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Outline
The main focus of this thesis is to develop and analyze a fast and accurate hybrid
method, simplified integral equation (SIE) modeling, for modeling of electromag-
netic scattering from an underground target. The method consists of solving a
finite volume problem in a localized region containing the target, and using the
integral equation (IE) method to obtain the field outside that region. The hybrid
method thus replaces the dense-matrix part of the rigorous IE method by sparse-
matrix calculations based on an approximation of Maxwell’s Equations.

The thesis is divided into two parts. Part I, is devoted to overview and back-
ground theory and is structured as follows:

Chapter 1 provides a general introduction and presents a general framework
of forward and inverse modeling.

An introductory discussion of model parameters, such as porosity, saturation
and electrical conductivity, is presented in Chapter 2. Emphasis has been placed
on the relationship between conductivity and saturation through Archie’s law.

Exploration and monitoring of a petroleum reservoir are important applica-
tions of the marine controlled source electromagnetic (CSEM). These applications
are presented in Chapter 3.

Chapter 4 provides a review of different electromagnetic modeling ap-
proaches. In addition, detailed derivation of integral formulation of Maxwell’s
Equations is presented.

Different solutions and approaches in the frequency domain are discussed in
Chapter 5. Emphasis has been placed on IE and SIE methods.



In Chapter 6, I present a general discussion concerning the computational
work between finite difference (FD), IE and SIE methods. Then, I review iterative
methods and preconditioner techniques that can be used to solve linear system of
equations. Derivation of the preconditioners used with IE and SIE methods are
given. In addition, I discuss how one can evaluate the cost of an algorithm by
counting the number of floating point operations.

Chapter 7 gives a discussion of the principles of order of magnitude analy-
sis for two examples of standard ordinary differential equations, as well as the
challenges presented by Maxwell’s Equations.

In Chapter 8, I summarize the main results of papers included in Part II.
In Appendix A, I give detailed derivation of the energy inequality for an

anomalous field. The energy inequality is at the heart of the preconditioner used
with IE modeling.

The second part, Part II, consists of, in total, five papers produced during the
work of the thesis, the papers included in part II are:

Paper A: Feasibility of simplified integral equation modeling of low-
frequency marine CSEM with a resistive target. Published in Geophysics,
Volume 74, Issue 5, P. F107-F117, 2009.

Paper B: Numerical investigation of the range of validity of a low-frequency
approximation for CSEM. Published in 72nd EAGE Conference and Exhibition,
Barcelona, Expanded Abstracts, P.D34–D38, 2010.

Paper C: An approximate hybrid method for electromagnetic scattering
from an underground target: Part 1 – Accuracy and range of validity.
Submitted to IEEE Transactions on Geoscience and Remote Sensing.
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Chapter 1

Introduction

As stated by Richard Smalley, Nobel Laureate in Chemistry in 1996, humanity’s
top ten problems [103] are:

1. Energy

2. Environment

3. Medicine

4. Food

5. Water

6. Poverty

7. War and terrorism

8. Education

9. Population

10. Democracy.

Cooking a dinner, heating a house, lighting a street, keeping a hospital open, run-
ning a factory: all require energy. Energy is thus at the heart of everybody’s qual-
ity of life and a crucial factor for economic competitiveness and employment. But
global population and energy needs increase hand-in-hand and the current fossil-
fuel (coal, oil and gas) based energy system is not sustainable as it contributes
substantially to climate change and depends heavily on imports from very few
countries. Answers to the dual challenge of satisfying increasing energy needs
while combating climate change are urgently needed. Energy research can play
an essential role.
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In this study, we are interested in energy (increase oil recovery and explore
more petroleum reservoirs) and environment (Carbon dioxide (CO2) storage)
problems. There are many techniques to be used for exploring and monitoring
petroleum reservoirs, such as, seismic reflection and refraction, controlled source
electromagnetic (CSEM), gravity, and ground-penetrating radar. Here we focus
on marine CSEM applications (see chapter 3) (exploration and monitoring).

It is becoming increasingly difficult for oil companies to supply enough fossil
fuels to meet a growing demand. Hence, exploring new oil fields, as well as
increasing recovery rates from already existing fields, is necessary. 4D (three
dimensional (3D) space plus time) reservoir monitoring is important to control of
the production process. For detail on reservoir monitoring and characterization
see, for example, Calvert [23].

To increase oil recovery at a particular site, knowledge about the flow pro-
cesses, together with a detailed description of the geology, is important. A reser-
voir typically consists of different porous media described by multiple rock and
fluid parameters. These parameters can vary spatially within the reservoir during
production. The nature of most oil reservoirs makes direct measurement of reser-
voir parameters infeasible. One must, therefore, rely on indirect measurements to
determine the physical characteristics of a reservoir. This information can then
be translated into a mathematical reservoir model. Extensive research is done in
developing methods to make the modeling of reservoirs as accurate and reliable
as possible. However, the modeling framework and software tools developed for
reservoir simulation purposes, may also apply to other fields of subsurface flow.
Flow in groundwater reservoirs and CO2 storage facilities, for example, can be
described in a similar framework as flow in petroleum reservoirs. In this study,
we consider only petroleum reservoirs.

Most of the electromagnetic (EM) applications in geophysics attempt to mea-
sure the resistivity of earth materials. The EM properties of a medium are de-
scribed by the electric permittivity, magnetic permeability, and electric conductiv-
ity (resistivity is the reciprocal of conductivity; see Section 2.1).

Figure 1.1 shows an example of a flow chart describing the forward and in-
version processes. In the forward modeling sequence, one starts with reservoir
flow modeling, continues with rock physics modeling, and ends with EM model-
ing. In reservoir flow modeling, one solves for the state variables, i.e. saturation
and pressure, given the model parameters, i.e. porosity and permeability. The
principle tools are the equations for fluid flow in porous media. In rock physics
modeling (see Chapter 2) one predicts EM properties, such as conductivity, from
the state variables. In the EM modeling, one considers the problem of finding
the EM simulated data, given the electric conductivity, by solving a system of
partial differential equations (PDEs) known as Maxwell’s Equations (see Chapter
4). There are many techniques to be used for solving such systems, for example
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Figure 1.1: Flow chart illustrating the process of forward and inverse modeling.

finite difference (FD), finite element (FE) and integral equation (IE) methods (see
Chapter 5).

In the EM inversion, one considers the problem of estimating the spatial ex-
tent and conductivity values of an anomalous domain (embedded in a background
medium with a known conductivity) based on EM radiation data from various
subsea sedimentary layers. Details, of EM forward and inversion modeling are
illustrated in Figure 1.2.

The actual detection of a potential petroleum reservoir is achieved through in-
version of the EM data received by sea floor instruments. Inversion of EM data
requires a number of repeated solutions with a numerical forward model in an
iterative process. The computational efficiency of the forward model will, there-
fore, strongly influence the computational efficiency of the inversion. Thus, the
emphasis of this thesis is to develop and analyze a fast and accurate forward mod-
eling method to be used in an optimal setting with inversion modeling (refer to the
forward calculations part of the flow chart in Figure 1.2).
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Chapter 2

Rock Physics

The term rock physics embodies the range of techniques that relate the geological
properties (e.g. porosity, lithology, saturation) of a rock under certain physical
conditions (e.g. pressure, temperature) with the corresponding EM properties (e.g.
conductivity). These techniques can be used in rock physics modeling, - to predict
the EM properties from fluid saturations - or for rock physics inversion - to predict
saturation from EM observations.

Accurate knowledge of rock and fluid properties is required for the efficient
development, management and prediction of future performance of the oil field.
In this chapter, I describe some important model parameters, such as porosity,
saturation and electrical conductivity, and discuss how these parameters interact
using both the empirical Archie’s law and the modified version of it.

2.1 Model Parameters

Porosity

Consider the reference volume V . Let VM and VP denote the volume of the matrix
and the void space, respectively. The bulk volume of V is VB. The porosity is
defined as the volume fraction of the void space to the bulk space,

Φ =
VP

VB

. (2.1)

It is, however, common practice to discuss effective porosity, the network of con-
nected pores that contribute to the fluid flow. Thus, VP is replaced by the volume
of the interconnected pores.
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Saturation

In the pore space, different fluid phases such as oil, water and gas, exist. The
saturation of a phase is the fraction of pore volume in a porous media occupied by
a given phase α

Sα =
Vα

VP

, (2.2)

where Vα is the volume filled with phase α and VP is the pore volume. The pores
are fully saturated, such that

n∑
α=1

Sα = 1, (2.3)

where n is the number of phases. This also implies that
n∑

α=1

Vα = VP . (2.4)

Electrical Conductivity

Electrical conductivity, σ in siemens per meter (S m−1, occasionally mho m−1)
and its reciprocal, electrical resistivity, ρ = σ−1 in Ohm-meters (Ω m) are both
used to describe the same quantity, depending on the context. Electrical conduc-
tivity is a general property of a material and is defined as the constant of propor-
tionality, σ, that arises in Ohm’s law:

J = σE, (2.5)

where J is current density and E is the electric field intensity. This is perhaps
the most of the constitutive relations that couple Maxwell’s Equation (see Chapter
4). Because both the electric field intensity and the current density are vectors,
the quantity σ must be a tensor, which in Cartesian coordinates will have the
components

σ =

⎡
⎣ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤
⎦ .

The conductivity tensor has a simple form if two of the orthogonal coordinate di-
rections are selected to lie in the direction of maximum and minimum conductivity
(the principle directions of the conductivity tensor)

σ =

⎡
⎣ σxx 0 0

0 σyy 0
0 0 σzz

⎤
⎦ ,



2.2 Relationship between Resistivity and Saturation 9

that is, where the nondiagonal terms are zero. If the coordinate system is arbitrar-
ily oriented, the off-diagonal terms will have symmetrical values written as

σxy = σyx,

and so on. In isotropic materials, the three principle values of conductivity are all
the same, and, in effect, conductivity is a scalar quantity. In isotropic materials,
the electric field vector and the current density vector are collinear; current flows
along the direction of the applied electric field. In an anisotropic material, defined
as one in which the three principal values of the conductivity tensor are not equal,
the current density will not necessarily flow in the direction of the applied electric
field. Coincidence of directions occurs only when the electric field is directed
along one of the principal directions of the tensor conductivity.

2.2 Relationship between Resistivity and Sat-
uration

The most important aspect dealing with EM mechanics comes from the porosity
of the material and its fluid content. The porosity of marine sediments may be
estimated using electrical conductivity measurements offered by EM investigation
in assistance with Archie’s Equation. Examining electrical conductivity in clean
sands, Archie [3] suggested that the specific resistivity of a water-saturated rock
ρo is proportional to the resistivity of the pore water ρw:

ρo ∝ ρw. (2.6)

This proportionality suggests that the water is the only conducting agent (i.e. clean
rocks) [99]. This led Archie to introduce the formation resistivity factor F where

F =
ρo

ρw

, (2.7)

Since Equation (2.7) expresses the resistivity factor related to water with a non-
conductive matrix, it is a correlation with respect to connected porosity. This led
Archie to relate the porosity Φ and the formation resistivity factor

F =
a

Φm
, (2.8)

where a is an empirical quantity and m is the cementation exponent [99]. From
Equations (2.7) and (2.8), we get Archie’s law for clean rocks

ρo = aΦ−mρw. (2.9)
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The two parameters a and m can be derived from laboratory measurements and
vary between 0.5 < a < 2.5 and 1.5 < m < 3, see e.g. [3, 42].

In some rocks, part of the pore space may be occupied by air (above the water
table) or by natural gas, CO2, or petroleum, all of which are insulators. In such a
case, Archie’s law, Equation (2.9) is modified as follows

Sw = (aΦ−mρwρ−1
o )1/n, (2.10)

where Sw is water saturation. Here, n is the saturation exponent and has the
common value of 2 in strongly water-wet reservoir rocks. An exact computation
of water saturation using modified Archie’s law, Equation (2.10) is based on an
accurate values of Archie’s parameters a, m, and n. Hamada [55] presented three
techniques to determine Archie’s parameters. Other modifications of Archie’s law
can be found, e.g. [127].

Similar remarks can be made for seismic data which have been used success-
fully for many years to map structure. Amplitude variation with offset and acous-
tic and elastic impedance inversion are used to obtain seismic rock properties such
as elastic moduli and possibly density. These in turn may be related to mineral-
ogy, porosity and fluid properties through numerous rock physics relationships,
for example those summarized in [78].

Hashin-Shtrikman Bounds

The Hashin-Shtrikman bounds [56] give the upper and lower limits for effective
conductivity σ. The Hashin-Shtrikman bounds are regarded as the best bounds
giving the narrowest possible range, without information on the geometries of
the constituents. For a two-phase composite, the Hashin Shtrikman bounds for
effective conductivity σ are given by

σHS− = σ0 + Φ

(
1

σf − σ0

+
1 − Φ

3σ0

)−1

, (2.11)

σHS+ = σf + (1 − Φ)

(
1

σ0 − σf

+
Φ

3σf

)−1

, (2.12)

where σ0 and σf are the specific conductivities of the matrix solid and the
fluid. Conductivity must lie somewhere between these two bounds (and, indeed,
Archie’s law does). The Hashin-Shtrikman lower bound, σHS− , corresponds to re-
sistive spherical inclusions within a conductive matrix and the Hashin-Shtrikman
upper bound, σHS+ , corresponds to conductive spherical inclusions within a resis-
tive matrix [56].

A more general form of the bounds, which can be applied to more than two
phases, can be found in [18].



Chapter 3

Marine Controlled Source
Electromagnetic Applications

Marine CSEM applications is a very rich area of investigation and development.
While a comprehensive discussion is beyond the scope of this thesis, this chapter
provides results of a literature survey highlighting material from within marine
CSEM pertinent to this study.

The idea of using EM data to analyze the earth’s interior and potentially iden-
tify hydrocarbons is not new. During the last century, EM methods have been
widely used in the mining industry, ground water exploration, and environmental
monitoring. Numerous EM surveys for petroleum exploration have also been car-
ried out on land. Notably, in Russia, Urengoy, the world’s largest gas field was
discovered by the use of EM methods [63].

3.1 Exploration

The marine CSEM technique was introduced by Cox et.al.[37] and has since been
successfully applied to study the oceanic lithosphere and active spreading centers
(see, for example [130, 36, 28, 45, 34, 77]). During recent years marine CSEM
surveys have been used extensively for offshore petroleum exploration (see, for
example [43, 44, 108, 24, 57, 105, 59, 115, 33, 35, 38, 59]).

The concept of remote resistivity surveys is based on the knowledge that the
propagation of an EM field in a conductive subsurface is mainly affected by spa-
tial distribution of resistivity. In marine environments, saltwater-filled sediments
represent good conductors, whereas hydrocarbon-filled sediments represent ex-
amples of resistive inclusions that scatter the EM field. The EM field is scattered
by subsurface inhomogeneities that are recorded by receivers on the seafloor, see
Figure 3.1. The information obtained can be used to estimate the true subsurface
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Figure 3.1: General survey configuration of the marine CSEM method. An elec-
tric dipole towed by the survey vessel generates an EM signal, while the fixed multi-
component EM field receivers located on the seafloor measure the EM response from the
geoelectrical structure beneath the seafloor.

resistivity distribution by applying inversion and migration techniques as well as
numerous other types of analysis.

3.1.1 Acquisition

During a typical marine CSEM survey, Figure 3.1, a set of multicomponent EM
receivers is deployed at the seafloor along survey profile line. Usually these re-
ceivers are dropped from the survey vessel and fall to the seafloor freely. A trans-
mitting horizontal electric dipole typically has a length of several hundred meters
and is towed by the survey vessel via an umbilical cable. This transmitter gener-
ates a low-frequency (typically from 0.1 to 10 Hz) EM field that propagates both
upwards in the seawater and downwards into the sea bottom. The receivers mea-
sure the amplitude and the phase of the electric and/or magnetic fields generated
by the transmitter. The recorded signal is formed both by the primary field from
the transmitter and by the EM response from geoelectrical structures beneath the
seafloor. A review of the technology is provided by Constable and Srnka [35].

There are four basic source types: horizontal electric dipole (HED); vertical
electric dipole (VED); horizontal magnetic dipole (HMD); and vertical magnetic
dipole (VMD). An exhaustive treatment of these source types can be found in [26,
25]. A VMD system measures mainly the response induced by horizontal current
flows and is, hence, relatively insensitive to the thin resistive zones representing a
hydrocarbon reservoir. The HED, HMD and VED systems employ both vertical
and horizontal current flow. Thus, these three source types are preferred when
resistive zones are to be mapped.
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Figure 3.2: Source-receiver geometry can be expressed in terms of the azimuth, defined
as the angle between the axis of the source dipole and the line joining the source and
the receiver. Two extreme geometries can be considered: an azimuth of 0◦(the in-line
geometry), the fields are purely radial (parallel to the line joining the source and receiver).
In the orthogonal direction (broadside geometry), the fields are purely azimuthal.

3.1.2 Modes

In the case of CSEM technique, there are two source-receiver geometries: radial
(in-line), and azimuthal (broadside or cross-line) (Figure 3.2). For the radial mode
(φ = 0◦, 180◦, where φ is the angle between the axis of the source dipole and the
line joining the source and receiver) the azimuthal component of the electric field
Eφ goes to zero; for the azimuthal mode (φ = 90◦, 270◦) the radial component of
the electric field Eρ goes to zero. At azimuths between the two cases the horizontal
fields are composed of both an azimuthal and a radial component.

Physical Behavior

The attenuation of EM fields in a medium of conductivity σ is governed by the
EM skin depth, δd, given by

δd =

√
2

ωμ0σ
, (3.1)

where μ0 = 4π × 10−7 (H m−1) is the free-space magnetic permeability and
ω = 2πf (Hz) is the angular frequency. In other words, skin depth is defined as
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Table 3.1: Attenuation of the EM fields in different mediums for different frequencies.
f \ σ 100 10 3.33 1 0.1 0.01
0.1 159.15 503.29 872.16 1591.55 5032.92 15915.49
1 50.33 159.15 275.80 503.29 1591.55 5032.92
5 22.51 71.18 123.34 225.08 711.76 2250.79
10 15.92 50.33 87.22 159.15 503.29 1591.55

the distance at which an EM plane wave will be attenuated to 1/e = 0.3679 of its
original value. Skin depths for the various frequencies f (Hz) and conductivities
σ (S m−1) are shown in Table 3.1.

Although the expression (3.1) is derived assuming a simple plane wave, it
provides a useful guide to the attenuation of the more complicated dipole fields in
the crust.

A horizontal electric dipole source excites both galvanically and inductively
coupled modes [116]. In the inductive mode, current is confined to circulation
within and around the anomaly with no transfer of charge across the surface. In
this mode, attenuation effects governed by the skin depth dominate the observed
response. Therefore, a conductive anomaly causes an increase in attenuation and
hence a decrease in the observed field. Similarly an increase in resistivity de-
creases attenuation, resulting in an increase in the field measured by a seafloor
receiver.

In galvanic mode, currents crossing the boundaries of regions of different re-
sistivity. In this case, the presence of a low-resistivity anomaly increases the gal-
vanic current flow and can result in an increase in the measured field elsewhere.
The response of a given resistivity structure depends on the interplay between the
galvanic and inductive effects, which tend to work in opposition. The magnitude
of each mode depends on the properties of the resistivity structure in question.
However, because the fields of a horizontal electric dipole are 3D in nature, the
relative magnitude of each mode also depends on the source-receiver geometry
(see Figure 3.2). At an azimuth of 90◦, inductive effects dominate, and the ob-
served response can, in general, be explained in terms of attenuative effects gov-
erned by skin depth. In the orthogonal direction at an azimuth of the galvanic
mode is much stronger (see, for example, [43, 77]). For a more detailed physical
interpretation of marine CSEM measurements, see [112].
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Figure 3.3: Monitoring process using schematic marine CSEM method.

3.2 Monitoring

Monitoring of hydrocarbon reservoirs during water-assisted production is a poten-
tially new application for CSEM. During production, the transition zone between
the saline water and hydrocarbons will evolve gradually, and accurate descrip-
tions of the evolution would be valuable for designing good production strategies
(see e.g. [70, 72, 97, 87, 20, 96, 126]). The sketch in Figure 3.3 illustrates a
schematic vertical cross-section for such an application. The sketch is, however,
not to scale. In a typical application, the vertical dimension of a reservoir would
be in the range of 10− 100[m]’s while the horizontal extent would be in the range
of several [km]’s.

There are other possible applications for offshore time-lapse CSEM moni-
toring, such as in CO2 sequestration [32], as well as in waste sites, freshwater
aquifers, seafloor volcanoes [113], hydrothermal vents, and geothermal regions,
all of which may exhibit time-varying conductivity structure on a human time
scale.

In comparison with exploration, monitoring of the flooding front is even more
challenging with respect to resolution because the aim is to identify local changes
in the structure of the conductivity distribution during flooding. It is, therefore,
important to assess the attainable resolution from 4D EM data. The attainable
resolution from 4D EM data in combination with other data types, such as 4D
seismic data, also is certainly important.

However, the use of CSEM in monitoring has three advantages compared with
its use in exploration.

1. Both the existence and location of the reservoir are established prior to mon-
itoring. Identification can be based, therefore, on a reasonably good initial
reservoir description in terms of conductivity distribution and reservoir lo-
cation.
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2. The main cost of CSEM instrumentation is associated with the initial im-
plementation of new equipment for a given target. Continuous monitor-
ing of a fixed target yields good value for these investments because the
same equipment can be applied for successive acquisitions over a wide
time horizon. Hence, long-term monitoring of an oil reservoir qualifies for
extensive instrumentation with densely distributed receivers and multiple
sources. Moreover, because the position of the reservoir is already estab-
lished, sources and receivers with fixed locations can be applied.

3. Some errors can partially cancel between time-lapsed surveys.

These factors reduce the uncertainty with respect to source and receiver locations
and should provide an increased resolution power of the data (for more details see
e.g. [71]).



Chapter 4

Electromagnetic Modeling
Approaches

James Clerk Maxwell (13 June 1831 - 5 November 1879) formulated an elegant
theory of electromagnetism in 1864. This now classical theory unifies previous
theoretical and experimental knowledge of EM phenomena in a more general and
advanced theory that is summarized in a system of PDEs known as Maxwell’s
Equations.

In this Chapter, I present different formulations of Maxwell’s Equations. This
Chapter provides the basic principles (from a mathematical point of view) for the
application included in the previous chapter and for different solvers included in
chapter 5.

4.1 Maxwell’s Equations in the Time Domain

Maxwell’s Equations in the time domain are

∇× E = −∂B

∂t
, (4.1)

∇× H =
∂D

∂t
+ J , (4.2)

∇ · B = 0, (4.3)
∇ · D = q, (4.4)

where E (V m−1) is the electric field, H (A m−1) is the magnetic field, B (T) is
the magnetic induction, D (C m−2) is the dielectric displacement, q (C m−3) is
the electric charge density, J (A m−2) is the electric current density, t (s) is the
time, and the operator ∇ is the spatial gradient ( ∂

∂x
, ∂

∂y
, ∂

∂z
).
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Faraday’s Law, Equation (4.1), states that a time-varying magnetic field in-
duces an electric field that curls around the magnetic field. Equation (4.2) is Am-
pere’s Law, which states that both conduction currents and displacement currents,
∂D
∂t

, generate the magnetic field. Gauss’s Law, Equation (4.4), states that an elec-
tric field diverges away from a collection of positive charges and toward a collec-
tion of negative charges. In other words, the flux through any surface enclosing
a given charge will be the same. Equation (4.3) states that the divergence of the
magnetic field is zero.

The relationship between electric currents and charges is expressed by the
continuity equation

∇ · J = −∂q

∂t
, (4.5)

which states that the divergence of electric currents from an infinitesimal volume
is equal to the rate of decrease of electric charge density with time.

In 3D, only 7 of the 9 scalar Equations (4.1)-(4.5) are independent. Equation
(4.3) follows directly from Equation (4.1) (with the assumption ∇ · B = 0 at
t = 0) and Equation (4.5) is a consequence of Equations (4.2) and (4.4). Usually,
Equations (4.1), (4.2), and (4.4) or Equations (4.1), (4.2), and (4.5) are chosen as
the independent equations. Since there are 7 independent scalar equations from
Equations (4.1)-(4.5) that involve 16 scalar unknowns (including the components
of the vector fields), the system is underdetermined. A determinate system re-
quires further assumptions. Towards this end, we impose constitutive relations
between the field quantities in order to make the system of Equations (4.1)-(4.4)
definite [21]. These take the form

D = εE, (4.6)
B = μH , (4.7)
J = σE + J e, (4.8)

where μ is the magnetic permeability, ε is the permittivity, and σ is the elec-
tric conductivity. In free space, ε and μ are isotropic and homogeneous. The
corresponding permittivity of free space is denoted ε0 and has the value ε0 =
8.85 × 10−12 F m−1, while the permeability of free space is denoted μ0 and
μ0 = 4π × 10−7 H m−1. The current density J is decomposed into J e (the
current density imposed by some externally applied electric source), and σE (the
current density induced in conducting matter by the source current J e).

It is typical to choose either (E, H) or (D,B) as the unknown fields once the
constitutive relations, Equations (4.6)-(4.8) are assumed. Opting for the unknown
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fields (E, H), Maxwell’s Equations (4.1)-(4.4) become

∇× E = −μ
∂H

∂t
, (4.9)

∇× H = ε
∂E

∂t
+ σE + J e, (4.10)

∇ · (μH) = 0, (4.11)
∇ · (εE) = q. (4.12)

The system of Equations (4.9)-(4.12) is linear and first order.

4.2 Maxwell’s Equations in the Frequency Do-
main

Assume a harmonic time variation e−iωt for the electric and magnetic fields, where
i =

√−1 and ω is the angular frequency (ω = 2πf, f is frequency) and no free
electric charges. For CSEM applications, typical range of the frequency allows
us to neglect displacement currents, Maxwell’s Equations (4.9) - (4.12) in the
frequency domain are

∇× E = iωμH , (4.13)
∇× H = σE + J e, (4.14)

∇ · (μH) = 0, (4.15)
∇ · (εE) = 0. (4.16)

One advantage of the frequency domain formulation of Maxwell’s equations is
that, in principle, solutions of Equations (4.13)-(4.16) can be found for a few key
frequencies of interest.

4.3 Second Order PDE Formulations
It is often not necessary to determine both E and H , as one of these two vector
fields can be eliminated. Applying the curl operator to Equation (4.13) and sub-
stituting in Equation (4.14) one eliminates H to obtain the second order vector
equation

∇× (μ−1∇× E
)− iωσE = iωJ e. (4.17)

The corresponding equation in the time domain is

∇× (μ−1∇× E
)

+ σ
∂E

∂t
= −∂J e

∂t
. (4.18)
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After solving for E in either the frequency domain using Equation (4.17) or the
time domain using Equation (4.18), the magnetic field H can be recovered if
needed using

H =
1

iωμ
∇× E, (4.19)

or

∂H

∂t
= − 1

μ
∇× E, (4.20)

respectively.
Using another approach, E can be eliminated from Equation (4.14) in the

frequency domain, giving

∇× (σ−1∇× H
)− iωμH = ∇× (σ−1J e

)
. (4.21)

Equation (4.10) (neglect displacement currents, ε∂E
∂t

) in the time domain, gives

∇× (σ−1∇× H
)

+ μ
∂H

∂t
= ∇× (σ−1J e

)
. (4.22)

4.4 Vector and Scalar Potential Formulations
Another approach that can be used to simplify Equations (4.13)-(4.16) is based
on EM potentials. In view of Equation (4.15), the magnetic field H is solenoidal
(the magnetic flux lines flow along closed paths) [107] and can be written as

H =
1

μ
∇× A, (4.23)

where the auxiliary field quantity A is the EM vector potential. Substituting Equa-
tion (4.23) in Equation (4.13), we obtain

∇× E = iω∇× A, (4.24)

and then

∇× (E − iωA) = 0. (4.25)

Because the term in parentheses in Equation (4.25) has a curl of zero, it can be
written as the gradient of some scalar function U , which is the scalar EM potential

E − iωA = ∇U, (4.26)
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and then

E = iωA + ∇U. (4.27)

Here, the electric field E decomposes into two components iωA (spanning the
active space of the ∇× operator) and ∇U (spanning the the null space of the ∇×
operator). It is useful to have a physical understanding of what A and U repre-
sent. Electric fields are induced by charges or by time-varying magnetic fluxes.
An electric field caused by charges is the gradient of a scalar function. Hence,
∇U represents the electric field corresponding to charge accumulation (galvanic
effect). The remaining term, iωA is the electric field induced by magnetic fluxes
(inductive effect) [5]. No charge is associated with the term, iωA, so

∇ · A = 0. (4.28)

The Equation (4.28) is the Coulomb gauge condition and ensures that A spans the
active space of the ∇× operator.

Substituting the decomposition Equation (4.27) in Equation (4.17), we find

∇× (μ−1∇× A
)− σ(iωA + ∇U) = J e, (4.29)

which, in company with Equation (4.28), provides a system of four PDEs in the
four unknown variables (the three scalar components of the vector potential A and
the single variable, the scalar potential U ). We have, thereby, transformed a prob-
lem requiring solution for six unknown variables (the six scalar components of the
vectors E and H) to a problem requiring solution for four unknown variables.

4.5 Derivation of the Integral Representation
Zhdanov [132], gives details derivation of the IE form of Maxwell’s Equations in
2D setting and has generalized the conclusion to 3D setting.

Here, I describe the derivation of the integral form in 3D setting. To do so,
first let Ω, Q and D denote the entire modeling region, the effective region that
contains the source current J e and the target body, respectively. We select an
arbitrary point r′ around which we draw a sphere, CR, with a radius, R, great
enough that the region, Q, falls within it; that is, Q ∈ CR (see Figure 4.1). The
sketch is drawn in a 2D setting for simplicity; the reader may imagine the situation
in 3D.

With IE methods, one represents the conductivity distribution as the sum
σ(r) = σb(r) + σa(r), where σb denotes the background conductivity and σa

denotes the anomalous conductivity in D, that is, σa equals zero outside D. (A
schematic drawing – where the size of the body is greatly exaggerated – is shown
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Figure 4.1: Target body D with the conductivity σD embedded in a horizontally stratified
background conductivity σb. The source current Je is distributed in a region Q in the
upper half-space.

on the sketch in Figure 4.1.) Correspondingly, E can be split into two parts
E = Eb + Ea, as can H . Here, Eb denotes the background field, that is, the
resultant field had the anomaly not been present, and Ea represents that part of
the field caused by the existence of the anomaly.

The frequency domain Maxwell’s Equations (4.13) and (4.14) for the back-
ground field Eb, Hb can then be written as

∇× Eb = iωμ0H
b, (4.30)

∇× Hb = σbEb + J e. (4.31)

Applying the curl operator to Equation (4.30) and substituting from Equation
(4.31) one eliminates Hb to obtain the second order vector equation for Eb

∇×∇× Eb − iωμ0σ
bEb = iωμ0J e. (4.32)

To solve Equations (4.30) and (4.31) represented in integral form, dyadic Green’s
functions are used. The electric, GE(r′|r), and magnetic, GH(r′|r), frequency-
domain Green’s tensors depend on the positions of two points, M(r) and M ′(r′),
and provide the solution to

∇× GE = iωμ0GH , (4.33)
∇× GH = σbGE + D, (4.34)
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where D is a second-order diagonal tensor with the Dirac delta-distribution on the
diagonal

D =

⎡
⎣ δ(r′ − r) 0 0

0 δ(r′ − r) 0
0 0 δ(r′ − r)

⎤
⎦ .

The Dirac delta-function, δ, is defined as follows

∫
Ω

f(r)δ(r′ − r)dΩ =

⎧⎨
⎩

f(r′), r′ ∈ Ω,

0, r′ /∈ Ω,
(4.35)

where f(r) is an arbitrarily continuous function in the domain Ω, and Ω is the
domain Ω with its boundary ∂Ω.

Applying the curl operator to Equation (4.33) and substituting from Equation
(4.34) one eliminates GH to obtain

∇×∇× GE − iωμ0σ
bGE = iωμ0D. (4.36)

Equation (4.36) represents three vector equations similar to Equation (4.32), each
defined by a column of GE , i.e.

∇×∇× Gj
E − iωμ0σ

bGj
E = iωμ0D

j, j = 1, 2, 3, (4.37)

where Gj
E and Dj are the j th vector in the tensors GE and D, respectively. The

columns of GE then represent the background electric field associated with ele-
mentary current dipoles directed along the three Cartesian coordinates defined by
the columns of D.

The scalar multiplication of Equation (4.32) with Gj
E and of Equation (4.37)

with Eb followed by subtracting the resulting equations yields to

Eb · ∇ ×∇× Gj
E − Gj

E · ∇ ×∇× Eb =

iωμ0(E
b · Dj − Gj

E · J e), j = 1, 2, 3. (4.38)

We now write the expression for Green’s Theorem in the vector form [98, 121]∫
CR

(
U · ∇ ×∇× Y − Y · ∇ ×∇× U

)
dv =∫

∂CR

{
(n × Y ) · ∇ × U − (n × U) · ∇ × Y

}
ds, (4.39)
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where dv is the volume element, ds is a surface element, and n is the unit outward
normal vector. Substituting from Equation (4.38) in Equation (4.39) and taking
into account Equation (4.35), we find

iωμ0E
b
j (r

′) = iωμ0

∫
Q

Gj
E · J edv +

∫
∂CR

{
(n × Gj

E) · ∇ × Eb

− (n × Eb) · ∇ × Gj
E

}
ds, j = 1, 2, 3, if r′ ∈ CR. (4.40)

According to radiation conditions [107], the functions Eb
j and (Gjx

E , Gjy
E , Gjz

E ) =

(Gj
E)T decrease as 1/

√
r as |r| → ∞. Consequently, if the radius, R, is expanded

without limit, the surface integral along ∂CR will tend to zero. Hence, we find

Eb
j (r

′) =

∫
Q

Gj
E · J edv, j = 1, 2, 3. (4.41)

After combining all three components, we get

Eb(r′) =

∫
Q

GE(r′|r)J e(r)dv. (4.42)

The corresponding equation for the background magnetic field Hb is obtained by
taking the curl of Equation (4.42) and using Equations (4.30) and (4.33). The
result is

Hb(r′) =

∫
Q

GH(r′|r)J e(r)dv. (4.43)

Subtracting Equations (4.30) and (4.31) from Equations (4.13) and (4.14) yields
the following equations for the anomalous field:

∇× Ea = iωμ0H
a, (4.44)

∇× Ha = σEa + σaEb. (4.45)

In the same manner the integral form for the anomalous field Ea, Ha can be
represented as

Ea(r′) =

∫
D

GE(r′|r)σa(r)(Eb(r) + Ea(r))dv, (4.46)

Ha(r′) =

∫
D

GH(r′|r)σa(r)(Eb(r) + Ea(r))dv. (4.47)

Using integral formulae, Equations (4.42), (4.43), (4.46) and (4.47), one can cal-
culate the EM field at any point r′, if the electric field is known within the inho-
mogeneity, D. Equations (4.42) and (4.46) become the IE for the electric field
if r′ ∈ D. Equations (4.42), (4.43), (4.46) and (4.47) form the basis for IE EM
modeling.



Chapter 5

Solutions and Approaches in the
Frequency Domain

In this chapter, I discuss analytical and numerical forward modeling for use both
in the interpretation and planning of field surveys. The term numerical modeling
represents an approach in which a true earth structure is replaced by one for which
a numerical approximation to Maxwell’s Equations can be made and evaluated.
There are several techniques available for EM forward modeling. They are based
on numerical implementation of the differential equation (DE) approach (FD or
FE methods), the IE approach and hybrid approaches.

In the first section, I discuss the applicability of analytical solutions to
Maxwell’s Equations. Then the basic principles of the DE approach are given.
The integral representation of Maxwell’s Equations is presented as well as the
basic principles of the IE approach within a family of linear and nonlinear ap-
proximations. An overview of hybrid methods and derivation of SIE modeling
are given. Since we used special types of boundary conditions in our study, I give
overview and discuss different types of boundary conditions that can be used with
Maxwell’s Equations.

5.1 Analytical Solutions

Perhaps the most widely used earth model when EM methods are considered is
that of a set of horizontal layers (see Figure 5.1). This model represents well some
typical geological formations, such as sedimentary deposits. It can also be used to
describe a regional geological cross section formed by the horizonal layers of the
earth’s crust and upper mantle. This model is important in studying horizontally
inhomogeneous geoelectrical structures as well. Indeed, a horizontally layered
model can serve as a convenient background model for domains with anomalous
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Figure 5.1: A set of horizontal layers. Each layer l has conductivity σl and layer depth
dl. The top and bottom layers extend to infinity along z.

conductivity distribution.
Analytical solutions to Maxwell’s Equations (4.13) and (4.14) can be obtained

for a stratified medium with constant material properties within each layer. In this
case, Equation (4.17) is equivalent to the Helmholtz equation

∇2E + iωσμ0E = −iωμ0J e, (5.1)

within each layer. Global analytical solutions (see, e.g. [27, 25, 123, 74, 132]) for
E and H in terms of explicit integrals over wavenumbers are obtained by solving
the Helmholtz equation in each layer and determining integration constants by
invoking boundary conditions at each layer boundary.

Recently, Key [64] developed a 1D forward modeling code uses a Lorentz-
gauged vector potential formulation of Maxwell’s Equations. He considered only
isotropic conductivity. For 1D methods for transversely isotropic and generally
anisotropic media, see [128] and [75, 74], respectively.

5.2 Numerical Solution of PDEs
In this section, I present an overview of developed numerical methods for EM
modeling based on discretization of the differential form of Maxwell’s Equations.
This approach has advantages and disadvantages compared with the IE method
(see Section 5.3). The advantage is that one can apply a very flexible grid for
discretization of the model parameters using differential methods (FD or FE). The
disadvantage is that we now have to discretize the entire modeling domain, while
in the IE method one should discretize only the domain with the anomalous con-
ductivity distribution. Differential methods have found wide applications in geo-
physics because of the ease with which they handle complex geological structures
[132].
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Numerical methods are necessary when analytic solutions either do not exist
or are not practical. Such is typically the case for geophysical problems dealing
with the physical propagation of EM fields in heterogeneous media. The main
concern in numerical modeling is the casting of governing equations, boundary
conditions, and initial conditions into a numerical equivalent or approximate for-
mat [95]. The FD technique is a far simpler and more tractable technique to im-
plement than the FE technique. The intricacy in programming the FE technique,
however, is compensated for by its versatility in handling problems involving
complex geometries, such as bathymetry and inhomogeneities. It accomplishes
this by refining the number of elements around complex features without signifi-
cantly affecting the entire model space. In the standard FD method on Cartesian
grids any local refinement propagates throughout the mesh. Mimetic FD methods
for Maxwell’s Equations on nonorthogonal, nonsmooth grids have, nevertheless,
been constructed (see, e.g., [61]).

5.2.1 Finite-Difference and Finite-Element Approaches

Although the FD and FE methods differ considerably in their mathematical con-
structs, their purpose is to solve the same physical problem. In general, the FD
technique requires a three step process as outlined in [95]:

1. Divide the solution region into a grid of nodes.

2. Approximate the differential equations using finite differences by relating
the value of a dependent variable at a point in the solution region to values
at some neighboring points.

3. Solve the difference equations subject to the prescribed boundary conditions
and/or initial conditions.

The common approach of field discretization is based on a staggered-grid scheme
[117, 129]. On a staggered grid, the electric field components, parallel to the
corresponding edges, are sampled at the centers of the prism edges, while the
magnetic field components, orthogonal to corresponding faces, are sampled at
the centers of the prism faces (Figure 5.2). The advantage of the staggered grid
is that the corresponding components of the electric field and magnetic field are
continuous on the edges and faces of the homogeneous prisms.

For numerical modeling one can use the original coupled first-order Maxwell’s
Equations (4.13) and (4.14), or the corresponding second order PDE for electric
(Equation (4.17)) or magnetic (Equation (4.21)) fields. In the first case, one should
formulate and solve the corresponding boundary-value problem for electric and
magnetic fields simultaneously (see, e.g., [117, 39]). In the second case, one can
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Figure 5.2: The staggered assignment of the electric and magnetic fields to cell (i, j, k).
The magnetic field is assigned on the faces of the cell and the electric field on the edges.
The cell has conductivity, σi,j,k, associated with it.

solve the corresponding equations separately for the electric or magnetic fields
(see, e.g., [85, 86, 79, 91, 83, 1]). Another approach to the formulation of EM
boundary-value problem is to use the EM potentials. This approach has been used
in a number of publications on numerical EM methods (see, e.g., [41, 5, 58]).

The FD approach for anisotropic media (see, e.g.,[122, 53, 124, 125, 39, 58])
and in the time-domain (see, e.g., [117, 118, 31, 84]).

In order to numerically evaluate Equation (4.17) with FD methods, the domain
Ω (see, Figure 5.3) is discretized into N = Nx × Ny × Nz cells. However, the
computational domain, Ω, is too much larger than the target region, D, to allow
application of homogeneous boundary conditions. The outermost lines on Figure
5.3 illustrate the boundaries of the domain, Ω, for FD modeling.

3D FD Discretization of Equation (4.17) results in a linear system of equations

AFDe = bFD, (5.2)

where e is the unknown column vector for the electric field, and bFD is the equiv-
alent source vector of length 3N . The coefficient matrix, AFD, has dimensions
3N × 3N . It is, however, sparse with seven 3× 3 block diagonals, when the stan-
dard 7-point discretization stencil is applied. The average number of nonzero 3×3
blocks in a block row is 7 − Nxyz/N , where Nxyz = 2(NxNy + NxNz + NyNz).
Hence, the number of nonzero entries in AFD is (7 − Nxyz/N) × 3 × 3N =
63N − 9Nxyz. A detailed presentation of 3D discretization of different forms of
Maxwell’s Equations can be found in, for example, [4].

Four basic steps are outlined for the FE technique [95]:
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Figure 5.3: Sketch of the different computational domains for FD, SIE and IE methods.

1. Discretize the solution region into a finite number of subregions or elements
of the same type.

2. Derive governing equations for a typical element.

3. Assemble all elements in the solution region.

4. Solve the system of equations obtained.

The FE approach has been developed and implemented by many developers (see,
e.g., [69, 65, 68, 66, 52, 8, 80, 138, 73]).

5.3 Integral Equation Methods
In this section, I present an overview of developed numerical methods of EM
modeling based on discretization of the corresponding integral representations for
an EM field.

As mentioned in Chapter 4, the solution to Maxwell’s Equations can be written

Eb(r′) =

∫
Q

GE(r′|r)J e(r)dv, (5.3)

Hb(r′) =

∫
Q

GH(r′|r)J e(r)dv, (5.4)

Ea(r′) =

∫
D

GE(r′|r)σa(r)(Eb(r) + Ea(r))dv, (5.5)

Ha(r′) =

∫
D

GH(r′|r)σa(r)(Eb(r) + Ea(r))dv. (5.6)

The IE approach has been implemented by many developers (see, e.g., [119, 100,
101, 102, 89, 6, 7, 60]).
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Discretization of Equation (5.5)

In order to numerically evaluate Equation (5.5), the anomalous domain D (see
Figure 5.3) is discretized into n = nx × ny × nz cells, Dk, k = 1, 2, . . . , n.
The anomalous conductivity and the background and anomalous electric fields
are assumed to be constant in Dk.

Let GD denote the 3n × 3n matrix

GD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11
xx · · · Γ1n

xx Γ11
xy · · · Γ1n

xy Γ11
xz · · · Γ1n

xz
...

Γn1
xx · · · Γnn

xx Γn1
xy · · · Γnn

xy Γn1
xz · · · Γnn

xz

Γ11
yx · · · Γ1n

yx Γ11
yy · · · Γ1n

yy Γ11
yz · · · Γ1n

yz
...

Γn1
yx · · · Γnn

yx Γn1
yy · · · Γnn

yy Γn1
yz · · · Γnn

yz

Γ11
zx · · · Γ1n

zx Γ11
zy · · · Γ1n

zy Γ11
zz · · · Γ1n

zz
...

Γn1
zx · · · Γnn

zx Γn1
zy · · · Γnn

zy Γn1
zz · · · Γnn

zz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with elements

Γjk
αβ =

∫
Dk

Gαβ
E (rj|rk)dv, α, β = x, y, z, j, k = 1, 2, . . . , n, (5.7)

where rj ∈ Dj and rk ∈ Dk. Furthermore, let the quantities eb and ea denote the
3n × 1 column vectors containing the background and anomalous fields in each
grid cell

eb =
[
Eb

x,1 · · · Eb
x,n Eb

y,1 · · · Eb
y,n Eb

z,1 · · · Eb
z,n

]T
,

ea =
[
Ea

x,1 · · · Ea
x,n Ea

y,1 · · · Ea
y,n Ea

z,1 · · · Ea
z,n

]T
,

and let Sa denote the 3n× 3n diagonal matrix containing the anomalous conduc-
tivities

Sa = diag
(
σa

1 · · · σa
n σa

1 · · · σa
n σa

1 · · · σa
n

)
.

The discretized Fredholm integral equation can then be written

AIEea = GDSaeb, (5.8)

where it is noted that AIE = I−GDSa is a dense 3n×3n matrix. A detailed pre-
sentation of 3D IE discretization of Equation (5.5) can be found in, for example,
[60].
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IE Algorithm
It is clear that the IE EM modeling (Equations (5.3), (5.4), (5.5) and (5.6)), con-
sists of three steps:

1. Compute Eb in D and in the receivers, and Hb in the receivers, from Equa-
tions (5.3) and (5.4), respectively.

2. Compute Ea in D, from Equation (5.5). This is the computationally inten-
sive part in IE modeling (see Equation (5.8)). That is the coefficient matrix
AIE is a dense 3n × 3n matrix. Accurate modeling of a realistic geometry
of a petroleum reservoir can require use of a very large number of grid cells.
As an example, a petroleum reservoir with n = 1.5×106 cells is considered
in [76]. In such cases, the computational complexity with straightforward
application of IE modeling becomes prohibitively large.

3. Compute Ea and Ha in the receivers from Equations (5.5) and (5.6), re-
spectively.

Because of the computationally intensive aspect of the IE modeling Equation
(5.5), several approximate methods have been developed recently. These are the
extended Born (localized nonlinear) approximation [51], the quasi-linear (QL) ap-
proximation [134], quasi-linear series [135], quasi-analytic (QA) approximation
and quasi-analytic series [133]. In contrast to the approximation presented by
Bakr and Mannseth ([12, 11, 9, 10]) (see Section 5.4.2), these approximations
rely on small conductivity contrasts between background media and a relatively
small inhomogeneity [131]. Next, I discuss the basic principles of QL and QA
approximations.

5.3.1 Quasi-linear approximation
The QL approximation [134], is based on the assumption that the anomalous field
Ea inside the anomalous domain is linearly proportional to the background field
Eb through some tensor Q,

Ea(r) = Q(r)Eb(r). (5.9)

Substituting formula (5.9) into Equation (5.5), one obtains

Ea(r′) =

∫
D

GE(r′|r)σa(r)(I + Q(r))Eb(r)dv, (5.10)

where I is the identity tensor. Note that if Q(r) is known in D, Equation (5.10)
is an explicit expression for Ea, as well as for r′ ∈ D, thereby avoiding the
dense-matrix calculations associated with the Fredholm integral equation (5.5).
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The electrical reflectivity tensor Q is determined through a sequence of steps,
starting by equating the two expressions Equation (5.9) and Equation (5.10) for
Ea

Q(r′)Eb(r′) =

∫
D

GE(r′|r)σa(r)(I + Q(r))Eb(r)dv. (5.11)

The QL approximation is based on the numerical solution of a minimization prob-
lem arising from Equation (5.11)∥∥∥∥Q(r′)Eb(r′) −

∫
D

GE(r′|r)σa(r)(I + Q(r))Eb(r)dv

∥∥∥∥ = min. (5.12)

The advantage of this approach is that we can determine the electrical reflectivity
tensor Q by solving a minimization problem (5.12) on a coarse grid. The accuracy
of the QL approximation depends only on the accuracy of the discretization of Q,
and, in principle, can be made arbitrarily accurate for small conductivity contrasts
between background media. The disadvantage of this approach is that the QL
approach still requires solution of the corresponding system of linear equations
arising from the minimization problem (5.12).

5.3.2 Quasi-analytical approximation
The QA approximation [133] is based on the same assumption as the QL approx-
imation. That is, the anomalous field Ea inside the anomalous domain is linearly
proportional to the background field Eb through some tensor Q. The main dif-
ference is the use of an analytic technique in the QA approximation to obtain the
reflectivity tensor Q in explicit form.

In the framework of the QL approach, the electrical reflectivity tensor can be
selected to be a scalar [134]: Q = λ. In this case, integral equations (5.10) and
(5.11) can be cast in the forms, putting r′ = r

Ea(r′) =

∫
D

GE(r′|r)σa(r)(1 + λ(r))Eb(r)dv, (5.13)

and

λ(r)Eb(r) =

∫
D

GE(r|r)σa(r)(1 + λ(r))Eb(r)dv, (5.14)

respectively.
Assume that λ(r) is slowly varying in D, so that it is moved outside the inte-

gration

λ(r)Eb(r) ≈ (1 + λ(r))EB(r), (5.15)



5.4 Hybrid Methods 33

where EB denotes the Born approximation:

EB(r) =

∫
D

GE(r|r)σa(r)Eb(r)dv. (5.16)

Scalar multiplication of Equation (5.15) with the complex conjugate of Eb results
in

λ(r)Eb(r) · Eb∗(r) ≈ (1 + λ(r))EB(r) · Eb∗(r). (5.17)

Solving this equation for λ(r) gives

λ(r) =
g(r)

1 − g(r)
, (5.18)

where

g(r) =
EB(r) · Eb∗(r)

Eb(r) · Eb∗(r)
. (5.19)

Substituting Equation (5.18) into Equation (5.13), leads to

Ea
QA(r′) =

∫
D

GE(r′|r)
σa(r)

1 − g(r)
Eb(r)dv. (5.20)

Note that the only difference between the QA approximation (5.20) and the Born
approximation (5.16) is in the presence of the scalar function (1 − g(r))−1. Thus
the computational expense of generating the QA approximation and the Born ap-
proximation is practically the same.

5.4 Hybrid Methods
In this section, I review the hybrid methods, which combine elements of both IE
and DE methods. First, I discuss the principles of the standard hybrid methods.
Then, I present the SIE method.

5.4.1 Standard Hybrid Methods
The hybrid method is based on the idea that one can compute the electric field
E within domain D using the FD or FE method (by solving Equation (4.17) or
Equations (4.28) and (4.29)) and then recalculate this field into the EM field in the
receivers by integral transformations Equations (5.5) and (5.6). Note that one must
solve the FD or FE equation in a region larger than D to apply the appropriate
boundary conditions. Only the results within D will be used, however, and a
coarser grid can be applied at some distance from the boundary of D.

The advantages of the hybrid method are:
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1. replaces the dense matrix of the IE method with a sparse matrix of the FD
method that results in more rapid calculations [12, 11, 10].

2. produces more accurate and stable results than the FD calculation of the
magnetic field from EM potentials, Equation (4.23) (see, e.g., [111]).

Hybrid methods that combine elements of IE and FE methods can be found from
several references (e.g., [67, 90, 19, 50, 137]), as can those that combine elements
of IE and FD methods (e.g., [111, 12, 11, 9, 13, 10]).

In contrast to the standard hybrid methods, SIE modeling computes the
anomalous electric field within a domain with anomalous conductivity by an ap-
proximate method valid for low-frequency (by solving a Poisson equation as an
approximation of Maxwell’s Equations). Then one uses IE method to recalculate
the anomalous fields in the receivers. In the next subsection, I give brief derivation
of SIE method developed by Bakr and Mannseth (see Papers A, B, C, D, and E).

5.4.2 Simplified Integral Equation Method
We consider alternatives to Equation (5.5) for calculation of Ea for low frequen-
cies, thereby avoiding the most computationally intensive part of IE. First, we
derive a simplified equation for Ea from Maxwell’s Equations. Then, we discuss
ways in which the simplified equation potentially can be used in combination with
remaining parts of the IE method.

To find the simplifying approximation, we apply the divergence operator to
Equation (4.45) resulting in

−∇ · (σEa) = ∇ · (σaEb). (5.21)

With three unknowns, Ea
x , Ea

y and Ea
z , Equation (5.21) is underdetermined. If,

however, the anomalous electric field can be approximated by the gradient of a
scalar potential, this problem vanishes. Inserting Ea = −∇Ua into Equation
(5.21) results in a variable-coefficient Poisson equation for Ua

∇ · (σ∇Ua) = ∇ · (σaEb). (5.22)

After solving for Ua, the anomalous electric field is found from

Ea = −∇Ua. (5.23)

Discretization of Equation (5.22)
In order to numerically evaluate Equation (5.22), the domain P (see Figure 5.3)
is divided into m = mx × my × mz cells, Vi,j,k, i = 1, 2, . . . , mx, j =
1, 2, . . . , my, k = 1, 2, . . . , mz.
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We discretize Equation (5.22) using a standard cell-centered, variable-grid,
finite volume approach [41, 53]. This approach allows for a reasonably flexible
mesh and is well-suited for dealing with large variations in conductivity. The
quantities Ua, σ and σa are evaluated at the cell centers, while Eb is evaluated at
the cell-face centers.

Let J = σ∇Ua and T = σaEb. Integrating Equation (5.22) over an elemen-
tary cell Vi,j,k of the mesh then leads to∫

Vi,j,k

∇ · J dV =

∫
Vi,j,k

∇ · T dV. (5.24)

Applying Gauss divergence theorem on both sides gives

6∑
l=1

∫
Sl

i,j,k

J · nl dS =
6∑

l=1

∫
Sl

i,j,k

T · nl dS, (5.25)

where Sl
i,j,k is one of the 6 bounding surfaces of Vi,j,k and nl is the corresponding

outwards pointing unit normal vector. Dividing both sides of Equation (5.25) by
the cell volume and approximating the electric currents by their values in the cell-
face centers, results in

Jx
i+ 1

2
,j,k

− Jx
i− 1

2
,j,k

lxi
+

Jy

i,j+ 1
2
,k
− Jy

i,j− 1
2
,k

lyj
+

Jz
i,j,k+ 1

2

− Jz
i,j,k− 1

2

lzk
=

(5.26)
T x

i+ 1
2
,j,k

− T x
i− 1

2
,j,k

lxi
+

T y

i,j+ 1
2
,k
− T y

i,j− 1
2
,k

lyj
+

T z
i,j,k+ 1

2

− T z
i,j,k− 1

2

lzk
,

where lxi = (xi+ 1
2
− xi− 1

2
), lyj = (yj+ 1

2
− yj− 1

2
) and lzk = (zk+ 1

2
− zk− 1

2
).

The expression for Jx
i+ 1

2
,j,k

can be written

Jx
i+ 1

2
,j,k

= σi+ 1
2
,j,k

(
∂Ua

∂x

)
i+ 1

2
,j,k

≈ σi+ 1
2
,j,k

(
Ua

i+1,j,k − Ua
i,j,k

lx
i+ 1

2

)
, (5.27)

where lx
i+ 1

2

= (xi+1 − xi). Computation of σi+ 1
2
,j,k is based on the harmonic

average of the conductivity between adjacent cells

σi+ 1
2
,j,k = lx

i+ 1
2

(∫ xi+1

xi

σ−1(x, y, z)dx

)−1

= lx
i+ 1

2

(
lxi

2σi,j,k

+
lxi+1

2σi+1,j,k

)−1

,

where the last equality assumes that σ is constant over each grid cell. Analogous
expressions for Jx

i− 1
2
,j,k

, Jy

i,j+ 1
2
,k

, Jy

i,j− 1
2
,k

, Jz
i,j,k+ 1

2

and Jz
i,j,k− 1

2

are obtained in a
similar manner.
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Figure 5.4: Structure of the matrix ASIE .

The expression for T x
i+ 1

2
,j,k

can be written

T x
i+ 1

2
,j,k

= σa
i+ 1

2
,j,k

Eb,x

i+ 1
2
,j,k

, (5.28)

with analogous expressions for T x
i− 1

2
,j,k

, T y

i,j+ 1
2
,k

, T y

i,j− 1
2
,k

, T z
i,j,k+ 1

2

and T z
i,j,k− 1

2

.
Computation of the corresponding σa’s is based on harmonic averaging between
adjacent grid cells.

Applying the boundary conditions (QA boundary condition has been applied,
for details see [10]) in addition to the above equations, the resulting system of
linear algebraic equations can be expressed

ASIEua = bSIE, (5.29)

where ua and bSIE are column vectors of length m. From Equations (5.26) and
(5.27) it is evident that none of the linear equations contains more than 7 un-
knowns. The number of grid cells adjacent to ∂P is mxyz = 2(mxmy + mxmz +
mymz). Hence, the sparse m×m coefficient matrix, ASIE , has exactly 7m−mxyz

nonzero entries. The matrix ASIE has the structure shown in Figure 5.4.

SIE Algorithm
Therefore, the suggested SIE modeling consists of three steps (compare with Sec-
tion 5.3):
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1. Compute Eb in D and in the receivers, and Hb in the receivers, from Equa-
tions (5.3) and (5.4), respectively.

2. Eliminate the computationally intensive part of Equation (5.5) by using
Equations (5.22) and (5.23) to compute Ea in D (see, Section 5.3).

3. Compute Ea and Ha in the receivers from Equations (5.5) and (5.6), re-
spectively.

I refer the reader to: Paper A for the accuracy of SIE modeling in a simplistic 2D
setting; Papers B and C for the accuracy and range of validity; and Papers D and
E for the computational cost and complexity of SIE modeling in 3D setting.

5.5 Boundary Conditions
Following Zhdanov [132], I review different types of boundary conditions applied
to Maxwell’s equations. Maxwell’s Equations (4.13) and (4.14) or the second or-
der differential equation (4.17) are supplemented with a boundary condition, i.e.,
with the additional equations for the electric or magnetic fields on the boundary
∂Ω of the region Ω,

LbE = RE, or LbH = RH , (5.30)

where Lb is the corresponding boundary differential operator, and RE and RH are
the boundary values for the electric or magnetic fields. Note that the traditional
statements of the boundary-value problems are based on application of Dirichlet
boundary-value conditions of the first, second, or the third order, formed by means
of linear combinations of the field itself and its derivative normal to the boundary.
Dirichlet boundary conditions of the first order fix the values of the field at the
boundary. Dirichlet boundary conditions of the second order, or Neumann bound-
ary conditions, fix the value of the gradient of the field normal to the boundary.
Dirichlet boundary conditions of the third order, or Cauchy boundary conditions,
fix both the value and the normal gradient of the field at the boundary [82].

Usually the boundaries of the modeling volume are set so far from the conduc-
tivity anomaly that it is possible to neglect the anomalous field there. In this case,
the simplest Dirichlet boundary conditions of the first order can be implemented
by choosing, for example, zero boundary values when solving for the anomalous
field. One can also use the simplest Neumann boundary conditions, which re-
quires the normal gradient of the field to be zero at the boundary. Note, however,
that application of the aforementioned simple conditions requires the size of the
modeling region to exceed the size of the inhomogeneous region many times over
in order to be able to neglect the effect of the anomalous fields at the boundaries.
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We should notice, however, that the majority of papers on 3D quasi-static EM
field modeling still use a simple Dirichlet boundary condition of the first order
with zero values at the boundaries (see e.g.[85, 47]).

Mehanee and Zhdanov [79] used the fast QA approximation [133] (see subsec-
tion 5.3.2 for description of QA) to compute the boundary values of the anomalous
electric field. These precomputed values are then used as boundary conditions for
the FD modeling based on the balance method. This approach allows significant
reduction in the size of the FD grid in both air and earth without losing the accu-
racy of the calculations. As a result, one can apply a very fine discretization to the
area with anomalous conductivity because there is no need to move the bound-
aries too far from the inhomogeneous region. Similar technique is used elsewhere
([11, 9, 10]).

As an alternative approach, one can use asymptotic boundary conditions, de-
veloped for 2D models by Weaver and Brewitt-Taylor [120], and extended to 3D
models by Zhdanov et al.[136] and Berdichevsky and Zhdanov [16]. These con-
ditions are based on the analysis of the asymptotic behavior of the EM field far
away from the geoelectrical anomalies. For example, in the 3D case the asymp-
totic boundary condition for a magnetic field in free space is written in the form

LbH = (1 + r · ∇)[H(r) − Hb(r)] = 0. (5.31)

The accuracy of condition (5.31) is estimated as O(1/|r|2). One can find expres-
sions for asymptotic boundary conditions of higher order of accuracy with respect
to distance, |r|, in[16].

A third type of boundary condition is the Perfect Matched Layer (PML) ab-
sorbing boundary condition (ABC) originally developed by Berenger [17] for 2D
time-domain calculations and later modified for 3D calculations by Katz et al. [62]
and Chew and Weedon [30]. The PML ABC was introduced mainly for FD time
domain EM modeling. It is used for terminating the computation domain in order
to absorb the outgoing EM waves [110]. However, in the case of the quasi-static
EM field, which is the subject of our research, it is difficult to use the model of
EM waves and their reflection from the boundaries because the field propagates
according to the diffusion law. That is why the original PML ABC, developed
for the FD time domain EM field, has found little application in modeling the
quasi-static EM field used in geophysical applications [79].

The specification of the tangential trace n × E = 0 is the boundary condi-
tion that applies at the boundary of a perfect electric conductor (PEC); hence, this
boundary condition is often called a PEC boundary condition. The corresponding
boundary condition n × H = 0 is the boundary condition for a perfect magnetic
conductor (PMC). While both PEC and PMC boundary conditions represent ide-



5.5 Boundary Conditions 39

alizations that do not exist in nature, they are reasonable approximations and are
used in many EM models for their simplicity [1, 91, 84, 83].





Chapter 6

General Computational Aspects
of Finite-Difference and Integral
Equation Methods

In this chapter, I discuss “some” general computational aspects of FD, IE and
SIE methods. First, I summarize the computational issues between FD and IE
methods. Then, I consider several pertinent aspects of these computational issues
between FD and SIE methods. A thorough and detailed comparison of compu-
tational complexity and cost of IE modeling Equation (5.5) and SIE modeling
Equation (5.22) is presented in Papers D and E. Here, I present some of the basic
background material required for these papers. These materials include iterative
methods and preconditioner techniques that can be used to solve the linear sys-
tems, Equations (5.8) and (5.29). Finally, I discuss how one can evaluate the cost
of algorithm by counting the number of floating point operations.

6.1 Overview

Discussion of several general computational aspects of solving Equation (4.17) by
FD methods, IE modeling Equations (5.3) and (5.5) and SIE modeling Equations
(5.3), (5.22) and (5.5) follows. First, let us consider a single solve of the mathe-
matical model (forward solver) and then consider the situation when the forward
solver is used in an inversion setting.

Let WFD denote the associated computational work of solving equation (4.17)
by FD methods. For IE, it is convenient to split the computational work, WIE , into
two parts, WIE = W b + W a

IE . The work W b is associated with the computation
of Eb and GE from Equations (5.3) and (4.36), respectively. The work W a

IE is
associated with the computation of the anomalous field, Ea from Equation (5.5)
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Figure 6.1: Generally shaped layer sequence.

in the target domain D. Similar to IE method, the computational work for SIE
modeling can be split to WSIE = W b +W a

SIE . The work W a
SIE is associated with

the computation of the anomalous field Ea from Equation (5.22).

6.1.1 Forward Solver

Concerning W b, for more complex background conductivities (see, e.g., Figure
6.1), GE must be calculated numerically by solving Equation (4.36) in Ω. In this
case, W b alone can exceed WFD, making SIE and IE computationally costly alter-
natives. The work W b, however, will be approximately equal to CWFD, where C
is a factor between 1.2 and 1.4. That is, Equations (4.17) and (4.37, for one com-
ponent, e.g. j = 1) can have similar computational work, and the computational
work for solving the linear system with the same coefficient matrix and different
right hand side is approximately from 10 to 20 percent of the computational work
used for solving the original system (see, e.g., [2]).

For a geoelectrical model where σb varies only in the vertical direction (such
a horizontally stratified background conductivity model is indicated on the sketch
in Figure 5.1), it has been demonstrated that the solution of Equation (4.36) is
reduced to the Hankel transform of some elementary functions [119]. In that case,
GE can be obtained at negligible computational cost. The computational cost
of calculating Eb from Equation (5.3) when GE is known in Ω is low. That is,
W b 
 W a

SIE and W b 
 W a
IE; the size of W a

SIE and W a
IE compared to WFD will

decide whether SIE and IE are computationally less costly than FD.
Concerning W a

IE , if Ea is known in D, Ea can be found in the receivers from
Equation (5.5) at low computational cost. The dominating part of W a

IE comes
from computing Ea in D from Equation (5.5). As discussed in sections 5.3 and
5.2.1, the discretization of Equation (5.5) results in a dense matrix AIE (see Equa-
tion (5.8)); the discretization of Equation (4.17) results in a sparse matrix AFD
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(see Equation (5.2)). Given that the number of grid cells in D, n is the same as for
FD, the coefficient matrix AIE is not as high-dimensional as AFD for FD (since
Ω is larger than D, see Figure 5.3). The dense coefficient matrix AIE will make
IE computationally less suitable than FD for problems involving many grid cells
in D in the sense that, if the number of grid cells in Ω for FD and the number of
grid cells in D for IE increase by the same amount, W a

IE will grow much faster
than WFD.

Concerning W a
SIE , if Ea is known in D, Ea can be found in the receivers

from Equation (5.5) at low computational cost. The dominating part of W a
SIE

comes from computing Ea in P from Equation (5.22). Note that one has to solve
Equation (5.22) in a region P (see Figure 5.3) to apply appropriate boundary con-
ditions. Only the results within D will be used, however, and a coarser grid can be
applied at some distance from the boundary of D. When solving Equation (4.17)
in Ω, N is clearly much larger than m, since Ω is a significantly larger region than
P , resulting in W a

SIE 
 WFD.

6.1.2 Forward solver in an Inversion Setting

In an inversion setting, the forward solver (or at least part of it) is used repeatedly
for different values of the unknown conductivity, σa. The work WFD will be ap-
proximately the same from one iteration to another, but with SIE the first iteration
is special with respect to computational work. The computations associated with
W b are performed only in the first iteration, since Eb and GE are independent
of σa. Over Γ iterations the total work for FD is approximately equal to ΓWFD,
while it is approximately equal to W b + ΓW a

SIE for SIE.

Since W b 
 W a
SIE , as for a horizontally stratified background conductivity,

the computational advantage of SIE with respect to FD will be as for a single
solve, except that it will be multiplied by Γ. Hence, any computational advantage
of SIE with respect to FD will be amplified by Γ in this setting.

For a complex background conductivity, W b is not smaller than W a
SIE , and W b

can not necessarily be neglected. If Γ is large, however, the relative importance
of W b is diminished, so that SIE will be computationally less costly than FD in
an inversion setting even for a complex background conductivity. On the other
hand, if one iterates for the background conductivity σb (over Γ� iterations) and
for the anomalous conductivity σa (over Γ iterations), the total work with SIE is
approximately equal to Γ�W b + ΓW a

SIE . A necessary requirement for SIE to be
computationally less costly than FD in an inversion setting is Γ� 
 Γ.
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6.2 Solution of the Linear Systems

Standard discretizations of PDEs typically lead to a system of linear equations

Ax = b. (6.1)

The coefficient matrix A is a large and sparse matrix (see, e.g., Figure (5.4) for the
matrix ASIE). The opposite of sparse matrix is dense matrix (see, e.g., Equation
(5.8) for the matrix AIE).

A sparse matrix is defined, somewhat vaguely, as a matrix with very few
nonzero elements. But, a matrix can be termed sparse whenever special tech-
niques can be used to take advantage of the large number of zero elements and
their locations. These sparse matrix techniques begin with the idea that the zero
elements need not be stored. One of the key issues is to define data structures
for these matrices that are well suited for efficient implementation of standard so-
lution methods, whether direct or iterative [93]. Essentially, there are two broad
types of sparse matrices: structured and unstructured. A structured matrix is one
whose nonzero entries form a regular pattern, often along small number of diag-
onals. Alternatively, the nonzero elements may lie in blocks (dense submatrices)
of the same size, which form a regular pattern, typically along a small number of
(block) diagonals. A matrix with irregularly located entries is said to be irregularly
structured.

6.2.1 Direct and Iterative Methods

Methods for solving Equation (6.1) are classified as either direct or iterative. Di-
rect methods consist of some form of Gaussian elimination or closely related pro-
cedures such as LU decomposition. Direct methods solve the matrix equations
reliably, but they become inefficient for large problems because of the work and
storage requirements. Iterative methods are usually more efficient for large prob-
lems than direct methods because they take advantage of the sparseness of matrix
A. The amount of numerical work performed by iterative methods depends on the
number of equations to be solved and the number of iterations. Among iterative
methods for solving linear systems of algebraic equations, two particular families
stand out for this application: preconditioned Krylov-subspace methods (see, for
example [14, 93, 49]) and multigrid methods (see, for example [54, 22, 109]).
Here, I review the first family, i.e., Krylov-subspace methods.
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Krylov-Subspace Methods

Let x0 be an initial approximation to the solution of Equation (6.1), r0 = b−Ax0

be the initial residual, and let

Km(A, r0) = span {r0, Ar0, · · · , Am−1r0} , (6.2)

be the Krylov subspace of dimension m defined by A and r0. The short-hand
notation Km is used when the dependence on A and on the specific vector r0 is
clear from the context. Note that these subspaces are nested, i.e. Km ⊆ Km+1.

Krylov subspace methods are iterative methods in which an approximation to
the solution of Equation (6.1), xm, is found in x0 + Km at the mth step. That
is, this approximation is of the form xm = x0 + qm−1(A)r0, where qm−1 is a
polynomial of degree at most m − 1. If the system is real, then qm−1 can be
chosen to have real coefficients. This natural expression implies that the residual
rm = b−Axm is associated with the so-called residual polynomial pm of degree
at most m with pm(0) = 1, since

rm = b − Axm = r0 − Aqm−1(A)r0 = pm(A)r0. (6.3)

Analogously, the error satisfies xm − x̃ = pm(A)(x0 − x̃), where x̃ is the so-
lution of Equation (6.1). Let us denote by Pm the set of all polynomials p of
degree at most m such that p(0) = 1. The approximation xm ∈ x0 + Km (or
equivalently, the corresponding polynomial) is often found by requiring xm to be
the minimizer of some functional. Different methods depend on the choice of this
functional, on the characteristics of the matrix, and on some implementation de-
tails. Thus, each method defines implicitly a different polynomial pm ∈ Pm (or
qm−1). For example, in the popular generalized minimal residual (GMRES) by
Saad and Schultz [94], the approximation xm is the one minimizing the 2-norm
of the residual [114].

Detailed comments concerning several general Krylov subspace methods (Bi-
CG, GMRES, CGS, QMR and BiCGSTAB) can be found in several papers ([46,
94, 104, 48, 40]). For pseudocodes of preconditioned Krylov subspace methods
see [14] and for an excellent review see [114].

In this study, preconditioned BiCGSTAB [40] is applied to solve the linear
systems (5.8) and (5.29) arising after discretization of the Fredholm and Poisson
equations, respectively. The relative computational merits of the different methods
would not change noticeably if another Krylov-subspace method had replaced
BiCGSTAB.
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6.3 Preconditioning
It is widely accepted that the rate of convergence of an iterative method depends
greatly on the spectral properties of coefficient matrix. Hence, iterative methods
usually involve a matrix that transforms the original coefficient matrix into one
having the same solution but more favorable spectral properties. A preconditioner
is a matrix that can be used to accomplish such a transformation. In practice,
the preconditioner should meet the requirement of two characteristics. First, the
preconditioned matrix must be (much) better conditioned than the original coef-
ficient matrix so that the preconditioned system can be efficiently solved by iter-
ative methods. Secondly, the cost of constructing and applying a preconditioner
must be economical. The two requirements are, however, contradictory, forcing
a trade-off between the cost of constructing and applying the preconditioner and
the improvement of iterative efficiency. None the less, a good preconditioner im-
proves the convergence of the iterative method sufficiently to overcome the extra
cost of constructing and applying the preconditioner. Indeed, without a precondi-
tioner the iterative method may even fail to converge.

The matrix A is well conditioned if its condition number

κ(A) = ‖A‖‖A−1‖ (6.4)

is relatively small. Here A−1 is the inverse matrix, and ‖A‖ = max‖x‖
‖Ax‖
‖x‖ ,

where ‖x‖ =
√

(x,x). There are many ways to define this inner product. In
particular, for complex-valued vectors x, y, it can be defined as

(x,y) = x∗y =
∑

i

x∗
i yi, (6.5)

where ∗ stands for conjugate transpose. If κ(A) is relatively large, matrix A is
poorly conditioned.

For a more expeditious solution of Equation (6.1) by a Krylov subspace
method (see, Section 6.2.1) one can transform the original system given in Equa-
tion (6.1) to a preconditioned form as

AM−1y = b, (6.6)

where y = Mx is the vector of modified unknowns and M−1 is the inverse of
M . When the modified system (6.6) is eventually solved to give an approximate
solution ỹ, the solution x̃ of the original system (6.1) is resolved from the follow-
ing system of linear equations Mx̃ = ỹ. Matrix M in Equation (6.6) is called the
right-preconditioner, and, in general, is sought so as to bring the matrix AM−1

as close as possible to the identity matrix. In other words, it is desirable to choose
preconditioner M so that the modified system (6.6) is better preconditioned than
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the original system (6.1). In terms of condition numbers this requirement is ex-
pressed as

1 ≈ κ(AM−1) 
 κ(A). (6.7)

Alternatively to Equation (6.6), the preconditioner can also be applied to the left

M−1Ax = M−1b. (6.8)

In this case, matrix M in Equation (6.8) is called the left-preconditioner. Finally,
a common situation finds the preconditioner available in the factored form

M = MLMR, (6.9)

where, typically, ML and MR are triangular matrices. In this situation, the pre-
conditioning can be split

M−1
L AM−1

R y = M−1
L b, (6.10)

where y = MRx. I refer the reader to several sources (e.g. [93, 14, 29]), or the
excellent survey Benzi[15] for more details on preconditioning.

Next, I describe the preconditioners used with the linear systems, Equations
(5.8) and (5.29). As the linear systems, Equations (5.8) and (5.29) have very dif-
ferent structure, different preconditioners are applied. For the sparse 7-diagonal
system, Equation (5.29), arising for the Poisson equation, an incomplete LU (ILU)
preconditioner (see, e.g. [93, 10]) is applied. We do not claim that this is optimal,
but it is a very common choice for this type of system. One can apply a multi-
grid method as a preconditioner (see, e.g. [92, 106, 81]). For the dense system,
Equation (5.8), arising for the Fredholm equation, ILU preconditioning is not fea-
sible, and a diagonal preconditioner based on physical arguments [60] is applied
instead.

6.3.1 Contraction IE
The integral equation (5.5) can be rewritten in the form

Ea(r′) = Y(σaE), (6.11)

where the Green’s operator Y is defined as

Y(σaE) =

∫
D

GE(r′|r)σa(r)E(r)dv. (6.12)

Unfortunately, Y is a contraction operator only for weak scatterers, where the size
of the anomalous domain is much smaller than the wave-length inside the body,
and the conductivity contrast σa/σb is small [51, 60].
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The modified iterative-dissipative method (MIDM) has been successfully
developed (see, e.g. [88, 100, 101, 102, 89]) and implemented (see, e.g.
[6, 135, 7, 60]). Based on the iterative-dissipative method, some linear trans-
formations to Green’s operator Y are applied, such that its norm is smaller than
1 for any conductivity distribution and frequency [60]. The specific form of this
linear transformation is motivated by the energy inequality for the anomalous EM
field inequality (A.10); see Appendix A for a detailed derivation.

The derivation of the modified Green’s operator follows (based on [60, 88,
100, 135]). The starting point is the energy inequality for the anomalous EM field
(see Appendix A):∫

D

σb

∣∣∣∣Ea +
Ja

2σb

∣∣∣∣
2

dv ≤
∫

D

|Ja|2
4σb

dv, (6.13)

where Ja = σaE. Introduce the vector fields

χ =
1

2
√

σb
(2σbEa + Ja), (6.14)

ξ =
1

2
√

σb
Ja, (6.15)

for which inequality (6.13) takes the simpler form∫
D

|χ|2 dv ≤
∫

D

|ξ|2 dv, (6.16)

such that

‖χ‖ ≤ ‖ξ‖. (6.17)

Here, the L2 norm

‖X‖ =

√∫
D

|X|2 dv, (6.18)

is applied.
The new vector field χ can be rewritten:

χ =
√

σbEa +
1

2
√

σb
Ja

=
√

σbY(Ja) +
1

2
√

σb
Ja

=
√

σbY(2
√

σb(
Ja

2
√

σb
)) +

1

2
√

σb
Ja

=
√

σbY(2
√

σbξ) + ξ

= Ym(ξ). (6.19)
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Here, Ym(ξ) is the modified Green’s operator. The operator Ym(ξ), possesses a
remarkable property

‖Ym(ξ)‖ ≤ ‖ξ‖ (6.20)

that is exactly equivalent to the energy inequality (6.13). In other words, the L2

norm of Ym is always less than or equal to one

‖Ym‖ ≤ 1. (6.21)

Equation (6.19) can be simplified

aEa + bEb = Ym(bE), (6.22)

where

a =
2σb + σa

2
√

σb
, b =

σa

2
√

σb
. (6.23)

Equation (6.22) can be treated as an integral equation with respect to the scaled
anomalous electric field Ẽ

a
= aEa

Ẽ
a

= Ym(ba−1Ẽ) − bEb

=
√

σbY(2
√

σbba−1Ẽ) + ba−1Ẽ − bEb

=
√

σbY(2
√

σbba−1Ẽ) + ba−1Ẽ
a
,

then

(1 − ba−1)Ẽ
a

=
√

σbY(2
√

σbba−1Ẽ
a
) +

√
σbY(2

√
σbba−1Ẽ

b
). (6.24)

Note that according to Equation (6.23),

1 − ba−1 = (a − b)a−1 =
√

σba−1. (6.25)

Therefore, the final form of the contracted integral equation with respect to the
scaled anomalous electric field Ẽ

a
is

√
σba−1Ẽ

a
=

√
σbY(σaa−1Ẽ

a
) +

√
σbY(σaEb). (6.26)

The discrete form of Equation (6.26) is√
Sb(I − GDSa)a−1ẽa =

√
SbGDSaeb, (6.27)

where ẽa = aea, a is a diagonal matrix equal to

a =
(
2
√

Sb
)−1 (

2Sb + Sa
)
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and

Sb = diag
(
σb

1 · · · σb
n σb

1 · · · σb
n σb

1 · · · σb
n

)
.

Thus, we have transformed the original matrix Equation (5.8) into the precondi-
tioned equation

M 1AIEM 2(M
−1
2 ea) = M 1GDSaeb, (6.28)

where

M 1 =
√

Sb,
(6.29)

M 2 =
(
2
√

Sb
) (

2Sb + Sa
)−1

.

It is notable that the preconditioned matrix APIE = M 1AIEM 2 has a signifi-
cantly lower condition number than the original matrix AIE .

6.3.2 Incomplete LU
When performing LU factorization on a sparse-banded matrix ASIE (Figure 5.4),
the factors L (unit lower triangular) and U (upper triangular) will generally
contain non-zeros in all positions between the bands in ASIE , making the al-
gorithm very expensive for large problems. In an incomplete LU factorization,
ASIE ≈ M = L̃Ũ , most of this fill-in is avoided simply by allowing fill-in to
take place only at specified positions in the factors related to the non-zero pattern
of ASIE . Within the ILU preconditioner family, ILU(0), with no fill-in allowed
outside the original non-zero pattern of ASIE , is the most popular. We apply
ILU(0) in this study.

Construction of the ILU(0) preconditioner thus consists of identifying M =
L̃Ũ with ASIE in locations where the original aij

,s are nonzero. For the seven
bands of ASIE , this leads to

αidi−1 = ai, βidi−mx = bi, γidi−mxmy = ci

di + αiηi + βiφi + γiξi = δi,

ηi+1 = ei+1, φi+mx = fi+mx , ξi+mxmy = gi+mxmy ,

(see, e.g., [93]). The structures of matrices L̃ and Ũ are shown in Figures 6.2 and
6.3, respectively.

Observe that the elements ηi+1, φi+mx and ζi+mxmy are identical to the corre-
sponding elements of the matrix ASIE . The other values are obtained from the
following recurrence:

αi =
ai

di−1

, βi =
bi

di−mx

, γi =
ci

di−mxmy

, di = δi − αiei − βifi − γigi.
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1
α2 1

βmx+1

γmxmy+1

γm βm αm 1

Figure 6.2: Structure of the matrix L̃.

d1 η2 φmx+1 ζmxmy+1

d2 η3

ζm

φm

ηm

dm

Figure 6.3: Structure of the matrix Ũ .
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The quantities ai/di−1, bi/di−mx and ci/di−mxmy need not be saved since they are
scaled versions of the corresponding elements in ASIE . Then, only a recurrence
for the diagonal elements di is needed:

di = δi − aiei

di−1

− bifi

di−mx

− cigi

di−mxmy

, i = 1, 2, ...,m, (6.30)

with the convention that di with a nonpositive index i is replaced by 1; the entries
ai, ei, i ≤ 1, bi, fi, i ≤ mx, and ci, gi, i ≤ mxmy, are zero.

The factorization obtained takes the form

M = L̃Ũ = (D + E)D−1(D + F ), (6.31)

in which E is the strict lower triangular part of ASIE , F is the strict upper trian-
gular part of ASIE , and D is the diagonal obtained with the recurrence, Equation
(6.30).

6.4 Operation Count
With any algorithm, one must assess its cost. To do so, we follow the classi-
cal route and count the number of floating point operations (flops) required by
the algorithm. Each addition, subtraction, multiplication, division, or square root
counts as one flop. We make no distinction between real and complex arithmetic,
although, in practice, on most computers, there is a sizable difference.

Most of iterative process are combination of:

1. Matrix-vector product.

2. Inner product.

3. SAXPY (Scalar Alpha X Plus Y) operations.

Let A be a matrix of the size q × q, and x and b be vectors of the size q × 1.
Then, the number of flops with an inner product x∗b is q multiplications and q−1
additions, that is 2q−1. An SAXPY operation, αx+b, requires q multiplications
and q additions; that is 2q flops. Matrix-vector product Ax results in q×(2qnz−1)
flops, where qnz is the average number of nonzero entries in a row in A.



Chapter 7

Order of Magnitude Analysis

In this Chapter, I discuss some of the basic principles of the order-of-magnitude
analysis using two examples of standard ordinary differential equations. To the
best of our knowledge, there are few publications that discuss order of magnitude
calculations in relation to simplifications Maxwell’s Equations. The aim of this
chapter is to prepare the reader for Paper C. The challenges posed by Maxwell’s
Equations in contrast with the single ordinary differential equation are listed.

The purpose of order-of-magnitude methods is to identify the important fea-
tures of a system, to incorporate them into a tractable model, and, from that model,
deduce properties of the original system. The adjective in the title, order-of-
magnitude, reflects my emphasis on approximation.

Let us begin with the standard example of a single ordinary differential equa-
tion.

7.1 Example 1

Consider the equation:

df

dx
= τf, τ is given. (7.1)

Equation (7.1) has the solution fE(x) = ceτx. Here, and in the following, c is a
generic constant. Magnitude of the differential operator, d

dx
is defined as

d

dx
∼ 1

[x]
, (7.2)

where [x] is the fastest scale of variation for f(x) in the region of interest. In
this example, there is only a single scalar variation, that is, the region of interest
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Figure 7.1: The exact solution fE(x) = ceτx at different values of τ and the approximate
solution fA(x) = c (green dot).

itself. The relative magnitude of the two terms in Equation (7.1) can be assessed
by calculating values for the dimensionless parameter

β =
τf(x)

f(x)/[x]
= τ [x]. (7.3)

If the dimensionless parameter, β is much smaller than unity, then one can
neglect the right side of Equation (7.1), i.e.

df

dx
≈ 0, (7.4)

which has the solution fA(x) = c. The solution of Equation (7.4) is a good
approximation to the solution of Equation (7.1) when β = τ [x] 
 1.

Figure 7.1, shows the approximate solution fA(x) = c (green dot) and the
exact solution fE(x) = ceτx for different values of τ . We can see that when β has
small values, there is good correspondence between the two solutions and vice
versa for the same interval of solution. However, there is a trade-off between the
interval of solution and the value of parameter τ (τ [x] 
 1 ⇐⇒ τ 
 1/[x] or
[x] 
 1/τ ).
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7.2 Challenges with Maxwell’s Equations

The challenges with the Maxwell’s Equations (4.13) and (4.14) (see [9]) as com-
pared with the single ordinary differential equation presented in the previous sec-
tion are:

1. There is the curl operator, ∇×, Equation (4.13), instead of a single ordi-
nary differential operator, d

dx
. The curl operator, ∇× represents a system of

partial differential equations, i.e.

∇× =

⎡
⎣ 0 −c b

c 0 −a
−b a 0

⎤
⎦ ,

where a = ∂
∂x

, b = ∂
∂y

, and c = ∂
∂z

.

2. There are two vector functions E and H instead of a scalar function f(x).

3. Representation is 3D instead of 1D.

4. Complex numbers are used instead of real numbers.

These issues are addressed and discussed in Paper C.
In the following example I consider item number 2 from the previous list, but

with a scalar function.

7.3 Example 2

In this example, we consider the following equation

df

dx
= τ, τ is given. (7.5)

It has the solution fE(x) = c + τx. Figure 7.2 shows the approximate solution
fA(x) = c (green dot) and the exact solution fE(x) = c + τx for different values
of τ .

In this example, the dimensionless parameter is

β(x) =
τ

f(x)/[x]
=

τ [x]

f(x)
. (7.6)

There are a number of choices to define typical value β of β(x).
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Figure 7.2: The exact solution fE(x) = c + τx at different values of τ and the approxi-
mate solution fA(x) = c (green asterisk).

Case I

First, let us define it as the change in f(x), i.e. [f ] = f(x2) − f(x1). Such
that

df

dx
∼ [f ]

[x]
.

However, this will result in

β1 =
τ [x]

f(x2) − f(x1)
=

τ [x]

τ [x]
= 1. (7.7)

With this choice of β, there is no way to neglect the right side of Equation
(7.5) whatever the value of τ is. That is, the choice of β is not proper.

Case II

Let us define β as the average of f(x), i.e. [f ] = 1
2
(f(x1) + f(x2)). This

will result in

β2 =
τ [x]

τ(x1 + x2)/2 + c
. (7.8)
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With this choice of β, small values of τ correspond well with good accu-
racy of the approximate solution (see Figure 7.2). This also depends on the
solution itself.

Case III

Lastly, we define

β3 =
1

[x]

∫ x2

x1

β(x)dx, (7.9)

where β(x) = τ [x]
f(x)

. Substitute for f(x):

β3 =
1

[x]

∫ x2

x1

τ [x]

τx + c
dx. (7.10)

Calculate the integral:

β3 = ln(τx + c)|x2
x1

= ln
(τx2 + c

τx1 + c

)
. (7.11)

Whence,

β3 = ln
(
1 +

τ [x]

τx1 + c

)
. (7.12)

Although β3 is a generalization of β2, it is applicable to our needs within
Maxwell’s Equations (see Paper C).

With proper choice of β, β will depend on the solution of original problem,
f(x). Several consequences of this property of β is further discussed in Paper C.





Chapter 8

Summaries of Papers

A number of scientific papers have been produced as a part of this work. The
previous chapters have provided theory and background for the investigations.
Here, I further discuss the process leading to the papers and present the main
results.

8.1 Summary of Paper A

Title: Feasibility of simplified integral equation modeling of low-frequency
marine CSEM with a resistive target.
Authors: Shaaban A. Bakr and Trond Mannseth
Published in Geophysics, Volume 74, Issue 5, P. F107-F117, 2009.

We present a novel hybrid method for modeling marine controlled source elec-
tromagnetic (CSEM): simplified integral equation (SIE) modeling. The approach
shows excellent accuracy in modeling the low-frequency response from a thin re-
sistive target in a simplistic 2D setting.

The rigorous integral equation (IE) modeling consists of three steps. The first
step is to compute Eb in the anomaly, D, and in the receivers, and Hb in the re-
ceivers (see left sketch of Figure 8.1). The second step is to compute Ea in D.
The third step is to compute Ea and Ha in the receivers. The second step is com-
putationally very intensive for large problems since solving a linear system with a
dense coefficient matrix is involved. We consider the use of a variable-coefficient
Poisson equation to circumvent the computationally intensive second step of rig-
orous IE modeling. Thus, the SIE modeling replaces the dense matrix part of
rigorous IE modeling by sparse matrix calculations based on an approximation of
Maxwell’s Equations.
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The SIE modeling also consists of three steps. The first step of SIE is identical
to that of rigorous IE. For the second and third steps we consider two different
settings. In Setting I, the Poisson equation is used to compute Ea both in D and
in the receivers (see left sketch of Figure 8.1). The third step in Setting I is to
compute Ha in the receivers in the same manner as with rigorous IE.

Air

Receivers

Sea water

Sediments

D

z

x

ri d

Air

Sea water

Sediments

D

z

x

rv

rh

rd

Figure 8.1: Sketch of model setup in setting I (left) and setting II (right). In setting
I, we compute Ea both in D and in the receivers. In setting II, we compute Ea in
D only.

In Setting II, the Poisson equation is used to compute Ea in D only (see right
sketch of Figure 8.1). The third step in Setting II is to compute Ea and Ha in the
receivers in the same manner as for rigorous IE.

The accuracy of SIE has been assessed by order-of-magnitude calculations (a
more extensive investigation on order-of-magnitude analysis is included in Paper
C for general types of target) and by numerical comparisons of SIE to rigorous IE
in a simplified 2D setting. Results within D obtained with the 2D Poisson solver
(Poisson solver is extended in 3D in Papers B, C, D and E) were then compared
to 2D slices of the results obtained from IE within D in 3D. SIE has also been
compared to quasi-linear (QL) and quasi-analytical (QA) approximations. Both
order-of-magnitude calculations and computational results with SIE and rigorous
IE show that, in Setting I, SIE will not provide good approximations to rigorous
IE, except for extremely low frequencies and reservoirs at a fairly shallow depth.
In Setting II, however, both order-of-magnitude calculations and computational
results show that SIE will provide good approximations to rigorous IE for many
frequencies and target dimensions within the selected parameter ranges. SIE was
significantly more accurate than the QL and QA approximations.

Based on these results for Setting I and Setting II, we recommend use of SIE
in Setting II only.
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8.2 Summary of Papers B and C

Paper B:
Title: Numerical investigation of the range of validity of a low-frequency approx-
imation for CSEM.
Authors: Shaaban A. Bakr and Trond Mannseth
Published in 72nd EAGE Conference and Exhibition, Barcelona, Expanded
Abstracts, P.D34–D38, 2010.

Paper C:
Title: An approximate hybrid method for electromagnetic scattering from an
underground target: Part 1 – Accuracy and range of validity.
Authors: Shaaban A. Bakr and Trond Mannseth
Submitted to IEEE Transactions on Geoscience and Remote Sensing.

In Papers B and C, we investigate the range of validity of SIE modeling in 3D
setting with respect to variation in problem parameters (frequency, electrical con-
ductivity, target shape and target size). The approach is based on a low-frequency
approximation of Maxwell’s Equations in the target region.

In Paper B, we investigate numerically the range of validity of SIE in 3D set-
ting with respect to variation in problem parameters. In Paper C, we consider a
more extensive investigation into these issues, including a theoretical investiga-
tion.

The range of validity for SIE in terms of problem parameters has been as-
sessed in two ways. First, we have used order-of-magnitude analysis of Maxwell’s
Equations, to find a characteristic dimensionless parameter that can be used as an
indicator to determine SIE validity. This includes development of novel order-of-
magnitude analysis methods for Maxwell’s equations, resulting in four candidate
dimensionless parameters. Second, we have performed an extensive numerical
comparison of SIE modeling to rigorous IE modeling, systematically varying the
relevant problem parameters.

The numerical comparison with rigorous IE modeling shows that the accuracy
of SIE modeling is excellent for a vertically thin resistive target for typical marine
CSEM frequencies, and reasonably good for frequencies up to about 10 Hz. For
a resistive target, the accuracy of SIE has been found to be stable with respect
to target shapes and volumes, as well as to conductivity contrast strength. For a
conductive target, the accuracy is also good, but it deteriorates somewhat with the
strength of the conductivity contrast.

The numerical comparison further reveals that two of the novel dimensionless
parameters are found to have generally better predictive capability in determining
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SIE validity. Unfortunately, these two parameters can not be used a priori to de-
cide if SIE is valid in a particular case as they depend on quantities that must be
computed numerically. Use of SIE for a particular case can, however, be justi-
fied by comparing the characteristics of the problem at hand with those from the
extensive numerical comparison of SIE to IE. In this situation, it is particularly
important that the results from this comparison clearly indicate that SIE modeling
is a very good approximation to rigorous IE modeling for a typical marine CSEM
application.

8.3 Summary of Papers D and E

Paper D:
Title: Fast 3D modeling of the low-frequency CSEM response of a petroleum
reservoir.
Authors: Shaaban A. Bakr and Trond Mannseth
Published in 79th Annual International Meeting, SEG, Expanded Abstracts,
P.669–673, 2009.

Paper E:
Title: An approximate hybrid method for electromagnetic scattering from an
underground target: Part 2 – Computational complexity and cost.
Authors: Shaaban A. Bakr and Trond Mannseth
Submitted to IEEE Transactions on Geoscience and Remote Sensing.

The geometry of a geoelectric anomaly (petroleum reservoir, CO2 deposition
aquifer) within geophysical applications is often irregular. Hence, accurate mod-
eling may require a very large number of grid cells. This may severely limit the
applicability of 3D controlled source electromagnetic solvers for such applications
both with respect to computational speed and memory requirements.

Our main focus in both Papers D and E is to quantify the computational com-
plexity of SIE and compare its computational performance to that of IE-FFT (IE
with application of the fast Fourier transform (FFF) in the two horizontal direc-
tions) when there is a large number of grid cells in the target body. We have
assessed the computational cost and complexity of SIE modeling and compare
its computational performance to IE modeling for a typical CSEM application in
two ways. First, we quantify the theoretical computational performance by ana-
lyzing the algorithms and subsequently calculating the number of floating point
operations per iteration. Second, we observe the number of iterations required to
numerically solve a sample of representative problems, as well as the correspond-



8.3 Summary of Papers D and E 63

ing CPU times.
Both theoretical and practical computational performance of SIE is orders of

magnitude better than that of IE-FFT when the same number of grid cells is used
to discretize the target body with the two methods.

Note that an advantage of SIE with respect to IE-FFT has not been considered
here. IE-FFT is applicable only when the computational grid and the electric
conductivity are uniform in the two horizontal directions, while SIE can be applied
for non-uniform grids and non-uniform electric conductivity. IE (i.e., without
the use of FFT in the two horizontal directions) can be applied for non-uniform
grids and non-uniform electric conductivity, but the computational complexity is
prohibitively large for large models.) This advantage has not been used to reduce
the required number of grid cells in the target body with SIE.





Appendix A

Energy Inequality for an
Anomalous Field

To derive the energy inequality for the anomalous EM field, we first rewrite Equa-
tions (4.44) and (4.45) as

∇× Ea = iωμ0H
a, (A.1)

∇× Ha = σbEa + Ja, (A.2)

where

Ja = σaE

is the density of anomalous electric currents within the inhomogeneity D.
Fundamental energy inequality for the anomalous EM field has been derived

by Singer [100] and Pankratov et al.[88]. Here, I will demonstrate this inequal-
ity for completeness. One can calculate the average per period energy flow of
anomalous EM field through the surface S of the domain V containing the inho-
mogeneity D (see Figure A.1) as

F = Re
∫

S

P · nds =
1

2
Re
∫

S

(Ea × Ha∗) · nds, (A.3)

where n is a unit vector normal to the surface S directed outwards from the do-
main V and P is the Poynting vector [107] introduced by

P =
1

2
Ea × Ha∗, (A.4)

where the asterisk indicates complex conjugate value. Equation (A.3) can be
rewritten using the Gauss formula as

F = Re
∫

V

∇ · P dv =
1

2
Re
∫

S

(Ea × Ha∗) · nds. (A.5)
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x

z
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σD = σb + σa

Dσb

n
V

S

Air

Figure A.1: Target body D with the conductivity σD embedded in a horizontally strati-
fied background conductivity σb.

We can obtain Poynting’s Theorem by taking the scalar product of Equation (A.1)
with Ha∗ and the complex conjugate of Equation (A.2) with Ea and subtracting
one from the other. We get

2∇ · P = ∇ · (Ea × Ha∗)

= Ha∗ · ∇ × Ea − Ea · ∇ × Ha∗ (A.6)
= iωμ0|Ha|2 − σb|Ea|2 − Ea · Ja∗.

We have used the identity

∇ · (A × B) = B · ∇ × A − A · ∇ × B. (A.7)

Thus the energy flow F is given by

F = −1

2

∫
V

{
σb|Ea|2 + Re(Ea · Ja∗)

}
dv. (A.8)

Pankratov et al.[88] have proved an important theorem, which states that the en-
ergy flow F outside the domain V with the anomalous domain D is always non-
negative

F ≥ 0. (A.9)

Up to this point, we can write the integrand of Equation (A.8) in the form

σb|Ea|2 + Re(Ea · Ja∗) = σb|Ea|2 +
1

2
Ea · Ja∗ +

1

2
Ea∗ · Ja

= σb|Ea|2 +
|Ja|2
4σb

+
1

2
Ea · Ja∗ +

1

2
Ea∗ · Ja − |Ja|2

4σb

= σb

∣∣∣∣Ea +
Ja

2σb

∣∣∣∣
2

− |Ja|2
4σb

.
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We then get

∫
V

{
σb|Ea|2 + Re(Ea · Ja∗)

}
dv =

∫
V

{
σb

∣∣∣∣Ea +
Ja

2σb

∣∣∣∣
2

− |Ja|2
4σb

}
dv ≤ 0.

From the last formula, we have∫
V

σb

∣∣∣∣Ea +
Ja

2σb

∣∣∣∣
2

dv ≤
∫

V

|Ja|2
4σb

dv. (A.10)

Energy inequality (A.10) holds for any lossy medium.
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