

©2010 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Investigating the Limitations of Java
Annotations for Input Validation

Federico Mancini, Dag Hovland and Khalid A. Mughal
Department of Informatics

University of Bergen
Bergen, Norway

{federico.mancini,dag.hovland,khalid.mughal}@ii.uib.no

Abstract—Recently Java annotations have received
a lot of attention as a possible way to simplify the us-
age of various frameworks, ranging from persistence
and verification to security. In this paper we discuss
our experiences in implementing an annotation frame-
work for input validation purposes. We investigate
the advantages and more importantly their limitations
in the design of validation tests. We conclude that
annotations are a good choice for specifying common
validation tests. However, the limitations of annota-
tions have an impact on creating and using generic
tests and tests involving multiple properties.

I. INTRODUCTION

Java annotations [1] allow meta-information to
be attached to a program in a standard and struc-
tured way, such that it is possible to automate its
processing. The reflection facility in Java makes
it possible to retrieve annotations at run-time, and
trigger special actions accordingly. This approach
allows many aspects of an application to be speci-
fied in the application code, eliminating the need for
external configuration files (e.g. XML) or inserting
extra code in the application. It is not surprising that
many frameworks have adopted annotations [2]–[5].

In this paper we focus on the use of annotations
to define validation tests for Java object properties
and report on our experience in the implementation
of a framework for this purpose [6]. Our aim
is to give an overview of possible solutions to
technical and logical problems that arise with the
use of annotations in this context. To begin with,
we review systematically some typical issues and
standard solutions related to the use of annotations

in a framework. For the remainder of the paper
we discuss some new challenges that we had to
face when providing our framework with new fea-
tures that were not considered before. In particular,
we will show and justify our approach to these
problems by critically comparing different solutions
we considered. It will become gradually clearer
which the current limitations of annotations are, and
how far they can be pushed for content validation
purposes.

The main discriminating factor we use to distin-
guish between good and bad solutions is the influ-
ence a technical solution has on the usability and
flexibility of the framework. We also give higher
priority to the extensibility of the framework, i.e.,
the possibility for the user to define new validation
tests in a flexible way and easily reuse the existing
ones.

We assume the reader has some familiarity with
the basic concepts of annotations and reflection in
Java 6 [7], but we start with a short description of
our framework and a running example. This should
be sufficient to follow the rest of the paper.

II. WORKING EXAMPLE

In simple terms, content validation in Java means
to check that the properties of an object satisfy
certain constraints. Annotations can be used to link
validation tests to properties. For example, given
an object representing the content of a web form
for money transfer, we want to make sure that the
property representing the amount to be transferred

2010 International Conference on Availability, Reliability and Security

978-0-7695-3965-2/10 $26.00 © 2010 IEEE

DOI 10.1109/ARES.2010.29

513

public class WebForm{
private int Amount;
...
@IntRange(min=1,max=100000)
public int getAmount(){
return this.Amount;

} }

Fig. 1: Example of validation annotation.

is an integer in a certain range. In our frame-
work, this can be done by applying an annotation
called @IntRange to the method returning such an
amount. The corresponding code is shown in Figure
1.

At run-time the annotation and the corresponding
return value of the method it tags will be extracted
by means of reflection. The value will then be
passed for validation to the actual test represented
by the annotation. Let us point out that in practice
it can be possible to annotate directly a field of an
object as they do in [3]:

@IntRange(min=1,max=100000)
private int Amount;

However we decided not to offer this possibility
for a simple reason: if the field is private, the
framework must first change its visibility to public
by means of reflection, before to be able to retrieve
its value. We consider it a bad practice to allow an
external framework to tamper with the visibility of
the application components.

Our framework also offers validation of interde-
pendent properties. In other words, it is possible to
validate multiple properties that can be considered
valid only if they satisfy some constraint simulta-
neously. In order to do this, we introduced cross-
annotations. Cross-annotations can be used to tag
two or more properties of the same class, so that
they will be validated together. It is possible to give
an example by extending the example in Figure 1.
If the amount were split into two fields in the web
form, i.e., Euro and Cent, and two corresponding
properties in the WebForm object, then we would
need some more elaborated validation. In fact, if the
range to check is now between 0.01 and 100 000.00,
it would not be enough to check separately the range

public class WebForm{
private int AmountEuro;
private int AmountCent;
...
@IntRange(min=0,max=100000)
@CrossRange
public int getAmountEuro()
{return this.AmountEuro;}

@IntRange{min=0,max=99}
@CrossRange
public int getAmountCent()
{return this.AmountCent;}

}

Fig. 2: Example of cross-validation.

of each field, since 100 000.99 would not be a valid
total amount. A further check that involves both
properties simultaneously would be necessary. To
do this we can define an annotation @CrossRange,
which can be applied to both these properties as
shown in Figure 2. The test corresponding to this
annotation checks that both values are greater than
0 and if one is exactly 100 000, then the other one
is exactly 0.

To avoid confusion, we call the annotations
that are used to validate single properties, as
@IntRange in Figure 1, property-annotations.

III. LACK OF INHERITANCE

The first issue when creating annotations for use
with a specific framework is: how to distinguish
the annotations used by the framework from other
annotations at runtime? The problem is that an
annotation cannot be extended by other annotations,
i.e., there is no inheritance (or subtyping) relation-
ship between annotations.

To resolve this problem there are mainly two
approaches:

1) Use a list of predefined annotations, and
determine at runtime whether an annotation
belongs to this list.

2) Define a meta-annotation that can be used as
a marker.

The first approach is convenient if the set of an-
notations used by the framework is fixed and not
supposed to be extended by the user, as in the case

514

of Struts validation annotations [8]. The latter is
convenient when we want to let the user define
custom annotations that can extend those defined
by the framework, as in our framework and the
Hibernate Validator [3], which is based on [9].

We actually use two markers: @Validation

to define property-annotations and
@CrossValidation to define cross-annotations.
Hence the declaration of @IntRange and
@CrossRange would look like:

@Validation
public @interface IntRange{

int min();
int max();

}

@CrossValidation
public @interface CrossRange{}

IV. USER DEFINED ANNOTATIONS

Many problems discussed in this paper arise from
the fact that we want to give the user the means to
define custom annotations. In fact, this implies that
the annotations must have some standard structure
so that the framework can process them without
knowing their specific usage. One such problem was
discussed in the previous section. However, there
are more issues that have to be addressed.

For instance, how to define the classes containing
the actual validation tests in a standard way? and
how to map them to the corresponding annotations?
The first problem has an easy solution since we are
considering standard Java classes: it is possible to
define a common interface they must adhere to:

public interface IPropertyTester
<A extends Annotation,I> {
public boolean runTest(A an, I o)
throws ValidationException;

}

A class implementing this interface is represented
by an annotation of type A, that is, in turn, applied
to methods returning objects of type I:

public static class IntRangeTester
implements IPropertyTester

<IntRange, Integer>{
public boolean runTest(IntRange r,

Integer v){

return(
v >= r.min() && v <= r.max());

} }

This interface allows the framework to handle
user-defined annotations in a straightforward way,
by simply invoking the runTest() method and
passing the instance of the annotation of type A and
the return value.

For the problem of mapping tests to annotations,
an approach proposed in [9] is to have the tester
class as an element of the marker annotation:

@Validation(IntRangeTester.class)
public @interface IntRange {
int min();
int max();

}

This solution implicitly guarantees at compile
time that the class associated with the annotation
is indeed of the right type, since the element of
@Validation must be of type Class<? extends

IPropertyTester>.
In our framework we have tested a different

solution. We define the tester class as an inner class
of the annotation associated with it. The advantage
is that validation annotations are self-contained,
and one might even remove the marker annotation
and use instead the presence of the inner class to
recognize validation annotations. The disadvantage
is the loss of compile-time check on the type of the
inner class.

Something that cannot be checked at compile-
time with any of these approaches, is whether a
tester class is mapped to the right annotation, and
whether an annotation is applied to the right type
of property.

V. COMPOSITION

A powerful feature of annotations is the possi-
bility of using meta-annotations, i.e., it is possible
to annotate an annotation declaration. The use of a
marker annotation like @Validation is an exam-
ple. A more interesting application of this feature is
the composition of validation annotations with each
other in order to create more elaborated constraints
without writing new test classes. For example, as-
sume we have an annotation @EvenNumber that

515

checks whether a number is even. We can compose
it with @IntRange as follows:

@Validation
@IntRange(min=0,max=100)
@EvenNumber
public @interface EvenRange{}

The test represented by this new composite anno-
tation is the conjunction of the tests it is composed
of. In reality no new validation test is defined:
the same result could be obtained by annotating a
method with all meta-annotations individually. This
is why we extended composition by allowing also
boolean operators as meta-annotations. By exploit-
ing the recursive nature of composition, it is possi-
ble to create complex boolean expressions starting
only from a small number of existing annotations,
and therefore really new validation constraints.

As an example of how practical boolean com-
position can be, we show how to easily create a
@MultipleRange annotation. We want to check
whether an integer value is in a certain set of
ranges, not just one. For example, an input is
valid if it belongs to one of the following ranges:
[1 − 10], [20 − 30] or [60 − 65]. We can compose
three @Range annotations with the special meta-
annotation @BoolOp(OR). However, we need to be
careful, as the following straightforward implemen-
tation would not compile:

@Validation
@BoolOp(OR)
@Range(min=1,max=10)
@Range(min=20,max=30)
@Range(min=60,max=65)
public @interface MultipleRange{}

In fact, it is not possible to use multiple instances
of the same annotations on the same element. Here
encapsulation can be helpful. If we first encapsulate
each instance of the @Range annotation in a new
annotation, we can correctly declare:

@Validation
@BoolOp(OR)
@Range1_10
@Range20_30
@Range(min=60,max=65)
public @interface MultipleRange{}

An alternative solution to multiple annotation

instances is provided in [9]. They define a specific
annotation which take an array of annotations as
element:

@Validation
public @interface MultipleRange
{ Range[] list() default {}; }

The annotation above can then be used in the
following way:

@MultipleRange(list=
{@Range(min=1,max=10),
@Range(min=20,max=30),
@Range(min=60,max=65)})

The drawback with this solution is that only the
conjunction of the tests is possible, and a different
annotation container is needed for each annotation
type. However, it is not difficult to add a boolean
operator as second element, thereby providing more
flexibility and making this a preferable solution to
encapsulation.

A. Parameter passing

The possibility of composing annotations has
unfortunately a very strong limitation. Each meta-
annotation must have well-defined element values
at compile time. In other words, given that we have
two annotations @AtLeast(n) and @AtMost(m),
we cannot define the annotation @Range(n,m) as
follows:

@Validation
@AtLeast(n=Range.min())
@AtMost(m=Range.max())
public @interface Range {

int min();
int max();

}

It is not possible to pass the value of the elements
of an annotation to its meta-annotations. Therefore,
we can only create @Range annotations for fixed
values of n and m. This might still be useful when
there are many properties that need to satisfy a
specific range, since the programmer can reuse
the same annotation without having to specify the
parameters for every instance.

Unfortunately, there does not seem to be any easy
workaround for this problem.

516

VI. GENERIC ELEMENTS

Another obstacle in the design of generic val-
idation tests by using annotations, is the limited
number of types that can be declared as elements:
primitives, enum types, Class, annotation types,
String and all corresponding array types.

This prevents the mapping of generic tests to
annotations. Ideally it would be easy to create a
generic range annotation: For example, the follow-
ing implementation of a generic range annotation:

public @interface
Range <T extends Comparable> {

Class<T> type() default Object;
T min();
T max();

}

which represents the generic test:

rangeTest(Range r, T o){
int low=o.compareTo(r.min());
int up=o.compareTo(r.max());
return (low>=0 && up<=0);

}

Unfortunately, this is not possible as annotation
declarations cannot have type parameters.

We identified two possible partial solutions to
this problem. The first is to define a specific range
annotation for each type we want to test. This is
a safe, but not very flexible approach, and quite
expensive in terms of the number of annotations to
define.

A more generic approach, which is also adopted
in [3], exploits the fact that most types representing
numerical values have a constructor which accepts
a string representation of the value. We can thus de-
fine an annotation @Range(min,max) where both
min and max are of type String. This requires
a careful implementation to ensure type safety at
runtime, and can easily be misused by the user. A
possible improvement is to add an element to the
annotation (possibly an enum) which allows the user
to specify the type of property which is currently
being validated.

VII. CROSS-ANNOTATIONS

The limitations of the annotation facility be-
came even more apparent when designing cross-

annotations in our framework [6]. Keeping the tests
as general and reusable as possible became more
and more difficult.

In order to access the set of properties that
should be validated together, each property has to
be marked by the same cross-annotation. The values
of the properties marked by the same annotation
are then collected into a list, which the user can
easily manipulate in a custom validation test. As
all values are treated equally, it is usually not
possible to distinguish them, i.e., to know which
value represents which property.

The advantage is that it is easier for the user to
manipulate the list of values, because the structure
of this list is independent from the specific object
structure. The price for (re)usability in this case, is
that mainly only two types of tests can be designed,
given the list of return values to validate:

1) Check that a certain amount of these values
satisfy some validation constraint, e.g., none,
all, at least n and so forth.

2) Check that some combination of the values
satisfy the validation constraint, e.g., their
sum, product, concatenation, etc.

These types of tests are a useful extension of
property-annotations, but they might be insufficient
if an application requires a more complex and
specific validation logic. For instance, if a property
must be validated in a different way according to the
value of other properties. This kind of conditional
validation is not expressible naturally by annota-
tions, and some possible solution would probably
involve a text reference to the properties involved.
However we discourage all solutions involving a
string reference to anything in the code, as any typo
might easily cause unnecessary run-time errors.

An alternative solution could be to supply each
cross-annotation with a standard element that can
be used to give an identifier to each property, or
simply store the name of the property. However, we
feel that this would completely kill reusability since
the implementation of the validation test would
depend on the specific association of identifiers to
properties of an object, or on the property names.

517

VIII. RELATED WORK

The experiences reported in this paper came from
developing the framework SHIP Validator, which
is described in [6], and available at [10]. Early
discussions of the use of annotations for validation
can be found in Holmgren [11] and in Hookom [12].
The ideas in [12] are elaborated in JSR 303 [9],
on which the Hibernate Validator [13] is based.
Struts 2 [2] also provides validation through annota-
tions. It offers a limited set of standard annotations,
with no possibility of creating custom tests.

When it comes to running the actual validation,
we are close to the solutions proposed in [9], [12],
which allow complete decoupling between valida-
tion and application code. In contrast, the solution
in Holmgren involves inserting extra code inside the
method to be validated.

IX. CONCLUSIONS

On one hand annotations lend themselves pretty
naturally to link specific validation tests to proper-
ties in the code. They are easy to use and create,
aid clarity in the code, and provide good type
safety. On the other hand, more generic tests are
difficult to map to annotations and although this is
sometimes feasible and increase reusability, it also
require more processing from the framework side
to guarantee correctness and avoid run-time errors.
In general, there are many things that cannot be
guaranteed at compile-time when using annotations.
Mostly because of the use of reflection itself, but
also because it is difficult to verify that user-defined
annotations comply with all the framework specific.

We should keep in mind that annotations are
supposed to be just a way to add meta-information
to the code, not a programming language inside
Java. Therefore, it must not come as a surprise that
their expressive power shows some limitations for
input validation, especially when more complicated
and interdependent constraints must be represented.

What we have tried to show here, is a possible
compromise between what is naturally expressible
using annotations and what can be achieved by
pushing them with the help of more elaborated
preprocessing on the framework side. As a gen-
eral guideline we encourage simpler annotations

and tests whose correctness can be guaranteed as
much as possible at compile-time, rather than more
powerful features that depend on very insecure
expedients as string reference to code, and may
easily cause run-time errors.

Our conclusion is that annotations can be a very
good solution to easily integrate standard input
validation in Java applications, without overloading
the user and the framework with overly complex
implementation. For most validation purposes, our
framework is more than adequate. For more com-
plex validation, specific solutions must be devised
and some flexibility must be given up. In this case it
is probably best to simply code the validation logic
directly in the application.

REFERENCES

[1] K. Arnold, J. Gosling, and D. Holmes, The Java Program-
ming Language, Fourth Edition. Addison-Wesley, 2006.

[2] “Struts,” May 2009. [Online]. Available: http://struts.
apache.org

[3] “Hibernate validator,” Hibernate, September 2009.
[Online]. Available: https://www.hibernate.org/412.html

[4] S. W. Chan, “Security annotations and authorization
in GlassFish,” September 2009. [Online]. Avail-
able: http://java.sun.com/developer/technicalArticles/J2EE/
security annotation/

[5] R. Biswas and E. Ort, “The java persistence api,”
September 2009. [Online]. Available: http://java.sun.com/
developer/technicalArticles/J2EE/jpa/

[6] D. Hovland, F. Mancini, and K. A. Mughal, “The ship
validator: an annotation-based content-validation frame-
work for java applications,” Department of Informatics,
University of Bergen, Tech. Rep. 389, September 2009.

[7] “Java 6,” Sun, September 2009. [Online]. Available:
http://java.sun.com/javase/

[8] “Struts validation annotations,” september 2009. [Online].
Available: http://struts.apache.org/2.0.14/docs/annotations.
html

[9] E. Bernard and S. Peterson, “JSR 303: Bean validation,”
Bean Validation Expert Group, March 2009. [Online].
Available: http://jcp.org/aboutJava/communityprocess/pfd/
jsr303/index.html

[10] D. Hovland, F. Mancini, and K. A. Mughal, “Ship
validator,” August 2009. [Online]. Available: http://
shipvalidator.sourceforge.net

[11] A. Holmgren, “Using annotations to add validity
constraints to javabeans properties,” Sun, March
2005. [Online]. Available: http://java.sun.com/developer/
technicalArticles/J2SE/constraints/annotations.html

[12] J. Hookom, “Validating objects through metadata,”
O’Reilly, January 2005. [Online]. Available: http://www.
onjava.com/lpt/a/5572

[13] “Hibernate,” May 2009. [Online]. Available: https://www.
hibernate.org/

518

