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Abstract 

Background 

Mutations in the gene encoding the DNA-polymerase gamma (POLG), the enzyme 

that replicates and repairs the mitochondrial genome, are an important cause of human 

disease and disability. Over 130 pathogenic mutations have been reported and these 

produce a wide spectrum of disease that mainly includes syndromes with myopathy 

or/and encephalopathy.  

Aims 

To define the clinical features, natural history, pathophysiology and molecular 

pathogenesis of POLG-disease focusing particularly on disease caused by the 

mutations c.1399G>A, p.A467T and c.2243G>C, p.W748S, but including other 

POLG mutations causing encephalopathic disorders such as Alpers’ syndrome. 

Patients and methods 

The studies presented herein were performed on a large group of patients (n=42) with 

POLG-disease comprising 36 with juvenile/adult encephalopathy, 4 with infantile 

encephalopathy and 2 with progressive external ophthalmoplegia (PEO). Patients 

were categorized according to genotype and clinical features and studied by a variety 

of clinical, pathological and molecular methods. Studies included thorough clinical 

evaluation and follow-up, clinical and electrophysiological investigation of the 

epilepsy, imaging methods comprising conventional magnetic resonance imaging 

(MRI), diffusion imaging (DWI) and magnetic resonance spectroscopy (MRS), post-

mortem histological and histochemical examination and molecular studies of 

mitochondrial DNA in biopsy and post-mortem tissues.   

Results and conclusions  
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The common POLG mutations, A467T and W748S, caused a clinically well-defined 

entity usually presenting in the mid-teens (mean 15.2 years, range 1.5-45) and 

characterised by progressive spinocerebellar ataxia, encephalopathy, neuropathy, 

migraine-like headache, myoclonus and late-onset external ophthalmoplegia. Most of 

our patients developed epilepsy, either at onset or during the course of their disease, 

and these experienced acute episodic exacerbations with rapidly progressive 

encephalopathy and expanding stroke-like cerebral lesions. Episode mortality was 

high (~50%) and in addition, several others suffered from valproate induced liver 

toxicity. MSCAE showed a complex epileptic semiology including a variety of 

clinical seizure types and frequent status epilepticus. Epilepsia partialis continua and 

an occipital epileptogenic focus on EEG were characteristic findings and should 

provide a clue for the diagnosis.  

The prognosis of MSCAE depended on the genotype. Patients who were compound 

heterozygous (A467T/W748S) had a significantly (p=0.003) worse prognosis than 

homozygous patients with significantly lower life expectancy.   

We found that MRI is a sensitive detector of disease activity in POLG-

encephalopathy. Typical findings included high T2 signal lesions in the thalamus, 

cerebellar white matter and olivary nuclei. During exacerbation episodes both 

MSCAE and Alpers’ patients commonly developed stroke-like cortical lesions which 

had a predilection for the posterior brain and showed restricted diffusion and lactate 

accumulation in the acute phase. Stroke-like lesions evolved dynamically mirroring 

clinical progression of the episode and their course had prognostic significance. 

Histology of affected cortical and deep CNS areas revealed selective neuronal loss, 

eosinophilic necrosis and laminar cortical necrosis. Histochemistry showed reduced or 

absent cytochrome oxidase (COX) activity in some neurons, but was normal in blood 

vessels. MtDNA studies revealed tissue-specific depletion and multiple deletions. The 

findings of mtDNA damage and histochemical COX deficiency suggest that POLG 

mutations lead to secondary dysfunction of the respiratory chain, which is predicted to 

cause energy failure due to ATP deficiency. We present here findings suggesting that 
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regional chronic energy failure indeed occurs in the CNS of patients with POLG-

encephalopathy. Moreover, acute episodic energy crisis may occur, which appears to 

be triggered and/or sustained by epileptic seizures. 
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1. Introduction 

1.1 Historical overview 

It is generally accepted today that mitochondria originated between 3.45 and 2 billion 

years ago as a result of an ancient endosymbiosis between an �-proteobacterial 

organism and an anaerobic host cell. The proteobacterial endosymbiont granted its 

host the ability to use atmospheric oxygen in order to produce energy from 

carbohydrates and fat by the process of oxidative phosphorylation (OXPHOS). The 

ability to perform aerobic respiration in an environment with increasing oxygen 

concentration (thanks to the parallel action of the primitive plant ancestors) gave the 

cells an evolutionary advantage and has probably been one of the key events that 

allowed the evolution of large multicellular animal organisms. Meanwhile, the 

endosymbiont adapted to its new intracellular environment, apparently translocated 

most of its own genes to the cell nucleus and became gradually assimilated into its 

host eventually becoming the organelle that today we call mitochondrion [1]. 

Since their discovery in the mid-late 1800s, mitochondria have been the focus of 

cellular, biochemical and molecular studies revealing the complexity and uniqueness 

of their structure and function. It was, however, not before the early 1960s that 

mitochondria were for the first time implicated in human disease.  In 1962 the 

Swedish endocrinologist Rolf Luft described a young woman with a hypermetabolic 

syndrome and biochemical and histological findings suggesting mitochondrial 

dysfunction [2]. Luft syndrome was the first mitochondrial disease to be described 

and ironically also the rarest, since only one more case has been described [3]. In 

1963 it was shown that mitochondria contain their own genome, mitochondrial DNA 

(mtDNA) [4, 5], which was fully sequenced in 1980 [6]. Studies have also shown that 

mitochondria, and therefore mtDNA, are maternally inherited and that mtDNA 

acquires sequence changes frequently. 
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The 1970’s and early 1980’s were marked by an increasing number of reports 

describing biochemical defects in the respiratory chain, but it was not until the late 

1980’s that the first mtDNA defects were identified. In 1988 Holt and co-workers 

showed that large scale mtDNA deletions can cause myopathy with progressive 

external ophthalmoplegia (PEO) in humans [7], while at the same time the first 

pathogenic mtDNA point mutation was described in Leber’s hereditary optic 

neuropathy [8]. Thus the role of mitochondrial genetics in human disease was 

revealed.  

In the years that followed, mtDNA mutations were found to be the cause of several 

distinct clinical syndromes including mitochondrial encephalomyopathy, lactic 

acidosis and stroke-like episodes (MELAS), myoclonic epilepsy with ragged red 

fibres (MERRF), maternally inherited Leigh disease, Kearns-Sayre syndrome and 

others. Patients with these syndromes often have complex, systemic diseases with 

multiple organ involvement including the central and peripheral nervous system, 

muscle, liver, heart, kidney, exocrine and endocrine pancreas. Due to the nature of 

mtDNA, these disorders are either maternally inherited, or sporadic. 

In 1989, a family with autosomal dominant PEO and multiple mtDNA deletions in 

skeletal muscle was described [9]. Later it was revealed that the disease was caused 

by mutations of a nuclear gene that encoded a mitochondrial helicase called Twinkle 

[10]. Twinkle unwinds mtDNA to prepare it for replication and its mutations cause 

disease by inducing secondary damage to the mitochondrial genome. The same year, 

Van Goethem et al [11] reported a family with autosomal dominant PEO caused by a 

missense mutation in another nuclear-encoded mitochondrial protein, the polymerase 

gamma (POLG), which replicates and repairs the mitochondrial genome. Since the 

discovery of the first Twinkle and POLG pathogenic mutations the group of nuclear 

mitochondrial diseases has gradually increased in numbers and clinical heterogeneity 

as novel genes are being identified and new syndromes are constantly recognised.        

The discovery of Twinkle, POLG and other nuclear genes opened a new chapter in 

mitochondrial medicine and defined a novel concept in clinical and molecular 
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genetics - that of disease caused by mutations of two genomes. The respiratory chain 

is controlled by both the nuclear and mitochondrial genomes and continuous cross-

talk between these two genomes is necessary for proper mitochondrial function. 

Moreover, mutations of nuclear genes involved in mtDNA homeostasis (e.g. 

replication and repair) cause cellular dysfunction and disease via secondary damage 

of the mitochondrial genome.    

Mitochondrial dysfunction has not only been associated with monogenetic diseases, it 

is also implicated in various neurodegenerative diseases including parkinsonism, 

motor-neuron disease and Alzheimer’s disease, neoplasia and even the process of 

ageing [12, 13]. 

1.2 Mitochondrial structure and function 

Mitochondria are the energy-producing units of the cell. They are found in most 

animal and plant cells, although their numbers per cell vary from a few hundreds to 

over 100,000 in an oocyte. Their basic form is usually that of a tubular, tortuous 

structure spread through the cytoplasm, much like a network. Mitochondria are 

surrounded by two lipid bilayer membranes: a smooth outer membrane and a highly 

convoluted inner membrane. The space between the two membranes is called 

intermembrane space and the space surrounded by the inner membrane is termed 

mitochondrial matrix. MtDNA is localised, transcribed and translated in the matrix. 

The inner membrane is highly convoluted forming multiple projections into the 

matrix called cristae. The energy-generating pathway, the respiratory chain, is located 

within the inner membrane (Figure 1). The respiratory chain generates chemical 

energy, adenosine-triphosphate (ATP), via the process of oxidative phosphorylation. 

Mitochondria are, however, involved in numerous other biochemical processes 

including fatty acid oxidation, heme and steroid metabolism, calcium storage and 

mobilisation, apoptosis and ammonia detoxification via the urea cycle[14].  

1.2.1 The respiratory chain generates energy via the process of oxidative 

phosphorylation (OXPHOS)  
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The human respiratory chain consists of ~90 polypeptide subunits organised into five 

complexes, termed complexes - I to V, and two electron shuttle molecules called co-

enzyme Q10 (CoQ, ubiquinone) and cytochrome c (Cyt-c). Thirteen of the respiratory 

chain subunits are encoded by the mitochondrial genome, while the remaining are 

encoded by the nuclear genome (Table 1, figure 1). The respiratory chain is where the 

process of oxidative phosphorylation (OXPHOS) takes place, which is the most 

important energy generating mechanism of nearly all animal cells (Figure 1).  

 

 

Figure 1. The respiratory chain.  

Reduced cofactors such as NADH and FADH2, which are generated by glycolysis, 

citric acid cycle, fatty acid oxidation and other processes, are reoxidised by complexes 

I and II . Electrons are transferred from cofactors to complex I or II and subsequently 

to complexes III and IV in a series of oxidoreduction reactions before finally reacting 

with molecular oxygen to generate water. During this process hydrogen cations are 
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pumped from the mitochondrial matrix to the intermembrane space, creating an 

electrochemical gradient known as proton motive force. Protons are finally “allowed” 

to flow back into the matrix via the last complex, the ATP-synthase, which couples 

the flux of protons to energy formation in the form of ATP [14].    

 

Complex I II III IV V 

Nuclear subunits 39 4 10 10 14 

Mitochondrial 

subunits 

7 

ND1-6, ND4L 

0 1 

CYB 

3 

COX I-III 

2 

ATPase 6 
ATPase 8 

Total 46 4 11 13 16 

 

Table 1. Composition and encoding of the respiratory chain complexes.  

ND: NADH-dehydrogenase, CYB: cytochrome-b, COX : cytochrome oxidase. 

 

1.2.2 Structure of mitochondrial DNA (mtDNA) 

Mitochondria (and chloroplasts in plants) are the only organelles, other than the 

nucleus, that contain genetic information. Human cells contain multiple copies of 

mtDNA ranging from a few hundreds in a sperm cell to many thousands in an oocyte. 

MtDNA is inherited exclusively from the mother, although a single case of paternal 

transmission of mitochondrial disease has been reported [15].   

MtDNA is a circular, double stranded molecule of approximately 16.5kb (Figure 2). 

Purine and pyrimidine content is unevenly distributed between the two strands 

resulting in a purine rich heavy strand and a purine poor light strand. Both strands 

function as templates, with the heavy strand encoding most products. 
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 MtDNA comprises in total 37 genes encoding 13 peptides, 22 tRNAs and 2 rRNAs 

(Figure 2). The 13 peptides encoded in the mitochondrial genome are subunits of the 

respiratory chain complexes I, III, IV and V (Table 1). The remaining respiratory 

chain subunits are encoded by the nuclear genome along with over 1000 other 

proteins that are known to localise in mitochondria. Mitochondrial genes are 

continuous, with no intervening introns. MtDNA contains one major non-coding 

region (NCR) called the displacement loop. The D-loop (D-loop) contains the 

promoters for the transcription of the two strands and the replication origin of the 

heavy strand (OH) according to some models of replication [16, 17].  

1.2.3 Replication of mitochondrial DNA 

Two basic models have been proposed for mtDNA replication: the asynchronous 

strand displacement model and the strand coupled model.   

Asynchronous strand displacement 

In the asynchronous strand displacement model, replication of the heavy strand starts 

first at OH and proceeds gradually displacing the parental heavy strand. The displaced, 

single stranded parental heavy strand is covered by mitochondrial single-strand DNA-

binding proteins (mtSSB), which protect it from degradation. When heavy strand 

replication has reached about 2/3 of the genome, the origin of replication of the light 

strand (OL) is exposed and light strand replication starts, proceeding in the opposite 

direction. Because replication of the two strands starts at temporally distinct points, 

replication of the daughter molecule containing the nascent heavy strand is completed 

first and the two daughter molecules segregate before replication of the daughter 

molecule containing the nascent light strand is completed. 
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Figure 2. Mitochondrial DNA.  

MtDNA encodes 13 peptides (blue): 7 subunits of complex I (ND1-6 & ND4L), 1 

subunit of complex III (CYB), 3 subunits of complex IV (COI-III) and 2 subunits of 

complex V (ATPase6 and 8). The transfer (green) and ribosomal (orange) RNAs 

needed for mitochondrial translation are also encoded in mtDNA.  
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The segregated, still replicating, mtDNA molecule containing the new light strand 

will therefore contain a “gap” and is termed gapped circle [18, 19]. A modification of 

the asynchronous strand displacement model has been proposed which involves 

ribonucleotide incorporation throughout the lagging strand (RITOLS). According to 

this model the displaced parental heavy strand is covered by RNA instead of mtSSB. 

The RNA is then replaced by DNA to produce a double stranded lagging strand. It has 

been shown that RNA may be lost during standard extraction techniques and it has 

been suggested that this loss may account for the partially single stranded replication 

intermediate mtDNA species detected by various techniques including electron or 

atomic force microscopy. It is possible that both the strand-coupled and RITOLS 

models may occur in human cells and that cells may be able to switch between them 

under different conditions [20-22].  

Strand coupled model  

In the strand coupled model, replication of both strands starts simultaneously within a 

“replication zone” thought to be broader than the D-loop and daughter strand 

formation proceeds synchronously throughout the genome. In this model, no single 

stranded intermediates or gapped circles are made [18, 19].  

The mitochondrial replisome 

Several nuclear encoded proteins are involved in mtDNA replication and there are 

probably more to be discovered. The minimum number of proteins required to make a 

functional replisome, capable of replicating full length mtDNA in vitro are: the 

mitochondrial DNA polymerase gamma (pol �, POLG), a helicase called Twinkle and 

mitochondrial single stranded binding proteins (mtSSB) [19].   

1.3 The mitochondrial DNA-polymerase gamma 

Polymerase gamma (POLG, Pol �) is a DNA-dependent, DNA polymerase and the 

only enzyme that replicates and repairs the mitochondrial genome. The holoenzyme is 

a heterotrimer composed of one catalytic subunit (pol �A) of 139kDa, encoded by 
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POLG1 on chromosome 15q25, and a dimer of two accessory subunits (pol �B) of 

53kDa encoded by POLG2 on chromosome 17q (Figure 3).  

The catalytic Pol �A shares homology with type-I (A-family) DNA polymerases such 

as the phage T7 polymerase and Escherichia coli DNA pol I. It also has unique 

features, such as a large spacer domain, not found in other polymerases of this family 

[23-25]. The structure and size of the pol � enzyme is highly conserved in vertebrates: 

it has been shown that frog and murine pol �B can stimulate replication by the human 

pol �A homologue in primer elongation assays [26, 27]. Yeast lacks pol �B and 

drosophila only has one subunit, due to lack of the amino acids necessary for 

dimerisation, suggesting that the incorporation of pol �B into pol � and more so its 

dimerisation are relatively recent evolutionary events [23]. Pol �B shares significant 

homology with prokaryotic class II glycyl tRNA synthetases suggesting it might have 

evolved from similar molecules [26, 27] 

The catalytic pol �A comprises a mitochondrial leader sequence (residues 1-170), a 

polymerase domain (residues 441-475 and 786-1239), which replicates mtDNA, an 

exonuclease domain (residues 171-440), which proof-reads and repairs newly 

synthesised DNA in a 3’-5’ direction, and a large, intervening spacer or linker region 

(residues 476-785) to which the accessory pol �B subunits bind (Figure 3, 4). 

Pol �A has a canonical polymerase “right hand” configuration that comprises finger, 

palm and thumb subdomains (Figure 4). The palm (residues 816-910 and 1096-1239) 

contains the catalytic site and is the most highly conserved part of the molecule. Like 

in other DNA-polymerases, the palm is positively charged in order to stabilise the 

negatively charged DNA backbone and contains two magnesium-complexed aspartate 

residues (D890 and D1135), which are vital for the formation of the phosphodiester 

bond between the 3’ OH end of the growing nascent strand and the phosphate group 

of the incoming nucleotide.     

1.3.1 POLG structure and function 
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The finger (residues 911-1095) and thumb (residues 441-475 and 786-815) domains 

are thought to have similar functions as in other DNA-polymerases. The finger 

domain binds to the DNA template and incoming dNTP. Once the base of the dNTP 

has been correctly matched with the corresponding base at the 3’-end of the template, 

the finger domain changes its conformation in order to push the incoming dNTP into 

the catalytic groove of the palm and bring it in contact with the magnesium ions that 

will catalyse the formation of the new phosphodiester bond. The thumb domain 

interacts with the nascent DNA strand and helps keep the polymerase on its template 

DNA, thus increasing processivity.  

The exonuclease domain of pol �A repairs replication errors by 3’-5’ excision and is, 

therefore, important for fidelity. The selectivity between forward polymerisation and 

excision repair is based on kinetic partitioning between the polymerase and 

exonuclease activities (i.e. the two processes are governed by different kinetics). After 

each new nucleotide is added by the polymerase at the 3’-end of the growing nascent 

strand, POLG will either proceed to adding the next nucleotide, or allow the 

exonuclease site to remove the newly incorporated nucleotide. Normally 

polymerisation happens at a much higher rate (~300 s-1) than the slow migration of 

DNA to the exonuclease site (~0.2 s-1). When a mismatched nucleotide is added, 

however, polymerisation stalls, while the rate of DNA transfer to the exonuclease 

active site increases strongly favouring repair [28]. While the exact mechanisms by 

which base mismatches are recognized by pol � remain unknown, steric fit is thought 

to be important. In addition, recent work has shown that lack of hydrogen bonding 

may also play an important role [29].  

The ~400 amino acid long spacer domain is located between the polymerase and 

exonuclease regions and connects to them via the two helices of the thumb subdomain 

(figure 4). Binding of the accessory subunits to the spacer increases holoenzyme 

processivity and reduces fidelity by enhancing DNA affinity and polymerization rate 

and simultaneously suppressing exonuclease activity [25]. The spacer comprises an 

intrinsic processivity subdomain (residues 475-510 and 571-785) and an accessory 
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interacting determinant subdomain (residues 511-570), which binds to the accessory 

subunit. The intrinsic processivity subdomain contains an area rich in positively 

charged amino acids termed the K tract (496KQKKAKKVKK505). When the accessory 

subunit binds to the accessory interacting determinant subdomain of the spacer, a 

conformational change exposes the positively charged K tract, which interacts with 

the template DNA increasing its contact length with the holoenzyme. This is believed 

to be one of the mechanisms by which the binding of the accessory subunit increases 

processivity of the holoenzyme [25]. 

 

 

Figure 3. The structure of pol � holoenzyme. The holoenzyme comprises one 

catalytic (blue) and two accessory (green and pink) subunits (protein databank ID: 

3ikm) [25].   
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Fig 4. The structure of the catalytic pol � subunit (pol �A). A: linearized schematic 

depiction. B: three dimensional figure showing secondary and tertiary protein 

structure when the polymerase is not bound to DNA. Alpha-helices are depicted as 

springs and beta-sheets as flat arrows. The catalytic subunit comprises five 

subdomains which, starting from the N-terminus, are: mitochondrial leading sequence 

(light blue), exonuclease (dark blue), palm (red), fingers (orange), thumb (green) and 

spacer (yellow). Protein databank ID: 3ikm [25].   
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1.3.2 POLG and human disease 

Over 130 pathogenic mutations have been described in POLG1. These cause a broad 

spectrum of disease ranging from late onset myopathies to devastating infantile 

hepatoencephalopathies. Two mutations have been reported in POLG2 causing 

autosomal dominant progressive external ophthalmoplegia [30, 31]. POLG-associated 

disease may be classified into two main groups, myopathies and encephalopathies, 

according to the organ system predominantly involved. The encephalopathies show 

significant overlap of clinical and molecular features, but may be further divided 

according to age of onset into an infantile type and a juvenile/adult type (Table 2). 

POLG-myopathies - Progressive external ophthalmoplegia (PEO) 

Over 50 POLG1 mutations affecting all major domains of the protein cause a 

primarily myopathic phenotype characterized by progressive external 

ophthalmoplegia (PEO) with varying degrees of proximal limb weakness [32]. 

Inheritance is autosomal recessive or dominant according to mutation. In addition, 

PEO is a common clinical manifestation of many POLG mutations that cause more 

complex syndromes with nervous system and/or multisystem disease.  

Based on reported cases, mean age of onset in this group is ~37 years, but patients 

may present at almost any age from early childhood to over 70 years. The autosomal 

recessive form has a slightly later onset (40.4 years, n=40, range 10-75, SD 16.3) than 

the dominant (32.8 years, n=31, range 4-66, SD 16.4).  Clinically, patients have 

bilateral blepharoptosis and ophthalmoplegia, and most have proximal limb weakness 

of varying severity. Additional features may include oropharyngeal myopathy with 

dysphagia and dysarthria, facial myopathy, exercise intolerance, rhabdomyolysis, 

respiratory weakness and cardiomyopathy.  Non-myopathic features may occur (PEO 

plus syndromes) and these include cataract, sensorineural deafness, peripheral 

neuropathy, ataxia, hypogonadism and parkinsonism [33-54]. 

POLG-encephalopathies 
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At least 75 POLG1 mutations, affecting all functional domains of the catalytic POLG 

subunit, cause disease that involves the brain [32]. POLG encephalopathies are 

inherited in an autosomal recessive manner. Several distinct clinical syndromes and 

consistent genotype-phenotype associations are identified, but the clinical features 

overlap significantly and classification is not easy. Several classification systems have 

been proposed all with their advantages and disadvantages. One of the most clinically 

useful distinctions is to group POLG encephalopathies according to age of onset into 

infantile and juvenile/adult syndromes (Table 2).  

 

Encephalopathy 
Disease 

Inhe-
ritance 

Onset 

Range 
Course Myopathy 

Ataxia Epilepsy 

Liver 
disease 

Myopathy (PEO) 

N=71 

AR/ 
AD 

36.5 

4-75 

chronic 
progressive 

+ - - - 

MSCAE 

N=73 
AR 

18.4 

1.5-45 

episodic 
progressive 

late  + 

most 
patients: 

~65% 

Valproate 
induced, 

rarely 
spontaneous 

 

E
nc

ep
ha

lo
pa

th
y 

Alpers’ 

N=65 
AR 

0.9 

0-4 

episodic 
progressive 

rare + + Spontaneous 

 

Table 2. The clinical spectrum of POLG disease. AR: autosomal recessive, AD: 

autosomal dominant. N: number of patients in each group. The data are from our 

material and review of the literature. Ages are given in years. References for POLG-

myopathy: [33-54], MSCAE: [50, 55, 57-59, 62, 66, 73-78 and unpublished material], 

Alpers’: [46, 48, 54, 55, 57-59, 61-71 and unpublished material]. 

 

Most mutations can cause infantile onset encephalopathy with frequent liver 

involvement and high mortality at an early age. The terms Alpers’ or Alpers -
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Huttenlocher syndrome are commonly used to describe these conditions [44, 46, 48, 

53-71]. Some clinicians prefer to use the name Alpers’ disease for pure 

encephalopathies and reserve the term Alpers’-Huttenlocher syndrome for cases with 

brain and liver disease. In this work, the term Alpers’ disease is used synonymously 

with infantile POLG encephalopathy irrespective of liver disease. 

The most common POLG mutations are the c.1399G >A, p.A467T and c.2243G > C, 

p.W748S and these cause a juvenile or adult onset encephalopathy syndrome, which, 

in its most severe form is characterised by the combination of progressive 

spinocerebellar ataxia, epilepsy and episodic exacerbations with stroke-like cerebral 

lesions. This condition has been variously called mitochondrial recessive ataxic 

syndrome (MIRAS) and mitochondrial spinocerebellar ataxia and epilepsy (MSCAE) 

[55, 72, 73].  
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2. Aims of the studies  

The work presented in this thesis describes ongoing studies of POLG-disease in a 

large group of patients that now numbers 42 and includes patients with myopathy 

(n=2), MSCAE (n=36) and Alpers’ disease (n=4). We employed a combination of 

clinical, histological and molecular methods in order to define clinical syndromes and 

study the disease mechanisms not only in the laboratory, but also dynamically in the 

living patient. Our findings describe the clinical spectrum and natural evolution of 

POLG-encephalopathy, focusing on the syndrome of MSCAE caused by the common 

mutations p.A467T and p.W748S, and cast light into the pathophysiology of these 

complex disorders. 

The basic aims of this work were: 

•••• To define the clinical spectrum and natural history of POLG-disease caused by the 

mutations A467T and W748S: Papers I, II, III and unpublished material. 

•••• To characterise the clinical and electrophysiological features of the epilepsy in 

POLG-disease caused by the p.A467T and p.W748S mutations: Paper-II. 

•••• To describe the central nervous system changes in POLG-encephalopathy and 

investigate their pathophysiology by using imaging and histology: Paper III. 

•••• To investigate the molecular pathogenesis of POLG-disease by studying 

mitochondrial DNA changes in various patient tissues: Paper IV and unpublished 

material.  
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3. Patients and methods 

3.1 Patients 

Forty-two patients with POLG-disease comprising 40 patients with encephalopathy 

syndromes (36 patients with MIRAS/MSCAE and 4 with Alpers’ disease) and 2 

patients with myopathy (autosomal recessive PEO) were studied. Of these, 26 patients 

were reported in paper-I, nineteen in paper-II, thirty-two in paper-III and two in 

paper-IV. Five patients (CP-1C and WS-14B, 16A, 17A, 17B) have not been 

published (Appendix I lists the patients reported in each paper and their codes).   

Patient codes for MSCAE consist of two letters, which denote the POLG mutation 

(AT: A467T, WS: W748S, CP: compound A467T/W748S), followed by a number 

describing the family and a letter describing the individual. Patients with the same 

number are siblings. For example patients AT-1A and AT-1B both have the A467T 

mutation and are siblings. Alpers’ patients are called AL, followed by a number and 

letter (e.g. AL-1A). Again, individuals with the same number, like AL-1A and AL-

1B, are siblings. The PEO patients are called A1 and B1. In papers III and IV we use 

the same coding system as in this thesis. We use different patient codes in each of 

papers I and II and provide a key in appendix I.    

3.2 Clinical evaluation - papers I-IV and unpublished material 

Clinical information was obtained from retrospective analysis of the clinical notes, 

clinical examination and follow-up of the patients during the period 2005-2010. 

Thirteen patients were dead at the beginning of the study. Their clinical information 

was obtained exclusively from the notes. Clinical assessment of the patients was 

performed by at least one of the neurologists involved in the studies. 

3.3 Genetic investigations – papers I, III, IV and unpublished material 

3.3.1 POLG analysis  
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Genomic DNA was isolated from blood using standard protocols and POLG exons 2-

23 were amplified using standard procedures and AmpliTaq Gold DNA polymerase 

(ABI, Foster city, USA), including at least 50 bases of flanking intronic sequence. 

Sequencing was performed using BigDye Terminator cycle sequencing kit (v1.1, 

Applied Biosystems). Reference sequence for the POLG-gene: NM_002693.1. 

Nomenclature used is according to international recommendations 

(http://www.hgvs.org/rec.html). 

3.3.2 Mitochondrial DNA studies  

Total DNA was extracted from frozen skeletal muscle biopsies and postmortem 

tissues that had been stored at -80C by overnight incubation in proteinase-K followed 

either by phenol/chloroform extraction or using commercially available kits. Total 

mtDNA content was determined by comparing amplification in mtDNA areas least 

likely to be affected by deletions (12SrRNA and ND1) to a nuclear gene (18SrRNA 

or RNAse-P) using real time PCR with TaqMan fluorogenic probes. MtDNA 

deletions were detected by long-range PCR (LPCR) and quantified by real time PCR 

by comparing the amplification ratio in MT-ND4 and MT-ND1 genes. Detailed 

method description and primer/probe sequences in paper IV and upon request.  

3.4 Radiological investigations – paper III 

A total of 112 MRI and 11 computed tomography (CT) examinations were performed 

in 32 patients (28 with MSCAE and 4 with Alpers’ disease). In 25 patients (21 

MSCAE and 4 Alpers’), sequential examinations were available, allowing us to study 

lesion evolution during the chronic and acute phases of the disease. Diffusion imaging 

was performed in 10 patients (7 MSCAE and 3 Alpers’) and apparent diffusion 

coefficient (ADC) values were measured in 17 stroke-like lesions. All ADC values 

are given in x10-3 mm2/sec. MR angiography (MRA) was performed on 3 patients and 

conventional cerebral angiography on one. Proton single voxel magnetic resonance 

spectroscopy (MRS) was performed in 3 patients (AT-1A, AT-1B, WS-1A). Detailed 

method description in paper-III.  
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3.5 Neurophysiology – papers I & II 

A large number (295) of surface EEG recordings were performed in nineteen patients 

with MSCAE, the remaining patients were excluded either because they did not have 

epilepsy or EEG data was unavailable. Multiple sequential recordings were performed 

in eighteen patients and long-term video-EEG recording was done in four. Peripheral 

nerve studies including electromyography (EMG) and nerve conduction velocities 

(NCV) were performed according to standard procedure. Detailed method description 

in papers-I and II. 

3.6 Pathology – paper III 

Post-mortem examination was performed in 7 patients (AT-1A, AT-1B, AT-2A, WS-

1A, WS-2A, WS-12A and AL-1B) with detailed pathological investigations of the 

brain, spinal cord and liver performed in 3 (AT-1A, AT-1B and WS-1A). Samples 

from various organs were snap-frozen in liquid nitrogen and stored at -80 °C or fixed 

in formaldehyde. Sections of standard areas and areas showing involvement on MRI 

were performed. Sections were examined by standard histology, including 

Hematoxylin-eosin (HE) and luxol fast blue, and immunohistochemistry with 

antibodies directed against glial fibrillary acidic protein (GFAP), HLA-DR/DP/DQ a 

microglial marker, and CD68, a monocyte marker. Double staining for cytochrome 

oxidase (COX) and succinate dehydrogenase (SDH) was performed in frozen brain 

sections of patients AT-1A and brain, spinal cord and liver of patient AL-1B as 

described previously [79]. Detailed method description in paper-III. 

3.7 Review of the literature 

The published literature on POLG (up to June 2010) obtained through PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed) was systematically reviewed.   
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4. Results 

4.1 POLG genetics (papers I, III, IV and unpublished material) 

4.1.1 MSCAE 

The MSCAE patients were either homozygous for the c.1399G>A, p.A467T (n=6), 

homozygous for the c.2243G>C, p.W748S (n=21), or compound heterozygous in 

trans for these two mutations, p.A467T/W748S (n=9).  

4.1.2 Alpers’ 

The patients with Alpers’ were genetically heterogeneous: AL-2A had the A467T and 

c.2542G>A (p.G848S) on different alleles; two brothers AL-1A and AL-1B, and 

another unrelated child AL-3A carried the A467T in trans with a previously 

unreported missense change: c.907G>A in exon 4. This novel mutation replaces a 

highly conserved glycine residue with an arginine at position 303 (G303R) in the 

exonuclease region of POLG (Figure 5). The G303R was not found in >170 other 

patients and controls in whom we have sequenced the entire POLG coding region. 

4.1.3 PEO – paper IV  

Both PEO patients were compound heterozygous: A1 had the c.752C>T, (p.T251I), 

c.1760 (p.P587L) and c.2243G>C (p.W748S). B1 had the c.2209G>C (p.737R) and 

c.2243G>C (p.W748S). No other mutations were found. Sequencing of the son of B1 

confirmed that her mutations were in trans. All four mutations were known 

individually, but the combinations were novel. 
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Figure 5. Novel POLG1 mutation causing Alpers’ disease. Left: chromatogram of 

patient AL-1A showing the novel heterozygous mutation G303R. Right: POLG 

aminoacid sequence alignment showing interspecies conservation of the 303 glycine 

residue. WT: wild type. 

 

4.2 Onset, natural course and prognosis of POLG-encephalopathy 

(Papers I, II, III and unpublished material) 

4.2.1 Onset 

Individual and mean ages of onset of POLG-encephalopathy from our studies and the 

literature are listed in table 3 and appendix II and the distribution plots are depicted in 

figure 6. Mean age of onset for MSCAE in our material was 15.2 years (SD 9.8). The 

range was 1.5-45 years, but most patients presented during the second decade of life 

(22/36). Initial symptoms were in order of decreasing frequency: progressive gait 

unsteadiness (due to cerebellar and sensory ataxia) (14/36), epilepsy (12/36), 

migraine-like headache (12/36) and developmental delay (2/36). 

When the patients were grouped according to epilepsy, age of onset was significantly 

earlier in the group with epilepsy (12.1 years, range 2-20) than in the group without 

epilepsy (23.1 years, range 1.5-45). The commonest initial symptom in the group with 
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epilepsy was seizures (12/26) and migraine-like headache (11/26), followed by ataxia 

(6/26). In the group without epilepsy, ataxia was the most common initial symptom 

(8/10). The mean age of onset for the Alpers’ patients was 1.1 years and all started 

with epileptic seizures (Table 3, appendix II).  

 

 

Figure 6. Distribution of recorded age of onset in MSCAE.  

Left: distribution plot based on our 36 patients. Right distribution plot based on a total 

of 73 cases including our cases and those reported in the literature. Both plots show a 

wide distribution, but with most cases clustering in the second decade of life. 

 

4.2.2 Course, prognosis and mortality 

POLG encephalopathy is an invariably progressive disorder with high morbidity and 

mortality. In our material, mean age of death for MSCAE was 28 years (range 9-57) 

and median survival was 26 years. Alpers’ disease was more severe with significantly 

shorter duration and a mean age of death of only 2.8 years. Our epidemiological 

findings are reproduced in an expanded material of 138 patients with POLG-
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encephalopathy (73 MSCAE and 65 Alpers’) including our data and cases reported in 

the literature (Table 3).  

MSCAE 

Our studies show that genotype and epilepsy are the most important prognostic factors 

in MSCAE and their role is confirmed in the expanded material of 73 patients (Table 

3, Figure 7).  

Patients with full blown MSCAE had a complex, acute-on-chronic course with acute 

exacerbation events superimposed on progressive worsening of the ataxia and other 

clinical manifestations. These exacerbation episodes were characterised by acute or 

subacute, rapidly progressive encephalopathy and severe epilepsy, and were often 

accompanied by stroke-like cerebral lesions. Episodes had high mortality (~50%) and 

survivors suffered permanent disability. Patients without epilepsy had a chronic, 

slowly progressive course with gradual worsening of the ataxia, neuropathy, ocular 

myopathy and other symptoms. Overall survival in the non-epilepsy group did not 

appear to be affected, at least until the 7th decade of life (the oldest patients in our 

material and the literature are in their 60s). Twenty out of our twenty-six (77%) 

patients with epilepsy have died, 11 of rapidly progressive encephalopathy during 

exacerbation episodes, 4 of encephalopathy and simultaneous liver failure, 4 of liver 

failure alone and 1 of chronic complications of immobilisation. None of our nine 

patients without epilepsy have died.  

The A467T/W748S compound heterozygous genotype was associated with 

significantly worse prognosis (highest mortality and lowest median survival) than 

either the A467T or W748S homozygous genotypes (p=0.003). In our material, 

survival in the A467T homozygous group seemed to be better than in the W748S 

homozygous group, but this was not reproduced in the larger material of 73 patients 

including the cases from the literature (Table 3, figure 7).  

Alpers’ disease 
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Our patients with Alpers’ disease had also an acute-on-chronic course with acute 

exacerbations superimposed on a progressive neurological deterioration. Survival and 

disease duration were, however, significantly shorter than in the adult syndromes 

(Table 3).    

 

Figure 7. Survival (Kaplan-Meier) curves in MSCAE.  

A: Survival according to genotype in our 36 patients with MSCAE (papers I-III and 

unpublished) shows that A467T homozygous patients live longest and compound 

heterozygous have the worse prognosis with significantly shorter survival than the 
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other two groups (P=0.003). B: Survival according to genotype in a total of 73 

patients including our 36 and another 37 from the literature. In this expanded material 

survival is similar in the A467T and W748S homozygous, but still significantly worse 

in the compound heterozygous patients. C: Survival as a function of epilepsy in 73 

patients (same as in B). Epilepsy is the most important clinical prognostic factor. 

Patients without epilepsy do not suffer exacerbation episodes and have a longer 

lifespan, at least until the 7th decade of life. Median survival for patients with epilepsy 

is ~30 years.  

 

Clinical 
syndrome 

Genotype N AO AD Median survival 

MSCAE A467T/A467T 6 12.5 (SD 4.3) 49.8 (n=4/6, SD 5.1) 36 (SD 5) 
 W748S/W748S 21 13.3 (SD 9.8) 25.4 (n=10/21, SD 14.7) 26 (SD 6.8) 
 A467T/W748S 9 20.9 (SD 10.6) 17.7 (n=6/9, SD 5) 6 (SD 6.5) 

Total 36 15.1 (SD 9.7) 28 (n=20/36, SD 15.8) 26 (SD 6.7) 
Full blown 

MSCAE 
All 26 12.1 (SD 5.7) 28 (n=20/26, SD 15.8) 16 (SD 6.2) 

No epilepsy  All 10 23.1 (SD 13.5) no deaths reported 0/10 no deaths 
reported 

Alpers' various 4 1.1 (SD  0.6) 2.8 (n= 4/4, SD ) 0.18 (SD 0.18) 
 

Clinical 
syndrome 

Genotype N AO AD Median survival 

MSCAE A467T/A467T 18 15.2 (SD 12) 31.8 (n=9/18, SD 19.8) 36 (SD 6.8 ) 
 W748S/W748S 43 19.6 (SD 11.2) 25.7 (n=14/43, SD 13.2) 30 (SD 4.2) 
 A467T/W748S 12 18.7 (SD 11.5) 17.1 (n=7/12, SD 4.8) 9 (SD 2.3) 

Total 73 18.4 (SD 11.4) 25.5 (n=30/73, SD 14.9) 30 (SD 4.4) 
Full blown 

MSCAE 
All 47 13.2 (SD 7.3) 25.5 (n=30/47, SD 14.9) 20 (SD 6.9) 

No epilepsy  All 26 27.7 (SD 11.8) no deaths reported 0/26 no deaths 
reported 

Alpers' various 65 0.9 (SD 0.8) 2.5 (n=56/65, SD 2.5 ) 0.8 (SD 0.1) 
 

Table 3. Epidemiological data of patients with POLG encephalopathy. 

Our patient material (upper part) and an expanded material of 138 patients (73 

MSCAE and 65 Alpers’) including our patients and cases from the literature (lower 
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part). Age of onset (AO), age of death (AD) and median survival values (in years) are 

shown. Source as in table 2.  

4.3 Clinical features of POLG-encephalopathy 

The clinical features of our 40 patients with POLG-encephalopathy are detailed in 

appendix II. The full clinical spectrum of MSCAE included ataxia, sensorimotor 

peripheral neuropathy, myoclonus, headache with migraine-like features, late onset 

ptosis and external ophthalmoplegia (PEO) and cognitive decline. The majority of our 

patients had epilepsy and developed acute or subacute exacerbation episodes with 

rapidly progressive encephalopathy and worsening seizures. Liver disease developed 

upon exposure to anti-epileptic drugs containing valproic acid and its derivatives 

(sodium valproate, sodium divalproex). Spontaneous liver disease also occurred, but 

was rare. Our patients with Alpers’disease had infantile-onset, severe progressive-

episodic encephalopathy, epilepsy and spontaneous liver disease. 

4.3.1 Ataxia 

Ataxia was present in all our patients with MSCAE and resulted from a combined 

cerebellar, spinal and peripheral sensory dysfunction. The clinical picture included 

nystagmus, ocular dysmetria, scanning dysarthria, truncal/gait ataxia and appendicular 

ataxia with intention tremor, dysmetria and dysdiadochokinesia. A sensory component 

was evident in the form of proprioceptive and vibratory sensory loss in the distal 

extremities. The gait and appendicular ataxia increased in the absence of visual input 

and Romberg’s test was commonly positive. The ataxia was gradually progressive 

over years - decades and resulted in severe motor disability and wheel-chair 

dependence. Only one of our patients with Alpers’ disease had ataxia.    

4.3.2 Peripheral neuropathy 

The vast majority of our MSCAE patients (97%) had a predominantly sensory 

peripheral neuropathy. This was clinically characterised by impairment of the 

superficial (light touch, pain, temperature) and deep (discriminative touch, vibration, 
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proprioception) sensory modalities in a distal, glove and stocking distribution and 

diminished tendon reflexes. The proprioceptive impairment led to sensory ataxia. 

Sensory symptoms started in the distal lower extremities and remained more severe 

there throughout the disease. Neuropathy was not seen in the Alpers’ patients.  

Nerve conduction studies (NCS) typically showed decreased wave amplitudes and 

conduction velocities in both sensory and motor nerves. Sensory nerves were more 

severely affected, however, and often had no measurable responses at all. 

Electromyography (EMG) showed moderate signs of chronic denervation including 

decreased/absent F-waves and increased amplitude and duration of motor unit 

potentials (MUP).  

4.3.3 Migraine-like headache 

In 12/36 patients, headache was either the presenting feature or started at the same 

time as the epilepsy. Headaches were episodic, could be unilateral and were often 

preceded and accompanied by transitory positive or negative visual phenomena such 

as flashes and scotomata respectively. In six of our patients headaches were initially 

suspected to be migraine. 

4.3.4 Epilepsy  

Epilepsy was present in 26/36 patients with MSCAE and was an important prognostic 

factor as its presence was associated in all patients with the occurrence of 

exacerbation episodes carrying high morbidity and mortality.  Epilepsy was present in 

all our Alpers’ patients, in whom it was also an important morbidity factor along with 

liver disease, and in 102/128 (80%) cases reported in the literature [44, 46, 48, 53-71]. 

The epileptic semiology of POLG-encephalopathy is complex and was the focus of 

our study presented in paper II. Patients had a variety of clinical seizure types 

including simple and complex partial with sensory and motor symptoms (SPS and 

SPM respectively) and secondary generalised tonic-clonic seizures (GTC). Partial and 
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generalised status epilepticus were common and associated with high morbidity and 

mortality.  

Epilepsy usually starts early in POLG-encephalopathy, but may also start late. 

In most patients with MSCAE epilepsy started early in the course of the disease. 

Seizure onset was accurately known in 23 patients. In 16 of these seizures were either 

the presenting symptom or started within one year from disease onset. In five patients, 

however, seizures developed 4-10 years after disease onset and another three had their 

first seizure >30 years after the onset of ataxia. In two of these cases (WS-1A and 

WS-12A), the onset of seizures was associated with a severe encephalopathy episode 

that proved fatal. Epilepsy was the presenting symptom in all our Alpers’ patients. 

Simple partial motor status epilepticus is a typical feature of MSCAE 

SPM seizures occurred in all 19 MSCAE patients with epilepsy reported in paper II. 

The commonest clinical manifestation was continuous clonic jerking of an upper 

limb, shoulder, neck and head with intact consciousness. The lower limbs were also 

affected, but less commonly. SPM seizures were commonly prolonged and often 

evolved into epilepsia partialis continua (EPC), which could last for up to several 

months in spite of combination treatment with multiple antiepileptic drugs. Focal 

motor seizures of similar type, but with various degrees of impaired consciousness 

(CPM) also occurred, but were less common (Paper II).  

Simple partial visual seizures correlate with occipital epileptic foci    

Nine of the19 patients with MSCAE reported in paper II had therapy refractory SPS 

seizures with positive visual symptoms, usually the perception of flashing colored or 

white light in one visual hemifield, which occurred daily for weeks, months or even 

years. Visual seizures correlated with focal occipital epileptic activity on EEG 

examination and in most, but not all cases occipital lesions on MRI.   

Status epilepticus 
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All MSCAE patients with epilepsy (26/36) presented in this thesis and the four 

patients with Alpers’ disease had one or more episodes of status epilepticus (SE). 

Simple partial SE was often prolonged and even chronic, but not always associated 

with exacerbation episodes. Complex partial and especially secondarily generalized 

SE often marked the onset of or/and occurred during episodes of encephalopathic 

exacerbation.  

Electroencephalography 

Ictal EEG revealed focal occipital or regional occipito-temporal epileptic activity in 

almost all (18/19) patients studied in paper II (Figure 8). Interictal focal/regional or 

generalized slow wave activity was common. In the majority of patients, focal 

occipital activity could be correlated to symptoms of occipital origin such as positive 

or negative scotomas and many had occipital lesions on MRI. Focal frontal epileptic 

activity was also seen and correlated mostly with focal motor clinical activity and in 

most, but not all cases frontal lesions on MRI. Generalized epileptic activity was 

commonly found under generalized SE. The side of the symptoms, EEG activity and 

MRI lesion did not always correlate. It should, however, be noted that imaging and 

EEG did not always coincide in time. When we looked at EEG and imaging that were 

closely performed during exacerbation episodes, as presented in paper III, correlation 

was better, but still not complete.    

Treatment of the epilepsy and status epilepticus in POLG-encephalopathy 

Epilepsy in our patients with POLG-encephalopathy was often refractory and most 

required combination therapy. As we report in paper II, sodium channel blockers like 

carbamazepine, phenytoin, oxcarbazepine and lamotrigine were partly effective at 

least for a period of time, and well tolerated by the patients. Sodium channel blockers 

were often combined with a benzodiazepine or barbiturate e.g. diazepam, clonazepam 

or phenobarbital. Levetiracetam was also used. Clonazepam and topiramate had some 

effect against myoclonus, while gabapentin increased focal myoclonic activity in two 

patients and lamotrigine in one. Valproic acid and its derivatives have an absolute 
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contraindication as they cause liver failure in these patients. One patient was treated 

with ketogenic diet and one with plasmapheresis with no effect. Home acute seizure 

management with agents like rectal diazepam or buccal midazolam may help abolish 

seizures and is recommended. SE should be treated as aggressively as possible in 

order to prevent initiation and progression of the exacerbation event. We use standard 

protocols of intravenous benzodiazepines and fos-phenytoin, but have a low threshold 

for generalized anaesthesia with agents like pentothal and propofol.  

 

 

Figure 8. EEG and MRI findings in MSCAE.  

A: An ictal EEG showing general slowing and epileptiform activity in the left 

occipital area (O1). During the recording the patient had a simple partial visual 

seizure with positive visual phenomena in the right visual hemifield. B: axial FLAIR-

T2 MRI from the same period showing an old, retracted lesion in the patient’s left 

occipital cortex. 

 



 44 

4.3.5 Exacerbation episodes with encephalopathy and epilepsy 

Irrespective of genotype, all of our patients with full-blown MSCAE (n=26) had 

episodes of acute or subacute exacerbation with rapid neurological deterioration that 

could be fatal or followed by variable degrees of recovery. The onset of exacerbation 

episodes was marked by either epileptic seizures or gradual mental and personality 

changes, including fatigue, somnolence and confusion, which could precede the onset 

of clinical seizures by up to several days. Episodes were associated with disturbed 

consciousness, ranging from confusion to deep coma and frequent seizures, including 

both partial and generalised status epilepticus. Cerebral imaging with CT or MRI 

during the course of the episode commonly revealed newly developed, infarct-like, 

oedematous cortical lesions. Episodes had a mean duration of 74 days (range 5-266) 

and were associated with significant morbidity and mortality: of 30 episodes in 26 

patients, 14 (47%) proved fatal. Survivors suffered accelerated decline of motor and 

cognitive skills and/or cortical visual loss.  

4.3.6 Progressive external ophthalmoplegia (PEO) 

PEO consists of slowly progressive blepharoptosis and paresis of the extraocular 

muscles, which is not overcome by brain-stem mediated reflexes such as 

convergence, oculocephalic and Bell’s. Symptoms are bilateral and usually, but not 

necessarily, symmetrical. More generalised myopathy, involving other muscles of the 

body has been reported [44, 80], but is rarely significant in the encephalopathy 

syndromes.  

PEO was seen in 18/36 (50%) of MSCAE patients and its prevalence was age 

dependent. It developed late in the disease, at a mean age of 29.3 years (n=12, SD 6). 

PEO was more prevalent in patients with no epilepsy (67% vs. 40% in patients with 

epilepsy); it also appeared to be genotype dependent having the highest frequency in 

the A467T homozygous group (83%), followed by the W748S homozygous (45%) 

and compound heterozygous (25%). It did not occur in the Alpers’ patients. It is, 
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however, likely that these phenotype and genotype-dependent differences in the 

prevalence of PEO are confounded by patient age and disease duration in each group.    

4.3.7 Liver disease 

Liver involvement was seen in 18/36 (50%) patients with MSCAE and in 12/18 cases 

it was associated with oral use of the anti-epileptic drug sodium-valproate. Nine 

patients had fulminant hepatic failure, which was preceded by use of sodium-

valproate in eight and occurred spontaneously in one. The remaining nine patients had 

asymptomatic biochemical abnormalities including elevation of the hepatobiliary 

enzymes (alanine and aspartate aminotransferases, gamma-glutamyltransferase and 

alkaline phosphatase) and low albumin. Four of these used sodium-valproate. Only 

one patient (WS-12A) who used sodium-valproate for two months before her final 

illness did not develop liver disease. Two patients (WS-4A and CP-3A) were treated 

with liver transplantation. In WS-4A, transplantation was successful and she 

continues using sodium-valproate today, 9 years later, with no further complications. 

Patient (CP-3A) died shortly after the transplantation due to rejection. Liver disease 

was not seen in patients with no epilepsy. Two of the Alpers’ patients (AL-3A, AL-

4A) had biochemical liver abnormalities and one (AL-1A) developed liver failure. 

None of the Alpers’ patients used sodium-valproate.   

4.3.8 Cognitive dysfunction 

Slowly progressive decline of cognitive functions was common in the MSCAE 

patients and often accelerated after exacerbation episodes. Cognitive dysfunction was 

significantly more pronounced in patients with epilepsy. We performed detailed 

neuropsychological evaluation in 8 of our patients and this showed cognitive 

dysfunction in all with lower mean performance IQ (71.8) than verbal IQ (84.3) 

values (P=0.001) [81]. All our patients with Alpers’ disease had delayed psychomotor 

development.  

4.3.9 Other clinical features 
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Four MSCAE patients developed gastrointestinal dysmotility with chronic abdominal 

pain, diarrhoea or pseudoobstruction symptoms. Patient WS-4A had facial dyskinesias 

and later developed asymptomatic, 2 Hz palatal myoclonus that correlated with the 

development of bilateral hypertrophic olivary degeneration on MRI. Whipple’s 

disease was excluded in that patient by intestinal mucosal biopsy. Two patients had 

neurogenic deafness. One patient had cardiac dysrhythmias (supraventricular 

tachycardia, atrial fribrilation and bundle branch block), but no evidence of 

cardiomyopathy.    

 

4.4 Neuroimaging in POLG-encephalopathy (Paper III) 

We found neuroimaging abnormalities in all 32 patients with POLG-encephalopathy 

(28 MSCAE and 4 Alpers’) who were examined during the course of their illness 

(Appendix III, figure 9). Only one patient (AT-2A) had a normal initial scan while 3 

patients (AT-2B, CP-2A, WS-10A) had only mild trophic changes in the early stages 

of the disease. Imaging findings were classified into three categories based on 

anatomical distribution and natural evolution:  

1. Cortical stroke-like lesions (SLL) with acute/subacute onset and rapid 

evolution. These developed exclusively during exacerbation episodes and 

evolved over days - weeks. Subsequent partial or complete regression 

occurred if the patient survived the episode (Figure 9E, 9F, 9H, 10). 

2. Lesions with insidious onset and stable course. Thalamic, olivary, 

cerebellar white matter (WM) and some cerebellar cortical lesions 

developed insidiously, were often present on the patients first MRI and 

usually remained stable throughout the disease (Figure 9B-E).  

3. Lesions with insidious onset and slowly progressive course. Cerebral 

and cerebellar atrophy were slowly progressive and mirrored the clinical 

progression of the ataxia and cognitive impairment. Atrophy could, 
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however, accelerate dramatically during severe exacerbation episodes 

(Figure 9A).  

Acute stroke-like lesions and chronic focal lesions exhibited high T2 and low T1 

signal. The most sensitive MRI sequences for detecting signal changes were T2 fluid-

attenuated inversion recovery (FLAIR-T2) and DWI. All types of lesions were seen in 

MSCAE occurring with similar frequency in the 3 genotypes, with the exception of 

inferior olivary lesions that occurred exclusively in the W748S homozygous group. 

Stroke-like lesions did not occur in patients without epilepsy and were the only type 

of lesion seen in Alpers’ disease. Imaging findings are summarised in Appendix III. 

4.4.1 Stroke-like lesions 

Stroke-like lesions were common in MSCAE and were seen in all the patients we 

studied with Alpers’ disease.  They developed exclusively during exacerbation 

episodes and were localised primarily in the cortex, often extending into the 

subcortical white matter. They appeared hypodense on CT and had high T2 and low 

T1 signal on MRI (Figure 9E, 9F, 9H, 10). Diffusion weighted imaging (DWI) 

showed restricted cortical diffusion during the acute phase (1-8 days from clinical 

onset of the exacerbation episode); heavy diffusion weighting (b=1000) was the most 

sensitive sequence for detecting new lesions and following their progression. Lesional 

ADC values were initially low, averaging 0.64 (range 0.53-0.79), compared with 0.84 

(range 0.73-0.95) in control areas. Subsequently, ADCs gradually increased over days 

to weeks, exceeded the values of control areas and later decreased again towards the 

baseline (Figure 9F, 10). In patient AT-2A, who survived an exacerbation episode, 

cortical ADC had normalised after 1.5 years. In the subcortical white matter 

underlying the stroke-like lesion, ADCs were high in the acute phase averaging 1.22 

(range 0.96-1.45) versus 0.89 (range 0.81-0.90) in unaffected subcortical white 

matter. Subcortical ADCs showed gradual increase followed by modest decrease, but 

did not normalize and remained elevated for up to 6 years, which was the longest 

follow-up time. 
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Acute stroke-like lesions did not enhance upon the administration of paramagnetic 

contrast. Minimal enhancement was seen in two cases only (CP-3A, WS-8A) in 

whom it developed late, 50 days after onset of the episode and 20 days after the 

discovery of the cortical lesions on MRI. In addition, patient AL-1B showed 

leptomeningeal, but no parenchymal enhancement. Magnetic resonance angiography 

(MRA) was performed in 3 patients with new cortical lesions and conventional 

cerebral angiography in one, and showed no abnormalities. 

Stroke-like lesion distribution varied. They affected, in order of decreasing frequency, 

the occipital (19/23), parietal (12/23), frontal (11/23), lateral temporal (5/23) and 

cerebellar (4/23) cortices. The brainstem (basis pontis) was affected in one case (AT-

1A). Interestingly, the medial temporal lobes and hippocampi were universally spared 

and, to the best of our knowledge, lesions in these regions in patients with POLG 

disease have not been reported in the literature.  

Stroke-like lesions evolved dynamically during the course of exacerbation episodes, 

mirroring clinical severity and progression of the encephalopathic symptoms and 

seizure activity. Persistence or progressive worsening of the encephalopathy was 

associated with gradual lesion expansion and/or the appearance of new lesions 

(Figure 9H). Epileptic activity was not a prerequisite for the progression of the SLL, 

which often expanded inexorably, apparently also after the seizures had been 

successfully controlled clinically and on electroencephalography (EEG). EEG was 

performed during exacerbation episodes in 17 patients with acute stroke-like lesions. 

Twelve of these had focal epileptic activity that correlated to one or more lesion 

localisations. One had generalised epileptic activity, while the remaining four had 

focal epileptic activity that did not correlate with the location of any of their lesions. 

Nine patients had early EEG, performed 0-4 days from episode onset.  Four of these 

had initially no epileptic activity, but generalised slow-wave activity that in 3/4 was 

maximal over the stroke-like lesion. Epileptic activity developed in these foci on later 

recordings.   
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Clinical improvement of the episodes was associated with regression of the stroke-

like lesions, which was gradually replaced by focal atrophy and retraction. Lesional 

T2-hyperintensity often persisted chronically, suggesting gliosis. The type and degree 

of residual disability after episode resolution correlated with its localisation and was 

roughly proportional to lesion extent and severity. The commonest form of persisting 

disability after an episode was cortical visual dysfunction caused by occipital lesions 

and ranging from focal scotomas and hemianopsia to cortical blindness. Central motor 

sequelae were caused by frontal lesions and a general decline of cognitive functions 

was associated with the accelerated cerebral atrophy that often ensued after episodes. 

In 2 cases (CP-3A and WS-6A) an occipital SLL showed late appearing (~60 days 

from onset of the exacerbation) gyriform, cortical hyperintensity on unenhanced T1 

sequences (Figure 9G). 

4.4.2 Thalamus, brain-stem and cerebellum 

Chronic MRI lesions of the thalamus, cerebellum, and inferior olivary nuclei were 

common in MSCAE, but were not seen in the Alpers’ patients (Figure 9B-E). 

Thalamic lesions (Figure 9E) occurred in 18/28 MSCAE patients, were usually 

bilateral and showed a predilection for the posterior thalamus including the pulvinar. 

These lesions developed insidiously and persisted unchanged throughout the disease.  

Chronic cerebellar MRI abnormalities were seen in 23/28 MSCAE patients. They 

comprised atrophy, small cortical/subcortical T2 hyperintensities, diffuse, 

symmetrical white matter T2 hyperintensities, signal changes and atrophy of the 

dentate nuclei (Figure 9A-C). Dentate atrophy (Figure 9B) was seen in four W748S 

homozygous patients all of whom also had bilateral lesions of the inferior olives 

(Figure 9D). Loss of the dentate T2 hypointensity was noted in a further 7 patients. 

No dentate or olivary abnormalities where seen in A467T homozygous patients. 

Cerebellar white matter lesions (Figure 9C) appeared to be more common in A467T 

homozygotes (33% versus 19% in the W748S) and were never seen in compound 

heterozygotes.  



 50 

Bilateral inferior olivary lesions were seen in eight W748S homozygous patients. The 

inferior olivary nuclei had high T2 signal and appeared enlarged and swollen on the 

MRI (Figure 9D). This was best visible on T2 and proton weighted images. Four of 

the patients with olivary lesions had atrophy of the dentate nuclei and dentate signal 

change was seen in another 3 and could not be excluded in one. One patient with 

bilateral olivary lesions (WS-4A) exhibited palatal tremor/myoclonus, while no 

clinical correlate was found in the rest.  

4.4.3 Atrophy 

Generalised cerebral atrophy was found in 11/28 patients with MSCAE and was 

slowly progressive, mirroring severity and progression of cognitive impairment. 

Cerebellar atrophy was seen in 21/28 MSCAE patients. It affected the vermis in all 

and the hemispheres in most (Figure 9A). Severity of the cerebellar atrophy was 

proportional to the severity of ataxia. Brainstem and spinal cord atrophy was not seen. 

Cerebral and cerebellar atrophy often accelerated dramatically after exacerbation 

episodes. Atrophy of the cerebrum or cerebellum was not seen in the Alpers’ patients. 

4.4.4 Magnetic resonance spectroscopy 

Spectra obtained from fresh cortical lesions showed significantly decreased N-acetyl-

aspartate (NAA) and prominent lactate peaks (Figure 9I). Areas with normal MRI 

signals revealed normal spectra. Interestingly, an old cerebellar white matter lesion in 

patient AT-1A also revealed a normal MRS pattern. 
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Figure 9. MRI and MRS findings in POLG-encephalopathy. A: sagital T1 image 

showing cerebellar atrophy in patient WS-10A. B: axial T2 image showing dentate 

atrophy (arrow) in patient WS-10A. C: axial T2 image showing cerebellar white 

matter hyperintensity in patient AT-1A. D: axial T2 image showing bilateral olivary 

lesions in patient WS-4A. The olives appear enlarged and hyperintense. E: axial T2 

FLAIR image showing bilateral thalamic and cortical occipital lesions in patient WS-

9A. F: axial DWI (b=1000) showing an acute SLL in the right cerebellar cortex of 

patient AL-1A.  G: axial T1 image showing linear, gyriform hyperintensity in the 

right medial occipital cortex of patient CP-3A (laminar necrosis). H: Axial T2 

weighted image showing the natural evolution of an occipital stroke-like lesion in 

patient AT-1B. Times on the images refer to intervals between episode onset and 

MRI. The lesion progressed inexorably, while the patient’s condition gradually 

worsened. He eventually became comatose and died a little over 3 months after 

episode onset. I: MRS measurement in the right occipital lesion of patient AT-1B 

shown in H. Spectra show a decrease in N-acetyl-aspartate (NAA) and a prominent 

lactate peak at 1.3ppm, inverting at 144ms echo-time. Spectra from the contralateral, 

unaffected occipital area were normal (not shown). Cho: choline, Cr: creatine. 

(Modified from paper III). 
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Figure10.  Diffusion evolution of cortical stroke-like lesions during exacerbation 

episodes. Sequential ADC measurements are performed in evolving frontal and 

parietal stroke-like lesions (SLL) as well as in normal-looking cortex (control) of 

patient AT-1B during an episode. At 8 days after episode onset, both lesions have low 

ADCs consistent with restricted diffusion and cytotoxic oedema. Subsequently, ADC 

values increase, suggesting development of extracellular oedema, exceed those of 

control cortex and remain elevated at day 70. A new right occipital lesion appears on 

the scan on day 70. Representative DWI sequences (b=1000) are shown for each scan 

(Modified from paper III). 
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4.5 Pathological characterisation of POLG-encephalopathy (Paper 

III) 

4.5.1 Histology 

Pathology findings in the CNS generally correlated with imaging. The most 

pronounced pathological changes were found in areas with signal abnormalities 

and/or atrophy on ante-mortem imaging. In cortical areas affected by stroke-like 

lesions we found severe neuronal loss with vacuolation of the neuropil, astrocytosis 

and microglial activation. Of the few remaining neurons, some had normal 

appearance, while most exhibited intense cytoplasmic eosinophilia and pyknotic, dark 

nuclei (eosinophilic neuronal necrosis). Cortical neuronal loss was most severe in 

superficial and deep cortical layers creating a laminar pattern. The hippocampal 

cortex was consistently preserved. Of the deep cerebral gray structures, the thalami 

were affected by neuronal loss and eosinophilic necrosis, while the corpus striatum 

was intact. The cerebellar cortex showed selective Purkinje cell loss, eosinophilic 

necrosis and Bergman’s gliosis. The cerebellar white matter showed sponginess and 

gliosis in patients AT-1A and AT-1B, who had high T2 signal MRI changes in that 

area. In the dentate nuclei we found neuronal loss and eosinophilic necrosis. The 

cerebral vasculature was unremarkable both grossly and microscopically. In the spinal 

cord, there was selective dorsal column degeneration, which was more pronounced in 

the fasciculus gracilis.   

4.5.2 Immunohistochemistry 

HLA-DR, DP, DQ immunostaining revealed extensive microglial activation in 

lesions, while monocyte/macrophage immunohistochemistry (anti MAC58) stained 

almost exclusively intravascular cells. In the cerebellum of patient WS-1A, we found 

extensive microglial proliferation forming radial, linear bands extending from the 

Purkinje cell layer throughout the molecular layer.  

4.5.3 Histochemistry (unpublished studies) 
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COX/SDH histochemistry revealed no COX deficient or SDH hyperintense vessels in 

the cerebrum or cerebellum in either of the patients studied (Figure 11A). In patient 

AT-1A with MSCAE, we found a few scattered COX negative/SDH reactive neurons 

spread throughout the occipital cortex and, to a lesser extent, the cerebellar cortex 

(Figure 11A, E). Patient AL-1B with Alpers’ disease had normal histochemistry in the 

cerebrum and cerebellum (Figure 11C), but we found COX-negative/SDH reactive 

neurons in the spinal cord (Figure 11B). The patient’s liver showed severe COX-

defect (Figure 11D). 

 

 

Figure 11. Histochemical staining of COX & SDH in post mortem cerebral and 

liver specimens.  

All sections show combined cytochrome oxidase (COX) and succinate dehydrogenase 

(SDH) stainings of post-mortem material. A and E: occipital cortex of patient AT-2A 

with MSCAE showing a single COX-negative/SDH-positive neuron (black 
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arrowhead). A, shows also normal COX staining in a longitudinal and a cross section 

of two vessels (empty arrowheads). B: a single COX-negative/SDH-positive neuron 

in the cervical dorsal spinal horn of patient AL-1B with Alpers’ disease. C: 

cerebellum of patient AL-1B, showing three Purkinje cells with normal COX 

staining. D: Nearly global COX-deficiency in the liver of patient AL-1B. 

 

4.6 Studies of mtDNA changes in tissues of patients with POLG-

myopathy and encephalopathy (Paper IV and unpublished material)  

4.6.1 MtDNA changes in POLG encephalopathy 

Quantification by real-time PCR showed mtDNA depletion in all skeletal muscle 

biopsies from 4 MSCAE and 1 Alpers’ patient. Depletion was also found in the liver 

of three patients and the brain of two. There were normal mtDNA levels in the 

myocardium of MSCAE patients, but depletion was found in the heart of the one 

Alpers’ patient studied. Long-range PCR and/or southern blotting revealed multiple 

mtDNA deletions in skeletal muscle from all patients examined (Table 4, unpublished 

data). The post-mortem tissues were not checked for deletions. Further detailed 

analysis of mtDNA in post mortem tissues is part of an ongoing study. 

4.6.2 MtDNA changes in skeletal muscle in PEO  

In a skeletal muscle biopsy of patient A1 with late onset recessive PEO, LPCR 

showed a typical pattern of multiple mtDNA deletions (figure 12). Real-time PCR 

showed a reduced ND1/ND4 ratio (average of two runs 0.77) compared with controls, 

giving an estimate of the percentage of mtDNA molecules with deletions involving 

the ND4 gene (major arc) of ~25%. The ND1/18SrRNA ratio was significantly lower 

than that of the controls, suggesting ~62% depletion of total mtDNA content in the 

patient’s skeletal muscle.     
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Patient 
Age at 
death 

Disease 
duration 

PEO 
Liver 

failure 
Episodic 
enc/thy 

Tissue Depletion MD 

+ - + Brain - ND 

   Heart - ND 

AT-2A  

 

44 29 

   Liver - ND 

      SKM ~70% + 

+ + + Brain - ND 

   Heart - ND 

WS-1A  

 

41 35 

   Liver ~65% ND 

      SKM ~90% + 

- + + Brain - ND 

   Heart - ND 

WS-2A  

 

24 8 

   Liver ~80% ND 

      SKM ~50% + 

WS-12A  57 42 + - + Brain ~65% ND 

      SKM ~70% ND 

AL-1A   - + + Brain ~65% ND 

      Heart ~65% ND 

      Liver ~75% ND 

      SKM ~90% ND 

 

Table 4. MtDNA studies in skeletal muscle biopsies (SKM) and post-mortem 

tissues of five patients with POLG encephalopathy.  

MtDNA quantification was done with a Taqman based real-time PCR assay, by 

comparing amplification ratios in mtDNA (12SrRNA) and a nuclear gene (RNaseP). 
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The results are expressed as percentage of mtDNA depletion as compared to controls. 

ND: not done. 

 

  

 

 

 

 

 

 

 

Figure 12. Multiple mtDNA deletions in PEO.  

LPCR of mtDNA from a skeletal muscle biopsy of patient A1 with PEO showing 

multiple deletions (lane 2). The two controls show normal size bands (lanes 3 and 4).   
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5. Discussion 

POLG mutations are an important and relatively common cause of human disease. 

Over 130 pathogenic mutations have been described in the gene encoding the 

catalytic subunit and these cause a wide spectrum of clinical disease including 

myopathies and encephalopathies with infantile or juvenile/adult onset. 

In this work, we present detailed studies of the largest group of patients reported with 

POLG-disease. Our studies describe the natural history, clinical spectrum and 

epileptic semiology of the A467T and W748S POLG mutations, characterise the 

imaging and pathological features of POLG-encephalopathy and investigate the 

pathogenesis and pathophysiology of POLG-disease. 

Our results define the syndrome of MSCAE as a recognisable clinical entity and 

reveal important factors affecting course and prognosis. Furthermore, we show that 

although POLG disease is genetically and phenotypically heterogeneous, the clinical 

and molecular features of the individual syndromes overlap significantly suggesting 

they are part of a clinical and pathophysiological continuum. Moreover, tissue 

specific energy failure caused by mtDNA damage plays an important role in the 

pathogenesis and progression of POLG-encephalopathy. 

5.1 The clinical spectrum and natural history of POLG-

encephalopathy, with a focus on MSCAE caused by the A467T and 

W748S mutations (Papers I-III) 

5.1.1 The A467T and W748S POLG mutations are common causes of 

ataxia 

The two most common POLG mutations are the c.1399G>A, p.A467T and 

c.2243G>C, p.W748S. These cause the syndrome of mitochondrial spinocerebellar 

ataxia and epilepsy (MSCAE), also known as mitochondrial recessive ataxic 
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syndrome (MIRAS), and are also found in compound with other mutations in 

recessive PEO and Alpers’ disease. 

Research shows that A467T and W748S were each introduced in the European 

populations by an ancient common founder [73, 82]. The reported carrier frequency 

for the A467T is 1% in Norway, 0.69% in the UK, 0.6% in Belgium, 0.5% in Sweden, 

and <0.2% in Finland. The carrier frequency of the W748S has been estimated to 1% 

in Norway and 0.8% in Finland [72, 82-84]. The high frequency of the A467T and 

W748S mutations in Norway and Finland places POLG mutations among the 

commonest causes of ataxia in these countries. 

5.1.2 The A467T and W748S mutations are the main causes of MSCAE 

We and others have shown that MSCAE is caused primarily by the A467T or W748S 

POLG1 mutations. Most patients are homozygous for either of the mutations or 

compound heterozygous in trans (A467T/W748S). Clinical descriptions consistent 

with MSCAE have been reported with other POLG1 mutations and genotypes 

including the p.R964C/A862T [48, 85], p.R627Q/G848S [86], p.W748S/L304R [54], 

p.G426S/G426S [44], p.A467T/G848S [48] and p.R627Q_Q1236H/ L965X [46]. 

These are, however, considerably more rare than the A467T and W748S and have 

been reported in single patients or families. In a review of 105 patients with MSCAE 

from our material and the literature, ninety-one (87%) had the A467T and/or W748S 

[44, 46, 48, 50, 53, 54, 56-60, 62, 66, 73, 75-78, 85-89]. 

5.1.3 When should the clinician suspect MSCAE? 

Our data show that the syndrome of MSCAE is a clinically recognisable, well defined 

entity that should be considered in the differential diagnosis of juvenile or adult onset, 

sporadic and recessive spinocerebellar ataxia. Moreover, MSCAE should be 

suspected in the presence of one or more of the following additional features: 

• Blepharoptosis, and/or external ophthalmoplegia 

• Sensory peripheral neuropathy  
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• Epilepsy; especially in the presence of SPM seizures and epilepsia partialis 
continua, visual seizures and/or an occipital EEG focus 

• Migraine-like headaches  

• Acute-on-chronic course with exacerbation episodes 

• One or more of the following MRI findings: 

o Stroke-like lesions developing under episodic exacerbations of the 
encephalopathy 

o High T2 signal lesions in the thalamus 

o Hypertrophic olivary degeneration 

o Diffuse T2 hyperintensity of the deep cerebellar white matter  

 

 

Clinical features Associated imaging features 

Onset in teens 

Progressive spinocerebellar ataxia and 
sensory neuropathy 

Ptosis and/or external opthalmoplegia 

Cerebellar cortical atrophy, dentate 
atrophy, high T2 signal focal lesions in 
thalamus, cerebellar white matter and 

inferior olivary nuclei. No calcifications, 
no basal ganglia lesions. 

Epilepsy: especially SPM, EPC, visual 
seizures, frequent/severe SE 

Exacerbation episodes with epilepsy and 

rapidly progressive encephalopathy 

Acute, focal, T2 hyperintense cortical 
lesions, mostly occipital, but also frontal 

or parietal. Temporal lobes rarely 
affected. Lesions evolve mirroring 

episode severity. Associated with bad 
prognosis 

 

Table 5. When should the clinician suspect MSCAE?  

Common clinical features and associated MRI findings. 
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5.1.4 MRI is sensitive and can be specific for the diagnosis of POLG 

encephalopathy  

According to our findings presented in paper-III, MRI detects abnormalities in the 

great majority of patients early in the course of the disease and sensitivity increases 

with disease duration. The combination of thalamic and cortical lesions, in the 

absence of basal ganglia involvement, is highly suggestive of MSCAE and if deep 

cerebellar and/or inferior olivary lesions are also present, the picture is, to the best of 

our knowledge, specific. In Alpers’ disease, cortical SLL may often be the only 

finding although thalamic changes occurring early have been described [66].  

5.1.5 The differential diagnosis of POLG-encephalopathy 

The differential diagnosis of MSCAE includes other conditions with apparently 

recessive or sporadic ataxia and/or acute or episodic encephalopathy. Some of the 

most important clinical and radiological features that may distinguish MSCAE from 

other similar recessive ataxias and encephalopathies are summarised in table 5. The 

most important differential diagnoses will be discussed in detail. 

Infantile spinocerebellar ataxia (IOSCA) 

IOSCA is a recessively inherited infantile encephalopathy caused by mutations in the 

C10orf2 gene that encodes the mitochondrial helicase, Twinkle. Twinkle is a 

functional partner of POLG in the replication of mtDNA and its mutations also cause 

secondary damage of mtDNA. It is therefore not surprising that Twinkle and POLG 

disease share significant pathophysiological and clinical similarities. Twinkle 

mutations cause autosomal dominant PEO, PEO plus syndromes and the syndrome of 

IOSCA [10, 90, 91].  

IOSCA starts in infancy (commonly during the first two years of life) and is clinically 

characterised by muscle hypotonia, spinocerebellar ataxia, sensory neuropathy, 

extrapyramidal dysfunction (athetosis), PEO, hearing deficit, migraine-like headaches 

and female hypogonadism. Many patients develop epilepsy with seizure semiology 
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similar to that of POLG encephalopathy including SPM seizures, EPC and frequent 

SE. Moreover, like in POLG encephalopathy, epilepsy is an important negative 

prognostic factor as its presence is associated with crises of epileptic encephalopathy 

accompanied by stroke-like cortical cerebral lesions with a profile similar to that seen 

in MSCAE and Alpers’ disease. Liver disease may occur in the most severe forms of 

the disease. Severity varies according to genotype. Patients with severe disease often 

die in infancy of severe encephalopathy, while others live into adulthood [90, 92-94].  

At the molecular level, both POLG and Twinkle mutations affect mtDNA replication 

causing secondary damage to the mitochondrial genome. Like POLG, Twinkle 

mutations cause tissue specific multiple deletions and quantitative depletion of 

mtDNA; There are, however, differences in the tissue/organ distribution. In IOSCA 

depletion has been found in the liver and brain, but not in skeletal muscle, while 

multiple deletions have not been described. In POLG encephalopathy depletion 

occurs also in skeletal muscle and multiple deletions are found in both muscle and 

brain [72, 76, 77, 90, 95].  

Distinguishing IOSCA from Alpers’ disease or early onset MSCAE is not always 

possible on clinical grounds. Generally, POLG mutations should be tested first, as 

they are more common; when negative, testing Twinkle is perhaps the logical next 

step.   

Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes 

(MELAS) 

MELAS is caused by maternally inherited mtDNA point mutations, mostly in the 

tRNA gene for leucine (MT-TLUUR) and less frequently other tRNAs or the gene 

encoding subunit-5 of complex-I (MT-ND5). Severity varies according to levels of 

mutation heteroplasmy, tissue segregation and other factors. In its full blown form, 

MELAS is a multi-system disease that may include epilepsy, headache often with 

migraine-like feature, ataxia, peripheral neuropathy, sensorineural hearing loss, 

myopathy, retinopathy, diabetes mellitus, hearing impairment, lactic acidosis, heart 
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disease, nephropathy and other organ dysfunctions. Like POLG encephalopathy, 

MELAS has an acute-on-chronic course. Its clinical hallmark is the occurrence of so 

called stroke-like episodes (SLE), which are characterised by acute or subacute 

developing neurological dysfunction, accompanied by stroke-like cerebral lesions.  

The stroke-like lesions of MELAS and POLG-encephalopathy have similar MRI 

profiles, including diffusion and spectroscopy, evolution pattern and histological 

appearance [79, 96]. There are, however, also important differences. While occipital 

involvement is common in both disorders, temporal lesions are very common in 

MELAS [97] but rare in POLG-encephalopathy (see section 4.4.1). The thalamus is 

commonly affected in POLG encephalopathy, but rarely in MELAS. Also, the basal 

ganglia and dentate nuclei are commonly calcified in MELAS, but calcification does 

not occur in POLG-encephalopathy.  

COX histochemistry also differs. Mosaics of COX negative neurons and skeletal 

muscle fibres are seen in both conditions [72, 79]. COX negative/SDH reactive 

vessels, are typically present in striated muscle and brain of MELAS patients, but 

have not been described in POLG disease and were not seen in our patients [72, 75, 

98].  

Friedreich’s ataxia 

Friedreich’s ataxia (FA) is caused by GAA trinucleotide repeat expansions in the FXN 

gene encoding frataxin, a mitochondrial protein involved in iron metabolism.  Like 

MSCAE, Friedreich’s ataxia is recessively inherited, commonly starts during the first 

two decades of life and is clinically characterised by spinocerebellar ataxia with distal 

sensory loss and decreased tendon reflexes. Unlike MSCAE however, FA consistently 

has pyramidal signs and is commonly associated with cardiomyopathy and diabetes 

mellitus. Another important diagnostic hint comes from MRI, which in FA typically 

shows severe atrophy of the spinal cord, often with disproportionably little atrophy of 

the cerebellum. In MSCAE, we did not find radiologically detectable cord atrophy, 

while cerebellar atrophy was common (75%).    
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Encephalitis 

Acute viral encephalitis typically presents with acute or subacute progressive 

encephalopathy with epileptic seizures and progressive cerebral lesions. Especially 

viruses of the herpes family (including Varicella zoster) can produce symptoms and 

MRI changes similar to those of acute episodes of POLG-encephalopathy. Viral 

lesions are predominantly cortical, T2 hyperintense and may have restricted or 

heterogeneous diffusion profiles in the acute phase due to virus mediated cytotoxic 

oedema and inflammatory hypercellularity [99, 100]. Lesion localisation sometimes –

but not always- helps distinguish the two conditions. Herpes simplex encephalitis 

commonly causes extensive oedematous lesions of the medial temporal lobes 

including the hippocampi. These structures were consistently spared in our patients 

with POLG encephalopathy.    

Ischemic stroke 

Acute developing exacerbation episodes with stroke-like lesions may sometimes be 

confused with ischemic stroke, especially when they occur early in the course of the 

disease before typical features have been developed or detected. Epilepsy is 

uncommon in the acute phase of ischemic stroke and should alert the physician to 

consider alternative diagnoses. Evidence of restricted lesional water diffusion on MRI 

cannot be used to effectively differentiate between the two as it may occur in both 

during the acute phase. The pattern and distribution of diffusion change in the lesion 

may be more informative. The diffusion profile of stroke-like lesions is usually more 

heterogeneous than that of ischemic infarction and may contain areas of normal or 

increased diffusion, especially in the underlying white matter. Moreover, the stroke-

like lesion predilection for the occipital areas, distribution across vascular perfusion 

borders and gradual progression should raise the possibility for a metabolic cause. 

5.1.6 Survival and prognosis in MSCAE: the role of genotype and epilepsy 

Compound heterozygous patients have worse prognosis 
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Our findings presented in paper I and supplemented here with unpublished data show 

that patients who are compound heterozygous for the A467T and W748S mutations 

have a significantly worse prognosis than homozygous patients with lower age of 

death and significantly shorter disease duration (p=0.003). Inclusion of the reported 

cases in the literature supports this finding (Table 3, figure 7). Clinical picture and 

epilepsy frequency are similar in homozygous and compound patients and the 

reason(s) why the A467T/W748S genotype is associated with more severe disease 

remain unknown. It is possible that the two mutations have a synergistic effect 

mediated by interaction between the two mutant proteins in a dominant negative 

fashion. This suggests that an interaction between two or more catalytic POLG 

subunits may be taking place also under normal conditions during mtDNA replication. 

So far, however, studies have failed to generate evidence supporting this hypothesis 

[25]    

The role of epilepsy 

We show that the presence of epilepsy is the most important independent prognostic 

factor in MSCAE and divides the disease into two subgroups with differences in 

mortality and age of onset. Patients who have epilepsy experience during the course 

of their disease, severe exacerbation episodes with ~50% mortality rate and are at risk 

of developing liver failure if given valproate based antiepileptics. Disease progression 

is also generally faster in this group due to accelerated, permanent symptom 

worsening after each episode that the patients survive. Patients without epilepsy have 

significantly better survival. Interestingly patients with epilepsy appear to have an 

earlier age of onset (~12 years) than patients with no epilepsy (~23 years).  

The reasons for this apparent phenotypical heterogeneity in MSCAE remain 

unknown. One possibility is that the difference is caused by genetic factors. In our 

material, and the cases reported in the literature, the frequency of epilepsy is similar in 

the three major MSCAE genotypes. The catalytic pol �A is known to be highly 

polymorphic and functions together with the accessory pol �B. It is possible, 

therefore, that one or more changes in the catalytic subunit or its partner could have a 
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synergistic deleterious effect. We are currently examining this question and so far 

have not found any changes in POLG1 or POLG2 showing a significant effect on the 

incidence of epilepsy. This is however an ongoing study and, even if it remains 

negative upon completion, this would not exclude influencing factors in other parts of 

the genome. Environmental factors could also be involved, but none has yet been 

identified.  

The difference in age of onset is also difficult to explain. It is possible that the 

apparently later age of onset in patients without epilepsy simply reflects later 

recognition of the symptoms. Patients without epilepsy have an insidious onset and a 

chronic, slowly progressive course that initially may not cause sufficient concern, to 

the patient or their families, to warrant medical attention. Epilepsy demands early 

medical attention and allows other, mild findings such as a slight gait ataxia to be 

identified.   

5.1.7 Follow-up and treatment of POLG-encephalopathy  

The follow-up of patients with POLG-encephalopathy should include regular clinical 

evaluation in order to access disability, so that the necessary adjustments can be made 

in the patient’s life. Compound genotype and epilepsy are associated with increased 

morbidity and mortality and it should be noted that epilepsy may start late during the 

course of the disease changing the prognosis.  

Cerebral MRI should be performed at the beginning of the illness diagnostically and 

to be used as future reference. Regular MRI examinations have little value except 

during exacerbation episodes. Detecting acute stroke-like lesions under episodes and 

monitoring their progression has important prognostic implications. The localisation 

and extent of the lesions correlates with potential for recovery and resulting disability. 

Moreover, gradual regression or disappearance of the lesions strongly suggests 

potential for recovery and may influence clinical decision taking on further treatment. 

Blood chemistry including liver function tests and levels of antiepileptic agents 

should be performed on a regular basis, at least three times a year.  
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No curative treatment exists for POLG disease. Symptomatic and supportive 

treatments should focus on controlling the epilepsy, improving quality of life and 

preventing chronic complications of immobilisation.  

Seizure control is the cornerstone of treatment. Epilepsy is associated with significant 

morbidity and plays a major role in the initiation and propagation of exacerbation 

episodes and cortical lesions. Seizures are often refractory in POLG encephalopathy 

and may require high dose polytherapy. Status epilepticus should be treated 

aggressively with a low threshold for generalised anaesthesia. Ketamine was effective 

in terminating status epilepticus in one case [101]. Valproic acid derivatives are 

contraindicated due to high risk for liver disease. With the exception of seizure 

control, no therapy has shown disease modifying effect in POLG encephalopathy 

patients. In one study folate deficiency was found in the cerebrospinal fluid of a child 

with Alpers’ disease and follate supplementation was associated with transient 

clinical improvement [61]. 

5.2 Imaging and pathology findings in POLG-encephalopathy reveal 

important elements of pathophysiology (Paper III) 

5.2.1 Cortical lesions preferentially affect the posterior parts of the brain 

and have features consistent with local energy failure 

Stroke-like lesions in POLG encephalopathy show a predilection for the posterior 

brain and especially the occipital lobes. This was correlated with occipital epileptic 

activity clinically (visual seizures) and on EEG. The reason for this regional 

selectivity is unclear. It is possible that it has to do with high energy requirements 

or/and a lower threshold for dysfunction and injury due to energy deficiency. High 

energy requirement, however, is unlikely to be the sole cause. The hippocampus and 

striatum, which are known to be highly sensitive to energy restriction due to other 

causes (hypoxia, ischemia, carbon monoxide, prolonged seizures), are consistently 

spared, as are the central motor neurons.   
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Stroke-like lesions consistently show restricted water diffusion in the acute phase 

suggesting intracellular water sequestration i.e. cytotoxic cerebral oedema. Lesional 

diffusion heterogeneity with the simultaneous presence of areas of normal or 

increased diffusion is a known phenomenon from MELAS and most probably reflects 

the gradual and asynchronous development and progression of various parts of the 

lesion. With time, as affected cells die and lyse, the trapped water is released into the 

extracellular compartment, were molecular motion is less restricted, and diffusion 

increases. Baseline overshoot is probably due to transient formation of extracellular 

oedema, which is then gradually absorbed into the vascular compartment. Persistent 

high diffusion in chronic lesions reflects retraction and cavitation with permanently 

increased fluid content.    

Histology of stroke-like lesions shows selective neuronal loss and eosinophilic 

neuronal necrosis, while nearby uninvolved areas have normal neuronal density and 

appearance. In the absence of signs of angiopathy and ischemia, the most likely 

explanation for this phenomenon is neuronal ATP deficiency caused by failure of the 

mitochondrial respiratory chain to meet the high energy demand. This is further 

supported by the finding of COX-negative neurons. Epilepsy will significantly 

aggravate, and may even trigger SLL, either by increasing neuronal energy 

consumption or via direct excitotoxic effects. Our data shows that epileptic activity 

may be absent early in the course of an exacerbation episode and that progression can 

still occur even when previously documented epileptic activity disappears. Ongoing 

epileptic activity is not, therefore, a prerequisite for SLL expansion or clinical 

progression. Currently, there is insufficient data, but it appears unlikely that epileptic 

activity is the primary or sole mechanism behind the development and progression of 

exacerbation episodes and stroke-like lesions in POLG-encephalopathy. 

Further support for energy depletion comes from the finding of cortical laminar 

necrosis (CLN). CLN is believed to represent selective damage of the cortical layers 

that are most sensitive to ATP deficiency; the subsequent intracortical 

microhemorrhage or infiltration by fat-laden macrophages accounts for the shortening 
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of T1 signal [102]. Neuronal energy deficiency is also supported by the histological 

findings of selective neuronal loss and eosinophilic necrosis in the cerebral cortex and 

thalamus, selective loss of Purkinje cells and dentate neurons in the cerebellum, 

laminar cortical necrosis and neuronal COX-deficiency. Similar histological findings, 

restricted water diffusion and CLN have been associated with states of secondary 

CNS energy deficiency such as cerebral ischemia/hypoxia [102-105], carbon 

monoxide (CO) poisoning [106-108], cyanide (CN) poisoning [109, 110] and 

hypoglycaemic encephalopathy [111-113].  

5.2.2 The thalamus 

Chronic MRI lesions and histopathological changes affecting the thalamus, 

cerebellum and brainstem in MSCAE have been reported earlier [75, 98]. Thalamic 

lesions are very typical of MSCAE. The suggestion that these arise secondarily to 

status epilepticus [114] is not supported by our studies. Seven patients with epilepsy 

lacked MRI evidence of thalamic involvement while 2 without epilepsy (WS-14A, 

WS-15A) had bilateral, prominent thalamic changes. Apparently, mitochondrial 

dysfunction alone is capable of producing these lesions.  

5.2.3 The cerebellum 

Cerebellar cortical and dentate involvement is consistent with cerebellofugal 

degeneration, while white matter involvement may represent general loss of the 

cerebellar connections. Similar MRI and histological findings in the cerebellum have 

been reported in patients with Kearns-Sayre syndrome (KSS) [115, 116]. Moreover, 

synaptic immunohistochemistry studies in KSS have shown evidence of Purkinje cell 

disconnection at the dentate nucleus, i.e. loss of cerebellar efferents [116]. Radial 

microglial proliferation in the molecular layer of the cerebellar cortex has been 

described in models of drug toxicity and cerebral contusion injury and is thought to 

represent microglial activation along the dentritic processes of injured Purkinje cells 

[117-119]. 
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5.2.4 Inferior olivary lesions correlate with dentate atrophy and segregate 

with the W748S homozygous genotype 

Olivary lesions are consistent with hypertrophic olivary degeneration. This usually 

occurs secondarily to de-afferentation of the inferior olives by lesions interrupting the 

Guillain-Mollaret triangle, i.e. the connections between the dentate nucleus of the 

cerebellum and contralateral inferior olive and red nucleus [120]. No signs of rubral 

involvement were seen in our patients. However, evidence of bilateral dentate atrophy 

was found in 4/8 with olivary changes and dentate involvement could not be excluded 

in the remaining four. Classically, this type of olivary lesions has been associated with 

palatal tremor/myoclonus, but this was only seen in one case [74, 121], while in the 

remaining seven no clinical correlate could be found. Interestingly, olivary lesions 

only occurred in W748S homozygotes, but the reason for this remains unclear. 

5.2.5 The spinal cord shows selective degenerations of the dorsal columns 

The spinal cord was radiologically intact, however, neuropathological examination 

showed selective degeneration of the dorsal columns consistent with the 

proprioceptive defect and sensory ataxia in MSCAE patients. Interestingly, changes 

were more severe in the fasciculus gracilis, which carries sensory input from the 

lower limbs. This correlates well with the clinical findings, showing more severe 

sensory impairment in the lower limbs. The selective involvement of long sensory 

axons may be associated with failure to meet high energy requirements related to 

axonal transport, due to the underlying mitochondrial defect.  

5.3 The molecular pathogenesis of POLG disease – from POLG 

mutation to mtDNA damage and tissue specific energy failure (paper 

IV and unpublished material) 

5.3.2 The common POLG mutations A467T and W748S reduce the 

efficiency of the polymerase 
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Mitochondrial DNA is necessary for the formation and function of the respiratory 

chain and is therefore essential for energy production in animal cells. POLG is the 

only molecule which replicates and repairs mtDNA and in its absence, the 

mitochondrial genome cannot be maintained. Homozygous POLG knock out mice die 

in utero by the eighth day of gestation and show severe mtDNA depletion and 

respiratory chain failure as reflected by global and total absence of histochemical 

COX activity [122]. In humans, several truncating POLG mutations have been 

described which are predicted not to allow formation of functional protein. Such 

mutations are asymptomatic in heterozygous carrier state and associated with severe 

infantile encephalopathies and encephalohepatopathies when paired in trans with 

missence mutations including the common A467T and W748S. Nonsense mutations 

affecting both POLG alleles have not been reported, most probably because such 

genotypes are lethal early in gestation. 

The common A467T is one of the best studied POLG mutations in humans. The 

aminoacid substitution affects a highly conserved region of the molecule, which has 

long been considered to be in the spacer area between the polymerase and 

exonuclease motifs of the protein. In vitro studies have shown that the A467T 

mutation reduces DNA binding affinity and DNA synthesis activity of the catalytic 

subunit and may inhibit its interaction with the accessory subunit [45, 123]. Recent 

protein crystallization work suggests that the A467T mutation does not occurs in the 

spacer, but in the thumb subdomain of the polymerase; a structure which in nuclear 

DNA polymerases is important for keeping the polymerase on the DNA strand and is 

therefore essential for processivity [25].  

The W748S mutation affects the spacer domain and reduces efficiency of DNA 

synthesis although binding of the accessory subunit does not seem to be affected 

[124]. The W748S is commonly (but not always) found in cis with another change, 

the E1143G. In vitro enzyme studies have shown that catalytic POLG subunits with 

the E1143G alone exhibit slightly higher polymerase activity than their wild type 

counterparts. Moreover, when in cis with the W748S, the E1143G may moderate the 
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deleterious effect of the latter by rescuing some of the polymerase activity [124]. It 

has therefore been suggested that the E1143G may have a beneficial effect in patients 

with W748S associated disease. The role of the E1143G alone could not be studied in 

our material as it always accompanied the W748S in cis. 

5.3.3 POLG mutations lead to tissue specific mtDNA multiple deletions 

and/or quantitative depletion 

Although the exact mechanism(s) by which POLG mutations lead to disease are still 

to be revealed, secondary damage of mtDNA seems to play a central role. We and 

others have found evidence of tissue specific multiple deletions and/or quantitative 

depletion of the mitochondrial genome. Quantification of mtDNA by real-time PCR 

in our POLG encephalopathy patients showed depletion in skeletal muscle and liver, 

which is consistent with other reports [60, 62, 76, 77, 95]. The most severe depletion 

(~80%) was seen in the liver of patients WS-2A and AL-1A, who had both 

spontaneous liver failure during the last part of their illness. Patients AT-2A and WS-

1A, in whom we found ~ 65-70% depletion in the liver, had a mild elevation of liver 

function tests, but not clinical failure and they died of other causes. This suggests a 

high threshold for clinical liver dysfunction due to mtDNA loss and may explain the 

acute precipitation of liver disease by sodium-valproate, which poses an additional 

metabolic challenge to already compromised hepatocytes. This is supported by the 

findings in mouse models of mtDNA depletion, such as the MPV17 knockout mouse, 

where the liver shows a striking functional tolerance to severe mtDNA depletion 

[125, 126].  Skeletal muscle showed severe depletion in all patients. This result is 

more difficult to interpret because SKM was clinically mildly affected in our patients 

(with the exception of extraocular muscles). Moreover, depletion in muscle did not 

always correlate with clinical myopathy and neither did multiple deletions.   

MtDNA depletion was found in brain tissue from two patients only (WS-12A and 

AL-1A). The results may be skewed, however, by the presence of mtDNA from non-

neuronal cells. For instance, the MILON mouse, which is characterized by the 
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absence of mtDNA (and OXPHOS) in neurons, due to cell type-specific ablation of 

Tfam,  shows only a moderate reduction of mtDNA content in brain homogenate, due 

to the presence of glial cells with normal mtDNA copy number [127]. In order to 

overcome this problem, single neuron studies are needed. We will be doing this as 

part of an ongoing project to study the molecular pathogenesis of POLG disease in 

tissues of patients that we collected through the years.   

5.3.4 MtDNA depletion occurs in skeletal muscle of patients with PEO 

caused by POLG mutations 

In paper IV we report mtDNA depletion in the muscle of a patient with POLG-

associated PEO. Although multiple mtDNA deletions are considered a hallmark of 

POLG-associated PEO, depletion has, to the best of our knowledge, not been 

reported. Our patient’s levels of depletion were significantly higher than the levels of 

deletion. Although this was shown in a single case only, it suggests that, in addition to 

multiple deletions, quantitative loss of the mitochondrial genome may play a major 

role in the pathogenesis of PEO caused by POLG mutations.       

5.3.5 From mtDNA damage to energy failure and disease   

Irrespective of whether it is deletions, depletion or both that have most impact the 

mitochondrial genome, mtDNA damage is predicted to affect the integrity of the 

respiratory chain and therefore damage OXPHOS and compromise the cell’s energy 

generating capacity. Several of our findings, including diffusion imaging of acute 

lesions while they develop, histochemistry and histology of biopsy and post-mortem 

material, suggest that energy failure (lack of ATP) occurs in tissues of patients with 

POLG disease and that it is an important pathophysiological event.  

Furthermore, we suggest that energy depletion in the CNS, by generating cortical 

neuronal dysfunction and damage, predisposes to epileptogenesis, which in turn 

potentiates neuronal damage by increasing the energy demands of the already 

metabolically challenged neurons. This results in a self-perpetuating cycle of neuronal 
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damage and epilepsy, which we believe is what initiates and sustains exacerbation 

episodes and expands cortical lesions. Other factors, like excess lactate, glutamate 

mediated excitotoxicity and even free radical generation may also play a role.   
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6. Conclusions / main points 

• The common POLG mutations A467T and W748S cause a clinically well defined 

entity that is interchangeably called MSCAE or MIRAS. This is a complex 

syndrome that usually presents in the mid teens -but has a broad range form early 

childhood to adulthood- and is clinically characterised by progressive 

spinocerebellar ataxia, chronic and episodic encephalopathy and late-onset 

external ophthalmoplegia.  

• Most Norwegian patients with MSCAE develop epilepsy at onset or during the 

course of their disease. All patients with epilepsy, including those who develop it 

late, experience acute episodic exacerbations with rapidly progressive 

encephalopathy and expanding stroke-like cerebral lesions. Episode mortality is 

high (~50% in our material) and aggressive preventive and abortive treatment of 

the epilepsy and status epilepticus is required. Patients with no epilepsy have 

milder disease with slowly progressive course, but no stroke-like episodes and 

although they face disability, mainly due to the ataxia, survival at least until the 

seventh decade and probably longer is possible.  

• MSCAE has a complex epileptic semiology with a variety of clinical seizure types 

and frequent status epilepticus. EPC and an occipital epileptogenic focus on EEG 

are characteristic findings and should provide a clue for the diagnosis.  

• Genotype is an important prognostic factor in MSCAE. Patients who are 

compound heterozygous in trans for the A467T and W748S mutations have a 

significantly worse prognosis than homozygous patients with lower median 

survival and age of death.   

• Severe liver disease and failure may occur in MSCAE upon exposure to valproic 

acid derivatives, or less commonly spontaneously. Spontaneous liver failure is 

more common in Alpers’ disease. All valproic acid derivatives are strictly 

contraindicated in POLG-disease. 
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• MRI is highly sensitive in POLG-encephalopathy and can be specific in MSCAE. 

Typical chronic findings in MSCAE include high T2 signal lesions in the 

thalamus, cerebellar white matter and olivary nuclei. Acute stroke-like cortical 

lesions with a predilection for the posterior brain and restricted diffusion profiles 

occur during episodic exacerbations in POLG-encephalopathy. These should be 

monitored as their evolution is important for prognosis and episode outcome. 

• We and others have shown that tissue specific mtDNA damage, histochemical 

COX deficiency and respiratory complex defects occur in tissues of patients with 

POLG-disease. These findings suggest that POLG mutations lead to secondary 

dysfunction of the respiratory chain, which is predicted to cause energy failure in 

cells. Our imaging and histological findings, presented in paper III provide 

important evidence that energy failure indeed occurs in the CNS of patients with 

POLG-encephalopathy and that it plays a central role in the pathogenesis and 

pathophysiology of this complex disorder.   
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7. Future prospects 

POLG is a fascinating molecule with an essential function for life and important role 

in human disease. Although numerous mutations and clinical syndromes have been 

described, still relatively little is known about the underlying mechanisms by which 

mutations lead to disease. Our findings suggest that energy failure due to secondary 

mtDNA damage and resulting respiratory chain dysfunction is an important 

pathophysiological event. Several questions remain however unanswered. Energy 

failure alone is not sufficient to explain the complete semiology, organ/region 

selectivity and clinical variability of POLG-disease suggesting that other mechanisms 

must be involved. Moreover, the type and severity of mtDNA changes seem to vary 

significantly in different tissue and cell types and this has not been mapped or studied 

sufficiently. In order to achieve this, more studies of human tissue material are 

required.  

We are currently conducting a histological and molecular study of post-mortem and 

biopsy tissue-samples from various organs of patients with POLG-disease. Some of 

the first, yet unpublished results have been reported and discussed in this thesis and 

upon completion of the work we hope to achieve a better understanding of the tissue 

selectivity and specificity issues of POLG-disease.   

Although necessary and irreplaceable, human studies have several well-known 

disadvantages and limitations. Human post-mortem tissues are difficult to obtain, 

often show terminal disease changes –giving little specific information about the 

processes that led to these- and are commonly degraded producing results difficult to 

interpret. Using cell culture and other in vitro systems may be useful, but cannot 

compensate for the lack of fresh tissue samples from affected organs. In order to 

overcome this problem and study POLG-disease in a living system as it arises and 

evolves, we have generated a transgenic mouse carrying the common POLG mutation 

p.A467T and are currently conducting studies in order to characterise the phenotype. 

Future projects will include detailed pathological, biochemical and molecular 
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characterisation of the mouse tissues at different stages of disease progression in 

order to understand the mechanisms underlying disease causation and evolution and 

to identify potential therapeutic targets.  

Furthermore, through research collaborations, our mice will be crossed with mouse 

models carrying other POLG mutations. Studying the compound heterozygous 

offspring of such crosses will allow us study genotype-phenotype correlations and 

identify potential interactions between different POLG mutations. 
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9. Appendices 

Thesis Paper-III Paper-II Paper-I 

AT-1A AT-1A 2 2 
AT-1B AT-1B 1 1 
AT-2A AT-2A 4 3 
AT-2B AT-2B 3 4 
AT-3A AT-3A   5 
AT-4A AT-4A     
CP-1A CP-1A   10 
CP-1B   6 9 

CP-1C*       
CP-2A CP-2A   7 
CP-3A CP-3A 5 6 
CP-4A  CP-4A 8 12 
CP-4B CP-4B 7 11 
CP-5A     8 
CP-6A       
WS-1A WS-1A   16 
WS-2A WS-2A 14 23 
WS-3A WS-3A 16 25 
WS-4A WS-4A 18 26 
WS-5A WS-5A   21 
WS-6A WS-6A 15 24 
WS-7A WS-7A 11 18 
WS-7B WS-7B 12 19 
WS-8A WS-8A     
WS-9A WS-9A 9 15 

WS-10A WS-10A 13 22 
WS-11A WS-11A 10 17 
WS-12A WS-12A 17 20 
WS-13B WS-13B 19 13 
WS-14A WS-14A     
WS-14B*       
WS-15A WS-15A     
WS-16A*       
WS-17A*       
WS-17B*       
WS-18A WS-18A     
AL-1A AL-1A     
AL-1B AL-1B     
AL-2A AL-2A     
AL-3A AL-3A     

 

Appendix I. Key to patient codes in the different papers. Unreported cases are 

marked by *. 
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