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Abstract 

In the post-genomic era, an idea of how similar the genomes of different species 

actually are is on the horizon. Less than 10 years ago, the human genome was 

estimated to encode 100000 genes. That was an overestimation, as the real number of 

human genes is 20000-25000. Most genes are expressed as proteins. The 3D structure 

of a protein is more conserved than its sequence, and therefore the structural context 

of protein and gene evolution must not be forgotten. By its structure, the protein can 

propagate its function. In the early 90’s the estimated number of different protein 

structure classes, so called folds, was predicted to be about 10000. Today there are 

slightly above 1000 folds and the discovery of new folds has leveled off, despite an 

increase in the number of protein structures that have been solved over the last few 

years. Indeed, some folds are used for more than one function, and found in various 

functional contexts. Then, if the many components are so similar, how is the 

biological species divergence from same component genomes achieved? One way to 

study biological diversity is by dividing it into its smaller components, e.g. by 

studying protein or gene family evolution. Here the evolution and regulation of the 

aromatic amino acid hydroxylase (AAAHs) have been under examination. This gene 

family encodes the proteins phenylalanine hydroxylase (PAH), tyrosine hydroxylase 

(TH), and tryptophan hydroxylase (TPH). These enzymes are highly physiologically 

important. PAH, expressed in liver, regulates the homeostasis of L-Phe by 

hydroxylating it into L-Tyr. TH, expressed in the central nervous system, 

hydroxylates L-Tyr into L-Dopa. L-Dopa is part of two important pathways i) 
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melanogenesis and ii) dopamine production. In humans, dysfunctions in PAH that 

cause elevated L-Phe concentration can result in phenylketonuria (PKU). Untreated 

PKU results in neurological damage. TPH produces a precursor of serotonin from L-

Trp. The end products of these enzymes are neurotransmitters and hormones with 

increasingly important functions, from e.g. amoeba to nematode to man. As PAH has 

evolved in mammals its regulation has become increasingly sophisticated, e.g. 

homotropic positive cooperativity that shifts the conformational equilibrium from 

dimeric to tetrameric is seen in the mammalian lineage. Nematode PAH is devoid of 

positive cooperativity, but resembles the tetrameric high-affinity and high-activity 

mammalian PAH. TH and TPH are always tetrameric and not allosterically regulated. 

Each AAAH subunit has a regulatory domain, a catalytic domain, and an 

oligomerization domain. The promotion of positive cooperativity in PAH has been 

investigated by comparing mammalian PAH to nematode PAH. The low-affinity and 

low-activity dimer as well as the high-affinity and high-activity tetramer of PAH 

were modeled. Sequence analysis on a nematode sequence cluster and a mammalian 

sequence cluster identified sites with high probability of being involved in functional 

divergence, e.g. change in regulation. Residue specific electrostatic interaction 

energies were calculated for all ionizible residues in the models. In general, we note 

important differences in the substrate binding pocket that aids to explain why the 

active site in nematode PAH is less dynamic than in mammalian PAH. Our results 

suggest a pathway for the positive cooperativity from one active site to another, 

involving various predicted hinge regions from human PAH, where we find the 

nematode PAH more rigid.  
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The regulatory domain in PAH is part of the ACT domain family. The ACT domains 

are frequently found regulating metabolic enzymes in an allosteric manner. The 

allosteric effector is often an amino acid that binds to an interface formed by two 

ACT domains. No contacts are formed between two ACT domains and the 

stoichiometry of binding is 1:1 for L-Phe in PAH. Therefore the allosteric effect must 

originate in the active site when the substrate binds. An alternative pathway for 

aromatic amino acid biosynthesis is present in e.g. plants and bacteria. This pathway 

has an L-Phe binding ACT domain, which is homologous to the ACT domain in 

AAAH. The L-Phe binding motif in this domain is also conserved in PAH. A 

comparative structural analysis of this area shows why L-Phe may not bind in the 

AAAH regulatory domain and also indicates why it has remained.  

The ACT domain has an abundant fold, a superfold. A structural approach was used 

to identify more potential ACT domains to gain further insights to the functional 

properties that this domain could perform in general, and in PAH in particular. Here 

we note e.g. two interesting potential domain families that could be homologous to 

the ACT domain, namely the GlnB-like domains and heavy metal binding domains.    

The phylogeny of the AAAH family has not been resolved earlier given the lack of a 

suitable outgroup. As more genome sequences became available, we identified an 

outgroup candidate and had it experimentally characterized. The phylogeny was 

resolved, the ancestral function determined, and by comparing the chromosomal gene 

locations the order of events in AAAH evolution was envisioned. 
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1. General introduction 

1.1. Evolution  

The Earth is about 4.6 billion years old. The first forms of life appeared about 

0.8 billion years later (Mojzsis et al. 1996; Holland 1997). Since then Nature has 

created an enormous biological diversity. The essence in this biological diversity 

originates in DNA. DNA carries all the essential information for a specific phenotype 

of a species in the genome. This information is carried on to the species offspring. 

However, genomes are always subjected to change and this brings on the evolution of 

new traits and, eventually, new species. Following is a brief introduction to how 

different life forms may have arisen and how that has affected e.g. the evolution of 

human kind.  

1.1.1. Evolution of different life forms 

Prokaryotes (Eubacteria and Archeabacteria) represent the first forms of life. 

Unicellular eukaryotes, also known as protozans, probably emerged from prokaryotic 

ancestry about 1.6 - 2.1 billion years ago (Knoll 1992), while multicellular 

eukaryotes, also known as metazoans (animals) and metaphytes (plants), originated 
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about 0.6 billion years ago. The period leading from unicellular to multicellular 

eukaryotes is often referred to as the Cambrian explosion, when extensive radiation 

took place (Lundin 1999). Many explanations have been put forward to account for 

this transition such as an increase in oxygen concentration in the atmosphere 

surrounding the Earth (Canfield and Teske 1996). As anaerobic metabolism has low 

energy yield it could only support low biomass, making aerobic metabolism a 

requirement for increasing biomass as seen in multicellular eukaryotes (Fenchel and 

Finlay 1994). Another explanation for the extensive radiation is cropping as a 

feedback cycle, involving the diversification of prey, giving rise to the diversification 

of predators. Such a scenario could make the rise of exoskeleton a potentially 

important event (Stanley 1973). Now in the post-genomic era we are starting to see 

the genomic effects of the burst in evolution taking place in the Cambrian era and, 

regardless of how and why this explosion took place, there were extensive gene 

duplications and domain rearrangements during that period, separating protozans 

from metazoans (Ekman et al. 2007). Another burst of radiation coupled to two 

rounds of whole genome duplication occurred during the chordate-vertebrate 

transition (McLysaght et al. 2002). These events are marked in Figure 1, which 

contains the species relevant to comprehend this thesis. The branches where 

duplication events and morphological innovation have taken place are marked. How 

gene duplications affect a genome are discussed below, but first a brief introduction 

to protein evolution.  
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Figure 1. A simplified tree of life, representing the species and major gene 
duplication events discussed in this thesis.  

 

1.1.2. Proteins and their evolution 

Proteins are expressed and encoded by the genes in a species DNA. The 

protein alphabet consists of 20 amino acids. The amino acids have different 

physicochemical characteristics and are often divided into clusters given these. For an 

example of the complexity in these clusters see Figure 2.  

As a consequence of their physicochemical characters the different amino 

acids have different propensities to form secondary structure elements. The two major 

secondary structure motifs are the �-helix and the �-sheet (Figure 3).  

Given the properties of the different amino acids and their succession in a 

protein sequence, the protein can rapidly fold into a distinct, thermodynamically 
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stable structure. One intensely studied question is how a protein can fold so quickly 

and effectively. Since there are too many different conformations for a protein chain 

to be tested out by the protein one by one, how can the protein fold in just seconds or 

less, are there pathways for folding? This question was first asked by Levinthal in 

1968 (Levinthal 1968), and since then different models have been put forward -e.g. 

the nucleation-condensation mechanism- where a protein folds by first forming 

important contacts between residues involved in the so called folding nucleus 

(Abkevich et al. 1994), the hydrophobic collapse (Rackovsky and Scheraga 1977), or 

the (rugged) folding funnel (Wolynes 2007). Importantly for these models is that they 

follow a two-state folding scenario, where the free energy difference between the 

unfolded state and the folded native state is referred to as the folding free energy 

change. 

There has been however an increasing attention towards the existence of 

proteins with low-energy barriers for protein folding, which is associated to a down-

hill folding scenario. During folding these proteins cross a thermodynamic barrier 

low enough to produce significant deviations from two-state folding behaviour 

(Garcia-Mira et al. 2002; Sadqi et al. 2006). Recently it has been shown that �-

Lactalbumin that is a paradigm in protein folding presents a surprisingly low folding 

barrier, which appears to arise from the stabilization of partially unfolded 

conformations by electrostatic interactions (Halskau et al. 2008). 

Many encoded proteins contain more than one foldable unit (Apic et al. 

2001a). Protein structural units that independently of other such units can fold into a 

distinct, compact, and stable structure are referred to as protein domains. 
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Protein domains are the building blocks that in different combinations can 

perform highly diverse functions. The 3D structures of these domains are called 

folds. There are about 1000 folds, currently known. These folds are found in a highly 

skewed distribution, where i) superfolds are a small number of highly abundant folds 

found in many different proteins which are able to perform a vast variety of 

functions, ii) common folds are an increasing number of folds, shared by a few 

different proteins, and iii) unifolds are most folds but these are only found within one 

protein (Coulson and Moult 2002). Here protein actually means protein family, which 

will be further discussed below. 

 

Figure 2.  The 
20 amino acids in the protein alphabet have different properties and can be divided 
into clusters according to different criteria, e.g. small, polar, hydrophobic, etc. The 
amino acids are named according to the 1-letter code. Figure inspired by (Livingstone 
and Barton 1993). 
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Figure 3. Introduction to protein structure. A short peptide of four amino acids (A). 
From the N terminus: Glu (purple background), Val (blue background), Gly (green 
background), and Ala (yellow background). Each amino acid has an amino group (N 
terminus) and a carboxyl group (C terminus) (C). The amino acids are connected to 
each other by forming a peptide bond. The atoms forming the peptide bond are the 
carbonyl group (red) from aai and the amino group (blue) from aai+1. The peptide 
bond (red dotted line in (A)) has double bond character and is strong and almost 
planar. The backbone of a protein also includes the C�-carbons, to which the 
different side chains are connected by the C�-carbon (A). By combining the amino 
acids in different ways the � and � angles will vary (A). Depending on � and �, 
higher order structures, so called secondary structure elements, �-helix (B) and �-
sheet (C), can form.  Figure generated in DeepView (Guex and Peitsch 1997) and 
rendered by POV-Ray (POV-Ray). 

 

The natural question to ask here is how can the superfolds be explained? Are 

all proteins that display the same fold related, or are they a random sampling of folds? 
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Has the same fold evolved multiple times? Why are just these folds so abundant? 

This is a topic of debate, where some say that these energetically stable superfolds 

can harbor high sequence divergence while maintaining the fold (Shakhnovich et al. 

2003), while others suggest that evolution has converged on these folds many times 

(Marsden et al. 2006). However, many shared physicochemical interactions and 

smaller substructural and sequence motifs as well as similarities in functions indicate 

that the domains sharing a fold also have common ancestry (Saraste et al. 1990; 

Koonin 1993; Kiel and Serrano 2006). Two important mechanisms that enable 

sequences to diversify and proteins to attain new functions are gene duplication and 

different multidomain combinations.  

1.1.3. Gene duplication – a driving force for new protein functions 

Sasumo Ohno postulated in 1970 that gene duplication is required for the 

evolution of new gene/genome functions (Ohno 1970). Gene duplications may be 

small scale events, e.g. duplicating a single gene or chromosome, but also whole 

genome events have occurred. After a complete gene has been duplicated, there is 

gene redundancy in the genome. Given the gene redundancy, the functional 

constraint on that gene is relieved. Hence, the gene duplicates can explore more of 

sequence space as there now is a back up for its function. This effect is even larger in 

the case of whole genome duplications which let entire pathways evolve with 

relieved functional constraints (Roth et al. 2007). The possible scenarios for the 

duplicated gene copies include pseudogenization, neofunctionalization, 

subfunctionalization (Ohno 1970; Hughes 1994; Force et al. 1999; Ohno 1999), 

dosage compensation (Birchler et al. 2005), and genetic robustness (Gu et al. 2003). 
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In eukaryotes the complex gene structure with introns and exons also constitutes a 

mechanism for altering function by e.g. changes in gene expression and alternative 

splicing (Lynch 2006). 

Pseudogenization 

Pseudogenization is the most common fate for one of the gene copies after 

gene duplication. By fixation of a null mutation one copy is non-functionalized. 

Eventually a pseudogenized gene will no longer be recognizable in the genome.  

Neofunctionalization 

The gene redundancy following a gene duplication allows the two gene copies 

to explore new functions. However, as one copy is devoid of the original function 

while attaining a new function, the functional redundancy is lost and the remaining 

copy must maintain the original function. The neofunctionalization mechanism is a 

way for both copies -with new, old, or slightly modified functions- to be fixed within 

the genome.  

Subfunctionalization 

Subfunctionalization also provides a mechanism for both duplicated gene 

copies to be retained in the genome. As many genes encode multidomain proteins it is 

intuitive to imagine that different domains from the two duplicate genes, or proteins, 

may interact to perform the original function. It has recently been shown that 

subfunctionalization, as a mechanism to retain both duplicates, can be followed by 

neofunctionalization, where the redundant domains, instead of the redundant gene 

can explore more of sequence space.  
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Dosage compensation 

If a gene and its regulatory region are duplicated, the expression of that gene is 

doubled. Gene duplication may also play a role in increasing the expression of genes 

where there is a selective advantage to increased expression (Wagner 2005). Dosage 

compensation is a mechanism to maintain a similar ratio of the different expressed 

genes although their copy number has been altered, as after a whole genome 

duplication. This effect is greater for regulatory genes, and can also be referred to as 

hierarchical regulatory balance. As selection occurs on one dosage-dependent 

regulator, other regulators in a balanced relationship can co-evolve. Conflicts among 

components of regulatory complexes within the genome could accelerate 

evolutionary change (Birchler et al. 2005). 

Genetic robustness 

Genetic robustness is another mechanism to retain both duplicated copies of a 

gene in a genome as a backup (Gu et al. 2003). Under this mechanism both copies are 

thought to maintain their original function and expression profile. Theoretical work 

has suggested that this mechanism is mostly applicable in species with high mutation 

rates and large effective population sizes (Elena et al. 2007). 

 

1.2. Homology 

Homology is one of the cornerstones in comparative biology and molecular 

evolution and, therefore, a brief introduction to homology and other related concepts 

will be given here in the light of gene duplications and speciation events. A 



 24 

speciation event occurs when the genetic boundary between two sub-species becomes 

large enough to prevent reproduction. A gene duplication event occurs when there is 

an additional gene copy in the genome. This additional gene copy may result from an 

entire genome duplication or a smaller scale duplication, e.g. a chromosomal 

duplication.  

1.2.1. Orthologs and paralogs 

When a gene duplication is followed by neofunctionalization, the result is two 

paralogs, A and B. Upon a speciation event, gene A is present in the two new species, 

1 and 2. Genes 1A and 2A are orthologs and have the same function. If this gene is 

further duplicated in both lineages these new duplicates will be paralogs to each other 

within each species, but orthologs to both copies in the other species (Figure 4). This 

can be further complicated if e.g. one of the genes is lost from one of the species, or if 

its sequence has diverged beyond recognition. In order to recognize protein 

sequences as homologs using only basic sequence analysis their pairwise sequence 

identity ought to be > 35 %. Pairwise protein sequence alignments in the so called 

twilight zone (20-35%) include a large fraction of non homologous proteins, as far as 

different structures are found among the pairs (Rost 1999). 

Remote homologs 

As sequence divergence becomes large enough for making homology 

identification with sequence based methods uncertain, there is another dimension of 

proteins to utilize. It has long been recognized that protein structure is more 

conserved than sequence (Zuckerkandl and Pauling 1965; Chothia and Lesk 1986). 
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Therefore, using protein structures aids to the identification of homologous proteins 

with highly diverged sequences. Different reasons for the extensive sequence 

divergence are given in the following sections.  

 

A             ALineage 1 
specific gene 
A duplication

Lineage 2 
specific gene 
A duplication

Speciation event

1A      1B  2B         2A
 

Figure 4. Paralogs are separated by a gene duplication event and orthologs by a 
speciation event. At the time of speciation between lineage 1 and lineage 2, both 
genomes had one copy of gene A. In lineage 1, gene A was duplicated. The resulting 
genes were 1A, which maintains the original function, and 1B that has another 
function. In lineage 2, gene A was also duplicated. The resulting genes were 2A, 
which maintains the original function, and 2B that has another function. Genes 1A 
and 1B are paralogs; similarly genes 2A and 2B are also paralogs. In all other 
comparisons within this group of genes are the genes orthologs.  

 

 

1.2.2. Protein structure comparisons 

As remote homology detection can gain from comparing structures, 

homologous proteins can benefit from having their structures compared. Although it 

is generally true that structure is more conserved than sequence (Zuckerkandl and 

Pauling 1965; Chothia and Lesk 1986), there are exceptions. Not all homologous 

proteins have the same structure (Grishin 2001). The process by which homologous 
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proteins acquire significantly different structures is called neostructuralization 

(Liberles 2005), but how often it occurs remains to be investigated.  

Structural similarity 

As discussed above many folds, with the same order of secondary structure 

elements and the same connectivity, are reoccurring in different proteins, with 

different functions, and with very different sequences. Most methods have their own 

scheme for scoring the obtained similarities for two aligned structures. These scores 

are often based upon sequence identity, Root Mean Square Deviation (RMSD), 

alignment length, and number of gaps in the alignment. RMSD is a very important 

factor for the comparison. It is calculated from the coordinates of different equivalent 

atoms in the two structures and indicates how similar the structures are, regardless of 

homology. The RMSD can be calculated on just the C� carbons, the peptide 

backbone, and, in some cases, the side chains are included in the calculation.  

1.2.3. Protein fold distribution 

Some authors estimate that most of protein fold space is covered by the 

currently known 1000 folds (Taylor 2007; Goldstein 2008), while others estimate that 

there are many unique folds that remain to be detected (Coulson and Moult 2002). 

Over the last few years, although the number of experimentally determined structures 

has rapidly increased, the number of folds is almost constant (PDB statistics). The 

distribution of folds among protein families is highly skewed. Some folds are very 

abundant and found in many different contexts with a variety of functions, and with 

sequences that have diverged beyond recognition of each other. Other folds are 
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unique to one particular family, and some folds are something in between (Coulson 

and Moult 2002). 

Different explanations to the fold distribution have been put forward. One 

explanation is designability. Designability is a measurement for how many sequences 

that can fold into a certain structure (Buchler and Goldstein 1999). Some folds have 

high designability which means that their sequences are robust to substitutions while 

still maintaining their folds (Melin et al. 1999; Zeldovich et al. 2006). The reason for 

the highly designable folds is very frequent and long range contacts (England and 

Shakhnovich 2003). An alternative or perhaps complementary view was asked; are 

some folds overrepresented due to the functions they can provide (Goldstein 2008)? 

Further, the role of evolutionary dynamics in the fold distribution may also be 

important. It has been shown, using lattice-models, that for a large protein population 

with high mutation rate, the evolving population is polymorphic in stability and 

subjected to frequent mutations, so the more stable and thus more mutationally 

tolerant proteins will produce more folded offspring. For a small population with low 

mutation rate, the evolving population is monomorphic in stability so all members of 

the population are equally likely to produce foldable offspring (Bloom et al. 2007). It 

seems likely that one or various combinations of designability, functionality, and 

evolutionary dynamics are needed to explain the fold distribution.   

1.2.4. Multidomain proteins 

As mentioned above, protein domains are the evolutionary units, which in 

different arrangements can perform different functions. However, it must be noted 

that many protein domains are found as stand-alone one domain proteins. 
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Evolution of multidomain proteins 

By combining domains in different genes to be expressed as proteins, domains 

are the building blocks of diversity. Multidomain proteins are the result of different 

domain combinations. In metazoans > 80% of all proteins are multidomain proteins, 

while about two-thirds of proteins in unicellular organisms contain more than one 

domain (Apic et al. 2001b; a). Multidomain proteins are formed by exon shuffling, 

recombination, fusion, and fission of genes (Long et al. 2003). One of the major 

contributions to the larger fraction of multidomain proteins in metazoans is exon 

shuffling of exon bordering domains (Ekman et al. 2007). Regardless of mechanism, 

a domain is frequently added at the N-terminus, or at the C-terminus, of a current 

protein that already has one or several domains to create a new multidomain protein 

(Ekman et al. 2007). For the aromatic amino acid hydroxylase (AAAH) family, its 

different domains are all present in some, but not all, bacteria. For many bacteria and 

all archea, the catalytic domain is not found within their genomes. Most protozoan 

(unicellular eukaryotes), and all plantae (non-animalia multicellular eukaryotes) lack 

the catalytic AAAH domain as well. However, as more protozoan genomes 

sequencing projects are finished, species with solely one full-length AAAH are 

identified, e.g. Dictyostelium diccoideum, the Leishmania species, and Monosiga 

brevicollis.  Metazoans (multicellular animals) have at least three different full-length 

AAAH genes.  

1.2.5. Protein domain organization in databases 

          Regardless of how the distribution of folds is explained, there is a need to 

classify the protein domains found with different or similar folds. If there are about 
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1000 or even 10000 different structural domains (also known as topologies or folds), 

comparing the number of folds to the number of genes in the human genome, which 

has about 20 000 -25 000 genes - not even counting the number of different domains, 

indeed reveals that some folds must be represented more than once. However, as seen 

above, many proteins are multidomain proteins and therefore a first step is to identify 

the domain boundaries in different protein structures. Once domains are determined 

the classification can begin. There is a hierarchical organization of folds and domains, 

and to further group them into families based upon their sequence similarities has 

proven very useful, as in e.g. protein structure classification databases like CATH 

(Pearl et al. 2003; Pearl et al. 2005) and SCOP (Murzin et al. 1995). Following the 

CATH hierarchy, proteins are classified into Class - based upon its secondary 

structure elements, Architecture – based upon the direction of the secondary 

elements, Topology – based upon the direction and connectivity of the secondary 

elements, and Homologous superfamily – based upon proven common ancestry. The 

homologous superfamily is further divided into sequence families (Pearl et al. 2003; 

Pearl et al. 2005). The number of homologous superfamilies found for a particular 

fold is what first led to the identification of the superfolds. In 1994, the CATH 

database contained 9 superfolds found in more that 10 different homologous 

superfamilies (Orengo et al. 1994). The three most common superfolds, the Rossman 

fold, the ferredoxin-like fold, and the immunoglobulin-like fold (Figure 5A-5C) are 

today present in over 110, 80, and almost 70 different homologous superfamilies, 

respectively. The TIM barrel (Figure 5D) is another superfold, commonly used fold 

for different enzymatic functions.  
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           A prevalent database for protein sequence families is Pfam. Pfam includes the 

entire domain sequence and not just conserved motifs. It is therefore representing 

biologically meaningful sequence annotation instead of just short sequence motifs 

alone (Sonnhammer et al. 1998). A recent feature of Pfam is Pfam clans. In a Pfam 

clan, two or more Pfam families that have arisen from a single evolutionary origin 

can be found (Finn et al. 2006). The latest version of Pfam had more than 9300 

protein families (Finn et al. 2008). This discrepancy between the 1000 known folds 

and almost 10 times as many protein families indicates that sequence divergence is a 

major factor for protein family distinction, but what drives it beyond recognition? 

1.2.6. Functional divergence on a sequence level 

          As protein sequences start to diverge there are a few requirements that must be 

fulfilled. For instance, the original function must be maintained or improved for a 

substitution to be fixed with high probability. This function may be catalytic activity, 

agonist binding, or interactions with other proteins.  Further, to maintain its structural 

integrity, the protein must also maintain its ability to fold. As described above high 

designability of a fold allows its protein sequences a higher potential to evolve 

beyond sequence recognition than for the sequences of a fold with low designability.  

           Early models describing sequence divergence simply divided amino acid sites 

into two classes, one with the potential to change and one that could not change. 

When different substitutions became fixed the sites in the class with the potentially 

varying sites would differ. As sequence space starts to be explored one substitution 

changes the probabilities for substitutions in the other positions (Fitch and Markowitz 

1970) This is called covarion behavior. The group of H. Philippe described 
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heterotachy as an important factor for sequence divergence (Lopez et al. 2002) . 

Heterotachy means that the evolutionary rates for all sites in the protein can change 

over time, where the covarion behavior represents a subclass of heterotachy (Lopez et 

al. 2002).  

A B

C D

A B

C D

 

Figure 5. Cartoon representation of the three most common superfolds, the Rossman 
fold (A), the ferredoxin-like fold (B), and the immunoglobulin-like fold (C), together 
with a superfold found in many catalytic domains, the TIM barrel fold (D). The 
secondary structure elements are �-helix (red), �-strand (yellow), loops and 
unstructured regions (grey). The N-terminus to C-terminus direction is given by the 
arrows at the C-terminus end of the �-strands. PDB id’s used 1DLJ (Campbell et al. 
2000)(A), 1PHZ (Kobe et al. 1999) (B), 1K5N (Hulsmeyer et al. 2002) (C), and 
1XX1 (Murakami et al. 2005) (D). Figure generated in DeepView (Guex and Peitsch 
1997) and rendered by POV-Ray (POV-Ray). 
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Further, it should also be mentioned that sequence divergence is highly context 

dependent as interacting proteins and domains are evolving together (Lopez et al. 

2002). 

Superfold domains evolve in different environments (e.g. the surrounding 

domains) and this makes their sequences diverge further. As the same domain re-

occurs within the same genome or even within the same protein, the different copies 

of it will start to diversify. It has been found that two similar domains located next to 

each other in a protein sequence will rapidly diversify to avoid unwanted contacts or 

aggregation (Wright et al. 2005). A common way to form aggregates is by runaway 

swaps (Bennett et al. 2006). Runaway swaps are different than domain-domain 

swapping, which is a common mechanism for multidomains to dimerize (Kinch and 

Grishin 2002). Runaway swaps are frequently found in deposition diseases, as e.g. in 

prion disease (Bennett et al. 2006). Runaway swaps are the result of e.g. a two 

domain protein where the two domains, A and B, are connected by a hinge region. If 

the coordination of the hinge region changes, this opens up for dimer formation, with 

domain A from one chain and domain B from the other chain. If domain B from the 

first chain and domain A from the second chain also form the same contact it can 

prevent a deposit to form (the classic domain-domain swap). If not, runaway swaps 

may be formed, as domain B from the first chain and domain A from the second chain 

now are open binding sites where another similar chain can attach and form higher 

order structures (Bennett et al. 2006). A similar effect is likely to occur for the protein 

folds that are found in many different domains, as e.g. the superfolds. Given their 

abundance, the superfold domains may further drive their sequence divergence to 
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similar superfold domains as they have a tendency to be promiscuous and form 

unwanted contacts by e.g. inter domain-domain swapping.  

The driving force for protein designabilty is the stability of its folded state 

relative to the unfolded state. Proteins have been found to be marginally stable. How 

does marginal stability correspond to sequence divergence? 

 

1.3. Marginally stable proteins 

1.3.1. Proteins are marginally stable 

          Proteins are not rigid molecules. They are marginally stable and Fersht showed 

that their folding free energy (�Gf) is between -5 and -15 kcal/mol (Fersht 1999). The 

stability (or instability) of folding is due to the contributions from the hydrophobic 

effect, hydrogen bonding, packing interactions between buried residues, and also 

electrostatic interaction energies between surface accessible residues, both in the 

unfolded and the folded states. This indicates that there is a delicate balance of 

stabilizing and destabilizing interactions which may be important for the protein’s 

biological function, but is this balance driven by nature’s selection for marginally 

stable proteins, or are proteins marginally stable as an artifact of their design?  

Why are proteins marginally stable? 

            The classic view of protein evolution is that proteins are marginally stable 

because there is a tradeoff between stability and flexibility. Therefore evolution 

selects for proteins that are stable, but not too stable. The explanation is often that 
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proteins need their flexibility to perform a certain function. Most mutations will have 

large effects on the structure and/or dynamics of the protein. Deleterious effects of 

mutations will be compensated for by conditionally beneficial mutations, as part of 

adaptive evolution (see (DePristo et al. 2005) and refs. therein). An alternative view 

of why proteins are marginally stable is given from a more evolutionarily neutral 

point of view. Here the view is that most substitutions are neutral and do not alter 

structure, function or stability. There is no selection or thermodynamic reason that 

proteins cannot be more stable; that they are not is an artifact of the evolutionary 

process, since destabilizing mutations are more common than stabilizing ones in the 

folded protein (Taverna and Goldstein 2002). This is related to designablity and 

evolutionary dynamics as discussed above.  

Proteins are dynamic 

           The marginal stability in (non-fibrous) proteins means that the energy gap to 

slightly altered conformations is small. All together the result is that many proteins 

are highly dynamic. These dynamic properties can result in equilibrium of different 

conformations for many proteins. Dynamic proteins can explore a wide range of 

different conformations. For many dynamic proteins there is coupling between at 

least two different conformations, e.g. ligand-bound and ligand-unbound 

conformations, which in many cases are provided by widely distributed binding sites.   

1.3.2. Allostery  

            Allostery is a term borrowed from Greek, where allos means other and stereos 

means solid or space. The central dogma of allosterism is that as an effector binds at 
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one site and it causes a conformational change at another site. Allostery was first 

defined as the regulation of a protein by a small molecule that differs in shape from 

the substrate, but was later redefined to include regulation of a protein through a 

change in its quarternary structure as induced by a small molecule, including the 

substrate (Monod et al. 1963). In enzyme terminology allostery is often associated 

with oligomeric enzymes showing variable ligand binding affinity that enhances or 

depresses catalytic activity. This is referred to as cooperativity (Fersht 1984). When 

the ligand binding affinity increases, the allosteric behavior is called positive 

cooperativity, and similarly, negative cooperativity is when the affinity decreases.                      

The effect of cooperativity is measured by a Hill plot. The Hill plot describes the 

binding of ligands to allosteric proteins in the region of 50 % saturation, where the 

value of the Hill coefficient (h) is given from the slop of the Hill plot. If h=1 there is 

no cooperativity; if h>1, there is positive cooperativity; and if h<1, there is negative 

cooperativity (Fersht 1984). The substrates and other effectors that cause the 

cooperativity by binding at the substrate binding site are homotropic allosteric 

modulators. Homotropic modulators typically activate the enzyme, as in e.g. positive 

cooperativity, where they can bind the active site of one subunit in an oligomer 

increasing the affinity and activity at the other active sites. Heterotropic allosteric 

modulators are effectors of the allosteric response, which bind to a site different to 

the active site where they modulate the substrate affinity and activity. Heterotropic 

modulators can be inhibitors or activators. The two classical mechanisms commonly 

used to explain allostery are the concerted mechanism (Monod et al. 1965) and the 
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sequential mechanism (Koshland et al. 1966). It is becoming evident that these two 

models are not able to explain all the different types of allosteric behavior seen today.  

The concerted mechanism 

            The concerted mechanism involves a preservation of the symmetry in the 

quaternary structure of the protein. This mechanism is appropriate for oligomeric 

proteins that are present in two different conformations: (1) the unactivated 

conformation of the protein, without the allosteric effector bound -called the T (tense) 

state- and (2) the ligand-activated conformation -called the R (relaxed) state. The T 

state must have lower ligand affinity than the R state. Last, if all binding sites in the T 

and R states, respectively, are equivalent, then this is a concerted mechanism (Monod 

et al. 1965). 

The sequential mechanism 

The sequential mechanism for allosteric behavior is based on a gradual change 

from the T state to the R state. The two underlying assumptions for the sequential 

model are that the protein exists in one conformation, prior to ligand binding. Upon 

binding the ligand a local change occurs in the subunit where the ligand is bound. 

However, the effect can be transmitted to other binding sites at the adjacent subunits 

by changes at the subunit interfaces (Koshland et al. 1966). 

The expanded view 

The thermodynamic understanding of proteins is consistent with an 

equilibrium model of different conformations and that allosterism can drive the 

increase of one conformation at the cost of another (Tsai et al. 2008). However, it is 
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necessary to note that conformations seen in allosteric proteins are present as 

populations which coexist in equilibrium. When a ligand binds to a ligand binding 

site it can redistribute the population (Gunasekaran et al. 2004). Allosterism is not 

exclusive of multidomain proteins, but also single domain proteins can show 

allosteric behavior (Gunasekaran et al. 2004; Leiros et al. 2007). It is also becoming 

evident that allostery does not need to involve a major conformational change (Tsai et 

al. 2008).  

 

1.4. Phenylalanine hydroxylase and its homologs 

Phenylalanine hydroxylase (PAH, EC 1.14.16.1) is a member of the 

tetrahydrobiopterin dependent AAAHs, together with its homologs, tyrosine 

hydroxylase (TH, EC 1.14.16.2) and trypthophan hydroxylase (TPH, EC 1.14.16.4). 

These enzymes have high physiological importance in mammals. PAH, which is 

mainly found in liver, catalyzes the first step in catabolism of L-Phe, by 

hydroxylating L-Phe into L-Tyr. Dysfunctions of PAH that cause elevated L-Phe 

concentrations result in hyperphenylalaninemia and phenylketonuria (PKU). TH, 

which is found in the central nervous system and the adrenal gland, catalyzes the first 

step in the formation of catecholamines by converting L-Tyr into L-Dopa. L-Dopa is 

decarboxylated by the aromatic L-amino acid decarboxylase (EC 4.1.1.28) and 

dopamine is the product. Dopamine can further be converted into norepinephrine and 

epinephrine, and these are all important hormones and/or neurotransmitters. Together 

with tyrosinase, PAH and TH are also important for melanin formation (Schallreuter 
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et al. 2008). The reaction catalyzed by TPH is the first and rate-limiting step in the 

biosynthesis of serotonin and the initial and uncommitted step in the synthesis of 

melatonin, by hydroxylating L-Trp into 5-hydroxytrypthophan (5-HTP). Serotonin 

has many functions as e.g. it is involved in smooth muscle contraction in intestine 

(Erspamer and Asero 1952) and in controlling mood changes such as depression and 

impaired cognitive function (Owens and Nemeroff 1994). Melatonin is important in 

regulating the circadian rhythm. Dysfunctions in melatonin production have been 

shown in sleep disorders, Alzheimer’s and Parkinson’s disease, depressive disorders, 

and various cancers (Pandi-Perumal et al. 2008). There are two tissue specific forms 

of TPH; TPH1 is found in the gut, pineal gland, spleen, and thymus, while TPH2 is 

found in the brain stem (Walther and Bader 2003). Most aspects of the AAAHs are 

conserved among them, with the main exception being their different substrate 

specificities and regulation.   

1.4.1. Domain composition  

The AAAHs include three domains. Starting from the N-terminus these 

domain are, a regulatory ACT domain (in PAH residues 30-111), a central catalytic 

domain (in PAH residues 112-408), and a C-terminus oligomerization domain (in 

PAH residues 409-452) (Figure 6). In addition, the first sequence stretch in the N-

terminus, prior to the regulatory domain is different among the AAAHs. For PAH it 

is called the intrinsic autoregulatory sequence (IARS) (Teigen and Martinez 2003). 

The IARS has a phosphorylation site and phosphorylation is part of the regulatory 

mechanism for mammalian PAH (Wretborn et al. 1980; Kaufman 1993). Also TH 

and TPH have phosphorylation sites in their N-terminus sequence stretches. In TH, 
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phosphorylation decreases its inhibition by catecholamines (Ramsey and Fitzpatrick 

1998), and for both TH and TPH phosphorylation regulates their interaction with 14-

3-3 proteins (Kleppe et al. 2001; Winge et al. 2008) .      

Regulatory domain

Oligomerization domain

Catalytic domain

 

Figure 6. Multiple sequence alignment of human AAAHs. The following sequences 
were used and are numbered accordingly: TH (NP00531), PAH (NP000268), TPH2 
(NP775489), and TPH1 (NP004170). Bars (black) denote domain boundaries and the 
regulatory domain (Melin et al.), the catalytic domain (yellow), and the 
oligomerization domain (orange) are shown. The sequences are colored by 
conservation. 

 

The regulatory domain 

The regulatory domain in PAH is classified as an ACT domain (Kobe et al. 

1999). The initial classification of the ACT domain included the regulatory domain of 

PAH and TPH, but not the regulatory domain of TH (Aravind and Koonin 1999). The 

sequence divergence of this domain in the different AAAHs is very high (Figure 6) 

and this is probably related to the superfold topology of this domain. The ACT 

domains have highly abundant 2-layer �/� plaits topology (Figure 5, 7A) (also called 
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the ferredoxin-like fold), with an anti-parallell β-sheet with two α-helices on top. 

There are more than 70 different homologous superfamilies with this fold in the 

CATH database. ACT domains are, according to their definition, regulatory domains 

that form dimers and bind amino acids at the dimer interface. They are often found to 

modulate the activity of other proteins or domains e.g. in allosteric enzymes. Now, 

this definition does not entirely apply to the ACT domain in mammalian AAAH. No 

ligands are known to bind to the regulatory domains of these enzymes. For PAH, it 

has been speculated that L-Phe could bind to an additional effector site, possibly 

located in the regulatory domain (Tourian 1971; Shiman 1980; Parniak and Kaufman 

1981; Kaufman 1993; Kappock and Caradonna 1996) but it has been shown that the 

stoichiometry of L-Phe to PAH subunit is 1:1, which does not support an effector 

binding site in addition to the active site (Thorolfsson et al. 2002). However, L-Phe 

allosterically modulates the activity of PAH by positive cooperativity (Wretborn et al. 

1980; Kaufman 1993; Kappock and Caradonna 1996; Knappskog et al. 1996), but the 

mechanism is still unclear. The regulatory ACT domain is connected to the catalytic 

domain by a long flexible linker sequence, but the relative orientation of these two 

domains is not certain since no full-length AAAH structure is available. The 

regulatory ACT domain is also in contact with the catalytic domain of the adjacent 

chain in the dimer and with the oligomerization domain of its own chain (Figure 6).   

The catalytic domain  

The catalytic domain has a unique fold, only found in the AAAH’s (Figure 

7B). As the name implies this is where the active site is located. The catalytic 

domains in two adjacent chains do not interact with each other. Only mammalian 
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PAH has an allosteric activation mechanism to our current knowledge, but for TH  

negative cooperativity for the binding of the cofactor (6R)-tetrahydrobiopterin (BH4) 

has also been shown (Flatmark et al. 1999). The sequences of the different catalytic 

AAAH domains are highly conserved (Figure 6). 

The oligomerization domain 

The oligomerization domain consists of two structural motifs. From the N-

terminus there is a small �-hairpin, called the �-ribbon (Figure 7C), with highly 

conserved sequence (Figure 6). The �-ribbon is followed by a long �-helix with 

rather divergent sequence (Figure 6, 7C). The �-ribbon is involved in dimer 

formation and the long �-helix is involved in tetramerization by forming a leucine 

zipper (Fusetti et al. 1998).    

Domain assembly 

TH and TPH form homotetramers. Mammalian PAH has been found to exist in 

vitro as a dimer-tetramer equilibrium, where the dimer represents a low-affinity and 

low-activity state while the tetramer represents a high-affinity and high-activity state. 

As the L-Phe concentration increases the equilibrium is shifted towards the tetrameric 

form (Doskeland et al. 1982; Martinez et al. 1995). A composite model of the full 

length dimer (Fusetti et al. 1998; Kobe et al. 1999) is shown in Figure 7D and of the 

tetramer, which is a dimer of dimers  (Goodwill et al. 1997; Fusetti et al. 1998), is 

seen in 7E. 
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1.4.2. The catalyzed reaction  

The enzymatic reaction is highly similar in all AAAHs, with the substrate 

being the only difference (Fitzpatrick 2003; Teigen et al. 2007). The reactions 

performed by the AAAHs are dependent upon the different substrates, the cofactor 

BH4, non-heme iron, and molecular oxygen. In PAH, L-Phe is hydroxylated in the 

para position and converted to the product L-Tyr (Figure 8). In TH, L-Tyr is 

hydroxylated into the product L-Dopa (Figure 8). In TPH, L-Trp is hydroxylated into 

the product 5-OH-TRP (Figure 8).  Regarding the order of reactant binding, it has 

been shown that the pterin cofactor binds first both in the case of TH (Fitzpatrick 

1991) and bacterial PAH (Volner et al. 2003). The mechanism of reaction and order 

of substrate binding is however not clear for mammalian PAH and TPH. A 

requirement for the cofactor to bind before the amino acid substrate might explain 

why the AAAH are inhibited by high substrate concentrations (Fitzpatrick 2003).  

1.4.3. The PKU phenotype 

Elevated concentration of L-Phe causes neurological damage, if left untreated 

(Scriver and Kaufman 2001). The reasons behind hyperphenylalaninemia can be a 

dysfunction in PAH, as in phenylketonuria (PKU), or in the supply of the cofactor 

BH4 (Thony et al. 2000). PKU was discovered in 1934, by the Norweigan Asbjörn 

Föllingsen (Folling 1934). It is as an autosomal recessive metabolic disorder. The 

typical PKU phenotype is often consistent with growth failure, light pigmentation, 

microcephaly, seizures, global development delay and severe intellectual impairment 

(Williams et al. 2008).  Many different mutations can cause PKU and in general the 

mutations in human PAH result in decreased stability and misfolding of the enzyme 
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(Pey et al. 2007). The known mutations associated with PKU can be found on the 

PAH knowledge based website (http://www.pahdb.mcgill.ca/). 

 

  

Figure 7. The domain organization in PAH; the regulatory domain (A), the catalytic 
domain (B), and the oligomerization domain (C), colored according to secondary 
structure (�-helix; orange, and �-strand: blue). The arrangement of these domains in 
one chain, as part of the modeled full-length dimer (D) and tetramer (E). The dimer is 
colored as follows; chain A: regulatory domain (orange), catalytic domain (yellow), 
and oligomerization domain (brown), and chain B (blue). The tetramer is colored as 
follows; chain A: regulatory domain (orange), catalytic domain (yellow), and 
oligomerization domain (brown), and chain B (grey), chain C (light blue), and chain 
D (dark blue). Figure generated in DeepView (Guex and Peitsch 1997) and rendered 
by POV-Ray (POV-Ray) 
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Deficient BH4 production affects the activity of all AAAHs and can result in 

Parkinson’s disease, autism, depression, and Alzheimer’s disease (Thony et al. 2000). 

While BH4 deficiency may be treatable by supplying BH4 or derivatives thereof  

((Thony et al. 2000) and refs. therein), the classical treatment for PKU patients is to 

exclude or minimize L-Phe and protein in their diets, and supplement the other 

essential amino acids. However, it has recently been shown that some forms of PKU 

can respond to pharmalogical doses of BH4 by a multifactorial therapeutic effect, 

including a chaperone-like effect of the cofactor (Erlandsen et al. 2004; Scriver 

2007). 

1.4.4. PAH regulation 

Positive cooperativity 

As mentioned above, mammalian PAH, in vitro, is found as dimers and 

tetramers in equilibrium, an equilibrium which is driven towards the tetrameric form 

in the presence of L-Phe (Knappskog et al. 1996). Mammalian PAH is activated by i) 

its substrate, L-Phe, and ii) phosphorylation at Ser16, with these two activation 

mechanisms operating synergistically (Kaufman 1993; Kappock and Caradonna 

1996). L-Phe binds with positive cooperativity to mammalian PAH. The hill-

coefficient (h) for the cooperative binding of L-Phe to human and rat PAH is about 

2.0 (Kaufman 1993; Knappskog et al. 1996; Thorolfsson et al. 2002).  

However, the molecular basis for the positive cooperativity and substrate 

activation of this enzyme remains unresolved, partly because of the so far 

unsuccessful task to crystallize the tetrameric full-length enzyme in the presence and 

the absence of L-Phe (Flatmark and Stevens 1999). Nevertheless, site directed 
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mutagenesis and molecular dynamics simulations have been used to partly investigate 

the molecular basis for the activation of human PAH by L-Phe, and the homotropic 

positive cooperativity mechanism for the substrate (Thorolfsson et al. 2003). 

 

Figure 8. The reactions catalyzed by the AAAHs. PAH converts L-Phe to L-Tyr, 
TH converts L-Tyr to L-Dopa, and TPH converts L-Trp into 5-OH-Trp using 
molecular oxygen as cosubstrate. The cofactor, BH4, is utilized by all mammalian 
AAAH. In addition, Fe2+ at the active site of the enzymes is necessary for the 
reaction. 

 

Activation by phosphorylation 

As mentioned above, the IARS contains a regulatory phosphorylation site for 

mammalian PAH. The cAMP dependent kinase A (PKA) phosphorylates PAH at 

Ser16. Upon phosphorylation PAH is activated and the activation mechanisms by 
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phosphorylation and L-Phe activation are interdependent and synergistic (Phillips and 

Kaufman 1984; Doskeland et al. 1996). As supported by recent site-directed 

mutagenesis and computational structural biology studies, the IARS covers the active 

site in the unphosphorylated state and phosphorylation at Ser16 induces local 

structural changes that result in a higher accessibility of the L-Phe binding site 

(Miranda et al. 2002; Miranda et al. 2004). PAH has at least one more regulatory 

mechanism, provided by its cofactor. 

Inhibition by BH4 

BH4 exerts a regulatory inhibiting mechanism and is believed to interact with 

residues in the IARS, which causes the entire regulatory domain to move closer to the 

catalytic domain, hence hindering PKA access to the phosphorylation site, 

barricading L-Phe binding at the active site and stabilizing the enzyme (Mitnaul and 

Shiman 1995; Miranda et al. 2002; Teigen and Martinez 2003). 
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2. Methods and Theoretical considerations 

2.1. Protein sequence alignments 

All comparisons of protein sequences require the amino acid positions to be 

aligned in columns, in a so called sequence alignment. The main goal of a sequence 

alignment is to group homologous positions in horizontal sequences into vertical 

columns. The information content is higher in protein sequences than in DNA 

sequences, given the number of character states and physicochemical properties.  For 

this thesis all sequence analysis have been performed on protein sequences, although 

many of the methods presented below are applicable to nucleotide data as well. When 

the sequence divergence is too high to generate a good sequence alignment, structural 

alignments can improve the results.  

2.1.1. Sequence alignments  

Sequence alignments can be pairwise of just two sequences or multiple if they 

contain more sequences. Sequence alignments that span the entirety or most of the 

length of sequences to be aligned are called global alignments. When searching for 

re-occuring motifs, e.g. in a BLAST search (Altschul et al. 1990), local alignments 
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that match a smaller more conserved sequence section are used. Dynamic 

programming was for long the foundation for all sequence alignments. The two most 

widely used dynamic programming algorithms are Needleman-Wunsch (Needleman 

and Wunsch 1970) for global alignments and Smith-Waterman (Smith and Waterman 

1981) for local alignments. These algorithms search for the best path between two 

sequences by using an amino acid substitution matrix for matching positions in the 

different sequences and a scoring function for indel events (also known as gaps). 

Today more sophisticated multiple sequence alignment programs that use e.g. the 

phylogeny of the sequences (i.e. Muscle (Edgar 2004)) or structural information (i.e. 

Expresso (Armougom et al. 2006)) are also available. These are also dependent upon 

amino acid substitution matrices, which are further discussed below. 

2.1.2. Structural alignments 

Comparing different proteins with similar structure can provide important 

information. This requires that the protein structures are aligned or superimposed. 

The easiest and fastest way is to align the sequences and then superimpose the 

structures based upon the sequence alignment. This method is however not 

recommended for less similar sequences. Instead, methods that compare the local 

environment e.g. distances and angles of nearby residues in the 3D protein space have 

been developed.  

Aligned fragments pairs 

A common way of performing structural alignments is to initially identify the 

smaller fragments that show high similarities in their local environments surrounding 
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the C�-carbons in the two structures to be aligned. The structural alignment is formed 

by connecting the fragments together. This has been the underlying procedure for 

different methods, e.g. Dali (Holm and Sander 1993), CE (Combinatorial Extension) 

(Shindyalov and Bourne 1998) and FATCAT (Flexible structure AlignmenT by 

Chaining Aligned fragment pairs allowing Twists ) (Ye and Godzik 2003). However, 

FATCAT is different than the other two methods in the way it lets the user decide if 

the structures are to be considered rigid bodies or not. By allowing twists, FATCAT 

permits more flexibility between the two structures in the alignment, which can be 

very important in e.g. homology searches. A comparison of FATCAT to two different 

rigid structure alignment programs, DALI and CE, showed that FATCAT performed 

better alignments. DALI stopped at hinge positions, where FATCAT inserted a twist, 

while CE continued and thereby aligned non-homologous residues (Ye and Godzik 

2003). 

SSAP 

The Sequential Structure Alignment Program (SSAP) is used to align protein 

structures in the CATH database. The structural alignment is generated by double 

dynamic programming. It compares the surrounding environment (distances to the 

neighboring residues) of each C�-carbon in both structures and uses this information 

to create the sequence alignment based on structural criteria (Taylor et al. 1994; 

Orengo and Taylor 1996). Besides differences in the implementation of e.g. SSAP 

and FATCAT, an additional important difference is the starting point for SSAP, the 

C�-carbon, instead of the commonly used C�-carbon (Figure 3). A dummy C�-

carbon is used for Gly.  
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MUSTANG 

Similarly, to generating multiple sequence alignments, also multiple structure 

alignments can be constructed. One algorithm that constructs these is MUSTANG 

(MUltiple STructural AligNment AlGorithm). By aligning residues based upon 

similarities in patterns of both residue-residue contacts and local topology, 

MUSTANG compares the structures to be aligned in a pairwise manner. The pairwise 

alignments are scored after similarity. Finally, the multiple structural alignment is 

constructed from the pairwise alignments, based upon their score (Konagurthu et al. 

2006).  

 

2.2. Tree-building 

In order to reconstruct the different relationships between genes or proteins, a 

phylogenetic reconstruction is performed. The most commonly used methods can be 

divided into 2 categories: distance methods and discrete methods. Among the 

distance methods, Neighbor-Joining (NJ) and Unweighted pair group method with 

arithmetic mean (UPGMA) are prevalent. The discrete methods are parsimony and 

maximum likelihood (ML) or Bayesian based methods, which both use a model of 

evolution to find the optimal solution.  

2.2.1. Distance methods  

The distance methods reconstruct trees from the pairwise distances (e.g. the 

sequence identities) in a matrix between the different genes or proteins. These are not 
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recommended methods for larger phylogentic analysis, since sequence evolution is 

oversimplified when reduced to a number. NJ is more a clustering method than a tree 

building procedure and UPGMA applies a constant rate of evolution, according to a 

molecular clock, which is rarely true. However, these methods are fast and easy to 

use, e.g. as implemented in the Phylip package (Felsenstein 1996). 

2.2.2. Discrete methods 

The discrete methods use character data, gene or protein sequences, to resolve 

the relationships between the homologous sequences in an alignment. As noted 

above, an alignment of amino acid sequences contains more information than a non 

codon-based nucleotide alignment. The same is true for tree building purposes.  

Parsimony 

Parsimony tries to find the right tree from the sequence data that has the fewest 

number of substitutions. However, parsimony thereby ignores branch length 

differences -such as multiple events along a long branch being more likely than on a 

short branch- for the data and it has problems finding only one solution (Page and 

Holmes 1998). 

Maximum likelihood and Bayesian methods 

These are computationally expensive methods, but they often outperform all 

other tree building methods. Much of what applies to maximum likelihood also 

applies to the Bayesian method. The major difference between the two is the use of 

prior probability and the characterization of a distribution. For ML, the following 

equation is used;  
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 LD = f(Xτ, ν, θ)                                                      (Eq. 1) 

This equation is to be interpreted as follows: if given some data (X) and tree topology 

(τ), branch length (ν), and model of evolution (θ), then the likelihood (LD) is the 

probability of obtaining X given τ, ν, and θ.  This is also called the likelihood 

function (Page and Holmes 1998). The likelihood function is also found in Bayes’s 

rule, which is used for the Bayesian phylogenetic inference: 

 f(τ, ν, θ X) =  [f(τ, ν, θ)  f(Xτ, ν, θ)] /  f(X)                        (Eq. 2)                                 

where f(τ, ν, θ X) is the posterior probability, f(τ, ν, θ) is the prior probability,  

f(Xτ, ν, θ) is the likelihood function, which describes the probability of the data 

under different parameter values, and  f(X) is the total probability of the data summed 

and integrated over the parameter space (Ronquist and Huelsenbeck 2003). In 

MrBayes, this is coupled to a Markov Chain Monte Carlo (MCMC) technique. By 

applying a Metropolis-Hastings sampler, MrBayes updates single parameters or 

blocks of related parameters in each generation. If for the current generation the 

Markov chain has the parameters τ, ν, θ, then a new value for θ (θ*), picked from a 

proposal distribution q(θ*θ), will be accepted with the following probability (r): 

r = min (1, f(θ*)/f (θ) f(Xτ, ν, θ*)/f(Xτ, ν, θ) q(θθ*)/q(θ*θ) )       (Eq. 3) 

The MCMC chains will run until the chain converges, or for as many generations that 

have been specified by the user. Further, the user can specify how often to keep a 

sample (a tree topology with its corresponding probability). These are used to create a 

consensus tree for the data when finished. As the initial chains are a bit unstable, it is 
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wise to disregard the first samples, called the burnin phase. The consensus tree will 

have posterior probabilities of each node (Ronquist and Huelsenbeck 2003). 

However, both ML and Bayesian phylogenetic inference require a specified model of 

evolution. 

 

2.3. Models of evolution 

An evolutionary model usually contains a substitution matrix and the 

substitution rates for the data. An amino acid substitution matrix gives the probability 

of going from one amino acid to another and how these probabilities are estimated 

designates the model. For an amino acid substitution matrix the dimensions are 20x20 

and each transition is given a probability (P). The rate matrix (Q) consists of two 

factors, the observed substitutions (Sij) multiplied by the frequency of the resulting 

amino acid (πj), hence  

(Qij=Sij x πj)                                                               (Eq. 4) 

 and  

P(�)=e(�Q)                                                                                (Eq. 5) 

where � represents the branch length. The amino acid frequencies, π, are often 

estimated form a large dataset and not recalculated. Margret Dayhoff was a pioneer in 

the field of estimating empirical substitution matrices from homologous global 

alignments in a phylogenetic (parsimony based) context in the 1960’s and 1970’s. 
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This procedure was repeated in 1978 and the resulting substitution matrices are 

generally referred to as Dayhoff or PAM (Point accepted mutations per 100 residues) 

matrices, e.g. PAM250 equals a 20 % sequence identity while PAM80 equals 50 % 

sequence identity (Dayhoff et al. 1978). A more recent but similarly constructed 

substitution matrix is the JTT matrix, named by its authors Jones, Taylor, and 

Thornton (Jones et al. 1992). Another commonly used substitution matrix also 

derived from real data is BLOSUM (BLOck SUbstitution Matrices) (Henikoff and 

Henikoff 1992). These are estimated from local alignments of similar proteins at 

different thresholds, but not in a phylogenetic context. These matrices are referred to 

as e.g. BLOSUM62 when derived for a threshold of 62 % sequence identity. It is 

worth noting that these empirically derived matrices have been found to outperform 

matrices based upon physicochemical properties. Whelan and Goldman proposed a 

model based upon maximum likelihood in combination with a counting approach to 

make more accurate substitution matrices without the computational cost associated 

with a pure ML approach (Whelan and Goldman 2001). This matrix is referred to as 

WAG.  

Here we have presented a few of the commonly used substitution matrices, but 

there is an enormous variety of substitution matrices to choose from. The appropriate 

model for the data can be tested by performing a model test (Posada and Crandall 

1998). For proteins ProtTest is the state of the art (Abascal et al. 2005). ProtTest 

suggests a model based upon an Akaike statistical test (AIC) utilizing the relationship 

between the likelihood (L) and the number of parameters (K) for some of the most 

common substitution matrices: 
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AIC = -2lnL+2K                                               (Eq. 6) 

This is also done with the different combinations of: frequency, the model will fit the 

data better by re-estimating amino acid frequency from the actual data; invariant, the 

model will fit the data better by specifying a proportion of invariant sites; and 

gamma, the model fit the data better by being divided into different rate categories. In 

order to reduce computational complexity four discrete rate categories are often used, 

instead of a continuous gamma distribution (Yang 1994). The shape parameter of the 

gamma distribution is called � and provides information on the evolutionary rate 

distribution in the data.  

 

2.4. Modeling protein structure 

The information in a linear protein sequence provides much less information 

that in its 3D form. There is a major effort undergoing right now to determine a large 

number of protein structures, carried out by Structural Genomics Consortiums all 

over the world. Today there are about 50000 experimentally determined protein 

structures compared to 5800 in 1998 according to the Protein Data Bank 

(www.pdb.org) (Berman et al. 2000). In 1998 there were almost 500 different folds 

classified. Today there are about 1000 different folds. Since 2005 very few new folds 

have been discovered, while the number of protein structures has increased with 

almost 20000 structures. This tells us that there is much to gain from comparative 

modeling or homology modeling, since its rationale is to identify a homolog with 
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known structure upon which the sequences without experimentally determined 

structures can be modeled. Given that the extent of neostructuralization still needs to 

be determined some caution should be used when applying homology modeling 

procedures.  

2.4.1. Homology modeling 

Swiss-Model is a homology modeling server (Schwede et al. 2003). It allows 

the user to perform a fully automated step where only the sequence, the so called 

target, needs to be provided. A structural homolog, the so called template, if 

available, will be identified by the server. The modeling procedure is rather simple as 

the coordinates from the templates C� atoms are transferred to the targets C� atoms. 

Thereafter the side chains are added from a rotamer library, which has the most 

common conformations for the amino acids. If there are any insertions in the target, 

these are modeled as loops, by searching a database of experimentally determined 

loop structures. Finally, when all side chains are in place the model is energy 

minimized. However, the automated mode has limited use since it can not build 

biological units in the case of oligomers. In order to build biological units, the project 

mode must be used and the user must build the modeling project in Swiss-Modeller’s 

own protein structure viewer and builder, DeepView (Guex and Peitsch 1997). This 

mode leaves lots of interesting features for the user to work with. First a structural 

homolog must be identified, from here on referred to as the template, and its sequence 

must be aligned with the protein to be modeled, the so called target.  

The alignment is very important in homology modeling. If the alignment is 

wrong, e.g. if non-homologues residues are aligned, it will result in an inaccurate 
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model. Therefore, it is sometimes important to use more sequences and to build a 

multiple sequence alignment instead of a pairwise sequence alignment since the 

former provides more information. The template is loaded into DeepView (Guex and 

Peitsch 1997). The target is loaded onto the template and the user can modify the 

alignment in DeepView accordingly to the pre-generated alignment before submitting 

it to the Swiss-Modeler server. Once the model is done it can be analyzed in 

DeepView. Perhaps it needs to be further optimized, in the way of changing the 

alignment or template, until a reasonable model is achieved. In DeepView many 

different operations such as fusing different templates and building biological units 

can be done. These are important steps in protein structure modeling since it adds to 

the functionality of the resulting models.  

PAH structures        

No full-length structure, with all three domains, is available for PAH or any 

AAAH in the PDB. Nevertheless, the available truncated structures have allowed the 

preparation of composite full-length models, as e.g. in (Flatmark and Stevens 1999; 

Thorolfsson et al. 2002; Kim et al. 2006). Our models from Paper II are shown in 

Figure 7D and 7E. There are various structures of catalytic domains (Figure 7B) with 

different combinations of pterin cofactors, presence and oxidation state of the Fe, and 

substrate analogs, mostly from human PAH. There are two structures of the 

regulatory domain (Figure 7A) in conjunction with the catalytic domain from rat 

PAH (Kobe et al. 1999). Only one structure of human PAH with the catalytic domain 

and the entire oligomerization domain is available (Fusetti et al. 1998) (Figure 7C). 

This structure shows two dimers, which each are internally symmetrical, but the 
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tetramer is asymmetrical. The biggest difference of the two different dimers is the 

positioning of the tetramerization �-helix in the oligomerization domain (Fusetti et al. 

1998). In one of these dimers the oligomerization helices are kinked at position T427 

and G442. The first kink leads to a rotation of the catalytic domain of 22˚ relative to 

the oligomerization domain and the second kink in the helices themselves leads to a 

20˚ rotation which may be important for the interactions between the helices in the 

tetramer. Both kinks contribute to make the helices reach further away from the 

catalytic domain as to interact with the corresponding helices in a tetrameric 

conformation similar to what is seen for the structure of the catalytic and 

oligomerization domains in TH (Goodwill et al. 1997). The straight tetramerization 

�-helices in one dimer are on the other hand too close to the catalytic domain to be 

involved in forming a tetrahelical bundle as seen for TH. By combining these 

structures in various ways we constructed our working models of full-length 

tetrameric PAH at different conformational –and probably functional-  states (see 

paper II, below).  

Protein docking 

When combining various domains together to form full-length protein chains, 

it is sometimes necessary to find alternative ways of docking those domains together. 

In addition, when composing dimers or tetramers of full-length subunits, some 

domains may clash in the higher order structure. For PAH all available structures are 

truncated at one end or another and therefore we used ZDOCK to explore alternative 

quaternary structures for our models. ZDOCK utilizes an unbound docking approach. 

Unbound docking is for protein structures, models, and domains, which were not 
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crystallized together. This leaves many surface side chains to optimize in the search 

for probable interactions, if they are allowed to be flexible. ZDOCK instead uses a 

soft docking approach which allows six rotational/translational degrees of freedom in 

addition to a less strict target function between the two domains or proteins to be 

docked. The target function for ZDOCK considers shape complementarity (the 

rotational and translational conformations), desolvation free energy for atoms at the 

interface, and electrostatics, and is based of a Fast Fourier Transform algorithm 

(Chen and Weng 2002; Chen et al. 2003).    

  

2.5. Diverge analysis – prediction of residues involved in functional 

change 

When comparing sequences, conserved sites are often taken as functionally 

important, while varying sites are not. When the sequence family is large enough, the 

sequences can often be divided into subgroups or clusters based upon their 

evolutionary and functional relationship. By forming clusters we can ask what is 

different among the sequences in the different clusters as a lead to explain the 

experimentally seen functional changes. The Diverge software estimates the 

probability of different sites in an alignment under a certain tree topology being 

involved in functional divergence (Gu et al. 2003; Gu 2006). Functional divergence 

in protein sequences can be divided into two main categories, types I and II 

functional divergence. Type I functional divergence, corresponds to site specific rate 

changes and type II functional divergence to site specific physicochemical property 
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changes when comparing different sequence clusters (Gu 2006). Both the change 

from being a conserved site in one cluster to being a variable site in another cluster 

(Type I) and the change from a conserved small apolar amino acid to a big charged 

amino acid (Type II) indicate that the functionality of these sites has changed 

between the two different clusters. We used Diverge 2.0 (Gu 2006) to detect type II 

functional divergence in PAH between the nematode cluster and the mammalian 

cluster. The different amino acid classes used in Diverge are preset and contain the 

following groups: charge positive (K, R, and H), charge negative (D and E), 

hydrophilic (S, T, N, Q, C, G, and P), and hydrophobic ((A, I, L, M, F, W, V, and Y) 

(Gu 2006). A cluster specific change from one amino acid group to another is called a 

radical change. The sites that differ between the clusters are given a score (S) that can 

be converted to the posterior probability (PII) of that site being involved in a 

functional change by PII = S/1+S (Gu 2006). In our case a limitation for the 

application of this method was the number of nematode PAH sequences as we only 

had four of these. However, by combining our sites into 3 different classes the type I 

divergence was represented as well. Class 1 were the sites with cluster-conserved 

radical changes, class 2 were sites with radical changes but not strictly conserved 

within each cluster, and class 3 were sites with conserved physicochemical properties 

but with different cluster-specific residues. Class 2 therefore covers many of the type 

I sites.    
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2.6. Electrostatic interaction energies 

The residue specific electrostatic interaction energies for accessible ionizable 

residues has been calculated in this work using an implementation of Tanford-

Kirkwood model (Tanford and Kirkwood 1957) together with the Bashford-Karplus 

(reduced-set-of-sites) approximation (Bashford and Karplus 1991) as described 

(Ibarra-Molero et al. 1999), using a program kindly provided by Jose Manuel 

Sanchez-Ruiz (University of Granada). This approach calculates the interaction 

energies between unit charges placed on the protonation sites of the ionizable groups 

using the Tanford-Kirkwood model, obtaining an average charge on each ionizable 

group, the effective pK values and the pairwise interaction energies using the 

Tanford-Roxby mean field procedure. The following parameters were used; atomic 

van der Waals radius according to Chothia (Chothia 1976), solvent molecule radius 

1.4 Å, temperature 298 K, pH 7, ionic strength 0.2, and dielectric constants for the 

protein and solvent 4 and 78.5, respectively. Gurd’s accessibility correction (Matthew 

and Gurd 1986) was applied. The energy of charge–charge interaction of group i with 

the rest of the ionizable groups in the protein <Wi> can be used to estimate the total 

charge–charge interaction energy in the proteins (<Wq − q>):                    

                                                         n 
                          <Wq-q> = ½ �<Wi>                                                       (Eq. 7) 

                                                                                    i=1 
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3. Aims 

3.1. The evolution of the AAAHs 

            Earlier attempts at resolving the phylogeny of the AAAH family have 

suffered from the lack of an appropriate outgroup, as they have focused on metazoans 

with three or more full-length AAAH genes and sometimes included the bacterial one 

domain PAH gene (Grenett et al. 1987; Patton et al. 1998; Wiens et al. 1998). The 

suggested ancestral substrate specificities were inconsistent. Hence, the determination 

of the genome sequencing of the social amoeba Dictyostelium discoideum, which 

only contains one AAAH gene, prompted us to resolve the phylogeny and the 

ancestral specificity of this enzyme family (Paper I). 

  

3.2. The function of the regulatory ACT domain in PAH  

           The essence of this thesis was to generate further insights regarding the 

regulation, in particular the cooperative response, of PAH provided by its regulatory 

domain by using a comparative approach. The regulatory domain has been classified 

as an ACT domain homolog, which certainly is an adequate classification from the 
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structural point of view. However, from a functional view, the ACT domain of PAH 

does not appear to fit the strict description of this domain. There is a debate in the 

field regarding the ability of PAH to bind L-Phe to an effector binding site at the 

regulatory ACT domain. Various authors claim that there is a L-Phe binding site in 

the regulatory ACT domain (Tourian 1971; Shiman 1980; Parniak and Kaufman 

1981; Kaufman 1993; Kappock and Caradonna 1996; Gjetting et al. 2001) and the 

assumption that PAH could bind L-Phe to the regulatory domain seemed correct 

based upon the ligand-binding properties of the ACT domain in other proteins. 

However, previous experimental results from our group (Thorolfsson et al. 2002) did 

not fit into this context and we set out to investigate this domain further. First, we 

performed a comparative study of the ACT domain from PAH and from two other 

allosterically regulated ACT domains, D-3-phosphoglycerate dehydrogenase 

(3PGDH) and the bifunctional chorismate-prephenate dehydrogenase (P-protein), 

which highlighted significant motifs in the sequences and corroborated important 

evolutionary relationships among these proteins (Paper III). Further, the ACT domain 

has a superfold topology, the so called ferredoxin-like fold, and domains with this 

fold are present in many different protein families and also as standalone domains. 

We explored more distantly related potential ACT domain homologs to gain further 

insights to the possible (present and ancient) functions of this domain in PAH (Paper 

IV). In addition, it was discovered that PAH in Caenorhabditis elegans was devoid of 

positive cooperativity and it was always found as a tetramer (Calvo et al. 2008). This 

provided an excellent system to study the differences between an allosterically 

regulated PAH in mammals and a non cooperative PAH with high activity in 
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nematodes. Being in the post-genomic era we could gather enough sequences of PAH 

from both mammals and nematodes to predict residues involved in generating the 

mammal and nematode specific phenotypes of PAH. As a variety of different 

structures of the different domains in PAH are available, we aimed at generating full-

length models to study the 3D location of the residues predicted to have changed their 

function between nematodes and mammals. From the structural models, the residue 

specific electrostatics interaction energies were calculated to add another comparable 

dimension to our analysis of these two groups in order to get further insights to the 

promotion of the allosteric response in mammalian PAH that involves all three 

domains (Paper II).  
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4.1.1. Residue denomination 

For this and following sections, various positions in the PAH sequence will be 

discussed. All numbering refers to the human PAH sequence, and 1-letter codes for 

amino acid residues are used. When amino acid differences are present at a position 

compared between species or by a mutation, the amino acid in human or mammalian 

PAH is given first and the other species amino acid is given after the position, e.g. 

A322S refers to position 322 in human PAH, where human has an A and the other 

species has a S.  

 

4.2. The phylogeny of the aromatic amino acid hydroxylases (Paper 

I)  

 Previous attempts to reconstruct the AAAH phylogeny suffered from not 

having an appropriate outgroup. TH has often been assigned as the ancestral function, 

but this selection lacks experimental evidence. Further, there have been different 

explanations put forward to the series of events leading to the set of AAAH genes in 

the mammalian genomes seen today. By identifying and characterizing the first 

AAAH gene form a eukaryotic genome with only one AAAH gene, D. discoideum, 

we have found an outgroup to root the AAAH tree. We believe this is close to the 

ancestor of the metazoan AAAH because i) it is only present in one gene copy and ii) 

D. discoideum is a close outgroup to metazoans. This gene was experimentally 

characterized and the phylogeny of the AAAHs completed. Our MrBayes tree places 

D. discoideum PAH (DictyoPAH) as the natural outgroup to all metazoan AAAHs, 
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with the PAH branch being the closest, allowing us to resolve the AAAH phylogeny. 

The most parsimonious explanation is to assume that the last common ancestor of 

DictyoPAH and the AAAH genes in metazoans had PAH activity and that the TH 

and TPH functions are derived from it. By analyzing only complete eukaryotic 

genomes and the chromosomal location of the AAAH genes we could envision how 

the AAAH genes have evolved. In short, the ancestral AAAH gene was duplicated 

twice during the Cambrian explosion, separating protozoans and metazoans. By a 

neofunctionalization mechanism, these duplications gave rise to TH and TPH. Hence, 

e.g. nematodes have one PAH, one TH, and one TPH gene, located on the same 

chromosome. A whole genome duplication took place in the chordate-vertebrate 

lineage (McLysaght et al. 2002). In mammals, this eventually led to pseudogenization 

and loss of the initial TH copy and the duplicated PAH copy. The only gene that was 

successful in maintaining both its gene copies in the genome was TPH by the two 

copies having different tissue specificity. Birds and probably marsupials have kept 

the initial TH copy as well.  

 It should be noted that PAH from D. discoideum is devoid of positive 

cooperativity and the cofactor specificity is different from other eukaryotic AAAHs. 

D. discoideum synthesizes another variant of biopterin, i.e. DH4, not found in other 

eukaryotes (Klein et al. 1990) and DictyoPAH shows higher activity with DH4 than 

with BH4. We identified interesting differences between the PAH from human and D. 

discoideum: i) the S251A and A322S substitutions, which seem responsible for the 

change in cofactor preference, and ii) an additional disulfide bridge in DictyoPAH 

located close to 322S, namely 324C. In DictyoPAH, 324C (corresponding to I234 in 
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human PAH) forms a disulfide bridge to 373C and it seems possible that this covalent 

interaction reduces the dynamics of DictyoPAH compared to human PAH and also 

contributes to cofactor selectivity. This may partly explain the lack of conformational 

flexibility in DictyoPAH. Finally, iii) in close vicinity to the substrate binding pocket, 

DictyoPAH has a CC motif, where human PAH has an IC motif (positions 283, 284) 

(Paper I). We characterized a human PAH I283C mutant. It had strict PAH activity, 

but was devoid of positive cooperativity. It was tetrameric with similar stability as 

seen for the wild-type human PAH tetramer, but with lower affinity for both substrate 

and cofactor. Residue I283 in human PAH therefore seems important for the substrate 

induced activation. If it is replaced with a rigid residue like C the flexibility in this 

area adjacent to the active site is reduced and the substrate induced activation is 

prohibited, as positive cooperativity is lost. However, the I283C mutant is a tetramer. 

This indicates that there may be structural changes at the domain-domain interfaces 

so that the tetrameric conformation is preferred, but the active site changes associated 

with increased affinity are missing. Many other mutations have been shown to affect 

the positive cooperativity in human PAH, located throughout the enzyme, e.g. I65, 

E178, A300S (Erlandsen et al. 2004), C237 (Thorolfsson et al. 2003), P244, R261, 

A309, V388 (Pey et al. 2004), Y325 (Miranda et al. 2005), R408 and T427 (Bjorgo et 

al. 2001). All these residues are conserved in DictyoPAH (Paper I). Many of these 

residues appear to be essential for maintaining the structural integrity since they are 

involved in misfolding mutations associated with PKU 

(http://www.pahdb.mcgill.ca/).  
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4.4. The archetypical ACT domain (Paper III) 

The regulatory domain of the AAAH has been classified as an ACT domain. 

In this comparative review we consider three different ACT domains to the depth of 

their allosteric regulation in three different enzymes, namely D-3-phosphoglycerate 

dehydrogenase (3PGDH), the bifunctional chorismate-prephenate dehydrogenase (P-

protein), and PAH. L-Ser is the enzyme product of 3PGDH, which is allosterically 

feedback inhibited by L-Ser binding to the interface between two ACT domains. This 

ACT domain dimer with L-Ser bound has served as the paradigm for the domain 

function in ACT-domain containing proteins. The ACT regulatory domain in the P-

protein has also been found to coordinate L-Phe to a sequence motif (GALV-ESRP). 

The G from the GALV motif is found in most ACT domains (Aravind and Koonin 

1999) and the entire GALV – ESRP motif is found in the regulatory domain of PAH. 

The P-protein is involved in the two first enzymatic steps in the shikimate pathway, 

used by plants and microorganisms to biosynthesize L-Phe and L-Tyr (Herrmann and 

Weaver 1999). The P-proteins are allosterically feedback inhibited by L-Phe. Further, 

when L-Phe binds to the GALV-ESRP motif (with positive cooperativity) the protein 

shifts from being an active dimer to becoming a less active tetramer. The homology 

between the regulatory domains in the P-protein and in PAH is thus obvious. But 

while the dimeric regulatory ACT domain in the P-protein has been shown to bind L-

Phe  (Pohnert et al. 1999) and by so doing it fits the description of the archetypical 

ACT domain, the only available structure of the ACT domain in PAH (Kobe et al. 

1999) reveals that no contacts form between different ACT domains. Hence, there is 

no ACT domain dimer interface for L-Phe to bind to in mammalian PAH, and 
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experimental data suggests that L-Phe does not bind to any other site other than the 

active site (Thorolfsson et al. 2002). We reconstructed the phylogeny of the ACT 

domain in the P-protein and in the AAAHs. The phylogenetic tree shows that the 

AAAHs are a monophyletic group as compared to the ACT domain in the P-protein, 

which certainly may be the ancestor of all AAAH ACT domains, as previously 

suggested (Gjetting et al. 2001). The known function of the ACT domain in PAH 

today however indicates that the oligomeric state and the ligand binding functionality 

have changed compared to the P-protein, but the allosteric properties remain. It 

appears that the ACT domain itself is a highly flexible module (Paper III). 

 

4.5. Distant homologs of the ACT domain (Paper IV) 

The high sequence divergence, evolutionary mobility, and superfold topology 

of the ACT domain led us to believe that there may be more homologous 

relationships for this domain to be found. As we concluded in paper III, the ACT 

domain is a flexible module included in several proteins with various domain 

combinations, and although they are described as binding amino acids, this does not 

seem to be a strict requirement. We were especially interested in finding other 

functionalities that could be extrapolated to the AAAH. As we continued to search 

for the purpose of the ACT domain, it became evident that the ACT domain 

classification was inconsistent when comparing e.g. SCOP, CATH, and Pfam. 

Therefore, we decided to search for remote potential homologs of the ACT domain in 

the PDB, using the regulatory ACT domain in PAH as a query. Using a consensus 
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approach of FATCAT and SSAP led us to 18 potential ACT domains, many devoted 

to regulation. To avoid redundancy in our data, no pair had a sequence identity > 30 

%. Using the inverted SSAP scores as distances we built a tree of these results (Paper 

IV). This method clustered the known Pfam families well. PAH clustered next to 

another known ACT domain that is not binding amino acids, but Ni-ions. This cluster 

is located in between the main ACT domain cluster and a cluster of metallobinding 

domains. Yet another cluster away, we find the GlnB-like domains. These domains 

are also involved in amino acid metabolism, of e.g. L-His and L-Gln.  

A recent structure of prephenate dehydratase with L-Phe bound at the dimer 

interface (Tan et al. 2008), when superimposed to the structure of the regulatory 

domain and catalytic domain of PAH, reveals that the interface that is used by L-Phe 

to bind is not present in PAH, although the residues are conserved. The two binding-

sites in prephenate dehydratase are formed by the region GALV from one chain and 

ESRP from another chain, and vice versa. This leaves one the GALV binding-site too 

open as the catalytic domain is too distant to interact. The G-L motif is found in many 

ACT domains and in many of the potential ACT domain, which indicates that it may 

have a direct structural importance (Paper IV).  
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5. General discussion 

The AAAHs have provided an interesting system to study the interplay of 

protein structure and function. As phenylalanine hydroxylase evolved it has gone 

through various transitions. One gene encoding the catalytic domain in PAH is 

present in a seemingly random distribution of bacterial species. It is absent from 

archea and from some eukaryotic lineages, e.g. plants and fungi. As more protozoan 

genomes are being sequenced we notice that many of them have one copy of a PAH. 

Compared to bacterial PAH, the protozoan PAH has had two domain fusion events, 

aquiring an N-terminal domain as well as a C-terminal domain, consistent with 

domain fusion being more common than fission in the evolution of multidomain 

proteins (Kummerfeld and Teichmann 2005). As we proceed down the eukaryotic 

lineage into the metazoans, we note that all metazoans have at least three copies of 

the ancestral PAH gene. This is in accordance with the extensive radiation resulting 

in major gene duplications in early metazoan evolution (Lundin 1999). By 

experimentally characterizing DictyoPAH we can confirm that PAH was the original 

function. This means that two gene copies have been subject to neofunctionalization, 

TH and TPH. For TH a forward grade evolution as part of pathway evolution can be 
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depicted since its substrate is the product of PAH. The pathway in which PAH and 

TH are found, also include dopamine and adrenaline production and is highly 

important for various neurological process. TPH is found in a parallel pathway 

leading to e.g. serotonin production. Therefore, the evolution of the enzyme family 

from one PAH to a family of aromatic amino acid hydroxlases involved in various 

neurotransmitter production pathways were likely very important for the evolution of 

the animal kingdom. The triplication (or more) of PAH in early metazoans, was later 

followed by at least one round of genome duplication in the chordates to vertebrate 

transition (McLysaght et al. 2002). Initially, this ought to have meant at least 6 

AAAH genes, but in the eutherian mammalian lineage two genes were 

pseudogenized as there are 4 AAAH genes found in their genomes today. An 

additional copy of TPH was added to the AAAH family in eutherian mammals as 

compared to invertebrates. This last genome duplication also resulted in a division of 

the AAAH genes onto two chromosomes, with PAH and TPH on one and TH and 

TPH on the other. Other vertebrates may have additional copies of the AAAH genes 

as a result of the genome duplication mentioned above or by later lineage specific 

genome duplications. In e.g. chicken, we noted that it had kept an additional TH 

gene, since it is located on the same chromosome as PAH and one TPH. This is 

similar to the chromosomal location of the three AAAH genes in non-vertebrate 

metazoans. One interesting feature of DictyoPAH is its clear preference for its species 

specific biopterin cofactor (Paper I). D. discoideum is one of seemingly few 

protozans that can synthesis a close analog of biopterin, using the same pathway as 

higher eukaryotes (Werner-Felmayer et al. 2002). Some bacteria, e.g. Clorobium 
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tepidum, has the enzymes needed for biopterin synthesis, while most bacteria cannot 

synthesize biopterin (Supangat et al. 2008). Interestingly, the bacterial biopterin is yet 

another conformation of the biopterin found in higher eukaryotes (Supangat et al. 

2008).  

The domains that were added to the catalytic domain sometime in the early 

eukaryotic lineage added regulatory properties to the enzyme. The N-terminal domain 

is an ACT domain, which are often found in allosterically regulated metabolic 

enzymes, while the C-terminal domain has two structural motifs involved in the 

oligomerization of the enzymes. TH and TPH are functional as homotetramers. 

Mammalian PAH is sophistically regulated by its substrate, cofactor, and 

phosphorylation, all together altering the equilibrium between a low-affinity and low-

activity state to a high-affinity and high-activity state. This allosterically controlled 

regulation has not been detected for TH and TPH. Human PAH is the malfunctioning 

enzyme in PKU. More than 500 PKU causing mutations have been found 

(http://www.pahdb.mcgill.ca/). In a recent study of 10 PKU mutations located 

through-out the PAH sequences, several were found to impact the folding of the 

regulatory domain (Gersting et al. 2008). Our investigation of the allostery in PAH 

led us to the important domain junction of the regulatory and oligomerization domain 

from one subunit to the catalytic domain of the other subunit (Paper II), similar to 

another study by Thorolfsson et al (Thorolfsson et al. 2003). In addition we note a 

couple of radical amino acid substitution changes in the immediate substrate binding 

pocket that could account for stabilizing the high-affinity and high-activity state in 

nematode PAH, e.g. G272H and M276K (Paper II). Similarly, we note that also 



 78 

DictyoPAH has two additional Cys residues lining the active site, e.g. I283C and 

I324C (Paper I). When the Dictyostelium discoideum specific biopterin cofactor is 

used, this PAH has high affinity for L-Phe (Paper I). These PAH are all devoid of the 

positive cooperativity seen in mammalian PAH. This indicates that the acquisition of 

a dynamic binding site is coupled to the acquisition of allostery, similar to what is 

seen for the allosterically activated PAH from the cold-adapted bacterium Colwellia 

psychrerythraea (Leiros et al. 2007).  

One of the conformational changes that we note between the low-affinity and 

low-activity models of human PAH seems to originate in the substrate binding pocket 

and lead over to the adjacent regulatory domain. Thus the human enzyme is 

characterized by a high mobility abd a large number of hinges (Stokka et al. 2004). 

Further, both the N-terminal and the C-terminal have been shown to be very flexible 

and susceptible to degradation, even for some PKU associated mutations that are not 

located in the N-terminal regulatory domain itself (Gersting et al. 2008). 

PKU is today regarded as a misfolding disease with many destabilizing 

mutations as the main pathogenic mechanism (Pey et al. 2007). For several PKU 

mutations treatment with the biopterin cofactor can reduce the L-Phe concentration by 

20-30 % depending on the severity of the mutation  ((Fiege and Blau 2007) and refs 

therein). The mechanism for the rescued PAH activity may relay in a chaperone-like 

effect of biopterin that can stablize PAH (Scavelli et al. 2005) and also prevent its 

degradation (Erlandsen et al. 2004). 

The regulatory domains of the different AAAH have highly divergent 

sequences. This is in accordance with its superfold topology. However, the 
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oligomeric state of the ACT domain has changed compared to other known ACT 

domains (Paper III and IV). The ACT domains are found in various combinations, 

forming dimers and tetramers face to face or side by side (Paper IV). In most cases 

ACT domains interact with other ACT domains, but this is not the case for the ACT 

domain in PAH.  Most known ACT domains bind various amino acids, which is 

logical given their involvement in amino acid metabolism. However, there is at least 

one example of an ACT domain that in addition to its amino acid binding specificity 

also has acquired an additional ligand binding site, namely aspartate kinase which 

binds L-Lys and S-adenosylmethionine (Curien et al. 2008). However, while L-Lys 

binds to the dimer interface between two ACT domains, S-adenosylmethionine binds 

to only one ACT domain (Curien et al. 2008). This adds proof of principle to the 

ACT domains versatility. Truncating the PAH enzyme to only include the ACT 

domain results in dimer formation and L-Phe binding at the interface (Gjetting et al. 

2001). This is likely the ancestral function of this domain, similar to what is seen for 

the P-protein (Paper III and IV). Perhaps the loss of the ACT domains ability to 

dimerize or form higher order structures as seen for other potential ACT domain 

homologs (Paper III) may be involved in rendering PAH highly susceptible to 

degradation for many PKU mutations. PAH has kept the L-Phe binding motif, but the 

structural constraints on how the domains assemble abolish its ancestral binding 

functionality (Paper IV). 

The ESRP part of the L-Phe binding motif in the P-protein is interacting with 

�-helix 5 from the catalytic domain; an �-helix which we predicted had important 

interactions for promoting the allosteric response (Paper II). In addition, the R in 
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ESRP is R68, has been found to be important for the allosteric response by its 

interactions to C237 (Thorolfsson et al. 2003). In paper II, we found these residues at 

a domain junction formed by the catalytic domain from one chain and the regulatory 

domain as well as the oligomerization domain from an adjacent chain. The difference 

between mammalian PAH and nematode PAH in our models is that nematode PAH 

can form more inter domain interactions in this area.  The regulatory domain has been 

shown to have large impact on human PAH stability and active site binding 

(Erlandsen et al. 2004; Gersting et al. 2008). Therefore, stabilizing the interactions 

between the regulatory domain and the rest of the enzyme may be beneficiary for 

correction of PKU mutations. Decreasing the pKa of the residues in the vicinity of 

R68 from the ESRP motif and the area around C237 in particular seems to be 

important for high activity ((Thorolfsson et al. 2003) and Paper II). This region may 

be a good target for stabilizing destabilized PAH in order to control the PKU 

phenotype by a small molecule drug approach.  
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6. Conclusions and future directions 

6.1. Conclusions 

Human PAH has become a fragile enzyme. This is highly noticeable given 

how frequent destabilizing mutations are. When comparing human PAH to PAH 

from both D. discoideum and C. elegans it becomes evident that human PAH must be 

more dynamic than these two, and it is indeed the case. The two additional Cys 

residues in close vicinity to both cofactor and substrate binding pockets in 

DictyoPAH are providing additional stability; one of these was confirmed to abolish 

cooperativity in human PAH as well. For PAH from C. elegans we have identified 

two strong candidates for making the active site less dynamic compared to human 

PAH. Both these residues, G272H and M276H, are located in close vicinity to the 

substrate binding pocket and probably involved in stabilizing the high-affinity and 

high-affinity state.  

The ACT domain is a functionally highly versatile domain, which structure is 

one of the most common in the current fold pool. As a superfold domain, the same 

secondary structure elements and connectivity can be achieved with highly divergent 

sequences. As structure is more conserved than sequence, we set out to identify more 
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potential homologs. Using only one of the current ACT domain, we idenitified 18 

new ACT domain candidates. Some of these where structural genomics targets with 

unknown function. By using a combination approach like this, insights to unknown 

domain functions can be gained. In addition, several non-redundant candidates were 

found from the same Pfam domains, the GlnB-like and heavy metal associated 

domains. There is probably a homologous connection between these domains and we 

are working on a way to show that (see future directions).  

The L-Phe binding motif found in the homologous P-protein ACT domain is 

conserved in PAH. In PAH, this motif can no longer bind L-Phe, due to the 

quaternary assembly of PAH. The catalytic domain is today surrounded by two 

different oligomerization domains, one at the N-terminus and one at the C-terminus. 

We have seen that the ACT domain at the N-terminus is frequently involved in 

dimerization (Paper III and IV), and the leucine zipper motif in the very C-terminus is 

frequently involved in forming tetramers. In the quarternary assembly of the full-

length multidomain AAAH protein, no contacts are formed between the different 

ACT domains. This may have resulted in the instability of the regulatory domain 

since it cannot interact with the other ACT domain from the adjacent subunit.  

The AAAH family does not seem to have evolved from an enzyme with broad 

substrate specificity, but from a PAH specific enzyme. This is also what we see in 

bacteria. However, it should be noted that PAH in bacteria may be the result of a 

horizontal gene transfer, but distribution in the bacterial kingdom is scattered.  

As we have shown for AAAH, the evolution of this multidomain protein in 

eukaryotes could be resolved with a suitable outgroup. This is probably the case for 
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many other eukaryotic multidomain proteins as well. By experimentally confirming 

the outgroup specificity and characteristics we have lots to learn about protein 

evolution of structure and function.  

In addition, we need to resolve the superfold domain ancestry in order to know 

how multidomain proteins really evolve, e.g. in TH the ACT domain has diverged 

beyond sequence recognition. If this and other domains are not classified in 

accordance to their homologs in various databases, then many studies based on 

various databases will be wrong in establishing various trends for e.g. multidomain 

evolution.  

Another application that can follow the understanding of superfold ancestry is 

protein structure prediction.  

 

6.2. Future directions 

(1) To get a better understanding of the different changes at the different 

interfaces, molecular dynamics simulations can be helpful. We have provided 

various interfaces and residues that are predicted to be important using 

bioinformatic statistical methods, electrostatic interaction energies, and 

structural models. Further, site directed mutagenesis can help test some of our 

hypothesis. 

(2)  Now is the time to start revisiting phylogenies of the multidomain proteins in 

order to get insights into their ancestral functions. The AAAHs are only one 
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of many other enzymes where copy number has increased in higher 

eukaryotes as compared to D. discoideum. Testing activities and substrate 

specificities will aid the understanding of domain and pathway evolution. This 

is crucial to our understanding of biology. 

(3) Ultimately, we would like to be able to prove that the known and potential 

ACT domains identified in this thesis are homologs, but how does one do 

that? There is no precise way to demonstrate homology between domains that 

have a sequence identity of 0-10 %, although the conserved features are 

unlikely to be the result of convergent evolution. We would like to mention 

that we have tried to prove homology using various ideas. Our first attempt 

was to identify the residues involved in forming the folding nucleus, believed 

to be essential for the folding process. There are at least two known sets of 

overlapping folding nucleons in ribosomal protein S6 (Olofsson et al. 2007). 

We found these patterns to be conserved throughout the set of our known and 

potential ACT domains, but this was not enough to claim homology. Further, 

we tried to use ancestral sequence reconstruction using a very basic idea that 

as the node of each known and potential ACT domain was reconstructed, the 

sequence identity and alignment score should increase; with the underlying 

hypothesis that if the domains are truly homologous their ancestors ought to 

show higher sequence similarity as present day sequences continue to evolve 

and diversify. This almost took us all the way, but we did not see 

improvement for all known ACT domains. Now, after giving up on this 

approach, I have come to realize that the fatal flaw was to not create 
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homology models of the reconstructed sequences and to compare the models, 

not the sequences, to each other. Further, we could have extended the method 

to include more sequences since the top scoring sequence may not be an exact 

replica of the ancestral sequence. Collaboration with Prof. Lesley Collins at 

Massey University, New Zealand, has been initiated to continue developing 

the method of modeling ancestral sequences and structures in order to prove 

homology between superfold domains.  
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