

Copyright 2009 Telenor ASA. Personal use of this material is permitted. Permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from Telektronikk.

90 Telektronikk 1.2009

1 Introduction
Policy based management, see e.g. [1] for a survey,
has the last decade or so emerged as a means to
implement an adaptive and flexible approach to
administer and control distributed systems with
respect to issues such as services, networks, security
and trust. An important motivation for the use of poli-
cies for systems management is that they allow sys-
tems to be dynamically changed in order to meet new
or different requirements, without stopping the sys-
tem and without changing the underlying implemen-
tation. This is captured in our definition of a policy,
adopted from [2], namely that a policy is a set of rules
governing the choices in the behavior of a system.

At the same time, the Unified Modeling Language
(UML) [3] has been established as the de facto indus-
trial standard for the modeling and specification of
information systems. However, the UML offers little
specialized support for the specification and analysis
of policies. In this paper we present Deontic STAIRS,
a notation customized for specifying policies using
UML 2.1 sequence diagrams. The notation is defined
as a modest extension of the UML, and is based on
the STAIRS approach to system development with
UML sequence diagrams [4].

Sequence diagrams capture dynamic/behavioral aspects
of information systems, and since policies express
constraints on system behavior, sequence diagrams
are a suitable candidate for policy specification. The
development of a sequence diagram notation custom-
ized for policy specification is desirable also because
it facilitates the analysis of the relation between a pol-
icy specification and a system specification, where
the latter is represented with standard UML sequence
diagrams. Since our extension of the sequence di-
agram notation is conservative with respect to the
UML standard, people that are familiar with the UML
should be able to understand and use the notation.

Deontic STAIRS is not tailored for a specific type of
policy, thus allowing the specification of policies for
access control, service level, security management,
trust management, etc. For specific domains a special
purpose policy language, e.g. XACML [5] for access
control, will typically have tailored constructs for its
domain. A general purpose language such as Deontic
STAIRS is, however, advantageous as it offers tech-
niques for policy capturing, specification, develop-
ment and analysis across domains and at various
abstraction levels.

In this paper we use an example demonstrating the
specification of policy rules for access control based
on electronic authentication (e-authentication) of
remote users in a telecommunication scenario. In the
next section we give a general characterization of
policies by conceptualizing the various elements of a
policy. In Section 3 we introduce the e-authentication
example and briefly present the standard UML
sequence diagram notation. In Section 4 we show the
initial, informal capturing of policy rules for access
control in a structured table format. These policy
rules are then formalized using Deontic STAIRS in
Section 5. Section 6 characterizes and explains more
closely our extensions of the UML sequence diagram
notation. In Section 7 we address the relation between
policies and systems and explain what it means that a
system satisfies a Deontic STAIRS policy specifica-
tion. Finally, in Section 8, we conclude.

2 Policy Concepts
A key feature of policies is that they “define choices
in behavior in terms of the conditions under which
predefined operations or actions can be invoked
rather than changing the functionality of the actual
operations themselves” [1]. This means that the
potential behavior of the system generally spans
wider than what is prescribed by the policy, i.e. the

Specification of Policies Using UML Sequence Diagrams
B J Ø R N A R S O L H A U G , T O R H J A L M A R J O H A N N E S S E N

Bjørnar Solhaug

is working on his

PhD at the Uni-

versity of Bergen

and at SINTEF

Information and

Communication

Technology

Tor Hjalmar

Johannessen

is Senior Adviser

in Telenor R&I

Policy based management is an approach to administer and control distributed systems in a dynamic

and flexible way. An important feature of policies is that they allow systems to be dynamically

changed in order to meet new or different requirements without changing the underlying implementa-

tion of the system. A policy rather specifies the conditions under which predefined operations can be

invoked. This paper presents Deontic STAIRS, a customized notation for specifying policies using UML

sequence diagrams. The notation is not tailored for a specific type of policies, thus supporting the

specification of policies for various purposes, such as security, access control, services and trust. The

paper exemplifies the capturing and formalization of a policy for access control based on electronic

authentication in a telecommunication scenario.

ISSN 0085-7130 © Telenor ASA 2009

91Telektronikk 1.2009

system can potentially violate the policy. A policy
can therefore be understood as a set of normative
rules defining the ideal, acceptable or desirable sys-
tem behavior.

With a deontic approach to policy capturing and
specification, policy rules are represented as condi-
tional normative rules in the form of permissions,
obligations and prohibitions. This classification is
based on standard deontic logic [6], and several of
the existing approaches to policy specification have
language constructs of such a deontic type [7], [8],
[9], [10]. This categorization is furthermore used in
the ISO/IEC standardized reference model for open,
distributed processing [11].

Taken together, the above definition of a policy and
description of policy rules yield a characterization of
the ingredients or constructs that are required in order
to capture the relevant elements of a policy. This
characterization is depicted in the UML class diagram
of Figure 1. The diagram shows the elements of a
policy and how they are related.

The class diagram depicts that a policy is a nonempty
set of policy rules. A policy rule is a permission, an
obligation or a prohibition (which we refer to as the
modality of the rule), and imposes a constraint on
some behavior.

Since a policy defines the conditions under which
operations or actions can be invoked, policy rules are
conditional rules. This is depicted in the class dia-
gram by the notion of trigger. The trigger specifies
the conditions under which the policy rule applies,
and these conditions can be certain system behavior
or certain system states. A policy trigger can also be
given as a combination of the two, in which case the
rule applies by the occurrence of certain behavior in
certain states. Furthermore, the trigger can be omitted
in the specification of a policy rule. In that case the
rule applies under all circumstances and is referred to
as a standing rule.

3 Electronic Authentication
To illustrate language constructs and central notions
we use a running example throughout the paper
addressing the issue of authorizing access to an infor-
mation system on the basis of e-authentication of
remote users. We use a somewhat simplified e-
authentication model based on the NIST guideline
[12], where e-authentication is defined as “the pro-
cess of establishing confidence in user identities
electronically presented to an information system”.

For a user to be able to authenticate to an information
system, the user must be a subscriber to a credential
service provider (CSP) whose services are used by
the system. The CSP is a trusted entity that issues
tokens and (electronic) credentials to subscribers. A
credential is a digital document (e.g. a public key cer-
tificate) that binds an identity to a token and is used
in authentication. A token (e.g. a private key or a
password) is possessed by the subscriber. The authen-
tication of a subscriber to a system amounts to prov-
ing through a secure protocol the possession and con-
trol of the token by the subscriber.

Authentication begins by the user applying to a regis-
tration authority (RA) to become a subscriber to a
CSP. This is illustrated in the sequence diagram sub-
scribe in Figure 2. The RA receives the application
to register along with documentation of the user’s id.
After the successful identity proofing, the RA notifies
the CSP, which in turn issues a credential and a token
to the user which now has become a subscriber to the
SCP.

Figure 2 shows the most basic constructs of UML
sequence diagrams. The keyword sd to the upper left
denotes the type of diagram and is followed by a cho-
sen name for the diagram. Each of the entities partici-

Figure 1 Policy concepts

Figure 2 A registration authority (RA) identity proofs
the user, after which the user becomes a subscriber to
a credential service provider (CSP). Being a sub-
scriber, the user can later authenticate to systems by
means of a credential and a token issued by the CSP

Triggering

behavior

Triggering

state

Trigger

Policy

Policy rule

Obligation Prohibition

Constrained
behavior

0..1 * * 1

Permission

*
1..*

sd subscribe

User RA CSP

register(id)

subscribe(id)

prove(id)

credential

token

ISSN 0085-7130 © Telenor ASA 2009

92 Telektronikk 1.2009

pating in the interaction is represented by a dashed,
vertical line called a lifeline, where the box at the top
of the line contains the name of the entity. The inter-
action between the entities is represented by mes-
sages which are depicted by arrows from one lifeline
to another (or to itself).

In addition to what is shown in Figure 2, UML
sequence diagrams are equipped with a set of com-
position operators for combining diagrams, most
notably seq for weak sequencing, alt for specifying
alternatives, par for parallel composition, and loop
for several sequential compositions of one diagram
with itself. The reader is referred to [4], [13] for fur-
ther details about the sequence diagram notation and
its formalization in STAIRS.

4 Policy Capturing Using Tables
In this section we show the initial, informal capturing
of some relevant policy rules for access control based
on e-authentication. Before we address the specific
rules we continue the e-authentication example.

Once a user has become a subscriber to a credential
service provider, he or she can use the issued creden-
tial to authenticate to an information system. This
may begin by the user sending its credential to a
server within the system. The server can then confirm
that the credential is issued and validated by the given
CSP, and that the credential has not expired. Success-
ful authentication thereafter requires that the user
proves through a secure authentication protocol that
he or she controls the token binding the credential to
the user’s identity.

The relying party can use authenticated information
to make decisions with respect to access control and
authorization. In the following we give examples of
policy rules that govern such decisions where we
assume that the services that are provided are banking
services over the internet.

Depending on the type or purpose of a policy, the ini-
tial capturing of the policy rules may be conducted
on the basis of, for example, risk analyses, security
requirements, service level agreements or trust rela-
tions. Before the formalization, implementation and
enforcement of a policy it may be useful to capture
and specify policy rules in an informal, yet structured
way. Such an informal structuring of a policy can be
conducted using the table format shown in Table 1. In
this table each of the policy rule elements of the class
diagram of Figure 1 is represented by a column. A
row in the table describes a policy rule and is identi-
fied by a unique name, the rule ID. Such a table as a
whole is then a representation of a policy to be for-
malized and implemented.

A very basic banking service to remote users is to
provide access to the user’s account balance. This is a
service that should be available to authenticated users
and is therefore captured as a permission rule. In the
table format, this rule is specified with the rule ID
‘balance’ in Table 1.

For this permission rule to apply, i.e. for the rule to
trigger, the system behavior of secure user authenti-
cation must occur. Additionally the credential held by
the user cannot have expired. These two conditions
for the rule to trigger are captured by the triggering
behavior and the triggering state, respectively, speci-
fied in the ‘balance’ row of Table 1. Notice that the
triggering state is specified by a proposition; a system
state fulfills the trigger if the proposition evaluates to
true in that state.

In the specification of access control policies, a possi-
ble strategy is to deny all services for which there are
no explicit permissions, i.e. to hold all services as
prohibited by default. In many cases it may, however,
be useful to be able to explicitly specify prohibitions.
With respect to the user access to account balance,
for example, this should be prohibited in case of
authentication failure.

The rule with ID ‘denial’ in Table 1 captures this pro-
hibition. Notice that there is no state trigger specified
for this rule since it suffices that the authentication
protocol fails for user access to be denied. Addition-
ally a second prohibition rule could be specified for
the case in which the user credential has expired.

Rule ID Triggering Triggering Modality Constrained
behavior state behavior

balance The user securely The Permission The user
authenticates credential retrieves its
to the banking has not account balance
server expired

denial The user fails N/A Prohibition The user
to securely retrieves its
authenticate account balance
to the banking
server

logFailure The user fails N/A Obligation The server logs
to securely the transaction
authenticate data and the
to the banking user credential
server

Table 1 The table format for the initial capturing of a policy, where
each row represents a rule and each column corresponds to an element
of the conceptual model depicted in Figure 1

ISSN 0085-7130 © Telenor ASA 2009

93Telektronikk 1.2009

For the purpose of enhancing the security of the
system the relying party may wish to log significant
transactions. The rule with ID ‘logFailure’ in Table 1
states that in case of the user failing to authenticate to
the server, the server is obliged to log the transaction
data as well as the user credential.

The collection of the rows of a policy table represents
the rules that make up the policy that is captured dur-
ing the initial phase. In our example we have shown
only three rules, but further rules could be captured, e.g.
for specifying the conditions under which a user cre-
dential should be disabled, or rules for access to more
critical services in which a stronger e-authentication
is required. For the purpose of this paper of introduc-
ing the Deontic STAIRS notation and demonstrating
its use, the three above policy rules suffice.

5 Policy Specification Using Deontic
STAIRS

In this section we show the formalization in Deontic
STAIRS of the policy rules informally captured in the
previous section. The formalization demonstrates that
Deontic STAIRS has the expressiveness to capture
the information of each cell for each row of a policy
table. This also shows that the notation has language
constructs corresponding to each element of the con-
ceptual model in Figure 1.

Two of the cells in each row describe system behav-
ior of relevance for a rule, namely the triggering
behavior and the constrained behavior. In Deontic
STAIRS system behavior is described as interactions
using standard UML sequence diagrams. For the per-
mission rule ‘balance’ represented in Table 1 the trig-
gering behavior is specified by the sequence diagram

authenticate in Figure 3, whereas the constrained
behavior is specified by the diagram getBalance.

Note that we have omitted the specification of the
authentication protocol in the diagram authenticate
since these details are irrelevant for the purposes of
this paper. The interested reader is referred to e.g. [14].

The triggering state is captured by a constraint within
the specification of the triggering behavior. In UML
constraints are Boolean expressions, i.e. expressions
that evaluate to true or false, written in curly brackets
as illustrated in the diagram authenticate of Figure 3.
A system state satisfies the constraint, i.e. fulfills the
triggering state, if the expression evaluates to true in
that state.

Having captured the triggering behavior, triggering
state and the constrained behavior, the permission
rule is formalized with the Deontic STAIRS diagram
balance of Figure 4.

Figure 3 The sequence diagram authenticate specifies the successful
authentication of a user to the banking server. The sequence diagram
getBalance specifies user retrieval of its account balance from the
banking server

Figure 4 The Deontic STAIRS diagram balance for-
malizes the permission rule ‘balance’ captured in
Table 1

Figure 5 The Deontic STAIRS diagram denial for-
malizes the prohibition rule ‘denial’ as captured in
Table 1

sd authenticate

User Server

identity(credential)

authenticationOK

{not(credential

expired)}

sd getBalance

User Server

getBalance

balance

User Server

rule balance

trigger

ref authenticate

permission

ref getBalance

User Server

rule denial

trigger

identity(credential)

prohibition

ref getBalance

authenticationFailed

ISSN 0085-7130 © Telenor ASA 2009

94 Telektronikk 1.2009

The keyword rule at the top left denotes that the
diagram specifies a policy rule. This keyword is
followed by a chosen name for the rule. For con-
venience the chosen name should correspond to the
rule ID from the policy table.

The diagram consists of two parts, a trigger and a body.
The trigger specifies the conditions under which the
rule applies and is denoted by the keyword trigger.
The body specifies the behavior that is constrained by
the rule and is denoted by a keyword specifying the
modality of the rule, in this case permission.

The ref construct of UML sequence diagrams speci-
fies a so-called interaction use, which is a reference

to another diagram. This facilitates modularity and
reuse of specifications; equivalently the interaction
use can be replaced with the content of the referred
diagram. As explained above, the diagram authenti-
cate specifies the conditions under which the rule
with ID ‘balance’ applies, whereas the diagram get-
Balance specifies the constrained behavior. Alto-
gether the diagram balance of Figure 4 thereby speci-
fies each element of the rule ‘balance’ as captured in
Table 1.

The prohibition rule ‘denial’ is formalized in Deontic
STAIRS with the diagram denial of Figure 5. The
keyword prohibition captures the modality of the
rule, and the interaction of the trigger specifies the
triggering behavior. Since the constrained behavior
of ‘denial’ is identical to the constrained behavior of
‘balance’ we simply refer to the previously specified
interaction with the ref construct.

The diagram logFailure formalizes in the same way
the rule ‘logFailure’ captured in Table 1. The keyword
obligation captures the modality of the rule, and we
see that the constrained behavior of logging the trans-
action data and the user credential is specified as an
interaction between the server and the system log.

The diagrams of this section exemplifying Deontic
STAIRS are all quite simple since the purpose of this
paper is to present the basic constructs of Deontic
STAIRS and to demonstrate the suitability of formal-
izing policy rules. Generally, however, the triggering
behavior and the constrained behavior can be speci-
fied as sequence diagrams of any size, and can be
composed by using the UML composition operators
such as alt, seq, par and loop.

6 How Deontic STAIRS Extends UML
In this section we characterize and discuss more
closely the extensions of UML that define Deontic
STAIRS. In particular we explain why precisely these
extensions are required for being capable of properly
specifying policies using sequence diagrams.

The language constructs of Deontic STAIRS are
summarized in Figure 7 by linking each of the policy
concepts of Figure 1 to the language constructs. The
extensions of the UML sequence diagram notation
defining Deontic STAIRS are basically the construct
trigger for specifying conditionals and the constructs
permission, obligation and prohibition for specify-
ing the modality of deontic constraints.

The expressiveness to specify conditionals is impor-
tant for properly specifying policy rules, and with the
designated trigger construct this is straightforward in

Figure 6 The Deontic STAIRS diagram logFailure
formalizes the obligation rule ‘logFailure’ as
captured in Table 1

Policy: A policy is with Deontic STAIRS specified as a set of policy rule
diagrams

Policy rule: A policy rule is specified with the Deontic STAIRS diagram denoted
by the keyword rule

Permission: This modality of a rule is represented by the Deontic STAIRS
keyword permission

Obligation: This modality of a rule is represented by the Deontic STAIRS
keyword obligation

Prohibition: This modality of a rule is represented by the Deontic STAIRS
keyword prohibition

Constrained behavior: Represented by a UML sequence diagram denoted
by the keyword representing the modality of the constraint

Trigger: Represented by a UML sequence diagram denoted by the keyword
trigger

Triggering behavior: Represented by the interaction of the sequence
diagram specifying the trigger

Triggering state: Represented by a UML guard in the sequence diagram
specifying the trigger

Figure 7 Relating each concept of the class diagram of Figure 1 to
language constructs in Deontic STAIRS

rule logfailure

User RA Log

trigger

identity(credential)

obligation

authenticationFailed

log(transactionData)

log(credential)

ISSN 0085-7130 © Telenor ASA 2009

95Telektronikk 1.2009

Deontic STAIRS. In relation to a system for which a
policy specification applies, the trigger of a policy
rule does not require the triggering behavior to be ful-
filled by the system. Rather it requires that if the trig-
gering behavior occurs, the rule imposes a constraint
on system behavior. In standard UML, on the other
hand, sequence diagrams can only specify behavior
that should or should not occur. Since triggers may be
omitted in the specification of a policy rule, the speci-
fication of such unconditional requirements to system
behavior is also supported in Deontic STAIRS by
standing policy rules.

The constructs for specifying deontic modalities
facilitate the explicit characterization of behavior as
permitted, obliged or prohibited. In standard UML,
sequence diagrams can specify behavior that is valid
and behavior that is invalid. The latter is similar to
the specification of prohibited behavior in Deontic
STAIRS and requires that the given behavior should
never occur.

In a sense both obligations and permissions in Deon-
tic STAIRS specify valid behavior, but with a dis-
tinction that cannot be captured in standard UML.
Obligations require that the corresponding behavior
must occur, whereas permissions require that the cor-
responding behavior must be offered as a potential
alternative. This means that permitted behavior must
be offered as a choice, yet allowing alternative behav-
ior to be conducted or chosen instead. This distinction
is important for properly capturing the various types
of policy rules and as such represents a crucial ele-
ment in the extension of the sequence diagram nota-
tion that defines Deontic STAIRS.

7 Relating Policy Specifications
to Systems

In this section we explain the semantics of the policy
specifications and show how policy specifications
relate to systems to which the policies apply.

Semantically a standard UML sequence diagram is
represented by traces of events ordered by time.
Events occur on lifelines and are either the transmis-
sion of a message or the reception of a message. The
transmission of a message is ordered before the corre-
sponding reception of the message, and events are
ordered downwards along each lifeline.

Consider, for example, the obligation rule logFailure
of Figure 6. The interaction specifying the triggering
behavior is the sequence of the two messages
identity(credential), abbreviated i(c), and authentica-
tionFailed, abbreviated a. A transmit event is denoted
by ! and a receive event is denoted by ?, so the trace

representing the triggering behavior is ‹!i(c), ?i(c), !a,
?a›.

When relating a policy specification to an imple-
mented system, we need to create a model of the sys-
tem. Such a model can be the set of possible system
executions, where a system execution is represented
by a trace describing the sequence of events that occur
during the execution. Adherence of a system to a pol-
icy specification means that the system executions sat-
isfy the rules of the policy specification. Since policy
rules are conditional, a policy rule imposes a con-
straint on a system execution only if the execution ful-
fills the policy trigger. Furthermore, when specifying
a policy we consider only the system entities and the
system behavior of relevance for the policy, which
means that the system may have behavior that is not
mentioned in the policy specification. For a system
trace to fulfill a trace of a policy rule, the latter need
therefore only be a sub-trace of the former.

Assume, for example, that at some point during a
system execution the following sequence of events
occur.

‹..., !r, !d, ?d, !i(c), ?r, ?i(c), !a, ?a, !l(t), !f, !l(c),
?l(t), ?l(c), ?f, ...›

Since the trace ‹!i(c), ?i(c), !a, ?a› representing the
trigger of the obligation rule logFailure is a sub-trace
of the given system trace, i.e. the four events occur in
the same order, the system traces fulfill the trigger.

At the point of the occurrence of the event ?a in the
given system trace, the obligation rule therefore
applies and imposes a constraint on the continuation
of the system trace. It is easily verified that the con-
tinuation fulfills the obliged behavior specified in
logFailure. This means that the given system execu-
tion adheres to this policy rule.

More precisely, system adherence to a policy specifi-
cation means that the system adheres to each rule of
the specification. Adherence to an obligation rule
means that if the rule is triggered at some point during
a system execution, all possible continuations of the
system execution fulfill the obliged behavior. Adher-
ence to a prohibition rule means that none of the possi-
ble continuations fulfill the prohibited behavior.
Finally, adherence to a permission rule means that
there must exist at least one possible continuation that
fulfills the permitted behavior, meaning that the system
must offer the permitted behavior as a potential choice.

Standard UML sequence diagrams also specify
requirements to system executions and are in the same
way represented by traces in the semantics. As we

ISSN 0085-7130 © Telenor ASA 2009

96 Telektronikk 1.2009

have seen, however, these requirements are not condi-
tional. The traces representing a sequence diagram are
rather describing behavior that the system should or
should not have. Standard sequence diagrams are fur-
thermore normally interpreted as describing exactly
the traces of events that must occur in order to fulfill
the specified behavior, i.e. there is no notion of other,
irrelevant behavior that may be interleaved.

This interpretation of Deontic STAIRS specifications
is formalized with the adherence relation [13] and is
together with the customized constructs of trigger and
deontic modalities important for facilitating policy
specification; through the capturing and formalization
of a policy we need only consider the relevant issues,
such as security, trust and service level. Furthermore,
together with the support for specifying conditional
requirements, this interpretation facilitates the speci-
fication of policy rules that applies for several sys-
tems or several implementations of a system.

8 Conclusion
In this paper we have presented Deontic STAIRS,
a customized notation for specifying policies using
UML 2.1 sequence diagrams. The notation is defined as
a modest and conservative extension of UML, allowing
the specification of conditional deontic rules in the
form of permissions, obligations and prohibitions.

The UML is the de facto standard for the modeling
and specification of information systems. Customiz-
ing the UML for specific purposes may be advanta-
geous since the knowledge about the UML is wide-
spread, but there is a potential pitfall: If UML con-
structs are not used in accordance with the UML stan-
dard, the customized language may easily be used
erroneously. This pitfall is avoided in the develop-
ment of Deontic STAIRS, so people that are familiar
with the UML should be able to understand and use
the notation.

Basing a policy specification language on the UML
also has the advantage that the graphical appearance
facilitates communication between personnel of dif-
ferent backgrounds, such as decision makers, security
personnel and developers.

Furthermore, providing the UML with support for
specifying policies facilitates the analysis of the rela-
tion between a policy specification and the specifica-
tion of a system for which the policy applies, where
also the latter is given in UML. STAIRS is an approach
to system development with UML sequence diagrams,
and in [15] the notion of adherence of a STAIRS sys-
tem specification to a Deontic STAIRS policy speci-
fication is formalized.

Deontic STAIRS is a generic approach to policy spec-
ification, meaning that the notation supports the speci-
fication of policies of various types. In [13] and [16]
Deontic STAIRS is presented within the domains of
access control and trust management, respectively. In
this paper we have exemplified the formalization of
policy rules in the setting of e-authentication and
access control in a telecommunication scenario. The
initial capturing of the policy rules is in this example
conducted by an informal structuring of the rules in a
table format. In the table format several details about
the system architecture, system entities, system func-
tionality, etc. are not taken into account, so the for-
malization of the rules in Deontic STAIRS may repre-
sent a shift that brings the policy specification closer
to implementation and enforcement.

In a practical setting of formalizing and developing
a policy specification there is usually a process in
which the most important issues are taken into account
during the initial phases, and as the process evolves
more details are considered, rules may be strengthened
and other rules may be added. This process can be con-
ducted by several iterations with backtracking to the
policy table where rules are modified and added,
before the formalization in Deontic STAIRS is modi-
fied and extended accordingly. A development process
based on such iterations may, however, be unfortunate
if it requires constant redesign of the specification and
if it is not precisely understood what it means that one
policy specification is a strengthening of another.

Iterations with backtracking and redesign is avoided
when the development process is supported by a well
defined notion of refinement, precisely capturing
what it means to strengthen a policy specification
and increase the level of detail. In [13] the notion of
refinement of specifications in Deontic STAIRS is
formalized, allowing rules to be added, rules to be
strengthened, and new details to be taken into account
in a stepwise and incremental manner. Refinement in
Deontic STAIRS ensures that a correct enforcement
of the final specification implies the enforcement of
all the previous specifications throughout the devel-
opment process.

In summary this means that with Deontic STAIRS we
are provided not only a customized notation for spec-
ifying policies, but also support for a stepwise and
incremental development of specifications, facilitat-
ing the process from the initial policy capturing down
to the final specification to be enforced.

Acknowledgments

The research on which this paper reports has partly
been funded by the Research Council of Norway
through the projects ENFORCE (164382/V30) and

ISSN 0085-7130 © Telenor ASA 2009

97Telektronikk 1.2009

DIGIT (180052/S10), and partly by the European
Commission through the S3MS project (Contract no.
27004) under the IST Sixth Framework Programme.

References
1 Sloman, M, Lupu, E. Security and management

policy specification. Network, IEEE, 16 (2), 10-
19, 2002.

2 Sloman, M. Policy driven management for dis-
tributed systems. Journal of Network and Systems
Management, 2, 333-360, 1994.

3 OMG. Unified Modeling Language : Superstruc-
ture, version 2.1.1. Object Management Group,
2007.

4 Haugen, Ø, Husa, K E, Runde, R K, Stølen, K.
STAIRS Towards Formal Design with Sequence
Diagrams. Journal of Software and Systems
Modeling, 4, 355-367, 2005.

5 OASIS. eXstensible Access Control Markup
Language (XACML) Version 2.1, 2005.

6 McNamara, P. Deontic Logic. In: Gabbay, D M,
Woods, J (eds). Logic and the Modalities in the
Twentieth Century, volume 7 of Handbook of the
History of Logic, 197-288. Elsevier, 2006.

7 Aagedal, J Ø, Milosevic, Z. ODP Enterprise
Language: UML Perspective. In: Proceedings of
the 3rd International Conference on Enterprise
Distributed Object Computing (EDOC’99),
60-71. IEEE CS Press, 1999.

8 Kagal, L, Finin, T, Joshi, A. A Policy Language
for a Pervasive Computing Environment. In: Pro-
ceedings of the 4th International Workshop on
Policies for Distributed Systems and Networks
(POLICY’03), 63-74. IEEE Computer Society,
2003.

9 Steen, M, Derrick, J. Formalising ODP Enterprise
Policies. In: Proceedings of the 3rd International
Conference on Enterprise Distributed Object Com-
puting (EDOC’99), 84-93. IEEE CS Press, 1999.

10 Wies, R. Policy Definition and Classification:
Aspects, Criteria, and Examples. In: Proceedings
of the IFIP/IEEE International Workshop on Dis-
tributed Systems : Operation and Management,
1994.

11 ISO/IEC. FCD 15414, Information Technology –
Open Distributed Processing – Reference Model
– Enterprise Viewpoint, 2000.

12 Burr, W E, Dodson, D F, Polk, W T. Electronic
Authentication Guideline. National Institute of
Standards and Technology, 2006.

13 Solhaug, B, Stølen, K. Compositional refinement
of policies in UML – Exemplified for access con-
trol. In: Proceedings of the 13th European Sym-
posium on Research in Computer Security
(ESORICS’08), vol 5283 of LNCS, 300-316.
Springer, 2008.

14 Stallings, W. Cryptography and Network
Security. Prentice Hall, fourth edition, 2006.

15 Seehusen, F, Solhaug, B, Stølen, K. Adherence
preserving refinement of trace-set properties in
STAIRS : Exemplified for information flow prop-
erties and policies. Journal of Software and Sys-
tems Modeling, 8 (1), 45-65, 2009.

16 Refsdal, A, Solhaug, B, Stølen, K. A UML-based
Method for the Development of Policies to Sup-
port Trust Management. In: Trust Management II
– Proceedings of 2nd Joint iTrust and PST Con-
ference on Privacy, Trust Management and Secu-
rity (IFIPTM’08), 33-49. Springer, 2008.

Bjørnar Solhaug received his Master’s degree in Language, Logic and Information from the University of Oslo in 2004. He is

currently working on his PhD at the University of Bergen and at SINTEF Information and Communication Technology. His main

field of interest is modeling and development of policy specifications for policy based management of distributed systems, with

particular focus on trust and risk management.

bjornar.solhaug@sintef.no

Tor Hjalmar Johannessen is Senior Adviser in Telenor R&I. He graduated from the University of Oslo in 1975 as Cand.Real.

After working with military crypto systems at Alcatel Telecom since 1989, he joined Telenor R&I Security Group in 2000. His

main interest and occupation has been security in general and deployment of PKI systems, especially in the SIM-card and

mobile systems. His activities comprise participation in various EU projects, IETF, EURESCOM, CEN/ISSSWS, GSMA, ETSI SCP

and ETSI ESI.

Tor-Hjalmar.Johannessen@telenor.com

ISSN 0085-7130 © Telenor ASA 2009

