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Abstract 

Plants have been used in treatment and prevention of diseases for thousands of years. In 

modern medicine there is a trend towards isolation and identification of bioactive molecules, 

whereas plant preparations continue to be used in traditional medicinal systems. However, 

combinations of drugs are usually administered in treatment of complex diseases like cancer 

and HIV, in order to target multiple deregulated cellular pathways simultaneously.  

Khat (Catha edulis Forsk.) has been cultivated for centuries primarily due to its use as a 

natural stimulant. The stimulating potential of khat is mainly caused by its content of 

cathinone, an alkaloid with structure and pharmacological profile similar to amphetamine. 

Cathinone is a labile precursor for the less bioactive derivatives cathine and norephedrine. 

An organic extract of khat was previously reported to induce programmed cell death in acute 

myeloid leukemia (AML) cell lines, while being less toxic to normal peripheral blood 

mononuclear cells (PBMCs). In this study, cellular and molecular effects of an extract of 

khat were further elucidated in AML cell lines and compared with the cancer therapeutics 

camptothecin. Early effects of khat and the khat amphetamines on intracellular signaling 

responses in normal peripheral leukocytes were investigated, in addition to cytotoxic effects. 

The khat extract was fractionated and analysed for cytotoxicity in AML cell lines, and the 

fractions analysed by mass spectrometry.  

The khat extract was shown to induce cell death in a subset of genetically diverse AML cell 

lines, indicating involvement of specific mechanisms. In contrast to camptothecin, khat 

caused structural damage to mitochondria and mediated impaired mitochondrial respiration. 

In addition, khat was observed to induce formation of autophagosomes, indicating activation 

of autophagy. The survival protein Bcl-2 protected against camptothecin, and partial 

protection was obtained against khat-induced cell death. Procaspase-8 of the receptor-

mediated cell death pathway was activated by khat, while levels of the death antagonists 

Mcl-1 and c-FLIPL were reduced. The stress sensor and tumour suppressor protein p53 was 

induced and modulated in khat-mediated death, but not by sub-lethal dilutions of the khat 

extract or in khat-resistant cells. Experiments using p53 knock-down and knock-out cells 

demonstrated that khat-mediated cell death was independent of p53. The p53 protein was 
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suggested to primarily act as a stress sensor in AML cells that were susceptible to khat-

induced cell death.  

Fractionation of the khat extract and bio-guided screening in AML cell lines resulted in 

identification of three separate cytotoxic fractions. The khat fractions were analysed by mass 

spectrometry, which led to the partial characterization of a phenylpropanoid glycoside 

suggested to represent the major cytotoxic constituent in the khat extract. In contrast to khat, 

the khat amphetamines were observed to be relatively non-toxic to AML cell lines. Khat and 

the khat amphetamines were shown to mediate early and generally opposite effects on 

signaling mediators in normal immune cells. Whereas khat activated stress sensors, like p38 

and p53, and demonstrated cytotoxic effects, the khat amphetamines attenuated activating 

modifications of several signaling proteins, including p53, and appeared to have a 

stimulating effect on lymphocyte proliferation. 
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Sammendrag 

Planter har blitt brukt i behandling og forebygging av sykdom i tusener av år. I moderne 

medisin er det vanlig å isolere og identifisere bioaktive substanser, mens plantepreparater 

fortsatt blir brukt i tradisjonelle medisinske systemer. Kombinasjoner av ulike typer medisin 

er likevel vanlig ved behandling av sykdommer som kreft og HIV, med den hensikt å ramme 

flere av de deregulerte cellulære signalveiene som forårsaker sykdom.   

Khat (Catha edulis Forsk.) har blitt dyrket i århundrer, først og fremst for å bli benyttet som 

en naturlig stimulant. Den stimulerende effekten skyldes primært khat plantens innhold av 

katinon, et alkaloid som har lignende struktur og farmakologisk profil som amfetamin. 

Katinon er en labil forbindelse som blir omdannet til de mindre stimulerende derivatene 

katin og norefedrin. Et organisk ekstrakt av khat ble tidligere vist å aktivere programmert 

celledød i akutt myelogen leukemi (AML) cellelinjer, mens det var mindre toksisk for 

normale perifere blod mononukleære celler (PBMC). I denne studien ble de cellulære og 

molekylære effektene av et khat ekstrakt videre undersøkt i AML cellelinjer, og 

sammenlignet med kreftmedisinen camptothecin. Tidlige effekter av khat og khat 

amfetaminene på intracellulære signaleringsproteiner ble undersøkt i normale leukocytter, i 

tillegg til cytotoksiske effekter. Khat ekstraktet ble fraksjonert og undersøkt for cytotoksiske 

effekter i AML cellelinjer, og fraksjonene ble analysert med massespektrometri.   

Khat ekstraktet ble vist å indusere celledød i et utvalg av genetisk ulike AML cellelinjer, noe 

som indikerte aktivering av spesifikke mekanismer. I motsetning til camptothecin førte khat 

behandling til strukturell skade i mitokondriene, noe som hemmet den mitokondrielle 

respirasjonen. Videre ble det observert at khat induserte dannelse av autofagosomer, noe som 

indikerte aktivering av autofagi. Overlevelsesproteinet Bcl-2 beskyttet mot camptothecin, 

men ga bare delvis beskyttelse mot khat-indusert celledød. Procaspase-8, som er del av den 

reseptormedierte celledødsveien, ble aktivert av khat, mens nivåene av dødsantagonistene 

Mcl-1 og c-FLIPL ble redusert. Stress sensor og tumor suppressor proteinet p53 ble indusert 

og modulert i khat-mediert død, med ikke av ikke-dødelige khat doser eller i khat-resistente 

celler. Eksperimenter med p53 knock-out og knock-down celler viste at p53 ikke var 

nødvendig i khat-mediert celledød. p53 proteinet ble foreslått å fungere primært som en 

stress sensor i AML celler som var sensitive for khat.  
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Fraksjonering av khat ekstraktet og testing av fraksjonene for toksisitet i AML cellelinjer, 

resulterte i identifisering av tre separate cytotoksiske fraksjoner. Khat fraksjonene ble 

analysert med massespektrometri, og et fenylpropanoid glykosid ble delvis karakterisert og 

foreslått å være den mest toksiske komponenten i khat ekstraktet. In motsetning til khat ble 

khat amfetaminene vist å være relativt ikke-toksiske i khat-sensitive AML celler. Khat og 

khat amfetaminene ble vist å gi hurtige og generelt motsatte effekter på ulike signalerings-

proteiner i normale immun celler. Mens khat aktiverte stress proteiner, som p38 og p53, og 

induserte cytotoksiske effekter, resulterte khat amfetaminene i reduserte nivåer av 

aktiverende modifikasjoner hos flere signalproteiner, inkludert p53, og ble vist å ha en 

stimulerende effekt på lymfocytt proliferasjon.    
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1. INTRODUCTION 

1.1 Plants in medicine 

Plants have been used for both medicinal and recreational purposes for thousands of years. 

Medicinal plants were traditionally used as crude preparations, like teas and powders, in 

treatment and prevention of diseases. In modern Western medicine the drug discovery 

process from plants typically involves isolation and characterization of the active 

component(s) from crude extracts. The concept of isolating bioactive components started 

with the preparation of the alkaloid morphine from opium in the early 19th century. In 

Western medicine it is conventional to use single ingredient drugs or combinations of several 

characterized drugs. The combination therapies are designed to target several pathological 

pathways simultaneously, thereby increasing treatment efficacy. Combination strategies have 

proven particularly suited for treatment of infectious diseases like HIV, tuberculosis and 

malaria, and in therapeutic interventions for complex chronic diseases like cancer and 

metabolic syndrome (1, 2).  

It has been reported that 25% of all drugs prescribed today are derived from plants. 

Out of many families of secondary metabolites, nitrogen-containing alkaloids have 

contributed the largest number of drugs to the modern pharmacopeia. Most drugs isolated 

from plants or that are derivatives thereof are employed in the fight against cancer (1, 2). 

Anti-cancer drugs from plants in current use can be categorized into four main classes of 

compounds: vinca alkaloids, epipodophyllotoxins, taxanes and camptothecins (1). The 

process of drug discovery has been estimated to take an average of 10 years upwards. Drug 

discovery from plants has traditionally been an even slower process, being inherently more 

complicated than modern drug discovery techniques. As a result, pharmaceutical companies 

have been observed to eliminate or scale down their natural product research over the last 

decades (3).  

Today the identification of compounds with therapeutic potentials is typically based 

on high-throughput screening (HTS) platforms, which in part relies on the use of cell-free 

bio-assays. However, there has recently been more emphasis on development of cell-based 

screening techniques. One of the techniques that are being developed and refined is the 
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method of multi-parameter single cell analysis of intracellular signaling pathways (4). The 

development of technical platforms that enable more efficient identification of novel 

compounds form natural sources is believed to re-strengthen the interest in natural products 

as an invaluable source for novel therapeutics. 

1.2 Khat (Catha edulis Forsk.) - a natural stimulant 

Khat (Catha edulis Forsk.) is an evergreen shrub of the Celastraceae family that is cultivated 

primarily for its use as a natural stimulant. The habit of khat chewing is practised by millions 

of people, particularly in Yemen, Somalia, Ethiopia, Djibouti and Kenya, representing main 

regions of cultivation (5, 6). The habit is spreading to other parts of the world, but is mainly 

confined to immigrant communities from countries where khat chewing is endemic (6, 7). In 

addition to its use as a social and recreational drug, processed leaves and roots of khat are 

used in treatment of various conditions like influenza, cough, asthma, malaria, gonorrhoea, 

vomiting and headache (6, 8). 

Figure 1. Bundle of khat on a banana leaf. The banana leaf is wrapped around the bundle in order to 

keep the leaves and shoots fresh. 

Khat chewing is predominantly a social habit, which is practiced in special khat 

chewing sessions, where different issues are discussed and resolved. Fresh leaves and shoots 

of khat are chewed slowly and the juice of the material swallowed while the plant residue is 

retained as a quid on one side of the mouth. About 100-200 g of khat is typically chewed per 
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person in one session, which usually lasts for 3-4 hours, but the amount may vary 

extensively. Khat induces a mild euphoric state giving the chewer a feeling of being more 

focused, energetic and communicative. Labourers, farmers and students are known to use 

khat during work in order to increase alertness and reduce physical fatigue (6, 7).   

1.3 The natural khat amphetamines 

The stimulating effects of khat are mainly due to its content of the alkaloid S-(-)-cathinone, 

and to a lesser extent the diastereomers (1S,2S)-(+)-cathine and (1R,2S)-(-)-norephedrine (9, 

10). Cathinone is an intermediate in the biosynthesis of cathine and is found mainly in young 

leaves of the khat plant. Cathinone is also converted to cathine upon wilting of the khat 

leaves. Khat is therefore consumed when it is fresh and it is primarily the young leaves and 

shoots that are harvested (9). The price of khat at markets in Ethiopia, Kenya and Yemen 

have been reported to correlate with the content of cathinone (11).  

Figure 2. Structures of the natural khat amphetamines: cathinone, cathine and norephedrine, the 

synthetic drug amphetamine and the neurotransmitter noradrenaline.   

Cathinone is structurally related to the synthetic drug amphetamine and has been 

shown to have a similar pharmacological profile. Due to this similarity, cathinone has been 
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termed a natural amphetamine and khat an amphetamine-like stimulant (5, 9). Cathinone and 

amphetamine induce central nervous system and peripheral effects like euphoria, 

hyperactivity, restlessness, mouth dryness, mydriasis, anorexia, hyperthermia, hypertension 

and tachycardia (5, 7, 9). The structures of cathinone and amphetamine are related to 

monoamine neurotransmitters, and the compounds mediate their effects mainly by acting as 

indirect symphatomimetics (Figure 2). Cathinone and amphetamine induce release of 

neurotransmitters (i.e. noradrenaline, dopamine and serotonin) from pre-synaptic neuronal 

terminals and inhibit their reuptake from the synaptic gap (12). Cathinone has also been 

shown to bind and activate �2-adrenergic and 5HT7 serotonin receptors (13, 14).  

The stimulating khat amphetamines are efficiently extracted into saliva during 

chewing, with only 10% of the compounds remaining in the plant residue (15). The oral 

buccal mucosa plays a major role in absorption of the khat amphetamines, but some 

absorption may also occur via the stomach and the small intestine. Maximal blood plasma 

concentrations of the amphetamines following experimental khat chewing have been 

measured after 2.3 hours for cathinone, 2.6 hours for cathine and 2.8 hours for norephedrine 

(15). The khat amphetamines can be detected in urine by gas chromatography-mass 

spectrometry (GS-MS), and it has been shown that less than 7% of ingested cathinone is 

secreted, while norephedrine is found in larger quantities than the amount ingested (16). The 

ratios of the khat amphetamines reflect the preferred in vivo metabolism of cathinone to 

norephedrine (17). GS-MS has also been used to determine the concentrations of the khat 

amphetamines in hair from khat chewers, and their concentrations were reported to reflect 

the level of khat consumption (18, 19). 

1.4 Chemical composition of khat 

The chemical composition of khat is influenced by local conditions, geographical region and 

the time of season in which it is grown. In addition, numerous khat variants exist which 

demonstrate considerable differences in general appearance and stimulating potential (7). An 

analysis of 22 khat samples demonstrated that 100 g fresh khat on average contains 36 mg 

cathinone, 120 mg cathine and 8 mg norephedrine (11). However, the concentrations of the 

khat amphetamines were observed to vary extensively between the different samples.  

In addition to the khat amphetamines, khat contains a family of alkaloids with 

molecular weights in the 600-1,200 range termed cathedulins (20). Liquid 
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chromatography/mass spectrometry demonstrated the presence of 62 cathedulins in methanol 

extracts of khat (21). A third group of alkaloids has been isolated from khat grown in the 

Meru district in Kenya, which include the phenylpentenylamines merucathine, 

merucathinone and pseudomerucathine. Cathedulines and phenylpentenylamines are not 

believed to possess significant biological activity (22). The pigmented root-bark contains 

triterpenoid quinones including celastrol, pristimerin, iguesterin and tingenone (20). 

Tingenone has also been isolated from khat callus cultures, in addition to 22 �-

hydroxytingenone (23). Khat contains polyphenols, where especially tannins have been 

found to be present in considerable quantities: 7-14% by weight in dried leaves depending on 

khat cultivate and method of estimation (5). Khat has been shown to contain �-sitosterol and 

its glycoside derivatives (10), in addition to flavonoids (24, 25), which include myricetin and 

quercetin glycosides (5). The ascorbic acid content of khat has been reported to be high, with 

100 g of fresh leaves containing 130-160 mg (5). Minor constituents of khat not believed to 

mediate biological effects include �-carotene, thiamine, riboflavin, niacin and calcium (5).  

1.5 Adverse health effects associated with habitual khat use 

Khat chewing is associated with the development of oral keratotic white lesions within the 

vestibule or buccal mucosa, where the khat quid is placed (26). A study reported several 

histopathological changes, but none of the lesions were considered to be premalignant (27). 

However, several studies have indicated a correlation between the khat habit and 

development of oral cancer and squamous cell carcinomas of head and neck (28, 29). It has 

been suggested that khat use, in combination with alcohol and tobacco consumption, 

represents a potential cause of malignant transformation (30).  

Khat chewers experience different gastrointestinal problems like gastritis and 

constipation, believed to be caused by the astringent nature of khat tannins (5). Khat chewing 

has been indicated as a risk factor for development of duodenal ulcers (31). The development 

of haemorrhoids is shown to be significantly associated with the khat habit (32). Khat 

mediates hypertension and tachycardia, and it has been demonstrated that chewers have an 

increased risk for acute myocardial infarction (AMI) (33). Cathinone has been shown to 

cause coronary and aortic vasoconstriction, indicating its involvement in myocardial 

infarction (34). Amphetamine has also been suggested to increase the incidence of AMI, and 

was reported after intravenous injection of the drug (35).  
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A range of adverse health effects associated with khat chewing has been reported, 

affecting the cardiovascular, gastrointestinal, hepatobiliary, genitourinary, respiratory and 

central nervous systems. Khat use has also been shown to mediate metabolic, endocrine, 

ocular and psychiatric effects. The many adverse effects associated with khat use have 

recently been reviewed elsewhere (6, 8, 36, 37).  

1.6 Potential beneficial effects by khat and its constituents  

Although khat-chewing is primarily associated with adverse health effects, positive effects of 

khat and its constituents have been reported. Processed leaves and roots of khat have been 

used to treat influenza, cough, asthma and other chest problems in areas of cultivation (6, 8). 

Cathinone was recently shown to inhibit acetylcholine release and contractions of smooth 

muscle, which could explain the use of khat as a remedy for respiratory diseases (13). Long 

term exposures of rabbits to khat resulted in lowered cholesterol, glucose and triglyceride 

concentrations in blood plasma (38). Cathine and norephedrine have been shown to 

accelerate sperm capacitation and inhibit spontaneous acrosome loss, indicating a beneficial 

effect on fertility (39). Khat users in Somalia were reported to have increased lymphocyte 

counts and percentage CD4 positive cells, suggesting a stimulating effect on the immune 

system (40). Cathinone was shown to mediate IL-2 production, B-lymphocyte proliferation 

and cytotoxic T-lymphocyte induction (41). 

A beneficial impact on oral health has been indicated, as the caries prevalence 

amongst khat chewers is reported to be low. Recently, khat extracts were shown to inhibit 

biofilm formation by the principal cariogenic bacterium in humans, Streptococcus mutans, 

suggesting anti-cariogenic properties (42). In addition, khat extracts were found to possess 

selective anti-microbial properties, being particularly toxic to periodontal disease-associated 

bacteria (43). Khat flavonoids have been shown to possess significant anti-inflammatory 

activity in rats, comparable to the standard anti-inflammatory drug oxyphenbutazone (24). 

Another study demonstrated that khat flavonoids possessed antioxidant properties for 

oxidative stress generated during restraint stress in rats (25).  

Khat contains vitamin C, which in addition to being an antioxidant has been shown to 

have anti-cancer effects in vivo in a process involving generation of reactive oxygen species 

(ROS) (44, 45). Compounds mediating cell death possess a toxic potential, but could also 

represent promising anti-cancer therapeutics. Callus cultures of khat were reported to contain 
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the triterpenoids tingenone and 22 �-hydroxytingenone, which demonstrated anti-bacterial 

activities and mediated cell death in various cancer cell lines (23). Khat also contains the 

triterpenoid celastrol, which has been shown to possess both anti-inflammatory and anti-

leukemic activities (46). Celastrol was recently reported to induce apoptosis in leukemic 

stem cells, which are implicated in disease relapse (47, 48). The triterpenoid pristimerin has 

been shown to induce cell death by mitochondrial targeting in breast cancer cells (49), via 

proteosomal targeting in prostate cancer cells (50), and it has also been shown to inhibit 

proliferation of leukemic cells (51). An overview of khat constituents and reported beneficial 

effects is provided in Table 1. 

Table 1. Compounds found in khat with potential therapeutic effects.  

Khat constituent: Biological effect: Reference: 

Alkaloids 

• cathinone IL-2 production, B-lymphocyte proliferation, cytotoxic T-

lymphocyte induction, acetylcholine release 

(13, 41) 

• cathine acceleration of sperm capacitation, inhibition of 

acrosome loss 

(39) 

• norephedrine acceleration of sperm capacitation, inhibition of 

acrosome loss 

(39) 

Flavonoids 

• myricetin antioxidant, anti-cancer, anti-inflammatory (52, 53) 

• quercetin antioxidant, anti-inflammatory (54) 

Phytosterols 

• �-sitosterol lowers blood cholesterol, anti-cancer (55, 56) 

Sugar acids 

• ascorbic acid antioxidant, anti-cancer (44, 45) 

Triterpenoids 

• celastrol anti-cancer, anti-inflammatory (46, 47) 

• pristimerin anti-cancer (49-51) 

• tingenone anti-microbial, anti-cancer (23) 

• 22 �-hydroxytingenone anti-microbial, anti-cancer (23) 

1.7 Toxic effects by khat and underlying mechanisms

Most studies have focused on the pharmacology of khat and the khat amphetamines, whereas 

relatively few reports have investigated potential cytotoxic effects and underlying 

mechanisms. Khat and the alkaloid fraction were shown to produce oxidative stress and 

toxicity in rats by reducing the levels of free radical scavenging enzymes and glucose (25). It 
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was recently reported that khat inhibited ROS scavenging enzymes in blood serum from 

human chewers, resulting in significant elevations in free radical loads (57).  

Khat has been shown to affect blood formation and cause bone marrow suppression 

in mice, while reducing the mitotic index of somatic cells and inducing chromosomal 

aberrations (58). A study using the micronucleus test to evaluate khat-mediated genetic 

damage in humans reported that khat use, especially in combination with alcohol and 

tobacco, could be a potential cause of oral malignancy (30). An organic khat extract was 

shown to induce tumour suppressor proteins and G1 cell cycle arrest in normal oral 

fibroblasts and keratinocytes in vitro (59). When exposed to a higher concentration of khat 

the oral fibroblasts and keratinocytes underwent programmed cell death in a process 

involving ROS (60). Khat-mediated cell death in normal oral fibroblasts and keratinocytes 

was recently reported to involve an early effect on mitochondrial integrity and function (61). 

We previously reported that an organic extract of khat induced cell death in acute 

myeloid leukemia (AML) cell lines in vitro (62). Normal peripheral blood mononuclear cells 

(PBMCs) were shown to be less sensitive to khat toxicity when compared to AML cell lines. 

The process involved caspase-activation and could be blocked by cycloheximide (CHX), an 

inhibitor of protein synthesis. Khat-meditated cell death was reduced by treatment with 

inhibitors of caspase-8, indicating involvement of cell surface death receptors. The khat 

amphetamines were suggested to be partly responsible for the toxic effects of khat in the HL-

60 cell line (62, 63). The studies on AML cell lines and PBMCs suggested that khat could 

contain compounds with potential as anti-cancer therapeutics, and provided the basis for the 

work in this thesis. Table 2 provides an overview of toxic effects of khat extracts and 

suggested underlying mechanisms and/or proposed khat constituents. 
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Table 2. Toxic effects by khat extracts in various systems and responsible mechanisms or constituents.  

Toxic effect by khat: Biological system: Mechanism/constituent: Reference: 

induction of cell cycle arrest primary human oral 

keratinocytes and 

fibroblasts 

activated p53, p16 and p21  (59) 

induction of cell death primary human oral 

keratinocytes and 

fibroblasts 

loss of mitochondrial inner 

transmembrane potential, ROS 

(60, 61) 

induction of cell death  human acute myeloid 

leukemia cell lines 

caspase-activation (62) 

induction of cell death  human cancer cell lines due to tingenone and  

22 �-hydroxytingenone 

(23) 

increased ROS human serum, in vivo inhibition of ROS scavengers (57) 

increased ROS rat blood, in vivo reduced levels of ROS scavengers, 

due to the alkaloid fraction? 

(25) 

genetic damage human buccal and 

bladder mucosa cells 

(30) 

genetic damage mice, in vivo  (58) 

anti-bacterial bacteria due to tingenone and  

22 �-hydroxytingenone 

(23) 

anti-bacterial oral bacteria  (43) 

1.8 Acute myeloid leukemia cell lines in toxicity studies   

Cell lines are frequently used in investigations of compounds with toxic and therapeutic 

potentials. We previously used AML cell lines when studying cellular and molecular effects 

of khat extract and the khat amphetamines. In addition to representing a model system for 

AML, the cell lines represent systems that are easy to maintain and manipulate. Different 

AML cell lines that are characterized by various genetic defects are commercially available. 

The genetic aberrations may be used as tools when mechanisms underlying cellular effects 

are investigated.  

AML is a hematological malignancy involving uncontrolled proliferation of myeloid 

progenitors that harbour a differentiation block (64). An overview of normal hematopoiesis 

is provided in Figure 3.  
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Figure 3. Overview of normal hematopoiesis: the generation of mature lineage-specific blood cells 

from a common hematopoietic stem cell. The figure is from Line Wergeland’s PhD thesis, UoB, 

Bergen, Norway, and is printet with her permission.
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A two-hit model for AML development has been proposed, where the genetic 

aberrations are divided into two complementary groups (65). Class I includes mutations that 

activate signal transduction pathways, resulting in enhanced proliferation/survival of 

leukemic progenitors. Class II comprises mutations affecting transcription factors and/or 

transcriptional co-regulators, resulting in impaired differentiation and escape from apoptosis. 

An overview of class I and class II mutations is provided in table 3. 

Table 3. Overview of complementary class I and class II mutations that cooperate in  

development of AML. Adapted from (66). 

Class I mutations Class II mutations 

BCR-ABL CBF�-MYH11 

N-RAS AML1-ETO 

K-RAS TEL-AML1 

c-KIT (exon 8) PML-RAR�

c-KIT (Asp816) NUP98-HOXA9 

FLT3 (ITD) PU.1 

FLT3 (Asp 835) C/CEP�

PTPN11 AML1 

NF1 AML1-AMP19 

TEL-PDGFR� MLL fusion proteins 

AML is a heterogeneous disease characterized by non-random genetic defects. 

Approximately 55% of adult patients display chromosomal trans-localizations and 

cytogenetics represents the most important prognostic factor predicting therapy response and 

overall survival. AML patients are broadly divided into three risk groups based on 

cytogenetics with favourable, intermediate and adverse prognosis (67-69). Approximately 

45% of AML patients present cytogenetically normal (CN) myeloblasts at the time of 

diagnosis. Risk stratification and determination of therapeutic strategy in CN-AML patients 

is based on the presence or absence of specific mutations (70). Various mutations that affect 

oncogenes, tumour suppressors and transcription factors are frequently found in AML. 

Several of these mutations represent independent prognostic factors, in addition to providing 

potential therapeutic targets.  
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1.9 Prognostic factors and therapeutic targets in AML 

Mutations in the nucleophosmin 1 (NPM1) gene are found in 45-62% of CN-AML patients, 

representing the most frequent genetic alteration in this subset. The NPM1 protein is 

activated by phosphorylation and is involved in diverse processes related to proliferation, 

growth suppression and differentiation (71). Approximately 40% of patients harbouring 

mutations in NPM1 also carry internal tandem duplications (ITDs) in the FLT3 gene 

encoding the Fms-like tyrosine kinase 3 receptor. NPM1 mutations represent a favourable 

prognostic marker, but only in the absence of FLT3-ITDs (70). The FLT3 receptor is 

constitutively activated in approximately 30% of AML patients by ITDs, representing an 

independent prognostic factor which confers a poor prognosis (72).  

Constitutive activation of receptor tyrosine kinases (RTKs), like FLT3 and c-KIT, 

causes aberrant signaling via intracellular cascades meditated by phosphorylation of 

signaling proteins. Signaling proteins frequently found to be acitvated in cancers include 

members of the family of signal transducers and activators of transcription (STATs), the 

Ras/mitogen-activated protein kinases (MAPKs) and the PI3K/AKT pathway (73). The 

transcription factor STAT5 is constitutively activated in cells with FLT3 mutations (74) and 

has been shown to induce transcription of survival proteins like Bcl-2 and Bcl-xL (75, 76). 

Over-expression of surval proteins frequently mediates chemoresistance and poor overall 

survival. 

 Several of the recurring genetic aberrations and deregulated pathways in AML 

represent potential therapeutic targets. Small molecules that inhibit the activity of 

constitutively activated RTKs are being evaluated for treatment in clinical trials, and 

strategies that target down-stream effects like over-expressed survival proteins are being 

investigated. Detailed reviews on prognostic markers and therapeutic targets in AML have 

recently been published (70, 73, 77). 

1.10 Treatment of AML  

Conventional AML treatment consists of induction therapy where a combination of an 

anthracycline or anthracenedione (daunorubicin, idarubicin, mitoxantrone) and cytarabine-

arabinoside (cytarabine) is administered. A majority of patients receiving intensive 

chemotherapy will achieve complete remission, defined as less than 5% myeloblasts in the 
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bone marrow, after initial induction treatment (64, 78). The patients will then receive 

consolidation therapy with either allogeneic stem cell transplantation or repeated cycles of 

intensive chemotherapy. Allogeneic stem cell transplantation and high-dose cytarabine 

represent the most intensive therapeutic approaches, but serious side-effects and high 

treatment-related mortality make these interventions possible only for patients below 60 

years of age (64, 78). Patients up to 70 years of age are often treated with less intensive 

chemotherapy and patients above 70 years usually receive supportive therapy alone, the 

median survival of these patients being 3-4 months (64, 78). Overall AML free survival is 

40-50% even for the younger patients who receive the most intensive chemotherapy, and the 

most important cause of death is therapy-resistant leukemia relapse (78). AML relapse is 

believed to be caused by acquisition of drug resistance and/or failure of the treatment to 

target AML stem cells (48). 

1.11 Programmed cell death 

Anti-cancer interventions may be opposed by numerous genetic alterations, which frequently 

affect pathways of programmed cell death (79-81). The aim in therapeutic interventions is 

often restoration of the ability of cancer cells to undergo programmed cell death (82).  

Programmed cell death was previously considered synonymous with the term 

apoptosis (83). Apoptosis was pictured to be induced either via an extrinsic (receptor-

mediated) or an intrinsic (mitochondria-mediated) pathway, which converged on activation 

of cellular proteinases termed caspases (cysteine-aspartate proteinases). The caspases 

catalyze cleavage of cellular proteins, mediate DNA-degradation and cause cell destruction 

(84). However, it is now evident that programmed cell death may occur through other 

regulated sequences of events, with or without the involvement of caspases. 

According to the recommendations by The Nomenclature Committee on Cell death 

2009, programmed cell death can be broadly divided into apoptosis, autophagy and necrosis 

(85). The morphological features characteristic for apoptosis include reductions in microvilli, 

cellular and nuclear shrinkage, chromatin condensation, nuclear fragmentation, little or no 

ultra structural changes in cytoplasmic organelles and plasma membrane blebbing. Even if 

caspase-activation is no longer considered a hallmark of apoptosis, it may be necessary for 

acquisition of the characteristic apoptotic morphology (86).  
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Autophagy is characterized by the formation of authophagic vacuoles, which are 

double-membrane vesicles containing cellular organelles, proteins and cytoplasm. Upon 

fusion with lysosomes the autophagosome inner membrane and the sequestered material is 

degraded, resulting in recycling of building blocks and generation of cellular energy. The 

catabolic step marks the completion of the autophagic pathway. Autophagy is triggered in 

times of nutrient deprivation and also occurs as a means of degrading damaged organelles 

(87, 88). It primarily represents a cell survival mechanism, but has in addition been 

demonstrated to mediate cell death (89).  

Necrosis was originally considered to be an accidental and uncontrolled mode of cell 

death, but has now been shown to involve regulated sequences of events (90). Morphological 

characteristics include gain in cell volume, swelling of organelles, plasma membrane rupture 

and loss of intracellular contents. An overview of morphological characteristics of the three 

main modes of programmed cell death is provided in Table 4.  

Table 4. Simplified overview of morphological characteristic of the main modes of cell death 

according to the recommendations by The Nomenclature Committee on Cell death 2009 (85).  

Mode of cell death: Morphological characteristics: 

Apoptosis Reduction of microvilli 

Reduction of cellular and nuclear volume 

Nuclear fragmentation 

Minor modifications of cytoplasmic organelles 

Plasma membrane blebbing 

Autophagy Lack of chromatin condensation 

Vacuolization of the cytoplasm 

Formation of autophagic vacuoles 

Necrosis Cytoplasmic swelling 

Rupture of plasma membrane 

Swelling of cytoplasmic organelles 

Moderate chromatin condensation 

Morphological characteristics represent the basis for discriminating between 

apoptosis, autophagy and necrosis. Various molecular events have been demonstrated in the 

different modes of cell death, but a set of biochemical critera that may be used to 

discriminate between them remains to be defined.  
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1.12 Mitochondria in cell death regulation 

Mitochondria are highly specialized organelles consisting of an extensively folded inner 

membrane (IM), an intermembrane space (IMS) and an outer membrane (OM). The IM 

contains the mitochondrial respiratory chain consisting of four protein complexes involved in 

adenosine triphosphate (ATP) production through the process of oxidative phosphorylation. 

The IMS contains various cell death agonists, and the OM harbours proteins functioning as 

ion pumps and regulators of its stability. In addition to its prominent role in energy 

production, mitochondria play a central role in regulation of programmed cell death (91-93).  

The stability of the OM is regulated by the Bcl-2 family of proteins, and 

mitochondrial OM permeabilization (MOMP) results in release of IMS cell death agonists to 

the cytoplasm (94). IMS proteins include caspase-activators like cytochrome c, 

Smac/DIABLO and Omi/HtrA2, and caspase-independent factors like apoptosis inducing 

factor (AIF) and endonuclease G (95). The IMS proteins have been shown to further promote 

cell death by antagonizing inhibitors of apoptosis proteins (IAPs). Cytochrome c is normally 

involved in mitochondrial ATP production, but when released into the cytosol it complexes 

with apoptosis protease-activating factor (Apaf-1), ATP and procaspase-9 to form the 

apoptosome. A simplified overview of mitochondria-mediated cell death is provided in 

Figure 4. 

The exact molecular mechanism underlying MOMP is still not defined. An increase 

in permeability of the IM to solutes with molecular masses less than 1,500 Da has been 

shown to result in loss of mitochondrial membrane potential, mitochondrial swelling and 

rupture of the OM (96). This process is termed the mitochondrial permeability transition 

(MPT), and the mitochondrial permeability transition pore (PTP) has been suggested to play 

an important role (97). 

Another mechanism by which mitochondria participate in cell death induction is via 

production of excess levels of intracellular ROS (91, 92). The mitochondrial respiratory 

chain contains several red-ox centres that leak electrons to molecular oxygen, resulting in 

generation of oxygen radicals. The cell converts oxygen radicals into hydrogen peroxide or 

other ROS, before elimination by cellular antioxidant systems including glutathione GSH 

and thioredoxins. ROS production by the mitochondrial respiratory chain has been shown to 

cause damage to proteins, DNA and mitochondrial membranes, resulting in MOMP and cell 

death (98). 
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Figure 4. Simplified overview of mitochondria-mediated cell death 

1.13 Bcl-2 family proteins and programmed cell death 

The Bcl-2 family of proteins consists of anti-apoptotic and pro-apoptotic members involved 

in regulation of cell survival and death (94). The impact on mitochondrial OM stability and 

induction of MOMP represent the best studied processes involving Bcl-2 proteins.  

The founding member of the Bcl-2 family is the anti-apoptotic Bcl-2 protein, which 

was discovered by characterization of genes involved in the 14;18 translocation found in 

follicular non-Hodgkin B-cell lymphoma (99). The Bcl-2 proteins contain 1 to 4 conserved 

Bcl-2 homology (BH) domains and are divided into: 1) anti-apoptotic proteins consisting of 

BH domains 1-4 (Bcl-2, Bcl-xL, Mcl-1, A1/Bfl-1), 2) pro-apoptotic proteins containing BH 

domains 1-3 (Bax, Bak, Bok/Mtd) and 3) pro-apoptotic proteins with only BH domain 3 

(BH3-only proteins; e.g. BID, Bad, Noxa, PUMA)(94). The BH3 domain represents the 

region that allows interaction between Bcl-2 family members, and is also found in other 

proteins that interact with Bcl-2 proteins (100, 101).  
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The pro-apoptotic Bax and Bak proteins perturb mitochondrial integrity by forming 

homo-oligomers which function as pores in the OM (102, 103). Anti-apoptotic Bcl-2 family 

members antagonize Bax and Bak and stabilize the mitochondrial OM by forming 

heterodimers with the pro-apoptotic proteins (104). The BH3-only members favour pore-

formation by Bax and Bak by antagonizing anti-apoptotic Bcl-2 proteins (105). If the balance 

between anti- and pro-apoptotic Bcl-2 family proteins is shifted towards the pro-apoptotic 

branch, the result is MOMP, which releases IMS death agonists into the cytosol (94). Bcl-2 

family members have also been shown to associate with components of the PTP, which 

transverses both the mitochondrial IM and OM (97). Pro-apoptotic Bcl-2 family proteins like 

Bax, Bak and tBID have been suggested to induce pore opening by interacting with the 

voltage dependent anion channel (VDAC), whereas anti-apoptotic Bcl-xL induces its closure 

(106-108). 

The anti-apoptotic Bcl-2 protein is frequently over-expressed is hematologic 

malignancies, including AML, where it confers chemotherapeutic resistance (109, 110). Bcl-

2 and Bax levels have been shown to correlate with spontaneous apoptosis in AML cells in 

vitro (81), and the Bax/Bcl-2 ratio in de novo AML patients has been reported to predict 

clinical response and outcome (79). Targeting of anti-apoptotic Bcl-2 family members, like 

Bcl-2 and Bcl-xL, represents a promising therapeutic strategy where different approaches are 

being explored. A range of small molecule inhibitors of anti-apoptotic Bcl-2 proteins has 

been identified by screening of natural compounds and rational design techniques (111). 

Examples of potent inhibitors include Gossypol, Apogossypol and HA14-1 (112-114). Bcl-2 

over-expression antagonizes both apoptosis and necrosis, and it has been shown to inhibit 

Beclin-1-dependent autophagy when localized in the ER (115). It has been suggested that 

Bcl-2 suppresses autophagy to levels that are compatible with cell survival rather than cell 

death (116). 

The anti-apoptotic Mcl-1 protein has also been found to be over-expressed in cancers, 

mediating resistance to cell death-induction (117-119). Mcl-1 degradation is required for 

MOMP following UV irradiation (120) and therapeutic targeting of Bcl-2 family members 

has been shown to depend on Mcl-1 neutralization (121). Anti-apoptotic Mcl-1 has also been 

demonstrated to bind Beclin-1, which contains a BH3-like domain (101, 122).  
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1.14 Induction of death via cell surface receptors 

Cell death may be induced by signals from within the cell (e.g. DNA damage, hypoxia, ROS) 

or by activation of cell surface death receptors of the tumor necrosis factor (TNF) 

superfamily of receptors. Binding of extracellular death ligands result in receptor-

oligomerization and recruitment of intracellular adaptor proteins and procaspase-8. Together 

these components constitute the death inducing signaling complex (DISC), where  

procaspase-8 becomes activated and mediates cleavage-activation of down-stream effector 

caspases (82). Additionally, caspase-8 cleaves the BH3-only pro-apoptotic Bcl-2 family 

member BID to truncated (t)BID, generating the activate version of this cell death agonist 

(123). tBID promotes mitochondrial cytochrome c release and connects the receptor-

mediated and the mitochondria-mediated cell death pathways (123, 124). The anti-apoptotic 

Mcl-1 protein has been shown to interact with and counteract the death inducing activity of 

tBID (125).  

Cellular FLICE (FADD-like IL-1�-converting enzyme)-inhibitory protein (c-FLIP), a 

catalytic inactive caspase-8 homologue, has been shown to antagonize receptor-mediated cell 

death at the DISC (126, 127). FLIP primarily localizes to the cytosol and is expressed as 

three isoforms, c-FLIPs and c-FLIPR, representing two short forms and c-FLIPL, which is a 

full length version. Most reports have demonstrated that c-FLIPL inhibits receptor-mediated 

death, but a potential role in the NK-�B survival pathway has been suggested (128). A 

simplified overview of receptor-mediated cell death is provided in Figure 5. 

c-FLIP over-expression provides resistance to receptor-mediated apoptosis in B cell 

chronic lymphocytic leukemia, multiple carcinomas (e.g. colourectal, gastric, pancreatic and 

ovarian) and Hodgkin/Reed-Sternberg cells (129-131). Down-regulation of c-FLIP levels 

sensitizes tumour cells to apoptosis-induction by extracellular death ligands (132-134). 

Various anti-cancer drugs including doxorubicin, actinomycin D, cycloheximide (CHX) 

camptothecin (CPT) and bortezomib have been shown to mediate reduced c-FLIP levels 

(129, 135). Phenoxodiol, a synthetic analogue of a soybean isoflavone, has been reported to 

inhibit XIAP and c-FLIP, and represents a potential anti-cancer therapeutics (136, 137). 
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Figure 5. Simplified overview of receptor-mediated cell death and its relation to the mitochondria-

mediated pathway. 

1.15 p53 - stress sensor and tumour suppressor 

The p53 protein is a sequence-specific transcription factor that can halt progression through 

the cell cyle or initiate cell death in response to DNA-damage and other types of cellular 

stress (138). p53 has a prominent role as a tumour suppressor and is found mutated and 

inactivated in over 50% of human cancers (139-141). However, p53 is most often wild type 

(wt) in hematological malignancies, and less than 10% of AML patients carry p53 mutations 

at the time of diagnosis (142, 143). The prevalence of p53 mutations is found to be higher in 

secondary AML and increases with patient age (139).  

p53 has a short half-life in non-stressed cells due to its interaction with the human 

double minute protein (Mdm2), which is a p53-specific E3 ubiquitin ligase (144, 145). 

Mdm2-mediated mono-ubiquitination of lysine residues precedes poly-ubiquitination by 

p300, which targets p53 for proteasomal degradation (146-148). Stress signals, including 

DNA-damage, hypoxia and nutrient deprivation, induce various post-translational 
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modifications (PTMs) of p53 affecting its stability, localization and function. p53 contains 

multiple lysine, threonine and serine residues that can accept various modifications, which 

include ubiquitination, phosphorylation, acetylation and sumoylation (138). Phosphorylation 

of serine 15 and 37 in the N-terminal domain is detected rapidly after stress induction, and 

has been shown to inhibit Mdm2-mediated degradation, resulting in p53 stabilization and 

activation (149). Acetylation of lysine residues in the C-terminal domain also inhibits the 

interaction with Mdm2, and has been shown to enhance p53 transcriptional activity, as well 

as to be crucial for its transcription-independent functions (150, 151). 

When acting as a tumour suppressor, the p53 protein may mediate programmed cell 

death via both transcription-dependent and transcription-independent mechanisms. p53 has a 

well known function as a sequence-specific transcription factor that induces expression of 

pro-apoptotic genes of the Bcl-2 family (152-154). The p53-inducible Bax, Noxa and PUMA 

proteins promote MOMP and mitochondria-mediated cell death. In addition, p53 has been 

shown to induce other mitochondrial proteins that favour MOMP through oxidative 

reactions, like ferredoxin reductase and proline oxidase (155, 156). Furthermore, p53 has 

been shown to induce expression of the cell surface death receptor 5 (DR5) following DNA 

damage (157). 

  Stress stimuli have been shown to trigger rapid trafficking of p53 to the 

mitochondria, an effect preceding its nuclear accumulation (158, 159). The mitochondrial 

trans-localization was demonstrated to be induced by Mdm2-mediated mono-ubiquitination 

and not by phosphorylation or acetylation (160, 161). In the OM membrane p53 interacts 

with anti-apoptotic Bcl-2 proteins and inhibits their stabilizing function (159, 162). p53 

disrupts the complex between Bak and Mcl-1, and has been shown to mediate Bak 

oligomerization (163). p53 has also been shown to activate Bax, promoting MOMP and cell 

death induction (164). In addition to direct inhibition of the stabilizing function of anti-

apoptotic Bcl-2 family proteins, p53 may repress transcription of these and other cell death 

antagonists like the IAP protein Survivin (165, 166). Another transcription-independent 

mechanism by which p53 promotes cell death is by mediating cell surface trafficking of the 

TNF receptor Fas (CD95) from cytoplasmic stores (167).  

Cancer cells expressing wt p53 still have the potential to evade induction of 

apoptosis. This is due to the presence of other mutations opposing the death-inducing activity 

of p53. Different mechanisms have been demonstrated and include over-expression of Bcl-2, 

Mdm2 and the human papilloma virus E6 protein, loss of the Mdm2 inhibitor p14ARF and 
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aberrant modulation of p53 by kinases/phosphatases (168, 169). AKT has been reported to 

contribute to chemoresistance by attenuating p53 phosphorylation, which will inhibit its 

stabilization and accumulation (170). MLL translocations represent a poor prognostic factor 

in AML, and a proposed mechanism for MLL fusion proteins involves reduced p53 

acetylation and stabilization (171, 172).  

Activation of p53 and induction of cell death represents a therapeutic target in 

cancers, which may be triggered in response to radiation- and chemotherapy (139, 173). 

Novel non-genotoxic strategies for p53-activation are currently being investigated, examples 

include the Nutlins which are small molecular antagonists of Mdm2-mediated degradation of 

wt p53 (174, 175). Another promising compound is PRIMA-1 which restores the tumour 

suppressing function of mutated p53 (176). Several drugs that target the Bcl-2 protein 

promote MOMP and cell death through mechanisms involving activation of p53 (177). 
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2. AIMS OF THE STUDY 

An organic extract of the natural stimulant khat was previously shown to induce programmed 

cell death in AML cell lines, while being less cytotoxic to normal PBMCs. Few studies have 

aimed at evaluating cellular and molecular events underlying khat toxicity, compared khat 

with a characterized drug or evaluated the effects of khat and known constituents on normal 

immune cells.  

This study was undertaken to:  

• elucidate cellular and molecular effects underlying khat-induced cell death in AML 

cell lines in comparison to a well characterized cancer therapeutics  

• investigate early cellular and molecular effects of khat and the khat amphetamines in 

normal peripheral immune cells 

• identify the compound(s) mediating the cytotoxic effects of the khat extract 
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3. METHODOLOGICAL CONSIDERATIONS   

3.1 Preparation of an organic khat extract  

Various organic solvents have been used for khat extraction in studies of in vitro effects of 

khat. When preparing an extract of khat we used methanol extraction as in the previous 

studies on khat cytotoxicity in AML cell lines (62, 63). The protocol used had been shown to 

produce an extract with appreciable levels of the natural khat amphetamines: cathinone, 

cathine and norephedrine (62). In short, the khat material was extracted with pure methanol, 

the solvents evaporated and the remaining semi-solid residue dissolved in dimethylsulfoxid 

(DMSO) at 0.2 g/ml for storage at -80oC.  

In this study, two different batches of khat from the Meru district in Kenya were 

extracted and used in experiments. The khat grown in Meru is known to be cultivated in the 

traditional way and has not been treated with pesticides. However, there is an ongoing debate 

whether the use of such chemicals should be introduced in Meru (personal communication, 

O.M. Lukandu and S. Kimani; European Science Foundation conference, Linköping, 

Sweden, 2009). Khat farmers in Yemen are using pesticides and there are rising concerns 

about potential adverse health effects derived from its use (57, 178). 

The first khat batch was harvested and processed in February/March 2005, and the 

extract was used in the experiments in paper I and IV. The second khat batch was harvested 

and processed in September/October 2007, and used in experiments in paper II and III. When 

comparing the toxic potentials of the two extracts they were observed to induce similar levels 

of cell death in AML cell lines. However, the extract from 2005 appeared slightly more toxic 

than the extract from 2007 (results not shown). The chromatograms of the two extracts 

displayed similar profiles, indicating a similar chemical composition and a standardized 

extraction procedure (Figure 6). The compositions of the extracts were not expected to be 

identical, since factors like season and variations in growth conditions will influence the 

chemical profile (7).   
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Figure 6. Chromatograms of the khat extracts from 2005 and 2007. The circle indicates elution of the khat 

amphetamines: norephedrine, cathine and cathinone. The figure is based on HPLC analyses performed by K. O. 

Fossan.  

3.2 Experimental concentrations of khat and its amphetamines  

The natural khat amphetamines, and in particular cathinone, represent the most well studied 

constituents of khat. The studies have elucidated the chemistry and pharmacology of the khat 

amphetamines, and dealt with methods for their detection in blood plasma, urine and hair 

(15, 16, 18, 19).  

In this study, AML cell lines and normal peripheral leukocytes/lymphocytes were 

exposed to various dilutions of the khat extracts. The experimental dilution designated 200 

�g/ml in paper I is based on the weight of semi-solid khat material dissolved in DMSO (0.2 

g/ml). The 200 �g/ml designation hence represents a 1:1000 dilution of the DMSO-solution 

of the khat extract. This designation does not provide information about the actual 

concentrations of khat constituents, and the concentrations of the khat amphetamines were 

therefore determined using high pressure liquid chromatography and tandem mass 

spectrometry (HPLC-MS-MS). Table 5 provides an overview of the concentrations and 

molarities of the khat amphetamines in the khat extracts and in experimental cell cultures.  

Cathinone is relatively unstable and is transformed to cathine upon wilting of khat 

leaves, while being metabolized predominantly to norephedrine in vivo (9, 16, 17). 

Cathinone is therefore suited as a reference substance, indicating the freshness of the 

extracted khat batch and the stability of the extracted material.  
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Table 5. Overview of the concentrations and molarities of the khat amphetamines in the two khat extracts and 

experimental dilutions used in this study.    

Khat extract Cathinone 
(mw 150.1) 

Cathine 
(mw 152.1) 

Norephedrine 
(mw 152.1) 

mg/ml M mg/ml M mg/ml M 

2005 

Stock solution  1.5 0.01 1.4 9.2 x 10-3 0.2 1.3 x 10-3

10-3 dilution  1.5 x 10-3 1.0 x 10-5 1.4 x 10-3 9.2 x 10-6  2.0 x 10-4 1.3 x 10-6 

      

2007 

Stock solution  2.5 0,017 3.0 0.02 0.3 2.0 x 10-3

10-3 dilution  2.5 x 10-3 1.7 x 10-5     3.0 x 10-3 2.0 x 10-5  3.0 x 10-4 2.0 x 10-6

3.16 x 10-4 dilution 7.9 x 10-4 5.4 x 10-6     9.5 x 10-4 6.3 x 10-6 9.5 x 10-5 6.3 x 10-7

10-4 dilution 2.5 x 10-4 1.7 x 10-6     3.0 x 10-4 2.0 x 10-6 3.0 x 10-5 2.0 x 10-7

Maximal serum concentrations following khat chewing have been measured to be, in 

�g/l, 58.9 ± 18.8 for cathinone, 71.2 ± 13.9 for cathine and 72.1 ± 12.2 for norephedrine 

(15). Each of the measured serum values correspond to concentrations in the range of 10-7 M. 

It should be noted that the amount of khat chewed by the study participants was one quarter 

of the amount used by an average chewer, and that the amount chewed varies widely (15). 

Due to the efficient extraction of the khat amphetamines into saliva, cells and tissues in the 

oral cavity are exposed to relatively high concentrations of the khat amphetamines (15). 

Previous estimates of cathinone concentrations in saliva suggest that the concentrations of 

khat amphetamines used in this study are within the range of concentrations found in the oral 

cavity (59).  

3.3 AML cell lines and normal peripheral blood leukocytes  

There are many advantages of using cell lines in studies of toxicity and in pre-clinical 

evaluation of cellular and molecular effects by potential drugs. These include ease of 

cultivation, commercial availability, genetic and phenotypic characterization and the 

possibility of comparing results with previous in vitro studies. However, several problems 

are associated with the use of cancer cell lines, like recurrent mycoplasma infections, cell 

line mix-ups and the differences in genetic expression between the cell line and the cancer it 

represents. For instance, most available AML cell lines carry a mutated TP53 gene, which 

contrasts with the disease where p53 is reported to be wt in 90% of the patients (142, 143). 

However, the leukemic cell lines MOLM-13 and MV-4-11 express wt p53 (179, 180), and 
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were therefore used in paper I and II, where khat-induced cellular and molecular events were 

evaluated. Further, the difference these cell lines exhibited in khat sensitivity made them 

valuable when studying the mechanisms underlying khat toxicity. 

The p53 protein was studied in paper II, and in order to establish the functional role 

of p53 activation in khat-mediated cell death, we tested different cell systems with deleted or 

reduced levels of p53. Experiments were performed with bone marrow cells from p53 -/- 

mice and their wild-type littermates (181), and we also used MOLM-13 wt and MOLM-13 

shp53 cells, where the expression level of p53 had been reduced by the introduction of short 

hairpin (sh) RNAs against p53 (182).  

In paper III we investigated early effects by khat and the khat amphetamines on 

intracellular signaling in normal peripheral leukocytes. The use of primary cells enabled us to 

study effects on healthy cells, and in addition provided us with the opportunity to compare 

effects in subsets of a complex population of immune cells. The study provided information 

about effects on normal cells, but further studies using multi-parameter flow cytometric 

analysis could shed light on potential theraperutic effects by the amphetamines, which were 

shown to attenuate activating protein modifications (4). 

3.4 Determination of cell death, viability and proliferation  

Induction of cell death in AML cell lines was determined based on fluorescence microscopy 

of cells that had been fixed and stained with the DNA-intercalating fluorochrome Hoechst 

(183). Normal nuclei displayed a diffuse nuclear staining, whereas non-normal nuclei 

appeared more intensely stained, with or without the nuclear fragmentation characteristic of 

apoptotic cells (85). This method is well established as a routine assay for determination of 

cell death. Ultra structural cellular features were evaluated with transmission electron 

microscopy (TEM), representing a principal method used to distinguish between different 

modes of cell death (85, 90). In paper I, TEM indicated khat-mediated activation of 

autophagy in MOLM-13 cells, with formation of autophagosomes and cytosolic 

vacuolization. In paper II, we stained khat-treated MOLM-13 cells with Lyso Tracker® Red 

DND-99, demonstrating increased levels of acidic cellular organelles, further suggesting 

involvement of the autophagosomal-lysosomal pathway (184). Compared to AML cell lines, 

it is difficult to evaluate nuclear morphology in bone marrow cells and PBMCs following 
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Hoechst-staining. In paper II and III, assessment of cell death in primary cells was therefore 

based on flow cytometric analyses following Annexin-FITC/PI staining. 

Cell viability/proliferation of AML cell lines was evaluated with the WST-1 assay. 

The assay relies on the activity of complex II in the mitochondrial respiratory chain, which 

converts the WST-1 salt (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

tetrazolium monosodium salt) to soluble formazan dye, which can be quantified by 

measuring absorbance (185). The presence of functional mitochondria will therefore provide 

a means of assessing viable and proliferating cells. High-resolution respirometry, which 

measures oxygen consumption by metabolic active mitochondria, was used to complement 

the results based on nuclear morphology, the WST-1 assay and TEM in paper I. The results 

demonstrated that by using different methods to evaluate cytotoxicity, it was possible to 

elucidate the underlying mechanisms of khat-induced cell death. When assessing degree of 

PBMCs proliferation in paper III, we used a 3H-thymidine incorporation protocol based on 

the whole blood assay described by Wendelbo et al. (186, 187). Unfortunately, we did not 

assess the amount of cell death simultaneously as we determined degree of 3H-thymidine 

incorporation. However, khat was shown to induce cell death after 6 hours of exposure based 

on Annexin-FITC/PI staining, and the reduced proliferation of PBMCs seen after 4 days was 

probably in part due to induction of cell death in a fraction or subset of the cells.  

In order to evaluate the cytotoxic potential of khat and underlying mechanisms, khat 

was compared side-by-side with camptothecin (CPT) in paper I and II. CPT is an alkaloid 

that originally was isolated from the Chinese plant Camptotheca acuminata (188). CPT 

induces apoptosis in various cancer cells and its derivatives irinotecan and topotecan are 

currently used as anti-cancer therapeutics (188). CPT mediates topoisomerase I-linked DNA 

breaks by preventing religation and has been shown to induce p53, Noxa and Mcl-1 (189, 

190). CPT and its analogues are collectively termed camptothecins, and represent one of the 

four main classes of anti-cancer compounds from plants (1).  

3.5 Determination of protein levels and signaling events 

Protein levels in AML cell lines were determined primarily using one-dimensional 

polyacrylamide gel electrophoresis (1D-PAGE) and Western blotting in paper I and II. The 

KODAK Image Station 2000R software was used for quantification of Western blots and 

determination of fold change in protein levels. In paper I, where we assessed the impact of 
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khat-treatment on procaspase-8 activation, the Western blot analyses were complemented 

with the use of a colourimetric assay to verify cleavage and enzymatic activation.   

When studying the p53 protein in paper II, we used two-dimensional polyacrylamide 

gel electrophoresis (2D-PAGE) in addition to 1D-PAGE. This technique is superior to 1D-

PAGE when studying expression of various p53 isoforms and levels of PTMs (191, 192). 

When analyzing the 2D images, we used an analysis method that was developed to enable 

correlation of separate analyses and biological variables (193). p53 PTMs were in addition 

analyzed with modification-specific antibodies and flow cytometric analyses as previously 

described (4). The results demonstrated that flow cytometric analyses of the different p53 

modifications represented a more sensitive technique compared to the 1D-PAGE protein 

analyses. 

 Modification-specific antibodies and flow cytometric analyses were also used in 

paper III, when we analysed intracellular signaling events in normal peripheral leukocytes. A 

major advantage of this technique over Western blotting when studying proteins is that it 

enables multi-parameter analyses of intracellular signaling events in complex cell 

populations. It was therefore the natural choice of method when we assessed signaling events 

in subsets of the complex population of immune cells. The many advantages and also the 

challenges associated with this technique have been reviewed by Krutzik et al. (194). 



41

4. SUMMARY OF PAPERS 

Paper I

Camptothecin and khat (Catha edulis Forsk.) induced distinct cell death 

phenotypes involving modulation of c-FLIPL, Mcl-1, procaspase-8 and 

mitochondrial function in acute myeloid leukemia cell lines  
Cellular and molecular effects of khat were investigated using AML cell lines with diverse 

genetic characteristics. The cytotoxic effects of khat were compared with the cancer 

therapeutics camptothecin (CPT), in order to evaluate the toxic potential of khat and to 

elucidate the mechanisms underlying toxicity. The AML cell lines demonstrated varying 

sensitivities to khat, where some cell lines were shown to be sensitive to khat-induced cell 

death whereas others appeared resistant. The different sensitivities could not be correlated to 

endogenous Bcl-2 and Bax levels, or to selected prognostic factors (FLT3 and TP53). Khat 

treatment had a profound effect on mitochondrial structure and function in MOLM-13, in 

contrast to CPT. Khat was observed to induce formation of autophagosomes and cytosolic 

vacuolization in MOLM-13 cells, suggesting activation of autophagy. Khat mediated reduced 

levels of anti-apoptotic Mcl-1 protein in MOLM-13, whereas both khat and CPT were shown 

to activate procaspase-8 and induce cleavage of its endogenous antagonist c-FLIPL.  

Paper II

Modulation of p53 isoforms and its post-translational modifications 

reflect the cytotoxicity of a botanical khat extract  
The effects of khat-treatment on induction of p53 PTMs, on p53 isoform distribution and the 

contribution of p53 in khat-mediated cell death were evaluated. The analyses included the 

khat-sensitive MOLM-13 cell line and the khat-resistant MV-4-11 cell line. p53 was 

subjected to phosphorylations and acetylation in both MOLM-13 and MV-4-11 cells, but its 

accumulation was only demonstrated in MOLM-13. When comparing khat-mediated toxicity 

in bone marrow cells from p53 -/- mice with cells from normal mice, no protective effect 

against khat was observed. Similarly, MOLM-13 cells transduced with shp53 were not more 

resistant to khat-mediated cell death compared to wt MOLM-13 cells. Treatment of the khat 

resistant MV-4-11 cell line with p38 inhibitors increased its sensitivity to khat. Pre-treatment 
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of MOLM-13 cells with p38 inhibitors abolished khat-induced activation of autophagy, 

whereas this pathway was unaffected in MV-4-11. The study indicated that khat acted 

independently of p53, but suggested that p53 isoform pattern and PTMs could be used to in 

identification and characterization of chemical probes and potential anti-cancer therapeutics.    

Paper III

Natural khat-derived amphetamines attenuate phosphorylation of AKT, 

STAT6, CREB and p53 in peripheral leukocytes  
Multi-parameter flow cytometric analyses of signaling proteins were used to investigate early 

responses in normal periperhal leukocytes to treatment with khat and its natural 

amphetamines: cathinone, cathine and norephedrine. The leukocytes were labeled with 

modification-specific antibodies against stress sensor proteins and signal transducers of 

various intracellular pathways (AKT, CREB, ERK1/2, p38, STAT1/3/5/6 and p53). The 

different subsets of the leukocytes: T-lymphocytes, B-lymphocytes/natural killer (NK) cells 

and the myeloid population (neutrophile granulocytes and monocytes) responded differently 

to the various treatments. The khat extract was generally observed to mediate activation of 

signaling proteins, detected as increased levels of phosphorylation and acetylation, whereas 

the khat amphetamines attenuated activating modifications. Khat resulted in increased p53 

and phosphorylated p38, and was observed to induce cell death and reduced proliferation of 

PBMCs, whereas the khat amphetamines appeared to have a stimulating effect on cell 

division.  

Paper IV

Bio-guided isolation of a major cytotoxic constituent in khat (Catha 

edulis Forsk.) unrelated to natural khat amphetamines 
In order to identify the cytotoxic constituent(s) in the khat extract, the extract was subjected 

to high pressure liquid chromatography (HPLC), and the resulting fractions screened for 

toxicity in the khat-sensitive cell lines HL-60 and MOLM-13. The cell-based screen resulted 

in the identification of three separate cytotoxic fractions, mediating reduced 

viability/proliferation and induction of cell death. Both cytotoxic and neutral fractions were 

subjected to mass spectrometry analyses in order to identify the main cytotoxic 

component(s). The presence of the khat amphetamines did not correlate with the cytotoxicity 
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of the khat fractions, and treatment of HL-60 and MOLM-13 with cathinone, cathine and 

norephedrine further suggested that these constituents were relatively non-toxic. The most 

cytotoxic khat fraction contained a molecule with a mass of 1452 Da, and the MS 

fragmentation pattern suggested that the molecule consisted of two central phenylpropanoid 

glycosides with five attached comaryl-groups. This study is the first to describe a cytotoxic 

phenylpropanoid glycoside in an extract of khat.  
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5. GENERAL DISCUSSION 

5.1 Specificity in cell death-induction and genetic aberrations 

Khat was demonstrated to mediate cell death in a subset of genetically diverse AML cell 

lines, in paper I and II. The observations of AML cell lines to be either sensitive or resistant 

to khat suggested involvement of specific death pathways. In contrast to khat, the anti-cancer 

therapeutics CPT was observed to induce cell death in all cell lines tested, although with 

varying efficacies. The specificity in khat-mediated cell death has been further demonstrated 

in preliminary experiments using primary cells from AML patients. The experiments showed 

that khat caused cytotoxic effects in leukemic cells from 1 out of 4 patients (results not 

shown).   

The AML cell lines used in this study are characterized by various genetic aberrations 

that could explain the differences in sensitivity. In paper I we concluded that neither the 

presence of FLT3-ITDs nor the mutational status of TP53, both important prognostic 

markers, seemed to account for the different khat sensitivities exhibited by the cell lines. 

However, the presence of other genetic aberrations may influence the signaling pathways 

regulated by the Flt3 receptor and the tumour suppressor p53. For instance, MLL

translocations are found in leukemias of both myeloid and lymphoid origin and represent a 

poor prognostic factor with adverse effects on treatment response (195). A proposed 

mechanism for MLL fusion proteins involves reduced acetylation of p53 by p300, which 

would abrogate its stabilization and activation (172).  

The khat-resistant MV-4-11 cell line carries the t(4;11) translocation, the most 

common MLL translocation in acute lymphoblastic leukemia, encoding the MLL-AF4 fusion 

protein. However, the khat-sensitive MOLM-13 cell line has been shown to expresses a 

MLL-AF9 fusion mRNA, resulting from a minute chromosomal insertion, 

ins(11;9)(q23;p22p23)(196). The expression of distinct MLL fusion proteins in MV-4-11 

and MOLM-13 could indicate different effects on intracellular signaling. However, the 

presence of chimeric MLL proteins in both cell lines could also suggest other characteristics 

as more important in determining the differences in khat sensitivity (197).  
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MV-4-11 has been shown to carry a K-RAS mutation which has been suggested to 

inhibit the function of the p53 protein (198, 199). Oncogenic K-Ras has also been shown to 

activate the PI3K/AKT pathway, which could explain the lack of Mcl-1 down-regulation in 

this cell line as compared to MOLM-13 in paper I (200). Further, oncogenic K-Ras could 

mediate increased levels of ROS and constitutive activation of p38, which acts up-stream of 

p53 (201, 202). In conclusion, the AML cell lines used in this study carry a range of genetic 

aberrations which could provide the molecular basis for the different khat sensitivites that 

were observed.  

In paper III, we observed that khat was less cytotoxic to normal PBMCs compared to 

the khat-sensitive AML cell lines, in agreement with previous results (62). Khat was shown 

to induce significant cytotoxic effects after 6 hours, and cell proliferation was observed to be 

inhibited by approximately 50% after 4 days of treatment. Despite the induction of cell death, 

the study demonstrated the presence of viable and actively proliferating cells after long-time 

exposures to khat. However, the study did not assess cytotoxic effects in the various subsets 

of the complex population of immune cells. The treatments were observed to induce different 

intracellular responses in the cell subsets, and it is reasonable to expect that the populations 

would exhibit different sensitivities to khat. 

5.2 Modes of programmed cell death 

Mitochondria are known to play a central role in induction of different types of cell death, 

and may mediate death through release of cell death agonists and by generating excess levels 

of ROS (92). When comparing ultra structural features by TEM in paper I it was evident that 

khat, in contrast to CPT, caused extensive damage to the mitochondria in MOLM-13. 

Pharmacological targeting of mitochondrial function has been suggested as a possible 

therapeutic intervention (203, 204). However, even cells in late phases of cell death, 

contained apparently intact mitochondria in addition to the damaged ones. This suggested, 

although impaired, ongoing mitochondrial ATP production which could fuel the energy-

dependent processes of apoptosis and autophagy (184). Impaired mitochondrial function may 

trigger autophagy, as it is initiated in times of nutrient deprivation and other forms of cellular 

stress (87, 88). Therefore, mitochondrial impairment could have triggered the morphological 

characteristics of autophagy that were observed in khat-treated MOLM-13 cells in paper I. 
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Autophagosome formation was observed in cells in early stages of cell death, whereas 

extensive vacuolization of the cytoplasm characterized cells in late phases (85, 184).  

In paper II, the use of Lyso Tracker® Red DND-99 demonstrated an increase in the 

level of acidic cellular organelles, further indicating activation of the autophagosomal-

lysosomal pathway in MOLM-13 (184). When pre-treating MOLM-13 with specific p38 

inhibitors, the khat-induced increase in acidic organelles was abolished. p38 acts up-stream 

of p53 and the inhibitors could therefore have hindered p53 activation (201). p53 has the 

potential to trigger autophagy, but is reported to play a dual role, with nuclear p53 inducing 

autophagy genes, whereas cytoplasmic p53 represses its activation (205). However, p38 has 

been shown to induce transcription of autophagy genes in response to elevated ROS levels, 

indicating that khat-mediated autophagy could be induced up-stream of p53 (206). In order to 

further verify the involvement of autophagy, biochemical events like dissociation of Beclin-1 

from anti-apoptotic Bcl-2 family members and degradation of the p62 protein should be 

investigated (85).  

We previously reported that khat-mediated cell death in HL-60 displayed typical 

morphological and biochemical characteristics of apoptosis, including nuclear fragmentation 

and procaspase-3 activation (62). When comparing the nuclei in cells undergoing khat-

mediated death, MOLM-13 and HL-60 were observed to display different nuclear 

morphologies (results not shown). Whereas chromatin was observed to be condensed and 

localized to the margins of the nuclei in MOLM-13, HL-60 demonstrated characteristic 

apoptotic nuclei with condensed and fragmented chromatin (62). Autophagy as a mode of 

cell death is characterized by absence of chromatin condensation, and this observation 

indicated that several death-inducing pathways could be activated in MOLM-13. Further, the 

observation of distinct nuclear morphologies indicated that khat triggered different modes of 

programmed cell death in individual AML cell lines. The morphological differences were 

further supported by Western blot analyses of khat-treated MOLM-13 cells, which 

demonstrated limited procaspase-3 activation (results not shown), contrasting with the 

analyses of HL-60.  

It has been demonstrated that the concentration of anti-cancer drugs may dictate the 

mode of cell death in experimental cell cultures. Drugs may induce necrosis when 

administered at a high dose while inducing apoptosis at lower concentrations (90, 184). It is 

therefore possible that the type of programmed cell death and the exact signaling pathway(s) 

involved could be altered by changing the concentration of khat. It has also been 



47

demonstrated that dying cells may display morphological characteristics of more than one 

type of cell death (85, 90). 

5.3 Potential molecular targets of khat and the khat amphetamines 

In paper I we focused on the Bcl-2 family of proteins, important regulators of mitochondria-

mediated cell death (94). Bcl-2 family proteins are frequently aberrantly expressed in cancer, 

and over-expression of anti-apoptotic members is shown to mediate therapeutic resistance 

and poor survival (109, 110). The level of khat-induced cell death was reduced by increased 

Bcl-2 in the rat acute myeloid leukemia IPC-81 Bcl-2 cell line. This cell clone is transfected 

to express a BCL-2 gene of human origin and has been shown to be resistant to pro-apoptotic 

stimuli (207). In agreement with previous reports, CPT-induced cell death was inhibited in 

this cell line (208, 209). Khat-mediated cell death was significantly inhibited by Bcl-2 over-

expression in the human promyelocytic NB4 cell line. However, there did not appear to be a 

correlation between khat sensitivity and the endogenous levels of Bcl-2 and Bax in the 

various AML cell lines. Furthermore, Western blot analyses of khat-treated cells 

demonstrated that the protein levels of Bcl-2 and Bax remained relatively constant. These 

observations suggested that sensitivity was dictated by other molecular characteristics and 

that khat did not target the Bcl-2/Bax proteins directly.  

However, khat was shown to mediate significant reductions in expression levels of 

the anti-apoptotic Mcl-1 protein. This Bcl-2 family protein primarily exerts its function in the 

mitochondrial OM where it binds and antagonizes pro-apoptotic Bcl-2 family members. Mcl-

1 degradation following UV irradiation has been shown to be required for mitochondrial 

cytochrome c release and subsequent activation of procaspases (120). It has been reported 

that therapeutic targeting of Bcl-2 family members and induction of apoptosis depends on 

neutralization of Mcl-1 (121). In addition to its role in mitochondria, Mcl-1 has been shown 

to antagonize receptor-mediated cell death by inhibiting truncated (t) BID. tBID is generated 

by caspase-8 mediated cleavage of BID, and the truncated protein promotes cytochrome c 

release from mitochondria (123-125). Mcl-1 has also been reported to interact with Beclin-1, 

an autophagy-promoting protein that contains a BH3 domain (101, 122). BH3-only pro-

apoptotic proteins of the Bcl-2 family promote autophagy by disrupting the binding of 

Beclin-1 to anti-apoptotic Bcl-2 proteins (210). Khat-mediated down-regulation of Mcl-1 

could therefore be involved in induction of autophagy in MOLM-13. 
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The observations in this study indicate that Mcl-1 may represent a central molecular 

target in khat-induced cell death. Mcl-1 is frequently over-expressed in cancers and has been 

shown to mediate chemoresistance (117-119). The plant-derived compound silvestrol was 

recently shown to induce early reductions in Mcl-1 levels due to translational inhibition, 

mediating subsequent mitochondrial damage (211). Other plant-derived compounds, like 

Apogossypol, have also been demonstrated to target Mcl-1 and other anti-apoptotic Bcl-2 

family members when inducing apoptosis (112, 113). 

Pre-treatment of HL-60 with the specific caspase-8 inhibitor, Z-IETD-FMK, was 

previously shown to protect against khat-induced apoptosis (62). In paper I we demonstrated 

the presence of active caspase-8 in khat-exposed cells, further supporting involvement of 

signaling via cell surface death receptors. In addition, we demonstrated a relatively rapid 

cleavage of the caspase-8 antagonist c-FLIPL to the cleavage product p43-FLIP. This 

cleavage product has been shown to be generated by activated caspase-8, whereas 

procaspase-8 cleaves FLIPL to a fragment of 22 kDa, p22-FLIP. The smaller c-FLIP fragment 

has been shown to activate NF-kB signaling, hence mediating cell survival (128). 

c-FLIP over-expression has been shown to confer resistance to receptor-mediated 

apoptosis in B-cell chronic lymphocytic leukemia, multiple carcinomas (e.g. colourectal, 

gastric, pancreatic and ovarian) and Hodgkin/Reed-Sternberg cells (129-131). Down-

regulation of c-FLIP sensitizes tumour cells to apoptosis-induction by extracellular death 

ligands (132-134). Various anti-cancer drugs including doxorubicin, actinomycin D, CHX, 

CPT, bortezomib, cisplatin and trichostatin A have been shown to reduce c-FLIP levels (129, 

135). The anti-cancer therapeutics phenoxodiol, an analogue of a soybean isoflavone, is 

believed to inhibit XIAP and c-FLIP, thereby facilitating induction of apoptosis (136, 137). 

The potential of c-FLIP as a therapeutic target has recently been reviewed (129, 212). 

c-FLIP down-regulation has been shown to occur in conjunction with ROS generation 

(213), and c-FLIP cleavage was reported to induce ROS (214). Lukandu et al. demonstrated 

that khat-mediated apoptosis in oral keratinocytes and fibroblasts involved generation of 

ROS (60). These observations could suggest that caspase-8 mediates c-FLIPL cleavage in 

MOLM-13, which then could trigger increased levels of ROS. However, whether ROS may 

trigger c-FLIP down-regulation or if reduced c-FLIP levels may cause elevated levels of 

ROS, remains to be further elucidated. Interestingly, it has been shown that treating leukemic 

cells with inhibitors of ROS elimination and complex I inhibitors, mediates increased 
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sensitivity to drug-induced apoptosis (203). An overview of the results discussed in this 

section is provided in figure 7. 

Figure 7. Overview of proteins that were affected by khat treatment and possible involved cell death pathways.  

In paper III we compared single cell signal responses in normal peripheral blood 

leukocytes to khat and the khat amphetamines: cathinone, cathine and norephedrine. 

Whereas khat was observed to induce activating protein modifications, the khat 

amphetamines attenuated phosphorylation of several signaling transducers including AKT, 

STAT6 and CREB. This suggested that the khat amphetamines could have potential as 

inhibitors of signal transduction pathways. In a recent study by Krutzik et al. primary 

splenocytes were used to evaluate inhibitors of intracellular pathways first identified in a 
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leukemic cell line. The use of heterogenous population of immune cells demonstrated 

pathway-specificity and in addition identified cell type-specific inhibitors (4).

5.4 Modulations of the p53 protein and cytotoxic effects 

We previously reported that khat activated p53 in primary oral keratinocytes and fibroblasts, 

mediating transcription of p21 and induction of cell cycle arrest (59). When exposed to a 

higher concentration of khat the oral fibroblasts and keratinocytes underwent programmed 

cell death, involving ROS and impaired mitochondrial integrity and function (60, 61). This 

indicated that p53 could be involved in khat-mediated cell death in AML cell lines, and 

regulation of the p53 protein was studied in paper II. However, we previously reported that 

AML cell lines without TP53 and mutated TP53 were sensitive to khat-induced cell death, 

suggesting involvement of a p53-independent cell death pathway. 

Based on flow cytometric analyses khat was shown to induce phosphorylation and 

acetylation of p53 in both khat-sensitive MOLM-13 cells and the khat-resistant MV-4-11 cell 

line. These PTMs are reported to mediate stabilization and accumulation of the p53 protein, 

by inhibiting Mdm2-mediated ubiquitination and degradation (149, 150). However, 

accumulation of the full length p53 isoform, p53 FL, was only seen in MOLM-13, whereas 

the levels of the truncated �/� p53 isoforms were reduced. A similar p53 isoform modulation 

was previously reported in AML patients receiving induction chemotherapy (192). The 

expression of various p53 isoforms represents a means of regulating the transcriptional 

activity of p53 and the cellular response to stress signals (215).  

p53 was shown to induce transcription of p21 and Mdm2, whereas levels of pro-

apoptotic Bcl-2 family proteins like Bax and Noxa remained constant. In addition to 

inducing transcription of pro-apoptotic genes, p53 is known to have direct death promoting 

functions, and p53 and Mcl-1 have been shown to have opposite effects on mitochondrial 

OM stability (163). The results in paper I and II could therefore suggest that khat destabilized 

the mitochondria through elevated p53 and down-regulation of Mcl-1 in MOLM-13. 

However, pre-incubation with pifithrin �, which inhibits the transcription-independent 

activity of p53 in mitochondria (216), did not affect the level of khat-induced cell death in 

MOLM-13 (results not shown). This further suggested that khat-mediated cell death was 

independent of p53 in AML cell lines. In paper II, experiments using p53 -/- bone marrow 
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cells and MOLM-13 p53 knock-down cells demonstrated that p53 was not necessary in khat-

mediated cell death. Further, protein analyses of p63 and p73 indicated that these p53 family 

members remained unaltered (217, 218).  

The p53 protein was only induced by the death-inducing khat concentration in 

MOLM-13, and not by sub-lethal dilutions or in the khat-resistant MV-4-11 cell line. In 

paper III, the cytotoxic khat concentration induced p53 in a subset of normal peripheral blood 

leukocytes and was shown to induce cell death and reduced proliferation of PBMCs. 

Together these observations suggested that p53 could represent an indicator for sensitivity to 

khat and its cytotoxic constituents. We therefore suggested that the p53 isoform pattern and 

its post-translational modifications could be useful in evaluation of biological effects of 

extracts, and when screening for novel chemical probes and experimental therapeutics.  

5.5 Cytotoxic khat constituents 

Alkaloids have contributed the largest number of substances to the modern pharmacopeia, 

and the vinca alkaloids represent one of the main classes of compounds used as anti-cancer 

therapeutics (1). The khat alkaloid cathinone was termed a natural amphetamine due to its 

similarities with amphetamine, and various amphetamines have been shown to induce 

apoptosis in neuronal cells (219, 220). The alkaloid fraction in khat was indicated to mediate 

cytotoxic effects in an early study (25), and cathinone was shown to have a mitodepressive 

effect on dividing cells in root tips, indicating a cytotoxic potential (221). These observations 

suggested that the khat amphetamines could account for khat-mediated cell death in AML 

cell lines (63). In agreement with this, we previously observed that the khat amphetamines 

were cytotoxic to HL-60 cells, and suggested that these compounds were partly responsible 

for the cell death inducing potential of khat (62). In contrast, the khat amphetamines did not 

induce cell death in primary oral fibroblasts and keratinocytes (59). However, the results in 

paper IV in this study showed limited cytotoxic effects by the khat amphetamines in HL-60 

and MOLM-13 cells, and demonstrated that other compounds were responsible for the 

cytotoxicity of the khat extract.  

There are several possible explanations for the contradiction between our previous 

results and the findings in paper IV. The HL-60 cell line used in the previous study is no 

longer available in our laboratory, and it is possible that the new cell clone used in this thesis 

is slightly different. Cultivation of cell lines is known to represent a selection process, which 
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ultimately could result in an altered genetic expression profile of the cells. In addition, the 

previous study was performed in a different laboratory, suggesting that the experiments could 

have been performed under slightly different conditions (CO2 levels, batch of FBS etc.) that 

might have affected the results.  

When comparing the cytotoxicities of the khat extracts from 2005 and 2007 in AML 

cell lines, the extract from 2005 was observed to be most toxic (results not shown). The 

concentrations of khat amphetamines in the 2005 extract were lower than their 

concentrations in the less toxic extract from 2007 (Table 5). These observations further 

suggested that the cytotoxic potential of khat was not due to the content of khat 

amphetamines, in agreement with the findings in paper IV. However, we observed an 

increased signal with the WST-1 viability/proliferation assay in cathinone-exposed MOLM-

13 cells in paper IV. This could indicate increased levels of cellular ROS, and hence a 

cytotoxic effect, or reflect onset of cell differentiation (Herfindal, unpublished data).  

When evaluating early intracellular responses and cytotoxic potentials of khat and the 

khat amphetamines in normal peripheral blood cells in paper III, only khat was observed to 

induce stress proteins, and shown to induce cell death and reduced proliferation. Cancer cells 

are known to be more sensitive to cell death-induction compared to normal cells when 

exposed to drugs targeting deregulated pathways (222). Since the khat amphetamines were 

observed to be relatively non-toxic to AML cell lines in this study, it was not surprising that 

the normal blood cells appeared resistant. On the contrary, the compounds were shown to 

stimulate cell division, with norephedrine mediating significant increased proliferation of 

PBMCs. This observation agreed with a previous report where cathinone was demonstrated 

to stimulate B-cells (41). 

In paper IV, fractionation of the khat extract and bio-guided screening for cytotoxicity 

in HL-60 and MOLM-13 cells, led to the identification of a phenylpropanoid glycoside 

indicated to represent the major cytotoxic constituent in the extract. The molecule was 

suggested to consist of two central phenylpropanoid glycosides with five attached comaryl-

groups. Phenylpropanoid glycosides are common in plants, and known to possess biological 

activities including anti-viral, anti-microbial and anti-cancer effects. Coumarin derivatives 

have been reported to inhibit proliferation of leukemic cells and to induce apoptosis (223). 

Zimmermann and Zneden reported of a phenylpropanoid glycoside with four p-coumarol 

esters linked to the sugar moiety, shown to possess anti-cancer activity (224, 225). More than 

100 phenylpropanoid glycosides have been identified and characterized, but most plants 
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contain limited quantities of these potential therapeutics (226). However, further studies need 

to be done in order to fully identify the molecular structure of the cytotoxic khat 

component(s) described in paper IV.  

5.6 Concluding remarks 

This study has elucidated mechanisms underlying khat cytotoxicity in AML cell lines, and 

identified possible cellular and molecular targets with potential within anti-cancer 

treatments. When compared with the anti-cancer therapeutics CPT, khat was shown to 

mediate a different and specific cell death phenotype. However, the exact sequence of 

cellular and molecular events mediating cell death is still not determined. A complex 

cytotoxic plant extract is likely to activate several cellular pathways simultaneously, which 

will make it difficult to determine the pathway of cell death-execution.  

Analyses of p53 protein protein isoforms and its PTMs were suggested to represent a 

means for characterizing cytotoxicity by khat and other complex extracts. In contrast to khat, 

the natural khat amphetamines were not observed to be significantly cytotoxic to AML cell 

lines or to PBMCs, and were shown to stimultate proliferation of the latter. Bio-guided 

screening of khat fractions in AML cell lines led to the identification and partial 

characterization of the main cytotoxic component(s) in the khat extract, which was suggested 

to be a phenylpropanoid glycoside.  
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6. FUTURE PERSPECTIVES 

The cellular and molecular mechanisms underlying khat-mediated cytotoxicity should be 

further investigated. The molecular basis for resistance to khat should be determined, in 

order to elucidate the pathway(s) mediating cell death. Khat was shown to activate 

components of the receptor-mediated death pathway, and studies should assess the 

involvement of death receptors.  

Khat was shown to trigger autophagy, and its role in cell death-induction should be 

investigated. Further, the involvement of p38 in the autophagosomal-lysosomal pathway and 

khat-mediated cell death should be explored. The khat-induced modulation of p53 should be 

compared with other cytotoxic compounds, in order to evaluate whether specific p53 isoform 

patterns could indicate the underlying mechanisms. 

The effects of khat and the khat amphetamines on intracellular signaling in normal 

peripheral leukocytes should be further studied. Experiments evaluating the duration of the 

transient protein modifications should be performed, in order to elucidate activation or 

attenuation of intracellular signaling cascades. In addition, studies should evaluate whether 

the khat amphetamines could function as specific inhibitors of signaling pathways.  

 The exact structure of the main cytotoxic compound(s) in khat should be determined. 

The cytotoxic effects of this compound should be investigated in leukemic cells, in normal 

peripheral blood cells, in addition to its effects on normal cells of the oral cavity and 

gastrointestinal tract. To further evaluate the anti-cancer potential of khat constituents more 

experiments with primary AML patient samples should be carried out, and the compound(s) 

could eventually be tested in established animal models of AML. 
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