen. Relating com-
puter systems to sequence diagrams with underspecification, inherent
nondeterminism and probabilistic choice — Part 1: Underspecification
and inherent nondeterminism. Technical Report 346, Department of
Informatics, University of Oslo, 2007.

Sini Ruohomaa and Lea Kutvonen. Trust management survey. In
iTrust 2005, volume 3477 of LNCS, pages 77-92. Springer, 2005.

Fred B. Schneider. Enforceable security policies. ACM Transactions
on Information and System Security, 3(1):30-50, 2000.

Fredrik Seehusen, Bjgrnar Solhaug, and Ketil Stglen. Adherence pre-
serving refinement of trace-set properties in STAIRS: Exemplified for
information flow properties and policies. Software and Systems Mod-

eling, 8(1):45-65, 2009.

Fredrik Seehusen and Ketil Stglen. A transformational approach to
facilitate monitoring of high-level policies. In Proceedings of the 9th
International Workshop on Policies for Distributed Systems and Net-
works (POLICY’08), pages 70-73. IEEE Computer Society, 2008.

Bikram Sengupta and Rance Cleaveland. Triggered message sequence
charts. IEEE Transactions on Software Engineering, 32(8):587-607,
2006.

Morris Sloman. Policy driven management for distributed systems.
Journal of Network and Systems Management, 2(4):333-360, 1994.

102

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

BIBLIOGRAPHY

Morris Sloman and Emil Lupu. Security and management policy spec-
ification. Network, IEEFE, 16(2):10-19, 2002.

Bjgrnar Solhaug, Dag Elgesem, and Ketil Stglen. Specifying poli-
cies using UML sequence diagrams — An evaluation based on a case
study. In Proceedings of the 8th International Workshop on Policies for
Distributed Systems and Networks (POLICY’07), pages 19-28. IEEE
Computer Society, 2007.

Bjgrnar Solhaug, Dag FElgesem, and Ketil Stglen. Why trust is not
proportional to risk. In Proceedings of the 2nd International Confer-
ence on Availability, Reliability and Security (ARES’07), pages 11-18.
IEEE Computer Society, 2007.

Bjgrnar Solhaug and Tor Hjalmar Johannessen. Specification of poli-
cies using UML sequence diagrams. Telektronikk, 105(1):90-97, 20009.

Bjgrnar Solhaug and Ketil Stglen. Compositional refinement of poli-
cies in UML — Exemplified for access control. In Proceedings of the
13th European Symposium on Research in Computer Security (ES-
ORICS’08), volume 5283 of LNCS, pages 300-316. Springer, 2008.

Ida Solheim and Ketil Stglen. Technology research explained. Techni-
cal Report A313, SINTEF ICT, 2007.

Linying Su, David W. Chadwick, Andrew Basden, and James A. Cun-
ningham. Automated decomposition of access control policies. In Pro-
ceedings of the 6th International Workshop on Policies for Distributed
Systems and Networks (POLICY’05), pages 3-13. IEEE Computer
Society, 2005.

Aashu Virmani, Jorge Lobo, and Madhur Kohli. Netmon: Network
management for the SARAS softswitch. In Proceedings of IEEE/IFIP
Network Operations and Management Seminar (NOMS’00), pages
803-816, 2000.

Thomas Weigert. UML 2.0 RFI response overview. Object Manage-
ment Group, document: ad/00-01-07, 1999.

Andrea Westerinen, John Schnizlein, John Strassner, Mark Scherling,
Bob Quinn, Shai Herzog, An-Ni Huynh, Mark Carlson, Jay Perry,
and Steve Waldbusser. RFC 3198 — Terminology for Policy-Based
Management, 2001.

Jeannette M. Wing. A specifier’s introduction to formal methods.
IEEE Computer, 23(9):8,10-22,24, 1990.

BIBLIOGRAPHY 103

[114] Marianne Winslett. An introduction to trust negotiation. In iTrust
2003, volume 2692 of LNCS, pages 275-283. Springer, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

