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Abstract

Background: Although arctic lakes have responded sensitively to 20th-century climate change, it remains uncertain how
these ecological transformations compare with alpine and montane-boreal counterparts over the same interval.
Furthermore, it is unclear to what degree other forcings, including atmospheric deposition of anthropogenic reactive
nitrogen (Nr), have participated in recent regime shifts. Diatom-based paleolimnological syntheses offer an effective tool for
retrospective assessments of past and ongoing changes in remote lake ecosystems.

Methodology/Principal Findings: We synthesized 52 dated sediment diatom records from lakes in western North America
and west Greenland, spanning broad latitudinal and altitudinal gradients, and representing alpine (n = 15), arctic (n = 20),
and forested boreal-montane (n = 17) ecosystems. Diatom compositional turnover (b-diversity) during the 20th century was
estimated using Detrended Canonical Correspondence Analysis (DCCA) for each site and compared, for cores with
sufficiently robust chronologies, to both the 19th century and the prior ,250 years (Little Ice Age). For both arctic and alpine
lakes, b-diversity during the 20th century is significantly greater than the previous 350 years, and increases with both
latitude and altitude. Because no correlation is apparent between 20th-century diatom b-diversity and any single physical or
limnological parameter (including lake and catchment area, maximum depth, pH, conductivity, [NO3

2], modeled Nr
deposition, ambient summer and winter air temperatures, and modeled temperature trends 1948–2008), we used Principal
Components Analysis (PCA) to summarize the amplitude of recent changes in relationship to lake pH, lake:catchment area
ratio, modeled Nr deposition, and recent temperature trends.

Conclusions/Significance: The ecological responses of remote lakes to post-industrial environmental changes are complex.
However, two regions reveal concentrations of sites with elevated 20th-century diatom b-diversity: the Arctic where
temperatures are increasing most rapidly, and mid-latitude alpine lakes impacted by high Nr deposition rates. We predict
that remote lakes will continue to shift towards new ecological states in the Anthropocene, particularly in regions where
these two forcings begin to intersect geographically.
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Introduction

There is mounting evidence that recent ecological and

biogeochemical changes have occurred in remote lakes, defined

here as those lacking any immediate, catchment-scale, anthropo-

genic influences. The implication is that these ecosystems can no

longer be considered pristine, largely because of their high

sensitivity to climate change [1,2] which, in some regions, is

compounded by significant inputs of reactive anthropogenic

nitrogen (hereafter Nr; comprising all biologically-, photochemi-

cally- and radiatively- active nitrogenous compounds in the

atmosphere and biosphere [3]) delivered by atmospheric deposi-

tion [4–6]. Part of the sensitivity of arctic and alpine lakes is

attributable to limnological characteristics including dilute water

chemistry, low primary production, and high flushing rates

associated with nival hydrological regimes. The paucity of long-

term climatic and environmental monitoring data in remote

regions can be alleviated by the use of proxy data from high-
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resolution sedimentary records. Geochemical signatures and

biological remains are continuously archived in the sediments

accumulating at the bottoms of lakes. Diatoms (Bacillariophyceae)

are unicellular aquatic photoautotrophs that respond rapidly to

changes in water chemistry mediated by environmental change.

Their siliceous cell walls are often preserved in lake sediments with

sufficient fidelity to allow taxonomic identifications and ecological

inferences, thus producing an archive of limnological history. In an

evolving literature, sediment diatom records have been applied

successfully to a range of global environmental issues including

lake acidification [7], eutrophication [8], and climate change [2,9].

Many of these data augment the evidence that the planet has

entered the Anthropocene [10,11], the era of human dominance

over key biogeochemical cycles, with direct climatic and ecological

repercussions.

In the present study we analyze the amount of diatom

compositional turnover in sediments from 52 remote lakes in

North America and west Greenland during three time intervals,

each defined broadly by climate history: (1) the cold Little Ice Age

(LIA), ,1550–1800; (2) recovery following culmination of the

LIA, 1800–1900; and (3) 20th century warming. Geographically,

the lakes span 38–79uN of latitude, and 12–3546 m asl of

altitude, representing arctic (n = 20), alpine (n = 15), and forested

boreal-montane (n = 17) ecosystems (Fig. 1, Table 1). The

geographical gradients and temporal intervals captured by this

sample array allow the sensitivity of remote lakes to be tested

explicitly. The cornerstone of our analysis comprises estimates of

diatom compositional turnover (or b-diversity) obtained by

Detrended Canonical Correspondence Analysis (DCCA) con-

strained to time as the sole predictor variable [Materials and

Methods, 12].

Results

Diatom Stratigraphies
Diatom b-diversity summarizes the amount of compositional

turnover having occurred in a core’s successive diatom assem-

blages over a specified interval of time. It is estimated in units of

standard deviations (SD). We first illustrate examples of the raw

data used in these computations by showing the relative

frequencies of dominant diatoms in dated sediments from four

lakes expressing variable amounts of assemblage change and

representing a range of lake characteristics (Fig. 2). In the Arctic

(CF-11, Baffin Island) and alpine lakes (Curator, Jasper National

Park, Alberta, and Emerald, Beartooth Wilderness, Wyoming), the

increased success of planktonic Cyclotella spp. and Discostella spp. in

the 20th century is evident (Fig. 2A–C). Both of these genera

become competitive as the water column stratifies, and thus

benefit from prolongation of the summer ice-free period [13–15].

During earlier intervals of lowered planktonic diatom abundance,

small benthic taxa (e.g. Pseudostaurosira, Staurosirella, Staurosira and

Achnanthes spp.) predominate in these lakes. These diatoms are

successful when light attenuation is low, ice-free growing seasons

are short, and production is concentrated in the littoral zone, often

within ice-free moats [2,9]. In these and other examples, it is the

relative success of planktonic diatoms over benthic taxa in the 20th

century that drives b-diversity (Fig. 2).

An additional shift is observed in the sediments of Emerald

Lake: after ,1950, Asterionella formosa becomes completely

dominant, replacing the Discostella stelligera complex as the principal

planktonic diatom. The magnitude of changes in Emerald Lake’s

diatom flora produced the highest 20th century b-diversity in our

survey (2.00 SD). However, recent increases of A. formosa are in no

Figure 1. Location map of the study lakes in North America and Greenland. Numbers correspond to the descriptions in Table 1. Shaded
area shows the extent of the Rocky Mountains.
doi:10.1371/journal.pone.0010026.g001
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way isolated, being relatively common in alpine lakes of the

American Cordillera [4], where they have been linked causally to

increase Nr availability from atmospheric deposition [16].

In contrast to lakes that preserve high (CF-11, Curator) to

extreme (Emerald) degrees of diatom assemblage compositional

turnover, a number of lakes possess relatively complacent diatom

stratigraphies. Such lakes are commonly, but not exclusively, from

the montane-boreal subset of sites (Table 1). For example, diatom

assemblages in sediments from North Barrière Lake (British

Columbia interior) have changed very little over recent centuries,

resulting in low, near constant b-diversity (0.42–0.53 SD) over the

length of the record (Fig. 2D).

Diatom b-Diversity
The estimated 20th century b-diversities from both arctic

(p = 0.004) and alpine (p = 0.003) diatom records are significantly

higher than those from forested montane-boreal lakes (Fig. 3), as

tested using Wilcoxon Rank Sum tests with Bonferonni-adjusted p-

values [Materials and Methods]. The alpine sites range from 0.52–

2.00 SD (mean: 1.0160.43), the arctic sites range from 0.44–1.34

SD (mean: 0.8460.22), and the montane-boreal sites range from

0.24–1.17 SD (mean: 0.6360.27). However, during the 19th

century and the 1550–1800 intervals, b-diversities for arctic

(p = 0.29 and p = 0.24, respectively) and alpine (p = 0.71 and

p = 0.49, respectively) lakes do not differ significantly from

montane-boreal counterparts (Fig. 3). Complete b-diversity results

are reported in Table 1.

Additionally, 20th century diatom b-diversities from alpine lakes

are significantly greater than either interval of the prior 350 years

(p = 0.01 for both time periods). These increase from a mean value

of 0.52 SD during the LIA (1550–1800) to 0.61 SD during the 19th

century, rising to 1.01 SD in the 20th century (Fig. 3A). A parallel

increase in 20th century diatom b-diversity is evident in the arctic

lakes, with a lower level of significance (p = 0.05 for both time

periods). Here, the succession of mean values is: 0.75 SD (1550–

1800 AD); 0.71 SD (19th century); and 0.84 SD (20th century). In

contrast, none of the temporal changes in diatom assemblage

turnover from montane-boreal lakes represent statistically signif-

icant trends (p = 0.76 for the 19th century and p = 0.89 for the

LIA).

While we accept this result as a first approximation, we caution

that the limited available dating control strongly limits inferences

prior to the 20th century from these sites, relative to the arctic and

alpine records (Fig. 3, Table 1). Indeed, large changes in diatom

assemblages from north-boreal lakes during the 19th century have

been documented elsewhere [14,17].

Summarily, diatom b-diversity for all 52 lakes during the 20th

century is significantly greater than the 19th century (p = 0.03),

while there is only a small and non-significant difference in

turnover between the 19th century and 1550–1800 intervals

(p = 0.86). Alpine and arctic lakes reveal greater diatom assem-

blage turnover in the 20th century relative to forested montane-

boreal sites, even though the previous 350 years reveal no

significant differences between the three biomes (Fig. 3).

Figure 2. Examples of diatom stratigraphic records. Stratigra-
phies of diatom relative abundance are illustrated for one arctic lake
(CF-11, A), two alpine lakes (Curator and Emerald, B and C), and one
montane-boreal lake (North Barrière, D). Diatom taxa are ordered by
descending DCCA axis 1 score from left to right. b-diversity values
corresponding to each time interval are shown on the right. Only
dominant taxa are shown, however all taxa .1% were included in b-
diversity calculations.
doi:10.1371/journal.pone.0010026.g002
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Diatom b-Diversity – Environment Relationships
To investigate potential influences on diatom compositional

turnover, we tested relationships between b-diversity and a

number of physical and limnological characteristics of the lakes,

including: lake and catchment area, maximum depth, pH,

conductivity, [NO3
2], modeled Nr deposition, gridded ambient

summer and winter air temperatures, and modeled temperature

trends 1948–2008 [Materials and Methods]. For each lake, we first

standardized 20th century b-diversity estimates to the 19th century

value, in order to account for between-lake differences in natural

variability. We failed to uncover statistically significant relation-

ships between standardized 20th century diatom b-diversity and

any one of the physical or environmental variables considered. For

example, 20th century diatom b-diversity is not correlated to lake-

water pH (r = 0.01, p = 0.47). One reason there are no immediate

correlations is the upward inflection of diatom b-diversity values at

both extremes of the latitudinal gradient (i.e. arctic and alpine

lakes, respectively), a pattern that is not mirrored by any single

variable tested.

Discussion

Diatom b-Diversity, Latitude, and Altitude
There are two geographic subsets within our data for which 20th

century diatom b-diversity is highest: high latitude-low altitude

lakes and high altitude-low latitude lakes (Table 1). It has

previously been demonstrated that diatom community turnover

since 1850 increases with latitude in the Arctic [2]. Our present

results confirm this finding, and places it in the longer context of

the last 450 years. Furthermore, we show that 20th century diatom

turnover rates in high altitude lakes are of similar or greater

magnitude to those recorded in the Arctic. When the data from

arctic and montane-boreal lakes are collated (i.e. alpine lakes

excluded), there is a significant linear relationship between 20th

century b-diversity and latitude (r = 0.52; p,0.001; n = 37, Fig. 4A).

Similarly, when alpine and montane-boreal lakes are combined

(i.e. sites .60uN excluded), a significant linear relationship

(r = 0.51; p,0.003; n = 32) emerges between 20th century b-

diversity and altitude (Fig. 4B). In contrast, no relationships are

evident between b-diversity and either altitude or latitude during

the 19th century or the LIA, indicating that these ecosystems do

not have naturally high rates of diatom assemblage turnover.

Thus, the observed relationships between diatom b-diversity and

both latitude and altitude (Fig. 4) confer greater ecological

responses among arctic and alpine lakes to 20th century

environmental changes than to natural perturbations, including

the LIA cold spell.

These observed geographic patterns raise the hypothesis that

20th century diatom community dynamics were driven alternately

by changes in two external factors: climate warming and enhanced

Nr deposition. Summarizing the 20th century b-diversity trend

over the complete latitudinal range of lakes in relation to the mean

value (0.82 SD) enables a graphic delineation of the arctic and

alpine regions characterized by the highest b-diversity values

(Fig. 5A). When the climate change and Nr deposition gradients

are added for comparison, Nr deposition rises for the alpine

locations, while climate warming is greatest in the Arctic

(Figs. 5B,C). Thus, the failure of 20th century diatom b-diversity

to correlate statistically with any individual physical or limnolog-

ical variable, including surrogates for Nr deposition and climate

warming, can be explained by the sensitivity of b-diversity to more

than one primary forcing factor across the 52-lake population.

Given the geographical breadth of lakes considered, this is perhaps

not surprising. However, the reality of multiple stressors is their

potential to act independently in some regions, and synergistically

in others. For example, the diatom stratigraphy from Emerald

Lake (Fig. 2C), which produced the highest 20th century b-

diversity of any site considered, reveals an early response

consistent with warming (Discostella spp.) followed by later changes

associated with Nr deposition (Asterionella formosa).

Climate Change as a Driver of Diatom b-Diversity
A compelling range of data reveals the legacy of pronounced

climate warming during the last century, which is firmly imprinted

in both arctic [18,19] and North American alpine [20,21]

environments. Regional compilations of arctic temperature

reanalysis data [22] and paleoclimatic proxies [18] suggest that

mean temperatures since ,1970 exceed any period within the

prior 400 years (Fig. 6 A and B). The most recent arctic analysis

[19] indicates that four of the five warmest decades of the past two

millennia have occurred since 1950, and that recent summer

temperatures are much as 1.4uC warmer relative to the long-term

trend modulated by solar insolation. Furthermore, it has been

established that the rate of arctic warming increases with latitude

Figure 3. Boxplots of diatom b-diversity from each lake region.
Black dots represent the median value, boxes are the 25th percentile
surrounding the mean value, and dashed ticks indicate range. (A) 20th

century results; statistically significant differences exist between alpine
and montane-boreal (p = 0.003) and arctic and montane-boreal
(p = 0.004) lakes. Results for the 19th century (B) and 1550–1800 (C)
reveal no statistically significant differences, in contrast to the 20th

century.
doi:10.1371/journal.pone.0010026.g003
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[23]. Although similar trends are evident in North American

alpine regions, the rate and amplitude of warming is greater in the

Arctic, primarily because positive feedbacks involving the cryo-

sphere become accentuated with increasing latitude. Recent arctic

warming corresponds closely with the regional increase of diatom

b-diversity observed in high-latitude lakes over the 20th century

(Fig. 5), especially given that the character of diatom assemblage

shifts in these lakes is consistent with those anticipated from

warmer summers and longer growing seasons: increased diatom

biomass, species richness and species size, and in many cases

increased representation by planktonic forms [2].

However, it is important to note that climate trends in the Arctic

are spatially heterogeneous [24,25]. Accordingly, regions that have

experienced the least recent warming, including northern Québec,

Labrador, and west Greenland, also contain the arctic lakes with

the lowest 20th century diatom b-diversity values (e.g. Tasikutaaq

Lake: 0.64 SD; Lake B: 0.76 SD, Table 1). This is concordant with

the contention that climate warming is the primary driver of

diatom b-diversity in the Arctic.

While climate change must be viewed as a potential driver of

diatom shifts across each of the regions considered here, montane-

boreal lakes tend to have considerably longer open-water seasons,

so that thresholds for diatom taxonomic shifts are more gradually

met. These ecosystems are potentially not as sensitive to small

changes in climate or nutrient input [14], in part due to the

edaphic stability of their catchments [26]. Relatively low mean

20th century diatom b-diversity in these lakes (Fig. 3A) is entirely

consistent with these attributes. Nonetheless, certain montane-

boreal lakes produce very high 20th century b-diversity, including

Figure 4. Scatterplots of 20th century b-diversity against
latitude and altitude. In (A), only the arctic and montane-boreal
lakes are considered (n = 37), whereas (B) includes the alpine and
montane-boreal sites (n = 32). Both relationships are highly significant
(p,0.01; p = 0.03).
doi:10.1371/journal.pone.0010026.g004

Figure 5. Latitudinal distribution of 20th century diatom b-
diversity in relation to modeled Nr deposition and recent
climate change. In (A), the horizontal line represents the grand mean
20th century b-diversity value (0.82 SD, n = 52), and vertical dashed lines
represent the intersection of this value with the a LOESS smooth curve
[48] fitted using a span of 0.75. Using the same approach, curves were
fitted to the Nr deposition (B) and climate change (C) trends extracted
from gridded data [Materials and Methods], revealing their respective
latitudinal trends. The 95th percentile confidence interval is shaded for
each curve. Lakes illustrated in Fig. 2 are identified on panel (A).
doi:10.1371/journal.pone.0010026.g005
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Toquart Lake (Vancouver Island, 1.17 SD) and Namur Lake

(northern Alberta, 1.16 SD). Such responses are, however,

restricted to a minority of sites: 20th century diatom b-diversity

exceeds the grand mean of 0.82 SD in only 3 of 17 montane-

boreal lakes considered (Table 1).

The impacts of recent climate warming on alpine lakes has been

more closely investigated, revealing a range of hydrological and

limnological changes that ultimately confer high degrees of

sensitivity to climate change [21,27]. Reanalysis data from the

Rocky Mountains show similar late 20th century temperature

trends in both the Canadian and American sectors of the cordillera

(Fig. 6C). The two warmest intervals of the 20th century (1950–

1970 and 1990-present) are the only decades that exceed mean

1901–1960 temperatures inferred from the 400 year dendrocli-

mate record (Fig. 6D). Thus, recent warming in the Rocky

Mountains is of lesser magnitude than that witnessed in the Arctic.

And yet mean 20th century diatom b-diversity from the alpine

lakes is slightly higher than arctic counterparts (Fig. 3A), including

the highest individual values and the only ones .1.4 SD (Table 1).

In the few cases where analyses have been conducted in sufficient

detail, the climatic legacy, while present, is less pronounced than

that attributable to Nr deposition, with respect to both diatoms

and stable isotopes [28]. The widespread recent proliferation of

nitrophilous diatoms in American alpine lakes suggests that this

assertion is regionally valid [4,16]. The diatom succession from

Emerald Lake aptly illustrates this type of complex response:

Discostella spp. increase dramatically following the LIA, only to be

swamped by Asterionella formosa after 1950 (Fig. 2C). It is on the

basis of these observations that we consider in greater detail Nr

deposition in relation to diatom community turnover in alpine

lakes.

Nr Deposition as a Driver of Diatom b-Diversity
Atmospheric emissions of Nr have increased 9-fold over the last

century, now exceeding 140 Tg N yr21 globally. Humans fix

more N2 than the sum of natural processes [29]. In aquatic

ecosystems, greater Nr availability from atmospheric subsidies

becomes ecologically relevant by alleviating N limitation; lakes

that are naturally N-limited or co-limited by N and P are thus

most susceptible. It has been estimated that deposition rates in

excess of 1.5 kg N ha21 yr21 are sufficient to induce rapid

changes in the diatom communities of lakes [30]. However, a

pronounced latitudinal gradient exists with respect to gridded

estimates of Nr deposition increases between 1860 and 1993,

mirroring patterns of human settlement and the intensity of

agricultural activities [3]. With respect to the lakes under

consideration here, the greatest increases in Nr deposition rates

occur in the region immediately adjacent to low-latitude, high-

altitude lakes of the Rocky Mountains (Fig. 5B). Here, 20th century

diatom b-diversity values are typically high, including the lakes in

our survey that have changed the most Table 1). Given that

climate warming is of lower amplitude than that witnessed in the

Arctic, and considering the ecology of diatom taxa involved in

these changes [4,6,16,28], we surmise that Nr deposition has

contributed directly to the inflection of 20th century diatom b-

diversity values observed in low-latitude alpine lakes (Fig. 5A). This

is not to say that climate is unimportant in driving recent

ecological changes in the alpine, but rather that the combined

influences of climate warming and Nr deposition may conspire to

produce higher 20th century diatom b-diversities than those

attributable to climate alone. The inclusion of additional alpine

lake populations [1] is required to fully assess these nuances.

Synthesis of Results by Principal Components Analysis
(PCA)

PCA allows an effective integration of both the climate and Nr

deposition gradients for all 52 lakes, for which the additional

variables of pH and lake:catchment area ratio are included to

summarize the chemical and physical environments of each site.

The independently-generated 20th century b-diversity values are

included in the analysis as passive variables, and subsequently

contoured onto the resulting plot (Fig. 7A). The first PCA axis

Figure 6. Temperature anomalies for arctic (A and B) and
alpine (C and D) regions. (A) regional compilation of arctic (.60uN)
instrumental temperature data for the period 1870–2005 (data from
HadCRUTv2; http://www.cru.uea.ac.uk/). (B) Arctic multi-proxy paleocli-
mate reconstructions [18]. (C) NCEP/NCAR reanalysis data for alpine
regions of the Canadian and American Rocky Mountains (data from
http://www.cdc.noaa.gov/). (D) Alpine dendroclimatic reconstruction,
showing temperature anomalies of the last 400 years [19]. The
reanalysis data are expressed in relation to the 1961–1990 mean,
whereas proxy reconstructions are calculated relative to 1901–1960.
The shaded area in (B) indicates standard errors of prediction.
doi:10.1371/journal.pone.0010026.g006
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accounts for 38.1% of total variance explained, and conveniently

distinguishes sites with high Nr deposition (positive scores) from

those more influenced by climate warming (negative scores). This

is the only significant principal component in the analysis, when

compared to a broken-stick model based on randomly-generated

matrices of identical proportions and total explanatory power [31].

The limnological variables (pH and lake:catchment area ratio) are

more closely associated with the second axis, which is not

statistically significant. This suggests that regional climate change

and Nr deposition rates, which define the primary axis, are more

important than site-specific factors in the analysis.

When 20th century diatom b-diversity is passively superimposed

on the PCA and contoured, values increase concentrically away

from the origin (Fig. 7A). This implies greater diatom change at

sites towards the extremities of axis 1, confirming that climate

warming and enhanced Nr deposition alternately represent the

dominant influence on diatom assemblage turnover within subsets

of our lake population (Fig. 7A). The ordering of lake scores on the

first PCA axis provides a visualization of site distribution along a

gradient opposing climate change with Nr deposition (Fig. 7B).

Although there are some exceptions, the arctic and montane-

boreal lakes generally produce negative scores and hence are more

strongly associated with temperature change, whereas alpine lakes

have negative scores that confer a greater influence to Nr

deposition. Montane-boreal lakes cluster more closely with the

arctic population, suggesting that they have changed primarily in

responses to climate warming. This is corroborated by recent

increases in centric planktonic diatom populations in many of

these lakes, and the absence of similar trends among taxa

responsive to Nr deposition, such as Asterionella formosa [32]. The

PCA thus provides a concise a posteriori verification of the pattern

identified earlier: changes in diatom assemblages over the 20th

century relate to more than one environmental forcing, and these

are expressed in a geographically coherent manner.

Finally, we note that lake scores on the primary PCA axis form a

near-continuum of values (Fig. 7B), which mandates that some

lakes are concommitantly influenced by climate change and Nr-

deposition, even though their 20th century b-diversity values may

be modest. While we have attempted to separate these forcings,

ultimately such efforts may prove futile because Nr delivery to

lakes and climate warming are not mutually exclusive of each

other. For example, climate warming influences precipitation, and

in turn Nr deposition rates from wet deposition [33]. Furthermore,

in both the Artic [34] and the alpine [26], melting of glaciers and

perennial snowpacks has the potential to relegate anthropogenic

Nr archived in snow and ice back to surface waters, irrespective of

Nr deposition rates from precipitation. In our view, it is the

potential for such synergistic processes that represents the most

ominous threat for aquatic ecosystems in the 21st century, given

stratigraphic evidence that such combined changes are already

underway in some regions (Fig. 2C).

Conclusions
During the 20th century, changes in diatom assemblages from

both arctic and alpine lakes have accelerated relative to the

Figure 7. PCA of site-specific temperature and Nr deposition
trends, lake pH, and lake:catchment area ratio. (A) Biplot of the
two first PCA axes, with 20th century diatom b-diversity included in the
PCA as a passive variable, contoured at 0.05 SD intervals using thinplate
splines over the ordination space. (B) Lake scores ordered by PCA axis 1
score, with lake numbers corresponding to Table 1, and shading by
region.
doi:10.1371/journal.pone.0010026.g007
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previous 350 years. Elevated 20th century b-diversity is associated

primarily with climate warming and Nr deposition, with strong

regional variations in the degree of influence attributable to either

forcing factor. Given future scenarios for both climate change

[35,36] and Nr deposition [3], the diatom b-diversity trends are

unlikely to be reversed, and in our view will only become

exacerbated as the 21st century progresses. Our study contributes

further proof that distinctive biological fingerprints exist for the

Anthropocene [37], while extending this notion to include the

microbiota of remote lakes. As with organisms such as birds [38]

and higher plants [39], future trajectories of lake diatom

communities include states for which no prior analogs exist.

Although the full range of ecological implications remain poorly

understood, changes at the base of food webs necessarily entail

consequences for higher trophic levels, while modifying the

biogeochemical cycling of major elements including, but not

limited to, carbon, nitrogen, phosphorus and silicon. Increases of

primary production and organic matter sedimentation may also

influence the recruitment of metals, both natural and anthropo-

genic, to sediments. The prognosis for truly unperturbed lake

ecosystems, if indeed any still remain, is that they are highly

susceptible to marked biological reorganizations. Lakes that have

already entered new biological regimes will continue to change as

humankind tightens its grip on both the global climate system and

key biogeochemical cycles.

Materials and Methods

Site Selection, Core Chronology, and Diatom Analysis
Fifty-two diatom stratigraphies were compiled from lakes in

western and northern North America and west Greenland (Fig. 1),

spanning latitudes from 37.67uN to 79.33uN, and altitudes from

12 m asl to 3546 m asl (Table 1). The range of lake-water pH is

5.9–8.4, representing a large environmental gradient that is

captured by diatom assemblages ranging, accordingly, from

acidophilous to circumneutral to alkaliphilous. Sites can be

categorized into arctic (.60uN; n = 20), alpine (above altitudinal

tree-line; n = 15), and temperate montane-boreal lakes (,60uN
and forested; n = 17) (Table 1). Despite being restricted to a single

cordillera (the Rocky Mountains), the alpine lake population spans

15u of latitude, from southern Colorado to Alberta. The arctic

lakes include sites from the continental Northwest Territories,

much of the Canadian archipelago, northern Quebec, and west

Greenland, together spanning 18u of latitude and 61u of longitude.

To close the geographical gap (Fig. 1), and for meaningful

comparisons with arctic and alpine sites, we also included a

number of low elevation lakes in forested catchments of western

Canada (Alberta, central British Columbia, and Vancouver

Island). None of the lakes in our analysis is affected by direct

point-source anthropogenic activities (e.g. shoreline development,

effluent discharge, acidification). Most of the sites have been

previously published upon in the context of local and regional

studies (Table 1).

Continuous lake-sediment cores with an intact sediment-water

interface were collected using a gravity-type corer [40]. Once

recovered, cores were sampled continuously and immediately at

either 0.25 cm or 0.5 cm resolution. Chronostratigraphy of the

cores was established by 210Pb dating with alpha or gamma

spectroscopy [41]. Sedimentation rates were extrapolated to an

estimated age of 450 years only where constant stable values were

reached in the unsupported 210Pb inventory of the core. Adequate

chronology was the primary criterion for inclusion in our

compilation. However, for many sites only the 20th century is

dated with acceptable accuracy and precision, so that the number

of sites for which earlier intervals are considered is somewhat less

than 52 (Table 1). The three sites with previously unpublished

chronologies have unsupported 210Pb inventories that can be

reliably interpreted using the constant rate-of-supply model (Fig.

S1).

Preparation of sediment samples for diatom enumeration

followed standard protocols [42]. Diatom enumeration was carried

out on selected sediment intervals, at resolutions ranging from

0.25 cm to 3.0 cm. Two taxonomic complexes were used include

small (,15mm) and ecologically comparable Discostella and

Cyclotella spp., which can not be resolved by light microscopy:

these are the ‘Discostella stelligera complex’ (D. stelligera and D.

pseudostelligera) and the ‘Cyclotella comensis complex’ (C. comensis, C.

rossii, and C. tripartita).

Numerical Analyses
To estimate compositional turnover of sediment diatom

assemblages, or b-diversity, relative abundances were analyzed

using detrended canonical correspondence analysis (DCCA)

constrained to time [12]. DCCA models assemblage composition

as a unimodal response to one or more environmental variable. By

constraining the DCCA to time, as inferred from 210Pb dating, we

retain the biostratigraphic integrity of each sedimentary diatom

sequence. The larger the b-diversity value obtained over the

interval under consideration, the greater the assemblage turnover.

This strategy allows for explicit comparisons between assemblage

changes during the 20th century and discrete earlier intervals. The

selection of time slices for diatom b-diversity calculations is based

on climate change over recent centuries. Paleoclimatic recon-

structions consistently reveal the LIA (,1550–1850 AD) as one of

the coldest intervals of the Holocene, when glacial advances were

widespread and low summer temperatures prevailed [43]. The

onset of the LIA was gradual, and maximum glacier expansions

occurred asynchronously between the late 17th and 19th centuries.

The LIA terminated by the end of the 19th century, and

temperatures have increased since, although not monotonically.

The latter part of the 20th and the first decade of the 21st century

have probably witnessed the highest temperatures of at least the

last millennium [44]. Accordingly, we adopted the following time

slices for diatom b-diversity calculations: 1550–1900, the 19th

century, and the 20th century. Owing to dating uncertainty and

variable sediment recovery from site to site, the number of diatom

records decreases with age (Table 1). Where dating control was

adequate, we included only those lakes with a minimum of three

sediment intervals within any one time period. The DCCA

protocol included square-root transformation of relative frequen-

cies to stabilize between-taxon variance, no down-weighting of

rare taxa, inclusion of all taxa with .1% relative abundance,

detrending by segments, and non-linear rescaling. DCCA was

performed using CANOCO 4.51 [45].

We subsequently used multiple linear regression to test for

correlations between selected physical and limnological variables

and 20th century diatom b-diversity. Variables include lake and

catchment area, lake:catchment area ratio (a surrogate for water

residence time), maximum depth, winter (December–February)

and summer (June–August) ambient air temperatures, surface air

temperature trends for each site from 1948–2008, measured lake-

water pH, specific conductance, [NO3
2], and modeled atmo-

spheric reactive nitrogen (Nr) deposition between 1860 and 1993

[46]. Three gridded air temperature parameters were extracted for

each lake’s coordinates: (1) winter (December–February) and (2)

summer (June–August) air temperatures from high resolution (109)

interpolations from station means for the period of 1961–1990

[25], and (3) surface air temperature trends 1948–2008 extracted
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from the NCEP/NCAR Reanalysis Project [22], summarized

using the linear trend (slope) of the data period. Nr deposition

estimates were extracted from gridded (5u longitude by 3.75u
latitude) global data-sets using the nearest grid centroid to the

corresponding lake coordinates [3,46].

Non-parametric Wilcoxon rank sum tests were used to assess the

statistical significance of b-diversity between lake categories within

each time period and between time periods for each lake category.

Levels of statistical significance were evaluated using Bonferroni-

adjusted values of p. Finally, in order to summarize and evaluate

collective environmental influences on b-diversity lake-by-lake,

ordination by principal components analysis (PCA) was undertak-

en on the following standardized variables: 1948–2008 tempera-

ture trend, DNr deposition 1860–1993, pH, and lake:catchment

area ratio (with 3 sites excluded due to insufficient catchment

data). The latter two variables were included as conservative

measures of lake chemical and physical characteristics, respective-

ly. These analyses, as well as the extraction of gridded climate

data, were conducted using the open-source software environment

R [47].

Supporting Information

Figure S1 210Pb chronology from three unpublished alpine

lakes included in this study. Lakes are detailed in Table 1. All three

age models met our criteria for inclusion in the study, yielding

reliable dates through the unsupported 210Pb section of the core.

Constant sedimentation rates near the limit of 210Pb dating are

shown by the linear relationships of log 210Pb activity against

cumulative dry mass and were used to extrapolate dates to

approximately 1550.

Found at: doi:10.1371/journal.pone.0010026.s001 (1.77 MB TIF)
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