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ABSTRACT

We have assessed the accuracy of a simplified integral
equation �SIE� modeling approach for marine controlled-
source electromagnetics �CSEM� with low applied frequen-
cies and a resistive target. The most computationally inten-
sive part of rigorous integral equation �IE� modeling is the
computation of the anomalous electric field within the target
itself. This leads to a matrix problem with a dense coefficient
matrix. It is well known that, in general, the presence of many
grid cells creates a computational disadvantage for dense-
matrix methods compared to sparse-matrix methods. The
SIE approach replaces the dense-matrix part of rigorous IE
modeling by sparse-matrix calculations based on an approxi-
mation of Maxwell’s equations. The approximation is justi-
fied theoretically if a certain dimensionless parameter � is
small.As opposed to approximations of the Born type, the va-
lidity of the SIE approach does not rely on the anomalous
field to be small in comparison with the background field in
the target region. We have calculated � for a range of parame-
ter values typical for marine CSEM, and compared the SIE
approach numerically to the rigorous IE method and to the
quasi-linear �QL� and quasi-analytic �QA� approximate solu-
tions. It is found that the SIE approach is very accurate for
small � , corresponding to frequencies in the lower range of
those typical for marine CSEM for petroleum exploration. In
addition, the SIE approach is found to be significantly more
accurate than the QL and QAapproximations for small � .

INTRODUCTION

In a marine controlled-source electromagnetic �CSEM� experi-
ment, the energy source normally is a towed horizontal electric di-
pole antenna. The dipole emits a low-frequency signal into the sur-
rounding media, and stationary seafloor receivers normally record

the electromagnetic �EM� signals. The marine CSEM technique,
since its introduction by Cox et al. �1971�, has been applied success-
fully to study the oceanic lithosphere and active spreading centers
�Young and Cox, 1981; Cox et al., 1986; Chave et al., 1990; Evans et
al., 1994; Constable and Cox, 1996; MacGregor and Sinha, 2000�.

Recently, marine CSEM has become an important complementa-
ry tool for offshore petroleum exploration �Eidesmo et al., 2002; Ell-
ingsrud et al., 2002; Tompkins, 2004; Carazzone et al., 2005; Hest-
hammer and Boulaenko, 2005; Srnka et al., 2005�. The method ex-
ploits lossy guiding of EM energy in resistive bodies within more
conductive media in an attempt to detect hydrocarbon reservoirs.
For inline source-receiver geometry, the response from a thin resis-
tive target is much more the result of galvanic effects than of induc-
tive effects �MacGregor and Sinha, 2000; Eidesmo et al., 2002�.
Typically, very low source frequencies �0.05–1 Hz� are applied.

The actual detection of a potential petroleum reservoir is achieved
through inversion of the electromagnetic data acquired in the sea-
floor receivers. Inversion of electromagnetic data requires repeated
solves of the mathematical/numerical model in an iteration process.
The computational efficiency of the solver therefore will have a
great impact on the computational efficiency of the inversion. Vari-
ous types of solvers, such as finite-difference �FD�, finite-element
�FE�, and integral equation �IE� methods, have been applied. These
methods have different computational advantages and disadvantag-
es, some of which are discussed later. Hybrid methods �see, e.g., Lee
et al., 1981; Best et al., 1985; Gupta et al., 1987� can be applied also.

In our work, the feasibility of using a novel approximate hybrid
method as a solver for marine CSEM is assessed with respect to ac-
curacy and range of validity. The novel method, termed simplified IE
�SIE� modeling, is based on rigorous IE modeling, but it replaces the
computationally most intensive part of IE modeling by an approxi-
mate method. A general motivation for why the novel method is ex-
pected to be computationally advantageous, compared to rigorous
IE modeling for problems involving many grid cells in the target re-
gion, is given.Athorough and detailed comparison of computational
resources, however, is left for future research.
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Unlike approximations of the Born type, the validity of SIE mod-
eling does not rely on the anomalous field to be small in comparison
with the background field in the target region. It does rely, however,
on the galvanic effect dominating the inductive effect in the response
of a thin resistive target, as discussed earlier.

The outline of the paper is as follows: We start with a brief discus-
sion of Maxwell’s equations in differential and integral forms, with
emphasis on some general computational aspects of the FD and IE
methods. Then we present the SIE approach to marine CSEM, and
assess SIE accuracy for parameter ranges typical for petroleum ex-
ploration. Finally, we give a brief summary and conclusions and
point to some future research directions.

MAXWELL’S EQUATIONS IN
THE FREQUENCY DOMAIN

The CSEM radiation consists of electric E�V m�1� and magnetic
H�A m�1� fields, governed by Maxwell’s equations. Arbitrary com-
ponents of E, H, are denoted Ej, Hj, respectively; j�x,y,z. Further,
let r denote the spatial coordinate, � the entire model region, and D
the target region, that is, the hydrocarbon-saturated reservoir. The
conductivity distribution then can be represented as the sum � �r�
�� b�r��� a�r�, where � b�r� denotes the background conductivi-
ty and � a�r� denotes the anomalous conductivity in D �that is, � a

equals zero outside D�.
Correspondingly, the expression for E�r� can be split into two

parts, E�r��Eb�r��Ea�r�, and similarly for H�r�. Here, Eb de-
notes the background field, that is, the field that would have resulted
if the reservoir had not been present, and Ea represents the part of the
field caused by the existence of the anomaly.

Differential form

Assuming time variation e�i�t, and neglecting displacement cur-
rents, Maxwell’s equations in the frequency domain are

� �E� i��H, �1�

� �H��E�Je, �2�

� ·H�0,

� ·E�0,

where ��H m�1� is the magnetic permeability, ��Hz� is the angular
frequency, i���1, � �S m�1� is the electric conductivity, and
Je�A m�1� is the source current distribution.

Integral form

For an arbitrary current-source configuration, the solution to
Maxwell’s equations can be written as

Eb�r����
�

GE�r��r�Je�r�dV, �3�

Hb�r����
�

GH�r��r�Je�r�dV, �4�

Ea�r����
D

GE�r��r�� a�r��Eb�r��Ea�r��dV, �5�

Ha�r����
D

GH�r��r�� a�r��Eb�r��Ea�r��dV; �6�

see, for example, Zhdanov �2002�. Here, r� denotes a spatial location
where E and H are to be evaluated, for instance, a receiver position,
and G�E·H� denote the Green’s tensors for the electric and magnetic
fields calculated for the background conductivity.

Computational aspects of differential and integral
forms

We now discuss some general computational aspects of solving
Maxwell’s equations on differential and integral forms, respectively.
First we discuss these issues in the setting of a single solve of the
mathematical model �direct solver�. Next we consider the situation
when the direct solver is used in an inversion setting. The purpose is
to explain why the SIE approach is expected to be computationally
advantageous to the rigorous IE method for a sufficiently large num-
ber of grid cells in the anomalous domain D.

Direct solver

Discretization of Maxwell’s equations on differential form with
the FD �or FE� method results in a matrix equation for the three un-
known components of E �or H� in every grid cell in the computation-
al domain � . With many grid cells in � , the coefficient matrix will
be high dimensional. Because of the localized nature of differential
operators, however, the coefficient matrix will be very sparse. The
matrix equation for E in � must be solved once per source frequency
per source position. Let WFD denote the associated computational
work per source frequency per source position.

For the IE method, it is convenient to split the corresponding com-
putational work WIE into two parts, WIE�Wb�Wa. The work Wb is
associated with the computation of Eb, Hb, GE, and GH. The work Wa

is associated with the computation of the anomalous fields Ea and
Ha.

Concerning Wb, the computational cost of calculating Eb and Hb

from equations 3 and 4, whenGE andGH are known in � , is low. For a
horizontally stratified background conductivity, GE and GH can be
calculated analytically, that is, at low cost. For more complex back-
ground conductivities, GE and GH must be calculated numerically by
solving Maxwell’s equations with an elementary source term. In the
latter case, Wb alone can exceed WFD, making the IE method an alter-
native that is computationally too costly. For a horizontally stratified
medium, Wb
Wa, so the size of Wa compared to WFD will decide
whether the IE method is computationally less costly than the FD
method.

Concerning Wa, if Ea is known in D, Ea and Ha can be found in the
receivers from equations 5 and 6 at low computational cost. There-
fore, the dominating part of Wa comes from computing Ea in D from
equation 5. Discretizing this equation results in a matrix equation for
the three unknown components of Ea in every grid cell in D. Given
that the number of grid cells in D is the same as for the FD method,
the coefficient matrix will not be as high dimensional as for the FD
method �because � is larger than D�, but it will be dense. The dense
coefficient matrix will make the IE method computationally less
suitable than the FD method for problems involving many grid cells
in D, in the sense that if the number of grid cells in � for the FD
method and the number of grid cells in D for the IE method increase
by the same amount, Wa will grow much faster than WFD. The same
applies for storage requirements.
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The purpose of this study is to assess the accuracy of an alternative
method for calculating Ea in D that does not lead to a dense coeffi-
cient matrix, and therefore avoids the unwanted strong growth in Wa

and storage requirements with the number of grid cells in D. Before
proceeding to the presentation of this method, we continue the dis-
cussion about computational aspects of differential and integral
forms, but now for an inversion setting.

Direct solver in an inversion setting

In an inversion setting, the direct solver �or at least part of it� is
used repeatedly for different values of the unknown conductivity � a.
The computational work WFD will be approximately the same from
one iteration to another, but with the IE method, the first iteration is
special with respect to computational work. The computations asso-
ciated with Wb are performed only in the first iteration because Eb,
Hb, GE, and GH are independent of � a. Therefore, over � iterations
the total work for the FD method is approximately equal to � WFD,
whereas it is approximately equal to Wb�� Wa for the IE method.

If Wb
Wa, as for a horizontally stratified background conductiv-
ity, the computational advantage/disadvantage of the IE method
with respect to the FD method will be as for a single solve, except
that it will be multiplied by � . Hence, any computational advantage/
disadvantage of the IE with respect to the FD method will be ampli-
fied by � in this setting.

If Wb is not much smaller than Wa, as for a complex background
conductivity, Wb necessarily cannot be neglected. If � is large, how-
ever, the relative importance of Wb is diminished, so that the IE
method might be computationally less costly than the FD method in
an inversion setting even for a complex background conductivity. A
necessary �but not sufficient� requirement for this is that Wa 	 WFD.
This means that in an inversion setting, an alternative IE method cir-
cumventing the dense-matrix problem originating from equation 5,
may become computationally advantageous also for a complex
background conductivity distribution.

SIMPLIFIED IE MODELING OF MARINE CSEM

We consider alternatives to equation 5 for calculation of Ea for
low frequencies, thereby avoiding the computationally most inten-
sive part of the IE method. First we derive a simplified equation for
Ea from Maxwell’s equations. Then we discuss how the simplified
equation potentially can be used in combination with remaining
parts of the IE method.

Anomalous field from a variable coefficient Poisson’s
equation

To find a simplifying approximation to Maxwell’s equations, we
first use the splitting of � , E, and H into their respective background
and anomalous parts. Superposition applied to equations 1 and 2
then leads to

� �Eb� i��Hb, �7�

� �Ea� i��Ha, �8�

� �Hb��Eb�Je, �9�

� �Ha��Ea�� aEb. �10�

Applying the divergence operator to equation 10 results in

�� · ��Ea�� � · �� aEb� . �11�

Let �r� be a characteristic length of an electromagnetic modeling
problem, typically the distance from the source to a point where the
solution is calculated. Then, according to Cheney et al. �1999�, if the
dimensionless parameter � ���� �r�2 is much smaller than unity,
the electric field can be approximated by the gradient of a scalar po-
tential �that is, the inductive effect is negligible compared to the gal-
vanic effect�. Applying this to the anomalous electric field, and de-
noting the corresponding scalar potential by Ua, results in Ea 	
��Ua when � 
1. Inserting this expression for Ea into equation
11 results in a variable coefficient Poisson’s equation for Ua,

� · �� �Ua�� � · �� aEb� . �12�

After solving for Ua, the anomalous electric field is found from

Ea���Ua. �13�

Use of the Poisson’s equation in simplified IE
modeling

The suggested SIE modeling of marine CSEM consists of three
steps. �In the description of these steps, and in the subsequent accu-
racy assessment of SIE modeling, the problem geometry is kept as
simple as possible. This is done for convenience only; the SIE ap-
proach does not put any restrictions on the model geometry.� First,
compute Eb in D and in the receivers, and Hb in the receivers, from
equations 3 and 4, respectively. For the second and third steps, we
consider two settings.

Setting I

The second step consists of eliminating the use of equation 5 alto-
gether by using equations 12 and 13 to compute Ea both in D and di-
rectly in the receivers. �It is required to know Ea in D to calculate Ha

in the receivers from equation 6.� The target D has a rectangular �x,z�
cross section, and the line of receivers is located directly above the
horizontal seafloor. The top surface of D is located at a distance d be-
low the seafloor. The characteristic length �r�, in this setting, equals a
typical distance ri from an arbitrary point in D �i.e., the secondary
source� to an arbitrary point where Ea�r�� is calculated from equa-
tions 12 and 13. In Figure 1, ri corresponds to the distance from an ar-
bitrary point in D to a receiver location, but ri also can correspond to
the distance from an arbitrary point in D to another arbitrary point in
D.

The third step is to compute Ha in the receivers from equation 6.

Setting II

The computationally intensive part of equation 5 is to compute Ea

in D. The subsequent use of equation 5 to compute Ea in the receivers
when Ea is known in D, is not computationally intensive. The second
step in setting II thus consists of eliminating the computationally in-
tensive part of equation 5 by using equations 12 and 13 to compute
Ea in D.

�Note that one has to solve equation 12 in a region larger than D to
apply appropriate boundary conditions. Only the results within D
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will be used, however, and a coarser grid can be applied at some dis-
tance from the boundary of D.� The characteristic length �r�, in this
setting, equals a typical distance from an arbitrary point in D to an-
other arbitrary point in D where Ea�r�� is calculated.

�Note that �r� does not reflect the larger region introduced to be
able to apply appropriate boundary conditions without imposing
nonnegligible errors in D. This is because the results in the region
outside D are not used in the calculations to obtain the solution; that
is, they are not used to calculate the electromagnetic fields in the re-
ceivers. This is elaborated further in the subsection entitled “Base
case.”� For a rectangular region D, this distance cannot be larger than
the diagonal, rd; see Figure 2. In this study, we let �r��rd. The selec-
tion of �r� is not unique, however; our selection represents a conser-
vative choice in the sense that it will maximize � among all reason-
able choices of characteristic distance for D. An alternative could be
to let �r� be the average distance between two arbitrary points in D.

The third step is to compute Ea and Ha in the receivers from equa-
tions 5 and 6, respectively.

Note that none of the steps in settings I or II require dense-matrix
calculations.

VERIFICATION OF SIMPLIFIED IE
MODELING OF MARINE CSEM

We seek to verify the novel computational schemes, SIE in setting
I �SIEI� and SIE in setting II �SIEII�, in two ways. First we assess the
validity of � 
1 for a range of parameter values typical for marine
CSEM applied to petroleum exploration. Next we compute Ea for
such parameter values by the novel schemes and by the full IE
scheme, and compare the results with respect to accuracy.Adetailed
comparison of computational costs is left for future work.

One reason for not considering a detailed comparison of computa-
tional costs in this study is that our numerical Poisson solver present-
ly works in two dimensions, whereas the numerical rigorous IE solv-
er works in three dimensions. For this reason, the size of � for typi-
cal parameter values is calculated for 2D situations. In addition, this
issue has implications for how one can assess the accuracy of the SIE
scheme by using numerical solutions produced by the rigorous IE
solver as the benchmark. This is discussed when we explain the set-
up of the numerical examples. From now on, D denotes the xz-plane

cross section of the anomaly; see Figures 1 and 2. We emphasize that
for practical application of the SIE scheme, a 3D numerical Poisson
solver is needed. A verification of the accuracy of the SIE scheme in
the xz-plane is possible, however, with the presently implemented
2D solver.

The size of � for typical parameter values

The following parameter values entering in the expression for �
are used in this study: ���0�4
 �10�7 H m�1 ��0 is the free-
space magnetic permeability�; � b�1 S m�1; � �2
 f; and a range
of frequencies, f � 
0.05,0.1,0.3,0.5,1� Hz, is considered.

Setting I

The length from an arbitrary point in D to an arbitrary receiver is
not smaller than d. For reasons that will become apparent shortly, we
consider d to be the characteristic length. Then the characteristic
conductivity becomes � b, and � �2
 f�0� bd2. We consider differ-
ent depths, d� 
1000,1500,2000� m, and the resulting values of �
are listed in Table 1.

It is seen that � 	 1 only for very few of the table entries — when
the frequency is very small and the reservoir depth is shallow. Note
also that the values of � in Table 1 must be considered as lower
bounds because d is a lower bound for �r�. �Note that d would be a
lower bound for �r� if D was a 3D conductivity structure as well.�
Therefore, it seems unlikely that the SIEI scheme will result in good
approximations to the rigorous IE method, except for extremely low
frequencies and shallow reservoir depths.

Setting II

For a rectangular region D, the length from an arbitrary point in D
to another arbitrary point in D is not larger than rd� �rh

2�rv
2�1/2,

where rh and rv denote the horizontal and vertical dimensions of D,
respectively; see Figure 2. For reasons that will become apparent
shortly, we consider rd to be the characteristic length. The character-
istic conductivity is � D�� �r�,r�D�, so � becomes equal to
2
 f�0� Drd

2. We consider selected combinations of rh� 
1000,
3000,5000� m and rv� 
20,50,100� m, and set � D�0.02 S m�1.
The resulting values of � are listed in Table 2.Air

Receivers

Sea water

Sediments

x

z

d
ri

D

Figure 1. Sketch of model setup in setting I.

Sea water

Sediments

Air

rd

D

rh

rv

x

z

Figure 2. Sketch of model setup in setting II.
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In contrast to setting I, it is seen that � 
1 is fulfilled for many of
the table entries. Because of this, and because rd is an upper bound
for �r�, it seems likely that the SIEII scheme will result in good ap-
proximations to the IE method for many frequencies and reservoir
dimensions within the selected parameter ranges. �Note that in three
dimensions with rx�ry �rh, rd would increase by less than a factor
of �2. Recalling that �r��rd maximizes � among all natural choices
for �r�, it seems reasonable to assume that Table 2 will be informa-
tive for the 3D situation as well.�

Numerical comparison

We compare computational results obtained with the SIE method
in settings I and II to the rigorous IE method �Hursán and Zhdanov,
2002�. In addition, we compare to the quasi-linear �QL� approxima-
tion �Zhdanov and Fang, 1996� and the quasi-analytic �QA� approxi-
mation �Zhdanov et al., 2000� in some cases. The QL and QA ap-
proximations assume a linear relationship Ea��Eb inside the
anomalous domain, thereby avoiding the dense-matrix calculations
associated with equation 5. With the QL approximation, � is deter-
mined by solving a minimization problem. With the QA approxima-
tion, additional assumptions lead to an explicit expression for �. We
refer to Zhdanov and Fang �1996� and Zhdanov et al. �2000� for de-
tails about the QL and QAapproximations, respectively.

Although a detailed comparison of computational issues is be-
yond the scope of this study, we give a very brief description of the
numerical techniques applied to solve equation 12. Equation 12 is
solved by standard finite-volume �FV� techniques on an orthogonal
Cartesian grid in the xz-plane. Homogeneous boundary conditions
are applied at a distance from D large enough to ensure that Ea in the
region of interest does not change noticeably if the boundary loca-
tion is moved farther away. �Alternative boundary conditions can be
applied. It is possible, for instance, to apply boundary conditions
generated with the QA approximation on a boundary much closer to
the anomalous conductivity. This will decrease the computational
effort in solving the Poisson’s equation significantly, particularly in
three dimensions. However, we do not pursue this issue further in
this study because we are not concerned with a comparison of com-
putational efficiencies.� The grid-cell size varies and typically is
smaller within D than outside D. Care is taken, however, to apply
small grid cells both inside and outside D in the vicinity of its bound-
ary.As is well known, FV techniques require � to be evaluated at cell
edges, whereas it is known only in grid-cell centers from its discreti-
zation. For this computation, we apply the standard technique of dis-
tance-weighted harmonic averaging of neighboring grid-cell values.

All test models have vertical cross sections
consisting of a homogeneous half-space under a
1000-m-thick seawater column with electric con-
ductivity 3.33 S m�1. The 3D conductivity
anomaly has uniform rectangular cross sections.
The source is a 100-m-long, 1000-A, x-directed
horizontal electric dipole in the xz-plane, whose
center location is 100 m above the seafloor and
3000 m to the left of the center of D. The applied
frequencies are f � 
0.05,0.1,0.3,0.5,1� Hz. Un-
less otherwise stated, the homogeneous half-
space has electric conductivity � b�1 S m�1.

Because our Poisson solver presently works in
two dimensions and the rigorous IE solver, as
well as the QLand QAapproximate solvers, work

in three dimensions, some extra care must be taken when conducting
numerical comparisons of accuracy. Therefore, the modeled con-
ductivity anomaly is given a very large extension in the y-direction
to mimic a 2D situation. �The y-direction extension is selected so
that the results in the xz-plane do not change noticeably when in-
creasing it further.�

With the SIE method, Eb is computed in three dimensions using
equation 3. The components Ex

b and Ez
b in D then are extracted and

used as input to equation 12. All calculations with equations 12 and
13 are performed in the xz-plane. With the rigorous IE method, as
well as with the QL and QA approximations, results within the
anomaly and in the receivers can be computed in a standard fashion
from equations 3–6. The components Ex

a and Ez
a in D can then be ex-

tracted from the anomaly results and compared to the corresponding
SIE results.

In setting I, we compare only Ex
a and Ez

a in the receivers �which are
distributed along the x-axis; see Figure 1� to rigorous IE results. The
scheme SIEI then computes Ex

a and Ez
a in the receivers from equations

12 and 13. Because magnetic fields in the receivers are not com-
pared, there is no need to compute Ea in the anomaly.

In setting II, Ex
a and Ez

a in D are compared. �We choose, however,
to show results for Ez

a only, because Ez
a typically is orders of magni-

tude stronger than Ex
a in D.� Results in the receivers are not compared

because all involved methods apply the same equations �equations 5
and 6� to propagate the fields from the anomaly to the receivers.

The results to be shown are the amplitude of the anomalous elec-
tric field �Ej

a�, the pointwise relative error between the rigorous IE
and SIE methods

� j�ri��
��Ej

a�ri��IE� �Ej
a�ri��SIE�

�Ej
a�ri��IE

, �14�

Table 1. The size of � for different depths d and frequency f
in setting I.

f /d 1000 1500 2000

0.05 0.3948 0.8883 1.5791

0.1 0.7896 1.7765 3.1583

0.3 2.3687 5.3296 9.4748

0.5 3.9478 8.8826 15.7914

1.0 7.8957 17.7653 31.5827

Table 2. The size of � for different horizontal rh and vertical rv dimensions of
the target D and frequency f in setting II.

rv 100 50 50 50 20

f /rh 3000 5000 3000 1000 3000

0.05 0.0711 0.1974 0.0711 0.0079 0.0711

0.1 0.1423 0.3948 0.1422 0.0158 0.1421

0.3 0.4268 1.1845 0.4265 0.0475 0.4264

0.5 0.7114 1.9741 0.7108 0.0792 0.7106

1.0 1.4228 3.9482 1.4216 0.1583 1.4213
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and the mean relative error


 j�
1

N
�
i�1

N

� j�ri�, �15�

where ri denotes an arbitrary grid cell, N denotes the number of grid
cells, and j�x,z.

Setting I

The results are obtained in an array of electric receivers located
10 m above the seafloor, along the line between �x,y�� ��3,0� km
and �x,y�� �3,0� km. The electric conductivity in D is selected as
� D�0.01 S m�1, and the dimensions and location of D are selected
as rv�50 m, rh�3000 m, and d�1500 m.

Figure 3a shows results for �Ex
a� where f �0.3 Hz, and Figure 3b

shows results for �Ez
a� where f �0.05 Hz. In both plots, the dash-dot

line corresponds to the rigorous IE method, and the solid line corre-
sponds to the SIEI method. The frequencies are selected to indicate
where the SIEI method ceases to be a good approximation.

Figure 3c and d shows 
 x and 
 z as functions of f . Figure 3e and f
shows 
 x and 
 z as functions of � . The solid lines correspond to d
�1000 m, the dash-dot lines correspond to d�1500 m, and the
dashed lines correspond to d�2000 m. Figure 3 illustrates that the
SIEI scheme is a good approximation to the IE method only for ex-
tremely low frequencies and fairly shallow reservoirs, in correspon-
dence with Table 1.

Setting II

The depth below the seafloor is selected as 1500 m, except in the
last case studied. The values of rh, rv, and � D are specified further in
the description of the different cases studied. All figures shown for
the different cases illustrate features of the amplitude of the vertical
component of the anomalous electric field �Ez

a�. Typically, Ez
a repre-

sents the stronger response within D to the conductivity anomaly.
One type of plot will show filled contours of �Ez

a� as a function of lo-
cation in D for a specific set of parameter values. For all such plots, f
�0.1 Hz. For the first three cases, we compare the SIEII scheme to
the rigorous IE method, and to the QLand QAapproximations, using
this type of plot.

Base case. — The dimensions of D are selected as rv�50 m and
rh�3000 m, and the electric conductivity in D is selected as � D

�0.02 S m�1.
Figure 4 shows � z for selected values of x when z is fixed at

2525 m, corresponding to midway between the horizontal bound-
aries of D. Clearly, when moving far enough away from D, the solu-
tion to equations 12 and 13 ceases to be a good approximation to the
anomalous electric field obtained from Maxwell’s equations. Fortu-
nately, the SIEII method uses only the field inside D where the accu-
racy seems very good.

Figure 5a-d shows filled contours of �Ez
a�IE, �Ez

a�SIE, �Ez
a�QL, and

�Ez
a�QA as functions of location in D, respectively. The accuracy of the

SIEII method for f �0.1 Hz seems very good, and significantly bet-
ter than the accuracies of the QL and QA approximations, respec-
tively.

Perturbed reservoir conductivity. — The dimensions of D are
selected as for the base case, 
rh,rv�� 
3000,50� m. Figure 6a-d
shows filled contours of �Ez

a�IE, �Ez
a�SIE, �Ez

a�QL, and �Ez
a�QA as functions

of location in D for � D�0.05 S m�1, respectively. The accuracies
of the SIEII, QL, and QA methods for f �0.1 Hz are very similar to
their respective accuracies in the base case.

Perturbed background conductivity. — The dimensions and the
conductivity of D are selected as for the base case, 
rh,rv��


3000,50� m and � D�0.02 S m�1. Figure 7a-d shows filled con-
tours of �Ez

a�IE, �Ez
a�SIE, �Ez

a�QL, and �Ez
a�QA as functions of location in D

for � b�0.3 S m�1, respectively. The accuracies of the SIEII, QL,
and QA methods for f �0.1 Hz are very similar to their respective
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accuracies in the base case.
For the remaining cases, only comparisons between the SIE meth-

od and rigorous IE method are shown. �The performances of QL and
QA approximations were similar to their respective performances in
the previous cases.� One type of plot will show filled contours of �Ez

a�
as a function of location in D for a specific set of parameter values.A
second type of plot will show 
 z as a function of frequency f . A third
type of plot will show 
 z as a function of � � f�
when f varies.

Perturbed vertical extension. — The hori-
zontal dimension and the conductivity of D are
selected as for the base case, rh�3000 m and � D

�0.02 S m�1. Figure 8a and c shows filled con-
tours of �Ez

a�IE as a function of location in D for rv

� 
20,100� m, respectively. Figure 8b and d
shows filled contours of �Ez

a�SIE as a function of lo-
cation in D for rv� 
20,100� m, respectively.
The accuracy of the SIEII method for f �0.1 Hz
is as good as in the base case. The solid curves in
Figure 8e and f show 
 z as a function of f and � ,
respectively, for rv�50 m. The mean relative er-
ror 
 z increases with f and with � , but is smaller
than 25% for f �0.5, corresponding approxi-
mately to � �0.7. The dash-dot curves in Figure
8e and f show 
 z as a function of f and � , respec-
tively, for rv�20 m. The dashed curves in Figure
8e and f show 
 z as a function of f and � , respec-
tively, for rv�100 m. The variation of 
 z with f
and � is similar to that in the base case. From Ta-
ble 2, it is seen that � varies only slightly with rv

within the selected ranges for rv and rh.

Perturbed horizontal extension. — The verti-
cal dimension and the conductivity of D are se-
lected as for the base case, rv�50 m and � D

�0.02 S m�1. Figure 9a and c shows filled con-
tours of �Ez

a�IE as a function of location in D for rh

� 
1000,5000� m, respectively. Figure 9b and d
shows filled contours of �Ez

a�SIE as a function of lo-
cation in D for rh� 
1000,5000� m, respectively.
The accuracy of the SIEII method for f �0.1 Hz
is as good as in the base case. The dash-dot curves
in Figure 9e and f shows 
 z as a function of f and
� , respectively, for rh�1000 m. The dashed
curves in Figure 9e and f show 
 z as a function of
f and � , respectively, for rh�5000 m. Because
� is proportional to rd

2, it changes significantly
when rh varies from 1000 m to 5000 m. There-
fore, the horizontal ranges for the curves in Figure
9f also are very different. The variation of 
 z with
f and � changes somewhat with rh. The 
 z is
smaller than 25% for � as large as 2 when rh

�5000 m.

Perturbed depth below the seafloor. — The
dimensions and the conductivity of D are selected
as for the base case, 
rh,rv�� 
3000,50� m and
� D�0.02 S m�1. Figure 10a and c shows filled
contours of �Ez

a�IE as a function of location in D for

d� 
1000,2000� m, respectively. Figure 10b and d shows filled
contours of �Ez

a�SIE as a function of location in D for d
� 
1000,2000� m, respectively. The accuracy of the SIEII method
for f �0.1 Hz is as good as in the base case. The dash-dot curves in
Figure 10e and f show 
 z as a function of f and � , respectively, for d
�1000 m. The dashed curves in Figure 10e and f show 
 z as a func-
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tion of f and � , respectively, for d�2000 m. The variation of 
 z

with f and � is very similar to that in the base case. This is as expect-
ed because � does not depend on d.

�The case is included to demonstrate, also with numerical compu-
tations, that the accuracy of the SIEII method is independent of d. We
also have run examples with horizontally layered background con-
ductivity. The results showed that the accuracy of the SIEII method
with respect to the rigorous IE method is as good as for a homoge-
neous background conductivity.Again, this is as expected because �
�in setting II� does not depend on the background conductivity.�

Overall, the computational results with the SIE and rigorous IE
methods confirm the preliminary conclusions that were drawn earli-
er just by examining values of � : the SIEI method will not result in
good approximations to the rigorous IE method, except for extreme-
ly low frequencies, and the SIEII method will result in good approxi-
mations to the rigorous IE method for many frequencies and reser-
voir dimensions within the selected parameter ranges. In addition,
the SIEII method is significantly more accurate than the QL and QA
approximations for these parameter ranges.

SUMMARY

We have presented a novel simplified integral equation �SIE�
modeling approach. The approach is aimed at low frequencies and
resistive targets, such as with marine CSEM for petroleum explora-
tion. Rigorous integral equation �IE� modeling consists of three
steps. The first step is to compute Eb in the anomaly D and in the re-
ceivers, and Hb in the receivers. The second is to compute Ea in D.
The third is to compute Ea and Ha in the receivers. The second step is
computationally very intensive for large problems because solving a
linear system with a dense coefficient matrix is involved. We consid-
er the use of a variable-coefficient Poisson’s equation to circumvent
the computationally intensive second step of rigorous IE modeling.

The SIE approach also consists of three steps. The first step is
identical to that of the rigorous IE method. For the second and third
steps, we consider two settings. In setting I, the Poisson’s equation is
used to compute Ea in D and in the receivers. The third step in setting
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I is to compute Ha in the receivers in the same manner as with the rig-
orous IE method. In setting II, the Poisson’s equation is used to com-
pute Ea in D only. The third step in setting II is to compute Ea and Ha

in the receivers in the same manner as with the rigorous IE method.
The accuracy of the SIE approach is assessed by order-of-magnitude
calculations and by numerical comparisons of the SIE approach to
the rigorous IE method for a selected range of parameter values. The
SIE approach also is compared to the quasi-linear �QL� and quasi-
analytic �QA� approximations.

CONCLUSIONS

Order-of-magnitude calculations and computational results with
the SIE and rigorous IE methods show that, in setting I, the SIE ap-
proach will not result in good approximations to the rigorous IE
method, except for extremely low frequencies and reservoirs at a
fairly shallow depth.

In setting II, however, order-of-magnitude calculations and com-
putational results show that the SIE approach will result in good ap-
proximations to the rigorous IE method for many frequencies and
target dimensions within the selected parameter ranges. Relative dif-

ferences between SIE results and rigorous IE re-
sults in D are below 25% for f �0.5 Hz, and be-
low 5% for f �0.1 Hz. These relative differences
are independent of reservoir depth and back-
ground conductivity. In addition, the SIE ap-
proach is significantly more accurate than the QL
and QAapproximations.

Based on these results for settings I and II, we
recommend the use of the SIE approach in setting
II only.

The variable-coefficient Poisson solver is in
the process of being extended to three dimen-
sions. A 3D Poisson solver will allow for a thor-
ough comparison of computational efficiency be-
tween the SIE approach in setting II and the rigor-
ous IE method. It will allow also for an extended
comparison of accuracy between the SIE ap-
proach in setting II and the rigorous IE method,
involving a larger set of conductivity models than
those applied in the present study. These research
topics will be pursued when the 3D Poisson solv-
er is in place.
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