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1 . Introduction

1.1.     Motivation

The problem of accurate measurement of multiphase flow arises in a variety of situations, such

as multiphase transport of hydrocarbons, control of thermoelectric power plants and in

assorted types of process industry.  In many cases, conventional flow meters are unsuitable

for multiphase operation, because their response is strongly dependent on the actual flow

regime, which generally varies with space and time in a non-stationary manner.

For this reason, it is of great interest to develop techniques for on-line flow imaging, i.e.

measurement of the crossectional phase distribution of the flow.  This information can be

combined with readings from ordinary flow meters to obtain corrected, and hence more

accurate flowrate measurements.  Alternatively, a flow imaging system might be used on its

own for monitoring or design purposes, e.g. in reactor safety and process industry

applications.

It is obvious that the different situations in which flow imaging might be used put varying

demands to the imaging equipment used.  When imaging is used for the correction of readings

from standard flowmeters and for process monitoring, an indication of the type of flow regime

may be adequate;  on the other hand, much better spatial resolution and image precision are

required for producing true images of the phase distribution, or for regime independent

multiphase fraction measurement.

There is also the question of dynamic response;  in some applications, the flowing media may

travel at several meters per second and with rapidly changing flow regimes, therefore, a

response time in the millisecond range could sometimes be needed.  Conversely, in other

applications with lower flow velocity and/or near stationary regimes, a response time of

several seconds may be acceptable.

Further, it is clearly desirable to have a non-invasive and non-intrusive imaging system, as

this ensures maximum integrity of the pipeline, that the instrument is protected from being

damaged by the flowing medium, and that the flow is not disturbed or obstructed in any way.

Finally, if the instrument can be made as a “clamp-on” design, installation and maintenance

will be greatly simplified.
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1.2.     Previous work

There have been made a few attempts to design systems for flow imaging or regime

identification, and a number of different measurement techniques have been proposed;  we

will describe very briefly the more important:

1 . 2 . 1 . Ultrasound imaging

At UMIST1, the possibility of using ultrasound techniques for flow imaging have been

investigated [1].  Several ultrasound transducers are positioned around the pipe circumference,

and the reflection (echo) generated by a pulsed ultrasound beam is measured.  An image of the

flow regime section is then reconstructed using a simple backprojection algorithm.

1 . 2 . 2 . Capacitance techniques

Two-component oil-gas flow regimes can be successfully identified using capacitance

methods.  Because the dielectric constants of oil and gas are different, the measured

capacitance between a pair of electrodes placed on the outside of an insulated pipe section will

depend on the relative fractions of the phases between the electrodes.  By using several

electrodes and measuring the capacitance between all combinations of electrode pairs, a coarse

image of the flow can be reconstructed using backprojection.  Imaging systems based on

capacitance techniques have been investigated at UMIST [2] and at UofB [3].  It should be

noted that a capacitance imaging system may become unusable for gas-oil-water or oil-water

flows if water is the continuous phase, as this short-circuits the electrodes.

1 . 2 . 3 . Imaging systems based on radiation absorbtion techniques

The ultrasound and capacitance based systems described above are both capable of very good

dynamic response, but the measurement principles used have inherent limitations that preclude

the use of the more accurate and efficient image reconstruction methods used in medical X-ray

CT2 (see Chapter 3):  The sensitivity for a unit change in the measured parameter is not

uniform within the “region of influence” for a measurement (e.g. the region between an

electrode pair), and the extent of this region of influence and the sensitivity within it both

depend on the phase distribution, or flow regime.

1University of Manchester, Institute of Science and Technology.

2Computerized Tomography.
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Such problems are nonexistent or negligible in radiation-based medical imaging;  therefore, it

seems reasonable to expect X-ray or γ-ray techniques to be suitable for flow imaging as well.

The following systems, which are more thoroughly discussed in Chapter 4, represent attempts

in this direction:

• A rotating γ-ray scanner design for flow imaging has been investigated at the Ohio

State University [4][5];  this system offers good spatial and density resolution, as well

as reasonable dynamic response;  however, the system is rather complex and has

moving parts, which is a definite disadvantage.

• The scattering/transmission nonmoving system based on γ-ray attenuation

measurements has been developed at UMIST [6]:  A linear array of photon sources is

generated by an external scatterer rod and two γ-sources situated at each end of the rod.

The flow cross section is illuminated by the photon field emanating from the scatterer,

and two energy-discriminating detectors oppositely positioned measure the average

density in several chords through the pipe.  This system has no moving parts, but its

dynamic response is very poor, due to the use of the external scatterer concept.

• At the Department of Physics, University of Bergen, a project was started in 1987,

with the intention of designing a multisource+multidetector direct transmission γ-ray

flow imaging system.  Using this concept, the shortcomings of the systems described

above (moving parts, or inferior dynamic response) may be circumvented.  The basic

principle of γ-ray attenuation density measurement has been tested using a system with

one source and one detector, and images of static models of flow regimes have been

successfully reconstructed using standard algorithms known from medical CT [7].

1.3.     Scope of work

The present work is concerned with the analysis of the latter of the three concepts described

above;  i.e. a flow imaging system based on the γ-ray attenuation technique, utilizing several

fixed γ-sources and detectors.  The geometrical problem of the source positioning will be

considered in Chapter 4, where we will also investigate the image errors arising from

reconstruction algorithm related factors.  In Chapter 5, we describe the principle and the

accuracy of the density measurements on which the image reconstruction is based.  Finally, in

Chapter 6 we will discuss how reconstruction error and measurement uncertainty together

determine the overall precision of the image.

However, before attacking these tasks, it is necessary to establish some general γ-ray theory

(Chapter 2), and discuss the basic principles of CT (Chapter 3).
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2 . Basics of γ rays:  Transport theory, detection

and application to densitometry

2.1.     Introduction

In this chapter we will discuss how γ rays interact with matter and what methods which may

be used for γ-ray transport calculations.  We will also consider the subject of γ-ray detection,

and how γ rays can be used for density measurement.

2.2.     Definitions

Gamma rays are electromagnetic radiation resulting from nuclear processes, with frequency

higher than approximately 1018 Hz (or wavelength shorter than 300⋅10-12 m), propagating in

free space with the velocity of light.  The term X rays is also frequently used more or less

interchangeably with “gamma rays” to denote any electromagnetic radiation with frequency

higher than that of ultraviolet light (>1015 Hz), although  “X rays” are normally used of

electromagnetic radiation resulting from an atomic process.

The behaviour of electromagnetic radiation of frequency lower than that of infrared light is

exactly described by classical electrodynamics;  that is, it is treated as a wave phenomenon.

However, this classical theory fails to explain emission, propagation and absorption of

radiation in the X- and γ-ray range, and a quantum mechanical approach is needed.  Quantum

electrodynamics describes the radiation as a beam consisting of energy quanta called photons,

each having an energy E, which is related to the frequency ν and wavelength λ by

E =hν = hc
λ

(2.1)

where E is the energy of the photon, h is Planck´s constant, c is the velocity of light in

vacuum and where c = λν.  When the frequency is equal to or higher than that of visible light,

it is indeed possible to measure the effect of individual photons;  this demonstrates the

corpuscular behaviour of electromagnetic radiation in this range.

At this point, we may add a few comments on our use of units:  It is customary to express the

energy E in electron volts when dealing with radiation in this energy range;  alternatively, one

can express the energy in units of the electron rest mass energy (i.e. in multiples of mc2, equal

to 0.511 MeV).  We shall use E to denote energy in eV units, and k to denote energy in mc2
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units.  Furthermore, we shall sometimes (when dealing with X or γ rays) express wavelengths

in Compton units;  that is, λ = 1/k = 0.511/E[MeV].

We have already mentioned that the origin of γ rays is nuclear processes.  The α- or β- decay

of an unstable isotope may be followed by emission of γ rays;  normally, β-isotopes are used

as sources of γ rays because of higher emission intensity and easier production.  The γ rays

emitted from isotopes have an energy spectrum composed of one or more lines, with photon

energies ranging from a few keV to a few MeV.  Because of this, we shall restrict our

discussion of photon interaction with matter to  the energy range of 1 keV to 10 MeV.

2.3.     Attenuation processes and secondary effects

2 . 3 . 1 . Cross sections and linear attenuation coefficients

When a photon propagates through matter, it may interact with the individual atoms of a

material through several processes, some of which causes the outright absorption of the

photon, and others which changes its direction of travel.  We may define the cross section σ
as the probability that a photon will undergo an interaction with an absorber (material)

containing one atom per square centimetre.  The cross section has the dimension of area and

its unit is the barn (b);  one barn equals 10-24 cm2.

Transmitted
photon beam

dx

x

Incident beam
of       photons no

Figure 2.1 Geometry used for derivation of the attenuation formula for a narrow, monoenergetic

photon beam incident on a slab of a homogeneous material.

Let us now consider the situation in which a narrow beam of monoenergetic photons is

incident on a slab of homogeneous material (Figure 2.1), which is assumed to consist of a

single element.  In a slice of thickness dx and at depth x and within the slab, dn photons will

be removed from the beam by absorption or scattering.  The number of photons removed, dn,

is proportional to the number of incident photons, n, and the slice thickness dx;  the

proportionality factor is the total photon interaction probability, which is equal to the total

interaction cross section σtot times the number of atoms per cubic centimetre, N:
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−dn = nσ totNdx (2.2)

which may be written

−dn = nµtotdx

µtot = σ totN
(2.3)

The quantity µtot is called the total linear attenuation coefficient and may be defined as the

probability per unit pathlength that a photon will interact with the absorber.  It has the unit of

inverse length (usually the pathlength is expressed in centimeters;  hence, the unit of the linear

attenuation coefficient is [cm-1]).  Since the total cross section σtot depends in a complex

manner on the photon energy E and the atomic number Z of the medium, so does the linear

attenuation coefficient.  It does not, however, depend on the position in the medium where the

interaction takes place, because the atoms contribute independently to the total cross section,

and eq 2.3 can be solved by simple integration.  The equation for the number of photons

transmitted through position x is then

n (x ) = n
0
e

−µ
tot

x

(2.4)

where n0 is the number of photons incident on the slab.  If the medium is inhomogeneous,

however, the value of the attenuation coefficient will depend on the position in the medium,

and in this case the number of transmitted photons is:

n (x ) = n
0
exp − µtot (x ′ )

0

x

∫ dx ′





(2.5)

2 . 3 . 2 . The mass attenuation coefficient

From eq 2.3 we know that µtot is proportional to the number of atoms per cubic centimetre,

N;  this is given by

N = ρ
N

A

M
(2.6)

where ρ is the density of the medium, M is its atomic mole weight and NA is Avogadro’s

number, which is equal to 6.02252⋅1023.

The linear attenuation coefficient may then be written as

µ
tot

= σ
tot

ρ
N

A

M
(2.7)

Because the linear attenuation coefficient depends on the density of the absorber, and therefore

to some degree on its physical state , it is customary to use the so-called mass attenuation
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coefficient, (µ/ρ)tot, when tabulating attenuation coefficients.  The mass attenuation coefficient

is defined as

(
µ
ρ )

tot
= σ

tot

N
A

M
(2.8)

and is usually expressed in units of [cm2⋅g-1].

2 . 3 . 3 . Attenuation coefficients for chemical compounds and mixtures

When the linear and mass attenuation coefficients were defined in the preceding section, it was

assumed for simplicity that the medium consisted of atoms of a single element.  In practice,

we will also encounter absorbers which are homogeneous mixtures or chemical compounds,

and we will now develop approximate formulas for finding the attenuation coefficients in such

cases;  our derivation is partly based on [8, pp. 40-42 and 193-194] and [9, p. 7].

Equation 2.3 states that the linear attenuation coefficient for a single-element medium is equal

to the product of the cross section and the number of atoms/cm3, which means that the

individual atoms contribute independently to the total interaction probability.  But this is also

true when the medium consist of more than one element, and we may write the following

expression for the attenuation coefficient of the “mixture”:

µ
m i x

= N
i
σ

i
∀ i
∑ (2.9)

where Ni is the number of atoms of element i , σi is the corresponding cross section and the

summation is done over all elements in the “mixture”.  To find the Ni, we note that the total

number of molecules per cubic centimetre, Nm, is equal to

Nm = ρ
m i x

N
A

M
mol

(2.10)

where Mmol is the molecular mole weight :

M
mol

= M
i
x

i
∀ i
∑ (2.11)

Here the Mi’s are the atomic weights for the individual elements, and the xi’s are the number

of atoms of element i in the molecule.  Obviously, the number of atoms/cm3 of element i , Ni,

is equal to the number of molecules/cm3, Nm times the number of atoms xi of element i per

molecule:
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N
i

= N mx
i

= ρ
m i x

N
A

M
mol

x
i (2.12)

We may now combine the above expressions to obtain the following formula for the

calculation of the linear attenuation coefficient for a chemical compund from the interaction

cross sections of its constituents:

µ
m i x

= ρ
m i x

N
A

M
mol

x
i
σ

i
∀ i
∑

= ρ
m i x

N
A

x
i
σ

i
∀ i
∑

M
i
x

i
∀ i

∑ (2.13)

For each element, we may write

µ
i

=
N

A
ρ

i
σ

i

M
i

⇔ σ
i

=
M

i
µ

i

N
A
ρ

i

(2.14)

where ρi is the density of element i when appearing on its own.  Substituting this in eq 2.13,

we find the following expression for the “mixture” mass attenuation coefficient:

(
µ
ρ )

mi x
=

(
µ
ρ )

i
M

i
x

i
∀ i

∑
M

i
x

i
∀ i

∑
(2.15)

The linear attenuation coefficient of the compound may then be found simply by multiplying

with the “mixture” density.

We observe that the “mixture” attenuation coefficient is obtained by a weighted sum of the

coefficients of the individual elements, where the weights are equal to the contribution to the

total molecular mass from each element.

Strictly speaking, equations 2.13 and 2.15 are only approximations, because we have

assumed that the cross sections for each element in the mixture is the same as the cross section

for that element when it appears “on its own”.  We have thus ignored the effect on the cross

section for the atoms because of changes in their molecular, chemical or crystalline

environment.  However, for photons in the energy range we will consider, the errors in the

estimated attenuation coefficients arising from this approximation are believed to be less than

2-3% [9, p. 7].
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2 . 3 . 4 . Cross sections for the different photon interaction mechanisms

A photon beam passing through a medium may be attenuated by different types of processes,

and the total interaction cross section is the sum of the cross sections for the individual

interaction mechanisms.  We may classify these mechanisms according to the type of

interaction:  the first kind of interaction is outright absorption, in which the photon disappears;

the second is scattering, where the photon is deflected from its original direction of travel.

Furthermore, scattering is said to be elastic if the photon does not suffer energy loss during

the interaction;  and inelastic if it does.  An overview of the processes of interest to us is

shown in Table 2.1, which is based on Table 1 in [9, p. 22.] and on Table 2.1 in [10, p.

663].

Table 2.1 Types of elementary photon interaction mechanisms.

Scattering

Interaction with: Absorption Inelastic Elastic

Atomic electrons Photoelectric effect Compton scattering Rayleigh scattering

Electric field

surrounding

charged particles

Electron - positron

pair production

We will now consider the cross sections for each process separately, discussing their

dependence on the photon energy E and on the atomic number Z of the medium in which the

interaction takes place, their relative contribution to the total cross section and the generation of

secondary radiation.  Our discussion of the photon interaction processes is based on [9, pp.

21-40], [10, pp. 662-674] and [11].

Photoelectric effect

When a photon interacts with an atomic electron through the photoelectric effect, the photon

disappears and the electron is ejected from the atom.  The electron carries away the energy of

the incident photon minus the binding energy of the electron;  that is, Ee = Eγ - Eb.  For this

process to occur, the photon energy must be higher than the binding energy for the electron in

question, and if the photon energy is less than the binding energy for a given shell, an electron

from this shell cannot be ejected.  A plot of the photoeffect cross section τpe versus photon

energy E (Figure 2.2) will therefore exhibit characteristic discontinuities at the binding

energies for the various shells;  these are called absorption edges.
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Figure 2.2 Photoelectric cross sections as function of photon energy for carbon (Z  = 6),

iron (Z = 26) and lead (Z = 82).  The strong dependence of the cross sections on the

atomic number is clearly seen, as is its steady decrease with increasing photon energy

E.  The plot is based on data from [12].

The K-shell electrons, which are most tightly bound to the nucleus, contribute most to the

cross section in the upper part of the energy range under consideration.  However, the cross

section has a strong Z dependence (Figure 2.2);  τpe is approximately proportional to Z4.5, and

so the contribution from electrons in the other shells become important for high-Z materials.

In addition to the discontinuities mentioned above, the energy dependence of τpe is

characterized by being approximately proportional to E-3 at lower energies and approaching an

E-1 dependence at energies higher than a few MeV.

Calculations of the E and Z dependence of the photoeffect cross section is in general difficult,

because the electron involved in the process is not only bound to and acted upon by the

nucleus, but it is also acted upon by all other electrons in the atom.  Nevertheless, quite a few

numerical calculations have been made, and together with experimental data they provide

information on the photoelectric cross sections for wide ranges of E and Z;  such data are

tabulated in [9] and [12].

The generation of secondary radiation must also be mentioned:  In addition to the ejected

photoelectron, the filling of the resulting shell vacancy by an electron from a more distant shell

is accompanied by the emission of either a characteristic photon (X ray) or an Auger electron.

The probability that an X ray rather than an Auger electron is emitted is called the fluorescence

yield;  this increases with the energy of the photon to be emitted [10, p. 664].
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Electron-positron pair production

This effect, which is the most probable photon interaction mechanism at high energies, takes

place in the electric field surrounding a charged particle and causes the incident photon to

disappear, leaving an electron-positron pair.  Pair production may occur in the field of a

nucleus or in the field of an electron;  however, we shall ignore the latter, as its contribution to

the total pair production cross section is negligible.

Nuclear field pair production is only possible if the energy of the incident photon is greater

than the combined rest energies of the electron-positron pair;  that is, greater than

Et = 2mc2
(2.16)

which is equal to 1.022 MeV.  The difference between the photon energy and the threshold

energy Et is shared between the electron and positron as kinetic energy.

The nuclear field pair production cross section, κn, is roughly proportional to Z2 and increases

approximately linearly with photon energy at first (from zero at the threshold energy), rises

more slowly above 50-100 MeV, and eventually flattens out to a maximum value at very high

energies.  A plot of κn is shown in Figure 2.3 for low-, medium- and high-Z materials.
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Figure 2.3 Nuclear field electron-positron pair production cross sections versus photon energy for

carbon (Z = 6), iron (Z = 26) and lead (Z = 82).  The plot is based on data from [12].

The direct secondary radiation resulting from this process is of course the electron-positron

pair, but there is an accompanying effect which deserves special mention:  When the positron

loses its kinetic energy, it will be annihilated with an electron, and the combined rest energy
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will be released as two photons moving in opposite directions, each with an energy equal to

the rest energy of an electron (0.511 MeV).

Compton scattering

Compton scattering is a process by which a photon interacts with an atomic electron, loses

some of its energy and is deflected from its original direction of travel, see Figure 2.4.

ϕ 

θ 

Incident photon,
energy E

Compton scattered 
photon, energy E´

Recoil electron,
kinetic energy T

Atomic
electron

Figure 2.4 Compton scattering: a photon interacts with an atomic electron (considered to be free),

loses some energy to the electron and is deflected from its original direction of travel.

Under the assumption that the binding energy of the electron in negligible, one can find the

relation between the scattering angle θ and the energy E´ of the scattered photon from

conservation of energy and momentum:

′E = E

1 + E
mc2 (1 − cosθ )

(2.17)

where E is the energy of the incident photon.  We may also express this equation in terms of

the wavelength shift (in Compton units) of the photons:

′λ − λ = 1 − cosθ (2.18)

Expressions for the total Compton scattering cross section and for the angular distribution of

the scattered photons have been derived by Klein and Nishina [13] using quantum

electrodynamics.  Their formula for the total Compton interaction cross section, expressed as a

function of the atomic number Z of the medium and the energy of the incident photon, k  (i.e.

energy in mc2 units), is as follows [9, p. 28]:

σC
KN = 2Zπ re

2 1 + k

k2


2(1 + k)
1 + 2k

− ln(1 + 2k)
k







+

ln(1 + 2k)
2k

− 1 + 3k

(1 + 2k)2





   
1024 barns

atom






(2.19)
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where re , the “classical electron radius”, is equal to 2.818⋅10-13 cm.  The Klein-Nishina

cross section is plotted against photon energy in Figure 2.5.
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Figure 2.5 Klein-Nishina Compton scattering cross section per electron versus photon energy;  that

is, eq 2.19 with Z= 1.

In most cases, the Klein-Nishina theory agrees very well with experimental data:  however, it

is inaccurate at low photon energies because it is assumed that the binding energy of the

electron is negligible.  This effect become more pronounced for increasing Z because, in this

case, the electrons near the nucleus are more tightly bound.  Correction factors to compensate

for this effect have been calculated and are included in tabulations of cross section data for the

Compton effect [9] [12].

In Figure 2.6 we have plotted the ratio of the binding effect corrected Compton cross section

and the Klein-Nishina cross section for some elements;  it is seen that the effect becomes

negligible at higher energies, but also that its influence gets larger for increasing Z.
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Figure 2.6 The ratio of the binding effect corrected Compton cross section to the Klein-Nishina (or

free-electron) cross section plotted against photon energy for carbon (Z = 6), iron

(Z = 26) and lead (Z = 82).  The binding effect corrected data are from [12], and the

Klein-Nishina data are computed using eq 2.19.

The angular distribution of the scattered photons is determined by the differential form of the

Klein-Nishina formula [11, p. 253], which is the cross section for a Compton scattering of a

photon into the angular interval [θ, θ+dθ].

d(σC
KN )

dθ
= Zπ re

2 sinθ 1
1 + k(1 − cosθ )







2

×

1 + cos2 θ + k2 (1 − cosθ )2

1 + (1 − cosθ )






1024 barns
atom⋅ radians







(2.20)

This expression may be regarded as the combined probability of a Compton interaction and the

probability of the photon being scattered an angle θ.  Eq 2.20 is plotted in Figure 2.7 for a

few values of the incident photon energy.  We note that the distribution of the scattered

photons shifts to a predominantly forward direction as the energy of the incident photon

increases; this may be attributed to the increased momentum of the photon.

It should be pointed out that to uniquely determine the direction of the scattered photon in

three-dimensional space, the azimuthal scattering angle α must also be specified;  it represents

the direction of the projection of the scattered photon direction, into a plane perpendicular to

the incident photon direction.  If polarization effects are ignored, all values of the azimuthal

scattering angle (0 to 2π) are equally probable.
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Figure 2.7 The angular distribution of Compton scattered photons according to Klein-Nishina

theory (eq 2.20, with Z = 1) for incident photon energies E of 0.06 MeV, 0.2 MeV,

0.5 MeV and 1.2 MeV;  adapted from Evans’ Figure 20 [11, p. 253]

The secondary effect of the Compton process is the emission of a recoil electron;  it receives as

kinetic energy the difference between the energy of the incident photon and the energy of the

scattered photon, and may in turn cause exitation or ionization when colliding with other

atomic electrons.  The emission angle ϕ of the recoil electron (see Figure 2.4) is related to the

photon scattering angle θ by the following expression:

tanϕ = 1
tan( θ

2 )(1 + k)
= 1

tan( θ
2 )(1 + E

mc2 )
(2.21)

By combining this with eq 2.20, one may find the angular distribution of the recoil electrons,

see Evans [11, p. 254].

Rayleigh scattering

Under the circumstances when the Klein-Nishina theory for Compton (inelastic) scattering

breaks down, i.e. when the binding energy of the atomic electron no longer is negligible

compared to the energy of the incident photon, another type of scattering may occur.  This is

Rayleigh (or elastic) scattering, in which a photon is scattered by an atomic electron but with

very little energy loss.  The electron is neither ionized nor exited;  the recoil is taken up by the

atom as a whole.  All electrons in the atom contribute coherently to the total cross section for

Rayleigh scattering (σR );  therefore, the effect is often called coherent scattering.
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Figure 2.8 Total cross section for Rayleigh scattering, σR, plotted vs. photon energy for carbon

(Z = 6), iron (Z = 26) and lead (Z = 82);  the data are from [12].

The cross section for Rayleigh scattering is proportional to Z2 and decreases with increasing

energy, see Figure 2.8.  The angular distribution of the Rayleigh scattered photons is rather

broad for low photon energies, but it becomes increasingly forward peaked at higher energies.

Total photon interaction cross section

Because the individual interaction mechanisms generally occur without mutual disturbance, the

total cross section is simply the sum of the individual cross sections:

σ tot = τ pe + κ n + σC + σR (2.22)

From the discussion in the preceding sections we may draw a few conclusions regarding the

relative importance of the different attenuation processes for varying E and Z:  For low energy

photons, the attenuation is predominantly by the photoelectric effect, whose cross section

increases very rapidly with decreasing energy.  At intermediate energies, the attenuation is

mostly due to Compton scattering, and when the photon energy increases further, pair

production eventually becomes most important.  The general effect of increasing Z is that the

photoeffect- and Compton dominated regions are moved higher up in energy.

We also note that even though the Rayleigh process is the most probable scattering mechanism

for low energy photons, its contribution to the total cross section is of minor importance

compared to the contribution of the photoelectric effect.
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These general trends are apparent from Figure 2.9 (a), (b) and (c), where we have plotted

individual and total interaction cross sections against photon energy for carbon, iron and lead,

respectively.
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Figure 2.9 (a) Total and individual cross sections vs. photon energy for carbon (Z = 6).  The data are

from [12].
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Figure 2.9 (b) Total and individual cross sections vs. photon energy for iron (Z = 26).  The data are

from [12].
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Figure 2.9 (c) Total and individual cross sections vs. photon energy for lead (Z = 82).  The data are

from [12].

Sources of photon cross section data

As we have already indicated, the current knowledge of numerical cross section data for the

various processes is a mixture of theoretical calculations and experimental data.  Several

authors have compiled tabulations of such data:  Hubbell [9] provide data for the photoeffect,

Compton scattering and pair production, Storm and Israel [12] also include Rayleigh data, and

the tabulation of Hubbell et al [14] contain Compton and Rayleigh scattering cross section

data.  For our Monte Carlo modelling work (see below), we will use data from [12].

The approximate accuracy for these tabulations is as follows:  For Rayleigh and Compton

scattering the accuracy is believed to be better than 3%.  The pair production data have an

approximate accuracy of 5%, whereas the photoeffect data are accurate to within 3% in the

energy range 6 to 200 keV, and 10% outside this range.  We also note that in the range 10 keV

to 1 MeV, the cross section data for the dominating processes (see Figure 2.9) are accurate to

within 3%.
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2.4.     Mathematical modelling of photon transport

In many cases, there is a need for mathematical methods for handling X- or γ-ray related

problems, such as calculation of detector response functions and design of source shields.

The general problem is to determine the flux of photons at a given point in a system of

absorbers, due to a given distribution of photon sources.  This is known as photon transport

theory, which are described below, since we will need such techniques in Chapter 5 for

calculation of detection efficiencies.

2 . 4 . 1 . The photon transport equation

The time-constant flow of photons per unit area, of (Compton) wavelength λ and direction ω,

and at position r, is represented by the flux I(r,ω,λ).  We wish to determine this flux at each

point in space, given the photon source distribution and the absorber geometry.  A general

formalism for this type of problem is presented by Fano et al [10, pp. 680-681];  a description

of its derivation is given below.

lAr

x

y

z

ω

Figure 2.10 Geometry for derivation of photon transport equation:  An infinitesimal cylinder of

base area A and length l, positioned at r, and pointing in the direction ω.

The starting point for this somewhat heuristic derivation is that the net flow of photons out of

the infinitesimal cylinder of Figure 2.10, is equal to the difference between the outflow and

inflow of photons

net flow = AI(r + lωω,ωω,λ ) − AI(r,ωω,λ )

= Alωω ⋅∇I(r, ωω,λ )
(2.23)

where we have multiplied with the infinitesimal cylinder base area A because I represents flux

per unit area.  There are three contributions to the net photon flow:  The first is the narrow-

beam attenuation of photons entering the cylinder base area with direction ω and wavelength

λ;  thus representing a negative contribution to the net outflow of photons:
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attenuation= -µ(λ )lAI(r,ωω ,λ ) (2.24)

The second is the scattering term, which represents the number of photons leaving the cylinder

with direction ω and with a wavelength λ , resulting from the scattering of photons entering

the cylinder in any direction ω´, and with wavelength λ ´ less than or equal to λ :

scattering = Al d ′λ d ′ωω k(ωω,λ ,
4π
∫

0

λ

∫ ′ωω , ′λ )I(r,ωω,λ )
(2.25)

The function k(ω,λ,ω’,λ’) represents the probability that the scattering of an incident photon

of direction ω’ and wavelength λ’ produces a new photon with direction ω and wavelength λ,

anywhere inside the infinitesimal cylinder;  the subscript “4π” of the inner integral is

shorthand for “all directions”.  We multiply by Al because the integral represents flux per unit

volume, and the wavelength restriction arises simply because a photon does not increase its

energy in a scattering.  If we ignore Rayleigh scattering, we are left with the Compton effect,

and the function k(ω,λ,ω’,λ’) will be a modified Klein-Nishina differential cross section [10,

p. 681].

The third contribution to the net outflow comes from any photon source inside the cylinder;  if

S(r,ω,λ) is the source flux per unit volume, the resulting contribution is:

source = AlS(r,ωω ,λ ) (2.26)

Since the net outflow of photons from the cylinder (eq. 2.23) is equal to the sum of the

attenuation, scattering and source terms (eqns 2.24 to 2.26), we have

ωω ⋅ ∇I(r,ωω,λ ) = -µ(λ )I(r,ωω ,λ ) +

+ d ′λ d ′ωω k(ωω ,λ ,
4π
∫

0

λ

∫ ′ωω , ′λ )I(r,ωω ,λ )

+S(r,ωω ,λ )

(2.27)

which is the photon transport equation [10, p. 681].

This integro-differential equation is in general difficult to solve analytically for I(r,ω,λ), as it

contains six independent variables;  also, µ(λ) and k(ω,λ,ω’,λ’) are complicated functions of

photon energy and scattering angle.  Direct analytical solution of eq. 2.27 may be very

complicated even for simple geometries, and even if simplified analytical expressions are used

for the functions µ and k.  The large number of independent variables also complicates direct

numerical solution;  therefore, other methods are normally used instead.

It should be noted that eq. 2.27 represents a simplification of the physical processes of photon

transport, as it ignores effects associated with secondary radiation created by the photon
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interaction processes:  First, there is the emission of fluorescence X rays following

photoelectric effect.  Secondly, there are a variety of effects connected with the charged

particles ejected when a photon interacts with matter;  electrons and positrons loose kinetic

energy by bremsstrahlung, and the annihilation of the positron is followed by photon

emission1  (See also Figure 1.4 of Hubbell [9, p. 15]).

X-ray fluorescence photons may be included in the “scattering” term of eq. 2.27 because they

are produced locally, but as electrons and positrons may travel a considerable distance while

they loose energy by bremsstrahlung (or before being annihilated), the flux of new photons

created by charged particle interactions cannot generally be treated in this way, but must be

calculated separately and included in the source term of the transport equation.  A general

model of photon transport should therefore include the transport of charged particles as well:

The model thus consists of a system of three separate transport equations (similar to eq. 2.27),

one each for photons, electrons and positrons, and where the flux of each quantity enters in

the source terms of the equations of the other fluxes [10, p. 681].

However, if the energies of the photons, and hence, the energies of the charged particles are

moderate (< 1-2 MeV), the production of secondary photons may be assumed to take place

locally;  this allows including the secondary photon flux in the “scattering” term of eq. 2.272.

Orders-of-scattering expansion

If the flux from primary photons and the flux of photons scattered once, twice, etc. are

determined separately, the total flux may be written [10, pp. 686-687]:

  I(r,ωω,λ ) = I (0) (r,ωω,λ ) + I (1) (r,ωω,λ ) + I (2) (r,ωω,λ ) + K (2.28)

The equation for the flux I(0) of primary, or unscattered, photons is found by deleting the

integral in eq. 2.27:

ωω ⋅ ∇I (0)(r,ωω,λ ) = -µ(λ )I (0) (r,ωω ,λ ) + S(r,ωω ,λ ) (2.29)

1The production of new photons from the charged particle emission following primary photon interaction may

be repeated several times over for the secondary photons, producing many photons for a single primary photon;

this is called a cascade-shower process [10, p. 665].

2The meaning of the term “scattering” would in this case be extended to include all attenuation processes which

create new photons from incident ones.
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The equation for the flux I(1) of singly scattered photons is found by ignoring the source term

in eq. 2.27, and replacing I with I(0) in the integral, and with I(1) everywhere else.  Proceeding

in this fashion, we get the following equation for the flux of photons scattered n times, I(n):

ωω ⋅ ∇I (n)(r,ωω,λ ) = -µ(λ )I (n) (r,ωω ,λ ) +

+[1 − δn0 ] d ′λ d ′ωω k(ωω ,λ ,
4π
∫

0

λ

∫ ′ωω , ′λ )I (n−1) (r,ωω ,λ )

+δn0 S(r,ωω ,λ )

(2.30)

where δn0 is the Kronecker delta.  The solution of eq 2.30 is [10, p. 687]

I (n)(r,ωω,λ ) = dζ e−µ (λ )ζ S(n) (r −ωω ζ ,ωω ,λ )
0

∞

∫
where

S(0) = S(r,ωω ,λ ) and S(n) = d ′λ d ′ωω k(ωω ,λ ,
4π
∫

0

λ

∫ ′ωω , ′λ )I (n−1) (r,ωω ,λ )

(2.31)

i.e., the solution of the transport equation may be found by evaluating a sequence of multiple

integrals, analytically or numerically.

However, since the multiplicity of the integrals increases rapidly with the order of scattering n,

it is clear that this method also has its limitations;  the unavoidable truncation of the series in

eq. 2.28 will always introduce errors in the calculated flux I(r,ω,λ).  Also, complex absorber

geometries will invariably cause difficulties for numerical evaluation, therefore, it is clear that

a different approach is generally needed.

2 . 4 . 2 . Monte Carlo photon transport calculation

The photon transport problem is probabilistic in its nature, because of the inherent randomness

of the quantum processes involved:  The trajectory of a photon undergoing scatterings, and

finally absorption, cannot be predicted exactly;  only the probability distributions of the

outcome of the individual interaction processes are known in advance.  The “trick” of the

Monte Carlo method is to imitate the actual physical processes by an analog numerical random

process;  this is known as straightforward sampling or analog Monte Carlo [10, p. 772].

Basis for photon transport Monte Carlo

To demonstrate the basis for the Monte Carlo photon transport calculation, we first describe

the sequence of events taking place from a photon leaves its source until it disappears in an

absorption;  an “algorithmic” description is shown in the flow chart of Figure 2.11:
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Change of position:

Determined by pathlength 
to next interaction

Interaction:

Type of interaction?
Photon history
is terminated

Photon changes
its direction
and energy

Emission from source:

Initial position, direction
and energy of photon

START

STOP

Scattering Absorption

Figure 2.11 The basic sequence of events in photon transport:  Emission of a photon from the

source, scattering interactions, and the final disappearance by absorption.  Emission

of fluorescence radiation is ignored, as is charged particle transport.

The history of a photon being scattered several times before being absorbed is characterized by

a set of variables describing its position r, direction ω and wavelength λ immediately before

each interaction:

  

r1,

ωω1,

λ1,

r2 ,K,

ωω2 ,K,

λ2 ,K,

rn ,K,

ωωn ,K,

λn ,K,

rN

ωωN

λ N






(2.32)

Interactions n = 1 to n = N-1 are scatterings, while n = N represents the absorption event

terminating the photon history.  Together with the source position , which we may call r0

(assuming a point source), the variables in eq. 2.32 thus specifies the photon trajectory

completely.  The direction ω0 and wavelength λ0 of the photon as it leaves the source are of

course equal to ω1 and λ1, respectively.
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Before we describe the flow chart of Figure 2.11 more closely, we note that the unit direction

vector ω is conveniently determined by the two angles ϕ and ν, as shown in Figure 2.12:

x

z

y

ω
ν

ϕ

Figure 2.12 The unit direction vector ω is uniquely specified by the angles ϕ and ν.  The former

lies within the interval [0, 2π], the latter in [0, π].

Thus, in Carthesian representation, ω is given by:

ωω = sin ν cosϕ, sin ν sinϕ, cos ν[ ] (2.33)

We now proceed to describe each part of the flow diagram of Figure 2.11.

If we consider an isotropic point source, all emission directions are equally probable, so ϕ and

ν have the following probability distribution functions

f (ϕ ) = 1
2π

 ;  0 ≤ ϕ < 2π,

f (ν) = sin ν
2

; 0 ≤ ν < π
(2.34)

in the “spherical” representation.

The change of position of the photon is determined by its current direction of travel and the

pathlength ζn  between interactions n - 1 and n, so that:

rn = rn−1 + ζnωωn (2.35)

The pathlength (in an infinite homogeneous medium) is governed by the following probability

density distribution function:

f (ζn ) = µ(λn )e−µ (λ n )ζ n  ;  ζn ≥ 0 (2.36)

The type of interaction may be either an absorption (photoelectric absorption or pair

production), or a scattering (Compton or Rayleigh);  the relative probabilities are given by:
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pPE = µPE

µ tot

(λn )  ; pPP = µPP

µ tot

(λn )

pC = µC

µ tot

(λn )  ; pR = µ R

µ tot

(λn )
(2.37)

An absorbtion event  causes the photon to disappear, thus terminating the history1.  Note that

the probability of a pair production event is identically zero if the photon energy is below the

threshold energy.

After a scattering event, the photon continues in a new direction and, in the case of a Compton

interaction, with lower energy.  Rayleigh scattering is frequently ignored in Monte Carlo

modelling because of its low relative probability;  in this case, the direction and energy of the

scattered photon are governed by the probability distributions of the Compton scattering

angles:

f (α ) = 1
2π

 ;  0 ≤ α < 2π,

f (θ ) = 1

eσC
KN

d(eσC
KN )

dθ
;  0 ≤ θ < π

(2.38)

where α, the azimuthal scattering angle, is uniformly distributed and θ is determined by the

Klein-Nishina differential cross section of eq. 2.20.  The new direction vector ω may then be

found using eq. 2.33 and a little algebra, and the new wavelength λ  using the Compton

energy-scattering angle relationship, i.e. from eq. 2.17 or eq. 2.18.

We now see that photon transport problems may be solved by performing a “computer

experiment”:  Based on the flow chart of Figure 2.11, and on random sampling from the

associated probability distributions for each event in the interaction sequence, an artificial

photon history can be generated, which is in fact a computer imitation of the real physical

process taking place.  An experiment is simulated by generating a high number of different

histories, and the flux I(r,ω,λ ) may be determined by tallying the photons within the

interesting range of r, ω and λ.  This is the basic principle of Monte Carlo photon transport

calculation.

Random sampling of probability distributions

When constructing the artificial photon histories required in a Monte Carlo simulation, it is

necessary to perform random sampling from the probability distributions governing the

1Note that photoelectric absorption may be followed by the emission of a fluorescence X-ray;  also, the

annihilation of the pair production positron results in photon emission.
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various parts of the sequence of events taking place.  Loosely defined, random sampling of a

given probability distribution involves generating a set of random numbers, whose

distribution in the long run approach the required probability distribution.  In the following

section, we will consider general techniques for doing this, and then we proceed to study the

sampling of distributions specific to photon transport Monte Carlo.

General

The random sampling of probability distributions is invariably done using techniques based on

uniform random numbers, i.e. numbers which are uniformly distributed in the interval [0, 1]

and do not exhibit any correlation.  Psuedorandom numbers may be generated by means of

computer algorithms [15, pp. 204-213];  while this of course implies that such numbers are

really not totally random in a strict statistical sense, their degree of “randomness” is adequate

for any practical purpose in Monte Carlo work.  We will now describe three methods for

random sampling of probability density distribution functions;  all methods are based on the

use of uniform random numbers.

The inverse method, relies on the fact that any random variable, of any distribution, can be

expressed as a function of another random variable which is uniformly distributed between

zero and one.  If p(x) is the probability density distribution of the random variable x, its

cumulative distribution P(x) is given by:

P(x) = p( ′x )d ′x
−∞

x

∫ (2.39)

P(x) is itself a random variable, distributed uniformly between zero and one;  therefore, a

random variable x with distribution p(x) may be obtained by selecting an uniform random

number ρ and solving the equation:

ρ = P(x)  ⇒  x = P−1(ρ) (2.40)

The main drawback of this method is that it may be impossible to find an expression for the

inverse of the cumulative distribution function.

Another method, originally proposed by von Neumann [16], is the rejection method [17, pp.

36-37]:  If the distribution p(x) of the variable x is restricted to the interval [0, a], and the

maximum of p(x) is L, we may sample from the distribution in the following way:  First, we

select two uniform random numbers ρ1 and ρ2;  next, we compute x1 = ρ1a.  Now, if ρ2L ≤
p(x1), x1 is accepted as a random variable from  the distribution p(x), if not, the process is

repeated with a new pair of uniform random numbers.
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The efficiency of this sampling method depends on the characteristics of the distribution

function;  the relative portion of rejected random number pairs is given by the quantity

1 − 1
aL

p(x)dx  =  1 − 1
aL

0

a

∫ (2.41)

which is called the rejection rate.

The third random sampling scheme we will discuss, is the composition + rejection method,

which is a slight twist to the combination of the two methods mentioned above [10, pp. 777-

778][17, p. 40].  If p(x) and pi(x) are probability density distributions, α i are positive real

numbers, and gi(x) are confined to the range [0, 1], the density function

p(x) = αi pi (x)gi (x)
i=1

n

∑ (2.42)

may be sampled in the following way:  First, choose three uniform random numbers ρ1, ρ2

and ρ3.  Second, find i so that

α j
j =1

i−1

∑ < ρ1 α j
j =1

n

∑ ≤ α j
j =1

i

∑ (2.43)

i.e., select αi with relative probability αi/(α1 + ... + αn).  Third, select x from the distribution

pi(x), e.g. by solving Pi(x) = ρ2 (inverse method).  Finally, accept x if ρ3 ≤ gi(x);  if not,

repeat from the beginning.  The trick is of course to “decompose” the desired density function

p(x) in such a way that the resulting pi´s can be sampled by the inverse method.

Sampling of distributions specific to photon transport

Using the techniques described in the previous section, we will now describe the sampling of

probability distributions specific to photon transport Monte Carlo:

An isotropic source emits photons in directions determined by the generic distributions of eq.

2.34;  the sampling of the angles ϕ and ν is easily accomplished using the inverse method:

F(ϕ ) = ϕ
2π

 ⇒  ϕ = 2πρ

F(ν) = 1 − cos ν
2

 ⇒  ν = arccos(1 − 2ρ)

(2.44)

where the ρ´s denote uniform random numbers.  It is seen that the angles ϕ and ν generated in

this way are contained in the correct intervals [0, 2π] and [0, π], respectively.  The direction

vector ω may then be found using eq. 2.33.
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The change of position of the photon is computed from eq. 2.35, after sampling the pathlength

distribution function of eq. 2.36;  using the inverse sampling method we get:

F(ζn ) = 1 − e−µ (λ n )ζ n  ⇒  ζn = − ln(ρ)
µ(λn )

(2.45)

where ρ denotes an uniform random number.  At this point, we note that eqns. 2.36 and 2.45

apply to the case of an homogeneous medium:  However, if the medium consists of several

regions, each consisting of different but homogeneous materials, we must take into account

what happens if a photon, in travelling the distance ζn, crosses a boundary between two

different materials.  Thus, if the linear attenuation coefficient µ(λn) of the material of the next

region is smaller than that of the current region, ζn should be stretched;  conversely, if µ(λn)

increases upon crossing the boundary, ζn  should be shortened.

If the distance ζb along the current direction of travel, from the position of the most recent

scattering (or from the source position) to a boundary between different materials, is less than

the sampled pathlength between interactions ζn, the total effective pathlength should be

corrected as follows:

′ζn = ζb + (ζn − ζb )
µcurrent (λn )
µnext (λn )

(2.46)

Here, µcurrent(λn) and µnext(λn) are the attenuation coefficients of the materials in question;

the pathlength is shortened or stretched as required, i.e. depending on which is the larger of

the two attenuation coefficients.  Note that this correction process must be carried out several

times if the photon should cross more than one material boundary;  i.e. the second correction

is based on the first corrected pathlength, and so forth.

The interaction type distribution is discrete, so it is sampled simply by using the probabilities

of the interaction processes in question;  if there are n possible interaction types, with

probabilities pi, type i is chosen when

pj
j =1

i−1

∑ < ρ pj
j =1

n

∑ ≤ pj
j =1

i

∑ (2.47)

where ρ is an uniform random number.  The relative probabilities of the interaction processes

are defined in eq. 2.37.

As we have mentioned above, Rayleigh scattering is frequently ignored in photon transport

calculations;  moreover, pair production may be ignored if the photon source energy is less

than the threshold energy for this process.  Under these circumstances, the type of interaction

is selected simply by chosing the photoeffect if ρ < ppe, and Compton scattering if not.
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If we consider the sampling of scattering angles for a Compton interaction, we first note that

the azimuthal scattering angle α  is uniformly distributed in the interval [0, 2π];  thus, it is

sampled in exactly the same way as the azimuthal photon emission angle ϕ of eq. 2.44:

F(α ) = α
2π

 ⇒  α = 2πρ (2.48)

For the sampling of the Compton scattering angle distribution, the composition+rejection

method is used, but the selection of θ is not based directly on eq. 2.38;  instead, we use the

following method [10, pp. 777-778]:

The Klein-Nishina differential cross section in eq. 2.20 is expressed as cross section per unit

angle;  for the sake of simpler sampling, we will use the differential cross section per unit

solid angle instead.  Because the solid angle per unit angle is given by

dΩ
dθ

= 2π sinθ (2.49)

we get the following expression for the Klein-Nishina cross section per unit angle:

d( eσC
KN )

dΩ
= re

2

2
1

1 + k(1 − cosθ )






2

×

1 + cos2 θ + k2 (1 − cosθ )2

1 + (1 − cosθ )






   
1024 barns

atom ⋅ steradian






(2.50)

Obviously, if the scattering angle is sampled such that the resulting cross section per unit solid

angle distribution is correct, the scattering angle itself should also be correctly distributed, i.e.

according to eq. 2.20.  However, instead of sampling the scattering angle directly, we sample

the relative wavelength change ε , i.e. we use (see eq. 2.18)

ε = ′λ
λ

  ;   cosθ = 1 − ′λ + λ = 1 − λ (ε − 1) (2.51)

so that eq. 2.50 may be written:

d( eσC
KN )

dΩ
= re

2

2
1
ε 2 (1 − λ (ε − 1))2 + 1

ε






+ 1
ε

− 1
ε 2















   
1024 barns

atom ⋅ steradian






(2.52)

If we define, in the fashion of eq. 2.42

f (ε,λ ) = α1 f1(ε,λ )g1(ε,λ ) + α2 f 2 (ε,λ )g2 (ε,λ ) (2.53)

where the α´s, ƒ´s and g´s are given by:
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α1 = λ + 2
9λ + 2

,

f1(ε,λ ) = λ
2

,

g1(ε,λ ) = 4
1
ε

− 1
ε 2






,

α2 = λ
9λ + 2

,

f 2 (ε,λ ) = λ + 2
2ε 2 ,

g2 (ε,λ ) = 1
2

(1 − λ (ε − 1))2 + 1
ε







(2.54)

equation 2.52 can be expressed as:

d( eσC
KN )

dΩ
= re

2

2
9λ + 2

2λ (λ + 2)






f (ε,λ )    
1024 barns

atom ⋅ steradian






(2.55)

For a given wavelength, the cross section per unit solid angle is equal to the function ƒ(ε,λ)

except for a constant, and we may sample the relative Compton wavelength change from eqns.

2.53 and 2.54, using the composition + rejection method described earlier.  The distributions

ƒ1 and ƒ2 are easily sampled using the inverse method:

F1(ε ) = λ
2

(ε − 1)  ⇒  ε = 2ρ
λ

+ 1

F2 (ε ) = λ + 2
2

1 − 1
ε





  ⇒  ε = 2 + λ

2ρ + λ
(2.56)

where the ρ´s are uniform random numbers1.  After a successful completion of the

composition + rejection algorithm, the scattering angle θ and the wavelength λ’ of the

scattered photon may be found using eq. 2.51.

Accuracy of Monte Carlo method

Analog Monte Carlo is akin to an experiment in the sense that the results are subject to

statistical fluctuations, in contrast to average values obtained by analytical calculations.  In

general, we attempt to estimate the probability p of a given event, such as the escape of a

photon from a shield surrounding an isotope, by generating N photon histories and counting

the number of interesting cases, i.e. the number of escaped photons, L.  The quantity L/N is

thus an estimate of the desired probability.  This corresponds to sampling from a binomial

distribution, with N trials and L successes, and the absolute and relative standard deviations of

p are therefore given by [17, p. 21]:

1When solving F2(ε) = ρ for ε, we have utilized the fact that if ρ is uniformly distributed between zero and

one, so is (1-ρ).
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σ p = p(1 − p)
N

     ;       
σ p

p
= (1 − p)

pN
(2.57)

It is seen that the relative standard error is inversely proportional to the square root of the

number of trials N, i.e. the number of photon histories.  This means that reducing the relative

error by an order of magnitude requires increasing the number of photon histories by two

orders of magnitude;  thus the accuracy of the Monte Carlo method is limited by the available

computer resources1.  We also note that the smaller the probability to be estimated, the greater

are the number of histories needed to achieve a given accuracy.  Finally, when a numerical

value for the standard error is required, it is usual to replace p by its estimate L/N in eq. 2.57.

Apart from errors due to statistical fluctuations, there are various others sources of error

associated with Monte Carlo photon transport calculations.  First, it should be remembered

that no model of a physical process is perfect, so analytical expressions used for the

probability distributions for the interaction processes are of course not exact.

The tabulations of cross sections and linear attenuation coefficients vs. photon energy, on

which the pathlength and interaction type sampling are based, are a mixture of theoretical and

experimental data, with an accuracy of about 3% for the dominating process in a given energy

range;  this will influence the accuracy of the Monte Carlo simulation results.  In addition,

interpolation is necessary to obtain values for other energies than the tabulated ones;  however,

the interpolation errors are believed to be insignificant.

As we have already indicated, Rayleigh scattering is ignored in our Monte Carlo modelling

work;  the justification for this is the low relative probability of this interaction process.

Because the model would otherwise become extremely complicated and computer time

consuming, the treatment of charged particle transport is omitted.  Also, emission of

fluorescence X rays following photoelectric absorption have not been included in our model.

The possible errors arising from these omissions, or because of any simplification of the

system geometry model, will be discussed further when we describe the particular problems

we have attacked by Monte Carlo.

1Some techniques exist which increase the efficiency of Monte Carlo by incorporating into the simulation

information obtained by other means [10, pp. 780-789] [17, pp. 100-104];  however, they may be awkward to

use when simulating complex systems.
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2.5.     Detection of X rays and γ rays

With the exception of Rayleigh scattering, in which the photon suffer negligible energy loss,

the interaction of photons with matter generally cause transfer of energy from the photon to

electrons (and positrons, in the case of pair production).  These primary electrons in turn

interact with other electrons, producing ionization and exitation;  the total ionization is ideally

proportional to the energy loss suffered by the photon.  Therefore, the detection of X rays

and γ rays is accomplished by detecting either the free charge or the fluorescence emission

produced by ionization in the detector material following photon interaction.

In the energy range of interest to us, the important processes for detector operation are the

photoelectric effect, Compton scattering and pair production;  because the energy transfer from

the interacting photons to the primary electrons are wildly different for these three processes,

the response function of a photon detector is in general very complicated [18, pp. 24-34].

2 . 5 . 1 . Energy deposition in a detector by photon interaction

Consider the situation in which a monochromatic beam of photons of energy E is incident on a

detector of finite size.  If a photon interact by the photoelectric effect, the photoelectron will

receive a kinetic energy Tpe given by

T p e =E − E
b (2.58)

where Eb  is the binding energy of the electron.

For a Compton interaction, the kinetic energy of the electron, Tc, is equal to the difference in

energy between the incident and scattered photon;  using eq 2.17 we find:

T c = E −E ′

= E

E

mc
2 (1 − cosθ )

1 + E

mc
2 (1 − cosθ )







(2.59)

We see that the energy of the recoil electrons is distributed between zero and a maximum

energy Tcm given by

T cm = E

1 + mc
2

2E

(2.60)

corresponding to a 180˚ scattering of the photon.  The shape of the distribution may be found

using the energy - angle relationship for the Compton effect (eq 2.17) and the formula for the

angular distribution of the scattered photons (eq 2.20).
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If the photon energy E is greater than 2⋅mc2, interaction by pair production is possible;  the

result is the generation of an electron-positron pair, the combined kinetic energy of which is

equal to the difference between the photon energy and the sum of the rest energies for the

electron and positron:

T p p = E − 2mc 2
(2.61)

The contribution to the primary electron energy spectrum from each group of electrons is

determined by the relative probability of each interaction process for the energy and medium in

question.  If we assume that the photon energy is high enough for pair production to occur,

the general shape of the primary electron spectrum is as in Figure 2.13.
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Figure 2.13 Energy spectrum of primary electrons produced by monochromatic photons of energy E

(>2mc2) in a detector [18, p. 33].

The situation is further complicated by the fact that characteristic photons emitted following the

photoeffect, Compton scattered photons or even annihilation quanta (resulting from the

positron created by pair production) may undergo further interactions in the detector.  The

electrons liberated in this way contribute coincidently with the primary electrons to the detected

energy spectrum, the shape of which will differ from the electron spectrum shown in

Figure 2.13.  We will now discuss the possible combinations of interaction mechanisms.

If the interaction is by the photoeffect, the binding energy is present in the detector as a

characteristic X ray (or as Auger electrons);  if this is absorbed in a subsequent interaction, the

total energy transferred to electrons within the detector is equal to the photon energy;  thus the

photon is detected in the “full energy peak”.  The probability for this to happen depend on the

X-ray energy and the size and material type of the detector, as well as where in the detector the
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interaction takes place.  Some X rays will leave the detector anyway, giving rise to the so

called “X-ray escape peak”.  The situation is shown schematically in Figure 2.14.
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Figure 2.14 Idealized detector energy spectrum produced by monochromatic photons of energy E

(>2mc2).  Note that the single and double escape peaks also may have associated X-ray

escape peaks.  The main peaks may have several X-ray escape peaks; each of which

correspond to the possible characteristic X-ray energies for the different shells.

If we consider a Compton interaction, after which the scattered photon escapes the detector,

the contribution to the detected energy spectrum will simply be the energy spectrum of the

recoil electron alone, i.e. as the Compton continuum outlined in Figure 2.13.  However, there

is the possibility of the scattered photon interacting with the detector;  for example, a

contribution to the full energy peak in the detected energy spectrum may consist of a series of

Compton scatterings followed by a photoelectric interaction.  Finally, the photon may escape

after several scattering events, giving a detected energy somewhere between the primary

Compton electron spectrum and the full energy peak, see Figure 2.14.  In general, the

contribution of Compton events to the detected spectrum depends in a complex manner on the

photon energy, on the detector material characteristics and geometry.

A pair production event is followed by the annihilation of the positron, producing two

0.511 MeV photons moving in opposite directions.  If both are completely absorbed within

the detector, the total energy deposited by the pair production/annihilation events is equal to

the energy of the incident photon and there is a contribution to the full energy peak of the

detector spectrum.  If both annihilation quanta escape, there will be a contribution to the

“double escape peak” which is the same as the Tpp peak in Figure 2.13;  if one annihilation

photon escapes and the other is totally absorbed, the event contributes to the “single escape

peak”, which correspond to an energy of E - mc2 being deposited in the detector; see

Figure 2.14.  Finally, the annihilation quanta may also only partly deposit their energy, for
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example by photoeffect interaction with X-ray escape, or Compton interaction with escape of

the scattered photon, causing further confusion of the detected energy spectrum.

In the above discussion we have tacitly assumed that once photon energy is transferred to

electrons, it is to be regarded as totally absorbed in the detector.  However, electrons produced

by photon interaction processes may have appreciable ranges in matter, and for high photon

energy and/or small detectors there is a possibility that the electron may escape the detector

before all its energy is expanded in ionizations.

2 . 5 . 2 . Overview of detector types

Before discussing the performance and principles of operation for a few types of X- and γ-ray

detectors, we will make a few comments on the parameters characterizing the detectors:

efficiency, energy resolution, timing resolution and countrate capability.

The total detection efficiency, εtot, of a detector for a given photon energy E is in principle

determined by the total interaction probability (or interaction ratio) which is equal to

εtot = 1 − exp (−µd ) (2.62)

for a narrow monochromatic photon beam normally incident on a detector of thickness d.  It

may be defined as the probability that a photon striking the detector will produce a counted

event.  However, the energy with which the event is registered may be anywhere in the

spectrum outlined in Figure 2.14.  Therefore, the full energy, or photopeak, detection

efficiency, εp, is often of greater interest for many applications;  this is defined as the ratio of

the number of events registered in the full energy peak to the number of (monochromatic)

photons striking the detector.  The photopeak efficiency depends on the photon energy and the

geometry and material of the detector;  in general, high density, high-Z materials improve the

efficiency.  Finally, the photofraction ε0 is defined as the fraction of detected events that is

registered in the full energy peak;  the photofraction is seen to be equal to εp/εtot.

The energy resolution R, or the ability of the detector to distinguish between photons with

nearly equal energy, is often the most important parameter characterizing a detector.  It is

defined as

R
%

= 100 × FWHM
E

(2.63)

where FWHM is the linewidth (full width at half maximum) of the observed full energy peak

resulting from a monochromatic photon beam of energy E.  The resolution of a detector is

generally energy dependent;  hence, R is always specified for a given E.
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The timing resolution of a detector determine how closely spaced in time two photons may be

and still be registered as separate events.  Its limit is determined by the charge collection time

of the detector (or scintillation decay time, see below).  Generally, there is a trade off between

timing and energy resolution, because the time constant of the readout electronics may be set

shorter than the detector charge collection time to improve timing resolution;  however this

reduces the signal/noise ratio and hence the energy resolution.

The countrate capability of a detector may be defined as the maximum intensity for which the

difference between the number of interacting photons and the number of registered events is

acceptably small, or alternatively, as the maximum countrate for which the worsening of the

energy resolution is acceptable.  In any case, the countrate capability is limited by the charge

collection time (or scintillation decay time) of the detector and the performance of the readout

electronics.

We will now discuss some X- and γ-ray detector types in the light of the comments of the

above paragraphs.

Gas filled detectors

Basically, this is a metal case filled with gas (usually, noble gases are used), also containing

an anode wire, which is positively biased with respect to the case.  When the photons traverse

the gas, the various interaction mechanisms produce electrons and positive ions, which are

attracted to the anode wire and the case (cathode), respectively.  Thus an electric pulse is

generated, which is then registered by suitable electronic circuitry.  Because the absorbing

medium of this detector is a gas, its detection efficiency decreases rapidly as the photon energy

increases.

The gas detector can be operated in three different modes, depending on the magnitude of the

bias voltage applied.  At low voltages, when the bias is just adequate to collect all the charge

before the electrons and ions recombine and is lost, the detector is known as an ionization

chamber.  Because the signals generated are very small, this mode is most often used for

detecting high photon fluxes, which can generate high total currents.

When the bias voltage is increased, electrons are accelerated towards the anode, acquiring

enough kinetic energy to produce further ionization in the gas, and the original signal is thus

amplified.  In this range, individual photons may easily be detected, and there is

proportionality between the photon energy and the output signal.  This type of gas detector is

called a proportional counter. It is used in the X-ray range and has moderate energy

resolution, which is limited by statistical fluctuations in the amplification process.
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At even higher bias voltages, the amplitude of the output signal is independent of the initial

amount of ionization produced by the photon.  A detector operated in this mode has no energy

discrimination capability and is known as a Geiger-Müller counter.

The countrate capability of the gas detector is limited by the charge collection (ion drift) time;

this is usually in the 1-10 µs range, varying with gas type, bias voltage and detector size.  For

the Geiger-Müller counter there is the additional problem that, due to the extreme

amplification, the detector is driven into continuous discharge:  This must be quenched by

using a halogen gas mixture or special electronic circuitry;  the detector may require hundreds

of microseconds to recover [19, p. 6].

Semiconductor detectors

Semiconductor detectors, or “solid state” detectors, SSD’s, basically have a PIN diode

structure, where the insintric (I) region is created by the application of a reverse bias voltage

across the diode;  the region is depleted of free charge carriers because the holes and electrons

are swept away by the electric field.  When a photon interact within the depletion zone, free

charge carriers are created and are collected by the electric field (analogous to the principle of

operation of the gas detector) to the anode and cathode of the diode.  The charge accumulated

across the diode is then detected by a charge sensitive amplifier, which produces a

proportional voltage pulse.

Silicon (Si) and Germanium (Ge), which have atomic numbers Z = 14 and Z = 32,

respectively, are the commonly used materials for semiconductor detectors.  The amount of

dissipated energy required to liberate an electron-hole pair is 3.61eV for Si and 2.98eV for Ge

at room temperature;  these values are independent of the bias voltage and only very slightly

temperature dependent, resulting in excellent stability.  Furthermore, a very high number of

charge carriers are produced since little energy is required per electron-hole pair;  this means

that fluctuations in charge carrier production are small and the result is excellent energy

resolution.  The other contributions to the linewidth are preamplifier noise, and electronic

noise caused by the reverse leakage current of the detector.

Efficient detection of energetic X rays and γ rays require large volume detectors, and because

the reverse leakage current (caused by thermal generation of charge carriers) of SSD’s is

proportional to the depletion volume, they are usually operated at liquid nitrogen temperature

(77 K) to minimize the contribution of this noise to the linewidth.  Often, the input FET of the

preamplifier is cooled as well to reduce amplifier noise.

The energy resolution of Si and Ge detectors is extremely good, making them first choice for

X-ray and γ-ray spectroscopy, respectively.  The countrate capability and timing resolution
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are determined by the amplifier time constant and the charge collection time of the detectors;

the latter is usually a few microseconds.  Countrates up to about 100 cps (counts per second)

are possible without too much worsening of the energy resolution.

It should also be mentioned that thin, small area Si detectors (e.g. 100 mm2 area and 300 µm

thickness) may be operated at room temperature because the small depletion volume ensure

low leakage current anyway;  although such devices are primarily used for charged particle

detection, they may be used to detect photons with energy of a few tens of keV.  There has

also been some interest in using other semiconductor materials as room temperature detectors:

Cadmium Telluride (CdTe), which has a higher bandgap than Si and consequently lower

leakage current, has been used for making detectors having reasonable detection efficiency for

photon energies up to about 100 keV, with moderate energy resolution.

Scintillation counters

A scintillation counter detector exploits the fact that some solids, liquids and gases emit UV or

visible light when they are exposed to radiation [18].  The intensity of the light pulse is

(ideally) proportional to the energy deposited in the detector by the interacting X- or γ-ray

photons.  A light detection device, such as a photomultiplier tube (PMT) or a photosensitive

diode, may then be used to obtain an electric pulse proportional to the light intensity, and

hence, the X- or γ-ray energy.

The desirable properties of a scintillation crystal1 are good stopping power, high conversion

efficiency (i.e. the fraction of X- or γ-ray energy converted to scintillation photon energy),

good transparency for the scintillation light and short light pulse decay time.

Several of the common scintillation materials are of high density and atomic number, and

because the fabrication of rather large detectors is possible, a scintillation detector is often

chosen when optimum stopping power is required.

There are several factors affecting the energy resolution:  First, there are fluctuations in the

number of emitted scintillation photons and to some degree nonlinearity between the intensity

of the emitted light and the energy deposited by X and γ rays.  Second, the collection and

transfer of light to the readout device may be nonuniform.  Third, there is the contribution to

the linewidth from the readout device itself:  for PM tube readout, fluctuations in the electron

multiplication process set the limit for the resolution, whereas in the case of semiconductor

1Not all solid scintillation materials are crystalline, but the term “scintillation crystal” is often used

nevertheless.
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photodiode readout, the resolution is mainly determined by the electronic noise in the diode

and the associated charge amplifier.  In any case, the best possible scintillation conversion

efficiency is desired, as this will maximize the output signal amplitude and reduce the relative

linewidth.

The possible timing resolution is determined by the decay time of the scintillation pulse;  most

scintillator crystals have decay times ranging from a few hundred nanoseconds to a few

microseconds, but plastic (organic compound) scintillators exist which have decay times of a

few nanoseconds.  For a sub-microsecond decay time scintillator, countrates of 105−106 cps

may be achieved using either PM tube or photodiode readout;  if the energy resolution

requirement is relaxed and a fast PM tube is used, timing resolution in the nanosecond range is

possible.  Plastic scintillators are used for sub-nanosecond timing, at the expense of poorer

detection efficiency.

In applications where the photon flux is very large and the energy of the individual photons is

uninteresting, both PM tubes and photodiodes may by operated in “current mode”; that is, one

measures the total continuous current through the readout device;  this current is proportional

to the total energy flux in the detector.

Summary

If we consider energy discriminating devices only, the following conclusions may be drawn

from the above discussion of detector types:

• Proportional gas detectors and room temperature semiconductor detectors are suitable

for X-ray measurements where moderate energy and timing resolution is adequate.

• Cryogenic Si and Ge detectors are suitable for X- and γ-ray measurements in

applications where excellent energy resolution is at premium; however, the cooling

system adds to their complexity and make them rather less than compact.  The

detection efficiency is limited at higher energy, because of their low atomic numbers

and the fact that fabrication of very large crystals is difficult.

• Scintillation detectors offer moderate to good resolution, excellent detection efficiency

and timing capabilities over entire γ-ray range.  As for the type of readout device, PM

tubes offer better timing capabilities in general, and better energy resolution at lower

photon energies, but unlike photodiodes, they are bulky and sensitive to magnetic

fields and temperature variations.  Thus compactness and stability are the attractive

properties of photodiode readout scintillation detectors.
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2.6.        γ-densitometry

The average density of an absorber may be found by measuring the attenuation of a photon

beam passing through it;  this technique is called γ-densitometry.  We will now describe very

briefly the general principle of the method and the main sources of error associated with it.

2 . 6 . 1 . Basic principles

If we consider the attenuation of a narrow, monochromatic photon beam traversing a slab of

inhomogeneous material of thickness d, the number of transmitted photons is (see eq 2.5 and

Figure 2.1)

n =n
0
exp − µ

tot
(x )dx

0

d

∫ 







(2.64)

where no is the number of photons incident on the slab.  The average linear attenuation

coefficient (along the photon beam direction) of the inhomogeneous medium can therefore be

found by performing an attenuation measurement;  it is given by:

µ
tot

= 1
d

µ
tot

(x )dx = 1
d

ln
n

0

n )(
0

d

∫ (2.65)

By eq 2.7 and eq 2.22, the total linear attenuation coefficient (for a given photon energy) of an

element is equal to

µ
tot

= ρ (τ p e + κn + σ
C

+ σ
R

)
N

A

M
(2.66)

where the cross sections for the individual attenuation processes depend in different ways on

the atomic number of the material.  However, if Compton scattering is the dominating

interaction process, we may write

µtot = ρZ eσC
KN

NA

M
(2.67)

where we have used the Klein-Nishina formula for the Compton interaction cross section for a

single electron (eq 2.19 with Z = 1).  The justification for this is that the binding effect error of

the Klein-Nishina expression is negligible in the Compton dominated region, see Figures 2.6

and 2.9.  The cross section depends on energy only, and since NA is a constant and Z/M is

nearly constant (0.45±0.05 for all elements except Hydrogen, for which Z/M = 1), we see that

the density is approximately proportional to the linear attenuation coefficient, for photon

energies and media where Compton scattering is the dominating interaction mechanism.

Thus, we may write:
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µ
tot

≈ ρ eσC
KNNAk r ; Z

M
≈ kr = 0.45 (2.68)

If we consider the attenuation coefficient of a chemical compound or mixture and assume that

photon interactions are mainly by Compton scattering, the following is true (see eq 2.13):

µ
m i x

= ρ
m i x

N
A

σCi
KNx

i
∀ i

∑
M

i
x

i
∀ i

∑

≈ ρ
m i x eσC

KNN
A

Z ixi
∀ i

∑
Z

i

k
r

x
i

∀ i

∑
= ρ

m i x eσC
KNN

A
kr

(2.69)

where we have used Zi/Mi ≈ kr.  Hence, proportionality between the linear attenuation

coefficient and absorber density may be assumed also for chemical compounds or

homogeneous mixtures.

To ensure that our assumption of Compton scattering being the dominating interaction process

is valid, it is necessary to restrict the photon energy E to the range 0.1  to 10 MeV, and to

require that the atomic number Z of the absorber is less than 20.  A look at Figures 2.9(b) and

(c) also reveal that no totally Compton-dominated energy range exist for high Z materials.

We may now combine eq 2.65 and eq 2.68 (see also eq 2.69) to obtain an approximate

formula for the average density, valid within the above limits for E and Z :

ρ = 1
d

ρ(x)dx ≈ µ tot

NAkr(eσC
KN )

= ln(n0 n)
dNAkr(eσC

KN )0

d

∫ (2.70)

This expression is of fundamental importance in γ-densitometry:  It states that, under certain

restrictions of the atomic number of the medium and the photon energy used, the average

density along a path through an absorber may be found by performing a measurement of the

attenuation of a narrow monochromatic γ beam traversing the medium in the same direction1.

1There is a definite advantage of using the monochromatic photon beam from a γ source instead of an X-ray

tube generated beam, as the latter introduces the problem of “beam hardening”:   An X-ray tube has a broad,

continuous photon emission energy spectrum;  because the low energy photons are removed more quickly from

the beam than the higher energy photons, the average attenuation coefficient for the beam decreases as it

penetrates deeper into the absorber.
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It should be noted that although the proportionality factor between the average density and the

average linear attenuation coefficient can be evaluated directly from eq 2.70, it is usually found

by a calibration measurement.  Therefore, when we study the practical problems and the

accuracy of γ-densitometry, we will discuss them in terms of linear attenuation coefficient

measurement.

2 . 6 . 2 . Practical problems of attenuation coefficient measurement

When deriving the formula for the attenuation of a photon beam, eq 2.5, it was assumed that

the photon beam is monochromatic and infinitesimally narrow, see Figure 2.1.  In practice,

this is not the case;  a more realistic situation is outlined in Figure 2.15:

γ-source

Absorber

Detector

Figure 2.15 How measurement of the linear attenuation coefficient of an absorber is complicated by

single or multiple photon scattering and finite beam width effects.

It is seen that practical linear attenuation coefficient measurement is complicated by two

factors:  First, as the source emits photons in all directions, and both the source and the

detector are of finite size, the photon beam is no longer infinitesimally narrow;  second, the

photons detected are no longer primary source photons only, but scattered photons as well.

We will now discuss these problems separately.

Finite beam width effects

For finite size sources and detectors, the pathlength travelled by the photons through the

absorber is not constant and equal to the absorber thickness d, but varies from this value and

upwards, depending on where in the source a photon is emitted and where it hits the detector.

This may introduce a small error in the measured attenuation coefficient, but is usually

insignificant, provided that the photon beam is approximately parallel;  this is ensured by

keeping the source-detector distance large compared to the detector and source widths.

If the attenuation coefficient varies across the beam width at a given depth within the absorber,

an error is introduced in the calculated µ (eq. 2.65) even under parallel beam conditions,

because of the exponential attenuation of a photon beam.  This error may be significant if the

nonuniformity is severe;  the error is minimized by keeping the beam width small compared to

the absorber thickness.  We will discuss this effect further in Chapter 4.
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Scattered photons

The detection of scattered photons introduces an error in the measured attenuation coefficient,

because the total number of detected photons is clearly greater than the number of directly

transmitted primary source photons (see Figure 2.15).  We will now discuss two different

techniques for reducing this error.

The first method is to use a collimated photon beam to approximate narrow beam conditions;

this principle is shown schematically in Figure 2.16.

γ-source

Absorber

Detector

Collimator Collimator

Figure 2.16 Using collimators to prevent the detection of unwanted scattered radiation when

measuring the linear attenuation coefficient of an absorber.

Narrow-aperture collimators, made of high density, high-Z materials like lead or tungsten

(which have large attenuation coefficients), are put between the γ-source and the absorber, and

between the absorber and the detector.  In this way, most of the unwanted scattered radiation

is prevented from reaching the detector, and an ideal narrow beam geometry is approximated;

the effective beam width is determined by the size of the collimator apertures.

The other technique, which we may call “energy filtering”, exploits the fact that a Compton-

scattered photon have a lower energy than the primary, or unscattered photons (eq 2.17).  By

using an energy-discriminating detector, it is possible to avoid counting scattered photons, and

the assumption of a monochromatic beam is once again valid1.  The effective width of the

photon beam is in this case determined by the size of the source and the detector.

How effectively this method reduces errors due to scattered photons, depends on the γ-energy

used and the energy resolution of the detector.  From eq 2.17 we see that the energy loss of

the scattered photon depends on the energy of the primary photon;  for a given angle, the

energy loss is greater for higher primary energies.  This is clearly seen from Figure 2.17,

1Even though Rayleigh scattered photons do not suffer any significant energy loss, and hence cannot be

“energy-filtered” away, they may be safely ignored, because the Rayleigh interaction cross section is negligible

in the Compton-dominated energy range under consideration.
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where we have plotted the ratio between scattered and incident photon energies, as a function

of scattering angle and incident photon energy.
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Figure 2.17 Relative energy shift of Compton-scattered photon, E´/E;  plotted against scattering

angle θ and with the energy E of the incident photon as a parameter.

Hence, if the detector is supposed to discriminate against photons scattered a given angle,

better relative energy resolution is required at lower primary photon energies than at higher

energies.  This is counteracted to some degree by the fact that the angular distribution of the

scattered photons (eq 2.20 and Figure 2.7) gets increasingly forward peaked for higher

incident photon energy;  still, it is clear that a detector having good energy resolution is

required for the energy filtering method.

2 . 6 . 3 . Statistical fluctuation error and choice of isotope

The nuclear decay of an isotope occur randomly in time;  because of this, a measurement of a

number of events during a given time interval will not be exact, but instead it represents an

average value with some uncertainty.  Nuclear decay processes follow a Poisson distribution,

which states that the probability of observing N events if the average is N  is equal to

PN = N N exp(−N )
N!

(2.71)

and that the standard deviation of N is given by:

σ N = N (2.72)

When eq 2.65 is used to calculate the linear attenuation coefficient, it is assumed that no and n

are measured during equal periods of time, but in many cases this is not so;  it is then
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convenient to use measured intensity (the number of photons per unit time) instead of using

the number of detected photons directly.  The measured intensity and its standard deviation are

given by

I = n
τ ; σ

I
=

n
τ

(2.73)

where n is the number of photons and τ is the measurement time.  The formula for the linear

attenuation coefficient is then:

µ = 1
d

ln
I

0

I






(2.74)

where Io and I are the incident and transmitted intensities, respectively.

We will now consider the effect of statistical fluctuations in the measured intensities on the

accuracy of the calculated linear attenuation coefficient.  Assuming that the absorber thickness

is known exactly, the standard deviation of the linear attenuation coefficient is given by:

σµ = 1
d

1
I0

1
τ0

+ exp(µd)
τ







(2.75)

where τ  and τ0 are the measurement periods for I and I0, respectively.  We see that the

uncertainty in the measured attenuation coefficient is proportional to the inverse of the square

root of the incident beam intensity Io, which in turn is proportional to the γ-source intensity.

To study the variation of the uncertainty with µ and d, it is more convenient to use the

expression for the relative error:

σµ

µ
= 1

µd

1
I0

1
τ0

+ exp(µd)
τ







(2.76)

Alternatively, if the incident beam intensity, I0, is measured during much longer time than the

transmitted intensity I, the fluctuations in I0 contribute negligibly to the relative error (see eq

2.73), which is then given by:

σµ

µ
= 1

µd

exp(µd)
I0τ

(2.77)

We see that the ratio of these two expressions approach unity for large µd, but also that the

relative error is slightly less for small µd when eq 2.77 is used;  that is, when the incident

intensity I0 is measured over much longer time than the transmitted intensity I.  Equation 2.77

is plotted in Figure 2.18.
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Figure 2.18 Relative error σµ/µ due to statistical fluctuations in the measured beam intensity I,

assuming that incident intensity I0 is known without error (eq 2.77);  plotted against µd

and with the product I0τ as a parameter.

The above expressions for the relative error may be used to select the optimum γ-energy for a

given application, by finding the energy corresponding to the optimum value of µd.  The value

of µd which minimizes the relative error is 2.2 for eq 2.76 and 2.0 for eq 2.77, respectively;

however, it is seen from Figure 2.18 that the minimum of the relative error curve is rather

shallow, so the actual value of µd is not very critical.  Therefore, it is usually possible to find

a suitable γ-source, although the range of isotopes is limited in practice, especially when the

isotope lifetime requirement is taken into account.

The required source activity is determined by the maximum acceptable level of statistical error,

the measurement time, the detector efficiency and the solid angle subtended at the source by

the detector.
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3 . Basic principles of CT

3.1.     Introduction

For our purposes, computerized tomography (CT) may be defined as the reconstruction of the

density distribution function of a two-dimensional object from a set of “one-dimensional”

density measurements called raysums, in many directions through the object.  The theory of

the reconstruction techniques used is a well developed topic within applied mathematics;  the

rapid progress of this field has mainly been motivated by the widespread use of CT in medical

applications.

We will need some background for our system geometry and reconstruction analysis work in

Chapter 4;  therefore, we will now give a brief overview of the mathematical methods used for

CT image reconstruction, mainly based on the review article by Brooks and DiChiro [20], but

also on [21] and [22].  However, we will first take a look at some types of data collection

systems used in medical CT scanning.

3.2.     CT scanning methods

In medical CT, the raysums are found by measuring the attenuation of an X-ray beam.  The

first generation of scanners used a single X-ray source and detector in a translate-rotate

system, which measure a single raysum, or chordal density, at a time;  see Figure 3.1.

Detector
X-ray
source

Object

Collimator Collimator

Rotation

Translation

Figure 3.1 Single source, single detector translate-rotate parallel beam scanner.

Because it is desirable to minimize the radiation exposure to the patient and reduce the

scanning time, more efficient scanning geometries have been developed, such as the rotating

fan beam scanner (Figure 3.2) and the stationary detector ring scanner (Figure 3.3).
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X-ray
source

Object

Rotation

Detector
array

Figure 3.2 Original fan beam scanner:  The source and the detector array rotate around the object.

The standard fan beam scanner uses one X-ray source and an opposing array of detectors,

both of which are rotated around the stationary object.  In this way, several raysums are

measured simultaneously (one for each detector in the array) and the scanning time is reduced

drastically.

Object

Rotating
   X-ray
       source

Stationary
detector ring

Figure 3.3 Stationary detector ring scanner: Only the X-ray source is rotated, making faster

scanning possible.

Even shorter scanning times can be achieved by using the stationary detector ring scanner.  At

the expense of the large number of detectors needed, this technique offers very fast data

collection:  Because only the source need to be rotated, very fast rotation may be used,

resulting in short scanning time.

For the translate-rotate system in Figure 3.1, the raysums for a given rotation angle are

parallel;  hence, the term “parallel beam” geometry is used to describe this scanning scheme.

The scanners of Figures 3.2 and 3.3, however, collect data in the “fan beam” geometry;  this

simply means that, for a given rotation angle, the raysums are measured in directions

diverging from the source.
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3.3.     Reconstruction of a function from projections

We will now turn to a mathematical description of image reconstruction methods;  for

simplicity, the derivations are for the parallel beam geometry, but all techniques have been

adapted to fan beam systems as well.

For the parallel beam geometry, the coordinate systems used are shown in Figure 3.4, see

[20, p. 696]:

x

y
rs

Detector

Source

Object : density
function ƒ(x,y)

(x,y)

r

φ

Figure 3.4 Coordinate systems for parallel beam geometry:  The density function ƒ of the object is

specified in a fixed (x,y) system.  Rays (source-detector line) are specified in a rotated

coordinate system by the rotation angle φ and the normal distance r from the origin to

the ray.  The variable s represents distance along the ray.

We see that the path of a ray is specified in (r,s) coordinates, rotated an angle φ with respect to

the (x,y) system.  For a given rotation angle, a ray is specified by the r variable.  The object is

described by the density function1 ƒ(x,y).  We may now define a raysum p, or chordal density

measurement, as the line integral of the density function along the ray:

p(r,φ ) = f (x, y)ds
r ,φ
∫ (3.1)

The set of raysums for varying r but fixed φ is known as a projection;  hence, equation 3.1 is

often called the projection equation.

We see that reconstruction of an image requires the projection equation to be solved for the

density function;  ideally, ƒ is a continuous function in x and y, so an exact solution would

require an infinite number of projections (and an infinite number of rays per projection),

1The term “density” is not to be taken too literally;  in X-ray imaging, it would represent the average linear

attenuation coefficient.
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which is clearly impossible.  Therefore, all reconstruction algorithms must somehow limit the

spatial resolution of the image in order to make reconstruction possible;  in practice, a finite

number of projections is available, and the density function is reconstructed at a finite number

of points.

Reconstruction methods may be classified according to how they attempt to solve the

projection equation and how they incorporate the necessary spatial resolution limiting.

Basically, there are two different classes of techniques;  in the first, the projection equation is

solved directly, or analytically, but bandwidth limiting of the density function is incorporated

in the numerical implementation;  in the second, the object function is discretized before the

density function is reconstructed.  We will now describe these methods separately.

3 . 3 . 1 . Direct solution of projection equation:  Analytic reconstruction

Analytic reconstruction methods attempt to solve the projection equation (eq 3.1) directly.  The

starting point for the derivation of these methods is the fact that the object density function

ƒ(x,y) may be written as a two-dimensional Fourier integral

f (x, y) = F(kx ,ky )exp[2πi(kx x + kyy)]dkxdky

−∞

∞

∫
−∞

∞

∫ (3.2)

i.e. ƒ(x,y) is represented by a superposition of sinusoids, with spatial frequencies

(wavenumbers) kx and ky in the x and y directions, respectively.  We also have

F(kx ,ky ) = f (x, y)exp[−2πi(kx x + kyy)]dxdy
−∞

∞

∫
−∞

∞

∫ (3.3)

We now transform this integral from the (x,y) system to the (r,s) coordinates;  from

Figure 3.4 we have

x = r cosφ − ssin φ
y = r sin φ + scosφ

(3.4)

where φ is the angle of rotation of the (r,s) system.  If we define

φ = arctan
ky

kx







k = kx
2 + ky

2
(3.5)

the spatial frequencies can be written:
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kx = k cosφ
ky = k sin φ

(3.6)

Using this, we may write eq 3.3 as:

F(kx ,ky ) = f (x, y)exp(−2πikr)drds
−∞

∞

∫
−∞

∞

∫ (3.7)

Exchanging the order of integration and using eq 3.1 we find:

F(kx ,ky ) = f (x, y)ds
−∞

∞

∫




exp(−2πikr)dr




−∞

∞

∫

= p(r,φ )exp(−2πikr)dr
−∞

∞

∫
⇓

F(kx ,ky ) = P(k,φ )
(3.8)

Here, P(k,φ) is the Fourier transform of p(r,φ) with respect to r.  Equation 3.8 states that the

Fourier coefficient , or wave amplitude, of the density function in the direction specified by

the angle of rotation φ, is equal to the Fourier transform of the projection taken in the same

direction.  This equation is the basis for all analytical reconstruction methods.

2D Fourier method

The 2D Fourier reconstruction method is based directly on Equation 3.8:  By taking the one-

dimensional transform of the projections p(r,φ), P(k,φ) is found;  the density function ƒ(x,y)

is then found by taking the inverse two-dimensional Fourier transform of F(kx,ky) = P(k,φ).

Of course, only a finite number of projections are available, each specified at a finite number

of values of r, so discrete Fourier transforms (DFT) must be used.  This is where the

bandwidth limiting is introduced:  By the sampling theorem, the DFT is exact, provided the

object function ƒ(x,y) does not contain spatial frequencies greater than

kmax = 1
2w

(3.9)

where w is the pixel width, or spacing between the reconstruction points.

Because the DFT’s can be computed using the FFT algorithm, the Fourier reconstruction

method is potentially very fast.  The major problem of the method is that the inverse 2D

transform require the Fourier coefficients to be known on a rectangular grid, that is, as

F(kx,ky), whereas P(k,φ) (computed from measured projections) is specified on a polar grid.

Therefore, interpolation is required, which adds some computational overhead because it must
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be done fairly accurately to avoid errors in the reconstructed image (see [20, p. 709] and

[21, p. 120]).

Filtered Backprojection

To explain how this technique works, we will first take a look at a very crude “reconstruction”

method called backprojection, which is described mathematically by the following expression:

f̂ (x, y) = p(r,φ )dφ
0

π

∫ = p(x cosφ + ysin φ ,φ )dφ
0

π

∫ (3.10)

Thus, the value of the approximate object function as “reconstructed” by backprojection in the

point (x,y), is simply the sum of the values of all projections in this point; that is, each

projection contribute with the value of the raysum passing through the point.  It is obvious that

this method cannot be very accurate, as the full value of each raysum is added indiscriminately

to all points along the ray, and not only where “needed”, i.e. to the high density points of the

object function.

However, if we write

p (r ,φ ) = P (k ,φ )exp ( 2πikr )dk
− ∞

∞

∫ (3.11)

we can express eq 3.10 as:

f̂ (x, y) = P(k,φ )exp(2πikr)dk
−∞

∞

∫




dφ




0

π

∫

= P(k,φ )
k

exp(2πikr) k dk
−∞

∞

∫ dφ
0

π

∫ (3.12)

This double integral is in the form of an inverse 2D Fourier transform in polar coordinates

(k,φ);  i.e. we have

F̂(kx ,ky ) = P(k,φ )
k

⇓

F(kx ,ky ) = P(k,φ ) = F̂(kx ,ky ) k (3.13)

where we have used eq 3.8.  Equation 3.13 suggests that backprojection could perhaps work

if the projections p(r,φ) are modified before they are backprojected.  This technique is called

filtered backprojection (FBP);  as an example, we will now consider the most frequently used

variation of this method.
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FBP with convolution filtering

If equation 3.2 is transformed to polar coordinates (r,φ) and (k,φ), we have:

f (x, y) = P(k,φ )exp(2πikr) k dk
−∞

∞

∫ dφ
0

π

∫ (3.14)

We now define

p*(r,φ ) = P(k,φ )exp(2πikr) k dk
−∞

∞

∫ (3.15)

and eq 3.14 may then be written:

f (x, y) = p*(r,φ )dφ
0

π

∫ (3.16)

Equation 3.16 also represents a backprojection, but instead of backprojecting p directly as in

eq 3.10, the function p* is used, and the result is the object density function as required.  The

use of eq 3.16 for reconstruction require the computation of p* from p;  this may at first sight

seem a little tricky because the integrand of eq 3.15 is not bandlimited due to the |k| term.

However, it is assumed that ƒ(x,y), and hence p(r,φ), does not contain spatial frequencies

higher than kmax, and we may rewrite eq 3.15

p*(r,φ ) = P(k,φ )H(k)exp(2πikr)dk
−∞

∞

∫ (3.17)

where the filter function H(k) is given by:

H (k ) =
k , k ≤k max

0 , k >k max





(3.18)

The spatial domain representation of H(k), h(r) is:

h (r ) = 2k max
2

sinc [ 2πk maxr ] −k max
2

sinc 2 [πk maxr ] (3.19)

The modified projection function, p*, may now be evaluated as a convolution integral:

p*(r,φ ) = p( ′r ,φ )h(r − ′r )d ′r
−∞

∞

∫

= kmax p(r,φ ) − kmax
2 p( ′r ,φ )sinc2[πkmax (r − ′r )]d ′r

−∞

∞

∫
(3.20)
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Apart from the assumption that the object function is bandlimited, no approximations have

been used in this derivation.  The numerical implementation of eq 3.20 is uncomplicated,

because the integrand does not contain frequencies greater than kmax and the integral can be

replaced by a summation, with summation points spaced w = (2kmax)-1 [20, p. 714].

The reconstruction procedure is then as follows:  First, each projection is modified using eq

3.20, then the modified projection is backprojected (eq 3.16).  When this has been done for all

projections, the reconstruction is complete.

Convolution-filtered backprojection is almost as fast as the 2D Fourier method described

above and does not involve any interpolation, which complicates the implementation of the

Fourier method.  Therefore, FBP is the most used reconstruction technique for CT.

3 . 3 . 2 . Discretized object function;  iterative methods

To limit the spatial resolution of the image, the object function is discretized, or approximated

by an array of cells of uniform density, or pixels (picture elements), as shown in Figure 3.5.

n

n

w

w

pixel i

ray j

Figure 3.5 Array of n × n pixels for the discretization of the object function;  the object is bounded

by the circle [20, p. 700].  The rays have finite width, here equal to the pixel width w.

The projection equation (eq 3.1) may now be written as a summation instead of an integral:

p
j

= w
ji
f

i
i =1

N

∑ N ≈ πn 2

4

j = 1, …,M





(3.21)

Here pj is the raysum of ray j, ƒi is the density of pixel i, and wji is the contribution to raysum

j from pixel i;  this is equal to the area of intersection between the ray and the pixel for finite

beam width, see Figure 3.5.  The summation is to be taken over the total number of pixels
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constituting the object, N, and for all raysums of the scan, M.  Equation 3.21 represent a

system of M linear equations in N unkown pixel densities ƒi, and may be expressed as

p = Wf (3.22)

where the raysum vector p, the pixel density vector f and the projection matrix W is given by:

p = pj ],[ j = 1,…, M

f = f i ][ , i = 1,…, N

W = wji ][ ,
j = 1,…, M

i = 1,…, N




(3.23)

As mentioned above, the components wji of the projection matrix are the contribution to

raysum j from pixel i; these are determined by the measurement geometry and the pixel array

used.  It is important to realize that although we have indicated the use of a rectangular

reconstruction grid and parallel beam geometry in Figure 3.5, any type of reconstruction grid

and measurement geometry is easily handled by a discrete method, simply by calculating an

appropriate projection matrix W.

We will now consider how to reconstruct the image by solving eq 3.21 or eq 3.22.

Matrix inversion

Generally, N and M  are not equal, which means that eq 3.22 cannot be solved by direct

inversion of the projection matrix W.  Furthermore, if M<N, the system is underdetermined,

in which case many solutions may exist.  There are problems even for M≥N, because

measurement errors in the raysums may cause the system to be inconsistent, which means that

no possible solution exists.  However, it is possible to redefine the problem in such a way that

a mathematically well-behaved N×N system of equations is the result1 [22] [20, p. 701],

which can be solved by standard matrix inversion techniques.

The main problem of this image reconstruction method is that it is computationally inefficient.

Even for a rather coarse reconstruction grid, the matrix which must be inverted is quite large,

and even though the inversion only need to be done once for a given scanning scheme, the

iterative techniques described below are actually faster [20, p. 701].  Therefore, the matrix

inversion reconstruction method is not very much used in practice.

1  The actual method used is to pick the solution vector f which fits the raysum measurements best in the

least-squares sense;  i.e. the measurement errors are also taken into account.
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Iterative techniques

The principle of iterative reconstruction methods is to apply corrections to arbitrary initial pixel

density values in such a way that raysums calculated from the corrected pixel values (eq 3.22)

agree better with the measured raysums than raysums calculated from the initial density

values.  The process is then repeated, with the corrected densities of the previous iteration as

new initial values, until satisfactory accuracy is achieved.

The correction of the density of pixel i during iteration l may be expressed mathematically as

f i
l +1 = f i

l + ∆f ij
l

j =1

M

∑ (3.24)

where the total correction to the density of pixel i is expressed as the sum of the corrections to

this pixel from each ray.  To find the correction factors, we first determine the difference

between the measured and computed raysums:

∆pj
l = pj − pcj

l = pj − wji f i
l

i=1

N

∑ (3.25)

We shall require the corrections to be calculated in such a manner that if all pixels constituting

ray j is corrected, the raysum is increased by the difference given in eq 3.25.  One possibility

is to define the correction terms the following way:

∆f ij
l =

wji∆pj
l

wjk
2

k =1

N

∑
(3.26)

It is seen that each pixel is corrected in proportion to wji, i.e. as the contribution of the pixel

density to the raysum.

We may classify the iterative reconstruction techniques according to in what sequence the

corrections are computed and applied during the iteration; the three main types of schemes are

point-by-point correction (SIRT), ray-by-ray correction (ART) and simultaneous correction

(ILST).

SIRT:  Simultaneous Image Reconstruction Technique

In the point-by-point correction technique, all raysums containing a given pixel are calculated

and then the pixel density is corrected for the total density deficit.  The process is repeated for

each pixel, incorporating the adjusted pixel values before moving to the next pixel.  An

iteration is complete when all pixels have been treated.  The disadvantage of this method is that
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it is not very computationally efficient compared to the two other variations of iterative

techniques.

ART:  Algebraic Reconstruction Technique

The most efficient of the three methods is ART, or ray-by-ray correction.  The difference

between the measured and the computed raysum is computed for one ray at a time;  then a

correction is applied to all pixels contributing to this raysum before moving to the next ray.

However, the convergence properties of this technique is sensitive to errors in the raysum

measurements, and it should therefore be used with caution.

ILST:  Iterative Least Squares Technique

In this technique, all raysums are computed from the pixel densities of the previous iteration;

then corrections to all pixels are computed and applied simultaneously.  It is necessary to

introduce a damping factor when applying the corrections of eq 3.26, because otherwise each

pixel is corrected many times for each ray passing through it.  However, if this precaution is

taken, ILST is a good compromise between the two other methods:  It is faster that SIRT, and

handles noisy raysum data more gracefully than ART.  The method owes its name to the fact

that the corrections and the damping factor are found by requiring the corrected densities to fit

the measured raysums best possible, in the least-squares sense.

Because we will use ILST for image reconstruction in the present work, we include the

equations for this method as described in [22]:  As all density adjustments for one iteration are

done at the same time, we may express the procedure for iteration l as

f l +1 = f l + δ l∆f l (3.27)

where δ l is the damping factor mentioned above.  If the calculated raysums are written as

  
pcj

l = wjk f k
l

k =1

N

∑  ,    j = 1,K, M (3.28)

the pixel density corrections are given by

∆f i
l =

w ji

σ j
2 ( pj − pcj

l )}j =1

M

∑
w ji

2

σ j
2

j =1

M

∑
, i = 1,…, N

(3.29)

where σj is the measurement error (standard deviation) of raysum j.  The overall damping

factor δ l is equal to:
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δ l =

w ji

σ j
2 ( pj − pcj

l )}j =1

M

∑
c ji

2

σ j
2

j =1

M

∑
; cj = wji∆f i

l ,
i=1

N

∑ j = 1,…, M
(3.30)

Equations 3.27 to 3.30 thus describe one iteration.  The initial density values used, f0, are not

critical;  often the same initial value are assigned to all pixels .  The number of iterations used

are normally determined by experiment, but  a value in the range of 3 to 10 iterations seem to

be suitable in most cases [7, p. 84][22].

3.4.     Discussion of reconstruction methods

In the preceding sections we have studied the principles of operation of the more important

reconstruction methods;  we will now discuss some practical questions.

3 . 4 . 1 . Scanning strategies

From our study of reconstruction methods, we have seen that the object density function may

be exactly reconstructed, provided one can assume that it is suitably bandlimited.  In this

context, “suitably bandlimited” means bandlimited with respect to the chosen resolution of the

reconstruction grid:  For a given application, the grid spacing must be chosen according to the

smallest detail the object function is expected to contain, and then the necessary number of

raysum measurements needed may be found.

Natterer [21, pp. 71-84] has determined the optimum scanning strategies for the parallel and

fan beam geometries, by applying the Nyquist criterion to the sampling of the object density

function by raysum measurement.  The results may be summarized as follows:

If we consider a circular object of diameter d, and assume that the object function ƒ(x,y) does

not contain details of smaller size than w, then an exact reconstruction of ƒ(x,y) on an n × n
grid may be done, with n = d/w, if the following scanning strategies are used:

For standard parallel beam scanning, the optimum scanning scheme is described by

φ
j

=
π (j − 1)

m p
, j = 1, …,m p

r
l

=wl
2

, l = −n , …,n






m r = 2n + 1, m p ≈πn ,

M = m r m p ≈ 2πn 2

(3.31)
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where rl specifies the rays for the projection specified by the angle φi, see Figure 3.4.  Also,

we use mr for the number of rays per projection, mp for the number of projections and M

denotes the total number of rays needed.  We see that the optimum ratio of mp and mr is

approximately equal to π/2.

Interlaced parallel beam scanning is a more efficient scheme, which requires half as many

raysum measurements as the standard parallel beam scanning for a given spatial resolution of

the reconstructed image; it is defined by:

φ
j

=
π (j − 1)

m p
, j = 1, …,m p

r
l

=wl
2

,
l = −n , …,n

j +l even









m r ≈n , m p ≈ πn ,

M = m r m p ≈πn 2

(3.32)

We note that both parallel beam scanning schemes require projections in an angular interval of

π radians only, because oppositely situated source positions give identical information in these

geometries.

The geometry for the fan beam scanning scheme is specified by the rotation angle of the

source, β, the ray angles α l and the radius rs of the circle on which the source rotates, see

Figure 3.6:

α

β

Object

Source

Ray

Datum

rs 

Figure 3.6 Fan beam scanning scheme:  For each source position specified by β, raysums are

measured for a set of α .  It should be noted that β does not correspond directly to the

projection angle φ defined in Figure 3.4.

The optimum scanning scheme for the fan beam geometry is then given by:
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β
j

=
2π (j − 1)

m s
, j = 1, … ,m s

α
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= πl
2q

,
l = −q ,… ,q , q ≈

nπr s
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
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m a ≈
4nrsα lim

(rs )

d
+ 1 , m s ≈ 2πn

M = m am s ≈
8πn 2r sα lim

(rs )

d

(3.33)

Here, ma is the number of rays per source position and ms is the number of source positions;

we also see that source positions in a 2π interval is used, because opposite source positions

does not produce equal information for fan beam scanning.

From eq 3.33 (where rs > d/2), it is seen that the fan beam geometry is not as efficient as the

parallel geometries as far as the number of necessary raysum measurements for a given spatial

resolution is concerned.  However, its great advantage in scanning speed makes it widely used

in CT nevertheless.

We also note that the number of raysum measurements required for the exact reconstruction of

a circular object on an n × n grid, is considerably greater than the number of points contained

within the object, N = πn2/4.  In situations where the scanning scheme and number of

raysums are suboptimal, one will have to expect loss of accuracy in the reconstructed image.

3 . 4 . 2 . Accuracy considerations

Provided the necessary number of raysum data is available, both analytic and iterative

reconstruction techniques produce exact results under the assumption that the object function

is suitably bandlimited.  However, this requires that the measurements are error-free; in

practice, if the measured raysums p contain errors σp (standard deviation), the resulting

relative error of the reconstructed pixel density is approximately [22][20, p. 718]:

σ
f

f

 ≅ n 3

M

σ p

p









(3.34)

where n is the number of pixels across the diameter of the object and M is the total number of

measured raysums.

As we have already mentioned, nonoptimal scanning conditions will also introduce artifacts

and inaccuracies in the reconstructed image.  Examples of such conditions are too few

projections or raysums per projection for the chosen reconstruction grid, or confinement of all

projections to a limited angular interval (i.e. less than the full interval of π or 2π radians, for
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parallel or fan beam scanning, respectively).  We will discuss the topic of suboptimal scanning

more thoroughly in the next chapter.

3 . 4 . 3 . Choice of technique

As the methods described have similar performance as far as the quality of the reconstruction

is concerned, the choice of technique for a given application must be based on the

computational speed required and the scanning geometry to be used:  The analytic methods are

faster, but the iterative techniques are more flexible, as they can easily accommodate any type

of scanning geometry.  Because flow imaging systems have relatively low spatial resolution

compared to medical CT systems, the reconstruction computation time is no problem, and we

have therefore chosen the iterative technique ILST for our reconstruction error analysis in the

next chapter.



62

4 . Measurement geometries for γ-ray flow imaging

In this chapter, the possible strategies for measurement of adequate raysum data for CT

reconstruction of the cross-sectional density distribution of two phase or multiphase flow will

be discussed.  After a brief literature review, the description and performance analysis of the

system geometries which are investigated in this work will be addressed.

4.1.     Introduction

Because it is desirable to image flow inside steel process pipes, X-ray tubes are out of the

question as radiation sources because the low energy photons generated have too poor

penetration capability.  Besides, they generate photons in a broad energy spectrum; this

produces errors in the density measurements due to the beam hardening effect [20, p. 720].

A γ-ray system seems to be the better choice;  some systems have been proposed [4][5][6][7],

of varying complexity and performance.

4 . 1 . 1 . Rotating scanner

The most obvious system geometry for γ-ray tomographic flow imaging is a high speed

rotating fan-beam scanner, see section 3.2.  Indeed, this possibility has been investigated, a

parameter analysis and a feasibility study for such a system are found in  Refs. [4] and [5].

The proposed system consisted of a fixed detector ring and a rotating γ source.  For a 48-

detector system with an 18.2 mCi 137Cs source, a scan time of 1 second were expected to give

a pixel density resolution of 0.03 g/cm2, with spatial resolution of 1.15 cm for a 15.24 cm

(6 inch) steel pipe (i.e. ≈130 pixels inside pipe).  By increasing rotation speed and source

intensity, the dynamic response may be further enhanced, with no deterioration of the

resolution parameters.

Note, however, that the quoted density resolution only includes the effect of statistical

fluctuations in the measured raysums, and since this system does not conform to the optimum

scanning conditions described in Section 3.4.1, there might also quite possibly be a

reconstruction error contribution to the uncertainty of the pixels in the image.

While the specifications of this system are impressive, with the possibility of subsecond

scanning times, the fact still remains that it is a rotating scanner:  As the flow may move at

several meters per second, the density distribution within the measurement plane will change

during the scan, causing inconsistencies between raysums measured for different source
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positions.  Therefore, the rotation speed must be high enough to ensure that the density

distribution in the measurement plane may be assumed to be constant during the scan;

otherwise the reconstructed density image will be of doubtful value.  Thus a fixed, or

nonmoving, system would be desirable: while the raysum measurements are still averaged

over the flow moving through the measurement plane, all raysums would be measured

simultaneously, ensuring consistency of the data.

4 . 1 . 2 . The scattering + transmission technique

A nonmoving γ-ray flow imaging system using very few sources and detectors has been

investigated at UMIST [6].  The measurement principle is shown schematically in Figure 4.1.

Source 

Collimated
photon beam

Source 

Collimated
photon beam Scatterer

θ1 θ2

Object (pipe)

Detectors with angled
aperture collimators

Scattered photons

Figure 4.1 The scattering + transmission flow imaging system:  An external low-Z scatterer

generates a field of Compton scattered photons which traverse the pipe cross section.

The detected energy of a photon uniquely determines the path by which it has traversed

the pipe;  thus finite width beams across the pipe are defined by a small energy interval.

Two 50 mCi 137Cs sources illuminate a low-Z scatterer rod, from which a field of singly

Compton scattered photons emerge, thus simulating a linear array of sources of different

energies.  The pipe is placed in this photon field, and two NaI(Tl)+PMT detectors with

narrow aperture collimators are positioned to detect the photons which traverse the pipe.  The

path by which a photon has traversed the pipe cross section is uniquely determined by its

energy, through the Compton energy - scattering angle relationship (eq 2.17) and the setup

geometry.  Thus, a raysum measurement is defined by the detected photon flux in a narrow
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energy interval, corresponding to a narrow beam through the pipe.  By measuring the number

of photons in several energy intervals, a number of raysums are measured simultaneously for

each detector, provided corresponding calibration measurements are available.

In the UMIST system, 7 raysums were measured for each detector, giving a total of 14

raysums.  The cross sectional density distribution were then reconstructed on a 7×7 pixel grid

using iterative techniques.  Considering the discussion in section 3.4.1, it is obvious that the

system is highly underdetermined;  still, identification of simple, idealized models of flow

regimes were possible.

The small amount of available raysum measurements is a definite disadvantage, especially if

accurate void fraction and density distribution measurements are attempted.  However, the

main problem with this system is that the external scatterer concept require extreme source

intensities to keep the errors due to statistical fluctuations acceptably small for short

measurement times.  For the setup described above, the counting time were six hours, when

performing measurements on a 76 mm diameter perspex pipe containing air/water mixture.

4 . 1 . 3 . Direct transmission raysum measurement system

The concept of the systems with which this project are concerned, is to improve the dynamic

response of a nonmoving setup by using direct transmission measurement of raysums, as in a

rotating CT scanner.  However, several fixed groups of sources and detectors are placed

around the pipe, each group corresponding to a certain rotation angle of a moving scanner.  In

this way, a nonmoving system with much better dynamic response and more raysum data than

a scattering/transmission system may be realized.

So far, the work on this project has been a basic feasibility study [7];  this includes testing of

reconstruction algorithms and reconstruction of images from simple single-source, single-

detector raysum measurements on static flow regime models inside a steel pipe.  The results of

this work indicate that reconstruction of images adequate for regime identification is possible

using a very low number of raysum measurements.  However, a more detailed analysis is

required to determine the possible performance of such systems;  this is the scope of the

present work.  We start by giving brief descriptions of three different nonrotating system

concepts which uses several sources and detectors.

Single energy, multisource, multidetector system

This concept uses several fixed sources of equal γ-energy at different angular positions, each

placed in the same radial distance from the pipe centre, and each source illuminating its own

set of detectors placed on the opposite side of the pipe.  A system using three sources is

shown schematically in  Figure 4.2.
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γ-source, fan
beam collimated

Detector array
with multileave
collimators

Figure 4.2 A single energy, multisource, multidetector imaging system using collimators to

minimize the effect of Compton scattered radiation.  All raysums are measured

simultaneously;  one for each detector used.

Collimators are used to minimize the possibility of scattered photons reaching the detectors;

however, the use of several γ-sources simultaneously means that photons from a source

“aimed at” one particular set of detectors may undergo large angle Compton scattering and hit

a detector of another set.  Therefore, energy filtering must be used to counteract this effect,

which become more pronounced as the number of source-detector array groups is increased.

It is also seen that the pipe-source distance and source-detector distance must be increased

when larger number of sources are used, in order to provide a “clear field of view” for each

source-detector group.  This imposes geometrical constraints on the number of source

positions used, and also on the total number of simultaneous raysum measurements:  Apart

from the fact that a system using many sources will have large dimensions, the photon

intensity registered by a detector is inversely proportional to the square of the source-detector

distance;  hence, the measurement error due to statistical fluctuations will increase with

increasing source-detector distance for a given measurement time and source intensity, if not

the detector size is increased as well.

Given the pipe dimensions and the attenuation coefficients of the pipe material and the heaviest

phase of the flow, the optimum γ-energy can be found by the techniques outlined in Section

2.6.3, and a suitable isotope may then be chosen.  For steel pipes, energies of several hundred

keV or more will be required;  because the detectors need to be rather compact for good spatial

resolution, it is obvious that high-Z detectors must be used to achieve adequate detection

efficiency.  Further, the detectors must have a reasonable energy resolution to be able to

discriminate against Compton scattered photons.  Finally, good countrate capability is required
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when using intense sources in order to reduce the necessary measurement time.  We will take

a closer look at the selection of isotopes and detectors in Chapter 5.

Multienergy, multisource, multidetector system

The single energy system described above requires one detector per raysum measurement,

which, compared to a rotating scanner, makes it inefficient with regard to the number of

detectors needed.  While this may be said to be an obvious tradeoff between a rotating scanner

and a nonrotating system, better “detector economy” can be accomplished for a fixed system

as well;  the principle is shown in Figure 4.3.

Pipe

Detector
Source 1,
energy E1

Source 2,
energy E2

=+

Detector energy
spectrum due to
photons from source 1
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Detector energy
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photons from source 2

I
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E

Total detector 
energy spectrum

I

E1

E
E2

Figure 4.3 Principle of dual energy raysum measurement:  By using sources of different energy and

position, two separate raysums can be measured with one energy sensitive detector.

Only counts in the full energy peaks of the detectors may be used, to avoid registering

unwanted scattered photons, and the counts in the peak corresponding to the source of

the lowest energy must be corrected for the influence of the higher source energy.

If the detectors are illuminated by γ-sources of different energies, it is possible to measure

several raysums with one detector, provided its energy resolution is sufficient.  By counting

full-energy peak events only, it is possible to separate the events due to each source used.

Thus, simultaneous measurement of photon transmisson for several different rays through the

pipe is possible, much in the same way as the scattering + transmission technique described

above.  However, it is possible to use a much shorter measurement time, because the pipe is

illuminated directly by the sources.

It is obvious that the detectors used must have better energy resolution and countrate capability

than is needed for a single energy system.  This is because buildup of scattered radiation will

have to be removed by energy filtering as conventional collimators cannot be used (see Figure
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4.3), and that the total detected intensity will increase when more than one source is directed at

each detector.

The possible number of measured raysums per detector depends on the energy resolution of

the detector and the availability of suitable isotopes.  The γ-sources used should ideally be

monochromatic, and their energies should be chosen to suit the given pipe material and pipe

dimension;  more on this in Chapter 5.  Because of the lifetimes of the isotopes also must be

considered, it follows that the range of suitable choices is limited;  however, 2-3 isotopes

should be possible to find in most energy ranges (see e.g. Table 5.1).  A system using two

different source energies and three detector arrays is shown in Figure 4.4.

Detector
array

Fan beam
collimated
γ−sources

E1 

E2 

E1 

E1 

E2 

E2 

Figure 4.4 Dual energy, multisource, multidetector flow imaging system, relying on energy

filtering to avoid the problem of scattered radiation.  Two raysums are measured per

detector.

We see that geometrical constraints similar to those of the single energy system also apply

here.  However, note that the fan spanned by one source and its corresponding detector array

does not cover the entire flow cross section, and that the angular spacing of the sources is not

uniform;  the possible effect of this will be discussed later.

It should be mentioned that although it is in principle possible to use energy filtering to remove

the effect of scattered radiation, the detector energy resolution needed may not be compatible

with the requirement of good detection efficiency and compactness.

Another approach is to try and compensate for buildup using an adaptive image reconstruction

algorithm.  If an initial reconstruction is done based on raysum data containing some buildup

error, the amount of scattered radiation detected could be estimated from the initial image;

afterwards, the raysum data could be corrected accordingly and used for an improved
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reconstruction.  A mathematical model of the photon transport in the entire system would then

be required.

Multiplane system

By using several parallel measurement planes, it is possible to increase the number of source

positions without increasing the radial dimensions of the system [7].  The spacing of the

measurement planes is determined by how much shielding material is required to prevent

directly transmitted photons emanating from sources belonging to one plane, to reach the

detector arrays of the other planes.  Hellesø estimates the required spacing to be in the region

of 5 - 8 cm [7, p. 20];  however, it would depend strongly on the isotope energy used.

The obvious advantage of a multiplane system, is that the source-detector distance is kept at a

minimum, which minimize the statistical fluctuation error for a given source intensity and

measurement time.  However, using a multiplane system is only permissible if the flow

regime is relatively stable over the time taken for the flow to travel past all measurement

planes, or if the measurement period is much longer than this time  Because of this, we will

discuss single-plane systems only;  however, note that the performance figures for multiplane

systems may easily be derived from the analysis of single plane systems.

4.2.     Analysis of ideal nonrotating systems

In this section, we will attack the task of determining what reconstruction accuracy to expect

from nonrotating systems; we start by deriving some basic geometry relations for these

systems.

4 . 2 . 1 .  Geometry relations for single, dual, and triple energy systems

The most important parameters for the nonrotating system geometries, are the minimum

distances between the pipe centre and the sources and detector arrays needed to ensure a clear

“field of view” for each source-detector group.  From Figures 4.2 and 4.4, it is obvious that

these distances increase when the number of source-detector groups increases, and that a fixed

system may assume impractical dimensions even for rather modest number of source-detector

groups, or views.

First, we will consider an idealized single energy system:  We assume that the fan defined by

the source and the detector array cover the entire object, i.e. the pipe interior, and that the

source is an ideal point source, with photon emission limited to the fan beam angular interval.

Further, we define ro as the pipe radius, rs as the distance from the pipe centre to the source,
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and rd as the distance from the pipe centre to the endpoints of the detector array.  Figure 4.5

shows the single energy geometry for the cases rs > rd and rs < rd, respectively.
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Figure 4.5 Basic source-detector group geometries for single energy system, with rs > rd (left) and

rs < rd (right), respectively.

The angles ξ and ζ are given by

ξ = arcsin
ro

rs







ζ = arcsin
ro

rd







(4.1)

and the distance rds between the source and any detector in the corresponding array is equal to:

rds = rs
2 − ro

2 + rd
2 − ro

2 (4.2)

If we define ψ to be the total  angular interval, relative to the smaller of the circles of radii rs

and rd, which is occupied by the fan defined by the source and the detector array, it may be

shown from Figure 4.5 that:

ψ =
4ξ ,rs < rd

4ζ ,rs > rd





(4.3)

In general, the angular interval available for each view is equal to

ψ = 2π
ms

(4.4)

when there are ms equispaced views.  At this point, it should be mentioned that equispaced

views over the full 2π interval is only possible if ms is an odd number.  The reason for this is

that an even number of equispaced views requires the source-detector groups to be pairwise
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situated directly oppositely of each other, which is clearly impossible in a fixed system1.  If

we define

rmin = inf{rs ,rd} (4.5)

we find the following expression for the minimum rs or rd required for a system of ms views:

  

rmin

ro

= 1

sin π
2ms

( )  ;     ms = 3,5,7,K (4.6)

Because the photon intensity at the detectors is inversely proportional to the square of the

source-detector distance rds, it is desirable to minimize this distance in order to keep the error

due to statistical fluctuations in the number of detected photons as small as possible.  From the

above considerations we see that rs and rd must be greater than or equal to the rmin defined by

eq. 4.6 for a system of ms views;  hence, a system of minimum rds is obtained with

rs = rd = rmin;  the source-detector distance is in this case given by:

(rds )min = 2 rmin
2 − ro

2 (4.7)

The basic geometry of a single energy system of this specification is shown in Figure 4.6;  in

this case, we have ψ = 4ξ = 4ζ, since rs = rd.

ro
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ξ
ξ

ζ

ζ
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Figure 4.6 Basic geometry of an idealized single energy system of minimum source-detector

distance rds, i.e. for the case of rs = rd.

1A system using an even number of views is possible if the views are spaced over less than the full 2π range,

however, the unused angular interval is in fact exactly adequate for accommodating one extra view, i.e. a

system where ms is an odd number.
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Next, we will take a look at dual-energy and triple-energy systems:  The positioning of the

detector array is similar to a single-energy system, but the detector arc is narrower, i.e. the fan

does not cover the whole object.  Figure 4.7 shows the basic geometry for such systems.
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rdξ

ζ
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ϕ
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S0

Figure 4.7 Basic geometry for dual- and triple energy systems for the case rs > rd;  for the dual

energy system, source positions S1 and S2 are used, while the triple energy system uses

S0 as well.  The angular spacing of the sources (within a source-detector group) is 2ϕ
for the dual energy system and ϕ for the triple energy system.

From Figure 4.7 we can derive similar geometrical constraints to those of the single energy

system discussed above.  It turns out that exactly the same relation (eq. 4.6) between the

number of source-detector groups ms and rmin (minimum rs or rd) applies to the dual and triple

energy systems, i.e. rs and rd remain unchanged for single, dual or triple energy systems for a

given ms.  Further, rs and rd are independent of the angular spacing of the sources, ϕ .

However, if we consider the source-detector distance, we see that this is no longer constant

for sources S1 and S2;  for S0 it is given by

(rds )0 = rs
2 + 2rsrd cos(ζ + ξ − ϕ ) + rd

2 (4.8)

while for S1 and S2, rds varies around this value depending on where in the array the detector

is positioned.  It is seen from Figure 4.7 that this variation is small for moderate values of ϕ.

Note that increasing the source spacing angle ϕ causes the fans to become narrower.

Figure 4.7 also shows that increasing the number of energies used imply either less coverage

of the object for each source-detector fan, or smaller angular spacing between fans within one

group of sources and detectors;  in either case, not much new information is gained.  Hence, it

is probably pointless to use a system of more than two or three energies, which is the practical

limit anyway because the availability of a suitable group of isotopes is limited.



72

Although the number of raysum measurements per detector is doubled or trebled (without

increasing rmin) when dual of triple energy systems are used, a penalty is paid in that the fans

spanned by S0, S1, S2 and the detector array does not cover the entire pipe interior, since a

certain source spacing ϕ is required for the three fans to give different raysum information, see

Figure 4.7.  In addition, the rays in fans 1 and 2 will not be equispaced;  neither will the views

of different source-detector groups.

Therefore, the multi-energy measurement geometry differs somewhat from the single-energy

geometry, as well as from the ideal conditions described in Section 3.4.1. Thus for a given

number of measured raysums, the quality of the reconstructed image must be expected to be

somewhat poorer for the multi-energy system than for the single energy system.

4 . 2 . 2 . Reconstruction performance of nonrotating systems

Because the fan beam geometry ideal sampling conditions described in Section 3.4.1 dictates

the use of a large number of views even for systems of low spatial resolution, a nonrotating

system conforming to these conditions will be rather large even for modest resolutions.  In

order to limit the size of the instrument, it may therefore be necessary to use a suboptimal

sampling scheme;  that is, to use fewer views than ideal for the reconstruction grid used.

Conversely, if the grid resolution is reduced in order to limit the number of necessary raysum

data, an error is introduced because the bandlimiting assumption of CT reconstruction theory

is violated, see Section 3.3.  To analyze these effects, we have developed a simulation

program called TOM1, which we will now describe in some detail.

Introduction to simulator TOM1

The idea of TOM1 is to investigate the performance of a measurement geometry by feeding

ideal (error-free) raysum data for a given regime to the reconstruction algorithm;  afterwards,

the reconstructed pixel density values are compared to ideal pixel densities for the regime and

reconstruction grid in question.  The errors occuring in the reconstructed pixel densities must

then be caused by insufficient resolution of the reconstruction grid (i.e. violation of the

bandlimiting requirement), or a nonideal scanning scheme, or both.

By testing each combination of grid resolution and scanning scheme for different regimes, one

may use TOM1 to determine a suitable measurement setup for the desired spatial resolution

and pixel density accuracy.  An overview of the simulator is shown in Figure 4.8.
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Reference average
pixel densities ƒir  
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Projection
matrix W 

Specification of 
scanning geometry

Specification of 
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void fraction

Specification of
regime: ƒ(x,z)
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Void fraction
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average of ƒi

Pixel densities
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reconstruction

Figure 4.8 Simulator TOM1:  Based on the specified regime, scanning geometry and reconstruction

grid, reference pixel densities and raysums are computed, as well as the projection

matrix required for ILST reconstruction.  The reconstructed pixel values may then be

compared to the reference values to determine the performance of an ideal system, i.e.

with error-free raysum measurements.

In its present form, TOM1 is restricted to handle two-phase gas/fluid flow, with fully separate

phases distributed as idealized annular or stratified flow regimes.  Further, it is assumed that

the density distribution ƒ is constant along the axial direction of the pipe (see Figure 4.9), i.e.

that the density distribution function is independent of y and may be written as ƒ = ƒ(x,z).

x

z

y

ƒ(x,z)

Section of flow inside pipe

Figure 4.9 Coordinate system for simulation program TOM1:  the density distribution ƒ is

assumed to be independent of y and may thus be written ƒ(x,z).

In general, regimes are defined as a two-dimensional density distribution for the flow cross

section, see Figure 4.10 (left);  this distribution is the basis for the calculation of ideal average

pixel densities and raysums.
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Ai 

Figure 4.10 A flow regime is defined by its 2D density distribution function ƒ(x,z) (left).  A typical

discretizing grid is shown at the right;  pixel i is defined by the region Ai.

The calculation of the pixel densities for a given regime and grid resolution are done in the

following way:  For pixel i, the average density ƒir is found by integrating the density

distribution function of the regime over the region Ai in the xz-plane, and normalizing to the

area of the region (see right-hand side of Figure 4.10):

f ir =
f (x, z)dxdz

Ai

∫∫
dxdz

Ai

∫∫
(4.9)

This is repeated for every pixel in the grid, the result is an array of average pixel densities as

shown in Figure 4.11.

z

x

ƒir

Figure 4.11 Image of average pixel densities ƒir for the density distribution and grid in Figure 4.10.

The geometry used for the calculation of the raysums (or average chordal densities) is shown

in Figure 4.12;  in addition to the density distribution of the flow regime, it is necessary to

know the positions and widths of the source and detector for the ray in question.
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Figure 4.12 Geometry used for raysum calculation;  Sj defines the region of influence for ray j.

Raysum pjr for ray j are found in a similar way to the above procedure for calculating the pixel

densities;  i.e. as a normalized integral of ƒ(x,z) over the region Sj, where Sj is the region of

intersection between the flow cross section and the ray.

pjr =

f (x, z)dxdz
S j

∫∫
dxdz

S j

∫∫
(4.10)

This is done for every ray1 defined by the given scanning geometry, giving a set of ideal

raysum values for the regime in question.  It should be noted that the normalization to the area

of Sj restricts pjr to lie in the interval [0,ƒmax], where ƒmax is the maximum of the density

distribution function within the flow cross section.  We use this definition to “harmonize” our

notation with the notation used for measured raysums, which are also normalized quantities

(see Chapter 5).

In order to be able to reconstruct images from the raysums using ILST (or any iterative

technique), it is necessary to calculate the weights wji, which are the components of the

projection matrix W defined by eq. 3.23.  The weight wji may be defined as the contribution

of the density of pixel i, ƒi, to the raysum pj of ray j;  normally, wji would be equal to the area

of intersection between regions Sj and Ai (see Figure 4.13), but because we have used

normalized raysums (see the previous paragraph), the weights must be normalized as well.

1The term “ray” is a little misleading, because the beams are not infinitesimally narrow, but have finite width.
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Figure 4.13 Geometry for the calculation of the components of the projection matrix W.

The proper normalization is achieved by defining wji as the area of intersection between Sj and

Ai, divided by the total area of Sj:

wji =

dxdz
( Ai ∩S j )
∫∫

dxdz
s j

∫∫ (4.11)

Equations 4.9 to 4.11 thus provide the basis for the simulation program together with

equations 3.27 to 3.30, which define the ILST algorithm.

Reconstruction error estimators

Herman [23, p. 66] has proposed a number of estimators for the evaluation of image

reconstruction error, some of which were used in the introductory work for this project [7].

The normalized average absolute pixel error, r, is defined by:

r =
f i − f ir

i=1

N

∑
f ir

i=1

N

∑
=

f i − f ir
i=1

N

∑
Nf max (1 − αe ) (4.12)

It is seen that this estimator is normalized to the average of the flow cross section density

function (αe is the void fraction);  for the sake of simple comparison between regimes of

different average density we shall use the average absolute error per pixel, rabs, instead:

rabs = 1
N f ir − f i

i=1

N

∑ (4.13)

In addition to using this estimator, we will compare the exact value of the void fraction αe

with an estimated void fraction αr computed from the reconstructed pixel values.  The void
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fraction is defined as the relative volume occupied by the gas phase;  because we have

assumed that the density distribution function is independent of y, αe is given by:

αe = 1 −

f (x, z)dxdz
s flow

∫∫
f max dxdz

s flow

∫∫
(4.14)

The “reconstructed” void fraction αr is computed as an weighted average of the reconstructed

pixel densities, where the weights are just the relative areas of each pixel:

α r = 1 −

f i dxdz
Ai

∫∫










i=1

N

∑
f max dxdz

S flow

∫∫
(4.15)

In both cases, the integral in the denominator is simply the total area of the flow cross section

dxdz = π ro
2

S flow

∫∫ (4.16)

and the region Sflow is defined by:

Sflow  :  (x, z)  for which   x2 + z2 ≤ ro
2

(4.17)

Then we may define our second error estimator, the absolute void fraction error, as follows:

evoid = αe − α r (4.18)

Notes on the implementation

The program handles grid resolutions of 2×2 to 16×16, the maximum number of views is

100, and the maximum number of rays per view is 33;  the latter restrictions correspond to fan

beam optimal scanning conditions for the maximum grid resolution (with d = 2r0 and rs ≥
4r0), see eq 3.33.  Based on the specified geometry and density function, fir, pjr and wji are

computed using simple numerical integration of equations 4.9 - 4.11.  The raysums and the

projection matrix W are input to the ILST algorithm defined by equations 3.27 - 3.30.  An

initial value of 0.5 is assigned to all pixels (since ƒmax = 1);  then 7 iterations are done to

complete the reconstruction, see Section 3.3.2.

A slight modification of the ILST algorithm is incorporated:  Because it is known in advance

that the ƒi´s should lie in the interval [0, ƒmax], values of ƒi below or above this interval are

set to zero or ƒmax, respectively, after each iteration.  We have also cancelled the raysum
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measurement errors σj from eqns 3.29 and 3.30, because we are using “exact” raysum data,

believed to be accurate to 6 significant digits, which is the precision of the numerical

integration procedure used.

Regime definitions and strategy for simulations

As mentioned above, TOM1 is restricted to handle simple models of two-phase stratified and

annular flows, see Figure 4.14.  The stratified regimes are specified by the interface level and

the angle between the interface and the x-axis, while the annular regimes are defined by the

radius and position of a single circular annulus (void).  The gas density ƒgas is set equal to

zero, while the fluid density ƒfluid is equal to one.

x 

z

ra 

(xa,za)

a) b)

x 

z

ls 

υ

Figure 4.14 Density distributions of the regime models handled by TOM1:  a)  Stratified flow, with

interface level ls and angle υ, and b) annular flow, with a void (gas) region of radius ra

centred at (xa,za).  The value of ƒ(x,z) is zero for gas (white) and one for fluid (black).

The stratified regime in Figure 4.14(a) may be defined mathematically as

f stratified (x, z) =
0 : z > x sin υ + ls

cosυ
1: otherwise







for (x, z) ∈Sflow , with ls ∈ −r0 ,ro and υ ∈ − π
4 , π

4

(4.19)

where ls is the interface level and υ is the rotation angle relative to the x-axis.  For the annular

regime of Figure 4.14(b), the expression is:

f annular (x, z) =
0 : z > (x − xa )2 + (z − za )2 ≤ ra

2

1 : otherwise





for (x, z) ∈Sflow , with xa
2 + za

2 − ra ≤ ro

(4.20)

where ra is the radius of the annulus and (xa,za) is the position of its centre.
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We must now decide upon some strategy for the testing of various system geometries.

Because we are dealing with systems of relatively poor spatial resolution and/or limited

numbers of raysum data, the accuracy of the reconstructed image must be expected to depend

strongly on the flow regime in question.

In order to be able to compare the performance of different systems, it is therefore necessary

to compensate for this regime dependence;  our counsel of desperation is to test each system

for a number of regimes, calculate the average error for all regimes and then compare the

systems with respect to this average error.  Thus we may define the average pixel error per

regime as

Rabs = 1
Mr

rabs (k)
k =1

Mr

∑ (4.21)

and the average void fraction error per regime as

Evoid = 1
Mr

evoid (k)
k =1

Mr

∑ (4.22)

where Mr is the number of regimes, and rabs(k) and evoid(k) are defined in eq 4.13 and 4.18,

respectively.

The next problem is of course to compose a representative selection of flow regimes:  As it is

impossible to know in advance what suite of regimes which provides the best basis for

comparison of system geometries, we content ourselves with choosing the following mixture

of 52 different regimes, which at least ensures good variation:

•19 simple stratified regimes: ν = 0˚, ls = {-0.9, -0.8,…, 0.8, 0.9}

•19 simple annular regimes: xa = 0, za = 0, ra = {0.05, 0.10,…, 0.90, 0.95}

•14 angled or offset regimes:

a) Stratified (6): ν = 15˚, ls = {-0.5, 0.0, 0.5}

ν = -30˚, ls = {-0.8, 0.0, 0.8}

b) Annular (8): xa = -0.4, za = 0.4, ra = {0.20, 0.40}

xa = 0.4, za = -0.4, ra = {0.20, 0.40}

xa = 0.5, za = 0.1, ra = 0.30

xa = 0.4, za = -0.4, ra = {0.25, 0.50, 0.80}

The interface level ls, the void radius ra and the void position coordinates xa and za are in units

of r0, i.e. the radius of the flow cross section.  The angled stratified and the offset annular

regimes are shown in Figure 4.15.
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Figure 4.15 Angled stratified and offset annular regimes.

The general modus operandi for testing the performance of a given system geometry and grid

resolution is then as follows:  First, calculate the projection matrix;  next, compute the

reference pixel densities and raysums for each regime.  Then perform reconstruction and

compute error estimators rabs and evoid for the regime in question.  When this has been done

for all regimes in the test suite, the average errors Rabs and Evoid are computed.

We will now describe and discuss the various system geometries which have been simulated.

Simulations:  Optimum scanning conditions

We start by simulating a system which uses the optimum fan beam scanning conditions

defined by eq 3.33;  while this system is really not practical in a fixed version due to the high

number of views, it is useful to include as a reference.  By using rs = 4r0 = 2d, the number of

rays per view ma is equal to 2n+1, where n is the grid resolution.  The number of views ms is

approximately 2πn, see Table 4.1.

Table 4.1 Optimum scanning conditions for grid resolution n of 2×2 to 16×16 pixels.  The

angular spacing of rays and views are given by eq 3.33, with rs = 4r0 and d = 2r0.

n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ma 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

ms 12 18 25 31 37 43 50 56 62 69 75 81 87 94 100
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The source-detector distance used is 2rs, and the detector width is chosen so that the detectors

are stacked edge-to-edge, i.e. the angular interval occupied by a detector is equal to the angular

spacing of the rays, see eq 3.33.  Finally, we have used zero source width, i.e. a point source

is assumed.

The resulting values of Rabs and Evoid are plotted against the grid resolution n in Figures 4.16

and 4.17, respectively.  Values are plotted for each separate group of regimes (simple

stratified, simple annular, and angled stratified + offset annular), as well as for the entire suite;

however, note that we have not considered the standard deviation of the values, so it is not

known if the differences between the curves for the various regime groups are statistically

significant.  In any event, the curves are quite similar for all groups.
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Figure 4.16 Rabs plotted against reconstruction grid resolution n for the different groups of

regimes (see text) for optimum scanning conditions.

From Figure 4.16 we see that there are errors present in the reconstructed images, even if

exact raysum data are used and the scanning conditions for the different grid resolutions are

optimal.  This may seem to contradict our earlier statement (see Section 3.4.2), that the

different reconstruction algorithms produce error-free images from exact raysum data under

optimum scanning conditions.  However, if the spatial resolution of the reconstruction grid is

insufficient, the bandwidth limiting assumption on which reconstruction theory is based is not

fulfilled, and there will be errors present in the resulting images, even if the scanning

conditions are optimal with respect to the grid resolution.

The reconstruction error in the “optimum conditions” simulations may then be explained from

the fact that all 52 regimes in our test suite have discontinuous density distribution functions;



82

therefore, errors will be present for any finite grid resolution, because a discontinuity

represents infinite bandwidth in the spatial frequency domain.

It is seen that the reconstruction error decreases with increasing grid resolution, which is

clearly because the violation of the bandlimiting requirement gets less severe for better

resolution.  A rough estimate of the dependence of the average error per pixel Rabs on the grid

resolution may be done as follows:  For both annular- and stratified- type regimes, the number

of pixels affected by the discontinuity are proportional to n (which is the number of pixels

across the diameter of the flow cross section).  If it is assumed that only these pixels, in the

“neighbourhood” of the discontinuity, contain errors, the average error per pixel should be

proportional to n-1, because the total number of pixels in the image is proportional to n2.

We may compare this with the actual Rabs by normalizing at n = 16, which corresponds to the

smallest error due to bandwidth effects;  there is reasonable agreement for higher values of n,

but it turns out that Rabs rises more sharply when n decreases than a simple n-1 dependence for

very small n.  This is a consequence of the inability of a coarse grid to accurately represent the

features of the density distribution;  also, the relative portion of pixels affected by a

discontinuity may be greater for very small n.

If we consider the actual magnitude of the reconstruction errors, we see that the average

absolute error per pixel per regime, Rabs, is about 0.01 for the entire test suite of 52 regimes

for a grid resolution of 8 × 8 pixels;  this corresponds to a 1% full scale error, since the

density function values are confined to the interval [0, 1].
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Figure 4.17 Evoid plotted against reconstruction grid resolution n for the different groups of

regimes (see text) for optimum scanning conditions.
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Similarly, we see from Figure 4.17 that the absolute void fraction error per regime, Evoid, is

about 0.005 for the same grid resolution, i.e. a 0.5% full scale error.  The absolute void

fraction error exhibit a similar dependence on the grid size n as the average absolute pixel error

Rabs, but is smaller, because positive and negative pixel errors tend to cancel each other to

some extent in the calculation of the void fraction.

Finally, we note that although a n = 8 system using optimum scanning has nice performance

figures, it is clearly impossible to implement as a fixed system, because it requires no fewer

than 50 views (each of 17 rays):  Such a system would have a minimum detector-source

distance rds of about 64r0, or 32 times the pipe diameter, see eqns 4.6 and 4.71.  Of course,

the radial dimension of the imaging instrument could be reduced by reducing the grid

resolution, but even a modest n = 4 system require 25 views, resulting in a minimum rds of

about 16 pipe diameters.  Therefore, it is clear that we are forced to tolerate suboptimal

scanning strategies in fixed imaging systems.

Simulations:  Single energy systems

Motivated by the concluding remarks of the previous section, we now proceed to consider

fixed (nonrotating) single energy systems of more manageable proportions:  We will study the

performance of systems where the number of views, ms, ranges from 3 to 15 (odd ms only),

which corresponds to minimum detector-source distances (eqns 4.6 and 4.7) from 1.7 to 9.5

pipe diameters.  A complete overview of the source radii rs and minimum detector-source

distances rds (i.e. the detector array endpoint radius rd is equal to rs) for the values of ms used,

is presented in Table 4.2.

Table 4.2 Source radii rs and minimum source-detector distances rds (i.e. for rd = rs) expressed

as multiples of the inner pipe radius and diameter, respectively, for the simulated

single-energy systems. The number of views, ms, varies from 3 to 15.

ms

3 5 7 9 11 13 15

rs 2.00 3.24 4.49 5.76 7.03 8.30 9.57

(rds)min 1.73 3.08 4.38 5.67 6.96 8.24 9.51

1Actually, we have used ms = 51, since only odd ms are permissible in a fixed (nonrotating) system.
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A look at Table 4.1 (see the previous section) reveals that all optimal systems require more

than 15 views, so all systems that are discussed in the current section are “suboptimal”, except

the n = 2 system with 13 or 15 views.

For each value of ms, simulations are performed for grid resolutions n ranging from 2 to 16;

the angular position βj  (relative to the x-axis) of the views (sources) and the ray angles α l

(defining detector angular spacing) are given by the following expressions (see Figure 3.6 and

eq 3.33):

β j = 2π( j − 1)
ms

,   j = 1,…,ms

α l = πl

2q
,   

l = −n,…,n

q ≤ nπrs

d
< q + 1







(4.23)

It is seen that the views are spaced uniformly over the full 2π interval, and that the ray spacing

is the same as for the optimal scanning conditions.  The number of rays per view, ma, is equal

to 2n + 1 with this specification, which ensures that the whole pipe cross section is covered by

the fan of rays;  however, note that two of the systems which have been simulated use fewer

rays per view than this;  also, one of them uses a different detector spacing, see below.

Four different nonrotating single energy systems have been considered:

System 1: The number of rays per view, ma, is equal to 2n +1, and the ray spacing is as

defined by eq 4.23.  The detector width is chosen so that the detectors are

stacked edge-to-edge, just as for the “optimal” system above.

System 2: The ray spacing, and the number of rays per view, are identical to those of

System 1, but the detectors are half as wide, i.e. a detector occupies an angular

interval which is half the angular spacing of the rays.

System 3: The number of rays per view, ma, is equal to n , and the spacing of the rays are

exactly twice the spacing of Systems 1 and 2.  The detector width is twice that

of System 1, so the detectors are stacked edge-to-edge for this system as well.

System 4: The ray spacing, and detector width, are identical to System 1, but the number

of rays per view is chosen as the minimum number required for the fan beam to

fully cover a circle around the pipe axis, whose radius is 3/4 of the inner pipe

radius ro.

System 1 is similar to the “optimal” system of the previous section, except that the number of

views used are smaller in most cases;  the other three systems are variations of the first one:
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System 2 is included to investigate the effect of varying the detector width, which is important

because it influences the solid angle subtended by the detector at the source, and hence, the

statistical fluctuation error of the raysum measurements.  System 3 is included to study the

effect of “saving” detectors by doubling the spacing of the rays.  Finally, the simulation of

System 4 is intended to reveal what error that may be introduced when the fan beam of each

view does not cover the entire pipe cross section;  this is of interest because the statistical error

will be large for raysums measured close to the inner circumference of the pipe, due to heavy

attenuation in the pipe material and little attenuation in the flow [7, p. 32];  see also Chapter 5.

We will now present the simulation results for these four fixed single-energy systems, i.e. as

plots of average absolute pixel error per regime, Rabs, and void fraction error per regime,

Evoid, along with the results of the “optimal” system simulation.  Note that although all

simulations have been performed separately for the three groups of regimes defined above,

and the simulation results for the optimal systems are presented both “groupwise” and for all

52 regimes together, we have chosen to include only the results for the entire test suite.

The justification for this is that, in virtually all cases, it turns out that the general shape of the

error-versus-gridsize curves for a given system are very similar for the individual regime

groups as well as for the entire test suite.  Figures 4.16 and 4.17 are in fact typical examples

of this, see also our above comments to these plots.  Also, the relative error level for the

different groups are similar to the “optimal case” for all four systems (the errors are worse for

the annular group than for the whole suite, while the errors are smaller for the stratified

group).

System 1:  m a = 2n  + 1, edge-to-edge detectors, fan covers pipe

The Rabs and Evoid plots resulting from this simulation are shown in Figures 4.18 and 4.19,

respectively;  the values for the optimal system configuration are also included for reference

purposes.

If we first consider the average absolute pixel error Rabs (Figure 4.18), we see that the

performance is quite close to optimum for all values of ms when n is small, and in fact slightly

better than optimum for higher number of views.  The latter effect may be explained from the

fact that high-ms, low-n systems use near-optimal or even “superoptimal” scanning

conditions, see the comments to Table 4.2.

For higher grid resolutions, the general improvement in image quality with increasing number

(but fixed n) of views is clearly demonstrated.  Also, for a given number of views, the error at

first decreases with increasing n, then stabilizes or even increases slightly for high n and low
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ms.  This increase occurs because the amount of available raysum data becomes somewhat

sparse for the high grid resolution and low ms.
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Figure 4.18 Rabs results for System 1, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.

Conversely, the difference in error between optimum and suboptimal systems decreases for

very small n, which may seem a little peculiar;  however,  this effect may be explained as

follows:

For low grid resolution, different rays passing through a given pixel may receive wildly

different raysum contributions, because the regime density function may vary strongly within

the region defining the pixel.  As the reconstruction process is based on the assumption of

uniform pixel densities, it is clear that it may be impossible for the reconstruction to converge

to a pixel density which satisfies all raysums involving that pixel;  i.e. there is a “raysum

ambiguity” with respect to the reconstructed pixel densities.  Now, because more rays pass

through each pixel in a system using many views than systems using a low number of views,

this ambiguity effect error increases with increasing ms, and is especially severe for low grid

resolutions, as a greater portion of the pixel are affected by such errors for small n.

Thus, for low grid resolution, the extra ambiguity error for high ms outweighs the expected

error reduction due to a greater amount of raysum information;  at better grid resolution, the

ambiguity error is insignificant compared to errors caused by bandlimiting effects and

insufficient amounts of raysum data.
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We now turn the attention to the Evoid results plotted in Figure 4.19:  Note that with the

chosen vertical scale, the data for the lower grid resolutions are not visible;  however, they

approach very closely the optimal data, so we have concentrated on the data for the higher grid

resolutions instead.
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Figure 4.19 Evoid results for System 1, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.

For n smaller than 8, and regardless of the number of views used, the void fraction error for

this system is in fact less than for the optimal system;  further, the error is not very much

larger than in the optimal case for higher grid resolutions.  Also, for low grid resolution, the

void fraction error is at minimum when the smallest number of views are used.  These

phenomena may be caused by the “ambiguity effect” described above:  Adding extra views at

low grid resolution does not increase the precision of the void fraction estimate, but rather

increases the confusion!

The fact that the void fraction error Evoid is smaller than for the optimal case for small n, even

if the converse is true for the pixel error Rabs, must be because positive and negative pixel

errors cancel each other when the void fraction is calculated from pixel densities.

The most important observation to be made from the simulation results of this section, is

perhaps that it is possible to achieve performance nearly equal to that of the “optimal” system

with systems using a much smaller number of views.  While this at first may seem a little

strange, it may be explained from the fact that the density functions of all regimes in the test

suite exhibit piecewise homogeneity and varying degree of symmetry;  therefore, except for

the discontinuities, their information content is lower than for the general case from which the
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optimal scanning conditions are derived, and they may be successfully reconstructed from a

suboptimal number of views [21, pp. 175-178].

Apart from the peculiarities mentioned above, the void fraction error of this system seems to

be relatively insensitive to the number of views used, and the error level is similar to that of

the optimal system.  The average pixel error, on the other hand, gets steadily smaller when the

number of views is increased.  However, the pixel density accuracy does not improve very

much when ms is increased beyond 7 or 9;  this may then be a suitable compromise for the

number of views used, with respect to the tradeoff between accuracy and complexity.

System 2:  ma = 2n  + 1, narrow detectors, fan covers pipe

The Rabs versus n , or pixel error versus grid resolution plot, for this system is shown in

Figure 4.20, together with the optimal system results.
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Figure 4.20 Rabs results for System 2, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.

It is seen that this system behaves in a very similar manner to System 1, except that the errors

are slightly larger.  For the 3 view and 5 view systems, the error curves does exhibit some

small irregularities compared to System 1;  these are probably caused by the difference in ray-

pixel and ray-regime intersection patterns.  While these “bumps” are clearly insignificant from

an error level variation point of view, they are interesting because they give some indication of

the sensitivity of the reconstruction to changes in the regime-ray intersection pattern, or the

“regime dependence” of the image accuracy.
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Figure 4.21 Evoid results for System 2, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.

If we consider the Evoid data, plotted in Figure 4.21, we see that the error curves resemble the

corresponding System 1 data quite closely (see Figure 4.19), except that the errors are slightly

larger for low grid resolution.  Thus, it may be concluded that Systems 1 and 2 behave almost

identically as far as the precision of the void fraction estimates are concerned.

The significance of the simulation results for System 2, is that one may safely use maximum

width detectors, as in System 1, without any loss of image accuracy compared to a system

using narrower rays, or beams1.  Using the widest possible detectors maximises the solid

angle subtended by a detector at the source, and hence, the number of detected photons;  this

in turn minimize the statistical fluctuation errors of the measured raysums.

However, it should be kept in mind that increasing the beam width may introduce other

raysum measurement errors;  because the pathlength/beamwidth ratio is increased, the

sensitivity of the measurement for a nonuniform density distribution within the ray is

increased (see Section 2.6.2), thus introducing a regime dependence.  We will discuss this

effect in Chapter 5, along with the need to compromise between the raysum regime

dependence error and the statistical fluctuation error when choosing the detector width.

1It should be noted that the optimal sampling conditions defined in Section 3.4.1 are derived for the case of

infinitesimally narrow rays, see [21, pp. 54-84].
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System 3:  ma = n , edge-to-edge detectors, fan covers pipe

The Rabs simulation results for this system are shown in Figures 4.22.  The striking feature of

this plot is the very small error for low grid resolution;  this may be explained in terms of the

raysum ambiguity effect discussed above, since this system uses half as many rays per view

as System 1 does.  For moderate and higher values of n, however, the errors are similar to

those of System 1.  Finally, we notice some irregularities for the error curve for ms = 3, see

our comments to System 2.
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Figure 4.22 Rabs results for System 3, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.

Our comments for Evoid plot shown in Figure 4.23 are very much the same as those for the

pixel error plot above:  For low grid resolution, the errors are smaller than for System 1, and

than for the “optimal “system.  At higher resolutions, the errors are similar to the System 1

errors, except for ms values of 11, 13 and 15, for which the errors are slightly smaller.

Note, however, the erratic behaviour of the Evoid curves for low n;  this may indicate a high

sensitivity for ray-regime intersection pattern variations for this system;  similar effects are

also seen in the Rabs plot in Figure 4.22.

To summarize the results for the double detector width system, we might conclude that this

scanning strategy looks promising compared to System 1 as far as the error levels are

concerned, but the peculiarities of the error curves indicate a stronger regime dependence. In

addition, the use of greater detector width cause a greater raysum regime dependence error,

but reduce the statistical fluctuation error, see the discussion for System 2.
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Figure 4.23 Evoid results for System 3, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.

System 4:  ma < 2n  + 1, edge-to-edge detectors, narrow fan

This system is special in the sense that the number of rays per view does not change in a

simple linear fashion when the grid resolution is varied;  see the Rabs plot of Figure 4.24.
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Figure 4.24 Rabs results for System 4, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system are included for comparison.
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The Rabs curves exhibit characteristic “jumps” for n = 6, 10 and 14, which corresponds to the

“discontinuities” of the ms versus n relation:  The number of rays per view varies as follows1:

ma = 2n-1 for n = 2..5, ma = 2n-3 for n = 6..9, ma = 2n-5 for n = 10..13, and ma = 2n-7 for

n = 14..16.

Due to the reduction of the “raysum ambiguity error”, the performance of this system appears

to be better than System 1 for very small n.  As the grid resolution is increased, the errors

increase markedly at the “discontinuity points” mentioned above, because of the relative

decrease in the amount of available raysum information.  Between these points, the error

decreases slightly with increasing n for higher ms, is constant for intermediate ms, and

increases a little for small ms;  this behaviour is roughly the same as for System 1.  As usual,

the values of Rabs decrease when the number of views is increased.
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Figure 4.25 Evoid results for System 4, with the number of views, ms, as a parameter, plotted

against reconstruction grid resolution n for the entire test suite of 52 regimes.

Results for optimal system included for comparison.

The Evoid curves shown in Figure 4.25 behave very much like the pixel error curves:  At low

grid resolution, the errors are smaller than for System 1, but are larger for higher resolution.

As for System 1, the error decreases with increasing n, except  at the ma “discontinuity”

points.

1The irregularities appear because the number of rays used is chosen to be the minimum number required to

contain a circle of radius (3/4)ro.  Hence, there will be some overlap, which is greater in the relative number of

rays for small n, since the rays are wider in this case.  Also, the actual angular interval covered by the fan will

vary for varying n.
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Because the amount of raysum data is reduced when the angular interval of the fan is reduced,

the increase of the image error for higher grid resolutions is not unexpected, nor is the error

decrease for low resolutions;  the latter effect is due to a reduction of the ambiguity error.

The observed “discontinuity” points of the Rabs and Evoid curves are interesting because they

indicate the sensitivity of the errors for a change in the angular interval covered by the fan.  It

is obvious that the fan of rays for each view should cover the flow cross section completely to

minimize reconstruction errors;  however, this may not be desirable due to large statistical

fluctuation errors in raysums measured close to the inner circumference of the pipe.

Discussion:  Single energy systems

The first conclusion to be drawn from the simulation results from the previous paragraphs, is

the importance of choosing a reconstruction grid of adequate resolution:  Both the bandlimiting

error and the related “raysum ambiguity error” is severe at lower resolutions for Systems 1

and 2;  this is seen from the fact that errors are much smaller for Systems 3 and 4 for low grid

resolution.  Regime sensitivity and intersection pattern sensitivity is much more pronounced

for lower n, which means that a low resolution system is more unreliable than a high

resolution one, in the sense that its performance may vary strongly with the flow regime,

which is clearly undesirable in an imaging system.

The value of a low resolution image is questionable even if the average pixel densities are

accurate, since some degree of spatial resolution is required to produce useful information

about the features of the density distribution of the flow cross section.  A reconstruction grid

resolution of  7 × 7 is a perhaps a suitable minimum value.

When we consider the results for highest grid resolutions, we see that the pixel error curves

approach a constant value, or exhibit a slight increase as n increases;  this tendency is caused

by a shortage of available raysum information.  The “suboptimality” of the fixed measurement

systems, with regard to the number of views, obviously gets worse for increasing grid

resolutions, compare Table 4.1.  We note the influence of the number of views used on the

reconstruction error, which decrease steadily with increasing ms.  Also, for ms higher than

about 7 or 9, the performance of the best fixed systems is quite close to that of an optimal

system, at least for the relatively simple regimes considered in this work.

The results for System 4, which utilizes narrower fans than the other systems, show the

importance of good coverage of the pipe cross section by the fans of rays:  Even if this system

uses a higher number of rays than System 3, its performance is worse;  moreover, the rapid

change of the error level for small changes in the angular interval covered by the fan indicates
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the strong effect of incomplete fan coverage of the pipe.  However, this will probably have to

be tolerated, as the raysum measurement error will be very large for rays close to the pipewall.

To summarize, we conclude that System 1 (or 2) is probably the best, even if other systems

appear to offer better performance for some resolutions and choices of ms.  This is because the

performance of the other systems are more intersection pattern and regime sensitive, which

casts doubt on their reliability.  Note, however, that practical considerations (raysum

measurement error) may force us to choose a narrow-fan system such as System 4, although it

may not be necessary to reduce the fan width to 75%.  We will look into this in Chapter 5.

In the above discussion we have concentrated on the pixel error;  it is seen from the average

void fraction error plots that good void fraction measurement accuracy may be accomplished

using quite simple systems, compared to what will be required for imaging.  However, even

the simplest imaging system would perhaps be a little overkill if a void fraction measurement

is all that is required.

Simulations:  Dual energy systems

For dual (and triple) energy systems, the quantity ms is redefined to denote the number of

detector arrays with associated groups of sources, instead of the number of views.  Therefore,

the number of views, and source positions, is twice or three times the value of ms for double

or triple energy systems, respectively.  The basic geometry for dual (and triple) energy

systems is shown in Figure 4.7;  note that the angle βj specify source position S0, and that

positions S1 and S2 are specified relative to this by the source spacing angle ϕ.  Further, for a

dual energy system, only positions S1 and S2 are used.

The dual energy system under consideration uses a detector endpoint distance rd equal to the

source radius rs, and the source spacing angle ϕ is chosen to be equal to ξ/2 (which is equal to
ζ/2 for rs = rd).  Hence, the source-detector distance for position S0 is given by (see eq 4.8):

(rds )0 = rs 2(1 + cos3ϕ ) (4.24)

The nominal angular interval ∆α covered by the fan, which is determined by the positions of

the detector array endpoints and the source position, is identical for the fans defined by S0, S1

and S2 for rd = rs;  it is given by

∆α = 2arctan
sin3ϕ

1 + cos3ϕ






(4.25)

equal to 2⋅(3ξ/4), which is in fact identical to the interval used for single-energy System 4.

However, fans defined by S1 and S2 are not symmetric with respect to the source - pipe
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centerline, see Figure 4.7.  The number of rays per view used is the number required to

contain the fan of angular extent ∆α defined by source position S0 and the detector array.  The

rays of the fans defined by S1 and S2 are in turn determined by the detector positions;  note

that ray spacing and width for fans 1 and 2 are not uniform.

For the simulation of the dual energy system, we have chosen the same ray spacing and

detector width (relative to the position of S0) as single-energy System 1, or as the optimal

system.  The actual number of detectors in each array is determined by the angular interval to

be covered by the fan of rays (see previous paragraph);  the values of ma used are identical to

those used in single energy System 4.  The resulting Rabs plot is shown in Figure 4.26

0.00

0.02

0.04

0.06

0.08

0.10

0.12

2 4 6 8 10

grid resolution

optimum

m
s
 = 15

m
s
 = 13

m
s
 = 11

m
s
 = 9

m
s
 = 7

m
s
 = 5

m
s
 = 3

12 14 16

R
a

b
s

Figure 4.26 Rabs results for dual energy system, with the number of detector arrays, ms, as a

parameter, plotted against reconstruction grid resolution n for the entire test suite of

52 regimes.  Results for optimal system are included for comparison.

The Rabs plot does not look very encouraging;  even though this dual energy system geometry

provides about 50% more raysum data than single energy System 1, its performance is

inferior.  There is a general increase in error level with increasing grid resolution, but with

quite erratic behaviour of the error curves as well:  As for the narrow fan single energy system

(System 4), the error curves exhibit “jumps” at the values of n for which the fan angular

interval changes abruptly.  The trend of improvement of the accuracy with increasing ms seen

for the single energy systems is only partly preserved.

Similar comments apply to the Evoid results shown in Figure 4.27;  the fluctuations are smaller

than for the pixel error curves, but the error level is higher than for the single energy systems

considered earlier.
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Figure 4.27 Evoid results for dual energy system, with the number of detector arrays, ms, as a

parameter, plotted against reconstruction grid resolution n for the entire test suite of

52 regimes.  Results for optimal system are included for comparison.

It may seem strange that this system, which provides exactly twice as many raysums as the

single energy narrow fan system (System 4), performs so poorly:  Except for the case of

ms = 3, for which the errors are similar to System 4, the performance is worse than for all

single energy systems.

However, the dual energy system differs from the single energy systems in several respects:

First, each fan (or view) does not cover the object in a symmetrical manner, see Figure 4.7.

Second, the ray spacing and width will not be uniform (for fans defined by source positions

S1 and S2).  Third, the spacing of views will not be uniform over the 2π interval:  The angular

distribution of the detector arrays are uniformly spaced, and hence the pair of views associated

with each array, but for the chosen ϕ, the spacing of the two views is such that the overall

view spacing is nonuniform.

Thus there are several factors present which may account for the somewhat disappointing

performance of the dual energy system.  It is of some interest to establish the cause for this

behaviour, and for this reason, we include the simulation of a system using exactly the same

source positions (view positions) as the dual energy system, but with fans covering the entire

cross section, i.e. using ma = 2n + 1 rays per view.  The ray width and spacing are uniform,

just as for single energy System 1, as is the source radius rs.  Note, however, that because of

to the nonuniform view spacing and the fact that twice as many views are used as for the

single energy systems, this geometry is impossible to implement as a fixed system.
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The Rabs and Evoid results for this dual energy “reference system” are shown in Figures 4.28

and 4.29, respectively.
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Figure 4.28 Rabs results for dual energy reference system, with the number of detector arrays,

ms, as a parameter, plotted against reconstruction grid resolution n for the entire test

suite of 52 regimes.  Results for optimal system are included for comparison.
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Figure 4.29 Evoid results for dual energy reference system, with the number of detector arrays,

ms, as a parameter, plotted against reconstruction grid resolution n for the entire test

suite of 52 regimes.  Results for optimal system are included for comparison.
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For both types of error estimators, the general n and ms dependence is very similar to the

corresponding results for single energy System 1;  furthermore, the overall accuracy is as

good as, or better than, System 1.  Thus, we may conclude that the nonuniform view spacing

is not the cause of the poor performance of our first dual energy system.

If we consider the other differences between the two dual energy systems, it seems

improbable that nonuniform ray spacing and ray width should have any strong effect on the

error level of the reconstruction image, because this nonuniformity is quite small for the rather

modest value of ϕ which have been used.

This leaves us with the incomplete, and asymmetric, coverage of the pipe cross section by the

fans of rays:  From the System 4 simulation results, we already know that limiting the angular

interval covered by the fans to 75% of what is required to cover the entire flow cross section,

does have a negative effect on the reconstruction accuracy.  The asymmetric coverage of the

flow cross section by the fans is probably responsible for the further increase of the errors,

along with added fluctuations of the error curves;  we base this assumption on the sensitivity

of the reconstruction error to fan angular interval variations observed for System 4.

From the above discussion, we conclude that dual energy systems does not seem to offer any

particular advantages compared to single energy systems.  Although we have not investigated

the effect of varying the parameters ϕ and rd, we suspect that this will not result in marked

improvement of the performance.  There are two reasons for this:  First, while the error level

will decrease if the fan angular interval is increased, it is seen from Figure 4.7 that this

requires a smaller source spacing angle ϕ.  However, by doing this, one loses the advantage

of using a dual energy system in the first place, since the raysum information gathered by the

two fans associated with each detector array will not be very different.

The second reason is that the System 4 simulations, and also the dual energy system

simulations, indicate a strong sensitivity of the errors to variations of the fan angular interval.

Therefore, we have reason to believe that dual energy systems may not be too reliable, in the

sense that they would suffer from strong regime-ray intersection pattern sensitivity.

4 . 2 . 3 . Comparison of results for nonrotating systems

We have now established what performance which can be expected from some types of single

and dual source energy fixed measurement systems for γ-ray flow imaging.  It seems clear that

a single energy system using as wide fans of rays as possible is the best choice of system.

For System 1, with n = 8, the average pixel error decreases from 4% to 1% of full scale as the

number of views is increased from 3 to 15;  also, the performance for the higher values of ms

closely approaches that of the optimal system.  For System 4, the corresponding Rabs values
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are about twice the System 1 values.  If we consider the void fraction estimate precision, we

find that for n = 8, Evoid is lower than 0.6%  of full scale for System 1 and lower than 1.5%

for System 4.  In any event, this means that very respectable reconstruction precision is

possible using our nonrotating single energy systems.

Although a triple energy system is a simple extension to the dual energy geometry, we have

not found it worthwhile to simulate such a system, because of the poor results for the dual

energy system.  Adding the extra source in position S0 is in fact the same as adding single

energy System 4 to the dual energy system;  while the performance certainly would improve

compared to the dual energy system, such a solution would not be very effective compared to

a single energy system, even if the number of detectors would be lowered.  Also, as normal

collimators cannot be used in a multienergy system, it is not clear if it is possible to measure

raysums accurately, due to the effect of scattered radiation (see Section 4.1.3).

When we consider the question of selecting the number of views and number of rays per view

for a nonrotating system, it is necessary to take raysum measurement errors into account, to

determine the overall performance of the system:  The main contributions to this error are

statistical fluctuations in the number of detected photons, finite beam width effects, and

buildup of scattered radiation, all of which are dependent on the system geometry.  The

analysis of these errors is the topic of the next chapter.
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5 . Principle and accuracy of raysum measurement

5.1.     Introduction

In a γ-ray imaging system, the raysums needed for image reconstruction are found using

densitometry techniques, which were described in general terms in Chapter 2.  We will now

describe more specifically how these techniques are applied to flow imaging raysum

measurement, and then we proceed to discuss the factors influencing the accuracy of the

measurements;  this will  serve as the basis for the selection of detectors and isotopes.  In the

above analysis, it turns out that it is necessary to know the photopeak and total efficiencies for

the detectors used;  for this purpose, we have developed the Monte Carlo detector simulator

DSIM, which will also be described in this chapter.

5.2.     Raysum measurement for flow imaging

The geometry for pipeflow raysum, or chordal density measurement, is shown schematically

in Figure 5.1, for the case of an infinitesimally narrow photon beam.

Io

I

Pipewall: 
µ = µpFlow:

 µ = µi(s)
along ray

D
d

s = 0

di

dp
2

dp
2

r

s

Figure 5.1 Measurement of pipeflow raysums, or chordal densities, for CT reconstruction of cross

sectional density distribution image.  The measurements are taken in a plane

perpendicular to the pipe axis.

First, we define I0 as the effective number of monochromatic photons per unit time registered

by a detector without the absorber (i.e. the pipe) between the source and detector.  This
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quantity is determined by the source activity S0, the fraction of solid angle (Ωd/4π) subtended

at the source by the detector, and the photopeak (or full energy) detection efficiency εp:

I0 = S0ε p

Ωd

4π
= S0ε p

Ad

4π rds
2

(5.1)

The fraction of solid angle may be expressed as the ratio of the detector front face area Ad to

the surface area of a sphere with radius equal to the source-detector distance rds, provided that

the source-detector distance is not too small.  We have used the photopeak efficiency rather

than the total detection efficiency, because the presence of scattered radiation in a multisource

system mean that only full energy detector events can be accepted if the attenuation formula

(eqns. 2.64 and 2.74) is to be valid.

If it is assumed that no attenuation occurs outside the pipe, the detected full energy intensity I

with the pipe in place between the source and detector is given by (see Figure 5.1)

I = I0 exp − µ(s)ds
0

d p +di

∫ )
 = I0 exp(−µ pdp )exp − µ i (s)ds

dp
2

dp
2 +di

∫










 (5.2)

where we have used:

µ(s) =

µ p ; 0 ≤ s < d p

2

µ i (s) ;
d p

2 ≤ s ≤ d p

2 + di

µ p ;
d p

2 + di < s ≤ dp + di










(5.3)

We also note that the quantities dp and di are functions of the normal distance r from the pipe

centre to the ray:

di (r) = d 2 − 4r2

dp (r) = D2 − 4r2 − d 2 − 4r2






− d

2 ≤ r ≤ d
2

(5.4)

We now define the ideal normalized average raysum  ρN as

ρN = ρi

ρ f

= 1
ρ f

1
di

ρi (s)ds
1
2 d p

1
2 d p +di

∫












(5.5)

where ρi(s) denotes the flow density along the ray (see Figure 5.1), and ρf is the density of

the heaviest fluid component.  Using eq 2.70, we may write
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ρN = µ i

µ f

= 1
µ f

1
di

µ i (s)ds
1
2 d p

1
2 d p +di

∫












(5.6)

which is a good approximation for multicomponent flow under certain restrictions of the

photon energy E  and the atomic number Z of the flowing media, see Section 2.6.1.

Furthermore, eq 5.6 is exact for all E and Z in the case of two-component gas-fluid flow,

since it is safe to assume that no attenuation occurs in the gas due to its low density.

By combining eqns 5.2 and 5.6, we get the following expression for the normalized raysum

ρN:

ρN = 1
µ f di

ln
I0

I




 − µ pdp







(5.7)

Hence, it is possible to find the normalized raysum from an attenuation measurement, since di,

dp, µf and µp are known.  However, the accuracy of these quantities will of course influence

the accuracy of the calculated ρN, and it is therefore desirable to avoid having to know them

explicitly.  This may be accomplished by calculating the normalized raysum relative to suitable

calibration measurements [6][7, pp. 23-25];  which is done as follows:

If it is assumed that no attenuation occurs in the gas, the detected intensity of the transmitted

beam for a gas-filled, or “empty” pipe is equal to:

IE = I0 exp(−µ pdp ) (5.8)

Similarly, if the pipe is filled with the heaviest fluid phase, the detected intensity is given by

IF = I0 exp(−µ pdp − µ f di ) (5.9)

where µf is the attenuation coefficient of this phase.  In other situations, i.e. between these

two extremes, the detected intensity is given by

I = I0 exp(−µ pdp − ρNµ f di ) (5.10)

which is an approximation for multicomponent flow and is exact for two-component gas-fluid

flow, see above.  We now define the measured normalized raysum p as follows:

p =
ln IE

I






ln IE
IF







= ρN (5.11)
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We see that p is equal to ρN (within the approximations in eqns 5.6 and 5.10) provided that

the conditions for the attenuation formula are fulfilled, i.e. as long as the photon beam may be

regarded as monochromatic and infinitesimally narrow.  Our reason for distinguishing

between p and ρN is the fact that these assumptions have a varying degree of validity in

practice, so an error will invariably be committed when estimating ρN by p.

5 . 2 . 1 . Statistical fluctuation uncertainty and choice of γ-isotope

If the measurement time for IE and IF is much longer than that of I, only statistical fluctuations

of the latter contribute significantly to the uncertainty in p, and we may write (compare eq

2.77):

σ p =
exp 1

2 (µ pdp + ρNµ f di )[ ]
µ f di I0τ

(5.12)

The standard deviation of p depends on the density;  for a given set of values of the other

parameters, it is seen that minimum and maximum σp occurs for ρ = 0 and ρ = 1,

respectively.  Thus the worst case standard deviation, with respect to the ρ dependence, is

given by

σ p( )
max

=
exp 1

2 (µ pdp + µ f di )[ ]
µ f di I0τ

(5.13)

corresponding to a pipe filled with the heaviest fluid component.  Note that the ratio between

the maximum and minimum σp is given by

σ p( )
max

σ p( )
min

= exp 1
2 µ f di( ) (5.14)

which may be appreciable;  for example, the ratio is equal to 2  for µfdi = ln(2).

We will use eq 5.13 as the basis for selection of the optimal isotope, i.e. the one that

minimizes the statistical fluctuation uncertainty in the measured raysums.  Because of the large

number of parameters in this equation, it is necessary to introduce some simplifications:

First, we note that the normal pipe material used is steel, so µp equals µFe;  furthermore, the

heaviest (most dense) fluid component encountered is water, i.e. µf = µWater. We will assume

the use of these media in all subsequent calculations.

Next, we assume that the pipewall thickness is proportional to the inner diameter of the pipe:
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dp (0) = kdi (0) ⇔ D − d = kd ⇔ D = d(1 + k) (5.15)

A typical value for the proportionality constant k could be 1/6, we shall use 1/4 as well, to

show the effect of varying (relative) pipewall thickness.  Eq 5.15 applies directly to a

centerline ray (r = 0), but for other rays we define a modified proportionality constant between

dp and di:

dp (r) = ′k di (r) ⇒ ′k = d 2 (1 + k)2 − 4r2

d 2 − 4r2 − 1
(5.16)

which reduces to k for r = 0.  Using this, we rewrite eq 5.13 as follows:

σ p (r)( )
max

=
exp 1

2 di (r) ′k (r)µ p + µ f( )[ ]
µ f di (r) I0τ

(5.17)

For a given pair of attenuation coefficients (i.e. for a given photon energy), we find the value

of di(r) for which the error is at minimum by first differentiating eq 5.17

∂
∂di (r)

σ p( )
max

= 1
2 ′k (r)µ p + µ f( ) − 1

di (r)







σ p( )
max

(5.18)

and then solving the equation:

∂
∂di (r)

σ p( )
max

= 0 ⇔ di (r)( )opt
= 2

′k (r)µ p + µ f

(5.19)

This yields the optimal di for some value of r, but since we are really interested in the

corresponding value of the inner pipe diameter, we combine eq 5.15 with the expressions for

di(r) and k´(r) to find d, i.e. we must solve:

d 2 − 4r2 = 2

µ p

d 2 (1 + k)2 − 4r2

d 2 − 4r2 − 1






+ µ f

(5.20)

To simplify matters a little, we define rrel as the normal distance from the pipe centre to the

ray, normalized to the inner pipe radius (i.e. rrel ∈  [0,1]):

rrel = 2r

d
⇔ r = rreld

2
(5.21)

Substituting this in eq 5.20 and solving for d yields the optimal inner pipe diameter for a given

pair of fluid and pipewall attenuation coefficients:
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dopt = 2

µ p (1 + k)2 − rrel
2 + (µ f − µ p ) 1 − rrel

2
(5.22)

The actual minimum value of the worst case error (eq. 5.17) is then equal to:

σ p(r)( )
max

= e

2 I0τ
1 +

µ p

µ f

(1 + k)2 − rrel
2

1 − rrel
2 − 1



















= e

2 I0τ
1 + ′k (rrel )

µ p

µ f













(5.23)

From eq 5.17 we see that the error increases towards infinity as r approaches d/2, because the

di(r) term in the denominator approaches zero.  This means that measurement of raysums very

close to the inner pipewall should be avoided, i.e. rays for which r is close to d/2, or rrel is

close to unity.

We will now consider the choice of optimal isotope (i.e. photon energy) for a given

application, with respect to the statistical fluctuation uncertainty:  Since the number of available

isotopes are limited by the requirement that they should also have a reasonable long lifetime, it

is more convenient to do the selection process in “reverse order”, i.e. to select a few isotopes

with sufficient lifetime and with different photon energies, and then find the range of pipe

dimensions for which each isotope is suitable.  For this purpose, we have chosen the isotopes
133Ba, 137Cs and 22Na, whose most important characteristics are shown in Table 5.1 below.

Table 5.1 Some characteristics of the isotopes which have been considered used for raysum
measurement:  Energy Eγ of the main photon emission, the halflife t1/2, and the

linear attenuation coefficients for water and steel.

Isotope

133Ba 137Cs 22Na

Eγ  [keV] 356 661.6 1275

t1/2  [years] 10.8 30.2 2.6

µf = µWater [cm-1] 0.11 0.086 0.067

µp = µFe [cm-1] 0.77 0.57 0.42

We start our investigation of the suitability of these isotopes by taking a closer look at the

variation of the worst-case error with the normal distance to the ray:  To get a feel for this

dependence, we plot eq 5.17 as function of the pipe diameter d, and with rrel = 2r/d as a
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parameter, for 137Cs and k = 1/6.  The plot is shown in Figure 5.2;  we have used

I0τ = 10000, which have been chosen more for convenience than for any other reason.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30

r
rel 

 = 0

d [cm]

r
rel 

 = 1/2

r
rel 

 = 3/4

r
rel 

 = 7/8

r
rel 

 = 15/16

(σ
p
) m

a
x

Figure 5.2 Worst-case statistical fluctuation error (σp)max (eq 5.17) versus pipe diameter d for
137Cs, with rrel = 2r/d as a parameter, and with I0τ = 10000.

It is seen that the uncertainty increases very sharply as rrel approaches 1, or as r approaches

d/2.  Also, the increase is more marked for higher values of d, since in that case, the relative

influence of the k’(r)µp term in eq 5.17 is greater due to the exponential function.  The results

for other choices of k and the other isotopes are similar, but larger values of µp (i.e. lower

photon energy) and k cause a more rapid increase of the uncertainty with increasing rrel.

In any event, it seems reasonable to require rrel to be contained within the interval (0, 3/4);  this

will keep the error variation within a factor 2 compared to the error for a centerline ray ( i.e.

for rrel = 0) for a wide range of d.  This corresponds to restricting the value of r to the interval

(0,3d/8);  we shall use this assumption for the remainder of this work, and use rrel = 3/4 for all

uncertainty calculations.

The next point to consider, is how the error-versus-pipe-diameter curves depend on the

photon energy used, i.e. the choice of isotope.  From equation 5.22 it is seen that the optimum

value of the pipe diameter increases with increasing energy, since the attenuation coefficients

are decreasing functions of energy in this range.  This trend is apparent from Figures 5.3 and

5.4, where the worst case error (σp)max is plotted against pipe diameter d for the three

isotopes of Table 5.1 (for rrel = 3/4), and for k = 1/6 and k = 1/4, respectively.
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Figure 5.3 Worst-case statistical fluctuation error (σp)max (eq 5.17) versus inner pipe diameter d,

for isotopes 133Ba, 137Cs and 22Na, where  rrel = 3/4 (r = 3d/8), k = 1/6, and with

I0τ = 10000.
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Figure 5.4 Worst-case statistical fluctuation error (σp)max (eq 5.17) versus inner pipe diameter d,

for isotopes 133Ba, 137Cs and 22Na, where  rrel = 3/4 (r = 3d/8), k = 1/4, and with

I0τ = 10000.

If we consider the expression for the actual value of (σp)max  at the optimum inner pipe

diameter, eq 5.23, we see that for a given pair of rrel and k, it is determined by the ratio of the

pipewall and fluid attenuation coefficients.  From Table 5.1 we see that this ratio gets slightly

smaller for higher energy, which means that the value of (σp)max  at dopt will also decrease

slightly with increasing energy.  This feature is also seen in the plots of Figures 5.3 and 5.4.
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Figures 5.3 and 5.4 may give the impression that it is best to use the highest energy isotope

available, since the curves for 22Na represent the lowest error levels for both choices of k for

all values of d except the smallest pipe diameters.  However, we have not taken into account

the fact that the detection efficiency εp depends on the photon energy in question, and because

εp enters in the expression for I0 (eq 5.1), this additional energy dependency also enters in the

expressions for the statistical fluctuation uncertainty in p (eqns 5.12, 5.13, 5.17 and 5.23).

Since σp is inversely proportional to the square root of the detected intensity I0, the same

dependency applies to σp and εp, and because the photopeak detection efficiency is a

decreasing function of photon energy in this range, the error level will increase with increasing

energy.  Clearly, high-density, high-Z detectors should be employed, as this maximizes the

detection efficiency;  from our discussion of detectors in Chapter 2, it is obvious that some

kind of scintillation detector should be used, especially when countrate capability is taken into

account.  We will now give an example of the effect of the energy dependence of (σp)max.:

Using photopeak efficiency values εp for a standard 3” × 3” (height × diameter) NaI

scintillation detector, we have plotted (σp)max times εp-1/2 in Figure 5.5, with the same

parameters as in Figure 5.3 (i.e. k = 1/6), except that we have used I0τ/εp = 10000 to facilitate

the comparison;  this corresponds to keeping the number of photons impinging on the detector

front face constant for the different energies (isotopes).
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Figure 5.5 Worst-case statistical fluctuation error (σp)max (eq 5.17) versus inner pipe diameter d,

for isotopes 133Ba, 137Cs and 22Na, where  rrel = 3/4 (r = 3d/8), k = 1/6, but with the

effect of the detection efficiency included:  Values from Figure 5.3 are multiplied with

εp
-1/2 (see eq 5.1);  furthermore, we have used I0τ/εp = 10000.
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The photofraction and total detection efficiency (interaction ratio) for this detector type have

been calculated by Rogers [24] for a variety of energies and source geometries;  we have

determined the values for the desired photon energies by interpolation, and then calculated the

photopeak efficiency as the product of the photofraction and the interaction ratio:  The εp

values used for preparing Figure 5.5 are 0.80 for Eγ = 356 keV, 0.52 for Eγ = 661.6 keV

and 0.31 for Eγ = 1275 keV.

It is seen that the inclusion of the detection efficiency alters the picture considerably;  apart

from the striking change in the relative performance of the three isotopes, we note an increase

in the overall error level compared to Figure 5.3, which represented the case of a detection

efficiency equal to one.  This demonstrates the importance of maximizing the detection

efficiency;  there is certainly potential for improvement of the statistical fluctuation uncertainty,

especially for higher pipe dimensions.

In addition to being a function of energy, the photopeak detection efficiency also depends

strongly on the shape and size of the detector, and also on the source geometry;  i.e. if the

incident radiation is a narrow beam, a broad parallel beam, or if the detector is illuminated by

an isotropic source at a certain distance.  Since the detector dimensions and the source-detector

distance depends on the reconstruction grid resolution n, the number of sources (views) ms

and also the pipe diameter, it is clear that photopeak efficiencies need to be calculated for each

case in order to determine the level of statistical fluctuation uncertainty for a given system

geometry.  We will return to these topics in a later section.

5 . 2 . 2 . Detector countrate

While the level of statistical fluctuation uncertainty is clearly the most important parameter to

consider when selecting the isotope for a given system, it is a fact that most types of detectors

exhibit countrate capability limitations;  because of this, we will take a brief look at what

maximum detector countrates to expect when measuring raysums.

Obviously, the maximum countrate occurs when the pipe is empty;  furthermore, since the

pathlength in the pipewall, di(r), is at minimum for the centerline ray, the maximum countrate

Imax will occur for r = 0 (see eq 5.4, eq 5.10 and eq 5.15):

Imax = I0 exp(−kdµ p ) (5.24)

Equation 5.17 relates the detected intensity without absorber, I0, to the worst case statistical

fluctuation uncertainty (σp)max;  by specifying the maximum acceptable statistical uncertainty

σp in the normalized raysum measurement, we may find the required I0 for a given set of µp,

µf, k and r:



110

I0 =
exp di (r) ′k (r)µ p + µ f[ ]( )

τ µ f di (r)( )2
(σ p )max( )2

(5.25)

Combining eqns. 5.24 and 5.25 yields the following expression for the maximum countrate:

Imax =
exp di (r) ′k (r)µ p + µ f[ ] − kdµ p( )

τ µ f di (r)( )2
(σ p )max( )2

(5.26)

In the previous section, we considered the relative levels of uncertainty for our selected trio of

isotopes, for the case of rrel = 3/4 and k = 1/6:  To study the relative countrate levels for these

isotopes, we have plotted eq 5.26 against pipe diameter d in Figure 5.6, for the same choice of

values of rrel and k, and with the product τ(σp)2 equal to one.
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Figure 5.6 Maximum photopeak detector countrate Imax for the isotopes 133Ba, 137Cs and 22Na,

for the case of rrel = 3/4, k = 1/6, and with the product τ(σp)2 equal to one.

It is seen that the countrate curves exhibit a pipe diameter dependence similar to that of the

uncertainty curves:  For low values of d, the beam attenuation is small, and a high countrate is

needed to keep the uncertainty at the required level, since the detected intensities for a full and

an empty pipe are very close;  for large pipe diameters, only a small fraction of the photons are

transmitted, which again cause a high Imax requirement for a given level of uncertainty.  This

also explains the differences between the three isotopes;  low photon energy means stronger

attenuation, so 133Ba is the better choice for small d, while higher energy means less

attenuation, hence 22Na is best for larger pipe diameters.

Note that Imax represents the rate of “useful” photons, i.e. those resulting in full energy peak

counts in the detector.  However, the total number of interacting photons includes events not
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contributing to the full energy peak as well, that is, Compton, fluorescence or annihilation

radiation photon escape events.  Therefore, the total countrate is found by dividing Imax by the

photofraction ε0, in order to account for all types of interactions.

As we mentioned in the previous section, Rogers [24] has calculated the photofractions for a

3” × 3” NaI detector at several photon energies (for the case of broad parallel beam);

interpolation provides the following values for the energies we consider:  The photofraction ε0

equals 0.82 at 356 keV, 0.59 at 661.6 keV and 0.41 at 356 keV.  In Figure 5.7, we have

plotted the total countrate Imax/ε0 against pipe diameter d;  the values of the other parameters

are the same as for the photopeak countrate plot in Figure 5.6.
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Figure 5.7 Maximum total detector countrate Imax/ε0 for the isotopes 133Ba, 137Cs and 22Na, for

the case of rrel = 3/4, k = 1/6, and with the product τ (σp)2 equal to one.  The

photofraction values used are for a 3˝ × 3˝ NaI detector, see text.

It is seen from Figure 5.7 that the countrate increase with decreasing photofraction is quite

dramatic, so it is clearly desirable to maximize the photofraction.  This is accomplished by

maximizing the photopeak efficiency;  the interaction ratio is normally not much less than unity

for the detector thicknesses used.

It should be remembered that the total countrate referred to above, represents the response to

directly transmitted source photons only, while in practice, the detector will also register a

certain amount of externally scattered radiation;  however, this contribution is difficult to

estimate without a photon transport model for the entire imaging system.
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Finally, we note that in order to obtain an accurate estimate of the total countrate for a given

system geometry, it is again necessary to calculate photopeak and total detection efficiencies

for the detectors in question.

5 . 2 . 3 . Other sources of raysum measurement inaccuracy

In the above discussion we have assumed that the photon beam is infinitesimally narrow and

monochromatic.  However, in practice the beams will have finite width, and there will be

scattered radiation present:  From the discussion in Chapter 2, we know that these effects may

introduce errors in the measurement of linear attenuation coefficients;  hence, there will also be

problems when measuring raysums.  We will now take a closer look at these effects.

Finite beam width effects

In Section 2.6.2, we mentioned that nonuniform linear coefficient distribution across the beam

at a given depth within the absorber volume may cause an error when measuring the average

linear attenuation coefficient, since the attenuation formula is strictly not valid under non-

narrow-beam conditions.

Obviously, the same applies to the raysum measurement technique considered in this chapter,

and since nonuniform beam density distribution is almost the rule rather than the exception for

two-phase flow, it is necessary to study the possible error introduced through the finite beam

width effect.

We note in particular that since finite beam width raysum measurement errors are inherently

regime dependent, it is important to have knowledge of their influence, since they cannot be

eliminated directly by calibration measurements.

For the sake of simplicity, we shall assume that the raysum measurement volume has the

shape of a rectangular parallelepiped, of height d and width w, see Figure 5.8;  furthermore, it

is assumed that any density distribution nonuniformity across the beam, occurs in the x

direction only.  The incident beam is assumed to be broad and parallel, having intensity I0,

while I denotes the transmitted intensity;  also, we will ignore the pipewall attenuation, so IE =

I0 and IF = I0exp(-µfd).  Next, we will assume that no attenuation occurs in the gas phase,

while the attenuation coefficient of the fluid is denoted by µf.  Finally, we useρ N to denote

the average normalized density within the measurement volume.
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Figure 5.8 Geometries for discussion of the finite beam width effect, for gas-fluid density

distribution and a broad parallel beam:  a) represents the case with no error, b) represents

a general case of nonuniform density across beam, and c) represents a worst case

situation for finite beam width error.  See text for further explanation.

Since the incident photon beam is parallel, the general expression for the transmitted intensity I

is as follows:

I = I0

1
w

exp −µ f d f (x)( )
0

w

∫ dx








(5.27)

where df is the effective pathlength in the fluid phase.  For the case shown in Figure 5.8a, i.e.

when there is an uniform distribution of the normalized density across the beam, the

transmitted intensity is given by:

I = I0

1
w

exp −µ f ρNd( )
0

w

∫ dx








= I0 exp −µ f ρNd( ) (5.28)

Noticing the similarity of eq 5.28 to 5.10, it is no surprise that the insertion of the above

expressions for IE, IF and I in the expression for the measured (narrow-beam) normalized

raysum p, eq 5.11, gives the following result:

p =
ln IE

I






ln IE
IF







= ρN (5.29)

We see that when the density is uniform across the beam, eq 5.11 produces the correct result

even for broad parallel beam conditions.
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We now turn our attention to the case depicted in Figure 5.8b, where the average normalized

densityρ N is equal to that of Figure 5.8a, but in which there is a nonuniformity across the

beam, expressed by the function ∆ρN(x);  this represents the variation of the normalized

density around its average value ρN, and we have:

∆ρN (x)dx
0

w

∫ = 0 (5.30)

Using eq 5.27, we find the following expression for the transmitted intensity

  

I = I0

1
w

exp −µ f d f ρN + ∆ρN (x)[ ]( )
0

w

∫ dx








c

I = I0 exp −µ f dρN( ) 1
w

exp −µ f d∆ρN (x)( )
0

w

∫ dx








(5.31)

Comparing this with eq 5.28, we see that the first part is equal to the expression for the

transmitted intensity in the uniform case (Figure 5.8a), while the integral term is a

“modifying” factor accounting for the density nonuniformity.

If ∆ρN is identically zero for all x, the modifying factor is equal to one, as one would expect;

however, if there is a nonuniformity, the factor will be larger than unity, i.e. a higher intensity

is transmitted.  The reason for this is that any positive variation ∆ρN of the density, with

respect to the averageρ N, is accompanied by a similar negative variation, see eq 5.30.  A

positive ∆ρN means a negative argument for the exponential function, i.e. the contribution to

the modifying factor integral is less than one;  similarly, a negative ∆ρN  gives a contribution

greater than one to the integral.  Now, since |eC - 1| > |1 - e-C| for positive C, we see that the

total contribution of terms > 1 is greater than the sum of contributions of terms < 1, so the

value of the modifying factor will be greater than one.

The fact that a nonuniform density distribution across the beam implies an increase in the

transmitted intensity compared to the uniform case (which should also be evident from a

consideration of the physics involved), means that when there is a density nonuniformity, the

statistical raysum uncertainty σp is less than the uncertainty for the uniform case.

By combining eq 5.31 and 5.11, we get the following expression for the measured normalized

raysum p:

p = ρN − 1
µ f d







ln

1
w

exp −µ f d∆ρN (x)( )
0

w

∫ dx








(5.32)
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In our discussion of eq 5.31, it was established that the modifying factor is > 1, so its natural

logarithm is > 0, and the raysum error is seen to be negative in all cases, which is as expected,

since a density nonuniformity causes the transmitted intensity to be higher than in the uniform

case, for which the raysum formula eq 5.11 was derived.

From the above discussion, it follows that the maximum change in the transmitted intensity,

and hence the maximum raysum error, occurs for the case of maximum variation of the

nonuniformity function ∆ρN(x).  This corresponds to an abrupt change in the normalized

density as shown in Figure 5.8c;  the average densityρ N is the same as for the two previous

cases, and the nonuniformity function is defined by:

∆ρN (x) =
1 − ρN ,   0 ≤ x ≤ wρN

ρN ,   wρN < x ≤ w





(5.33)

The transmitted intensity is then given by (see eq 5.31):

  

I = I0 exp −µ f dρN( ) exp µ f dρN( ) ρN exp(−µ f d) − 1( ) + 1[ ]{ }
c

I = I0 ρN exp(−µ f d) − 1( ) + 1[ ] (5.34)

which may easily be found directly from Figure 5.8c;  also, the expression agrees with

Hellesø’s result for the same case [7, p. 25].  If we consider the raysum p, we find that it is

given by:

p = ρN + ∆p (5.35)

where ∆p is the (worst case) finite beam width raysum error:

  

p = −
ln exp µ f dρN( ) ρN exp(−µ f d) − 1( ) + 1[ ]{ }

µ f d

c

∆p = −
ln ρN exp(−µ f d) − 1( ) + 1{ }

µ f d
− ρN (5.36)

and the raysum p is simply:

p = −
ln ρN exp(−µ f d) − 1( ) + 1{ }

µ f d

(5.37)
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Note that while the worst case raysum error depends on the thickness of the measurement

volume, the attenuation coefficient of the fluid, and the average normalized density, it is

independent of the beam width w.

A look at eq 5.35 reveals that the raysum error is zero forρ N = 0 andρ N = 1, to study the

behaviour of the error for intermediate density values, we plot the ∆p expression (eq 5.35)

againstρ N in Figure 5.9, for the case of d = 10.  By using µf values corresponding to our

usual trio of isotopes 133Ba, 137Cs and 22Na, see Table 5.1, the energy dependence of the

error is also demonstrated.
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Figure 5.9 Finite beam with raysum error ∆p versus average beam densityρ N, for the isotopes
133Ba, 137Cs and 22Na, and with d = 10 cm.

We see that the raysum error may be considerable, for 133Ba the maximum error is nearly

15% of full scale, while the error is smaller for the higher energies, which have smaller

attenuation coefficients, see Table 5.1 and eq 5.36.  Differentiating the absolute value of eq

5.36 with respect toρ N, we get

∂ ∆p

∂ρN

= 1 +
exp(−µ f d) − 1

µ f dρN exp(−µ f d) − 1( ) + 1
(5.38)

i.e. the absolute raysum error is at maximum when

∂ ∆p

∂ρN

= 0 ⇔ ρN =
µ f d − 1 − exp(−µ f d)( )
µ f d 1 − exp(−µ f d)( )

(5.39)

so the actual maximum value of |∆p| is given by:
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∆p
max

= 1
µ f d

ln
1 − exp(−µ f d)

µ f d







+

µ f d

1 − exp(−µ f d)
− 1













(5.40)

Equation 5.40 is plotted against measurement volume thickness d in Figure 5.10, for the

isotopes 133Ba, 137Cs and 22Na.
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Figure 5.10 Maximum absolute finite beam width raysum error |∆p| versus pipe diameter d for the

isotopes 133Ba, 137Cs and 22Na (eq 5.40).

We see that the magnitude of the worst case raysum error increases steadily with increasing d

and µf, which means that the finite beam width error is minimized by using the highest

possible photon energy.

The above considerations are based on the assumptions that the measurement volume has a

rectangular parallelepiped shape, and that the incident beam is parallel, which corresponds to

infinite source-absorber distance.  In practice, however, the raysum measurement volume is

defined by the intersection of the cylinder shaped pipe interior, and the beam volume, which is

pyramid shaped, assuming an isotropic source and a rectangular detector front face.  Thus the

situation is quite different from the idealized geometry used above.

However, if the source distance is sufficiently large compared to the beam width, and if the

(worst case) density nonuniformity function is such that the source is positioned on a straight

line along the discontinuity, the parallelepiped geometry is an acceptable approximation to a

more realistic case.  Thus we may use eq 5.40 as an estimate for the worst case finite beam

width error for pipe flow raysum measurement as well.
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Since the effective measurement volume thickness decreases for rays not passing through the

pipe centre, it is seen that the maximum error occurs for a centerline ray, if possible effects of

the pipe curvature are ignored.  The latter may influence the finite beam width raysum error

when there is a nonuniformity of the density distribution across the beam, but nonuniform

pipewall pathlength does not introduce any error as long as the density distribution of the flow

medium is uniform across the beam.  The pathlength effect is believed to be insignificant for

the worst case (discontinuous nonuniformity) conditions, since the pathlength variation is

small for reasonable beam widths.

Although the error level predicted by eq 5.40 is quite dramatic, it should be remembered that it

represents the truly worst case to be encountered, and it is highly improbable that more than a

small fraction of the raysums measured in an imaging system should be affected by finite

beam width errors of such severity.  Hellesø [7, p. 29] suggests that such errors may be

compensated for by reconstructing a preliminary image from the “raw” raysum data,

correcting the appropriate raysums for finite beam width error, and using the corrected data for

a second - hopefully enhanced - reconstruction.

Since the worst case error is independent of the beam width, the error itself is not reduced by

using narrower beams, however, the fraction of affected raysum measurements would be

reduced.  However, the raysum error itself may be reduced if more than one detector is used

for measuring each raysum;  i.e. if the detector used is divided into several segments, each

measuring a “partial” raysum;  the raysum for the entire beam is then taken to be the average of

the partial raysums.

Provided that the photopeak efficiency of the detector segments is not seriously lowered

compared to an unsegmented detector, it turns out that the statistical uncertainty of this average

raysum is similar to the uncertainty for the single detector case, since negative and positive

errors of different partial raysums tend to cancel each other out (the total solid angle subtended

by the detector at the source is unchanged).  Apart from the reduction of the finite beam width

raysum error, this arrangement has the added advantage that the countrate capability

requirement of the detectors is relaxed.

The effect of the finite beam width raysum error could be investigated by calculating the error

for a large number of system geometries and flow regimes, i.e. by a strategy similar to the one

used in Chapter 4 for estimating the reconstruction error for flow imaging systems.  The 3D

calculation of beam width error is complicated by the curvature of the pipe, so a numerical

technique must probably be used;  in fact, a simple Monte Carlo model, completely ignoring

tracking of scattered photons and annihilation quanta, may prove to be the easiest way to solve

this problem.
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Scattered radiation

Generally, the γ-densitometry technique used for raysum measurement, is based on the

assumption that the photon energy is within the range where Compton scattering is the

dominating interaction mechanism for the media in question.  Obviously, this means that there

will be a lot of scattered photons around, and the accuracy of raysum measurements will

suffer if too many of these are detected, since the basic attenuation formula is valid for

unscattered radiation only.  The amount of scattered photons present will generally depend on

the flow regime, so the raysum error caused by detection of scattered photons will be regime

dependent, and hence, it can not be eliminated by calibration.

In a single energy system, it is possible to use collimators to avoid the detection of most of the

Compton quanta generated by scattering of photons originating from the source directly

opposite an detector array.  However, in a multisource system, there is the possibility of

detecting scattered photons whose “parent” photons originate in other sources;  this should be

evident from a glance at Figure 4.2.

Furthermore, it is clear that this problem will get more serious as the number of sources

increases, since the general intensity of scattered photons will increase, and the minimum

scattering angle required for a photon to hit the “wrong” array will decrease.

If we consider single scattered photons only, and assume that the interaction takes place in the

centre of the pipe, the mean deflection angle required to direct the photon into the middle of an

array next to the one opposite the source, is simply:

θ = 2π
ms

(5.41)

By using the Compton energy-angle relationship, eq 2.17, we may relate the corresponding

relative energy shift to the number of sources used in the system, ms, and the source energy

used, E (see also Figure 2.17):

′E

E
= 1

1 + E
m0c2 1 − cos 2π

ms
( )[ ]

(5.42)

This expression is plotted against ms in Figure 5.11, for the sources 133Ba, 137Cs and 22Na;

note that the scattering angle used only represents some sort of average value.  It is seen that

the energy shift increases with increasing source energy, but decreases as the number of views

increase;  since the energy shift indicate the detector energy resolution required, we see in that

systems using low source energy and many views, detectors of fairly good resolution would

be needed.
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When fewer views and higher energy isotopes are used, the resolution requirement is more

moderate;  however, it should be kept in mind that the angular distribution of the Compton

scattered photons is more forward peaked for higher source energies, which would influence

the intensity of scattered photons.
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Figure 5.11 Average relative Compton energy shift E´/E versus the number of sources (views) ms,

for the isotopes 133Ba, 137Cs and 22Na.

The considerations on which the plot in Figure 5.11 is based, do not take into account the

actual intensity of scattered photons which impinges on the detector;  therefore, it is quite

possible that it is unnecessary to select a detector whose energy resolution is adequate for

rejection of all the scattered radiation.  Also, it may be possible to compensate the measured

raysums for errors due to scattered radiation, by calculating corrections from a preliminary

image reconstructed from raw raysum data.  In any event, it is clear that a mathematical model

of the photon transport in the imaging system would be required for analyzing the effect of

scattered radiation.
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5.3.     Selection of detector type;  detection efficiency calculations

In Section 5.2, we saw that the statistical raysum uncertainty depends on the photopeak

detection efficiency, and that the total detector countrate needed for a given level of uncertainty

depends on the photofraction of the detector.  Since the uncertainty is inversely proportional to

the square root of the photopeak efficiency, and the countrate requirement is inversely

proportional to the detector photofraction, it is clearly important to select detectors of

maximum photopeak efficiency and photofraction, as this will minimize uncertainty and

countrate requirement.

In this section, we will first consider the choice of detector type and material;  then we proceed

to establish how detector size and shape are constrained by the choice of reconstruction

gridsize n (i.e. system spatial resolution ), number of views (sources) ms and pipe diameter d.

Because the detection efficiency depends on the detector shape and size, it is necessary to

compute photopeak efficiencies and photofractions for each set of system parameters, in order

to be able to compare uncertainty and countrate levels of different systems;  for this purpose,

we have developed a Monte Carlo simulation program for calculating detector efficiencies:

The underlying model for this simulator is described, along with a discussion of its accuracy,

and a comparison with the results of similar systems;  finally, we conclude this section by

calculating detector photofractions and photopeak efficiencies for a wide range of single

energy systems.

5 . 3 . 1 . Choice of detector material

Due to the requirement of high (photopeak) detection efficiency, it is obvious that a

scintillation detector should be used:  Even though a Ge(Li) detector offer efficiency

comparable to NaI, its use is ruled out due to the requirement of a bulky and complex cooling

system.  In addition, the countrate capability of a Ge detector is inferior to scintillation

detectors, because a large volume semiconductor detector exhibits charge collection times

much longer than the decay times of fast scintillators.  Other detector types, such as gas filled

detectors or room temperature semiconductor devices, do not possess adequate stopping

power for the photon energies in question.

When we consider the choice of scintillator material, we find that there is a broad range of

types available, a selection of some common scintillators is presented in Table 5.2 below.
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Table 5.2 Some characteristics of a selection of scintillation materials.  The table is based on

similar overview in [25];  the data are from [26], [27] and [28].

Material Property

Density [g/cm3] µtot @ 511keV [cm-1] Decay constant [ns] Light output [%]

Organic compound 1.05 0.095 2 - 20 3.0 (NE110)

NaI (Tl) 3.67 0.33 230 11.3

CsI (Tl) 4.51 0.54 1000 11.9

GSO (Ce:Gd2SiO5) 6.71 0.67 60 3.6

CWO (CdWO4) 7.90 0.86 5000 3.8

BGO (Bi4Ge3O12) 7.13 0.91 300 2.1

The ultra-fast but low density organic compound, or “plastic”, scintillator is included for

comparison only, as its stopping power is inadequate for our purposes.  The widely used NaI

is seen to be a scintillator of medium detection efficiency, its popularity is mainly due to its

excellent energy resolution, which is a consequence of the high light output1.  Its main

drawback is that, unlike the other materials listed, it is extremely hygroscopic, so it must be

hermetically enclosed at all times.  Nevertheless, NaI is chosen instead of CsI in most cases,

even if the latter has similar energy resolution and higher stopping power, because NaI offers

the best countrate capability;  the scintillation decay constant of CsI is more than four times

greater than that of NaI.

The remaining three scintillators, GSO, CWO and BGO are seen to have much lower light

output than NaI and CsI, and hence, lower energy resolution;  on the other hand, they offer

much improved detection efficiency.  Further, due to the high atomic number of their

constituents, the photofraction will also be higher.  GSO is an extremely fast scintillator, but

its stopping power does not quite rival that of CWO or BGO.  The usefulness of CWO is

1The light output, which is the fraction of the absorbed gamma energy that is released as scintillation light

energy, is also called scintillation efficiency, conversion efficiency or quantum efficiency.  In general, the

higher the efficiency, the better is the energy resolution, since this minimizes the relative linewidth

contribution from statistical fluctuations in the scintillation process and the readout mechanism;  also, the

relative linewidth contribution from electronic noise in the readout circuit is minimized.
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limited in pulse-mode readout because of the very slow scintillation decay, meaning that its

countrate capability is poor compared to other scintillators;  however, it may be attractive for

use in current-mode readout applications.

This leaves us with BGO, which offers superior detection efficiency compared to other

scintillators, while its scintillation decay constant, and hence its countrate capability, is similar

to that of NaI.  The only drawback of BGO is its relatively low light output, which implies

that the energy resolution of this scintillator will be somewhat poorer than e.g. NaI or CsI:

With photomultiplier tube readout, a 3” × 3” NaI detector typically has an energy resolution of

7 % or better at 661.6 keV [26]; the resolution of BGO detectors at the same energy have been

measured to 12.4% for a 6 × 20 × 30 mm device [27], and to 9.1% for a 10 × 10 × 10 mm

detector [29].

Note, however, that the relative energy resolution performance of these scintillators changes in

favour of NaI (and CsI) for photodiode readout, since in that case, the linewidth is largely

determined by diode and readout circuit electronic noise alone [28][25, pp 73-78], while for

PMT readout, the linewidth is determined mainly by quantum fluctuations in the scintillation

process and the PMT electron generation and multiplication process [18, pp. 153-154].

Nevertheless, it is felt that BGO is the better choice, because of its great advantage in detection

efficiency compared to e.g. NaI.
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Figure 5.12 Photopeak detection efficiency εp (interaction ratio × photofraction) versus photon

energy E, for 3” × 3” (height × diameter) NaI and BGO detectors, with an isotropic

source at 10 cm distance from the detector front face;  efficiency data are from [24].

This is clearly seen from Figure 5.12, where we have plotted the photopeak detection

efficiency εp versus photon energy E for bare, uncased 3” × 3” NaI and BGO detectors, for
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the case of an isotropic source at 10 cm distance from the detector;  the efficiencies have been

calculated by Rogers [24].

At 1 MeV photon energy, the photopeak efficiency of the BGO detector is 2.4 times that of the

NaI detector, which corresponds to a 50% improvement of the statistical fluctuation

uncertainty.  Noting that we used NaI photopeak efficiency and photofraction values when

considering the effect of detection efficiency on raysum uncertainty and countrate requirement

in Section 5.2, we realize that the use of BGO instead of NaI would improve these figures

significantly.

Note that neither size nor shape of the detectors in the example above is not necessarily

realistic;  as we shall see shortly, the detectors used in an imaging system will not be cylinder-

shaped, and the detector size could be much smaller than 3” × 3”.  The latter fact is another

reason for choosing BGO over scintillators having smaller detection efficiency, because the

(photopeak) efficiency advantage is even more pronounced for smaller devices.

5 . 3 . 2 . Detector shape and size

The typical shape for a scintillation spectroscopy detector is a right cylinder, as shown in

Figure 5.13a below.  In an imaging system, however, it is important to select a detector shape

which offers the best possible utilization of the available space, in order to maximize the

detection efficiency.  Three factors relate detection efficiency to detector size and shape:

The first is the geometrical aspect;  an increase of the detector front face area increases the

number of photons impinging on the detector for an isotropic source at a given distance, since

the solid angle subtended by the detector at the source is increased.

The second is the detector interaction ratio;  at a given photon energy, this is determined by the

thickness of the detector, by the ratios of the detector front face width and length to the source-

detector distance, and by the shape of the detector.

The third factor is the detector volume, which influence the photopeak detection efficiency

through the fact that if Compton scattered photons are absorbed before they escape from the

detector, the number of full energy events in the detector spectrum will increase.

If we now consider the specific case of our flow imaging system, in which a number of

detectors are placed edge-to-edge in arrays, we see immediately that the detectors should have

rectangular shaped front surfaces.  The obvious choice of detector shape would then be the

rectangular parallelepiped, as shown in Figure 5.13b below.
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However, the detector arrays are arc-shaped, and the available space for each detector is

determined by the source-detector distance and by an angular interval equal to the ray spacing,

see Section 4.2.2;  this interval can only be fully utilized if wedge, or even truncated pyramid

shaped detectors are used, see Figure 5.13c.  The shape of a truncated pyramid detector is

seen to be defined by the source-detector distance (the source position defines the top vertex of

pyramid), the detector width and length, and the detector thickness.

This has two advantages compared to the parallelepiped detector shape:  Firstly, if a truncated

pyramid shape is used, the interaction ratio will be almost completely uniform, because the

effective detector thickness is then nearly constant, regardless of where a photon impinges on

the detector front face;  it is seen from Figure 5.13c that no (source) photons can hit the

truncated pyramid detector anywhere else than on its front surface.  Thus, the edge effects

associated with rectangular parallelepiped detectors are avoided.  Secondly, the detector

volume is increased, which increases the photopeak efficiency.
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Figure 5.13 Possible detector shapes:  a) Right cylinder of diameter dd and height hd. b) Rectangular

parallelepiped of width wd, length ld and height hd.  c) Truncated pyramid, defined by

front face width wd and length ld, detector height hd and source-detector distance rds;  the

top vertex of the pyramid is defined by the source position.
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For these reasons, we conclude that the truncated pyramid shape detector is the ideal choice

for use in an imaging system;  note, however, that for systems where the ray angular interval

is small, the truncated pyramid shape will not be very different from a rectangular

parallelepiped.  We now proceed to consider the detector dimensions actually encountered in a

single energy imaging system.

As we have mentioned already, the maximum permissible front face detector width is

determined by the angular interval available for each detector, and the source-detector distance.

The available interval is equal to the ray spacing if the detectors are stacked edge-to edge;  for

the single energy Systems 1 and 4 defined in Chapter 4, i.e. for ms = 2n + 1.  The angular ray

spacing is then defined by eq 4.23, from which we find the detector angular interval ∆αd:

∆αd = π
2q

 , q ≤ nπrs

d
< q + 1 (5.43)

Equation 4.6 defines the minimum rs possible, which is given by:

rs

d
= rs

2r0

= 1
2sin( π

2ms
)

(5.44)

Combining this with eq 5.43, we get the following expression for the ray spacing:

∆αd = π
2q

 , q ≤ nπ
2sin( π

2ms
)

< q + 1 (5.45)

To simplify matters a little, we shall use the expression

∆αd ≈ π
2nms

(5.46)

which turns out to produce identical values to eq 5.45 for the detector spacing for all n and ms

except for high n and ms ≤ 5, in which case 5.46 is still a good approximation.

If we then consider the detector front face width wd, we find that

wd = 2rds tan
∆αd

2






(5.47)

where the detector angular interval ∆αd is defined by eq 5.46;  using the minimum source-

detector distance rds defined by eq 4.7 (i.e. rs = rd = rmin ), we find that wd is given by:

wd =
4r0 tan( π

4nms
)

tan( π
2ms

)
=

2d tan( π
4nms

)

tan( π
2ms

)
(5.48)

Since n ≥ 2 and ms ≥ 3, we may use the following approximation:
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wd ≈
4r0 ( π

4nms
)

( π
2ms

)
= 2r0

n
= d

n
(5.49)

which is a little larger than the true wd,  eq 5.49 is accurate to within 10% for ms = 3 and

within 4% for ms = 5;  the error is negligible for higher numbers of views.

At this point, we should mention that by using the minimum source-detector distance (eq 4.7)

when calculating the detector width, we have ignored the extra space required for placing

collimators in front the detectors, although we have tacitly assumed that (multileave)

collimators must be used in order to avoid the detection of Compton scattered photons.

However, since detector width is defined by angular interval, and the length is taken to be

proportional to the width, the solid angle is independent of rds;  also, we shall see that

photopeak efficiency does not vary too rapidly with increasing rds.  Further, if multileave

collimators are used, the effective front face area of the detector is reduced, counteracting the

increase in photopeak efficiency due to the necessary increase in rds.  For this reason, we have

chosen to ignore the use of collimators.

The front face area of the detector also depends on the length ld, which is normally chosen to

be twice the width wd .  Increasing the detector length increases the solid angle subtended at

the source by the detector, and hence, the statistical fluctuation uncertainty is lowered, since a

higher photon intensity is registered for a given source strength.  On the other hand, the

detector length should not be very much longer than the width, as this increases the

nonuniformity of the beam profile;  also, using a detector length several times greater than the

width requires a scintillation light readout device of rather awkward shape.  The above choice

thus represents a reasonable compromise between conflicting requirements.

When we consider the detector height (or thickness), we recall that for a narrow beam (or

broad parallel beam) normally incident on a detector of thickness hd, the interaction ratio (or

total detection efficiency) is given by

ε tot = 1 − exp −µ tot (Eγ )hd( ) (5.50)

which means that for a given hd, the interaction ratio will decrease with increasing energy in

the range we are considering.  This will in turn influence the photopeak efficiency, which is

our main concern, so to compensate for this effect in our comparison of the suitability of the

isotopes in question, we will chose the detector thickness hd for each energy in such a way

that the interaction ratios are the same.  For BGO, the thickness required for a 95% interaction

ratio is 2.0 cm for 133Ba, 4.5 cm for 137Cs and 7.5 cm for 22Na.
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Note that for isotropic sources and truncated pyramid shaped detectors, the interaction ratio

will be slightly larger than the value predicted by eq 5.50, since the effective detector thickness

increases as the point of photon entry moves towards the edges of the detector front face.

This effect is most pronounced when the ratios of wd and ld to rds is at maximum, i.e. along a

side edge (corner) of the pyramid;  however, for the source-detector distances, detector widths

and the 95% interaction ratio encountered here, the increase in interaction ratio is well below

1% in all cases.  We may therefore use eq 5.50 for the calculation of interaction ratios, but

note that the relative increase would be more pronounced for lower interaction ratios.

Finally, we will consider the slope of the pyramid side faces:  As we mentioned above, the

detector shape is defined as a truncated pyramid of height hd, whose top width and length are

wd and ld, respectively, and the slope of its side faces is such that the vertex of the true

pyramid is at a distance rds from the front face, i.e. the total height of the pyramid is equal to

hd + rds, see Figure 5.13c.  Thus the width wdb and length ldb of the pyramid base surface are

given by:

wdb = wd 1 + hd

rds







    ; ldb = ld 1 + hd

rds







(5.51)

Since z denotes the position along the direction perpendicular to the detector base plane (i.e.

towards the source position, or vertex of the pyramid), the detector width (x-direction) and

length (y-direction) at a given value of z is given by

wd (z) = wd 1 + hd − z

rds







      ; ld (z) = ld 1 + hd − z

rds







(5.52)

for 0 ≤ z ≤ hd.
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5 . 3 . 3 . DSIM:  Monte Carlo detection efficiency calculator

DSIM is a Monte Carlo program which calculates photopeak and total detection efficiencies

(and hence, photofractions) for bare, uncased BGO and NaI detectors for photon energies in

the range 0 to 10 MeV;  the actual accuracy varies within this interval and will be discussed

later.  The detector may be of right cylinder shape, rectangular parallelepiped shape or

truncated pyramid shape, see Figure 5.13;  possible source geometries are narrow beam,

broad parallel beam and isotropic source at specified distance for cylinder and parallelepiped

detectors, and isotropic source only for the truncated pyramid detector.

In all cases, the photons are assumed to be incident on the front face of the detector, i.e. on the

surface defined by the plane z = hd;  narrow beams hit the detector along the z-axis in the

negative direction, the photons of broad parallel beams travel in the same direction, but are

equidistributed all over the detector front surface.  The isotropic source geometry, however,

imply that photons hit the front surface with slightly different directions, and the distribution

of source photons is not uniform over the detector front surface;  more on this below.

DSIM physics

We will now describe the physical model on which DSIM is based:  First of all, it should be

noted that charged particle transport is ignored completely, in order to reduce the computation

time to manageable proportions.  Secondly, we have ignored Rayleigh scattering, since the

influence of this interaction process is unimportant compared to other processes in the entire

energy range under consideration;  see Section 2.3.4.  Thus, the only interaction processes

included in our model is Compton scattering, photoelectric effect and pair production.

Compton scattering is modelled according to the Klein-Nishina theory, as described in Section

2.4.2.  As for the treatment of the photoeffect, we have ignored the generation of fluorescence

X rays, since the energy of such photons is below 100 keV and their possibility of escaping

from the detector is normally very low, provided that the detector is not too small.  This means

that the entire energy of the incident photon is assumed to be deposited locally in a

photoelectric interaction.

The treatment of pair production includes a simplified model of the annihilation of the positron

thus created:  Annihilation is assumed to take place locally, and the resulting two 511 keV

photons are emitted isotropically, but with each of the 511 keV photons of the annihilation

radiation pair in diametrically opposite directions as required by theory.

If we consider the possible error of the simplifications used in this model, it is clear that

ignoring charged particle transport is potentially the most serious approximation.  However,

although photoelectrons, Compton recoil electrons or the pair production electron-positron
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pair may acquire considerable kinetic energy in the photon interaction, it is unlikely that large

errors are introduced due to the escape of charged particles from the detector.  This is because

the range of the charged particles normally will be short compared to detector dimensions,

except possibly for small detectors and high energy.

It is much more important how these charged particles loose kinetic energy within the detector:

Much of the charged particle energy loss take place through the generation of bremsstrahlung

photons, which have a much higher chance of escaping than the charged particle itself.  For

this reason, the accuracy of our model must be expected to deteriorate for photon energies

above 1 - 2 MeV;  at lower energies, however, it should be reasonably accurate.  This should

be sufficient our purposes, since the highest energy isotope considered in this work is 22Na,

which emits 1.275 MeV photons.

DSIM algorithm

The actual calculation of efficiencies is done as indicated in Section 2.4.2, i.e. by generating a

large number of photon histories and scoring (tallying) the interesting cases (or successes, in

the statistical jargon).  Specifically, NI source photons are generated, according to the source

geometry selected, and primed in such a way that all impinge on the detector front face.  Each

source photon is tracked within the detector; if it interacts at all, the variable NTOT is

incremented by one.  If the photon looses all its energy within the detector, i.e. if no Compton

photon or annihilation photon escape, there is a photopeak (full energy) event, and the variable

NPH is incremented by one.

The algorithm for the tracking and scoring of one source photon, or photon history, is shown

as a flow chart in Figure 5.14 below.  This algorithm is performed NI times for a complete

calculation, note that  the variables NTOT and NPH are initialized to zero before the first

history.

The logical variables INTERACTION and ESCAPE control the scoring of one history;  if

INTERACTION is true and ESCAPE is false after the generation of a photon history, there is

a photopeak event,  if both are true, the source photon have been registered, but not in the

photopeak, if INTERACTION is false, the photon have not been detected.
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Source:  Initial position,
direction and photon energy;

ESCAPE = FALSE,
INTERACTION = FALSE,

ANN_PHOT = 0

Sample  distance to the
next interaction, compute

interaction position

Is the interaction
point within the

detector volume?

Photon escapes
from detector;

ESCAPE = TRUE

Sample interaction type;

INTERACTION = TRUE

NO

PHOTOSample new
direction, compute

new energy

COMPTON

ANN_PHOT = 2
Sample directions of

511 keV photons; store
pair interaction position

PAIR

YES

Emit the first
511 keV photon;
ANN_PHOT = 1

Emit the second
511 keV photon;
ANN_PHOT = 0

ANN_PHOT > 0 ?
YES

STOP

NO

START

INTERACTION
= TRUE ?

NTOT ← NTOT + 1ESCAPE
= TRUE ?

NPH ← NPH + 1
NONO

YESYES

Figure 5.14 Flowchart for a single photon history (iteration) for the Monte Carlo detector efficiency

calculator DSIM.  Variables NTOT and NPH are initialized to zero before the first

iteration;  after NI iterations, εtot = NTOT/NI and εp =NPH/NI are computed.
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The variable ANN_PHOT controls the generation of annihilation radiation photons;  after a

pair production interaction, the interaction position is stored, and the directions of the two 511

keV photons are sampled according to an isotropic distribution, see eq. 2.44.  The photons are

then tracked separately, in opposite directions, but from the same point.

After the completion of NI iterations, the photofraction, the photopeak efficiency and the total

detection efficiency are computed as follows:

ε p = NPH
NI

 ;   ε tot = NTOT
NI

 ;   ε0 =
ε p

ε tot

= NPH
NTOT

(5.53)

Representation and computation of photon directions

The methods for sampling the interaction type, the Compton scattering angles, and the

distance between interactions were all described in Section 2.4.2, as were the general method

for calculating the change in position once the new direction were known.  However, we did

not describe explicitly how the new photon direction is found from Compton deflection and

azimuthal scattering angles, and we will now describe how this is done in DSIM:

If we assume that the current photon direction ωk (i.e. the direction of travel immediately

before interaction k) is defined by spherical coordinates (νk,ϕk), the corresponding Carthesian

representation of the unit direction vector is given by (see eq 2.33):

ωωk = sin νk cosϕk sin νk sinϕk cosϕk[ ]T
(5.54)

The new photon direction after interaction (scattering) k is determined by the Compton

scattering angles θk (deflection) and αk (azimuth).  However, since these angles are relative to

the current photon direction and not to the xyz-system, the new photon direction ωk´ given by

′ωωk +1 = sinθk cosαk sinθk sinαk cosθk[ ]T
(5.55)

is not relative to he xyz-system, but to the orthonormal system spanned by the vectors uk, vk

and wk, which together constitute the basis matrix Bk:

Bk = uk vk wk[ ] =
cos νk cosϕk −sinϕk sin νk cosϕk

cos νk sinϕk cosϕk sin νk sinϕk

−sin νk 0 cos νk

















(5.56)
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It is seen that the current photon direction ωk is equal to wk, which together with uk and vk

define a right-handed coordinate system.  The new photon direction ωk+1 relative to the xyz-

system is then given by:

ωωk +1 = Bk ′ωωk +1 (5.57)

where Bk and ωk´ are defined by eq 5.55 and 5.56, respectively.

We see that in general, we need the basis matrix Bk to compute the new photon direction from

the Compton scattering angles.  However, since spherical direction coordinates (νk,ϕk) are

normally not used, except for specifying the source function (see below), it is inconvenient to

compute Bk using eq 5.56.  Instead, we utilize the fact that the new basis matrix Bk´+1

relative to the current basis Bk is given by

′Bk +1 = ′uk +1  ′vk +1  ′wk +1[ ] =
cosθk cosαk −sinαk sinθk cosαk

cosθk sinαk cosαk sinθk sinαk

−sinθk 0 cosθk

















(5.58)

i.e. wk´ is equal to ωk´;  the new basis matrix Bk+1 relative to the xyz-system is then simply:

Bk +1 = Bk ′Bk +1 (5.59)

The computation of photon directions in DSIM is done as follows:  The initial (source)

direction of the photon is specified by spherical coordinates (ν0,ϕ0) = (ν1,ϕ1), and the basis

matrix is computed using eq 5.56;  the initial direction ω1 is then equal to the matrix

component vector w1.  The new photon direction after a scattering interaction is then found by

computing Bk+1 using eq 5.59, and with Bk´+1 as defined by eq 5.58;  the new direction

vector ωk+1  is equal to the wk+1 component of Bk+1.  Note that it is possible to avoid our

matrix formalism altogether by deriving explicit expressions for the new spherical direction

coordinates (νk+1,ϕk+1) from the previous ones and the scattering angles [10, p. 774];

however, the use of vectors and matrices produces cleaner equations, whose computer

implementation is just as efficient.

Source specification

We will now consider the source specifications for the various detector geometries;  it is

assumed that the detectors are symmetrical with respect to the z-axis, as indicated in Figure

5.13.  For the narrow beam case, the initial direction is represented by

ωω0 = ωω0 (ν,ϕ ) ;    
ν = π
ϕ = 0





(5.60)



134

and the initial position by:

r0 = 0 0 hd[ ]T
(5.61)

In the case of a broad parallel beam, the initial direction is as for the narrow beam case, i.e. as

in eq 5.60, but the initial position, or point of entry, should be uniformly distributed over the

detector front face.  For a rectangular parallelepiped detector, this is accomplished by sampling

the initial position as follows:

r0 =
wd (ρ1 − 1

2 )

ld (ρ2 − 1
2 )

hd

















(5.62)

where ρ1 and ρ2 are uniform random numbers.

For a right cylinder detector, the sampling of the initial position is done as follows:

r0 =
dd ρ1 cos(2πρ2 )/2

dd ρ1 sin(2πρ2 )/2

hd









   

   

   
   
   

(5.63)

Again, ρ1 and ρ2 are uniform random numbers.

We note that in the case of narrow and broad parallel beams, initial direction and position are

determined independently, this is not the case, however, for an isotropic source function:

Generally, eq 2.44 would be used directly for the sampling of ν and ϕ to get isotropically

distributed directions.  However, only photons that hit the detector front face are of interest to

us, so to avoid rejecting a large number of source photons travelling in the “wrong”

directions, we will modify eq 2.44 a little.  For the right cylinder detector, it is seen that

restricting ν to lie within the interval

νmin < ν ≤ π ;      νmin = π − arctan
dd

2rds







(5.64)

ensures that all photons hit the detector front surface, see Figure 5.13a.  The initial direction is

then sampled as follows:

ωω0 = ωω0 (ν,ϕ ) ;    
ν = arccos ρ1 cos νmin + 1[ ] − 1( )
ϕ = 2πρ2







(5.65)

The position r0 on the front surface where the photon impinges on the detector is found by

solving the equation
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r0 = rs + tωω0 (5.66)

for the source - entry point distance t, using the fact that the z-coordinate of this point should

be hd (rs denotes the source position).  This yields the following result:

r0 =
t sin ν cosϕ
t sin ν sinϕ

hd

















   ;    t = − rds

cos ν
 ,  cos ν ≠ 0 (5.67)

The cylinder detector case is relatively straightforward, which is because the front surface is

circular;  when we consider the rectangular parallelepiped and truncated pyramid detectors,

however, we find that matters are a little more complicated, due the fact that these detectors

have rectangular front surfaces.  We solve this problem by the use of rejection sampling (see

Section 2.4.2):  We start by redefining the angle νmin as follows:

νmin = π − arctan
wd

2 + ld
2

2rds











(5.68)

The direction is then sampled using eq 5.65, and the detector entry point is found using

eq 5.67.  The resulting r0 will then lie on the plane z = hd, within a circle containing the

rectangular front surface of the detector.  If the conditions

x0 ≤ 1
2 wd    , y0 ≤ 1

2 ld (5.69)

are fulfilled, the sampled direction is accepted;  otherwise, a new direction is sampled using

eq 5.65 (with a new pair of random numbers!) and the process is repeated.

The only other part of the DSIM flow chart which requires further comment, is the checking

of whether or not the next point of interaction is within the detector volume.  For a right

cylinder detector, the interaction point (x,y,z) is within the detector if the following conditions

are true:

4x2 + 4y2 ≤ dd
2 ,    0 ≤ z ≤ hd (5.70)

For the rectangular parallelepiped detector, the conditions are:

x ≤ 1
2 wd    , y ≤ 1

2 ld    ,    0 ≤ z ≤ hd (5.71)

Finally, the conditions for the truncated pyramid detector are as follows:

x ≤ 1
2 wd (z)    ,    y ≤ 1

2 ld (z)    ,    0 ≤ z ≤ hd (5.72)

where wd(z) and ld(z) are given by eq 5.52.
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Estimating DSIM statistical uncertainty

As we mentioned in Section 2.4.2, a Monte Carlo simulation resembles an experiment in the

sense that its result contains a certain degree of statistical uncertainty, due to the random nature

of the method.  This uncertainty may be estimated using the expression for the standard

deviation of a variable which follows a binomial distribution.  Alternatively, we may run the

simulator several times for each case, use the average efficiency value as the result, and use

the observed standard deviation of the average value to estimate the uncertainty [24]  Initially,

we chose to implement both methods, since this provided an opportunity of checking that the

program operates correctly;  the two uncertainty estimates should not differ too dramatically.

At this point, we might remark that although Monte Carlo statistical fluctuation uncertainty

decreases as the number of generated histories is increased, the accuracy can never be better

than permitted by the accuracy of the physical model and the cross section data used.  Since

the cross section data are accurate to within a few percent only, it follows that it is futile to

generate an extreme number of photon histories in the hope of obtaining results of very high

accuracy.  For example, if photopeak efficiencies are calculated as the averages of 10 runs of

10000 photon histories each, we estimate (using the expression for the standard deviation for

the binomial distribution, see eq 2.57) the relative uncertainty in the efficiencies (three times

the standard deviation) to be below 3% for detection efficiency values greater than 0.1, below

2% for efficiencies greater than 0.2, and below 1% for efficiencies greater than 0.5.

Some aspects of DSIM implementation

DSIM has been implemented as a Think Pascal 4.0 program on a Macintosh Quadra 700

computer;  apart from the photon tracking algorithm itself, the program contains routines for

generating pseudorandom numbers, and for calculating linear attenuation coefficients from

tabulated cross section data.  Using the number of runs (10) and photon histories per run

(10000) mentioned above, the calculation of a single set of detection efficiencies (εp, εtot and

ε0) takes about 4 minutes.

The linear attenuation coefficients for NaI and BGO are calculated from the attenuation

coefficients of their constituents using the “mixture formula” derived in Section 2.3.3;  the

cross section data for the separate elements are taken from [12].  The attenuation coefficients

needed during the simulation are computed from a previously prepared table, using linear

interpolation.  Note that since the photoeffect cross section decreases quite sharply with

increasing energy, the tabulated photoeffect values have been normalized by E3 (energy in

MeV), and are renormalized accordingly after interpolation, to ensure better interpolation

accuracy.
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The generation of pseudorandom numbers is accomplished using a Pascal translation of the C

routine ran3 [15];  this routine was originally written by Knuth [30].

5 . 3 . 4 . Verification of DSIM

To verify that DSIM produces the correct detection efficiencies, the results should really be

compared to experimentally determined values;  because we have not performed such

measurements, we must content ourselves with comparing DSIM behaviour with the results of

other simulation tools capable calculating detector response functions.  The most advanced

system available is the EGS simulator developed at Stanford University [31];  in contrast to

DSIM, EGS includes the modelling of charged particle transport, and it also handles a greater

energy range.

Rogers [24] has used EGS for calculating NaI and BGO photofractions and total efficiencies

for cylinder shaped detectors and several source geometries.  Some of the calculations are for

bare, uncased detectors, and are therefore suitable for direct comparison with DSIM results.

Furthermore, since other simulations use more realistic models (i.e. including the effect of the

detector casing),  and these results agree nicely with experimental data, we feel confident that

EGS is suitable as a benchmark for testing DSIM performance.

We shall now present comparisons of DSIM and EGS results for a few different cases;  note

that the results apply to bare, uncased detectors only.  This may be said to be a shortcoming of

DSIM, as the detection efficiencies generally will be affected by the detector casing, however,

the effect is believed to be insignificant for our purposes:  In this work, we will use the

calculated detection efficiencies for estimation of statistical uncertainty and required countrate

for raysum measurement, and as we have used several other approximations in these

estimates, the accuracy of the detection efficiency values used is not too critical.

The first example we shall consider, is the photofraction ε0 for a 3˝ × 3˝ NaI detector, for an

isotropic source at 10 cm distance, and for photon energies in the range from 0.32 MeV to

10 MeV.  The EGS data, which are computed both with and without electron transport

included in the model, are taken from Table 1 in [24].  DSIM values are computed as the

averages of 10 runs each of NI = 1000 photon histories.  The results are plotted against the

photon energy in  Figure 5.15, the uncertainties are equal to three times the estimated standard

deviation.  DSIM and EGS numerical values are given in Table A.1 in Appendix A.



138

0.00

0.20

0.40

0.60

0.80

1.00

1 10

EGS, no charged particle transport

E [MeV]

EGS, charged particle transport

DSIM (no charged particle transport)

ε 0

Figure 5.15 EGS and DSIM calculations of the photofraction ε0 for a 3” × 3” NaI detector

illuminated by an isotropic source at 10 cm distance.

The results are interesting for two reasons:  Firstly, it is seen that there is excellent agreement

between the DSIM data and the values computed using non-charged particle transport EGS

simulation;  this shows that the DSIM program behaves correctly.

Secondly, we see that photofraction values may be computed accurately for photon energies

up to about 1.5 MeV, without including charged particle transport in the model:  The

discrepancy for higher energies is probably caused by the fact that the amount of escaping

bremsstrahlung radiation becomes large enough to reduce the number of photopeak events

significantly, and hence, reduce the photofraction as well.

This picture is confirmed by the photofraction results shown in Figure 5.16, which are also

for a 3˝ × 3˝ NaI detector, but for the case of a broad parallel photon beam.  The EGS results,

which are taken from Rogers’ Table 4 [24], are computed using a model which includes

charged particle transport.  Statistical uncertainties shown are three times the estimated

standard deviation of the photofraction values;  again, the DSIM - EGS agreement is good for

photon energies lower than 1.5 MeV.  The photofraction values are given in Table A.2 in

Appendix A, where we have also included the DSIM and EGS results for the total detection

efficiency εtot;  although it is completely trivial to compute this for a parallel beam, using the

attenuation formula, it provides an extra check of the accuracy of the interpolation algorithm

used for calculating the required attenuation coefficients.
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Figure 5.16 EGS and DSIM calculations of the photofraction ε0 for a 3” × 3” NaI detector

illuminated by a broad parallel beam.

Finally, we include a comparison of DSIM and EGS calculations of the photopeak efficiency

of 3˝ × 3˝ NaI and BGO detectors illuminated by an isotropic source at 10 cm distance, for

photon energies from 0.3 to 10 MeV.  The results are shown in Figure 5.17 below;  the EGS

data is taken from Rogers’ Figure 13, and the plotted EGS uncertainties are reading

uncertainties, while DSIM uncertainties are estimated as described earlier.  Note that the EGS

results are also plotted in Figure 5.12;  DSIM and EGS numerical values are given in Table

A.3 in Appendix A.
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Figure 5.17 EGS and DSIM calculations of the photopeak (full energy) detection efficiency εp for

3” × 3” NaI and BGO detectors illuminated by an isotropic source at 10 cm distance.
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The DSIM-EGS agreement is still good for the lower part of the energy range;  also, the

relative discrepancy between the charged particle transport model (EGS) and the simpler

DSIM model is greater for NaI than for BGO.  The reason for this is that the higher detection

efficiency of BGO means that fewer bremsstrahlung photons are allowed to escape, so the

reduction of the photopeak efficiency will be less severe than for NaI.

The conclusion of our comparison of EGS and DSIM calculations is that we feel quite

confident that DSIM produces reliable detection efficiency estimates for photon energies below

1.5 MeV;  this is adequate for our purposes, since the highest photon energy which we have

considered for raysum measurement is 1.275 MeV (22Na).

5 . 3 . 5 . Simulations

Because detector photofractions and photopeak efficiencies are required for estimating the

countrate requirement and the statistical uncertainty for the raysum measurements, and because

the efficiencies are system geometry dependent, it is necessary to compute detector efficiencies

for all possible choices of grid resolution, number of views, pipe diameter and isotope energy,

in order to be able to study the performance of different systems.  In this section, we will use

DSIM to compute the necessary photofraction and photopeak efficiency values;  note that

while detector width and length are determined by the system geometry, the detector height is

chosen so that the nominal interaction ratio is 95%, see Section 5.3.2 and eq 5.50:  We repeat

the values here for convenience;  hd is 2.0 cm for 356 keV (133Ba), 4.5 cm for 661.6 keV

(137Cs) and 7.5 cm for 1.275 MeV (22Na).

We have already established that the truncated pyramid detector shape is optimal for our flow

imaging system;  note, however, that the slope of the side surfaces depend on the ratios of the

detector front face width (and length) to the source-detector distance, i.e. the slope depend on

the grid size n and the number of views used, ms.  The size of the detector, i.e. the front face

width and length also depends on these parameters (see eq 5.48;  also, recall that we have

chosen ld = 2wd), but in addition, it is a function of the pipe diameter.

In Chapter 4, we considered values of n ranging from 2 to 16, and odd-valued ms from 3 to

15, which means that 105 different detection efficiencies must be computed for every value of

the pipe diameter and for every photon energy considered, which is a little time consuming.

However, the computational burden may be reduced significantly by introducing two

approximations:

First, we note that the detector width wd (and hence, the length,ld) is very nearly independent

of the number of views, ms, see eq 5.49.  Next, we note that a rectangular parallelepiped

detector illuminated by a broad parallel beam of photons should have roughly the same
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detection efficiency as a truncated pyramid detector illuminated by an isotropic source of equal

height and front face width and length, provided that the source-detector distance is not too

small.  The reason for introducing these approximations, is that the photopeak efficiency for

the parallelepiped detector is then independent of the number of views used, since the detector

size is assumed to be ms independent and so is the shape, since a broad parallel beam is

assumed.  In this way, we have reduced the number of efficiencies to be computed, by a

factor of seven, i.e. the number of different ms.

To establish the validity of the parallelepiped approximation for a truncated pyramid detector,

we first note that the interaction ratio would be nearly identical in the two cases, see Section

5.3.2, so no edge effects should be present.  Thus the only remaining factor capable of

causing photopeak efficiency differences between the two cases, is the fact that the truncated

pyramid detector will have a larger volume, and hence, a larger efficiency:  Since the truncated

pyramid volume approaches the parallelepiped volume for large source-detector distances, it

follows that the photopeak efficiencies should also approach each other.  The question is then

to determine the minimum source-detector distance for which the parallelepiped shape is a

reasonable approximation, or alternatively, to determine the maximum error committed when

using the approximation on the present problem.

From eq 5.46 and eq 5.47, we see that the maximum ratio of the detector width wd to the

source-detector distance rds occurs for the minimum number of views (and minimum

gridsize n).  Thus, the maximum error in the estimated photopeak efficiency due to the

parallelepiped approximation will occur for ms = 3;  also, the errors would be larger for

higher photon energy and smaller pipe diameter.  On the other hand, the approximation used

for wd produces values somewhat greater that the exact one (but for low ms only), see eq 5.48

and eq 5.49, so this will counteract the decrease in volume by the parallelepiped

approximation.

To study the combined effect of these two approximations, we have computed the ratio of the

parallelepiped detection efficiency (using eq 5.49 for wd) to the exact value (truncated pyramid

detector and isotropic source, and eq 5.48 for wd), for all three isotopes in question, for ms =

3, and for pipe diameters ranging from 5 cm and upwards.  It turns out that the maximum

error in the estimated photopeak efficiency at 1.275 MeV photon energy (22Na) is

-7% for d = 5 cm and -2% at d = 7.5 cm;  the error is negligible for larger pipe diameters.

For 661.6 keV photon energy (137Cs), the error is -2% for d = 5 cm and negligible for larger

pipe diameters;  at 356 keV (133Ba) the errors are negligible in all cases.

While the -7% error for 22Na is far from negligible as such, it should be remembered that

using this high energy isotope for raysum measurement for small diameter pipes is not very

realistic anyway, see our previous discussion of statistical uncertainty (Section 5.2.1) and
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detector countrate requirement (Section 5.2.2).  Also, recall that in the analysis of statistical

raysum uncertainty, it is the inverse of the square root of the photopeak detection efficiency

value that enters in the uncertainty expression, so a -7% error in the efficiency value results in

a 3.7% error only in the uncertainty estimate.  Finally, it is seen from the results of Section

5.3.4 that DSIM efficiency values are maybe a little too high at 1.275 energy anyway, due to

the omission of charged particle transport in our model.  Therefore, we find that the

approximations are acceptable, and we have thus removed the ms dependence of the

photopeak efficiencies (and also the photofractions) from the calculations.

Using the above approximations, we have computed BGO photopeak detection efficiencies εp

for each of the three isotopes under consideration, for the gridsize range of n = 2 to 16, and

for pipe diameter values ranging from 2.5 to 30 cm.  Photopeak efficiency values for 133Ba

(356 keV), 137Cs (661.6 keV) and 22Na (1.275 MeV) are presented in Appendix A, in Table

A.4, Table A.5 and Table A.6, respectively.  The presented detection efficiencies are averages

of 10 DSIM runs, each of 10000 photon histories, so the relative statistical uncertainty of the

photopeak efficiencies are below 2% for efficiencies above 0.2 and below 1% for efficiencies

larger than 0.5, see the discussion of DSIM uncertainty in Section 5.3.3.

To illustrate the n and d influence on the photopeak efficiencies, we have plotted εp against the

pipe diameter, and with the grid size as a parameter below:  The data in Figures 5.18, 5.19

and 5.20 are for 133Ba, 137Cs and 22Na, respectively.
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Figure 5.18 BGO photopeak detection efficiency εp versus pipe diameter d, with reconstruction

gridsize n as a parameter, for Eγ = 356 keV (133Ba).  Detector thickness is 2.0 cm,

which corresponds to a nominal εtot value of 95%.
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Figure 5.19 BGO photopeak detection efficiency εp versus pipe diameter d, with reconstruction

gridsize n as a parameter, for Eγ = 661.6 keV (137Cs).  Detector thickness is 4.5 cm,

which corresponds to a nominal εtot value of 95%.
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Figure 5.20 BGO photopeak detection efficiency εp versus pipe diameter d, with reconstruction

gridsize n as a parameter, for Eγ = 1.275 MeV (22Na).  Detector thickness is 7.5 cm,

which corresponds to a nominal εtot value of 95%.

The DSIM results show that very reasonable detection efficiencies are possible using BGO

detectors:  For 133Ba, the photopeak efficiency is greater than 0.7 in all cases, and is nearly

0.9 for an n = 8 system at 15 cm pipe diameter.  A similar system using 137Cs has an εp value
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of 0.75, and for a 22Na system εp is 0.55;  while the latter value is considerably smaller than

the ideal value of one, it is still much better than what is possible using e.g. NaI detectors.

Another feature of the plots shown, is that the sensitivity of the photopeak efficiency to

gridsize and photon energy variations is seen to become greater for small pipe diameters,

which is due to the reduced detector size.  To show the detector size and energy dependence of

the photopeak efficiency more explicitly, we have plotted the calculated εp values against

detector size (represented by detector front surface width wd ), with the isotope (photon

energy) as a parameter in Figure 5.21.
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Figure 5.21 BGO photopeak detection efficiency εp versus detector front face width wd for photon

energies of 356 keV (133Ba), 661.6 keV (137Cs) and 1.275 MeV (22Na).  The detector

front face length ld is twice the width, and the detector thicknesses are chosen so that

εtot = 95% for each energy.

Photofraction values ε0 are found by dividing the photopeak detection efficiency εp by the

nominal interaction ratio εtot, which is equal to 0.95 for the detector thicknesses used in the

above calculations.

5.4.     Raysum measurement and isotope choice revisited

Having calculated photopeak efficiencies and photofractions for all necessary d and n

variations (εp and ε0 have negligible ms dependence) of the chosen detector system, we may

now proceed to consider the relative levels of raysum statistical uncertainty and detector

countrate associated with our single energy flow imaging system;  hence, we are now in a
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position to decide which isotope is best suited for a certain application.  We will first take a

look at the relative levels of raysum statistical uncertainty.

5 . 4 . 1 . Raysum statistical uncertainty

By incorporating the photopeak efficiency for a given system geometry into the expression for

the raysum statistical uncertainty, eq 5.17, we can relate the uncertainty to the resolution of the

reconstruction grid:  Using the BGO photopeak efficiency values calculated in Section 5.3.5,

(numerical values are given in Appendix A) we may calculate the uncertainty for each isotope,

for varying values of pipe diameter d and gridsize n.

In Figures 5.22, 5.23 and 5.24, we have plotted the quantity εp-1/2(σp)max against the pipe

diameter, with the isotope type as a parameter, for gridsizes n of 2, 8 and 16, respectively.

Furthermore, in order to facilitate comparison with Figures 5.3 and 5.5, we have used k = 1/6,

rrel = 3/4 (i.e. r = 3d/8) and I0τ/εp = 10000.
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Figure 5.22 Worst-case statistical fluctuation error εp
-1/2(σp)max versus pipe diameter d, for

gridsize n = 2 and for isotopes 133Ba, 137Cs and 22Na, with rrel = 3/4 (r = 3d/8),

k = 1/6;  the detector type is BGO, see Section 5.3.5.  We have used I0τ/εp = 10000

to facilitate comparison with other uncertainty plots;  see also Section 5.2.1.

The plot for the case of n = 2, see Figure 5.22, is quite similar to the (σp)max plot in

Figure 5.3, where the detection efficiency have been ignored (i.e. εp is assumed to be unity),

which is not surprising, since the detection efficiencies are quite high for all energies for this

choice of grid resolution, see Figures 5.18 - 5.20.
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Figure 5.23 Worst-case statistical fluctuation error εp
-1/2(σp)max versus pipe diameter d, for

gridsize n = 8 and for isotopes 133Ba, 137Cs and 22Na, with rrel = 3/4 (r = 3d/8),

k = 1/6;  the detector type is BGO, see Section 5.3.5.  We have used I0τ/εp = 10000

to facilitate comparison with other uncertainty plots;  see also Section 5.2.1.
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Figure 5.24 Worst-case statistical fluctuation error εp
-1/2(σp)max versus pipe diameter d, for

gridsize n = 16 and for isotopes 133Ba, 137Cs and 22Na, with rrel = 3/4 (r = 3d/8),

k = 1/6;  the detector type is BGO, see Section 5.3.5.  We have used I0τ/εp = 10000

to facilitate comparison with other uncertainty plots;  see also Section 5.2.1.

When the grid resolution is increased, however, the picture is altered, because of the reduction

in detector size:  It is seen from Figures 5.23 and 5.24 that the uncertainty level rises,
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especially for small pipe diameters, which corresponds to the smallest detector sizes.  Also,

the uncertainty increase is almost negligible for 133Ba and very pronounced for 22Na, since

the sensitivity of the photopeak efficiency to the detector size is very slight for low photon

energy, but is quite strong for higher photon energy, see Figure 5.21.

One important application for the uncertainty plots in Figures 5.22 - 5.24 , is to use them as an

aid in the selection of which isotope to use in an imaging system:  It is seen that for a moderate

grid resolution, n = 8, 133Ba is optimal for smaller pipe diameters, while 22Na is the best

choice for large diameters.  The remaining isotope, 137Cs, may be regarded as a reasonable

compromise for the medium range of diameters, e.g. 7.5 to 17.5 cm;  it should also be

remembered that this is the isotope having the longest halflife, see Table 5.1.

5 . 4 . 2 . Detector countrate

As we have mentioned before (see Section 5.2.2), not only the level of statistical uncertainty is

important when selecting the isotope, but also the detector countrate requirement.  We have

also established that the total countrate depends on the detector photofraction;  to see the

impact of this effect, we have plotted the total countrate Imaxε0-1 in Figures 5.25, 5.26 and

5.27 below;  in the expression for Imax  (eq 5.26) we have used rrel = 3/4, k = 1/6 and τ(σp)2

= 1;  the photofractions are found from the photopeak efficiencies computed in Section 5.3.5.
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Figure 5.25 Maximum total detector countrate Imaxε0
-1 (see eq 5.26) versus pipe diameter d for

BGO detectors, gridsize n = 2, isotopes 133Ba, 137Cs and 22Na, with rrel = 3/4, k =
1/6, and with the product τ(σp)2 equal to one.
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Figure 5.26 Maximum total detector countrate Imaxε0
-1 (see eq 5.26) versus pipe diameter d for

BGO detectors, gridsize n = 8, isotopes 133Ba, 137Cs and 22Na, with rrel = 3/4, k =
1/6, and with the product τ(σp)2 equal to one.
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Figure 5.27 Maximum total detector countrate Imaxε0
-1 (see eq 5.26) versus pipe diameter d for

BGO detectors, gridsize n = 16, isotopes 133Ba, 137Cs and 22Na, with rrel = 3/4,

k = 1/6, and with the product τ(σp)2 equal to one.

It is seen from Figures 5.25, 5.26 and 5.27 that the dependence of the maximum total

countrate on the photon energy is quite dramatic for small pipe diameters;  also, the energy

dependence is seen to become stronger for higher gridsize n, which is a consequence of the

greater energy sensitivity of the photopeak efficiency and photofraction for small detectors.
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Generally, the detection efficiency influence is seen to be more marked for the countrate

requirement than for the raysum uncertainty level;  this is because the total countrate is

inversely proportional to the photopeak efficiency, while the uncertainty is inversely

proportional to the square root of εp.

The general significance of the presented plots of the total detector countrate, is that the

countrate requirement is minimized by choosing the lowest energy isotope, except for very

large pipe diameters.  This is not surprising, since this is the situation even if the effect of the

detector photofraction is ignored, see Figure 5.6, and because the photofraction is a

decreasing function of energy.

More importantly, Figures 5.25 - 5.27 may be used for predicting the maximum countrate for

a given system, once the measurement time τ and the desired level of raysum uncertainty have

been specified.  For example, if τ = 1 s and (σp)max = 0.01, the maximum countrate for a
133Ba system of 15 cm pipe diameter and gridsize n = 8, is about 60 kcps.  Also, the countrate

capability requirement is seen to become quite extreme for short measurement times and low

uncertainty.

5 . 4 . 3 . Discussion

From the results of the previous two sections, it is clear that if the level of statistical

uncertainty in the measured raysum is the most important criterion for isotope choice, a low

energy isotope should be chosen for small pipe diameters, and higher energy isotopes for

larger diameters;  on the other hand, if the detector countrate capability is taken into account, a

low energy isotope is desirable.

In addition to these selection criteria, it is necessary to consider some other factors:  First of

all, it is clear that from a safety point of view, low energy isotopes are preferable, since they

require less shielding material than higher energy isotopes.  Secondly, from the results of

Section 5.2.3 we know that finite beam width raysum errors are minimized by using the

isotope corresponding to the lowest possible fluid linear attenuation coefficient;  this would

normally be the highest energy isotope.

The situation is a little more complicated when we consider the problem of scattered radiation:

The relative energy resolution requirement of the detectors is relaxed for higher photon

energy, see Figure 5.11;  however, the actual intensity of scattered radiation directed into the

detectors is impossible to predict without a photon transport model for the entire imaging

system, so it is difficult to state which isotope choice, if any, minimizes the raysum

measurement error caused by detection of scattered radiation.
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If we consider the factors which determine the raysum measurement accuracy, we note that the

finite beam width error and the scattered radiation error are systematic errors, which in

principle can be reduced using corrections computed from a “raw” first image reconstruction,

see Section 5.2.3.  The statistical uncertainty, however, can only be lowered by increasing the

number of detected photons;  this means that, within the countrate capability limits of the

detector system, one should choose the isotope which minimizes the statistical uncertainty.

On the basis of the above considerations, it seems that 133Ba or 137Cs would suit most

applications1, with the possible exception of very large pipe diameters;  these isotopes also

have significantly longer halflives than 22Na.

Finally, it should be noted that the results of Section 5.4.1 and Section 5.4.2 are important

from another point of view, since they relate statistical uncertainty level and detector countrate

requirement to the gridsize n, i.e. to the spatial resolution of the imaging system;  this will be

exploited below.

1One possible complication of using 133Ba, is that it emits several photon energies:  In addition to the main

emission at 356 keV, there are emissions at 303 keV and 384 keV;  however, these are of significantly lower

intensity than the main emission, and should not cause any problems for raysum measurement, even when

detectors of moderate energy resolution are used.
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6 . Analysis of overall system performance

The main parameters describing the performance and design of a single energy flow imaging

system, are image spatial resolution, represented by the gridsize n, the number of sources ms,

the image density resolution σf, the dynamic response (or temporal resolution) τ, the pipe

diameter d and the source intensity S0 (see also [5]).  The gridsize n is used for representing

the spatial resolution, since the relative spatial resolution is 1/n.  Further, since the systems we

are considering have relatively low spatial resolution compared to medical CT, the

reconstruction time is small compared to the measurement time necessary to ensure a low level

of statistical raysum uncertainty, and we may take the system response time to be equal to τ.

In this section, we will develop expressions which relate the main system parameters to each

other, and we will also derive a relation between the maximum detector countrate and the other

system parameters.  Finally, we will consider the possible overall system performance, which

is determined by the image density uncertainty referred to above and the reconstruction error

analyzed in Chapter 4.

6.1.     Density resolution

The starting point for our derivation of the expressions mentioned above is the relation

between relative pixel density uncertainty and relative raysum uncertainty (see eq 3.34):

σ f

f
=

σ p

p

n3

M
=

σ p

p

n3

msma

(6.1)

where the total number of raysums, M, is simply the product of ms and ma;  please note that

we refer to the standard deviations σf and σp when speaking of uncertainties.

If it is assumed that there are no other contributions to the raysum uncertainty than the

statistical fluctuations in the number of detected photons, we may use eq 5.17 directly for the

relative uncertainty (σp/p);  this is because the equation was derived for the case p = 1, so

(σp/p) = σp, and we have:

σ p

p
=

exp 1
2 di ′k µ p + µ f( )[ ]
µ f di I0τ

(6.2)
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Here, it is understood that the parameters di and k’  are functions of d, k, and rrel, see Section

5.2;  as before, we will use k = 1/6 and rrel = 3/4.  Combining eq 6.1 and eq 6.2, we get the

following expression for the relative pixel uncertainty:

σ f

f
= n3

msma

exp 1
2 di ′k µ p + µ f( )[ ]
µ f di I0τ













(6.3)

The pipe diameter d enters in this expression through di and k’, see eq 5.4 and 5.16, while the

remaining main system parameter, S0, is related to the detected intensity without absorber by

the following expression, see eq 5.1:

I0 = S0ε p

Ωd

4π
(6.4)

Since the truncated pyramid detector has a rectangular front face shape of width wd and length

ld = 2wd, the fractional solid angle subtended by the detector at the source is given by:

Ωd

4π
= wdld

4π(rds )2 = 2
4π

wd

rds







2
(6.5)

Note that using the ratio of the detector front face area to the square of the source-detector

distance for the solid angle Ωd is really only an approximation;  however, it is accurate enough

for our purposes, because the ratio between source-detector distance and detector front face

width (or length) is several times greater than unity even for small n and ms.

We now wish to express the fractional solid angle using the system geometry parameters n

and ms:  Using eq 5.46 and eq 5.47, the detector width may be written:

wd = 2rds tan
π

4nms







(6.6)

Combining eqns 6.5 and 6.6 yields:

Ωd

4π
=

2 tan2 π
4nms

( )
π

(6.7)

Finally, we note that n ≥ 2 and ms ≥ 3, so π/(4nms) ≤ π/24, so we may safely use the

approximation

tan
π

4nms







≈ π
4nms

(6.8)

and the fractional solid angle may be expressed as:
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Ωd

4π
= 2π 1

4nms





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2
(6.9)

Substituting this in eq 6.4, we find that the detected intensity without absorber is given by:

I0 = 2π S0ε p

1
4nms





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2
(6.10)

Combining this with eq 6.3, we find the following expression for the relative pixel

uncertainty, or density resolution:

σ f

f
= 4

2π S0τ ε p

n5ms

ma

exp 1
2 di ′k µ p + µ f( )[ ]

µ f di













(6.11)

This expression is of fundamental importance, since it relates the main system parameters

mentioned above.  Thus eq 6.11 may be used to predict the relative density resolution for a

given system specification:  The necessary photopeak detection efficiencies for our chosen trio

of isotopes were calculated in Section 5.3.5;  the values are tabulated in Appendix A for grid

resolutions n = 2 to 16 and pipe diameter values d from 2.5 to 30 cm.  Note that these values

apply to the ray spacing used for System 1 and 4 only, see Chapter 4.

Equation 5.83 contains a large number of independent variables, so we will not attempt to

undertake a full analysis of its dependence on the various parameters;  instead, we will discuss

it in general terms, and include some examples where some of the parameters are kept fixed.

First of all, we note that the dependence of the density resolution on the isotope energy used

and the pipe diameter is identical to the variation of the raysum uncertainty with the same

parameters, which have been discussed thoroughly above.  For this reason, we will assume

that the isotope 137Cs is used, which is a reasonable compromise with respect to raysum

error.  Except for very small or very large pipe diameters, the uncertainty levels are very

similar for the three isotopes considered, and the n influence on the photon energy dependence

of σp is relatively slight, since the photopeak efficiency εp is not a strong function of n.

However, the expression for the density resolution incorporates the ILST raysum error

propagation as well as the effect of detector solid angle, both of which introduces a strong grid

resolution dependence.  Since the number of rays per view, ma, is equal to 2n + 1 for single

energy System 1 (see Chapter 4), and approximately 75% of this value for System 4, we see

that in general, the relative density resolution is proportional to n2, if the very slight

dependence through the gridsize influence on the photopeak efficiency is ignored.  To see the

strong n dependence of the density resolution compared to the effect of varying d, we have
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plotted (σƒ/ƒ) against the pipe diameter in Figure 6.1, with the grid resolution as a parameter.

We have used ma = 2n + 1, ms= 7, τ = 1 s and S0 = 100 mCi,  which may be a typical value

for the source activity;  keep in mind that the total system activity is S0 multiplied with ms.
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Figure 6.1 Density resolution, or relative pixel density uncertainty, (σƒ/ƒ) versus pipe diameter d

with the grid resolution n as parameter, for 137Cs.  The source intensity S0 is

100 mCi, the measurement time τ is 1 s, and the number of sources ms is 7.

Not surprisingly, the pipe diameter dependence of the density resolution is seen to be very

slight compared to the variation with grid size (spatial resolution);  for this reason, we will

keep the pipe diameter constant and equal to 15 cm for the rest of our discussion of the density

resolution.  Also, it is seen that quite acceptable density resolution values are possible;  for the

chosen system parameters, the density resolution is better than 3% for n = 8 and 1% for n = 5,

for a wide range of d.

We will now take a look at the influence of the number of views on the density resolution

expression;  it is seen that (σƒ/ƒ) is proportional to the square root of ms.  In Figure 6.2, we

have plotted the relative pixel density uncertainty, or density resolution, against grid

resolution, with the number of views as a parameter:  We have used d = 15 cm, τ = 1 s and

S0 = 100 mCi.

In Chapter 4, we investigated the n and ms dependence of the reconstruction error Rabs, so

Figure 6.2 is very interesting because it shows the density resolution dependence on the same

parameters:  While the pixel error Rabs generally decreases with increasing n and ms, the

density uncertainty increases.  Thus, low reconstruction error and low density uncertainty due

to statistical fluctuations in the measured raysums are conflicting requirements, and a

compromise must be made regarding the choice of n and ms;  more on this later.
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Figure 6.2 Density resolution, or relative pixel density uncertainty, (σƒ/ƒ) versus grid resolution n,

with the number of sources, ms, as parameter, for 137Cs.  The source intensity S0 is

100 mCi, the measurement time τ is 1 s, and the pipe diameter d is 15 cm.

From eq 6.11 we seen that the density uncertainty is inversely proportional to the square root

of the measurement time.  Since it is interesting to demonstrate the relation between the

density, spatial and temporal resolutions, we have plotted (σƒ/ƒ) against n, with τ  as a

parameter in Figure 6.3.  As before, we have used d = 15 cm, ms = 7 and S0 = 100 mCi.
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Figure 6.3 Density resolution, or relative pixel density uncertainty, (σƒ/ƒ) versus grid resolution n,

with the measurement time τ  as a parameter, for 137Cs.  The source intensity S0 is

100 mCi, the number of sources ms is 7 and the pipe diameter d is 15 cm.



156

Figure 6.3 shows that quite acceptable values can be achieved for all three resolution

parameters;  even for measurement times as short as 100 ms, a density uncertainty of 5% is

possible at a grid resolution n = 8, for the chosen values of d, ms and S0.  Another implication

of this result is that if the dynamic response requirement is relaxed, it is possible to reduce the

source activity, while still maintaining good spatial and density resolution.

6.2.     Source intensity

We will now take a closer look at the choice of source intensity:  By rearranging eq 6.11, S0

may be expressed as a function of the other system parameters:

S0 = 8
πτε p

σ f

f







−2
n5ms

ma







exp di ′k µ p + µ f( )[ ]
µ f di( )2













(6.12)

Recalling that ma is nearly proportional to n, and that the n dependence of εp is very slight, we

see that the required source intensity is approximately proportional to n4;  also, the source

intensity is inversely proportional to the measurement time τ and proportional to the number of

sources used, ms.  The latter dependence may seem a little peculiar;  however, it is caused by

the fact that the solid angle subtended at the source by the detector is inversely proportional to

the number of views, see eq 6.9.
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Figure 6.4 Source intensity requirement S0 versus grid resolution n, with density uncertainty

(σƒ/ƒ) as a parameter, for 137Cs.  The measurement time τ is 1 s, the pipe diameter d

is 15 cm, and the number of sources ms is 7.
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Equation 5.84 is plotted against grid resolution n in Figure 6.4, with density resolution (σƒ/ƒ)

as a plot parameter;  the values of the other parameters are ms = 7, τ = 1 s and d = 15 cm.  As

one would expect, the required source intensity is quite extreme for high spatial and density

resolution;  on the other hand, moderate choices of n and ms enable the use of more

manageable sources.  Note, however, that the total intensity for the whole system is equal to

S0 times ms.

6.3.     Detector countrate

If we consider the maximum total detector countrate Imaxε0-1, we may relate this to the density

resolution and the spatial resolution, using eq 6.1 and the expression for the countrate

requirement as function of raysum uncertainty level, eq 5.26.

Imax

ε0

= 1
ε0τ

σ f

f





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−2
n3

mams
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


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exp di ′k µ p + µ f[ ] − kdµ p( )
µ f di( )2













(6.13)

The countrate requirement is seen to be it is inversely proportional to the square of (σƒ/ƒ) and

roughly proportional to the square of the gridsize n.  Also, the photon energy (isotope) and

pipe diameter dependence is stronger than for the raysum uncertainty based relation eq 6.11;

see our earlier discussion of eq 5.26.

Bearing in mind that the countrate gets increasingly pipe diameter and energy sensitive as the

grid resolution increases (through photofraction variation), see Figures 5.25 - 5.27, we have

chosen the isotope 137Cs for our countrate behaviour examples:  In Figure 6.5, we have

plotted the total countrate against pipe diameter d, with grid resolution n as a parameter;  the

relative density resolution (σƒ/ƒ) is 0.02, the measurement time τ = 1 s and the number of

sources ms is 7.

In Figure 6.6, we have plotted the total countrate Imaxε0-1 as a function of the grid resolution

n, with the relative density resolution as a parameter, and for 15 cm pipe diameter;  as above,

7 sources are used, and the measurement time is one second.
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parameter.  The isotope used is 137Cs, the measurement time τ  is 1 s, the relative
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Figure 6.6 The maximum total countrate Imaxε0
-1 versus grid size n, and with relative density

resolution (σƒ/ƒ) as a parameter.  The isotope used is 137Cs, the measurement time τ
is 1 s, the pipe diameter d is 15 cm, and the number of views ms is 7.

Figure 6.5 is a reminder that the isotope should be chosen with care;  for small pipe diameters,

the countrate requirement rises sharply, and a lower energy isotope should be chosen.  Also,

the strong grid resolution dependence is clearly shown.  Figure 6.6 shows typical countrate

levels for a reasonably intelligent choice of isotope for the pipe diameter in question, for

different levels of density resolution, or relative pixel density uncertainty;  it is seen that high



159

spatial and density resolution require detectors of extreme countrate capability;  however, quite

good performance may be achieved with more standard detectors.

The photofraction values used are for BGO detectors, which have a scintillation decay time of

300 ns.  In pulse counting mode, the readout circuit time constant would be chosen so that the

pulse width would be about a microsecond, and the maximum useful detector countrate would

then be limited to a few hundred thousand counts per second.  While such a countrate

capability is fully adequate for i.e. a relative density uncertainty of 0.01, with a grid resolution

n equal to 8, and at a measurement time of one second, it is realized that improvement of any

of the resolution parameters (density, spatial, temporal) with the others kept constant, requires

detectors having better countrate capability.

The countrate problem as such could be solved by using current-mode detector readout;

unfortunately, this would also remove the possibility of minimizing raysum measurement

errors due to scattered photons by discriminating detected photons by energy.  The only

possibility left is then to devise an scatter correction algorithm, which adjusts the measured

raysums using a preliminary image reconstructed from raw raysum data, and then uses the

corrected raysums to generate the final (improved) image.  It is clear that a careful study of the

photon transport in the imaging system would then be required.

Another option is to select a detector material having shorter scintillation decay time;  since

good detection efficiency is also required, the only realistic choice is GSO:  If the loss of

detection efficiency (compared to BGO) is acceptable, GSO offers superior countrate

capability, since its decay time is 5 times shorter than that of BGO.

6.4.     Overall system performance

In the above analysis, we have taken the density resolution of the imaging system to be equal

to the relative uncertainty in the pixel densities caused by the propagation of raysum

measurement statistical fluctuation uncertainty into the reconstruction image.  We have thus

ignored the possible effects of other types of raysum measurement errors, i.e. finite beam

width errors and errors caused by detection of scattered radiation:  The impact of these errors

may be minimized by taking suitable precautions, such as using relatively narrow detectors,

and by using collimators and energy discriminating detectors.

Under these assumptions, the relative density resolution is given by eq 6.11:  However, the

overall pixel density precision of the system is not determined by the above defined density

resolution alone, but also by the average reconstruction error per pixel, Rabs, defined in

Chapter 4.  When comparing these contributions, it must be noted that since eq 6.11 have
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been derived for the case of (normalized) raysum values p equal to unity, the image pixel

densities would be equal to unity as well.  This means that the absolute (normalized) pixel

density resolution is in fact equal to the relative value given by eq 6.11, and (σƒ/ƒ) and Rabs

are directly comparable quantities.

In Chapter 4, several systems (single and dual energy) were analyzed with respect to the

reconstruction error;  in our above analysis of the density resolution, we have used system

parameters corresponding to single energy System 1, and a direct comparison with this system

is therefore possible:

In Figure 4.18, the Rabs values for System 1 are plotted against grid resolution n and with the

number of sources (views) as a parameter, and in Figure 6.2 (σƒ/ƒ) have been plotted in the

same way.  The striking feature of these two plots is the fact that while the reconstruction error

decreases with increasing grid resolution and number of sources, the density uncertainty

increases;  as we have mentioned before, this means that a compromise must be made when

choosing the grid resolution and the number of sources, since low density uncertainty and low

reconstruction error are seen to be conflicting requirements.

While the density uncertainty values given in Figure 6.2 are for one specific choice of pipe

diameter (15 cm), source intensity (100 mCi) and measurement time (1 s), and thus represent

a rather arbitrary chosen example, it is interesting to note that at n = 8 and ms = 7, the density

uncertainty and the pixel error are both approximately equal to 0.016, which is a very

satisfactory level of pixel precision.

Unfortunately, System 1 is not practically realizable, since it requires the fans of rays to cover

the entire pipe cross section, which cannot be done in practice, since the raysums measured

close to the pipe periphery would contain excessive uncertainty, see Figure 5.2.  However,

single energy System 4 (see Section 4.2.2) is more realistic, since in this case, the fans cover

only about 75% of the pipe cross section.  In this system, the number of rays per view, ma, is

nominally 75% of the value for System 1, but otherwise the systems are identical.  Therefore,

the density uncertainty level for System 4 may be found from eq 6.11, simply by correcting

for the different ma value, i.e.by dividing σƒ (= σƒ/ƒ) by the square root of 0.75, which

causes an absolute uncertainty increase of about 15%1.

For our system example above (n = 8 and ms = 7), this means that the density uncertainty

rises to about 0.018;  the System 4 reconstruction error (see Figure 4.24), however, is about

1Also note that the lower number of rays per view cause the required source intensity and maximum detector

countrate to be 33% greater for System 4 than for System 1, see eq 6.12 and eq 6.13.
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twice this value;  recall that the reconstruction error is quite sensitive to a reduction of the fan

coverage of the pipe.  A closer look at Figures 4.24 and 5.29 reveals that using a higher

number of sources would be better in this case;  at ms = 11, the density uncertainty and the

average reconstruction error are both approximately equal to 0.024, which is still a quite good

pixel precision level:  If we consider the case of gas-oil-water flow, the (relative) oil density

would normally be about 0.9 compared to the water component, and the system specified

above would in fact be able to distinguish between the (separated) oil and water components.

The above discussion applies to the accuracy with which the individual pixel densities may be

determined.  However, as described in Chapter 4, the void fraction may be estimated using the

weighted average of the pixel densities.  The reconstruction error contribution to the precision

of this estimate, Evoid, were analyzed in Chapter 4;  the contribution from statistical fluctuation

measurement error, however, is roughly equal to pixel density uncertainty divided by the

square root of the number of pixels.  For the System 1 example above, with n = 8 and ms = 7,

the reconstruction void fraction error is 0.006, while the pixel density uncertainty (standard

deviation) is about 0.002;  for System 4, the figures are similar.  It is seen that very precise

void fraction measurement is possible, although one would rarely use a complex imaging

system as a void fraction gauge.

The system examples discussed above clearly represent realistic systems as far as source

intensity requirement and detector countrate are concerned;  also, the performance offered with

respect to pixel density precision, spatial resolution and dynamic response is clearly quite

respectable.  For other system requirements, the picture may change considerably, and

because of the large number of independent variables in eq 6.11, it is difficult to produce plots

covering all possible combinations of system parameters.  However, using eq 6.11, the

accompanying relations for source intensity (eq 6.12) and detector countrate (eq 6.13), and the

reconstruction error graphs presented in Chapter 4, the performance and design parameters of

a wide range of single energy flow imaging systems may be established.
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7 . Summary, conclusion and further work

Summary and conclusion

In this work, we have performed a theoretical analysis of the design and performance of

nonrotating, multisource, multidetector γ-ray systems for flow imaging;  to provide the

groundwork for this analysis, we have described the basics of γ-ray theory and CT

mathematics in Chapters 2 and 3, respectively.

The basic geometry relations for these systems have been derived in Chapter 4, where we also

have analyzed the image errors associated with the reconstruction algorithm, with the grid

resolution and with the raysum measurement strategy.  For this purpose, we have developed

the simulator TOM1, which has turned out to be an indispensable tool in the analysis process.

The conclusion of the measurement strategy analysis is that using a single energy system is

clearly the better choice;  for dual (or triple) energy systems, the advantage gained by the

increased number of measured raysums, is lost because of the nonideal distribution of the rays

across the pipe interior.  For single energy systems, the use of a higher reconstruction grid

resolution and a higher number of sources (views) generally improves the precision of the

image.

After having described how the actual raysum measurement is done in practice, we have done

a survey of the factors contributing to the raysum measurement uncertainty (Chapter 5);  these

are finite beam width effects, detection of scattered radiation, and statistical fluctuations in the

number of detected photons.  We have investigated the latter contribution thoroughly, and it is

shown how it influences the choice of isotope and detector system for a given pipe dimension;

to minimize the uncertainty, high energy isotopes (such as 22Na) should be chosen for large

pipe dimensions, while lower energy isotopes (such as 137Cs or 133Ba) are used for smaller

pipes.  It also turns out that the detector countrate capability requirement is minimized in this

way.

In any event, the detector system should have the best possible detection efficiency;  this

dictates the use of high-Z high-density scintillation detectors such as BGO.  In order to be able

to compute the actual levels of raysum uncertainty for a given system, and the detector

countrate capability required, it is necessary to know the photopeak detection efficiency of the

detectors used.  For this reason, we have developed the Monte Carlo simulation program

called DSIM, which can compute detection efficiencies for NaI and BGO detectors of various

shapes, and for different source geometries.  DSIM have not been verified directly against
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experimental data;  however, for the photon energy range of interest to us, its results agree

nicely with those of the state-of-the art radiation transport simulator EGS, and we feel

confident that DSIM behaves correctly.

Using DSIM, we have calculated the necessary BGO detection efficiency data required for the

analysis of raysum uncertainty and detector countrate requirement associated with the single

energy systems 1 and 4 described in Chapter 4, and raysum uncertainty levels and detector

countrate requirements have been calculated for these systems.

However, our main concern is not the raysum uncertainty in itself, but rather the pixel density

uncertainty it causes by propagating through the reconstruction algorithm:  In Chapter 6, we

have developed an expression relating the pixel density uncertainty to the main system

parameters;  these are spatial resolution (reconstruction grid resolution), measurement time,

pipe diameter, photon energy (isotope), and the number and intensity of the sources used.  It

turns out that very acceptable levels of density uncertainty may be achieved with our system,

even when using a short measurement time and reasonable spatial resolution.

Finally, we consider the overall precision of the reconstructed image pixel densities (see

Section 6.4);  this is determined by the level of pixel density uncertainty due to raysum

uncertainty propagation, and by the reconstruction error discussed in Chapter 4.  We find that

the possible performance of our imaging system is very acceptable:  For the System 4 example

considered in the previous chapter, the average reconstruction error for a reconstruction grid

of 8 × 8 pixels is about 3.5% of full scale, and the pixel density uncertainty is about 1.8% of

full scale, for a 15 cm diameter pipe, using a measurement time of one second and seven 100

mCi 137Cs sources.

We may then conclude that the nonrotating, multisource, multidetector concept analyzed in this

work, represents an unique possibility for designing a high-quality flow imaging system.

Further work

Our reconstruction error analyzer, TOM1, only handles relatively simple two-phase regime

models, so it is of great interest to modify this program to include the possibility of simulating

more complex regimes, including three-component fluid-fluid-gas regimes;  this would enable

us to obtain a better knowledge of the general reconstruction error level.  Also, simply by

including the computation of the standard deviations of the reconstruction error estimators, it

is possible to determine if there exist systematic differences between the error levels for

different classes of regimes, as the simulation results for the “optimal” system may indicate,

see Figures 4.16 and 4.17.



164

Since the amount of available raysum data is low for the systems we have studied, it may also

be worthwhile to consider other types of reconstruction algorithms, or modifications of

existing ones.  For example, one could try to design algorithms which utilize the fact that

many flow regimes exhibit strong “piecewise” homogeneity.

In the present work, we have identified several sources of raysum measurement error;

however, only the statistical fluctuation errors have been analyzed thoroughly, and then only

for one detector type (BGO), one pipe material, and for a limited range of photon energies

(isotopes).  A simple but very interesting extension to this work would be to consider the use

of GSO detectors, which offer improved countrate capability compared to BGO.

It has been established that the finite beam width error is regime dependent, so to study the

impact of this effect, one would have to use a technique similar to that used for analyzing the

reconstruction error:  By using a model which incorporates finite beam width effects in the

computation of raysums, and then feeding these raysums to a reconstruction algorithm, the

effect on the reconstructed image may be analyzed;  the resulting images are compared with

ideal images and images reconstructed from ideal raysum values, see Chapter 4.

The scattered radiation raysum errors may be investigated in the same way:  In this case, a full

photon transport model is required for the entire imaging system, including the detectors,

since the detector response function and energy resolution influence the magnitude of scattered

radiation errors.  For this purpose, Monte Carlo techniques would be used;  a model

incorporating charged particle transport will probably be required for accurate detector

response function modelling.  The resulting raysum errors and their impact on image quality

are then analyzed in the same way as the finite beam width errors.

As mentioned before, the effect of regime dependent raysum measurement errors could be

reduced by adaptive compensation algorithms;  such procedures may be devised from the

results of the analysis of finite beam width and scattered photon raysum measurement errors.

For model verification purposes, and because detector energy resolution and countrate

capability are important parameters in the system analysis, a high stability detector test system

should be designed, and suitable detector types should be tested and optimized with respect to

countrate capability and energy resolution.  This would provide the basis for selection of a

suitable detector for the imaging system.

Finally, based on the results of the error analysis and detector development described above, a

prototype system should be built, and tested statically and dynamically.
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Appendix A

This appendix contains the DSIM detection efficiency simulation results:  Tables A.1, A.2 and

A.3 contain DSIM and EGS data for bare, uncased NaI and BGO detectors;  the latter are

taken from [24].  The calculated BGO photopeak efficiencies, used in the raysum uncertainty

and detector countrate analysis in Chapter 5, are listed in Tables A.4, A.5 and A.6, for Eγ =

356 keV (133Ba), 661.6 keV (137Cs) and 1.275 MeV (22Na), respectively;  see Section 5.3

for further explanation.

Table A.1 EGS and DSIM photofractions for bare 3” × 3” NaI detectors, for an isotropic source at

10 cm distance, and for photon energies in the range from 320 keV to 10 MeV.  EGS

and DSIM statistical uncertainties quoted in brackets are standard deviation estimates in

last digit of photofraction value.

Eγ [MeV] ε0

EGS:  No charged

particle transport

EGS:  Charged

particle transport

DSIM:  No charged

particle transport

0.320 – 0.829(7) 0.843(5)

0.662 0.575(3) 0.576(9) 0.570(4)

1.28 0.395(3) 0.381(5) 0.392(8)

2.75 0.266(5) 0.232(7) 0.265(7)

6.00 0.174(5) 0.108(5) 0.172(6)

8.00 0.159(4) 0.074(3) 0.153(5)

10.0 0.147(6) 0.053(1) 0.151(5)
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Table A.2 EGS and DSIM photofractions and interaction ratios for bare 3” × 3” NaI detectors,

for a broad parallel beam normally incident on the detector, and for the photon energies

in the range from 300 keV to 10 MeV.  EGS model includes charged particle transport,

whereas DSIM model does not.  EGS and DSIM statistical uncertainties quoted in

brackets are standard deviation estimates in last digit of calculated values.

Eγ [MeV] ε0 εtot

EGS DSIM EGS DSIM

0.3 0.879(4) 0.884(4) 0.989(5) 0.987(1)

0.5 0.700(3) 0.698(5) 0.926(6) 0.923(2)

0.8 0.519(5) 0.520(4) 0.832(6) 0.838(3)

1.0 0.459(6) 0.461(4) 0.805(5) 0.801(4)

1.5 0.358(2) 0.367(5) 0.725(2) 0.721(6)

2.0 0.304(6) 0.325(6) 0.687(3) 0.690(5)

3.0 0.218(6) 0.258(3) 0.659(6) 0.646(5)

4.0 0.168(5) 0.218(3) 0.626(7) 0.632(6)

5.0 0.138(4) 0.204(5) 0.613(4) 0.625(5)

6.0 0.114(3) 0.185(4) 0.616(6) 0.621(6)

8.0 0.070(5) 0.159(6) 0.626(6) 0.626(5)

10.0 0.056(2) 0.144(4) 0.642(4) 0.639(4)
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Table A.3 EGS and DSIM photopeak detection efficiencies for bare 3” × 3” NaI and BGO

detectors, for an isotropic source at 10 cm distance, and for photon energies in the

range from 300 keV to 10 MeV.  EGS values taken from Figure 13 in [24], the quoted

uncertainties are reading uncertainties only.  DSIM statistical uncertainties quoted in

brackets are standard deviation estimates in last digit of calculated values.  EGS model

includes charged particle transport, whereas DSIM model does not.

Eγ [MeV] εp

NaI BGO

EGS DSIM EGS DSIM

0.3 0.67±0.01 0.676(2) 0.90±0.02 0.903(3)

0.4 0.53±0.01 0.541(6) 0.85±0.02 0.845(3)

0.5 0.44±0.01 0.453(5) 0.80±0.02 0.790(4)

0.6 0.37±0.01 0.386(6) 0.74±0.02 0.736(4)

0.8 0.29±0.01 0.297(3) 0.66±0.01 0.659(6)

1.0 0.24±0.01 0.247(4) 0.60±0.01 0.597(7)

1.5 0.165±0.005 0.181(3) 0.48±0.01 0.496(4)

2.0 0.135±0.005 0.140(4) 0.41±0.01 0.425(4)

3.0 0.085±0.002 0.103(4) 0.33±0.01 0.366(6)

4.0 0.064±0.002 0.087(1) 0.29±0.01 0.322(6)

5.0 0.053±0.001 0.078(3) 0.27±0.01 0.326(7)

6.0 0.045±0.001 0.072(2) 0.25±0.01 0.309(5)

8.0 0.031±0.001 0.063(2) 0.210±0.005 0.313(6)

10.0 0.0220±0.0005 0.060(3) 0.175±0.005 0.320(4)
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Table A.4 DSIM calculated photopeak efficiencies for BGO detectors at 356 keV photon energy

(133Ba), for gridsizes ranging from 2 to 16 and pipe diameters ranging from 2.5 to 30

cm;  see Section 5.3 for further explanation.  Statistical uncertainties are below 1% in

all cases, see Section 5.3.5.

(n, d) εp

2.50 3.75 5.00 7.50 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

2 0.866 0.887 0.894 0.904 0.910 0.913 0.915 0.916 0.916 0.919 0.919 0.919 0.919

3 0.841 0.868 0.883 0.897 0.901 0.904 0.910 0.910 0.912 0.913 0.916 0.916 0.916

4 0.823 0.852 0.867 0.885 0.893 0.901 0.905 0.908 0.909 0.913 0.912 0.913 0.914

5 0.806 0.837 0.856 0.876 0.888 0.896 0.900 0.903 0.907 0.908 0.910 0.909 0.912

6 0.790 0.822 0.842 0.868 0.883 0.890 0.895 0.899 0.903 0.905 0.907 0.908 0.909

7 0.774 0.810 0.833 0.857 0.873 0.884 0.890 0.894 0.898 0.901 0.902 0.907 0.907

8 0.764 0.798 0.821 0.850 0.866 0.879 0.886 0.891 0.895 0.900 0.901 0.901 0.905

9 0.757 0.789 0.814 0.843 0.863 0.874 0.880 0.886 0.891 0.895 0.898 0.900 0.901

10 0.745 0.779 0.807 0.836 0.855 0.867 0.877 0.883 0.888 0.890 0.895 0.897 0.900

11 0.734 0.770 0.797 0.831 0.851 0.862 0.873 0.878 0.883 0.890 0.893 0.897 0.897

12 0.730 0.765 0.789 0.822 0.843 0.857 0.865 0.877 0.880 0.884 0.891 0.892 0.895

13 0.722 0.755 0.782 0.817 0.839 0.854 0.863 0.871 0.877 0.882 0.885 0.890 0.891

14 0.715 0.752 0.775 0.811 0.835 0.848 0.857 0.868 0.874 0.879 0.884 0.887 0.890

15 0.713 0.747 0.768 0.806 0.829 0.842 0.855 0.864 0.871 0.877 0.882 0.884 0.890

16 0.710 0.741 0.764 0.800 0.824 0.841 0.850 0.859 0.867 0.872 0.879 0.883 0.886
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Table A.5 DSIM calculated photopeak efficiencies for BGO detectors at 661.6 keV photon energy

(137Cs), for gridsizes ranging from 2 to 16 and pipe diameters ranging from 2.5 to 30

cm;  see Section 5.3 for further explanation.  Statistical uncertainties are below 2% in

all cases, see Section 5.3.5.

(n, d) εp

2.50 3.75 5.00 7.50 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

2 0.687 0.741 0.775 0.814 0.834 0.848 0.854 0.859 0.865 0.870 0.872 0.873 0.877

3 0.627 0.685 0.727 0.776 0.803 0.822 0.834 0.842 0.851 0.856 0.856 0.861 0.866

4 0.580 0.643 0.689 0.744 0.776 0.799 0.812 0.825 0.833 0.842 0.846 0.852 0.854

5 0.546 0.608 0.650 0.712 0.750 0.778 0.794 0.807 0.817 0.828 0.833 0.840 0.845

6 0.521 0.582 0.625 0.688 0.725 0.755 0.777 0.795 0.806 0.814 0.822 0.828 0.833

7 0.501 0.556 0.599 0.665 0.704 0.736 0.760 0.778 0.791 0.799 0.808 0.819 0.823

8 0.485 0.537 0.581 0.643 0.689 0.719 0.744 0.763 0.775 0.789 0.797 0.806 0.816

9 0.467 0.522 0.564 0.626 0.670 0.704 0.726 0.746 0.764 0.779 0.787 0.797 0.803

10 0.460 0.506 0.547 0.608 0.654 0.689 0.714 0.733 0.752 0.765 0.779 0.786 0.794

11 0.451 0.498 0.532 0.595 0.637 0.675 0.698 0.720 0.741 0.754 0.767 0.777 0.784

12 0.440 0.487 0.520 0.581 0.625 0.657 0.686 0.708 0.730 0.745 0.758 0.767 0.776

13 0.430 0.477 0.513 0.568 0.613 0.646 0.674 0.698 0.719 0.736 0.747 0.757 0.765

14 0.425 0.469 0.500 0.553 0.602 0.638 0.662 0.687 0.707 0.724 0.738 0.750 0.761

15 0.419 0.460 0.494 0.546 0.590 0.624 0.656 0.678 0.697 0.715 0.731 0.740 0.752

16 0.413 0.453 0.485 0.539 0.577 0.615 0.641 0.667 0.689 0.704 0.717 0.732 0.743
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Table A.6 DSIM calculated photopeak efficiencies for BGO detectors at 1.275 MeV photon

energy (22Na), for gridsizes ranging from 2 to 16 and pipe diameters ranging from 2.5

to 30 cm;  see Section 5.3 for further explanation.  Statistical uncertainties are below

2% in all cases, see Section 5.3.5.

(n, d) εp

2.50 3.75 5.00 7.50 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0

2 0.484 0.565 0.618 0.685 0.727 0.753 0.769 0.785 0.795 0.801 0.806 0.813 0.817

3 0.406 0.482 0.541 0.619 0.668 0.704 0.727 0.747 0.760 0.771 0.779 0.787 0.793

4 0.360 0.429 0.483 0.561 0.619 0.657 0.689 0.711 0.724 0.743 0.751 0.761 0.772

5 0.326 0.390 0.437 0.520 0.575 0.619 0.648 0.672 0.696 0.713 0.725 0.739 0.749

6 0.301 0.359 0.408 0.482 0.540 0.584 0.617 0.643 0.666 0.686 0.702 0.715 0.727

7 0.279 0.335 0.379 0.453 0.512 0.553 0.589 0.614 0.639 0.660 0.679 0.694 0.708

8 0.270 0.317 0.358 0.428 0.480 0.528 0.565 0.593 0.618 0.639 0.659 0.676 0.685

9 0.256 0.300 0.340 0.405 0.460 0.501 0.539 0.571 0.597 0.618 0.636 0.655 0.669

10 0.246 0.288 0.325 0.388 0.440 0.483 0.521 0.546 0.573 0.595 0.618 0.635 0.652

11 0.237 0.277 0.313 0.370 0.423 0.464 0.500 0.530 0.555 0.577 0.600 0.620 0.634

12 0.230 0.269 0.303 0.361 0.404 0.446 0.480 0.513 0.543 0.563 0.583 0.600 0.617

13 0.223 0.261 0.291 0.347 0.394 0.432 0.467 0.499 0.524 0.547 0.566 0.586 0.603

14 0.218 0.252 0.283 0.337 0.380 0.420 0.452 0.483 0.508 0.533 0.552 0.571 0.587

15 0.217 0.249 0.274 0.328 0.370 0.405 0.439 0.470 0.496 0.517 0.540 0.558 0.574

16 0.209 0.241 0.268 0.316 0.358 0.396 0.427 0.457 0.483 0.506 0.525 0.545 0.565
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