

©2007 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other users, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted components of this work in
other works.

A Reflection-Based Framework for Content
Validation

Lars-Helge Netland
Department of Informatics

University of Bergen
Email: larshn@ii.uib.no

Yngve Espelid
Department of Informatics

University of Bergen
Email: yngvee@ii.uib.no

Khalid A. Mughal
Department of Informatics

University of Bergen
Email: khalid@ii.uib.no

Abstract— Attacks embedded in application-level data have
become one of the most successful ways to circumvent software
security. Skilled hackers capitalize on misplaced trust by conceal-
ing their malicious code within a seemingly innocuous stream
of application data. In systems that do not perform the most
elementary data checks, even unintentional user mistakes may
cause a program to behave unexpectedly or crash.

Any distributed software system with potentially untrustwor-
thy sources of input should design and implement a mechanism
to inspect application-level data. Such a solution should defend
against mischievous attacks, as well as be robust enough to handle
user slip-ups. Important steps in creating a successful validation
regime include specifying what input to accept, and translating
that policy into working code. Once in production, the validation
routine must be adaptable in order to accommodate continuously
changing requirements.

This paper describes a reflection-based framework for content
validation. It separates the inspection of data from the application
logic, making it more feasible to construct and maintain a
meaningful set of validation rules. The framework is flexible
and can be integrated into almost any distributed object-oriented
software system. Deployment only requires a basic understanding
of XML and expects developers to create a trust model of their
own software architecture.

Keywords: content validation, distributed systems security,
maintainability, reflection, robustness.

I. INTRODUCTION

A common mistake among developers is misplaced trust
in sub-systems. Problems occur when the exchanged bytes
deviate from the expected format, which could be orchestrated
by an attacker or inadvertently caused by a user. A viable I/O
validation strategy combines software security knowledge with
risk management analysis, and must be continuously revised to
face new threats. A thorough understanding of the environment
where the software runs is important in establishing a trust
model and identifying forces that can have an impact on the
overall security of the system.

Unvalidated input ranks as number one on the Open Web
Application Security Project’s top ten list [1] over web ap-
plication vulnerabilities. The problem of handling content is
not limited to a Web context, but is equally important in
distributed client-server systems running over protocols other
than HTTP. The solution described herein is limited to object-
oriented software systems, but does not dictate a specific
application type or domain. Content validation should be done

prior to processing of data from untrusted sources, and applied
throughout the system as needed.

Content validation requirements are likely to change over
time, resulting from e.g. application development, feedback
from the user community, or anomalies detected during inspec-
tion of server logs. It is therefore important to design a solution
that can be quickly adjusted to meet changed requirements.
The content validator proposed in this paper uses XML and
reflection to tackle the dynamic nature of the problem. These
two technologies in combination are promising candidates for
extending the longevity of software, and can achieve platform-
independency [2]. In addition, the suggested solution helps
structure the validation process through defining categories
of validation rules. These categories encourage developers to
think of different types of validation rules.

The work described in this paper builds on [3] and [4].
The former describes a secure communication component that
allows developers to focus on application-level programming
instead of tedious networking issues, while the latter presents a
security pattern for input validation. The framework discussed
herein is now available as a SourceForge project called Heim-
dall [5] under an MIT license.

The rest of this paper is organized as follows: Section
II defines content validation and gives an overview of the
problem domain; Section III describes other important defense
mechanisms that should be considered; Section IV introduces
an online banking scenario to show how the framework
can be used; Section V explains the inner workings of the
content validation framework; Section VI elaborates on the
implementation of the online banking example; Section VII
discusses related work; Section VIII addresses future work;
and Section IX concludes the paper.

II. MOTIVATION

In a broad sense, I/O can be defined as the signals that
sub-systems of an information processing system use to com-
municate with each other. Information received by a functional
unit is called input, while information sent by the unit is
called output. In our context, examples of such units include
web servers, Internet browsers, databases, and operating sys-
tems. The above-mentioned signals are synonymous with data,
which can be more appropriately defined as structured content.
The structure is metainformation, i.e. it describes the format of

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

Web

Application

Database

Operating

System

Client

Browser

Legacy

System

F
ir

e
w

a
ll

Client

Browser

Client

Browser

Fig. 1. Architecture

Valid I/O

Rule

implementation

Correctly

allowed I/O
Incorrectly

disallowed I/O

Incorrectly

allowed I/OC: D: E:

A:

B:

Fig. 2. Implementation mismatch

data in a given protocol. The content is the actual information
populating the structure. For the purpose of this paper I/O
can be defined as structured content exchanged between sub-
systems of a larger system.

I/O validation is the process of checking the structure and
the contents of data against validation rules. The former means
verifying that the information conforms to the protocol format.
The latter requires a more careful inspection of the bytes at
hand. The difference between structure and content validation
can be explained in terms of XML parsing. Checking that
an XML message adheres to the Document Type Definition
[9] addresses structure validation, while content validation
requires analysis of the element and attribute values.

It is also worth noting that classifying information as input
or output is a matter of point of view. From the viewpoint of
a web server, an HTTP request is input and the corresponding
response is output. For an Internet browser, it is reversed.
Our communication model does not fit in the producer-
consumer paradigm, as many sub-systems take on both roles.
As a consequence, the distinction between input and output
becomes unimportant. The crucial factor is to establish where
the content is to be processed.

Most systems are comprised of several different sub-
systems. A typical scenario is shown in Fig. 1. Customers
request services from a web server through Internet browsers.
A web application receives the initial traffic, and communi-
cates with the back-end sub-systems when serving the clients.
A firewall protects against network-level attacks.

A sequence of steps must be completed to create a well-
functioning distributed system:

1) Identify sub-systems and dataflow. Pinpoint the potential
targets for an adversary. Any component in the system
that processes input is a possible target.

2) Implement the system using defense mechanisms ensur-
ing secure sub-system interaction.

3) Specify content validation rules. Define what is to be
considered valid content for the system as a whole and

for each information processing sub-system.

4) Implement validation rules. Translate the rule specifica-
tion into working code and deploy as needed throughout
the system.

Step 1 is carried out during design of the system; step 2 is
discussed further in Section III; step 3 is exemplified in Section
IV by formulating validation rules for bill payment in an online
banking scenario; and step 4 is illustrated in Section VI by
implementing the rules for bill payment using the framework.

Implementing a perfect I/O validation routine is a very
difficult task, mainly due to the rapidly changing environment
in which the software operates. As new threats and cus-
tomer requirements emerge, the solution must be continuously
updated to accommodate the changes. Fig. 2 illustrates the
relationship between a perfect I/O validation mechanism and
an actual implementation. Region A symbolizes the optimal
solution, while region B represents a deployed validation
routine. The intersection between the two circles, i.e. region
D in Fig. 2, embodies I/O that is correctly accepted by the
validation logic. Region C represents I/O that is rejected by
the current implementation, but should be considered valid
according to system policy. This category of I/O does not
pose a direct threat in terms of security, but could become
a major inconvenience for legitimate users, as input they
rightfully consider valid is rejected. Fixing the problem usually
involves a user reporting the input that caused a problem
to a system operator, who in turn updates the set of rules
to accept the incorrectly rejected input. Region E in Fig. 2
represents invalid input that passes undetected through the
validation mechanism. Failure to recognize and reject such
I/O can have serious security implications. Regions C and E
are termed false positives and false negatives, respectively, in
the Intrusion Detection Systems community.

Developers should strive to achieve as much overlap as
possible between region A and B in Fig. 2. An optimal I/O
validation strategy involves maximizing the intersecting region
D and minimizing regions C and E. Managing the region E is
the key to improving security.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

Minimizing region E is not a trivial task. A number of
approaches can enhance the quality of I/O validation. Ex-
amples include hiring external security expertise for a given
application domain, who can help formulate validation rules;
investing time and effort into a suitable logging and monitoring
system that can reveal new validation needs; and making
extensive use of feedback from the user community. Our
contribution is a framework that makes it easier to create and
maintain a validation regime. At the heart lies the ability to
adapt the framework to changing validation requirements. As
will be demonstrated later, XML and reflection provide this
flexibility.

III. DEFENSE MECHANISMS

Proper sub-system communication is essential for a well-
functioning system. How sub-systems exchange information
depend on how they interface. Factors affecting these rela-
tionships include the communication techniques offered by
the technology and how these mechanisms are made available
through APIs. Over time, the communication forms tend
to change, often driven by new performance and security
requirements. Under these circumstances, developers choose
implementation strategies for sub-system communication.

The most dominant server-side sub-system relationship is
that of a web application interacting with a back-end database.
The first querying technique was string-based, and involved
populating SQL commands with client input values. The
query string was subsequently submitted and executed in the
database. This technique has lead to one of the most common
venues for client input attacks, namely SQL injection [6]. In
short, the attacker alters the querying logic constructed in the
web application, by submitting cleverly crafted input, often
involving SQL metacharacters. The first defense mechanism
against such attacks was to escape metacharacters in client
input, forcing a literal interpretation in the parser. This is a
common approach often used to protect other similar sub-
system interactions.

A better solution is to use prepared statements that separate
application and querying logic, rendering the context switching
attacks impossible. The use of prepared statements removes
the need for escaping routines prior to database communica-
tion. This evolution highlights the diversity of implementation
choices software developers face, and how much proper sub-
system communication depends on their knowledge base.

As a contrast to the defense mechanisms just discussed, the
main goal for content validation is not handling metacharacters
or ensuring proper internal communication in a system. The
purpose of content validation is to ensure that input conforms
to policy rules specified for the system domain. Such rules can
define valid structure in credit card numbers, e-mail addresses,
etc. Thus, if a rule specifies a valid input set excluding sub-
system metacharacters, content validation can have the side-
effect of defending against injection attacks as well.

In large software development projects, content validation
rules are often implemented by different developers throughout
the system code. As a consequence, the larger the system gets,

Bank Application Server

Content
Validator

Communicator
Request

Handler

Database

Client

Client

Client 1 2 3 4

Request

Validator

Fig. 3. Online bank architecture

the more difficult it becomes to maintain these rules when
requirements change. The process also entails re-compilation
and re-deployment of system components.

The following sections demonstrates our generic solution for
content validation. In Section IV, we present the architecture
of an online banking application and formulate policy rules.
The theoretical underpinnings of the framework are presented
in Section V, while Section VI shows how to translate the
rules specified in Section IV into working code.

IV. RUNNING EXAMPLE: ONLINE BANKING

Online banking provides a typical scenario in which the
content validation framework is useful. Fig. 3 presents the
data flow when a client sends a request to the online banking
server. The circled numbers indicate the order in which the
information propagates, with the lowest number representing
the initial point of contact. A scenario for handling a client
request can be described by the following steps:

1: A bank client sends a request to the bank server.

2: A Communicator parses the data and creates ob-
jects representing the request, based on a communica-
tion protocol. These objects are passed to a Request
Validator.

3: The Request Validator uses a Content
Validator to determine which objects in the
request are valid. The result of the validation process
is a summary of rule violations. Invalid objects are
not processed, instead such requests are handled in
accordance with policy. E.g., a critical error could
cause the bank server to log the incident and terminate
the client connection. Valid requests are sent to the
Request Handler.

4: The Request Handler determines what to do with
the request. Interaction with back-end resources, such as
a database, may be necessary to fulfill the request.

The task of developing a secure Communicator is dis-
cussed in [3].

Describing the validation requirements for an entire Internet
banking system falls outside the scope of this paper. We
have chosen a scenario for bill payment to show how content
validation is set up. The techniques presented are applicable in
similar contexts. The example is implemented in Java, and the

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Bill payment web form

enterprise owner is a made-up Spanish bank that needs content
validation of domestic payments. The bank uses a web form
for bill payments, as shown in Fig. 4. Bank customers are
expected to fill in the amount in euros and cents, a payment
date, from which account the amount should be withdrawn,
and to which account the money should be transferred. Based
on application domain expertise, the bank development team
can now formulate validation rules for the different fields in
Fig. 4:

Amount Let x denote the euro entry, and y the cent value.
Then the following relations must be satisfied:

0 ≤ x < 1000000

0 ≤ y ≤ 99

x + y > 0,

meaning that the amount must be greater than zero
and can be up to one million euro.

Payment date A valid date has the format dd.mm.yyyy,
where all entries are integers. It should not be
possible to backdate bills, i.e. the date must be equal
to or after the current date. Also, the date must be
a valid Gregorian calendar date.

From account/To account Must be 20 digits, in compli-
ance with Spanish domestic account numbers.

V. A GENERIC VALIDATION MECHANISM

This section provides a top-down walk-through of our
content validation approach. First, we present an overview of
the main concepts in our work. Next, a class diagram accounts
for the core entities and their relationships. After describing
the important elements in our solution, a sequence diagram is
presented to show how they all interact. In addition, different
categories of content validation rules are presented.

A. Overview

The Validator is the driver of the validation process and
is the main entity in our validation framework. The validation
logic for a Validator is configurable in XML. Multiple
Validators can be created and used throughout the system
as needed. Fig. 5 shows how the application can fetch a named
Validator (1–2) and run the necessary communication in

Details in

Figure 7

Application v : ValidatorValidatorFactory

4: vs : ValidationSummary

2: v : Validator

1: getValidator(name:String)

3: validate(o:Object)

1: getValidator(name:String)

4: vs : ValidationSummary

Fig. 5. Using a validator

~getMethodName() : String

~getMethod() : Method

~getParameterValues() : Object []

~getRules() : Collection<Rule>

~getClassName() : String

~getTargetMethods() : Collection<TargetMethods>

~getValue() : Object

+isEmpty() : boolean

+getRuleViolations() : Collection<RuleViolation>

~addViolation(rv : RuleViolation)

*

~enforce(o : Object) : boolean

*

+validate(o : Object) : ValidationSummary

TargetMethod

Validator

violates

Parameter

Rule

TargetClass

1

ValidationSummary

RuleViolation

*

{ordered}*

*

validates

produces

1..*

*

enforces

Fig. 6. Validation entities

order to validate a given object. When the application has
obtained an object o, it is submitted for validation to the
Validator (3). The results from the validation process are
summarized in a ValidationSummary and returned to the
application (4). The application can now take action depending
on the information provided in the ValidationSummary.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

B. Main entities

Fig. 6 identifies the main entities involved in the valida-
tion process. The Validator holds a collection of target
classes representing objects that must be inspected. Each
TargetClass holds information on their TargetMethods
and corresponding method Parameters, enabling the
Validator to retrieve these object properties. In addition,
sets of rules define valid return values TargetMethods can
produce. The Validator enforces these rules and produces
a ValidationSummary containing rule violations. Rules
and RuleViolations represent content validation rules
and potential violations of these rules. Return values can be
compounded, which necessitates recursive validation.

C. Validation process

Since the content validation framework is generic and not
specific to any application domain, it is unaware of target
classes and methods. Class reflection [10] enables the val-
idation framework to determine the class of an object at
runtime and invoke its target methods. The configuration of
the Validator therefore entails specifying class and method
names, and defining the corresponding sets of rules. The use of
reflection leads to a flexible and dynamic solution for content
validation.

Fig. 7 shows the sequence of steps after the target class has
been established. The numbers in the left-hand column refer
to the steps in the figure.

D. Rules

Rules constitute the implementation of validation logic.
A few common rule categories are already available in the
validation framework. For each category, developers can spec-
ify initialization parameters, such as range limits, to employ
instances of rules in the validation process. The following list
describes the different categories:

Range Strings, integers etc. should be within certain ranges
given by minimum and maximum values.

Boolean Boolean values should be either true or false.

Required Values should not be null.

Pattern Character sequences should adhere to regular expres-
sions.

Schema Character sequences should conform to XML
schemas.

In scenarios comprising complex validation, the rule cate-
gories given above may be insufficient. This limitation is over-
come by allowing developers to implement custom validation
logic and incorporate it into the framework. By specifying
class and method names identifying these custom validation
rules, developers are able to use their own validation logic as
part of the validation process.

VI. ONLINE BANKING IMPLEMENTATION

In this section we describe the technical details of the
solution implemented for the Spanish bank introduced in
Section IV. It should be noted that the validation framework
is very flexible, and the following implementation only serves
as an example.

First, the validation rules specified in Section IV are
translated into XML elements that can be executed by a
Validator. The rule for payment amount is expressed as
follows:

<rule name="paymentAmount">
<range type="java.lang.Double">

<min>0.01</min>
<max>999999.99</max>

</range>
</rule>

The Content Validator comes with built-in validation logic
for ranges. The type must be specified, and the min and max
elements define the valid interval. In this case from 1 cent,
inclusive, up to 1 million euros, exclusive.

In most cases, context-specific validation rules must be
implemented. Developers can create their own custom rules by
creating Java classes with methods to enforce these rules. The
following XML element for payment date validation shows
how to specify custom rules:

<rule name="paymentDate">
<custom>

<class>PaymentDateRules</class>
<method>todayOrInTheFuture</method>

</custom>
</rule>

The class element specifies a Java class named
PaymentDateRules, and the method element identifies
its static boolean method called todayOrInTheFuture.
This method validates the date returned by the Payment
object.

Analogues to range validation, the content validator comes
with built-in functionality to specify regular expression rules.
The following XML segment ensures that an account has
exactly 20 digits:

<rule name="spanishAccountNumber">
<regexp>ˆ\d{20}$</regexp>

</rule>

Next, the validation rules need to be associated with tar-
get methods. In our simple scenario, a single class holds
the payment data. Upon receiving a client request, the
Communicator shown in Fig. 3 creates a Payment object
based on the web form input. Fig. 8 shows the getter methods
in the Payment object that enable the Validator to
retrieve the payment data. The construction of business objects
in the Communicator forces a partial syntactical validation
of the client data. For instance, a non-numeric amount of euros
or cents results in a NumberFormatException when

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

loop

loop

alt

if false

for each

Rule

for each

TargetMethod

r : RuleValidator tc : TargetClass tm : TargetMethod m : Method

14: addViolation(rv : RuleViolation)

vs:ValidationSummary1: <<create>>

13: true/false

9: rc : Collection<Rule>

8: getRules()

12: enforce(returnValue)

11: returnValue : Object

10: invoke(o , paramValues)

7: paramValues : Object[]

5: m : Method

6: getParameterValues()

4: getMethod()

3: tmc : Collection<TargetMethod>

2: getTargetMethods()

1: The Validator creates a ValidationSummary to hold rule violations.

2–3: The Validator queries the TargetClass for the collection of TargetMethods that should
be evaluated on this object.

The rest of the steps are repeated for all target methods in the collection

4–5: The Validator retrieves the actual object m which provides access to the class method.

6–7: The parameter values for this method is retrieved by the Validator.

8–9: The set of rules defining a valid return value is retrieved.

10–11: The Validator invokes the method on the object o.

The rest of the steps are repeated for all rules in the set

12–13: The return value from step 10–11 is submitted for rule validation.

The last step is performed if the validation of the rule returns false.

14: A rule violation is added to the ValidationSummary

Fig. 7. Validation process

'

&

$

%

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

+getTotalAmount() : java.lang.Double

+getPaymentDate() : java.util.GregorianCalendar

+getFromAccount() : java.lang.String

+getToAccount() : java.lang.String

Payment

Fig. 8. Object for holding payment data

instantiating the java.lang.Double object representing
the total amount.

Below, the target methods in the Payment class are asso-
ciated with the validation rules specified earlier:

<class name="Payment">
<method name="getTotalAmount">
<rulebinding>

<rule>paymentAmount</rule>
</rulebinding>

</method>

<method name="getPaymentDate">
<rulebinding>

<rule>paymentDate</rule>
<message type="USER">

Payment date must be the current
date or a date in the future

</message>
</rulebinding>

</method>

<method name="getFromAccount">
<rulebinding>

<rule>spanishAccountNumber</rule>
</rulebinding>

</method>

<method name="getToAccount">
<rulebinding>

<rule>spanishAccountNumber</rule>
</rulebinding>

</method>
</class>

The getTotalAmount method is linked to the
paymentAmount rule. In addition, different types of
messages can be specified in the configuration and used for
various purposes such as logging and user response. Above,
the string ‘Payment date must be the current date or a date
in the future’ can be returned to the client when the system
encounters a backdated bill. Also, validation rules can be
reused, as illustrated by the spanishAccountNumber
rule associated with both the getFromAccount and
getToAccount methods.

Multiple validators can be used in a system. Each one of
them specifies which classes it validates, as shown below:

<validator name="bankValidator">
<class>Payment</class>
...

</validator>

VII. RELATED WORK

Commons Validator [11] is an open-source project orig-
inating from the Apache Struts framework that addresses
input validation. Their approach centers around a configurable
validation engine and a dynamic set of reusable validation
methods. The project uses the Java reflection API to create a
flexible solution that allows developers to configure and run
their own validation logic. The Commons Validator initiative
has close ties to JavaBeans, and is primarily concerned with
validating fields in Web forms.

Similar solutions include Stinger [12] and Server Validation
Controls [13]. The former is an HTTP request validation
engine, while the latter provides validation capabilities for Web
forms in the .Net framework. Our approach does not require
a specific domain or technology, and can be applied in all
distributed systems that rely on sub-system communication.
E.g. the running example from Sections IV and VI could have
been implemented as proprietary bank client software relying
on other standards than HTTP and HTML.

Marking and tracking potential harmful data, better known
as tainting, has been suggested as a solution to the input
validation problem. The technique is available in a few pro-
gramming languages, including Perl [14] and Ruby [15]. In
addition, Ngyen-Tuong et al. [16] and Haldar et al. [17]
have developed extensions that enable tainting in PHP and
Java, respectively. The taint approach can be fruitful for
already deployed applications that were designed without the
input validation problem in mind. In such scenarios, tainting
can be applied at run-time to identify and track potentially
malicious I/O. Any subsequent security sensitive operations
involving tainted data are disallowed. This category of input
must be untainted, i.e. validated, prior to further processing.
Developers are trusted to perform meaningful validation. In
essence, tainting is an awareness technique that forces people
to think about input validation. The approach is a quick fix
to cover up for a design flaw, namely a failure to identify
untrusted I/O sources. Our solution addresses untrustworthy
I/O in the first of the four steps given in Section II, rendering
tainting useless, when building new software systems.

VIII. FUTURE WORK

Reflection incurs performance overhead. To overcome the
performance penalty, the framework could replace reflection
with code generation, which provides the Validator with
direct access to target objects. A comparative study between
the two techniques would reveal how costly reflection is. We
plan to further investigate the relationship between reflection
and code generation, and benchmark the results against other
similar solutions, such as Commons Validator and Stinger.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

IX. CONCLUSION

Many current distributed software systems lack or imple-
ment poor I/O validation. Attackers manipulate the structure or
contents of application-level data in order to sidestep defensive
measures.

In this paper, we have proposed a content validation strategy
to address attacks embedded in message content. The approach
includes activities throughout the Software Development Life
Cycle. In the design phase it is important to establish trust
relationships. All input from sources that are not completely
trustworthy should be validated. Implementing the validation
logic boils down to configuration, giving developers the oppor-
tunity to focus on constructing a viable set of validation rules.
Our validation package offers some basic general-purpose
rules that can be applied. Developers have the option to add
their own rules.

REFERENCES

[1] OWASP Top Ten Project. Retrieved November 2006 from
http://www.owasp.org/index.php/Category:
OWASP Top Ten Project

[2] J. Bishop and N. Horspool, “Cross-Platform Development: Software that
Lasts,” IEEE Computer, October 2006, pp. 26–35.

[3] Y. Espelid, L-H. Netland, K.A. Mughal, and K.J. Hole, “Simplifying
Client-Server Application Development with Secure Reusable Compo-
nents,” Proc. International Symposium on Secure Software Engineering
(ISSSE), Washington D.C. USA, March 2006.

[4] L-H. Netland, Y. Espelid, and K.A. Mughal, “Security Pattern for Input
Validation,” Proc. Viking Pattern Languages of Program (VikingPLoP),
Helsingør, Denmark, Sept.-Oct. 2006.

[5] Heimdall, SourceForge project. Retrieved November 2006 from http:
//www.sourceforge.net/projects/heimdall

[6] S.H. Huseby, “Innocent Code—A Security Wake-Up Call for Web Pro-
grammers. John Wiley & Sons, 2004.

[7] M. Howard, D. LeBlanc, and J. Viega, 19 Deadly Sins of Soft-
ware Security—Programming Flaws and How to Fix Them. McGraw-
Hill/Osborne, 2005.

[8] G. McGraw, “Software Security,” IEEE Security & Privacy, vol. 3, no.
2, 2004, pp. 80–83.

[9] Extensible Markup Language (XML) 1.0 (Third Edition). Retrieved
November 2006 http://www.w3.org/XML/

[10] Reflection. Retrieved November 2006 from http://java.sun.
com/j2se/1.5.0/docs/guide/reflection/index.html.

[11] Commons Validator. Retrieved November 2006 from http://
jakarta.apache.org/commons/validator/.

[12] SourceForge.net: Stinger HTTP Request Validation Engine. Retrieved
November 2006 from http://sourceforge.net/projects/
stinger/.

[13] Validation Server Controls. Retrieved November 2006 from
http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/cpgenref/html/
cpconASPNETSyntaxForValidationControls.asp.

[14] Introduction to Perl’s Taint Mode. Retrieved November 2006
from http://www.webreference.com/programming/perl/
taint/.

[15] Programming Ruby: The Pragmatic Programmer’s Guide. Retrieved
November 2006 from http://www.rubycentral.com/book/
taint.html.

[16] A. Ngyen-Tuong, S. Guarnieri, D. Green, J. Shirley, and D. Evans, “Au-
tomatically hardening web applications using precise tainting,” Proc. The
International Federation for Information Processing Security Conference
(IFIP sec), May 2005.

[17] V. Haldar, D. Chandra, and M. Franz, “Dynamic Taint Propagation
for Java,” Proc. Annual Computer Security Applications Conference
(ACSAC), Dec. 2005.

Second International Conference on Availability, Reliability and Security (ARES'07)
0-7695-2775-2/07 $20.00 © 2007

Authorized licensed use limited to: Universitetsbiblioteket I Bergen. Downloaded on July 16,2010 at 13:25:54 UTC from IEEE Xplore. Restrictions apply.

