
Specifying Policies Using UML Sequence Diagrams–

An Evaluation Based on a Case Study

Bjørnar Solhaug1,2, Dag Elgesem1 and Ketil Stølen2,3

1Dep. of Information Science and Media Studies, University of Bergen
2SINTEF ICT 3Dep. of Informatics, University of Oslo

Email: {bjors,kst}@sintef.no, dag.elgesem@infomedia.uib.no

Abstract

This report provides a case study based evaluation of UML sequence
diagrams as a notation for policy specification. Policy rules are defined
on the basis of deontic logic, and we provide these with a trace based
semantics interpreted over Kripke structures. This gives a semantics
along the line of the UML trace semantics for sequence diagrams, which
is utilized in the evaluation. The focus is on requirements with respect
to expressivity, utility and human readability.

1 Introduction

The UML 2.0 [17] is currently the de facto standard for the modeling and
specification of information systems. Policy frameworks, see e.g. [21] for a
survey, are increasingly being adopted as a means of managing such systems
with respect to security, ICT services and networks, business processes, etc.
An obvious issue to investigate is to what extent UML is suitable for the
specification of policies for the management of these systems.

Sloman’s [20] definition of a policy is much referred to and suggests that
policies are rules governing the choices in the behavior of a system. The
system may consist of human or automated actors, or a combination of
the two, in addition to a set of resources, such as information and services.
Moreover, there may be a number of users external to the system whose
access to the system resources should be constrained.

Policy rules can be understood as normative statements about system
behavior, particularly when the actors to which a policy applies are human.
A policy rule may for example state that all employees are obliged to lock
their computers whenever they leave their working station. However, hu-
mans obviously have the choice whether to comply with the rule or not.
Incentive structures may be implemented for the purpose of encouraging

3



normative behavior, but these will not necessarily eliminate the potential,
undesired behavior.

The same can be the case for automated actors outside the control of
the system owner or designer. Automated actors within the system, on the
other hand, usually do not have the option of disobeying policies. However,
the normative aspect is still present in the sense that the potential behav-
ior or the functionality of the actors go beyond what is prescribed by the
policy. This is a key feature of policies as they “define choices in behavior
in terms of the conditions under which predefined operations or actions can
be invoked rather than changing the functionality of the actual operations
themselves” [21]. By separating the policy from the system, the behavior
of the system can be governed by modifying the policies only, leaving the
underlying implementation of the system unchanged [20].

Thus, the system itself with all its potential behavior provides one per-
spective, while the policy constraining the behavior of the system provides
another. This report evaluates the suitability of deploying UML 2.0 sequence
diagrams for policy specification.

The next section provides a classification of the type of policy rules we
aim at formalizing in this report, as well as a trace based semantics for each
type of rule. Policy rules are interpreted in terms of traces in compliance
with the explanation of UML sequence diagrams in the standard [17]. We
therefore provide a policy rule semantics along the line of sequence diagram
semantics. Section 3 describes our target of evaluation, i.e. the parts of
UML on which we will focus in the evaluation. In Section 4 we present our
evaluation method. In Section 5 we give a set of success criteria describing
the requirements that should be satisfied by the UML sequence diagrams
as a policy specification language. In Section 6 we use class diagrams to
specify an eLearning scenario for which a policy will be provided. Section 7
and Section 8 suggest how particular policy rules for the eLearning scenario
can be specified using UML sequence diagrams. Based on the case study,
Section 9 discusses the strengths and challenges of applying sequence dia-
grams for this purpose by evaluating whether the given success criteria are
fulfilled. In particular, the semantics of the specifications in Section 7 and
Section 8 are compared to the semantics for the policy rules given in Sec-
tion 2. Finally, in Section 10, we discuss some of the existing approaches
to the specification of policies, specifically some of those using UML, before
concluding in Section 11.

2 Policy Classification

The various existing approaches to classify policies may differ somewhat
both in the definition of a policy and in the classification of types of policy
rules. Differences usually depend on the purpose, scope, target, etc. of the

4



policy framework in question. A common feature, however, is that a policy
in some sense constrains the potential behavior of a system; it is a set of
rules that determine choices between alternatives of behavior.

A reasonable way of classifying policies is to operate with the tripar-
tition of policy rules into obligations, permissions and prohibitions, based
on deontic logic [24]. Several of the existing approaches to policy specifica-
tion and classification have language constructs that correspond with these
deontic types [1, 4, 11, 20, 22, 26]. This way of categorizing policy rules
is furthermore proposed in standardization works by ISO/IEC and ITU-T on
open distributed processing [10].

In addition to prescribing constraints on behavior, a policy must express
the conditions under which the various policy rules apply. We shall refer to
these conditions as policy triggers and we distinguish between event triggers
and state triggers. An event triggered policy applies by the occurrence of a
given event, whereas a state triggered policy applies in a given set of states.
A policy trigger may be a combination of the two, i.e. the occurrence of a
specific event in a given set of states. A similar way of classifying policy
triggers is proposed by Sloman [20].

A policy must furthermore specify the actors to which the rules apply,
i.e. the actors the behavior of which is constrained by the policy. These
actors will be referred to as the addressee of the policy.

Given a behavior, a trigger and an addressee, we define the three different
types of policy rules as follows:

Obligation: An obligation states that whenever the policy trigger executes
or applies, the addressee is required to conduct the behavior.

Permission: A permission states that whenever the policy trigger executes
or applies, the addressee is allowed to conduct the behavior.

Prohibition: A prohibition states that whenever the policy trigger executes
or applies, the addressee is forbidden from conducting the behavior.

Figure 1 shows a class diagram describing the elements of a policy and
the relations between them.

2.1 Trace semantics for deontic modalities

We will in the following establish a trace based semantics for deontic modal-
ities. The semantics will later be used as a means to decide whether the UML

sequence diagrams are sufficiently expressive to capture these modalities.
Standard deontic logic (SDL), see e.g. [16], builds upon propositional

logic and provides a semantics in terms of Kripke structures of possible
worlds. A possible world w describes a possible state of affairs, and for
each proposition p in the language, either p holds or the negation ¬p holds,
denoted �w p and �w ¬p, respectively. Assuming a set of possible worlds W

5



Policy

Policy

rule

1..*

Behavior

*

1

Policy

trigger
* *

State

trigger

Event

trigger

Obligation Permission Prohibition

Addressee1

Deontic

modality

*

*

1
*

conducts

1

1

Figure 1: Policy classification

describing a set of different states of affairs, the binary relation A defines for
each world w ∈ W the set of worlds that is acceptable in w. Awv denotes
that v is an acceptable world in w, and Aw denotes the set of worlds that is
acceptable in w, i.e. Aw = {v : Awv}.

Let OBp denote “it is obligatory that p”. The semantics of this statement
is that if �w OBp, then �v p for all acceptable worlds v ∈ Aw. The semantics
of the statement PEp denoting “it is permitted that p” is that if �w PEp,
then there is at least one acceptable world v ∈ Aw such that �v p. The
semantics of the statement PRp denoting “it is prohibited that p” is that if
�w PRp, then there is no acceptable world v ∈ Aw such that �v p.

We shall not pay attention to the axioms and rules that define the syntax
of SDL in this report, apart from noticing the axiom OBp → PEp which states
that everything that is obliged is also permitted. The validity of this axiom,
i.e. that it holds in every possible world in all Kripke structures for SDL, is
ensured by the requirement that the acceptability relation A on the Kripke
structures is serial. Seriality states that for each possible world w, there is
at least one acceptable world, i.e. Aw 6= ∅.

Notice that there is an alternative Kripke semantics for SDL in which
the possible worlds are ordered by degree of ideality with respect to which
the satisfiability of deontic expressions is defined. The semantics presented
above is a special case of such a semantics, namely one in which there are only
two degrees, acceptable and unacceptable. The latter variant is sufficient
for the purposes of this report.

The various deontic modalities can in SDL be expressed in terms of each
other as shown by the definitions PEp ↔ ¬OB¬p and PRp ↔ OB¬p. Figure
2 illustrates the semantics. The squares depict the acceptable worlds and the
propositional statements inside the squares describe what must be satisfied
in these worlds for the deontic statements to be true.

We use the term trace to denote an execution history describing how

6



OBp

A
w

p holds in 

all worlds

PEp

A
w

p holds in 

some world

PRp

A
w

p holds in 

no world

Obligatory Permitted Prohibited

Figure 2: Truth conditions for deontic statements

behavior evolves over time. A possible world is a description of a possible
state of affairs which can be uniquely identified by the complete history
leading up to that state of affairs. That is to say, each world w ∈ W

uniquely corresponds to a specific trace. The relation A between worlds in
the semantics for SDL captures the set of acceptable worlds in a given world
w. Since a policy specifies allowed and obligated behavior, the acceptable
worlds Aw follows w in time. This means that all states of affairs v ∈ Aw

is given by a trace such that the trace describing w is a prefix. We use the
notation t1

⌢t2 to denote the trace given by the concatenation of the traces
t1 and t2. If t1 is finite, t1

⌢t2 is the trace where t1 is the prefix and t2 is
the suffix and the length equals the sum of the length of t1 and t2. If t1 is
infinite, t1

⌢t2 equals t1.
A possible world v ∈ Aw then corresponds to the trace w⌢t where t is

the trace describing the history evolved from w to v. It should be noticed
that interpreting interactions over Kripke structures like this requires the
structures to be forward branching with no loops.

A policy trigger describes the conditions under which a policy rule ap-
plies. In terms of the SDL semantics, the trigger refers to a set of possible
worlds. Given that we interpret of a possible world as a trace, a policy trig-
ger refers to a property of a trace, and the corresponding policy rule applies
to all traces for which the property holds. If W is a set of possible worlds and
T is a policy trigger specified as a propositional logical expression, WT ⊆ W

denotes the set of possible worlds for which the trigger holds.
By moving from one possible world w to another world v ∈ Aw, some

sort of behavior has been conducted. Since the trace describing w is a prefix
of the trace describing v, the behavior conducted from w to v is given by
the trace for v with the prefix removed.

With this interpretation of possible worlds and the relation between them
in terms of traces, we are provided a Kripke semantics for deontic constraints
that can be used in the evaluation of UML interactions.

A policy rule refers to a certain behavior. Generally, the specification
is to a certain degree abstracted or underspecified, which means that the
behavior can be conducted in various concrete ways. Each of the concrete
specifications is described by a trace of events, so a given behavior corre-
sponds to a set of traces.

7



Now, assume a policy rule for the set of worlds W , with a trigger T

and a behavior B, where B is the set of traces each of which represents a
concrete way of conducting the behavior. The trace based SDL semantics
for the various modalities is then given as follows:

Permission: ∀w ∈ WT : ∃v ∈ Aw : ∃b ∈ B : v = w⌢b

Obligation: ∀w ∈ WT : ∀v ∈ Aw : ∃b ∈ B : v = w⌢b

Prohibition: ∀w ∈ WT : ∀v ∈ Aw : ¬∃b ∈ B : v = w⌢b

3 Target of Evaluation

The target of evaluation is UML [17] sequence diagrams. Sequence diagrams
specify interactions, which describe how messages are sent between entities
for the purpose of performing a behavior. We evaluate to what extent they
are suitable as a notation for the specification of policy rules. A central
question is to what extent sequence diagrams are capable of capturing the
various deontic constraints. OCL is in this context used to impose constraints
on the execution of interactions. Since OCL is a constraint language, it is
a natural candidate for expressing aspects of policies, and some existing
approaches have used OCL for this purpose, e.g. [1, 4, 18].

We use class diagrams to describe the static properties of the system
for which policy rules are specified. They are discussed only in relation to
interactions for policy rule specification, and are outside the focal point of
the evaluation.

The UML 2.0 specification [17] provides an informal description of the
trace semantics of interactions. A trace is a sequence of events occurrences
ordered by time describing how entities interact for the purpose of conduct-
ing some system behavior. Interactions define a set of allowed traces and a
set of forbidden traces, expressing desired and undesired behavior, respec-
tively. This semantics is formalized with STAIRS [8, 19] which will serve as
the semantic basis for interactions in our evaluation.

Within the STAIRS framework, interactions characterize traces as pos-
itive, negative or inconclusive. If a trace is positive, the execution of the
trace is valid, legal or desirable. Correspondingly, a negative trace means
that the execution is invalid, illegal or undesirable. A trace is inconclusive if
it is categorized as neither positive nor negative. This means that the trace
is irrelevant for the interaction in question. By specifying policy rules using
sequence diagrams and interpreting them in terms of the STAIRS semantics,
we provide a policy specification that can be compared to the policy rule
semantics given in Section 2 above.

In the following section we describe how the evaluation will be conducted,
and we give a set of criteria that the relevant parts of UML should satisfy in
order to be a suitable notation for policy specification.

8



4 Evaluation Method

Our evaluation of sequence diagrams as a language for policy specification
is conducted over the following steps:

1. A carefully selected scenario is used as a case study for policy capturing

2. The success criteria are formulated

3. Sequence diagrams are deployed for specifying policies for the case
study scenario

4. The result of the latter step is evaluated against the success criteria

The case study on which the evaluation is based is the Metacampus
eLearning Enterprise Network described in a TrustCoM deliverable [6]. This
eLearning scenario is well documented and was deployed during the Trust-
CoM project [23] for the purpose of testing and demonstrating the project’s
proposed framework for trust and contract management. As the scenario
concerns real world issues, we are provided realistic management problems
that can be addressed by means of policy frameworks.

The specific policy rules for the eLearning scenario that are described in
this report were captured through a systematic analysis arranged as a series
of workshops involving people of various backgrounds, including security,
law and computer science. The analysis was facilitated by the reuse of both
the documentation of the eLearning scenario and the documentation of risk
issues related to the scenario [15, 25]1.

5 Success Criteria

In Section 7 and Section 8 we try to use UML sequence diagrams to specify
policies of relevance for the selected case. Subsequently this attempt is
evaluated against the following nine success criteria.

C1: Permissions may be expressed by sequence diagrams.

C2: Obligations may be expressed by sequence diagrams.

C3: Prohibitions may be expressed by sequence diagrams.

The sequence diagram notation is not a policy specification language,
and there are no explicit sequence diagram constructs available for specify-
ing the deontic modalities of obligation, permission and prohibition. The
testing of the extent to which sequence diagrams meet criteria C1 through

1The mentioned deliverables [6, 15, 25] are available as downloads on the TrustCoM
homepage [23].

9



C3 then amounts to examine to what extent there are language constructs
available that allow specifications, possibly annotated with OCL expressions,
the semantics of which corresponds to the semantics of deontic modalities
as presented in Section 2.

C4: The formalizations under criteria C1 through C3 respect the axioms
and definitions of SDL.

Standard deontic logic [16] is a normal modal logic distinguished by the
axiom OBp → PEp stating that everything that is obliged is also permitted.
The formalization of the deontic modalities in sequence diagrams should
preserve the property expressed by this axiom, as well as the definitions
PEp ↔ ¬OB¬p and PRp ↔ OB¬p.

C5: Sequence diagrams allow the composition of deontic expressions.

A policy is built up by a set of policy rules. If each rule of a policy
is specified as a sequence diagram, it should be possible to compose the
resulting set of diagrams into one specification that represents the policy.

C6: Sequence diagrams allow the specification of both event and state trig-
gers, as well as the combination of the two.

The policy triggers specifies the conditions under which the policy rules
apply. In order to successfully express policies, we must be able to accom-
pany the specification of a deontic statement with the specification of the
relevant trigger.

C7: Policies may be expressed in the spirit of UML

By criterion C7 we mean that the various elements of a policy are nat-
urally and intuitively reflected by notions and constructs of UML sequence
diagrams. Specifically, the elements of the class diagram of Figure 1 should
have their corresponding language constructs within the sequence diagram
notation.

C8: Sequence diagrams allow the specification of policies in a manner suit-
able for engineers developing and maintaining systems that should
adhere to the policies.

This criterion is related to the pragmatics of the language, i.e. who are
supposed to use the language and for which purposes. Maintainers, designers
and other personnel that are responsible for modeling and implementing
policies are facilitated by a language in which the various elements of a policy
rule are easily captured. The specifications should be easily understandable
in that the practitioners can, for each rule, recognize what kind of deontic
constraint is represented, who or what the addressee is, what is the trigger
and what is the behavior.

10



C9: Sequence diagrams allow the specification of policies in a manner that
is easy to understand for both decision makers and for the addressees
of a policy.

As the previous criterion, this addresses the pragmatics of policy specifi-
cations. Senior employees, chief executive officers and other decision makers
are typically of non-technical background, and a suitable policy specification
language should make allowance for this. The same is the case when the
addressees of a policy are the employees of an organization or an enterprise.
At a high organizational level, a policy is usually a document in natural
language. A specialized language for policy specification should compared
to natural language structure, arrange and present the relevant pieces of
information in a better way.

The pragmatics is a crucial aspect, since if the language is hard to un-
derstand and does not facilitate policy specification it will be of low value
even though the expressivity and the semantics are as desired.

6 The eLearning Scenario

In this section we use UML class diagrams for the specification of the struc-
ture of and the relationships between the entities involved in an eLearning
scenario.

The case study scenario concerns a small to medium sized enterprise
(SME) network specializing in providing tailored eLearning services to end-
users [6, 15, 25]. An end-user connects to an eLearning portal which will offer
access to a large variety of modularized and personalized learning resources.
For each tailored learning path (tailored package of learning content), a
virtual organization (VO) is established for the provisioning of the eLearning
services.

The actors involved are the end-users, the learning content providers
(LCPs) and the eLearning portal operator (PO). The PO provides the inter-
face towards the end-users and is responsible for the construction of tailored
learning paths that meet the customer needs and requirements. The training
consultant (TC) is a software owned by the PO that identifies learning paths
based on the customer needs and the learning resources made available by
the LCPs. An LCP is typically a university or the like and provides modules
that may serve as parts of learning paths. Each module consists of learning
content in some form, e.g. pdf or video files.

Figure 3 shows the context of the analysis. The AS part describes the
elements that are involved in the establishment of VOs for the purpose of
providing aggregated services (AS) to the end-users.

A given LCP must be accepted as a member of the SME eLearning network
before it can provide its services by participating in the eLearning VOs. The
PO is the party contracting with the LCPs and is as such responsible for

11



eLearning

:End-user[*]

:Internet

AS

:Training Consultant

Portal Operator

:Content Provider[*]

11

1

*

1

*

Figure 3: eLearning context

and in control of which LCPs are to be allowed to enter the network. We
will address the relations between the PO and one particular LCP, referred
to as NoContent. NoContent is assumed to currently being a potential
cooperation partner, and the objective is to specify a policy on the behalf
of the PO regulating future interactions with NoContent.

Both the PO and NoContent are organizations that have a number of
employees, are structured into departments and that have some machines,
i.e. automated software or hardware actors, providing automated services.
A general specification of an organization is given in the class diagram of
Figure 4. Observe that an organization is an actor that has other actors,
possibly sub-organizations, as members.

Actor

Server

Machine

Department

OrganizationEmployee *

*

*

*

1..*

Figure 4: Organization

We will specify a policy held by the PO for the purpose of protecting its

12



core assets. The asset on which we will focus is the TC and its associated
learning content ontology owned by the PO. In order to match an end-
user’s learning needs and requirements with the available learning content
provided by the LCPs, the TC categorizes the learning content according to
the ontology.

The TC and the ontology are crucial both for the establishment and
the ongoing conduct of the eLearning services, and therefore they consti-
tute highly sensitive information that is very valuable to the PO. Protective
measures must be established and maintained to ensure the integrity and
confidentiality of this information, but at the same time the collaborating
LCPs must be provided access so that they can present their services and
resources in a meaningful way. The LCPs must also ensure that the selection
of LCPs in the tailoring of learning paths is executed in a fair manner. Figure
5 shows a class diagram capturing the elements of the PO relevant for the
policies that will be specified in the sequel.

OrganizationMachine Employee

TC PO
PO

employee
1..*

Ontology
SW

engineer

SW

department

Department

1..*

Server

PO

server

po

dep

eng

Figure 5: The portal operator

The class diagram of Figure 6 shows the relevant elements of NoCon-
tent. The Boolean attribute nda of NoContent employee indicates for each
employee whether he or she has signed a non disclosure agreement with the
PO concerning information on the TC and the ontology.

7 Specifying State Triggered Policies

A state triggered policy rule applies in a given set of states, viz. the trig-
gering states. In this section we suggest how sequence diagrams and OCL

invariants can be utilized to express state triggered policies.
Figure 7 shows in a generic way our approach to specify state triggered

policies. The interaction use refers to the behavior relevant to the policy
rule, and the lifelines show the entities involved in the behavior. The ad-

13



Organization

NoContent
NoContent 

employee

nda:Boolean

1..*

NoContent 

senior 

employee

Employee

Figure 6: NoContent

dressee is always involved in the behavior in addition to any number of other
entities, here represented by one lifeline for illustrative purposes. An OCL

invariant placed in an attached note imposes constraints on the interaction
in accordance with some policy rule.

The triggering state can be represented as a guard on behavior or as an
invariant in the attached OCL expression. These are Boolean expressions the
truth value of which determines whether the execution of the interaction use
behavior is legal.

Designated as required, allowed or 

prohibited using OCL invariants

sd state trigger

: Addressee

ref behavior

: B

trigger

Figure 7: State triggered policy rule

7.1 State Triggered Permissions

A state triggered permission expresses that in a given set of states, the
addressee is allowed to conduct the given behavior. We will in this subsection
specify permissions that constrain the access to the TC and the ontology.

The first concern is the access to the learning content ontology. The
following informal statement specifies to whom and under what condition the
access is granted: Access to read the ontology is granted to senior NoContent

14



employees in a non-disclosure agreement with the PO and to PO employees.
The purpose of this rule is to prevent the ontology from being publicly
known.

The ontology is stored on a server, see Figure 5, and the access to the
ontology will be restricted by restricting the access to this server. Since there
are two different addressees, one of which is granted a conditional access,
we will split the statement into two as shown in Table 1.

Modality Behavior Trigger Addressee

Permission Read from State: All PO employee
PO server

Permission Read from State: Accessor in NoContent
PO server NDA with PO senior employee

Table 1: Permissions

The categorization of the elements of the policy rules is done according
to the policy classification in Section 2. In both these cases, the rules are
state triggered. Since the PO employee access is granted in all states, the
state trigger is in that case equivalent to true.

Figure 8 shows the UML specification. The sequence diagram specifies
the ReadServer interaction which involves the PO server and some anonymous
actor. The attached OCL invariant ensures that the actors are of the type
that are permitted to read from the PO server.

The OCL operation oclIsTypeOf applies to all objects. For any object o,
the expression o.oclIsTypeOf(t) evaluates to true if and only if o is of type t.

sd PermissionReadServer

client: 

Actor

ref ReadServer

server:

PO server

client.oclIsTypeOf(PO employee) or

(client.oclIsTypeOf(NoContent senior employee) and client.nda)

opt

Figure 8: Access to read the ontology

This sequence diagram characterizes the traces produced by the Read-
Server interaction as positive whenever the client is of the required type. By
placing the ReadServer within the combined fragment opt, we ensure that

15



the execution of these traces are optional since the trace in which the Read-
Server is skipped is also positive. As defined in Section 2, a permission only
requires that the behavior is allowed, which means that specifying the be-
havior as optional is somewhat stronger than required. In practice, however,
it is usually reasonable to interpret a permission as optional.

In a policy specification, the prohibitions and permissions together char-
acterize the allowed behavior. There are three approaches to capture the
allowed behavior. We need to consider all three separately, since the se-
lection of approach may have implications for how policy rules should be
specified.

Firstly, we may assume that everything is prohibited unless explicitly
specified as permitted. We shall call this approach ’prohibition by default’.
Secondly, we may assume that everything is permitted unless explicitly spec-
ified as prohibited, and refer to this as ’permission by default’. The third
approach is to explicitly specify all behavior as either permitted or prohib-
ited. The selection of which approach to adopt usually depends on the type
of system in question. However, this is an issue we will not pursue in this
report. The problem of detecting and resolving policy conflicts and inconsis-
tencies that may arise by using the third approach is also outside the scope
of this report.

What we need to address is that if the approach is not prohibition by
default, the policy specification must ensure that only the actors explicitly
allowed to access the PO server are granted access. In this case the constraint
is given as an OCL invariant, i.e. a Boolean expression that must evaluate to
true for the interaction to execute. The traces in which the client is not a PO

employee or a NoContent senior employee in NDA are thus negative. This
means that the permission specification we suggest in Figure 8 implicitly is
also a prohibition.

Notice finally that class diagrams that specify the system to which a
policy applies can be used to capture the inheritance of permissions, obliga-
tions and prohibitions: The specialization relation serves as an inheritance
relation by the fact that all instances of a class inherits from all of its parent
classes. This is closely related to role hierarchies that describe aggregation
of access rights within role-based access control (RBAC) [5]. The permission
we have specified in Figure 8 thus as well applies to SW engineer.

The next permission rule concerns the access to do configurations on the
TC software. The functionality of the TC is critical, both in terms of ensuring
that the learning paths suggested to the end-user match the end-users needs
and requirements, as well as to ensure that the selection of LCPs is executed
fairly, i.e. that no LCP is discriminated.

Informally, the permission policy rule is stated as follows: Access to
configure the TC is granted to PO employees that are software engineers. TC

configuration may occur between 10 p.m. and 4 a.m. only. The latter clause
is added to ensure that configurations are not made during office hours. The

16



elements of the policy is given in Table 2.

Modality Behavior Trigger Addressee

Permission Configure State: Time between PO employee that
TC 10 p.m. and 4 a.m. is SW engineer

Table 2: Permission

Figure 9 shows the sequence diagram in which this policy rule is ex-
pressed. The state trigger is expressed as a time constraint. Time con-
straints is a part of the notation for sequence diagrams, and an equivalent
to this is not available within OCL. In this case, OCL is used only to capture
the addressee of the policy rule.

sd ConfigureMachinePermission

actor: 

Actor

ref ConfigureMachine

machine:

Machine

t{10pm < t < 4am}

actor.oclIsTypeOf(SW engineer)

opt

Figure 9: Access to configure the TC

By placing the ConfigureMachine interaction within an opt, the trace in
which the actor skips this interaction is positive. The other positive traces
are as intended, viz. those in which ConfigureMachine is executed when actor
is of type SW engineer and the time is within the required interval.

Since the policy rule is expressed by invariants, all traces in which the
invariants evaluate to false are negative. Thus, the permission specification
implicitly is a prohibition as well. It is therefore irrelevant whether the
adopted approach is prohibition by default or not.

7.2 State Triggered Obligations

A state triggered obligation expresses that in a given set of states, the ad-
dressee is required to conduct the given behavior. This subsection suggests
how a state triggered obligation can be specified using sequence diagrams
and OCL.

17



Since the functionality of the TC is critical to the PO, a requirement on
software testing is imposed. Informally, the statement is as follows: When
the TC has been configured, the PO software personnel is responsible for
running tests on the TC software. The addressee of this obligation is the SW

department of the PO organization, see Figure 5. Their responsibility is to
assign the task to one or several of their software engineers. Table 3 shows
the structure of this obligation rule.

Modality Behavior Trigger Addressee

Obligation Testing of TC State: TC SW department
configuration finalized

Table 3: Obligation

Essentially, this obligation states that one particular behavior, viz. soft-
ware configuration, requires another behavior to follow, viz. software testing,
i.e. the obligation imposes a relationship between behaviors. We will specify
the given obligation as an OCL invariant, and in order to do so, we assume
the TC has a Boolean attribute configured that evaluates to true when the
configuration is finalized.

Figure 10 suggests how this obligation can be specified. The OCL expres-
sion refers to navigations over associations in the class diagram of Figure
5. Navigations over associations result in collections like sets, bags and se-
quences, and a property of a collection is accessed by using an arrow ’->’
followed by the name of the property. In Figure 10, the exists operation
is used. Given that s is a set, the expression s->exists(Boolean-expression)
evaluates to true if the Boolean expression holds for at least one element of
s.

sd TestMachineObligation

tester:

Actor

machine:

TC

ref
TestMachine

if machine.configured

then machine.po.dep.eng->exists(e | e = tester)

else true

endif

assert

Figure 10: Obligation

The OCL invariant is defined according to what Castejón and Bræk [3]
refer to as a role binding policy. It states the conditions under which there
must be at least one software employee that is bound to the role of tester in

18



the TestMachine interaction and therefore conducts the required behavior.
Although it is not clear from the UML semantics, we assume that the in-
stantiation of a role or a lifeline implies the participation in the interaction,
i.e. it is not possible to be bound to a role in a sequence diagram without
conducting the specified activities. The same assumption is made in [1]. By
this assumption, all the traces in which a software engineer plays the tester
role when machine.configured evaluates to true are positive.

The negative traces are those in which machine.configured evaluates to
true and there is no software engineer in the tester role. The assert op-
erator furthermore characterizes all traces, except those corresponding to
TestMachine, as negative at this point of the execution.

Notice that the else clause is set to always evaluate to true. In this case
this means that there are no constraints on the TestMachine interaction
when configurations have not been conducted; the traces corresponding to
TestMachine are positive when machine.configured evaluates to true.

7.3 State Triggered Prohibitions

A state triggered prohibition expresses that in a given set of states, it is
forbidden for the addressee to conduct the given behavior. We will in this
subsection address a separation of duty policy rule. Rules for separation
of duty define mutually exclusive sets of permissions and can be defined as
prohibitions.

We have already specified policy rules with respect to the configuration
and testing of the TC. The following requirement attend to the combination
of the two activities: If the TC has been configured, the software shall be
tested by a software engineer who is different from the one that conducted
the configuration. The structure of this statement is shown in Table 4.

Modality Behavior Trigger Addressee

Prohibition Both configure and test TC State: All SW engineer

Table 4: Prohibition

The combination of the two behaviors is expressed in the sequence di-
agram of Figure 11. There are two lifelines representing tester and conf,
where conf is the entity configurating the TC. Both roles are of type Ac-
tor, and there is nothing in the interaction specification that prevents one
Actor instance to play both roles simultaneously. The attached OCL invari-
ant, however, ensures that the instances must be different. The interaction
hence categorizes all traces in which conf and tester are instanced by the
same entity as negative.

Implicitly, this diagram specifies a permission also, since the interactions
are allowed to execute should the OCL expression evaluate to true. It is

19



sd ProhibitionConfigureAndTest

conf:

Actor

machine:

TC

ref
ConfigureMachine

tester: 

Actor

ref
TestMachine

conf <> tester

Figure 11: Prohibition

therefore irrelevant whether the approach is permission by default.
Notice, incidentally, that policy rules for ConfigureMachine and TestMa-

chine are given above. These can be made explicit here by replacing the
references to them in Figure 11 with references to ConfigureMachinePermis-
sion, cf. Figure 9, and TestMachineObligation, cf. Figure 10, respectively.

8 Specifying Event Triggered Policies

An event trigger can be represented as a receive event on the addressee
lifeline. Figure 12 suggests a generic specification of event triggered policies.
The challenge is to find suitable ways of relating the receive trigger event
and the given behavior.

In addition to the addressee, there may be one or several other roles
involved in the interaction. For illustrative purposes, we have in Figure 12
shown one additional lifeline, although there can be arbitrarily many.

sd event trigger

: Addressee

ref

trigger()
Designated as required, allowed or 

prohibited

behavior

: B

Figure 12: Event triggered policy

20



8.1 Event Triggered Permissions

Event triggered permissions can be expressed by placing the relevant behav-
ior immediately after the triggering event as illustrated in Figure 13.

sd permission

: Addressee

trigger()

ref behavior

: B

Figure 13: Event triggered permission

The interaction characterizes all traces resulting from the concatenation
of the event trigger and a trace corresponding to the behavior as positive.
This way of specifying permissions is sufficient when the approach is pro-
hibition by default. If the approach is that all behavior is to be explicitly
specified as permitted or prohibited, we need to specify the set of traces
corresponding to the behavior as negative if they do not follow immediately
after the event triggering the permission. This can be done by simply using
the neg operator with the behavior as the operand.

8.2 Event Triggered Obligations

sd obligation

: Addressee

trigger()

assert

ref behavior

: B

Figure 14: Event triggered obligation

Event triggered obligations can be expressed by placing the required be-
havior within an assert fragment. This will specifically designate all other
behavior than the prescribed one as prohibited when the execution reaches
the beginning of the assert construct. This means that the traces corre-
sponding to the concatenation of the triggering event and the traces repre-

21



senting the execution of the behavior are positive, while all other traces are
negative. Figure 14 suggests how an obligation can be specified using assert.

As a concrete example of an event triggered obligation, we specify the
obligation expressed in Table 3 as shown in Figure 15. In the section 7.2, this
obligation was specified as state triggered and referred to a Boolean attribute
of the TC. Here we rather assume that the SW department is alerted by the
TC whenever a configuration has been conducted.

sd obligationTest

: SW 

department

configured

ref testMachine

: TC

assert

Figure 15: Event triggered obligation

8.3 Event Triggered Prohibitions

The neg operator is the obvious construct for expressing event triggered
prohibitions, and shown in Figure 16. The semantics for the interaction is
a set of negative traces corresponding to the trigger event followed by the
traces produced by executing the behavior interaction. The only allowed
trace in this case is one consisting of the reception of the trigger event only.

sd prohibition

: Addressee

trigger()

neg

ref behavior

: B

Figure 16: Event triggered prohibition

If behavior is permitted by default it is sufficient to specify prohibitions
alone. If all behavior is to be explicitly categorized as one or the other,

22



the behavior must be specified as permitted when the event triggering the
prohibition does not occur.

9 Discussion

In this section we evaluate the results of the previous three sections against
the success criteria provided in Section 5.

9.1 Permissions

The first success criterion states that permissions may be expressed by se-
quence diagrams. Section 7.1 and Section 8.1 show our attempts to spec-
ify state triggered and event triggered permissions, respectively. With the
trigger in place, the specifications are given as sequence diagrams that char-
acterize the traces corresponding to the relevant behavior as positive, as
exemplified in Figure 9 and Figure 13.

The trace based interpretation of a permission over Kripke structures is
that if a behavior is permitted in world w, then ∃v ∈ Aw : ∃b ∈ B : v = w⌢b,
where B is the set of traces represening the behavior. A sequence diagram
characterizing the set B as positive, as do our permission specifications
suggested above, corresponds to this interpretation.

By characterizing B as positive, none of these traces can consistently be
characterized as negative, so the SDL implication PEp → ¬PRp holds.

Consider, now, the SDL implication PEp → ¬OB¬p. If this does not
hold in our specifications, the trace set B can be characterized as positive
while consistently using assert on the complement of B. The latter, however,
characterizes B as negative, which is inconsistent with the permission. Thus.
the implication holds.

Observe, importantly, that for the state triggered permission we have
suggested, the specifications are stronger than what is required. An OCL

invariant on an interaction must evaluate to true for the interaction to exe-
cute. In cases in which it evaluates to false, the traces corresponding to the
interaction are characterized as negative, which means that a state triggered
permission implicitly also specifies a prohibition. In Figure 9, the traces cor-
responding to ConfigureMachine are negative should actor be of a type other
than as required by the invariant.

In terms of our SDL trace semantics, this means that if a state triggered
permission PEp holds in the set of worlds WT ⊆ W , the implicit prohibition
PRp is triggered in the complementary set of worlds W \ WT .

An invariant is an assertion, and this can in some cases be desirable,
but generally the user should be free to specify permissions independently
of prohibitions and vice versa.

23



9.2 Obligations

Criterion C2 states that obligations may be expressed by sequence diagrams.
Our suggestions to specify state and event triggered obligations are given
in Section 7.2 and Section 8.2, respectively. As exemplified in Figure 10
and Figure 15, obligations are captured by applying the assert operator on
the interaction use representing the relevant behavior. This characterizes
the traces corresponding to the behavior as positive, and all other traces as
negative.

The interpretation of obligations over Kripke structures is that if a be-
havior is obligatory in world w, then ∀v ∈ Aw : ∃b ∈ B : v = w⌢b, where
B is the set of traces representing the behavior. Since the assert operator
ensures that the traces corresponding to the behavior are the only contin-
uations allowed at that point in the execution, our obligation specifications
match the desired semantics.

As the complement of the set of traces representing the behavior is char-
acterized as negative, we see that the SDL implication OBp → PR¬p holds.
Moreover, since these traces are characterized as negative, no element of
this complementary set can consistently be characterized as positive. This
means that OBp → ¬PE¬p also holds. It is furthermore easy to see that the
SDL axiom OBp → PEp holds.

9.3 Prohibitions

The third success criterion states that prohibitions may be expressed by
sequence diagrams. Figure 11 in Section 7.3 suggest how a state triggered
prohibition can be specified by an OCL invariant on a sequence diagram
where the latter expresses the behavior relevant for the prohibition. This
specification characterizes the traces corresponding to the behavior as nega-
tive when the invariant evaluates to false. Figure 16 in Section 7.3 specifies
an event triggered prohibition in which the traces corresponding to the be-
havior are characterized as negative by the neg operator.

The trace based interpretation of a prohibition over Kripke structures
is that if a behavior is prohibited in world w, then ∀v ∈ Aw : ¬∃b ∈ B :
v = w⌢b, where B is the set of traces representing the behavior. A se-
quence diagram characterizing the set B as negative, as do our prohibition
specifications, corresponds to this interpretation.

Since B is negative, no element of B can consistently be characterized
as positive, so the SDL implication PRp → ¬PEp holds. By characterizing
B as negative, the set of positive traces is a subset of the complement of B.
Thus the implication PRp → OB¬p also holds.

A state triggered prohibition implies a permission in the same way that
a state triggered permission implicitly specifies a prohibition, as observed
in Section 9.1 above: If the OCL invariant evaluates to true, the traces

24



corresponding to the behavior are characterized as positive. Interpreted
over Kripke structures, this means that if a state triggered prohibition PRp

holds in the set of worlds WT ⊆ W , the implicit permission PEp is triggered
in the complementary set of worlds W \ WT .

9.4 SDL Axioms and definitions

Criterion C4 states that the formalization under criteria C1 through C3
respects the axioms and definitions of SDL.

In Section 2.1 we emphasized one axiom and two definitions. As argued
in Section 9.2, the axiom schema OBp → PEp is preserved by our policy
notation. The fact that the definitions PEp ↔ ¬OB¬p and PRp ↔ OB¬p

are preserved follows as a corollary to the six other implications proven in
Section 9.1 through Section 9.3.

9.5 Composition of Deontic expressions

Criterion C5 states that sequence diagrams allow the composition of deontic
expressions. The natural candidate for composing policy rules expressed in
sequence diagrams is combined fragments such as par for parallel composi-
tion, seq for sequential composition and alt for interaction alternatives. An
example of sequential composition is given in Figure 11 in Section 7.3. As
explained there, the sequential composition of ConfigureMachinePermission,
cf. Figure 9, and TestMachineObligation, cf. Figure 10, gives a set of traces
where each trace is the sequential composition of one trace from the first
interaction and one trace from the second. The set of composed traces ad-
heres to both of the separate policy rules, and further deontic constraints
can be imposed on the composition as shown in Figure 11.

Composition of policy rules can also be done at the level of OCL expres-
sions by combining to different constraints. Assume that personnel apart
from SW engineers, e.g. SW consultants, were allowed to configure the TC,
cf. Figure 9. This can be specified by extending the OCL expression to
actor.oclIsTypeOf(SW engineer) or actor.oclIsTypeOf(SW consultant).

We have in our case study suggested two ways of composing policy rules.
Ideally we should be able to separately specify policy rules that can be
composed into a policy without much overhead. However, if there are several
policy rules that separately refer to the same behavior and lifelines, care must
be taken. Consider again the permission to configure the TC given in Figure
9. If SW engineer access and SW consultant access were specified separately,
the one characterizes ConfigureMachine as positive when the client is SW

engineer and the other characterizes ConfigureMachine as positive when the
client is SW consultant. The problem is that by using an OCL invariant in
these cases, the first characterizes the second as negative and vice versa. In
the general case, several deontic constraints can hence not consistently be

25



specified separately.
For the composition of a set of permissions where each permission is

optional and have the same addressee, the STAIRS xalt operator can be uti-
lized. STAIRS distinguishes between the two choice operators alt and xalt
for potential and mandatory choice, respectively. In a composition using
alt, the positive traces of each operand specifies legal behavior, but a system
adhering to the specification needs to ensure only that at least one of the
choices are available. Given a set of permissions, however, each of these
must be implemented. The xalt operator capture this. Not only do the
positive traces of each operand specify legal behavior; an implementation of
the specification must ensure that all of the choices are available.

9.6 Policy triggers

The sixth criterion states that sequence diagrams allow the specification of
both event and state triggers, as well as the combination of the two. Our
suggested solution in Section 7 and Section 8 was to refer to state triggers
by means of OCL invariants and represent event triggers by a receive events
on lifelines.

In terms of the trace semantics for interactions formalized with STAIRS, a
system state can be represented by the trace describing the complete system
history of events leading up to that state. Our event trigger refers to the
states the trace of which lead up to this event, while the state trigger refers to
more general properties of traces, for example that a given set of sub-traces
are present in some specific order. This interpretation corresponds directly
to the interpretation of triggers over Kripke structures as provided in Section
2. Sequence diagrams and OCL hence do have the required expressivity in
this respect.

9.7 Policy specification in the spirit of UML

Criterion seven states that policies can be expressed in the spirit of UML,
meaning that the elements of a policy as we have defined them have their nat-
ural and intuitive correspondences within the sequence diagram notions and
constructs. More precisely, a language customized for policy specification
should be equipped with constructs that matches policy trigger, addressee,
and deontic modality.

The notion of event trigger corresponds well with the UML notion of
event which is an occurrence in time that can be represented by the sending
or reception of a message on a lifeline. As shown in Figure 12, we suggest
to represent event triggers as a receive event on the lifeline representing the
addressee.

A UML state is a condition or situation of an object, and a set of states
can be combined into a composite state. States and composite states relate

26



closely to our notion of a state trigger, which is why we have chosen to
represent them as such. Examples are provided throughout Section 7 above.

The notion of addressee refers to a set of actors in the system whose
behavior is constrained by the policy. An addressee is in our specifications
represented with a lifeline which is a role that can be instantiated by a
set of objects. Although there is no direct correspondence to the notion of
addressee in UML, the lifeline is a close match.

Finally, we have the deontic modalities. Sequence diagrams are not
designated for capturing deontic constraints, so at this point there are no
direct correspondences. Using the combined fragments assert and neg for
obligations and prohibitions, respectively, is nevertheless quite intuitive.

9.8 Utility for policy specification

The eighth criterion states that sequence diagrams allow the specification
of policies in a manner suitable for engineers developing and maintaining
systems that should adhere to the policies.

As compared to natural language, a policy specified in UML sequence
diagrams may be more easily carried over to the implementation level, but
the value of this must be balanced against potential difficulties in both
specifying and understanding a policy given in sequence diagrams.

An engineer should be able to recognize the various elements of a policy
rule, shown in Figure 1. In some cases it is not obvious which type of deontic
modality is represented, cf. Figure 9 and Figure 11. The former is supposed
to capture a permission and the latter a prohibition, but as we have observed,
both of them express a permission and a prohibition simultaneously. This
is unfortunate not only because it is at the cost of understandability, but
also because it reduces the flexibility to specify permissions independent of
prohibitions and vice versa.

As to the policy triggers, we concluded in Section 9.6 above that sequence
diagrams have the required expressivity. In our suggested policy rule speci-
fications, the event triggers are quite easily recognized as they represent the
first event of the interactions. However, there is nothing in the event per se
that distinguishes it as a policy trigger, which clearly is a disadvantage for a
policy specification language that is supposed to capture policy rules as we
have defined them. State triggers as represented in OCL are even less recog-
nizable. In the permissions specified in Figure 10, for example, we cannot
immediately tell where the triggers are represented. Nor can we easily tell
the triggers and the addressees apart.

The addressee is always represented by a lifeline, but given a sequence
diagram specifying a policy rule it is not always obvious which of the lifelines
represents the addressee. In Figure 9, the addressee is represented by the
lifeline of an anonymous actor, and the annotated OCL expression must be
consulted in order to precisely understand to which set of actors the policy

27



rule refers. This clearly makes both specification and human interpretation
of policies difficult.

The continuous use of OCL for specifying state triggered policy rules
in Section 7 represents a general disadvantage. They easily become quite
complicated, cf. Figure 10, which make them tedious and hard to read. The
specification of OCL expressions is moreover error-prone.

9.9 Understandable to non-technicians

Criterion C9 states that sequence diagrams allow the specification of policies
in a manner that is easy to understand for both decision makers and for the
addressees of a policy. Decision makers must give their approval for the
policy, and to do that they obviously need to understand what is presented
to them. The same is the case for human addressees that are supposed to
comply with the policy.

In both cases, those who are presented the policy specification generally
have no technical background. Nevertheless, they should be able to read
and understand the specification with little or no guidance.

UML sequence diagrams have many facilities that can be utilized for the
purpose of making easily understandable representations of information. As
discussed in the previous subsection, however, the fact that the specifications
of policy rules do not have explicit constructs that correspond to the various
elements of a policy rule is an obvious weakness. At points where an engineer
has difficulties in interpreting a policy rule, as discussed for criterion C8, a
non-technician is unlikely to comprehend the specification without much
guidance. Specifically for OCL, which is purely non-graphical and tedious
to read, some background in programming, first-order logic or set theory is
required.

A general observation that summarizes much of the evaluation of this
section is that the main obstacle to readability and understandability for
non-technicians is the fact that a policy specification in sequence diagrams
is not intuitively recognized as such.

10 Related Work

Live sequence charts (LSC) [7] relate closely to the STAIRS formalism, and
could serve as an alternative for interpreting policy rules. The facility of
precharts that specifies a behavior the conduct of which forces a following
behavior to be conducted can be utilized for capturing policy triggers. LSC

furthermore provides constructs for differing between behavior that must
be conducted in all system runs and behavior that must be conducted in
at least one run, which relates to the deontic modalities of obligations and
permissions, respectively. The STAIRS formalism is, however, closer to the

28



UML standard, and the assert and xalt operators can be further examined
with respect to capturing obligations and permissions.

The last decade has experienced increased focus on policy based man-
agement, and various languages has been proposed for the specification of
policies. Requirements to a language vary depending on the pragmatics of
the language, i.e. who are supposed to use the language and for what pur-
poses. Most of the existing languages, see e.g. [21], are developed either for
the purpose of specifying policies for being implemented on computerized
systems or in order to do formal analysis of specifications, and requirements
to readability for human are not core issues.

Koch and Parisi-Presicce [12] evaluate the UML as a policy specification
language where the requirements are readability, understandability and de-
tection of potential policy conflicts. The first two requirements correspond
closely to success criteria C8 and C9 in Section 4 of this report. Their con-
jecture is that a visual notation supports comprehensibility, but a thorough
examination and evaluation of this issue is left for future work. Their eval-
uation is moreover limited to RBAC [5] although they refer to policies as a
means to manage the general behavior of complex systems. The scope of
their analysis is hence more narrow than our.

The reference model for open distributed processing [10] (RM-ODP) estab-
lishes concepts for the specification of distributed systems, including a notion
of policy that operates with the tripartition of policy rules into permissions,
obligations and prohibitions. Efforts have been made for the purpose of
analyzing and formalizing these concepts [1, 2, 13, 14].

Blanc et al. [2] propose ways of using the UML to specify RM-ODP con-
cepts, but the specification of policies is left for future work. They suggest
OCL, but in their paper the policies are represented informally by notes in
natural language.

Aagedal and Milošević [1] also propose representations of RM-ODP con-
cepts in UML. With respect to policy specification, they suggest OCL pre-
conditions for the capture of permissions and prohibitions. The pre-condition
is represented by the reference to a Boolean attribute on an object and serves
as a guard on the relevant behavior. A permission is specified with the pre-
condition pre: Boolen-expression, so the behavior is allowed when the ex-
pression evaluates to true. A prohibition is specified with the pre-condition
pre: not(Boolean-expression), and the behavior is hence not allowed when
the expression evaluates to true.

Principally there is no difference between permissions and prohibitions
by using pre-conditions like this; in both cases the specification allows a
certain behavior when the guard evaluates to true and prohibits the behavior
otherwise. This is a shortcoming to the specification that corresponds to the
state triggered permissions and prohibitions we suggested in Section 7, but
the issue is not discussed in [1].

As an example of an obligation, Aagedal and Milošević suggest an OCL

29



invariant. This is of the form of a role binding policy similar to the one we
expressed in Figure 10 in this report.

Linington et al. [14] relate the RM-ODP notion of policy to deontic logic.
They address the issue that SDL express the static picture of a normative
situation, and hence does not capture the dynamics of interacting actors.
Based on [9], possible worlds are structured into a forward branching tree
similar to our interpretation of traces over Kripke structures in Section 2. A
deontic statement then partitions the tree into paths that do and paths that
do not satisfy the statement. In [13], Linington discusses the specification
of policies as defined in RM-ODP using the UML. He argues that most of the
information held by a policy can be expressed within the UML, however that
policy declaration is an aspect of the development process that go beyond
the scope of UML.

Castejón and Bræk [3] discuss policy specification in relation to service
oriented architecture. In their approach, services are specified using UML

collaborations, and a policy framework is suggested for the governing of the
execution of services. The policies are, however, informally depicted using
notes, so the UML is not deployed for expressing policy rules.

11 Summary and Future Work

This report investigates the suitability of using sequence diagrams for policy
specification. A policy framework is built up of normative statements, and
SDL is a well established tool that has been used over decades for the purpose
of representing and reasoning about normative statements. By basing our
policy definition and semantics upon SDL and interpreting Kripke structures
in terms of traces, we have provided a formal explanation of policy rules
that allows a precise evaluation of policy specification in sequence diagrams.
Since the case study was conducted as a thorough analysis of a realistic
and well established scenario, we furthermore ensured that the evaluation
addressed real world issues.

The trace semantics can be used for the interpretation of various UML

diagrams, including state machines, interaction overview diagrams, sequence
diagrams and communication diagrams. Sequence diagrams generalize all
the other diagrams in the sense that for any UML specification with a trace
semantics, a sequence diagram with the same semantics can be specified. By
this observation, the results of our evaluation with respect to expressivity
are valid for all the mentioned UML diagrams.

Sequence diagrams have excessive flexibility and expressivity with re-
spect to characterizing interactions as positive or negative, and, as our eval-
uation in Section 9 showed, we were able to express close to all the various
types and elements of policy rules. To what extent sequence diagrams are
suitable for policy specification is hence not so much a question of expressiv-

30



ity. The problem is rather on pragmatical issues such as utility for designers
and maintainers, readability and understandability to non-technicians. The
reason for these pragmatical shortcomings lies very much in the fact that the
deontic modalities of our policy rules do not conform with the spirit of UML;
sequence diagrams are not designed for the purpose of policy specification.

The success criteria given in Section 5 can be seen as requirements that
should be satisfied by any language supposed to express policy rules as we
have defined them. Our future objective is to develop a customized policy
specification language that meets these requirements. We will take advan-
tage of the expressivity of sequence diagrams with the STAIRS formalism as
the starting point. By first establishing within STAIRS a precise understand-
ing and representation of policies, we will, inspired by sequence diagrams,
establish a more suitable notation.

Composition of policy rules is for feasibility reasons an important con-
cern. We have addressed this issue here, but work remains with respect to
identifying suitable and effective ways of specifying and composing policy
rules, while avoiding pitfalls such as introducing inconsistencies that can be
hard to detect.

The activity of capturing and specifying policies for an organization usu-
ally starts at a high organizational level where overall goals, ethical stan-
dards, legal constraints, etc. are considered. A policy specification language
should allow policies to be expressed at this level of abstraction. Once the
high level policy is captured, there is a need to carry this down in the orga-
nizational structure and make it more concrete for the various departments,
employees and information systems. The notion of refinement refers to this
activity. Refinement is conducted stepwise, where each step brings the spec-
ification to a more concrete level, closer to realizability and enforcement.

STAIRS formally defines refinement relations, and these should be con-
sidered in future work on establishing a notion of policy refinement. The
STAIRS notions of refinement furthermore support compositional refinement,
and are transitive. Such a refinement relation for policy specifications en-
sures on the one hand that a process of stepwise concretization of a policy
ends up in a realization that refines the initial high level specification. On
the other hand, a policy can be specified in a modular fashion, reflecting log-
ical or physical organizational structures such as various departments and
platforms.

This report first and foremost provides an evaluation of sequence dia-
grams for policy specification. At the same time, however, we have raised
several questions and put forward matters that should be addressed in the
development of a customized policy specification language. Our findings
here combined with the STAIRS formalism for interaction specification and
its precise definitions of refinement and composition provides a well-founded
basis for future endeavors.

31



Acknowledgments

The research on which this paper reports has partly been funded by the
Research Council of Norway project ENFORCE (164382/V30) and partly by
the European Commission through the S3MS (Contract no. 27004) project
under the IST Sixth Framework Programme.

References

[1] J. Ø. Aagedal and Z. Milošević. ODP Enterprise Language: UML
Perspective. In Proceedings of the 3rd International Conference on En-
terprise Distributed Object Computing (EDOC’99), pages 60–71. IEEE
CS Press, 1999.

[2] X. Blanc, M. P. Geravis, and R. Le-Delliou. Using the UML Language
to Express the ODP Enterprise Concepts. In Proceedings of the 3rd
International Conference on Enterprise Distributed Object Computing
(EDOC’99), pages 50–59. IEEE CS Press, 1999.

[3] H. N. Castejón and R. Bræk. Dynamic Role Binding in a Service
Oriented Architecture. In The 2005 IFIP International Conference
on Intelligence in Communication Systems (INTELLCOMM 2005).
Springer, 2005.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In Proceedings of POLICY’01, the Interna-
tional Workshop on Policies for Distributed Systems, volume 1995 of
LNCS, pages 18–38. Springer, 2001.

[5] D. Ferraiolo and R. Kuhn. Role-based access control. In Proceedings of
the 15th NIST-NCSC National Computer Security Conference, pages
554–563, 1992.

[6] T. Garćıa. Baseline prototype infrastructure for the Aggregated Ser-
vices scenario. TrustCoM Deliverable 11, 2005. Contract No. 01945 of
the Sixth Framework Programme of EU.

[7] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[8] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. STAIRS towards
formal design with sequence diagrams. Journal of Software and Systems
Modeling, 4:355–367, 2005.

[9] J. F. Horty. Combining Agency with Obligation (Preliminary Ver-
sion). In Deontic Logic, Agency and Normative Systems, Proceedings of

32



DEON’98, 3rd Int. Workshop on Deontic Logic in Computer Science,
pages 98–123. Springer, 1996.

[10] ISO/IEC. ISO/IEC FCD 15414, Information Technology - Open Dis-
tributed Processing - Reference Model - Enterprise Viewpoint, 2000.

[11] L. Kagal, T. Finin, and A. Joshi. A Policy Language for a Pervasive
Computing Environment. In 4th International Workshop on Policies
for Distributed Systems and Networks, pages 63–74. IEEE Computer
Society, 2003.

[12] M. Koch and F. Parisi-Presicce. Visual Specifications of Policies and
their Verification. In Proceedings of the 6th International Conference
on Fundamental Approaches to Software Engineering (FASE 2003), vol-
ume 2621 of LNCS, pages 278–293. Springer, 2003.

[13] P. Linington. Options for Expressing ODP Enterprise Communities and
Their Policies by Using UML. In Proceedings of the 3rd International
Conference on Enterprise Distributed Object Computing (EDOC’99),
pages 72–82. IEEE CS Press, 1999.

[14] P. Linington, Z. Milošević, and K. Raymond. Policies in Communities:
Extending the ODP Enterprise Viewpoint. In Proceedings of the 2nd
International Conference on Enterprise Distributed Object Computing
(EDOC’98), pages 11–22. IEEE CS Press, 1998.

[15] T. Mahler. Report on Legal Issues. TrustCoM Deliverable 15, 2005.
Contract No. 01945 of the Sixth Framework Programme of EU.

[16] P. McNamara. Deontic Logic. Stanford Encyclopedia of Philosophy,
2006. http://plato.stanford.edu/entries/logic-deontic/.

[17] Object Management Group. Unified Modeling Language: Superstruc-
ture, Version 2.0, 2005. www.omg.org.

[18] J. E. Y. Rossebø and R. Bræk. A Policy-driven Approach to Dynamic
Composition of Authentication and Authorization Patterns and Ser-
vices. Journal of Computers, 1(8):13–26, 2006.

[19] R. K. Runde, Ø. Haugen, and K. Stølen. Refining UML Interactions
with Underspecification and Nondeterminism. Nordic Journal of Com-
puting, 12(2):157–188, 2005.

[20] M. Sloman. Policy Driven Management for Distributed Systems. Jour-
nal of Network and Systems Management, 2:333–360, 1994.

[21] M. Sloman and E. Lupu. Security and Management Policy Specifica-
tion. Network, IEEE, 16(2):10–19, 2002.

33



[22] M. Steen and J. Derrick. Formalising ODP Enterprise Policies. In Pro-
ceedings of the 3rd International Conference on Enterprise Distributed
Object Computing (EDOC’99), pages 84–93. IEEE CS Press, 1999.

[23] The TrustCoM Project. Contract No. 01945 of the Sixth Framework
Programme of EU, http://www.eu-trustcom.com/.

[24] G. H. von Wright. Deontic Logic. Mind, 60:1–15, 1951.

[25] F. Vraalsen and T. Mahler. Legal risk management for Virtual Organ-
isations. TrustCoM Deliverable 17, 2006. Contract No. 01945 of the
Sixth Framework Programme of EU.

[26] R. Wies. Policy Definition and Classification: Aspects, Criteria, and
Examples. In Proceedings of the IFIP/IEEE International Workshop
on Distributed Systems: Operation and Management, 1994.

34




