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Introduction

Numerical ocean modelling is based upon solving equations which govern
the motion of fluids. The equations are hard to solve, and approximations
must be done. In ocean modelling, one has traditionally made a hydrostatic
assumption, which makes the computations less expensive. This was not
problematic if the coarse grid resolution in the early days of ocean modelling
is taken into account.

Large scale processes in the ocean are to a good approximation hydro-
static. This means that the pressure at a point is caused by the weight of
the fluid above the point. The non-hydrostatic pressure due to motion of the
fluid is neglected. However, for processes on a horizontal scale smaller than
10 km, non-hydrostatic effects are important (see Marshall et al. (1997b) for
a schematic diagram of hydrostatic and non-hydrostatic regimes). With the
increasing computer power available, it is possible to use a fine enough spa-
tial resolution to resolve non-hydrostatic processes also for realistic problems
in ocean modelling.

Non-hydrostatic processes are important for many phenomena. One ex-
ample of this is mixing of water masses. Without mixing, most of the motion
in the ocean would stop within a few thousand years (Munk and Wunsch
1998). Non-hydrostatic effects can also be important in industrial applica-
tions. For instance, offshore oil production in deep waters can be affected by
internal waves (Osborne and Burch 1980). Also for biological processes on
a length scale of centimetres, non-hydrostatic processes should be taken into
account.

An ocean model with non-hydrostatic capabilities using a Cartesian z-
coordinate in the vertical direction was described in Marshall et al. (1997a),
and Marshall et al. (1997b). The non-hydrostatic pressure is included by
a linear system of partial differential equations. This set of equations is
combined into an elliptic differential equation, which is discretized by finite
differences. The resulting linear system has a sparse structure which is well
studied.

Ocean models which use Cartesian coordinates in the vertical direction
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2 Introduction

have problems resolving processes near the bottom. Small scale processes
steered by local topography tend to be highly non-hydrostatic. There have
been attempts to improve the ability of z-coordinate models to resolve the
bottom layer, see e.g. Adcroft et al. (1997). However, it can be useful to use
the terrain following σ-coordinates to model processes near the seabed.

It has been harder to include non-hydrostatic effects in σ-coordinate mod-
els than in z-coordinates. One model was described by Lin and Li (2002).
However, this model does not allow for splitting of the baroclinic and baro-
tropic mode, leading to a computationally expensive method.

Kanarska and Maderich (2003) designed a numerical model with both
mode splitting, terrain following vertical coordinates and non-hydrostatic
capabilities. The equations for the non-hydrostatic pressure are transformed
from a Cartesian to a σ-coordinate system. This approach also gives a linear
system to be solved for the non-hydrostatic pressure. However, the equa-
tions are complicated from a computational point of view. The resulting
linear system has a structure which is not as well studied as the system of
Marshall et al. (1997a). This makes the equations harder to solve than
the corresponding system in z-coordinate models. Kanarska and Maderich
(2003) also compare the model results with results from laboratory experi-
ments and other numerical models for some chosen test cases. The results
look promising.

Proposals of improvements of the methods by Kanarska and Maderich
(2003) were given by Heggelund et al. (2004). Their approach gives a linear
system with the same structure as in z-coordinates. However, the numer-
ical scheme is rather complicated. From the numerical experiments done by
Heggelund et al. (2004), the model seems to capture non-hydrostatic effects
well.

Berntsen and Furnes (2005) proposed to model the non-hydrostatic pres-
sure directly in σ-coordinates instead of transforming the equations from
Cartesian coordinates. The resulting linear system has the same structure
as in z-coordinate models. The method was used by Berntsen et al. (2006).
The results are in good agreement with the results obtained by the model
due to Marshall et al. (1997a). However, there are no mathematical proofs
that the set of equations proposed by Berntsen and Furnes (2005) is the same
as the one used by Kanarska and Maderich (2003).

There is also disagreement about which boundary condition should be
applied on the surface for the non-hydrostatic pressure. A homogeneous
Neumann condition was proposed by Marshall et al. (1997b). This was
adopted by e.g. Casulli (1999) and Heggelund et al. (2004). Kanarska
and Maderich (2003) used a homogeneous Dirichlet condition on the surface.
From a physical point of view, there are reasons to apply both kinds of
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boundary conditions.
The purpose of this thesis is to investigate different methods to compute

the non-hydrostatic pressure in mode-split, σ-coordinate ocean models. We
will examine the sets of equations proposed and the boundary conditions on
the surface. Both physical and numerical aspects will be investigated.

In Chapter 1 we give the governing equations which our numerical model
is based upon, and discuss different sources of pressure in the ocean. Differ-
ent sets of equations and boundary conditions proposed to model the non-
hydrostatic pressure are derived and discussed in Chapter 2. Chapter 3 gives
an introduction to some mathematical concepts which we will need later. The
real test of the different methods is their ability to model non-hydrostatic
phenomena. In order to investigate this, we will do numerical experiments.
The setup for the test case is described in Chapter 4. When we discretize the
equations for the non-hydrostatic pressure correction by finite differences,
we get a linear system of equations. Some properties of the corresponding
matrices for the numerical experiments are investigated in Chapter 5. In
Chapter 6 results from the simulations are presented, and the differences in
the solutions we obtain are highlighted. In Chapter 7 we consider the simula-
tions from a numerical point of view, and discuss if some of the linear systems
are easier to solve than others. In the final chapter we draw conclusions and
point out further work which should be done.





Chapter 1

The Basic Equations

In this chapter, we describe the numerical model used in this thesis, and give
the governing equations on which it is based. In the end, different sources of
pressure in the ocean are discussed. The variables are listed and explained
in Appendix A.

1.1 Bergen Ocean Model

The simulations in this thesis are done by using Bergen Ocean Model (BOM).
BOM is a hydrostatic model which has been modified to include non-hydro-
static effects. The discretizations are done by finite differences. The staggered
Arakawa C-grid is used for the spatial coordinates (Arakawa 1966). See
Berntsen (2004) for a further description of the model.

We will focus more on comparing different models than on comparing the
model results with laboratory experiments in this thesis. We therefore trade
the ability to capture 3D-effects which are important for the phenomenon
for the higher resolution of 2D-models. The 2D-version of BOM allows for
rotation and constant velocities in a third direction. However, the simulations
are done on a short time scale so the Coriolis force plays no significant role.
Motivated by this, the simulations are done without rotation, and without
any velocities or nonzero derivatives in the third direction.

1.2 The Governing Equations

1.2.1 The Momentum Equations

In a Cartesian coordinate system with x and z as horizontal and vertical
coordinates, respectively, the momentum equations are (Berntsen and Furnes
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6 The Basic Equations

2005)

∂U

∂t
+
∂U2

∂x
+
∂UW

∂z
= − 1

ρ0

∂P

∂x
+

∂

∂x

(
AM

∂U

∂x

)
+

∂

∂z

(
KM

∂U

∂z

)
, (1.1)

∂W

∂t
+
∂UW

∂x
+
∂W 2

∂z
= − 1

ρ0

∂P

∂z
+
ρg

ρ0

+
∂

∂x

(
AM

∂W

∂x

)
+

∂

∂z

(
KM

∂W

∂z

)
.

(1.2)

Here U is the horizontal velocity and W is the vertical velocity. The pressure
is denoted by P , ρ is the density, AM and KM is the horizontal and vertical
viscosity coefficient, respectively, and g is the acceleration of gravity. We
have applied the Boussinesq approximation. This implies that the density is
assumed equal to a reference density, ρ0, unless it is multiplied by the gravity.

If the hydrostatic approximation is used, Equation (1.2) simplifies to

ρg = −∂P
∂z

. (1.3)

1.2.2 The Equation of Continuity

In the Boussinesq approximation, the equation of continuity,

∂ρ

∂t
+∇ · (ρU) = 0 ,

is replaced by the incompressible form

∇ ·U = 0 , (1.4)

where U = (U,W ) (Kundu and Cohen 2004).

1.2.3 The Equation for Density

In this thesis , we apply an equation for conservation of density

∂ρ

∂t
+
∂Uρ

∂x
+
∂Wρ

∂z
= AH

∂2ρ

∂x2
+KH

∂2ρ

∂z2
, (1.5)

where AH and KH is the horizontal and the vertical diffusivity coefficients,
respectively.



1.3 The Boundary Conditions 7

1.2.4 A Closed Set of Equations

In order to get a closed set of equations, the coefficients AH , AM , KH , and KM

must be specified. Choosing values for these coefficients is a major problem
in ocean modelling, see for instance Haidvogel and Beckmann (1999). We
will use constant values for the viscosity and diffusivity coefficients. When
these are specified the Equations (1.1), (1.2), (1.4), and (1.5) form a closed
set, i.e. there are as many equations as there are unknowns. However, we
will decompose the pressure into pressure from different sources. Therefore,
we will also need more equations. Which equations should be used will be
discussed later.

1.3 The Boundary Conditions

The kinematic boundary conditions at the free surface and at the bottom
are given by, respectively

W = U
∂η

∂x
+
∂η

∂t
, z = η(x, t) ,

W = −U ∂H
∂x

, z = −H(x) . (1.6)

At lateral boundaries, we have a no-flow condition,

U · n = 0 ,

where n is the outer normal unit vector. At the bottom, the effect of friction
is described by

ρ0KM
∂U

∂z
= τ .

The bottom drag, τ , is assumed to be given by

τ = ρ0CD|Ub|Ub ,

where Ub is the velocity at the bottom, and the bottom drag coefficient, CD,
is given by

CD = max

(
0.0025 ,

κ2

(ln( zb
z0

)2)

)
.

Here, κ is the von Karman constant which is set to 0.4, zb is the distance
from the bottom to the nearest grid point, and z0 is the bottom roughness
parameter.
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1.4 The σ-Coordinate System

Ocean models based on Cartesian coordinates have problems with resolv-
ing processes near the bottom and the surface. We therefore transform the
equations into a terrain following σ-coordinate system (Phillips 1957). The
σ-coordinate of the bottom is always -1, while σ at the free surface always
equals 0.

The relationships between the old variables (x, z, t) and the new ones
(x∗, σ, t∗) are

x∗ = x , σ =
z − η
D

, and t∗ = t ,

where
D = H + η ,

is the dynamic depth. If A is any dependent variable such that

A(x, z, t) = A∗(x∗, σ, t∗) , (1.7)

the relationship between the old and the new derivatives is found by applying
the chain rule. We get (Blumberg and Mellor 1987)

∂A

∂x
=

∂A∗

∂x∗
− 1

D

∂A∗

∂σ

(
σ
∂D

∂x∗
+

∂η

∂x∗

)
,

∂A

∂z
=

1

D

∂A∗

∂σ
, (1.8)

∂A

∂t
=

∂A∗

∂t∗
− 1

D

∂A∗

∂σ

(
σ
∂D

∂t∗
+
∂η

∂t∗

)
.

We define a new vertical velocity perpendicular to the iso-σ surfaces,

ω = W − U
(
σ
∂D

∂x∗
+

∂η

∂x∗

)
−
(
σ
∂D

∂t∗
+
∂η

∂t∗

)
. (1.9)

We also get a new horizontal velocity U∗ along the iso-σ surfaces.
After deleting the asterisks, the momentum equations become

∂UD

∂t
+
∂U2D

∂x
+
∂Uω

∂σ
= −D

ρ0

∂P

∂x
+

1

ρ0

∂P

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)
+DFx ,

∂WD

∂t
+
∂UWD

∂x
+
∂Wω

∂σ
= − 1

ρ0

∂P

∂σ
+DFσ .
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The first equation is taken from Blumberg and Mellor (1987), the second can
be derived from Equation (1.2) by using the Equations (1.8). The terms DFx
and DFσ represents viscosity terms. These are rather complicated for the
σ-coordinates. See for instance Blumberg and Mellor (1987) for a description
of DFx. The terms in DFσ can be derived from the Equations (1.8).

The new equation of continuity becomes

∂UD

∂x
+
∂ω

∂σ
+
∂η

∂t
= 0 .

The new boundary conditions are

ω(−1) = ω(0) = 0 .

The conservation equation of density becomes

∂ρD

∂t
+
∂ρUD

∂x
+
∂ρω

∂σ
=

∂

∂x

(
DAH

∂ρ

∂x

)
+

∂

∂σ

(
KH

D

∂ρ

∂σ

)
.

1.5 Important Concepts in Numerical Ocean

Modelling

Here, we give a short overview of some concepts in ocean modelling which
will be needed later.

1.5.1 Mode Splitting

For coastal waters both fast moving barotropic waves and slower baroclinic
waves are important for the ocean dynamics (Blumberg and Mellor 1987).
It is computationally expensive to solve the full 3D-equations. We therefore
split the equations into a depth averaged 2D-part and the 3-dimensional
deviations from the average. Each of the fields are then propagated forward
in time. The fast barotropic or external modes will be contained in the 2D-
part. Therefore the 2D time step must be relatively small in order to fulfil
the CFL-criterion. The 3D-part contains the slower baroclinic or internal
modes. Thus the computational expensive 3D-time step can be taken larger.

There are numerous ways of doing the mode splitting. The basic idea is
to propagate the barotropic part first and compute averaged values of the
velocities and the surface elevation. These values are then used to propag-
ate the baroclinic part forward in time. For details on how this is done in
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different models, see for instance Berntsen (2004) or Mellor (2004). A de-
tailed description of the operator splitting used in BOM can also be found
in Ådlandsvik and Engedahl (1991) or Kowalik and Murty (1993).

We will say much about how the equations are solved in BOM. For the nu-
merical method used for time stepping, advection schemes etc. see Berntsen
et al. (2006). We will, however, mention a few details which we will need
later on. In the depth averaged computations there is a coefficient for 2D-
viscosity denoted AM2D

. The value of this must be specified to get a closed
system of equations. The time stepping is done with a predictor-corrector
method. This implies that for each time step, the mode splitting is done
twice.

1.5.2 Conservation of Mass

One of the most important properties a numerical ocean model should have
is to conserve mass. That is, the equation of continuity must be fulfilled. If
water masses for some reason appears or disappears in the model, this will
soon lead to numerical instabilities. If the model uses mode splitting, there
are different ways of enforcing the principle of conservation of mass. It is
of great importance that after a time step is finished, the final velocity and
density fields must fulfil the equation of continuity.

1.5.3 The non-Hydrostatic Pressure

Most numerical ocean models use the hydrostatic approximation. That is
Equation (1.2) is replaced by Equation (1.3). This makes each time step com-
putationally much cheaper. However, with the increasing computer power
available, questions have been raised whether the hydrostatic approximation
is the best way of spending computational resources.

According to Marshall et al. (1997b), the hydrostatic approximation
breaks down for processes on a length scale somewhere between 1 and 10
km. When the vertical and the horizontal length scales are of the same order,
non-hydrostatic effects will be important. This can easily be seen from the
aspect ratio defined in Gill (1982). Examples of non-hydrostatic processes
are high-frequency internal waves, wave breaking, shear instabilities, and the
entrainment in gravity currents (Bourgault and Kelley 2004), (Legg et al.
2006). If the spatial resolution of the model is high enough to resolve such
processes, the model should have non-hydrostatic capabilities to capture the
physics correctly.

It is important to notice that the main pressure field in the ocean is
hydrostatic. The non-hydrostatic pressure only contributes with a small
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part of the forces which drives the motion, but this small part is necessary
for some phenomena to take place.

One way of including the non-hydrostatic effects is to assume that the
pressure can be decomposed into (Marshall et al. 1997a)

P = PAtm + Pη + PInt +Q . (1.10)

Here, PAtm is the atmospheric pressure and

Pη = gρ0η ,

is the pressure due to surface elevation. The internal pressure is represented
by

PInt =

∫ 0

z

ρ(x, z′, t)dz′ ,

and Q is the non-hydrostatic pressure. Only the first three terms in Equa-
tion (1.10) are included in hydrostatic models. For such models, the basic
equations given in this chapter form a closed set of equations.

If mode splitting is not applied, the non-hydrostatic pressure is included
in the governing equations together with the other terms in Equation (1.10).
This was done by for instance Casulli (1999) in z-coordinates and Lin and
Li (2002) with terrain following σ-coordinates.

If we will combine mode splitting and non-hydrostatic pressure, we need
more equations in addition to those given in this chapter in order to get a
closed set. Proposals of how this can be done in σ-coordinates were given by
Kanarska and Maderich (2003), Heggelund et al. (2004), and Berntsen and
Furnes (2005). In this thesis we will compare the methods by Kanarska and
Maderich (2003) and Berntsen and Furnes (2005).





Chapter 2

Equations for the
non-Hydrostatic Pressure

Different sets of equations have been proposed to compute the non-hydrostatic
pressure corrections in σ-coordinate models. In this chapter we give two
systems of equations, and discuss different boundary conditions for the non-
hydrostatic pressure.

2.1 The Full System of Equations

The non-hydrostatic pressure correction in Cartesian coordinates is assumed
to be given by

∂UD

∂t
= −D

ρ0

∂Q

∂x
,

∂WD

∂t
= −D

ρ0

∂Q

∂z
. (2.1)

There is no gravity term in the vertical direction, this is included in the
hydrostatic part of the calculations. We have also neglected the non-linear
terms in the equations of motion, see Patankar (1980) for a discussion of this.
The equation of continuity,

∂UD

∂x
+
∂WD

∂z
= 0 , (2.2)

must also be fulfilled. We transform the equations to σ-coordinates by the
Equations (1.8) and get (Heggelund et al. 2004)

13
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∂UD

∂t
= −D

ρ0

∂Q

∂x
+

1

ρ0

∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)
,

∂WD

∂t
= − 1

ρ0

∂Q

∂σ
. (2.3)

The equation of continuity becomes

∂UD

∂x
+
∂ω

∂σ
+
∂η

∂t
= 0 . (2.4)

Together with the relationship between W and ω given by Equation (1.9)
this is a closed set of equations which can be used to compute the velocity
corrections (Heggelund et al. 2004). If combined with the equations given
in Chapter 1, the Equations (1.9), (2.3), and (2.4) form a closed set which
governs the motion in the ocean. As we will see, the terms of the form
(σ ∂D

∂x
+ ∂η

∂x
) complicate the computations considerably.

The computation of the external and the internal mode were described
in Section 1.5.1. This gives us provisional velocities Ũ and W̃ . The non-
hydrostatic pressure and velocity corrections are then assumed to be given
by semi-discrete equations of the form (Kanarska and Maderich 2003)

(U − Ũ)D

∆t
= −D

ρ0

∂Q

∂x
+

1

ρ0

∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)
,

(W − W̃ )D

∆t
= − 1

ρ0

∂Q

∂σ
, (2.5)

∂UD

∂x
+
∂ω

∂σ
+
∂η

∂t
= 0 .

The Equations (2.5) can differ from model to model, depending on which
method is used for the time stepping.

We get the following expressions for the velocities

UD = −∆t

ρ0

D
∂Q

∂x
+

∆t

ρ0

∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)
+ ŨD , (2.6)

and by using Equation (1.9),

ω = −∆t

ρ0

1

D

∂Q

∂σ
− U

(
σ
∂D

∂x
+
∂η

∂x

)
+ W̃ . (2.7)
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We differentiate Equation (2.6) with respect to x and Equation (2.7) with
respect to σ and get

∂UD

∂x
= −∆t

ρ0

∂

∂x

(
D
∂Q

∂x

)
+

∆t

ρ0

∂

∂x

(
∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

))
+
∂ŨD

∂x
, (2.8)

and

∂ω

∂σ
= −∆t

ρ0

∂

∂σ

(
1

D

∂Q

∂σ

)
− ∂

∂σ

(
U

(
σ
∂D

∂x
+
∂η

∂x

))
+
∂W̃

∂σ

= −∆t

ρ0

∂

∂σ

(
1

D

∂Q

∂σ

)
+

∆t

ρ0

∂

∂σ

(
∂Q

∂x

(
σ
∂D

∂x
+
∂η

∂x

))

−∆t

ρ0

1

D

∂

∂σ

(
∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)2)
+

∂

∂σ

(
W̃ − Ũσ∂D

∂x

)
, (2.9)

where we have used Equation (2.6). The last term on the right hand side of
Equation (2.9) equals ∂ω̃

∂σ
. We insert Equation (2.8) and Equation (2.9) into

the equation of continuity (Equation (2.4)) and get

∂

∂x

(
D
∂Q

∂x

)
− ∂

∂x

(
∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

))
+

1

D

∂2Q

∂σ2
− ∂

∂σ

(
∂Q

∂x

(
σ
∂D

∂x
+
∂η

∂x

))

+
1

D

∂

∂σ

(
∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)2)
=

ρ0

∆t

(
∂ŨD

∂x
+
∂ω̃

∂σ
+
∂η

∂t

)
.

(2.10)

A finite difference approximation of Equation (2.10) is given in Appendix
B. The discretization gives a linear system with 9 nonzero diagonals. When
the non-hydrostatic pressure is known, discrete versions of the first two of
the Equations (2.5) are used to find the corrected velocities.

2.2 A Simplified System of Equations

Berntsen and Furnes (2005) proposed to consider the non-hydrostatic pres-
sure directly as a function of (x, σ, t) instead of first using z as vertical co-
ordinate, and then do a transformation. The pressure is caused by conver-
gences or divergences in the cells. The equations are based on the same
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physical principle as is used for the full set of equations in Cartesian coordin-
ates (the Equations (2.1)), but we avoid the mathematical complications
connected to the change of coordinate system. This point of view gives us
the following set of equations for the non-hydrostatic pressure correction

(U − Ũ)D

∆t
= −D

ρ0

∂Q

∂x
,

(ω − ω̃)D

∆t
= − 1

ρ0

∂Q

∂σ
, (2.11)

∂UD

∂x
+
∂ω

∂σ
+
∂η

∂t
= 0 .

This gives us

UD = ŨD − ∆t

ρ0

D
∂Q

∂x
,

and

ω = ω̃ − ∆t

ρ0

1

D

∂Q

∂σ
,

and by inserting into the equation of continuity, we get

∂

∂x

(
D
∂Q

∂x

)
+

1

D

∂2Q

∂σ2
=

ρ0

∆t

(
∂ŨD

∂x
+
∂ω̃

∂σ
+
∂η

∂t

)
. (2.12)

The finite difference approximation used in this thesis is given in Appendix
B. When the non-hydrostatic pressure is known, the Equations (2.11) can
be used to find the corresponding velocity corrections.

2.3 Boundary Conditions

For the Equations (2.10) and (2.12) to be solvable, boundary values must be
defined. There is no flow through the bottom or through the closed lateral
boundaries, hence ∂Q

∂σ
= 0 there. For open lateral boundaries, several sug-

gestions have been given, see for instance Marshall et al. (1997b), Kanarska
and Maderich (2003), or Berntsen and Furnes (2005). Boundary conditions
for open boundaries will not be discussed in this thesis, we will instead focus
on the surface.
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2.3.1 A Neumann Condition on the Surface

Marshall et al. (1997b) proposed to use the homogeneous Neumann con-
dition ∂Q

∂σ
= 0 also on the surface. The underlying idea is that the main

ocean circulation is taken care of in the hydrostatic part, while the small
non-hydrostatic correction does not contribute to changes in the surface el-
evation. Gravity waves will for instance be neglected in the non-hydrostatic
calculation.

Many non-hydrostatic models use a Neumann condition, see for instance
Casulli (1999) or Berntsen and Furnes (2005).

The Neumann condition can also put the solvability of the sets of Equa-
tions (2.2) and (2.3), or (2.11) in jeopardy, as the principle of conservation
of mass comes into play. Both systems are on the form

(U− Ũ)D

∆t
=

1

ρ0

∇Q ,

∇ · (UD) +
∂η

∂t
= 0 .

These equations can be combined into

∇ · (ŨD)− ∆t

ρ0

∇ · (D∇Q) +
∂η

∂t
= ∇ · (UD) +

∂η

∂t
= 0 ,

which gives us the elliptic equation for Q

∇ · (∇Q) =
ρ0

∆t

(
∇ · (ŨD) +

∂η

∂t

)
. (2.13)

The homogeneous Neumann condition is

n · (∇Q) = 0 ,

where n is the outer normal vector. By integrating over the boundary ∂Ω
and using the divergence theorem we get

0 =

∫

∂Ω

n · (∇Q) dσ =

∫

Ω

∇· (∇Q) dτ =

∫

Ω

ρ0

∆t

(
∇· (ŨD) +

∂η

∂t

)
dτ , (2.14)

where we have used Equation (2.13). If the boundary condition for the pres-
sure condition is of the Neumann type for the entire boundary, the integral
over the domain of the right hand side of Equation (2.13) must be zero. If
this is not fulfilled, the equation will not be solvable.
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2.3.2 A Dirichlet Condition on the Surface

There is general agreement that the correct boundary value for the hydro-
static pressure at the surface is

PHydrostatic = PAtm ,

if we neglect the surface tension. The surface elevation is adjusted so that
the pressure at the surface is equal to the atmospheric presure. By the same
reasons it may be argued that the non-hydrostatic pressure should have a
homogeneous Dirichlet condition at the surface too. This will imply that
non-hydrostatic effects can not occur near the surface. This was proposed
by Kanarska and Maderich (2003).

2.4 What Is the Right Choice?

The two sets of equations described in this chapter are based on the same
physical reasoning; the non-hydrostatic pressure is caused by convergence of
water masses into a cell. The difference between the methods is whether we
do the physical reasoning in z-coordinates and then transform the equations
to σ-coordinates, or if we do it the other way around. The two boundary
conditions, on the other hand, model different physical processes.

When we are to choose of a system of equations and a boundary condition
on the surface to model the non-hydrostatic pressure, we should be guided
by two main principles:

1)The method chosen should model non-hydrostatic phenomena
accurately.

2) It should give us a problem which is solvable, and not too
computationally expensive.

Of these two criteria, the first will be considered as the most important one.
We will investigate if the methods give different solutions, that is if they
govern different physical processes. In addition, we will point out advantages
and disadvantages of both methods.

Differences in the results obtained by using the distinct sets of equations
and boundary conditions will be investigated in Chapter 6. Numerical as-
pects of the equations and the boundary conditions will be considered in the
Chapters 5 and 7.



Chapter 3

Mathematical Background

This chapter contains an overview of different mathematical concepts which
we will need later on.

3.1 Matrix Properties

Here we give some results from the theory of matrix analysis. The results
will be given without proofs, readers are referred to consult some of the
books in the bibliography, e.g. Strang (1988), Golub and van Loan (1996),
or Trefethen and Bau (1997). We restrict ourselves to real and quadratic
matrices, even though some of the results are valid for complex and non-
quadratic matrices too.

3.1.1 Definiteness

A matrix A ∈ Rn×n is said to be positive semidefinite if (Strang 1988)

xTAx ≥ 0 , ∀ x ∈ Rn , x 6= 0 .

If the inequality is strict, the matrix is positive definite. Negative definiteness
and semidefiniteness is defined in the obvious way. A definite matrix is either
positive or negative definite.

For an arbitrary matrix, it is necessary that the real part of all the eigen-
values is positive for the matrix to be positive definite. However, unless the
matrix is symmetric, it is not sufficient. If some eigenvalues of a symmetric
matrix are zero, but all are non-negative, the matrix is positive semidefinite.

19
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3.1.2 The Singular Value Decomposition

Any matrix A ∈ Rn×n of arbritrary size and rank can be decomposed into a
product

A = EΣFT .

This is called the singular value decomposition of the matrix A (Trefethen
and Bau 1997). The matrices E and F are unitary and quadratic of size n,
and Σ ∈ Rn×n is a diagonal matrix. The diagonal elements in Σ are called
the singular values of A. The singular values will all be non-negative. It is
customary to number them in descending order.

For a symmetric matrix, the singular values of the matrix will be equal
to the absolute value of the eigenvalues.

It is possible to show that

‖A‖2 = σmax .

The singular values also give a measure of how close the matrix is from
being rank deficient. The number of positive singular values will be equal to
the rank of the matrix. If

s < r = rank(A) ,

then
min

rank(B)=s
‖A−B‖ = σs+1 , (3.1)

where σs+1 is the s+1st largest singular value (Golub and van Loan 1996).

3.1.3 Condition Numbers

Computations done in finite precision will be affected by rounding errors. A
problem is said to be ill-conditioned if the effects of rounding errors are large,
and the problem has a large condition number κ (for a precise definition of
condition numbers, see Trefethen and Bau (1997)). The condition number
of a matrix is defined by

κ(A) = ‖A‖‖A−1‖ . (3.2)

If the matrix A is singular, we write κ(A) = ∞. If the norm in Equation
(3.2) is the 2-norm, the condition number will be given by

κ(A) =
σmax

σmin

, (3.3)

where σmax and σmin is the largest and the smallest singular value of A,
respectively. We will use 2-norms in this thesis.
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3.2 Iterative Methods

We have a linear system of equations Ax = b where A ∈ Rn×n and b ∈ Rn

are known while x ∈ Rn is unknown. If we discretise a partial differential
equation by finite differences, the coefficient matrix A will be a sparse matrix,
with nonzero elements only on some diagonals. For realistic problems in
ocean modelling, the equations we must solve can have n� 100000 (Marshall
et al. 1997a). If we are to solve the system directly e.g. by LU factorisation
we need of the order 2

3
n3 operations, and we must store n2 elements. This is

unrealistic; both the size and the sparsity of the matrix calls for an iterative
method.

3.2.1 Successive Over-Relaxation

Let D be the main diagonal of A, let T and B be the upper and lower
triangular part of A, respectively. If we set

G = (D + λB)−1((1− λ)D + λT) , (3.4)

and
c = (D + λB)−1b ,

an iterative method can be written

xk+1 = Gxk + c ,

where G is a matrix, c is a vector, and xk is a sequence of approximations to
the solution vector. This is the method of successive over-relaxation (SOR).
A necessary and sufficient condition for convergence of the iterations is that
the spectral radius ρ(G) < 1 (Espelid 2003).

The parameter λ is chosen to speed up the convergence. There is a huge
literature on how to find the optimal λ, see for instance Young (1971).

3.2.2 The Method of Preconditioned Conjugate Gradi-
ents

The basic iterative methods are robust, but their convergence can be slow.
In addition, they depend upon parameters that can be difficult to choose
properly, for instance the λ in SOR (Golub and van Loan 1996). Other it-
erative methods are based on Krylov subspaces, that is the subspace of Rn

spanned by {Ab,A2b,A3b, . . .}. The methods search for the best approx-
imation of the solution in the Krylov subspace. If these methods converge,
the convergence is usually fast.
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We will consider the method of conjugate gradients (CG). This method
can be applied when the matrix A is symmetric and positive definite. The
pure method of conjugate gradients works well when the matrix is either well
conditioned, or has just a few distinct eigenvalues (Golub and van Loan 1996).
In order to speed up the convergence, some preconditioning of the problem is
usually done. The derivation below follows Marshall et al. (1997a), though
the notation is changed to be in agreement with the common notation for
the method of conjugate gradients.

We will solve the linear system of equations

Ax = b .

We premultiply with M, which is an approximate inverse of A. The matrix
M is called a preconditioner. This gives us

(I−C)x = Mb ,

where I is the identity matrix and C = I−MA is close to the zero matrix
if M ≈ A−1. An iterative method can then be written

xk+1 = Cxk + Mb

= (I−MA)xk + Mb

= xk + M(b−Axk)

= xk + Mrk . (3.5)

Here the residual, rk, is defined by

rk = (b−Axk) .

We also define the vector pk by

pk = Mrk .

This is called the search direction. If the updates of the solution vector and
the search directions are chosen as good as possible, we get the following
algorithm (Golub and van Loan 1996)
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Preconditioned Conjugate Gradients
x0 = initial guess
r0 = b−Ax0

k = 0
While ‖rk‖ > ε‖b‖ and k < maxiter

k = k + 1
if k = 1

p1 = Mr0

else
βk = (rk−1

TMrk−1)/(rk−2
TMrk−2)

pk = Mrk−1 + βkpk−1

end
αk = (rk−1

TMrk−1)/(pk−2
TApk−2)

xk = xk−1 + αkpk

rk = rk−1 − αkApk

end
x = xk

3.2.3 The Method of Preconditioned Bi-Conjugate Gradi-
ents

The method of conjugate gradients assumes that the matrix A is symmetric,
and is not guaranteed to work if this is not fulfilled (Faber and Manteuffel
1984). As we will see, this will cause problems in some of our simulations.
Even if CG is designed for symmetric problems, it is known to work also for
mildly asymmetric problems (Avlesen 2006). We will therefore use CG to
solve linear systems of equations despite of the lack of symmetry. Because
of the possible problems, we will also consider a version of the method of
bi-conjugate gradients (Bi-CG). This method works for non-symmetric as
well as symmetric matrices. However, the pure Bi-CG algorithm has prob-
lems with irregular convergence (Trefethen and Bau 1997). This can in the
extreme lead to breakdown of the iteration process. We will instead use
a stabilised version of bi-conjugate gradients (Bi-CGSTAB) (van der Vorst
1992). Bi-CGSTAB has a smoother convergence rate than Bi-CG, but it can
still suffer from breakdowns. In order to speed up the convergence, we apply
preconditioning.

Like CG, Bi-CGSTAB uses an iterative scheme based on Equation (3.5).
The algorithm can be found in van der Vorst (1992).
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Figure 3.1: The local index of the point (i, j).

3.2.4 Preconditioning

A Preconditioner for the Simplified System of Equations

What is left for the iterative methods CG and Bi-CGSTAB is to specify the
matrix M. The discretization of the simplified system of equations gives us a
5-diagonal matrix. The corresponding linear system for a point with indexes
(i, k) can be written

aCi,kxi,k + aEi,kxi+1,k + aSi,kxi,k+1 + aWi,kxi−1,k + aNi,kxi,k−1 = bi,k , (3.6)

where it is understood that ai,k is zero if it is outside the domain. The
superscripts are explained in Figure 3.1. For our problem, the matrix in the
linear system will be diagonally dominant. Therefore, a first approximation
of the solution is

xi,k =
bi,k
aCi,k

.

This will hold for all the grid points. Hence, a better approximation to the
solution of Equation (3.6) is

xi,k =
bi,k
aCi,k
− 1

aCi,k

(aEi,kbi+1,k

aCi+1,k

+
aSi,kbi,k+1

aCi,k+1

+
aWi,kbi−1,k

aCi−1,k

+
aNi,kbi,k−1

aCi,k−1

)
.

The product Mr is therefore computed by

(Mr)i,k =
ri,k
aCi,k
− 1

aCi,k

(aEi,kri+1,k

aCi+1,k

+
aSi,kri,k+1

aCi,k+1

+
aWi,kri−1,k

aCi−1,k

+
aNi,kri,k−1

aCi,k−1

)
.
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To be used in the method of conjugate gradients, the preconditioner must be
symmetric. Therefore, the product Mr in CG is computed by

(Mr)i,k =
ri,k
aCi,k
− 2

aCi,k

( aEi,kri+1,k

aCi+1,k + aCi,k
+

aSi,kri,k+1

aCi,k+1 + aCi,k
+

aWi,kri−1,k

aCi−1,k + aCi,k
+

aNi,kri,k−1

aCi,k−1 + aCi,k

)
.

This is the preconditioner used in the z-coordinate MIT general circulation
model, see Marshall et al. (1997a).

A Preconditioner for the Full Set of Equations

The full set of equations for the non-hydrostatic pressure correction gives us
a linear system with a 9-diagonal matrix. This matrix will also be diagonally
dominant. Therefore, we design a preconditioner for this linear system by
following the work by Marshall et al. (1997a) for a the 5-diagonal system.
The linear system in a point is given by

aCi,kxi,k + aNEi,k xi+1,k−1 + aEi,kxi+1,k + aSEi,k xi+1,k+1 + aSi,kxi,k+1

+aSWi,k xi−1,k+1 + aWi,kxi−1,k + aNWi,k xi−1,k−1 + aNi,kxi,k−1 = bi,k .

Motivated by the same reasoning as for the simplified system, we compute
the product Mr by

(Mr)i,k =
ri,k
aCi,k
− 1

aCi,k

(aNEi,k ri+1,k−1

aCi,k
+
aEi,kri+1,k

aCi,k
+
aSEi,k ri+1,k+1

aCi,k
+
aSi,kri,k+1

aCi,k

+
aSWi,k ri−1,k+1

aCi,k
+
aWi,kri−1,k

aCi,k
+
aNWi,k ri−1,k−1

aCi,k
+
aNi,kri,k−1

aCi,k

)
,

for the full set of equations.
Again, M must symmetric to be used in CG. Therefore the precondition-

ing in CG is done by

(Mr)i,k =
ri,k
aCi,k
− 2

aCi,k

( aNEi,k ri+1,k−1

aCi+1,k−1 + aCi,k
+

aEi,kri+1,k

aCi+1,k + aCi,k
+

aSEi,k ri+1,k+1

aCi+1,k+1 + aCi,k

+
aSi,kri,k+1

aCi,k+1 + aCi,k
+

aSWi,k ri−1,k+1

aCi−1,k+1 + aCi,k
+

aWi,kri−1,k

aCi−1,k + aCi,k

+
aNWi,k ri−1,k−1

aCi−1,k−1 + aCi,k
+

aNi,kri,k−1

aCi,k−1 + aCi,k

)
.
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3.2.5 A Stopping Criterion

For the iterative methods we need a stopping criterion. For SOR we define
the residual by

rk = b−Axk . (3.7)

This is the same as the vector rk in CG and Bi-CGSTAB. The iterations are
stopped when

‖rk‖
‖b‖ < ε , (3.8)

where ε is some tolerated value of the error. In order to avoid infinite loops if
convergence problems occurs, we only allow a limited number of iterations.

3.3 Discretizations of Elliptic Equations

When we compute the non-hydrostatic pressure correction, we end up with
an elliptic differential equation. For this problem to be well posed, we must
have boundary conditions, where at least some part of the boundary has a
Dirichlet condition. That is the value of the dependent variable is specified
there. If the entire boundary has conditions of the Neumann type where
the normal derivative is specified, the solution will in general not be unique
(Gilbarg and Trudinger 1998). To any solution, we can add an arbitrary
constant and get another solution. This extra degree of freedom can be
removed by imposing an additional constraint on the system. We will force
the mean non-hydrostatic pressure to be equal to zero. We are only interested
in the derivatives of the pressure, which translates to differences between the
pressure in the cell centres for the discrete solution. Therefore, the additional
constraint has no effect on the solution.

However, the non-uniqueness of the solution to the continuous problem
leads to a singular coefficient matrix for the discrete problem. One eigenvalue
will be equal to zero. It might still be possible to get an approximate solution
of the corresponding linear system. The condition number of the matrix will
be infinite, though. Motivated by the Equations (3.1) and (3.3) we define a
modified condition number by

κm(A) =
σmax

σmin−1

, (3.9)

where σmin−1 is the second smallest singular value of A. We will discuss the
singularity of the coefficient matrices further in Chapter 5.
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3.4 Energy

3.4.1 Computation of Energy

The energy in the ocean consists of kinetic, potential and internal energy.
The kinetic energy, EK , is given by

EK =

∫ x=x2

x=x1

∫ z=η(x)

z=−H(x)

1

2
ρ(U2 +W 2) dzdx , (3.10)

where x1 and x2 is the left and the right boundary of the domain, respectively.
The potential energy, EP , is computed by

EP =

∫ x=x2

x=x1

∫ z=η(x)

z=−H(x)

ρgz dzdx+ EP0 . (3.11)

Here, EP0 is a reference level for the potential energy. In this thesis we set

EP0 = −
∫ x=x2

x=x1

∫ z=η(x)

z=−H(x)

ρ̄gz dzdx ,

where ρ̄ is the average density. If the integrals with respect to z in Equation
(3.11) are taken from 0 to η, we get the potential energy due to the surface
elevation.

The potential energy can be divided into available potential energy (APE)
and background potential energy (BPE) (Peltier and Caufield 2003). The
BPE is defined as the energy of the system at rest with the density layers
sorted so that heavier fluid particles are located below lighter particles. The
BPE will change as the water masses are mixed. The APE is the potential
energy minus the background potential energy. See e.g. Gill (1982) for more
on available potential energy.

The kinetic and potential energy are computed by the Equations (3.10)
and (3.11), respectively. The integrals are replaced by summations. The
summations are taken over the same cells for all time steps. This gives a
smooth time evolution for both the kinetic and the potential energy.

The background potential energy is more complicated to compute because
we must sort the water masses with respect to density. First, we construct a
grid which allow us to compute the volume of the domain we are interested
in with an error less than some tolerance. Next, the water masses are sorted,
and the BPE is computed on the grid constructed for the integration. We
also get an estimate of the error. If the error is larger than a given tolerance
the accuracy of the sorting is increased. The resulting integration method is
automatic and adaptive. Because of the adaptivity, the grid points used for
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the integration are not necessarily the same from one time step to the next,
nor are the densities used in the computations. This may lead to noisy data
if the BPE is plotted as a function of time. Because of this, we will smooth
the data by using time averaging.

3.4.2 Transfer of Energy

According to Peltier and Caufield (2003), there are several sources of changes
in the potential energy. There can be an exchange between available potential
energy and kinetic energy because of buoyancy fluxes. Fluid motion can also
increase the potential energy by stirring and mixing. Stirring is defined as
lifting of dense water up to lighter water without any diffusion taking place.
The diffusion caused by stirring is called mixing. There will also be diffusion
that will take place without any macroscopic motion. Stirring is a reversible
process which will increase the available potential energy. Diffusion and
mixing are irreversible, hence they increase the background potential energy.



Chapter 4

The Model Problem

In Chapter 2 we discussed systems of equations and boundary conditions to
model the non-hydrostatic pressure in σ-coordinate models. In this chapter
we will describe the setup of a numerical simulation, which we will use later to
explore the differences in the solutions we get from the distinct methods. We
will consider a solitary wave hitting a slope and propagating up the incline.
Non-hydrostatic effects are important for the small scale dynamics in this
process (Legg and Adcroft 2003). Also the wave approaches the surface as it
propagates up the slope. Thus the impact of the boundary condition on the
surface will hopefully be seen. The model setup is based on an experiment
described in Berntsen et al. (2006). Their experiment is again based on
experiment number 12 in Michallet and Ivey (1999).

4.1 The Geometry

The experiments are done in a tank with length L = 1.72 m. The depth is
H = 0.15 m in the left part of the tank. In the right part, the depth is
decreasing. At the very right end of the tank, the depth is zero, see Figure
4.1.

For the simulations done in Chapter 6, the slope starts 0.70 m from the
right end of the tank. This gives a slope factor of 0.214.

There are 100 σ-layers vertically. In the horizontal there are 800 interior
grid cells. The spacing is equidistant both in the horizontal and in the vertical
direction. In order to avoid too thin σ-layers, points with a depth of less than
0.01 m are defined as land. Thus the very right part of Figure (4.1) is land.

We apply no-flow boundary conditions on the bottom and on the lateral
boundaries.

For the analysis of the linear systems done in Chapter 5, both the starting
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1.02 m 0.70 m

0.15 m

Figure 4.1: The tank. The shape of the density interface is indicated.

point of the slope and the number of grid cells are varying.

4.2 The Initial Conditions

Initially both the surface elevation and the velocities are zero. The initial
density is calculated by

ρ(x, z) =
∆ρ

2

(
1 + tanh

(z − zi − ζ
∆h

))
. (4.1)

Here the density difference ∆ρ = 12 kg m−3 , the interface depth zi =
0.024 m , and the thickness of the interface ∆h equals 0.014 m. The interface
displacement near the left wall is calculated by

ζ = 2a0sech2
( x

2Ww

)
,

where a0 = 0.026 m and x is the distance from the left wall. The width of
the wave, Ww, is computed from

a1W
2
w =

4(h1h2)2

3(h2 − h1)
,

where h1 = 0.024 m, h2 = 0.146 m, and a1 = 0.031 m (Berntsen et al. 2006).
The values are based on KdV theory, and chosen in order to minimise the
initial stirring and mixing.

The reference density used in the Equations (1.1) and (1.2) is set to
ρ0 = 1024.8 kg m−3. The bottom roughness parameter z0 is set to 0.0005.

The time step in the simulations is set to ∆t = 0.0025 seconds.
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4.3 The Internal Pressure Errors

When steep topographies are combined with density variations, false velo-
cities appears in σ-coordinate models (Haidvogel and Beckmann 1999). In
order to quantify these velocities, the model was set up with the parameter
ζ in Equation (4.1) equal to zero. This created a flat density profile, hence
there should be no motion at all. The model was run for 60 s. The viscos-
ities and diffusivities were all set to 10−6 m s−1 , except from AM2D

, which
was 5 · 10−5 m s−1. The maximal horizontal velocity in this simulation was
0.00158 m s−1 , the minimal horizontal velocity was -0.00073 m s−1. These
values were obtained after 13.0 seconds and 15.2 seconds, respectively. 35
seconds after the simulation was started, the maximal horizontal velocity was
0.00137 m s−1 , while the minimal horizontal velocity was -0.00071 m s−1.





Chapter 5

Analysis of the Matrices

In this chapter we analyse some properties of the coefficient matrices derived
in Chapter 2 and Appendix B. We will see if the matrices are symmetric, and
give estimates of the qualitative behaviour of their eigenvalues and singular
values. See Section 3.1 for definitions of matrix properties.

5.1 Motivation

When we discretise the elliptic Equations (2.10) or (2.12), we get a quadratic
coefficient matrix. The number of rows and columns is the number of grid
points in the x-direction multiplied by the number of grid points in the z-
direction. For the model problem described in Chapter 4, the number of
rows and columns are nearly 80.000. For such a large matrix, it is impossible
to compute eigenvalues and condition numbers by traditional methods. In
order to get some information, we will instead make a coarse grid for the tank
described in Chapter 4. If we do simulations using this grid, the results will
be inaccurate. However, we hope that the properties we find for the coarse
resolution are also valid for finer grids.

We will also see if the coefficient matrices are symmetric. This is compu-
tationally cheap, and can be done with the same resolution as we will use in
Chapter 6.

Because of the coarse resolution, any result of a simulation will be in-
accurate. Therefore the matrices will be based on the situation when the
simulation is started. Thus we will not see the effects of spatial changes in
the surface elevation in Equation (2.10). As will be shown in Chapter 6,
the surface elevation is very small in this simulation. Therefore, the surface
elevation hopefully has negligible impact on the coefficient matrix.
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5.2 Symmetry

Lin and Li (2002) claims the coefficient matrix to be symmetric. In order to
check this, we compute A−AT for the coefficient matrices in the first time
step with 800 and 100 grid points in the horizontal and the vertical direction,
respectively. If A is symmetric, this should give us zero matrices. However,
the maximal absolute value of the difference is 1.40 · 10−5 for the simplified
system and 2.43 · 10−2 for the full set of equations. Both these numbers are
valid for both boundary conditions. This contradicts the findings of Lin and
Li (2002). Our results are, on the other hand, in accordance with Marshall
et al. (1997a).

The reason that the matrices are non-symmetric is the changing depth.
The full set of equations has more terms which contain derivatives of the
depth than the simplified system. This can explain why the asymmetry is
larger for the full system of equations. The values given here are from the
first time step, when the surface elevation is zero. Hence, we can expect the
matrices to be more asymmetric later in the simulation, when we also get
contributions from ∂η

∂x
.

The lack of symmetry can give problems if we solve the linear systems with
CG. However, as mentioned in Chapter 3 the method might work, despite A
being non-symmetric. The price we pay is a slow convergence rate compared
to the performance of CG for symmetric matrices. SOR and Bi-CGSTAB,
on the other hand, are designed for non-symmetric matrices. Therefore, the
methods should work well.

We should remember that the discretization is not unique. It is possible
that other approaches give different symmetry properties of the matrices
regarding symmetry.

5.3 Eigenvalues

We will find the eigenvalues of the coefficient matrices in four different cases.
We will consider both the case of a flat bottom, and a slope like the one in the
model problem described in Chapter 4. For the flat bottom, the σ-coordinates
reduces to Cartesian coordinates, and the two sets of equations for the non-
hydrostatic pressure are equal. We can then focus on the differences caused
by the boundary conditions. The case with a slope equal to the one used in
the model problem will give us insight to the matrix properties for the real
test case.

We will use two different grids for the analysis. One grid is very coarse,
with 16 grid cells in the horizontal direction and 2 layers in the vertical
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Figure 5.1: The eigenvalues of the matrices for a coarse grid and a flat bottom.

direction. The second grid has 160 points in the x-direction, and 20 points
in the z-direction. Both grids have 8 times as many points in the horizontal
direction as in the vertical direction. This is the same as is used in the real
simulations.

5.3.1 Flat Bottom and Coarse Grid

The eigenvalues for the coefficient matrices are shown in Figure 5.1. We
first note that all the eigenvalues are real and non-positive. The differences
between the eigenvalues from the discretizations of the Equations (2.10)
and (2.12) are numerically zero, as they should be. However, the differ-
ence between the distinct boundary conditions is striking. When we use a
Neumann condition, one eigenvalue is identically zero. If we instead use a
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(d) The Dirichlet condition

Figure 5.2: The eigenvalues of the matrices for a coarse grid and a slope of 0.214.

Dirichlet condition, all the eigenvalues are negative, and their absolute value
is larger than the eigenvalues for the Neumann condition.

5.3.2 Non-zero Slope and Coarse Grid

Next we consider a slope of 0.214, that is the same as is used in the model
problem. The eigenvalues of the coefficient-matrices are shown in Figure 5.2.
If we sort the eigenvalues with respect to their value, the largest difference
between the full system and the simplified version for the Neumann condition
is 4.4 · 10−7. We still get one eigenvalue equal to zero when we apply the
Neumann condition. For the Dirichlet condition, the largest difference is
1.9 · 10−6. The largest negative eigenvalue is closer to zero for the Dirichlet
condition than for the Neumann condition.
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Figure 5.3: The eigenvalues of the matrices for a finer resolution and a flat bottom.

5.3.3 Finer Grid, Flat Bottom

The results for the finer resolution with flat bottom are shown in Figure 5.3.
The pattern is the same as for the coarse grid above. The difference between
the full system and the simplified one is numerically zero. With the Neumann
condition, we get one eigenvalue equal to zero. The Dirichlet condition only
has negative eigenvalues.

5.3.4 Finer Grid, nonzero Slope

The results for the finer resolution with a slope are shown in Figure 5.4. All
the eigenvalues are real and non-positive. The largest negative eigenvalues
for both the full system of equations and the simplified version are approx-
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Figure 5.4: The eigenvalues of the matrices for a finer resolution and a slope of
0.214.

imately -0.3762 and -0.3745 for the Dirichlet and the Neumann condition,
respectively. For both systems of equations, all the eigenvalues for the Neu-
mann condition are slightly closer to zero than for the Dirichlet condition.

5.3.5 Discussion

According to Lin and Li (2002), the coefficient matrices we get from discretiz-
ing the equations for the non-hydrostatic pressure equation is definite. Since
they claim the coefficient matrices to be symmetric, this implies that all the
eigenvalues must have the same sign. We have found that all the eigenvalues
are negative for the Dirichlet surface condition, and non-positive for the Neu-
mann case. Thus the eigenvalues of our matrices have the same properties
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as the eigenvalues of Lin and Li (2002). However, since the matrices are not
symmetric, we cannot tell if the matrices are definite.

Whether the matrices are definite or not is important for our choice of
solver for the linear systems. It the matrices have this property, we can solve
the linear systems by CG and Bi-CGSTAB. Thus, it seems that we can use
these methods if we apply a Dirichlet condition on the surface, but not if we
use a Neumann condition. However, the method of conjugate gradients is
applied for the non-hydrostatic elliptic equation, also with the Neumann con-
dition on the surface, see e.g. Marshall et al. (1997a) or Casulli (1999). In an
eigenvalue expansion of the true solution, the eigenvector corresponding to
the zero eigenvalue will in general be present. This part of the solution will,
however, not be captured by the iterative method. Thus if the eigenvector
corresponding to the zero eigenvalue gives a large contribution to the solu-
tion, we cannot expect the solution obtained by the iterative method to be
accurate. In addition, there is a risk of breakdown or slow convergence due
to rounding errors if the product pk−2

TApk−2 is close to zero. For the same
reason, Bi-CGSTAB can have problems when the matrix A is not definite.
We will investigate this further in Chapter 7.

As explained in Section 3.3, it is the gradients of the pressure field which
are important to us. Thus if we do succeed in finding a solution with an
iterative method, the zero eigenvalue will not affect the density or the velocity
fields.

We should keep in mind that the discretizations by finite differences are
not unique. It is possible that other ways of discretizing the equations give
matrices with different properties. Also, the results are only valid for a flat
bottom, or a flat bottom combined with a constant slope as shown in Figure
4.1. Other bottom topographies can give different results.

5.4 Condition Numbers

In order to investigate the condition numbers of the matrices, we use a grid
with 8 times as many points in the x-direction as in the z-direction. We start
with 3 grid points in the z-direction, and increase the resolution until we have
22 points in the vertical direction. Three different bottom topographies are
considered: One with flat bottom, one with a gentle slope of 0.214, and
one with a really steep slope of 0.3. These slopes are steeper than what is
common in the ocean. However, we choose to focus on these inclines in order
to highlight the differences between the coefficient matrices.

When we apply the Neumann condition on the surface, the matrices be-
comes non-invertible, and the condition numbers are infinite. Therefore, we
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Figure 5.5: The condition numbers of the matrices. For the Neumann surface
condition, a modified condition number is used. The number of points in the x-
direction is 8 times the number of points in the z-direction.

use the modified condition number defined in Equation (3.9).

5.4.1 Results

The condition number of the coefficient matrices for the refined grids are
shown in Figure 5.5.

For all the matrices, the condition numbers usually increases as the num-
ber of grid points increases. However, for the bottom topographies with a
slope the condition number sometimes decreases when the grid is refined.
This is because the refined grid has grid points with a depth less than 0.01
m. These are removed, and the dimension of the resulting matrix is smaller
than for the previous coarser grid. This gives a smaller condition number.

For the flat bottom, the matrices with equal boundary conditions are
equal, thus the condition numbers are the same.

For the cases with a slope, we get some interesting results. The condition
number for the Neumann condition is one to two orders of magnitude larger
than for the Dirichlet condition.

The condition numbers for the Dirichlet condition are almost equal for
the full and simplified systems of equations. For the Neumann condition,
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the simplified system gives a better posed problem than the full system of
equations. The difference between the systems increases as the number of
grid points increases. It is probably much larger for the grid used in the real
simulations.

The condition numbers increase with increasing slope.

5.4.2 Discussion

We obtain larger condition numbers for the Neumann than for the Dirichlet
boundary condition. This was to be expected, since the smallest eigenvalues
for the Neumann condition are closer to zero than for the Dirichlet condi-
tion. Also, when we apply the Dirichlet condition on the surface, we get
matrices which have larger values on the main diagonal. The matrices are
more diagonally dominant, hence they are better posed.

The simplified system gives 5-diagonal matrices, whereas the full system
leads matrices with 9 nonzero diagonals. Hence, the simplified system can
be expected to give more diagonally dominant matrices, and therefore better
posed problems. This is what we see for the Neumann condition on the sur-
face. We would expect the same results for the Dirichlet condition. However,
this is surprisingly not the case. The reason might be that the singularity
of the matrices due to the Neumann condition makes the conditioning much
more sensitive to the degree of diagonal dominance. When the matrices are
invertible, as it is in the Dirichlet case, the diagonal dominance is not that
important.

The increase in the condition number with larger slopes can be explained
by larger derivatives of the depth, which gives larger off-diagonal elements in
the matrices. Also, the discontinuity in the derivative of the depth where the
slope starts will be larger for a steeper slope. This may give a worse posed
problem.

5.5 Summary

The eigenvalues of the coefficient matrices are real and non-positive for all
four methods. If a Neumann condition is applied on the surface, one ei-
genvalue equals zero, and the small eigenvalues are closer to zero than for
the Dirichlet condition. The zero eigenvalue can give problems if the linear
system is solved by the method of conjugate gradients and bi-conjugate gradi-
ents. Also, the method of conjugate gradients might get problems because
of the weak asymmetry of the matrices.
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From our analysis of condition numbers, we can expect the linear system
from the simplified set of equations to be easier to solve numerically than the
full set. We can also expect better posed problems when we apply a Dirichlet
boundary condition on the surface, than when we use a Neumann condition.



Chapter 6

Numerical Experiments

In the previous chapters, we have presented four methods for modelling the
non-hydrostatic pressure correction. Here we will investigate the differences
in the results obtained by using the four methods on a test case. We will use
both the full set of equations and the simplified version. On the surface we
apply both a Dirichlet and a Neumann condition. To compare the different
methods, we will use both the density and the velocity fields and energetics.

6.1 The Numerical methods

The linear system for the non-hydrostatic pressure correction is solved by
using SOR. The solution from the previous sequence of iterations is used as
an initial guess. For convergence, we demand that the relative error defined
in Equation 3.8 is less than 5 · 10−6. For more details on the numerical
methods, see Section 1.5.1 and the references there.

6.2 The Primary variables

The simulations are done with the coefficients AM , KM , AH , and KH all equal
to 2 · 10−6 m2 s−1. The viscosity in the depth averaged calculation, AM2D

, is
set to 5 · 10−5 m2 s−1.

The density and velocity profiles were taken at 32, 35, and 37 seconds.
The differences between the profiles from the distinct ways to model the
non-hydrostatic pressure were largest at 35 seconds. Therefore, all the plots
shown were taken 35 seconds after the simulation started.

When the wave hits the slope, it starts to move upwards in a bolus. As
the bolus propagates upwards, the water in front of it moves downwards. At
the front of the bolus, this water separates from the bottom and flows over
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(c) The simplified system with a Neumann condition on the surface
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(d) The simplified system with a Dirichlet condition on the surface

Figure 6.1: The density distributions after 35 seconds.
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Figure 6.2: Differences in the density distributions after 35 seconds.
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the bolus. The water masses are mixed behind the head front of the wave.
Eventually, the wave breaks, and the mixing increases. See Bourgault et al.
(2005) for plots of the time evolution of the breaking of an internal solitary
wave.

6.2.1 The Density

The density distributions after 35 seconds are shown in Figure 6.1. From
these figures, there are apparently no large differences between the distinct
methods. The separation point is located at the same place in all the figures.
The bolus has a somewhat smaller lateral extention for the simplified system
than for the full system. For the full set of equations, the wave seems closer
to breaking than for the simplified system.

In the Figures 6.2(a) and 6.2(b), the density distribution for the simplified
set of equations minus the distribution for the full system are shown for the
Neumann and the Dirichlet condition on the surface, respectively. The largest
absolute value of the difference in density is about 3 kg m−3 both for the
Neumann and the Dirichlet condition on the surface.

The Figures 6.2(c) and 6.2(d) show the density distribution obtained by
using the Neumann condition minus the density for the Dirichlet condition
for the full and the simplified set of equations, respectively. The front of
the dense water has propagated longer for the Neumann boundary condition
than for the Dirichlet condition. However, the differences due to the bound-
ary conditions are much smaller than the differences due to the systems
of equations. The maximal absolute value of the difference is about 0.15
kg m−3 and 0.2 kg m−3 for the simplified and the full set of equations,
respectively.

6.2.2 The Horizontal Velocity

The horizontal velocity fields are shown in Figure 6.3. The Figures 6.4(a)
and 6.4(b) show the velocity fields for the simplified minus the full set of

Set of Boundary Maximal Maximal negative
equations condition velocity [m s−1] velocity [m s−1]

Full Neumann 0.0443 -0.0350
Full Dirichlet 0.0440 -0.0305

Simplified Neumann 0.0435 -0.0285
Simplified Dirichlet 0.0435 -0.0285

Table 6.1: The maximal horizontal velocities after 35 seconds.
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Set of Boundary Position Position
equations condition after 32 s [m] after 37 s [m]

Full Neumann 0.3560 0.4592
Full Dirichlet 0.3560 0.4571

Simplified Neumann 0.3560 0.4571
Simplified Dirichlet 0.3560 0.4571

Table 6.2: The location of the separation point after 32s and 37s. The distance is
measured from the start of the slope.

equations for the Neumann and Dirichlet boundary condition, respectively.
The full set of equations leads to larger velocities than the simplified one.
The absolute value of the maximal difference is about 0.0012 m s−1 for
both boundary conditions. The differences due to the boundary conditions
are much smaller than the differences due to the set of equations, as can be
seen in the Figures 6.4(c) and 6.4(d).

In Table 6.1 the maximal positive and negative velocities are given. The
maximal positive velocities are almost the same, while the maximal negative
velocities are larger for the full system of equations.

In Table 6.2 the location of the separation point after 32 seconds and 37
seconds are given. There are no differences at all after 32 seconds. After 37
seconds the separation point has propagated one grid cell longer up the slope
with the full set of equations and a Neumann boundary condition than for
the other methods. The average speed of the separation point between 32
and 37 seconds is 0.021 m s−1 with the full set of equations and a Neumann
condition. For the other methods, the average speed is 0.020 m s−1. Thus
both the location and the speed of the separation point are robust to the
different methods to model the non-hydrostatic pressure.

6.2.3 The Vertical Velocity

The vertical velocity fields after 35 seconds are shown in Figure 6.5. Over-
all, the full system of equations gives somewhat higher velocities than the
simplified system, although the differences are small.

The vertical velocity field for the simplified set of equations minus the
field for the full set is shown in Figure 6.6(a) for the Neumann condition, and
in Figure 6.6(b) for the Dirichlet boundary condition. The largest absolute
value of the difference is about 0.01 m s−1 for both boundary conditions.

Like the results for the density and horizontal velocity, the differences
in vertical velocity due to the boundary conditions are much smaller. The
maximal values are 1.2 · 10−3 m s−1 for the full system, and 4 · 10−4 m s−1



48 Numerical Experiments

Distance from the start of the slope [m]

Dep
th [m

]

 

 

0.1 0.2 0.3 0.4 0.5 0.6

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

(a) The full system with a Neumann condition on the surface
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(c) The simplified system with a Neumann condition on the surface
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(d) The simplified system with a Dirichlet condition on the surface

Figure 6.3: The horizontal velocities after 35 seconds.
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(c) The Neumann minus the Dirichlet condition for the full system
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(d) The Neumann minus the Dirichlet condition for the simplified system

Figure 6.4: Differences in the horizontal velocities after 35 seconds.
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(a) The full system with a Neumann condition on the surface
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(b) The full system with a Dirichlet condition on the surface
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(c) The simplified system with a Neumann condition on the surface
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(d) The simplified system with a Dirichlet condition on the surface

Figure 6.5: The vertical velocities after 35 seconds.



6.2 The Primary variables 51

Distance from the start of the slope [m]

Dep
th [m

]

 

 

0.1 0.2 0.3 0.4 0.5 0.6

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

(a) The simplified minus the full set of equations with a Neumann condition
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(c) The Neumann minus the Dirichlet condition for the full system
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(d) The Neumann minus the Dirichlet condition for the simplified system

Figure 6.6: Differences in the vertical velocities after 35 seconds.
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Set of Boundary Maximal Maximal negative
equations condition velocity [m s−1] velocity [m s−1]

Full Neumann 0.0309 -0.0164
Full Dirichlet 0.0308 -0.0161

Simplified Neumann 0.0287 -0.0163
Simplified Dirichlet 0.0286 -0.0160

Table 6.3: The maximal vertical velocities after 35 seconds.

for the simplified system, see the Figures 6.6(c) and 6.6(d), respectively.
Table 6.3 contains the maximal positive and negative vertical velocities

for the four methods. The full set of equations gives the largest maximal
velocities both in the positive and the negative direction. The maximal
velocities are fairly robust with respect to the boundary condition used on
the surface.

6.2.4 Discussion

The four methods give density profiles after 35 seconds which looks nearly
the same. The separation point is located at the same place. However, the
lateral extention of the bolus is larger for the full set of equations than for
the simplified system. Thus positive velocities inside the bolus for the full
system of equations are located at the same place as the negative velocities
in the front and above the bolus for the simplified set. This gives large
differences between the velocity fields. Hence, the small phase error in the
density distributions gives large errors in the velocity fields.

Although the relative differences are large, about 1
4

for the horizontal
velocities, and 1

3
for the vertical velocities, the velocity profiles looks much

the same, they are just slightly translated. The speed of the separation
point is about 0.02 m s−1 in all the simulations, while it is about 0.03
m s−1 in Figure 4 in Michallet and Ivey (1999). Thus the differences between
the results given here are much smaller than the differences between the
simulations and laboratory experiments.

It should be mentioned that the simulations are done in 2D. Solitary waves
are well modeled as a 2D-phenomenon as long as they propagate without de-
veloping instabilities. When instabilities occur, 3D effects become important
(Fringer and Street 2003). This can be one reason for the diversities between
the simulation results and laboratory experiments.

It does make a difference which set of equations we use to model the
non-hydrostatic pressure correction. However, it is not evident which system
gives the best approximation to nature. Further investigations are needed to
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decide which is the best one, but none of them is much better than the other
one.

The results are robust with respect to a change of boundary conditions
on the surface. The Neumann condition allows the bolus to propagate a bit
faster than the Dirichlet condition. However, the difference is very small,
and well within the differences compared to laboratory experiments.

6.3 The Pressure Field

As we saw in Section 6.2, the density and velocity fields obtained by using the
different methods are almost the same. However, if we consider the pressure
fields, there are considerable differences. When a homogeneous Dirichlet
condition is applied on the surface, the non-hydrostatic pressure there is zero.
This is not the case with a Neumann condition, as can be seen in Figure 6.7.
The pressure fields obtained by using the distinct boundary conditions are
not even qualitatively the same. Nevertheless, the differences in the resulting
density and velocity fields are not very large.

There are probably several reasons why the differences in the pressure
fields do not have larger impact on the primary variables. First of all, we
should remember that it is not the velocities and the pressure which are
dependent on each other, but their time and spatial derivatives, respectively.
The velocity field after 35 seconds is not the result of the instantaneous
pressure field, but an accumulated result of the pressure field since the start
of the simulation. Moreover, it is the spatial gradients in the pressure field
that change the velocities.

The spatial difference along the slope located at the same place as the
bolus are qualitatively the same for all the methods, although the values of
the gradients are largest when we use the Dirichlet boundary condition. Also,
the gradients are larger for the full set of equations than for the simplified
system. We saw in Figure 6.3 that the horizontal velocities are higher when
we use the full set of equations than if we use the simplified system. This
must be caused by larger gradients in the velocity field for the full system.
This leads us to belive that the pressure fields near the bottom as the bolus
propagates up the incline look the same as we see in Figure 6.7 for the
different models.

It is harder to explain why the differences in the pressure field above the
bolus between the two boundary conditions do not have larger impact on the
solutions. We should remember that the main circulation is caused by the
hydrostatic pressure. The non-hydrostatic pressure only contributes with a
small correction to the velocity fields. This is necessary to set up the bolus
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(a) The full system with a Neumann condition on the surface

Distance from the start of the slope [m]

Dep
th [m

]

 

 

0.1 0.2 0.3 0.4 0.5 0.6

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) The full system with a Dirichlet condition on the surface
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(d) The simplified system with a Dirichlet condition on the surface

Figure 6.7: Non-hydrostatic pressure fields after 35 seconds.
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when the wave hits the slope. Except from this, the motion is driven by the
hydrostatic pressure. Thus, we must include non-hydrostatic effects to model
nature accurately for this specific case, but the results are qualitatively the
same with the four methods considered in this thesis.

6.4 Lower Viscosities and Diffusivities

The simulations described in the last sections were done with all viscosity
and diffusivity coefficients equal to 2 ·10−6 m2 s−1 , except from AM2D

, which
was 5 · 10−5 m2 s−1. If the coefficients are reduced to 10−6 m2 s−1 , the
simulations using the full set of equations become unstable. This happens
after about 35.6 seconds for both types of boundary conditions on the surface.
In order to check the effect of a reduction, the simulation with the simplified
system and Neumann boundary condition is done again. Now, the viscosity
and diffusivity coefficients are, except from AM2D

, set to 10−6 m2 s−1. The
value of AM2D

is unchanged. The results are compared to the corresponding
simulation in Section 6.2.

6.4.1 Results

Figure 6.8 shows the density distributions and the velocity fields for the sim-
ulations with high and low viscosities. With higher values of the coefficients,
the fields we obtain are smoother. The mixing of water masses decreases
with larger viscosities. Also, the maximal velocities are smaller, both in the
horizontal and in the vertical direction. Compared to the laboratory res-
ults from Michallet and Ivey (1999), the high viscosity simulation gives too
smooth fields, while the simulation with the lower viscosities is in better
agreement with nature. The speed of the separation point is the same, as
was reported by Berntsen et al. (2006).

6.4.2 Discussion

With higher values of viscosities, the system looses more energy, causing
smaller velocities. This gives less mixing. The breaking of internal waves
is considered to be a major source of mixing in the ocean (Bourgault and
Kelley 2003). To model this process accurately it is important to capture
the dynamics in the phenomenon.

When both sets of equations are used with the same viscosity and dif-
fusivity coefficients, the results obtained by using the full system are in best
agreement with laboratory experiments. The simplified system seems to give
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(a) The densities with high viscosities
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(b) The densities with low viscosities
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(e) The vertical velocities with high
viscosities
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Figure 6.8: The density and velocity distributions after 35 seconds with high and
low viscosities.
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Figure 6.9: Differences in the density and the velocity distributions between sim-
ulations with high and low viscosities after 35 seconds.
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more implicit viscosity and diffusion than the full set of equations, hence we
can apply lower explicit values. Therefore, it is possible to get closer to what
we find in nature with the simplified set of equations. We can, however, not
be sure if this also holds if we use another numerical model.

6.5 Energetics

6.5.1 Results

The computed energy of the simulations done in Section 6.2 are shown in
Figure 6.10. The energy is categorised as explained in Section 3.4.

The kinetic energy is zero at the start It increases when the wave starts
to move, as can be seen in Figure 6.10(a). The kinetic energy decreases as
the wave gets closer to the slope. The decrease is larger for the simplified
set than for the full system of equations. Near the end of the simulation, the
kinetic energy increases again, and the difference between the set of equations
gets smaller.

The available potential energy drops quickly as the wave is set in motion,
as shown in Figure 6.10(b). After the first few seconds, the APE is almost
constant until the wave approaches the slope, at which it increases. The APE
is larger for the full system of equations than for the simplified system. The
difference gets smaller at the end of the simulation, but it does not seem to
go to zero.

In Figure 6.10(c) the background potential energy is shown. It increases
linearly, and the BPE is equal for both sets of equations and both bound-
ary conditions. In the end, the BPE for the full system of equations gets
somewhat larger than for the simplified system, as we see in Figure 6.10(d).
The difference is, however, only about one percent of the total increase in
the BPE.

The energy due to surface elevation is shown in Figure 6.10(e). Only
the results for the simplified set is shown, the full system of equations gave
the same results. What is worth to notice here is the small scale on the
y-axis. For instance, the energy due to the surface elevation is two orders
of magnitude less than the kinetic energy. Also, the differences due to the
boundary condition on the surface are small.

The potential energy can be seen in Figure 6.10(f). The energy is equal
for all the methods until the wave hits the slope, then the full set of equations
leads to somewhat more energy.

In Figure 6.11 the kinetic and the available potential energy for the simpli-
fied and full system with high viscosity are plotted together with the energy



6.5 Energetics 59

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Time [s]

E
ne

rg
y 

[k
gm

2 /s
2 ]

 

 

Full system, Neumann
Full system, Dirichlet
Simplified system, Neumann
Simplified system, Dirichlet

(a) The kinetic energy
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(b) The available potential energy
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(c) The background potential energy
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(d) The background potential energy
in the last 7 seconds of the simulations
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(e) The energy due to the surface el-
evation
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(f) The potential energy

Figure 6.10: The different kinds of energy in the simulations.
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(a) The kinetic energy

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time [s]
E

ne
rg

y 
[k

gm
2 /s

2 ]

 

 
High viscosity, full system
High viscosity, simplified system
Lower viscosity, simplified system

(b) The available potential energy

Figure 6.11: The energy of the simplified and the full system with high viscos-
ity, and for the simplified system with lower viscosity. The Neumann boundary
condition is used for all the simulations.

of the low-viscosity simulation described in Section 6.4. The APE with low
viscosity is higher than for both sets of equations with high viscosity. Ex-
cept from a small period when the wave reaches the slope, we obtain higher
kinetic energy by using the simplified system with low viscosity than we get
by using the full set of equations and higher viscosity.

6.5.2 Discussion

First, we notice that the choice of boundary condition makes no difference
to the energy.

We saw in Section 6.2 that we get higher overall velocities by using the
full set of equations. Hence, the kinetic energy obtained by the full system is
higher than what is obtained by using the simplified set of equations. This
leads to more stirring, and higher APE. Because of the stirring, the surfaces
over which diffusion can take place get larger, hence the background potential
energy increases more with the full set of equations than with the simplified
set.

The constant growth in the background potential energy is due to diffu-
sion which takes place independent of the motion.

The increase due to mixing contributes with only a small amount com-
pared to this constant growth. However, the contribution from mixing is
important for the energy budget in the ocean (Munk and Wunsch 1998). Al-
though the difference in the change in BPE between the sets of equations is
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small compared to the total increase, it can be important when, for instance,
mixing efficiency is computed (see Peltier and Caufield (2003) for a definition
of mixing efficency).

The low energy due to the surface elevation justifies the neglection of
surface elevation done in Chapter 5.

The difference in kinetic energy for the simplified system with high and
low viscosity is about 25 % after 35.6 seconds, when the low-viscosity sim-
ulation with the full set of equations gets unstable. If the effect of reducing
the viscosity is the same for the full set of equations, the velocities for this
simulations with low viscosities will be considerably higher. Since the full set
gives higher maximal velocities than the simplified system, we need higher
viscosities to avoid numerical instabilities.

6.6 Summary

In this chapter, we have compared different systems of equations and bound-
ary conditions proposed to model the non-hydrostatic pressure. The shape
of the bolus as it propagates up the slope is almost the same for all the
methods. This is the case, even though the pressure fields changes dramatic-
ally when we change the boundary condition on the surface. However, using
the full set of equations makes the lateral extention of the bolus somewhat
larger. Because of large local changes in the velocity fields, this small phase
difference gives large differences in the velocity fields. The full system also
gives somewhat larger overall velocities.

The differences between the sets of equations are best seen when we con-
sider the energetics. Although the energy behaves in qualitatively the same
manner, the full set of equations gives solutions which have higher kinetic
energy. This cause the simulation to become unstable if low viscosities are
used. The instability of the full set of equations is a major drawback of
this method. The higher viscosities needed make the system less capable
of reproducing results from laboratory experiments, and probably also from
nature.

From the results of the simulations in this chapter, it is hard to tell which
set of equations is the best one. Further investigations and comparison to
laboratory experiments and other numerical models are needed to resolve
this issue. However, this also means that the consequences of using one
system instead of another are small. Thus, if the results in this chapter also
holds for other problems, we are, in some sense, free to choose which set
of equations we will use to model the non-hydrostatic pressure. It seems
that the most crucial differences can be found in the energy budget and the
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numerical instabilities of the full set of equations.
From the experiments done here, we can not tell if it makes any difference

which boundary condition we use on the surface.



Chapter 7

Comparison of the Iterative
Methods

Our choice regarding set of equations and boundary condition to model the
non-hydrostatic pressure was to be guided by the solutions obtained by the
systems. In Chapter 6 we compared the density and the velocity fields for a
test case. We will also investigate the numerical solvability of the resulting
linear systems. In the previous chapter, the linear systems were solved by
using SOR. Here, we will evaluate the results by doing the same simulations
using the method of conjugate gradients and stabilised bi-conjugate gradi-
ents. We will also compare the number of iterations for the iterative solvers
for the different methods to model non-hydrostatic pressure. Additionally,
we investigate the impact on the solution of the tolerance for the error in the
iterative methods.

7.1 Solving the Linear System with CG and

Bi-CGSTAB

The method of successive over-relaxations works well as long as the spectral
radius of the matrix G defined in Equation (3.4) is less than 1. However,
to check if this is fulfilled we must compute the inverses of matrices, which
takes of the order n3 computations. Also, finding the eigenvalues of G will
be computational expensive, since the matrix in general not will be sparse.
Thus, it is in practise not possible to find the spectral radius of G for the
simulations done in Chapter 6. The results we obtained are in fairly good
agreement with laboratory experiments. This indicates that SOR is well
suited for the problem.

However, there might be an eigenvalue of G which is larger than 1. If the

63
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contribution of the corresponding eigenvector in an eigenvector expansion
of the right hand side is small, the method will appear to be convergent.
However, if the number of iterations gets high enough, the eigenvector will
start to dominate the solution, showing that the method really is divergent.
If this is what happens, the solution we obtain by using a limited number
of iterations or a weak convergence criterion cannot be trusted. This can
explain the numerical instabilities when we use the full set of equations and
low values for the viscosity and diffusivity coefficients.

Because of this, we do the simulation with the full set of equations and
a Dirichlet condition on the surface again. This time we use the method
of conjugate gradients to solve the linear system. We use the full set of
equations because this is where the the convergence problems occurred. The
coefficients for the viscosities and diffusivities have the same values as in
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(a) The method of conjugate gradients
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(b) The method of stabilised bi-conjugate gradients

Figure 7.1: The difference in the density distributions after 35 seconds between
the solutions obtained by SOR and CG and Bi-CGSTAB, respectively.
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Section 6.2. The problem is the same as in the previous chapter, hence the
solution should also be the same.

In Figure 7.1(a), the density distribution obtained by CG minus the dis-
tribution obtained by SOR is shown. The largest difference is of the order
10−2 kg m−3. For the simplified system, the differences due to a change in
the solver of the linear system are of the same order of magnitude for both
boundary conditions. If we try to do a low viscosity simulation with the full
set of equations and solve the linear system with CG, the simulation become
unstable, just as it did in Section 6.4. Thus, the results obtained in Chapter
6 are robust to a change of linear solver.

We also do the same experiment with Bi-CGSTAB in order to check the
implementation of this method. The result is shown in Figure 7.1(b). The
small differences gives us trust in the implementation of Bi-CGSTAB.

7.2 The Dependency Upon the Convergence

Criterion

The simulations in Chapter 6 were done with the tolerance in Equation (3.8)
set to 5 · 10−6. This is a fairly strong convergence criterion. The reason for
not allowing larger errors was to make sure that the differences we obtained
were due to the equations, and not to the linear solver.

By only allowing small errors, much of the computation time is used
by the linear solver. If we can allow larger residuals without making large
changes in the solution, the simulations can be done much faster. When
the convergence criterion is relaxed, the error in the computed pressure field
increases. However, we are interested in the gradients of the pressure field.
The initial error will be largest where the pressure gradients are largest,
since this is where the field has changed most since the last sequence of
iterations. If the accuracy of the solution is too low when the iteration process
is stopped, we can get false pressure gradients where the non-hydrostatic
pressure is most important. Also, the solution of an elliptic equation is
smooth (Evans 1998), hence the true pressure field will not be noisy. The
sequence of solutions obtained by the iterative method will also be smoothed
as the residual gets smaller. If the iteration process is stopped too early,
the false pressure gradients can create a noisy velocity field for the velocity
corrections due to the non-hydrostatic pressure. This will be the opposite
property of what the physical correct solution has. To conclude, we would
prefer not to use more iterations than necessary, but the accuracy of the
solution must be high enough for the solution to be trustable.
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(b) The simplified system of equations

Figure 7.2: The difference in the density fields after 35 seconds with SOR with
the convergence criterion set equal to 5 · 10−6 and 10−3. The Neumann condition
is used for both methods.

In Figure 7.2 the differences in the density fields after 35 seconds using
two distinct convergence criterions are shown for the full and the simplified
system. The Neumann condition is applied on the surface for both sets of
equations. For the simplified system, the maximal difference in the solution
above the slope is 8 ·10−3 kg m−3. The maximal difference is located near the
surface. For the full set of equations, the maximal error is 4 · 10−2 kg m−3 ,
and it is located inside the bolus. Thus a relaxation of the convergence
criterion has larger effect on the bolus for the full set of equations than for
the simplified one.

The iterations are stopped when the norm of the residual is sufficiently
small. When two iterative methods are applied with the same convergence
criterion, the sum of the final errors over the entire domain will be of the
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same size. Thus, there are probably larger errors in other parts of the tank in
Figure 7.2(b) than in Figure 7.2(a). However, we want to model the solitary
wave accurately. It is better for us that the errors are located away from
the wave than near it. Therefore, we prefer the situation in Figure 7.2(b) to
what we see in Figure 7.2(a). Also in Figure 7.1, there are probably larger
errors away from the slope.

If we apply a Dirichlet condition on the surface, the differences due to
the tolerated error are of the same order as for the simplified system with a
Neumann condition. This is valid for both sets of equations.

7.3 Solvability by Different Iterative Meth-

ods

As shown in Section 7.1 we get approximately the same solution with SOR,
CG and Bi-CGSTAB. We here present the convergence of all the three meth-
ods.

7.3.1 Description of the Experiments

As explained in Section 1.5.1, the linear system is solved twice for each time
step. As an initial guess we use the solution from the previous time step
for the predictor step. The solution for the predictor step is used as initial
guess for the corrector step. In order to start the iterations with CG and
Bi-CGSTAB with a good initial guess, SOR is used for the first 10 time steps.

We do the simulations with two distinct convergence criterions. The error
ε in Equation (3.8) is set to 10−3 and 5 · 10−6, respectively.

To avoid infinite loops, we only allow a limited number of iterations. the
wave is set into motion, non-hydrostatic effects are important.s Additionally,
the initial guess is not good. Therefore, we allow up to 1000 iterations for
SOR and 200 for CG and Bi-CGSTAB. If the maximal number of iterations is
reached without convergence of the solution, the hydrostatic approximation
is used for this time step. Thus if convergence problems often occurs, we
will in practice use a hydrostatic model. This is unacceptable for us. If
we are to obtain the correct solution, we must use a model which capture
non-hydrostatic effects.

The parameter λ in SOR is set to 1.8816 in all the iterations. This value
is based on previous experience with the linear solver from the experiments
done in Berntsen et al. (2006). Thus the value of λ is probably a good one for
the simplified system, since both the equations and the initial conditions are
the same. However, the value is not optimised for the full set of equations.
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It is possible that the performance of SOR for this system could have been
somewhat better with a more carefully chosen λ. Also, the preconditioner
used for CG, although efficient is not very advanced. It might be possible to
do this better.

The simulations are done with 400 time steps per second. We only con-
sider the average number of iterations per second.

7.3.2 Expectations

From the analysis of the matrices done in Chapter 5, we got some information
of properties which might affect the linear solvers. Problems can arise for
both the method of conjugate gradients and the method of stabilised bi-
conjugate gradients when they are applied to a Neumann condition because
of the zero eigenvalue. The conditioning of the simplified set of equations
is better than that of the full set for a Neumann condition on the surface.
For the Dirichlet boundary condition, the conditioning of the matrices is the
same. Also, the condition numbers are much lower when we apply a Dirichlet
condition on the surface than the modified condition number we get by using
a Neumann condition. The gradients of the non-hydrostatic pressure in the
vertical direction are smaller with a Dirichlet condition than with a Neumann
condition, as can be seen in Figure 6.7. Even though the gradients are larger
along the slope, the solution is more homogenous. Therefore, it should be
easier to find by an iterative method. Finally, the matrices are not symmetric.
This can cause problems for CG.

7.3.3 Results

In Figure 7.3 the number of iterations for the Neumann condition is shown,
while the average number of iterations for the Dirichlet condition is plotted
in Figure 7.4. In order to make it easier to compare the results, the per-
formance of the linear solver for SOR and CG are shown in the Figures 7.5
and 7.6, respectively. Figure 7.7 shows the average number of iterations for
Bi-CGSTAB with a Dirichlet condition on the surface.

The Neumann Condition

The method of conjugate gradients has problems when we use the full set
of equations and apply a strong convergence criterion. The average number
of iterations reaches the maximal allowed number in about half of the time
intervals. During the first 30 seconds, both CG and SOR need about as many
iterations in the predictor step as in the corrector step. In the remaining 10
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(a) The full set of equations
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(b) The full set of equations
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(c) The simplified set of equations
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Figure 7.3: Average number of iterations with a Neumann boundary condition.
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(a) The full set of equations
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Figure 7.4: Average number of iterations with a Dirichlet boundary condition.
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(b) Strong convergence criterion
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(c) Weak convergence criterion

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50
The corrector step

Time [s]

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

 

 
Full system, Neumann condition
Full system, Dirichlet condition
Simplified system, Neumann condition
Simplified system, Dirichlet condition

(d) Weak convergence criterion

Figure 7.5: Average number of iterations with SOR for the different sets of equa-
tions and boundary conditions. The maximal allowed number of iterations is 1000.



72 Comparison of the Iterative Methods

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200
The predictor step

Time [s]

N
u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

 

 

Full system, Neumann condition
Full system, Dirichlet condition
Simplified system, Neumann condition
Simplified system, Dirichlet condition
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Figure 7.6: Average number of iterations with CG for the different sets of equa-
tions and boundary conditions. The maximal allowed number of iterations is 200.
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Figure 7.7: Average number of iterations with Bi-CGSTAB for the different sets
of equations and boundary conditions. The maximal allowed number of iterations
is 200.
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seconds, more iterations are needed for the predictor step. If we relax the
convergence criterion, the performance of CG is somewhat better than of
SOR in the predictor step. As long as the we tolerate large errors, only a
few iterations are needed in the corrector step.

For the simplified system and a low tolerated error, the number of itera-
tions for CG is slightly higher than for SOR during the first 30 seconds. In
the remaining 10 seconds, CG needs less iterations. This can be observed
both for the predictor and the corrector step. If the convergence criterion is
relaxed, the method of conjugate gradients uses only half as many iterations
as SOR in the predictor step. For the corrector step, the methods are nearly
equal in performance.

When Bi-CGSTAB is applied to a system with a Neumann condition on
the surface, the method has severe convergence problems. The number of
iterations reaches the maximal allowed value so often that it is clear that
the method does not work for this problem. The problems occurs during
the entire simulation, also for a weak convergence criterion. Therefore, the
results are not shown here.

The Dirichlet Condition

If we use a Dirichlet condition, CG works well for the full set of equations.
This holds also when we use a strong convergence criterion. However, SOR is
better than CG except from the last 10 seconds of the simulation. Remark-
ably, the number of iterations in the prediction step of SOR is higher if we
allow a high value of the error than for a low tolerance in the first 30 seconds
of the simulation. This is not the case in the last 10 seconds, as the number
of iterations needed increases for the simulations with strong convergence
criterion.

For the simplified system, we get much of the same behaviour as with
a Neumann condition. When large errors are allowed, CG is still better
than SOR in the predictor step. The difference is less than with a Neumann
condition, though. However, SOR needs more iterations in the corrector step.
With a strong convergence criterion, the performance of the two methods are
nearly equal in the first 30 seconds. In the last 10 seconds, SOR needs more
iterations than CG, but again the difference is not as significant as for the
Neumann condition.

The performance of Bi-CGSTAB is good, also with a Dirichlet condition
on the surface. The performance of Bi-CGSTAB with the full set of equations
is very good. It needs less than 10 iterations with a strong convergence
criterion in the predictor step for the first 30 seconds. If larger errors are
tolerated, less than 5 iterations are needed. As for the corrector step, both
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the convergence criterions are met in less than 5 iterations. The average
number of iterations for the simplified system is also considerably lower than
for both SOR and CG. This is valid for both convergence criterions.

7.3.4 Discussion

The Convergence Criterion

The number of iterations needed to find the non-hydrostatic pressure field is
fairly high, also when the movement is to a good approximation hydrostatic.
The residual is computed according to Equation (3.7). The right hand side
of the linear system is the divergence of the provisional velocity field. In
the first 30 seconds of the simulation, these values are low. This leads to
a strong convergence criterion, and therefore many iterations. Thus, with
the convergence criterion used for the iterative methods, we spend much
computation time to find a pressure field which does not contribute much to
the result. As the wave propagates up the slope in the last 10 seconds of the
simulation, the changes in the non-hydrostatic pressure from one time step
to the next are larger. That is, the nominator in Equation (3.8) is larger
for the initial guess. However, also the denominator will increase because of
higher values of the divergence of the velocity field. This put together we
do not need much more iterations in the last period of the simulation, even
though non-hydrostatic effects are more important than in the beginning.

It would probably have been better to have a convergence criterion based
on the velocity field itself, instead of it’s divergence. However, it is not clear
how this can be done in a way that gives a strong convergence criterion when
non-hydrostatic effects are important.

Convergence Problems

Both CG and Bi-CGSTAB have problems with the convergence when they
are applied to the full set of equations with a Neumann boundary condi-
tion. Since also Bi-CGSTAB has problems, the reason cannot only be the
asymmetry of the matrices. The reason is probably the zero eigenvalue. We
notice that the problems are worst when non-hydrostatic effects are not im-
portant for CG. This means that the denominator in Equation (3.8) is small.
Therefore, the residual in the nominator must also be small to fulfil the con-
vergence criterion. Because one eigenvalue is zero, the range of the matrix is
not the entire Rn. Thus, unless the right hand side is entirely in the range
of the matrix, the solution obtained by the iterative method will never equal
the true solution. Hence the residual can never be equal to zero, regardless
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of how many iterations is used. Some iterative methods will be able to get
the residual as small as possible. For other methods, the part of the solution
which is not in the range of the matrix is necessary for the iteration process
to converge. This can explain why it is possible to fulfil the convergence
criterion by SOR, but not by CG or Bi-CGSTAB.

Apparently, the zero eigenvalue does not affect the convergence of CG for
the simplified system as much as for the full set of equations. Indeed, in the
first part of the simulation, the number of iterations is lower with a Neumann
condition than when a Dirichlet condition is applied. The structure of the
matrix is different from the full set of equations, in that it has 5 nonzero
diagonals instead of 9. This can give different convergence properties for the
linear solver. When non-hydrostatic effects are important in the last part
of the simulations, the convergence is slower for the Neumann condition, as
expected. However, the iterations does converge. Thus the possible problems
with CG due to the Neumann boundary condition foreseen in Chapter 5 do
not appear, even though it was not obvious that the method would work.

When the iterations do not converge, the simulations are done hydro-
static. For CG and Bi-CGSTAB this happens so often that it is doubtfull
that the solution obtained can be trusted. When the convergence criterion
is relaxed, CG works well, also for the full set of equations and a Neumann
boundary condition. However, as we saw in Figure 7.2(a), the relaxation of
the convergence criterion changes the density field near the bolus much more
for this set of equations and boundary conditions than for the other combin-
ations. Hence, it seems that CG should not be applied to the full system of
equations with a Neumann condition on the surface.

Bi-CGSTAB is severely affected by the zero eigenvalue also for the sim-
plified system. Because of convergence problems, the method should not be
applied for any of the systems as long as we use a Neumann condition on the
surface.

Condition Numbers

The expected slower convergence for the Neumann condition occurs for the
full set of equation for both CG and SOR. For the simplified set of equations,
however, the number of iterations is less for the Dirichlet condition only when
the wave propagates up the slope. That is, the expected behaviour appears
only when non-hydrostatic effects are important for these to methods. The
behaviour of Bi-CGSTAB is as expected. It works with a Dirichlet boundary
condition, but not with a Neumann condition.
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Predictor and Corrector Steps

Because the initial guess for the corrector step comes from the present time
step, we would expect the number of iterations to be less for the corrector
step than for the prediction. This holds for all methods to compute the non-
hydrostatic pressure if we tolerate large errors. If the convergence criterion
is strong, the convergence is somewhat faster in the corrector step, especially
as the wave propagates up the slope.

When we solve the full set of equations with a Dirichlet condition, the
number of iterations for the prediction increases for the first 30 seconds if
we relax the convergence criterion. This is contrary to what we would have
expected. However, if we sum the iterations in the predictor and corrector
step, we get a slightly larger value with a strong convergence criterion. Also,
the initial guess both for the prediction and the correction is better because
the residual of the solution in the last sequence of iterations was smaller.

Conclusions

All the four methods to model non-hydrostatic pressure gives a linear system
which is solvable by using SOR. The Krylov subspace methods are in gen-
eral considered to be better than SOR. Therefore, it is remarkable that the
difference in performance between SOR and CG is not larger. We should,
however, have the asymmetry of the matrices in mind. This probably slows
down the convergence of CG, and might explain why CG does not outper-
forms SOR. Bi-CGSTAB does not have such problems, but it suffers from
severe problems when a Neumann condition is used on the surface.

The number of iterations needed is lowest if we use the full set of equations
and a Dirichlet boundary condition.

It should be mentioned that to compare the linear solvers by the number
of iterations is somewhat naive. What really matters is the time needed to
solve the linear system. This is dependent on how the program is written,
which computer is used, and so on. Hence, it is rather complicated to give a
general analysis of the real computational time for each method. The most
expensive part of the algorithms is to compute a matrix-vector product. Both
CG and SOR need one such multiplication for each iteration. In addition,
the preconditioning in CG means to compute another matrix-vector product.
Hence, the computational burden for SOR for each iteration is less than what
it is for CG. Bi-CGSTAB has five matrix-vector multiplications for each
iteration, and is therefore much more expensive than both CG and SOR.
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7.4 Summary

The results of the simulations are independent of the choice of linear solver.
It is not straightforward to draw conclusions from the comparison of con-

vergence of the linear solvers. The results are not in very good agreement
with what we expected from the analysis done in Chapter 5. This shows that
convergence of iterative methods is not only a matter of condition numbers
and eigenvalues.

The full set of equations with the Dirichlet boundary condition needed
least iterations for both SOR, CG, and Bi-CGSTAB. However, this set has
9 nonzero diagonals compared to the 5 nonzero diagonals of the simplified
system. Hence, each iteration needs more computations, so the overall per-
formance is not that much better. Nevertheless, the full set of equations
with a Dirichlet boundary condition on the surface is the best choice from a
purely computational point of view.



Chapter 8

Conclusions and Further Work

In this thesis, we have investigated four different ways to model the non-
hydrostatic pressure in σ-coordinate ocean models. We have considered the
methods both from a physical and a numerical point of view. In this final
chapter, we will summarise the results, and draw conclusions.

8.1 Summary and Conclusions

8.1.1 The Set of Equations

There are some differences in the primary variables depending on which set
of equations we use to model the non-hydrostatic pressure. The velocities
are higher when we apply the full set of equations. However, much of the
differences are due to a small difference in the lateral extention of the bolus.
The speed of the separation point and the shape of the bolus are the same for
both systems of equations. Thus the sets of equations leads to qualitatively
the same velocity and density fields for a solitary wave which propagates up
a slope.

For the energetics, there are larger differences. This can be important,
because the energy budget is an indication of what is the result after the mo-
tion has died out. As we saw in Section 6.5, the distinct sets of equations gave
different values of kinetic and potential energy when the wave approached
the slope and propagated upwards. The difference in the kinetic energy ten-
ded to zero at the end of the simulation. Also for the available potential
energy the difference got smaller. It did not, however, tend to zero. If we
model a real ocean with many occurrences of non-hydrostatic phenomena,
the energy budget we obtain by the two methods might differ a lot. This can
have consequences for the prognostic of the long time motion in the ocean.
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The instability of the full set of equations when low viscosities and diffus-
ivities are applied is a major problem with this method. The low viscosity
simulation with the simplified system done in Section 6.4 is in better agree-
ment with laboratory experiments than the results obtained by the full set of
equations in Section 6.2. If we in general need higher viscosities for the full
system of equations to avoid numerical instabilities, this makes the simplified
set more attractive. However, it the simulations might be stable if the spatial
resolution is increased.

It should also be mentioned that the finite difference approximation for
the simplified system (Appendix B.1) is easier to implement correctly than
the approximation for the full system (given in Appendix B.2). Additionally,
the linear solver is more complicated for the full set of equations.

All this together, we have not found any reasons to say that one set of
equations is the right choice. It should be possible to use both systems to
model the non-hydrostatic pressure. The numerical instability of the full set
of equations is the largest drawback of the two methods. Hence, if we are to
recommend one of the methods, the simplified system seems to be the best
one. However, we have not done enough experiments to draw any strong
conclusions.

8.1.2 The Boundary Condition

We saw in Chapter 6 that the boundary condition on the surface hardly
has any impact on the solution of the problem. This was valid both for the
density and velocity fields, and for the energetics. Thus it seems that the
choice of boundary condition on the surface is not important to the solution.

However, there might be a weakness with the model problem we used
in Chapter 6. Internal waves are baroclinic, their impact on the surface
elevation is small. Thus the surface elevation in Chapter 6 is close to be
constantly equal to zero. For a barotropic process, the changes in the surface
elevation will be much larger. It is reasonable to expect that the effects of
the boundary condition at the surface will be larger for processes where the
surface is more important.

One underlying assumption for our numerical scheme is that the pressure
can be splitted as in Equation (1.10). That is, we must apply a homogenous
Dirichlet condition for the non-hydrostatic pressure on the surface.

On the other hand, in nature the non-hydrostatic pressure can be nonzero
also at the surface. One example is when to surface currents meet. For the
equation for the non-hydrostatic pressure to be well posed, boundary values
must be specified. Since we do not know the pressure at the surface, it
does not seem natural to use a Dirichlet condition there. A condition of the
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Neumann type seems better suited. This also has the effect of filtering high
frequency waves at the surface (Marshall et al. 1997b).

However, a nonzero non-hydrostatic pressure at the surface contradicts
the splitting of the pressure described by Equation (1.10). If we do not split
the pressure, we also have problems with doing mode splitting. We are then
left with a model like the one of Lin and Li (2002), where the time step is
limited by the fast travelling surface waves. One possible way to combine
Equation (1.10) with mode splitting is to claim the equation to be valid only
in the interior of the ocean.

Many of todays ocean models are hydrostatic. These can be extended to
include non-hydrostatic effects by adding velocity corrections at the end of
each time step. See for instance Kanarska and Maderich (2003) or Heggelund
et al. (2004) for two proposals of how this can be done. If the Neumann con-
dition is applied on the surface, the restriction derived in Section 2.3.1 should
be kept in mind. This means we should take the approach of Heggelund et al.
(2004) instead of Kanarska and Maderich (2003). If we instead use a Dirichlet
condition, there are no such restrictions.

8.1.3 Numerical Considerations

When we choose which set of equations and which boundary condition to
use in order to find the non-hydrostatic pressure field, we should also keep
the computational cost of the methods in mind. It may sound strange to
make a choice of a physical model based on the solvability of the resulting
mathematical problem. Also, this contradicts the priority of the two cri-
terions we established in the end of Chapter 2. To justify this, we must
take a broader view than to just model the non-hydrostatic pressure. The
main goal of ocean modelling should be to give an as accurate description of
nature as possible. The non-hydrostatic part of the simulations in Chapter
6 takes about 2

3
s of the total computation time when we use SOR, which

is the only method that works for all the linear systems. If we can reduce
the number of iterations in the linear solver by solving a simpler problem,
and spend some of this time on other parts of the numerical model, this may
give a better overall solution. Of course this must be done carefully, to get a
physical correct solution is the most important issue.

For instance, in Chapter 6, we saw the boundary condition on the surface
hardly makes any difference to the density or velocity fields. This holds for
both sets of equations. To use a Dirichlet condition on the surface gives
some advantages when we solve the linear system to find the non-hydrostatic
pressure. The equations are then solvable with Bi-CGSTAB, and just a few
iterations are needed. Also SOR and CG seem to converge faster with a
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Dirichlet condition as long as non-hydrostatic effects are important. From
this point of view, the Dirichlet boundary condition is preferable. However,
we should remember that we have only used the linear solvers for this one
test case. Their performance can be different for other problems.

A solver for the linear system of equations based on geometric multigrid
(GMG) and algebraic multigrid (AMG) methods is being developed now by
Helge Avlesen (Avlesen 2006). The results are promissing, with only a few
iterations needed to meet strong convergence criterions. Even though the
computational cost for each iteration is large, the time it takes to solve the
linear system is in some cases better better than SOR by a factor 5. In the
worst cases, the SOR is better than the advanced GMG and AMG methods.
However, the performance of SOR can be expected to be worse for larger
systems of equations. With the increasing computer power available, the
multigrid methods will probably be more important in the future.

8.2 Evaluation of the Results

The comparison of the results obtained by the four methods in Chapter 6
gives us no information of how well the methods model the non-hydrostatic
pressure. What we do get to know is whether the choice of model makes a
difference to the solution. In order to evaluate how well the models approx-
imate the non-hydrostatic pressure, another approach should be used.

In Chapter 6, we compared the model results with laboratory experiments
done by Michallet and Ivey (1999), and showed that the model results differed
a lot from nature. However, this might be a too optimistic comparison. The
numerical model is based on the equations given in Chapter 1. These are just
a mathematical model of what happens in nature. The best result we can
possibly get from them is an exact solution of the equations, not an exact
modelling of the real-life phenomenon. In addition, the numerical solution
will be affected by errors from discretizations, operator splitting and so on.
Thus, the large errors when numerical results are compared to laboratory
experiments should not come as a surprise to us. Because the differences due
to the choice of model for the non-hydrostatic pressure are much smaller than
the differences between model results and laboratory experiments, it seems
more important to make efforts to improve other parts of the numerical
model. However, we should keep in mind that the simulations are done in 2
dimensions. The results will probably be in better agreement with nature in
a 3D-simulation. This can make the relative differences between the models
larger when compared to nature.

A better way to evaluate the results in this thesis might be to do the
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same simulations as in Chapter 6 with another numerical model based on
the same basic equations. Then, the answers should ideally be the same,
at least if the grid size and the time steps are sufficiently small. However,
distinct models use different ways of splitting of the operators, the equations
are solved by different numerical methods and so on. Therefore, we might
find that the differences between the results from distinct models are larger
than the differences due to the equations and the boundary conditions for the
non-hydrostatic pressure. Despite of these possible problems, a comparison
with a distinct numerical model should be done.

8.3 Further Work

All the simulations done in the thesis have been of a solitary wave propagat-
ing up an incline. Although this is an important process in the ocean, for
instance for the mixing of water masses (Bourgault and Kelley 2003), there
are other important non-hydrostatic phenomena too. Some examples of this
were mentioned in Section 1.5.3. It is not obvious that the results in this
thesis will be valid also for other processes in the ocean. This should be
investigated further.

Internal waves are baroclinic phenomena, they have small impact on the
surface elevation. However, there are other processes which are barotropic
and non-hydrostatic. It is possible that the boundary condition on the surface
is more important for a barotropic phenomenon. Additionally, the full set of
equations give a linear system with coefficients which depends on the surface
elevation. This may lead to a more asymmetric coefficient matrix, and thus
problems for some of our linear solvers.

All the derivations and simulations are done in two dimensions. From a
mathematical point of view it should not be difficult to extend the results to
three dimensions. The transformation to σ-coordinates for the third spatial
variable, y, is equal to the transformation for x, given in Equation (1.8).
The resulting linear systems will have 7 and 19 nonzero diagonals for the
simplified and the full set of equations, respectively. From a physical point
of view, 3D-effects are important for the breaking of internal waves (Fringer
and Street 2003). It is possible that the introduction of a third dimension
allows for larger variability between the solutions from the four methods to
compute non-hydrostatic pressure.

All the simulations in this thesis are done with a fixed spatial resolution.
It could have been interesting to do simulations with an increasing number of
grid points, as was done by Berntsen et al. (2006). In this way we can check
if the results really converge as the spatial resolution increases. Also, we can
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investigate if the instability of the full set of equations with low viscosity is
affected by the resolution.

The results in this thesis are also dependent on the numerical methods
used in BOM. The simulations should be checked by another model.



Appendix A

Nomenclator

Here we give the parameters used in the thesis. The first column gives the
symbol, the second gives a description, and the unit is given in the third
column. The parameters which are dimensionless have the unit 1.

Symbol Description Unit
A A matrix in a linear system 1
A Dummy symbol used in the definition of 1

transformations to σ-coordinates
AH Horizontal diffusivity m2 s−1

AM Horizontal viscosity m2 s−1

AM2D
Horizontal viscosity in the depth averaged calculation m2 s−1

a0 Parameter used for the initial density distribution m
a1 Parameter used for the initial density distribution m
ai,k Element number (i, k) in the matrix A 1
B Lower triangular part of a matrix 1
b A vector 1
bi,k Element of a right hand side vector 1
C Matrix in the derivation of the method of 1

conjugate gradients
CD Bottom drag coefficient 1
c Vector in SOR 1
D The main diagonal of a matrix 1
D = H + η Dynamic depth m
Di Discrete representation of the dynamic depth m

in the middle of a cell
DFx Viscosity terms in the horizontal momentum m2 s−2

equation in σ-coordinates
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Symbol Description Unit
DFσ Viscosity terms in the vertical momentum m2 s−2

equation in σ-coordinates
DZ Thickness in σ-coordinates of cells 1
DZZ Distance in σ-coordinates between cell centres 1
E Matrix consisting of left singular vectors 1
EK Kinetic energy kg m2 s−2

EP Potential energy kg m2 s−2

EP0 Reference potential energy kg m2 s−2

F Matrix consisting of right singular vectors 1
g Acceleration of gravity m s−2

H Static depth m
h1 Parameter in the initial condition m
h2 Parameter in the initial condition m
I The identity matrix 1
i Index of a matrix element in the horizontal 1

direction
KB Number of cell interfaces in the vertical 1

direction
KH Vertical diffusivity m2 s−1

KM Vertical viscosity m2 s−1

k Index of a matrix element in the vertical 1
direction

L Length of the tank m
M Preconditioning matrix 1
n Outer normal vector 1
n Size of a quadratic matrix 1
P Pressure kg m−1 s−2

PAtm Atmospheric pressure kg m−1 s−2

PHydrostatic Hydrostatic pressure kg m−1 s−2

PInt Internal pressure kg m−1 s−2

Pη Pressure due to surface elevation kg m−1 s−2

p Search direction for CG 1
Q Non-hydrostatic pressure kg m−1 s−2

Rn×n The space of matrices of dimension n× n 1
Rn The space of n-dimensional vectors 1
r The rank of a matrix 1
r Residual vector for a linear solver 1
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Symbol Description Unit
s Number smaller than the rank of A 1
T Upper triangular part of a matrix 1
t Time s
t∗ Time after change of variables s
U Horizontal velocity m s−1

U∗ Velocity along iso-σ lines m s−1

Ũ Provisional horizontal velocity before m s−1

non-hydrostatic correction is added
Ub Velocity at the bottom m s−1

U Velocity vector m s−1

Ũ Provisional velocity vector m s−1

W Vertical velocity in z-coordinates m s−1

W̃ Provisional vertical velocity in z-coordinates before m s−1

non-hydrostatic correction is added
Ww Width of the solitary wave in the initial density m

distribution
x A vector 1
x Horizontal coordinate m
x∗ Horizontal coordinate after change of variables m
x1 Limit of integration 1
x2 Limit of integration 1
xi,k Element of a solution vector 1
y Horizontal coordinate m
Z The σ-coordinate of cell interfaces 1
ZZ The σ-coordinate of cell centres 1
z Vertical coordinate in a Cartesian coordinate system m
z′ Dummy variable for integration m
z0 Bottom roughness parameter m
zb Distance from the bottom to the nearest grid point m
zi Interface depth for the initial condition m
αk Parameter in CG 1
βk Parameter in CG 1
∆h Thickness of interface in initial condition m
∆t Time step s
∆x The grid spacing in x-direction m
∆ρ Density difference in the initial condition kg m−3

ε Tolerated error in iterative methods 1
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Symbol Description Unit
ζ Initial interface displacement for the density m

distribution
η Surface elevation m
ηi Discrete representation of the surface elevation m

in the middle of a cell
ηn The surface elevation after time step n m
κ The von Karman constant 1
κ(A) Condition number of the matrix A 1
κm(A) Modified condition number of a matrix 1
λ Relaxation parameter in SOR 1
ρ Density kg m−3

ρ̄ Average density kg m−3

ρ0 Reference density kg m−3

ρ(G) The spectral radius of the matrix G 1
Σ Diagonal matrix of singular values 1
σ Vertical coordinate 1
σs The s’th largest singular value of a matrix 1
σmax The largest singular value of a matrix 1
σmin The smallest singular value of a matrix 1
τ Bottom drag kg m−1 s−2

Ω Domain of integration 1
∂Ω The boundary of Ω 1
ω Vertical velocity in σ-coordinates m s−1

ω∗ Provisional vertical velocity in σ-coordinates m s−1

before non-hydrostatic correction is added



Appendix B

Discretizations of the Elliptic
Equations

In this appendix we give details on the discretization of the Equations (2.10)
and (2.12).

B.1 The Simplified System

In Chapter 2, the equations in the simplified system is combined into the
elliptic Equation (2.12)
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∂ŨD

∂x
+
∂ω̃

∂σ
+
∂η

∂t

)
.

This can be discretised by using finite differences. As mentioned in Chapter
5, the discretisation is not unique. However, one natural way of doing it is
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(B.1)

Here ηn and ηn−1 are the surface elevation from the present and previous time
step, respectively. If other methods of mode splitting are applied, averaged
values of η can be used instead, see e.g. Kanarska and Maderich (2003).
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B.2 The Full System of Equations

The full system of equations was combined into Equation (2.10)
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For this equation, there are several natural ways of discretising. As mentioned
in Chapter 5, the properties of the resulting matrix may be dependent on
the discretization. In this thesis, the following discretization has been used:
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∂2Q

∂σ2

∣∣∣∣∣
i,k

≈ 1

Di

1

DZk

(Qi,k−1 −Qi,k

DZZk−1

− Qi,k −Qi,k+1

DZZk

)
,

∂

∂σ

(
σ
∂Q

∂x

∂D

∂x

)∣∣∣∣∣
i,k

≈ 1

4

Di+1 −Di

∆x

1

DZk

[ZZk−1(Qi+1,k−1 −Qi,k−1)

∆x

−ZZk(Qi+1,k −Qi,k)

∆x
−
(ZZk(Qi+1,k −Qi,k)

∆x

−ZZk+1(Qi+1,k+1 −Qi,k+1)

∆x

)]

+
1

4

Di −Di−1

∆x

1

DZk

[ZZk−1(Qi,k−1 −Qi−1,k−1)

∆x

−ZZk(Qi,k −Qi−1,k)

∆x
−
(ZZk(Qi,k −Qi−1,k)

∆x

−ZZk+1(Qi,k+1 −Qi−1,k+1)

∆x

)]
,

∂

∂σ

(
∂Q

∂x

∂η

∂x

)∣∣∣∣∣
i,k

≈ ηi+1 − ηi
∆x

[(Qi+1,k−1 −Qi,k−1)− (Qi+1,k −Qi,k)

DZZk−1 ∆x

−(Qi+1,k −Qi,k)− (Qi+1,k+1 −Qi,k+1)

DZZk ∆x

]

+
ηi − ηi−1

∆x

[(Qi,k−1 −Qi−1,k−1)− (Qi,k −Qi−1,k)

DZZk−1 ∆x

−(Qi,k −Qi−1,k)− (Qi,k+1 −Qi−1,k+1)

DZZk ∆x

]
,

∂

∂σ

(
∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)2
)∣∣∣∣∣

i,k

≈ 1

DZk

[(Zk((Di+1 −Di−1)) + (ηi+1 − ηi−1))2

(∆x)2

Qi,k−1

DZZk−1

−(Zk((Di+1 −Di−1)) + (ηi+1 − ηi−1))2

(∆x)2

Qi,k

DZZk−1

−(Zk+1((Di+1 −Di−1)) + (ηi+1 − ηi−1))2

(∆x)2

Qi,k

DZZk

+
(Zk+1((Di+1 −Di−1)) + (ηi+1 − ηi−1))2

(∆x)2

Qi,k+1

DZZk

]
.

The discretization of the right hand side is done as in Equation (B.1). The
discretization is done such that the accuracy is of second order, also if a
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neighbourhood cell is a land cell. Masking arrays are used to remove land
cells.

B.3 The Boundary Conditions

The very upper and lower cells needs special treatment due to the boundary
conditions.

B.3.1 Finite Difference Approximations at the Bottom

At the bottom, ∂Q
∂σ

= 0. This gives us the following finite difference approx-
imations for the lowermost cells

∂

∂x

(
σ
∂Q

∂σ

∂D

∂x

)∣∣∣∣∣
i,KB−1

≈ ZZKB−1

4∆x

(Di+1 −Di)

∆x

[(Qi+1,KB−2 +Qi,KB−2)

DZZKB−2

−(Qi+1,KB−1 +Qi,KB−1)

DZZKB−2

]

−ZZKB−1

4∆x

(Di −Di−1)

∆x

[(Qi,KB−2 +Qi−1,KB−2)

DZZKB−2

−(Qi,KB−1 +Qi−1,KB−1)

DZZKB−2

]
,

∂

∂x

(
∂Q

∂σ

∂η

∂x

)∣∣∣∣∣
i,KB−1

≈ 1

4∆x

(ηi+1 − ηi)
∆x

[(Qi+1,KB−2 +Qi,KB−2)

DZZKB−2

−(Qi+1,KB−1 +Qi,KB−1)

DZZKB−2

]

− 1

4∆x

(ηi − ηi−1)

∆x

[(Qi,KB−2 +Qi−1,KB−2)

DZZKB−2

−(Qi,KB−1 +Qi−1,KB−1)

DZZKB−2

]
,

1

D

∂2Q

∂σ2

∣∣∣∣∣
i,KB−1

≈ 1

Di

1

DZKB−1

Qi,KB−2 −Qi,KB−1

DZZKB−2

,
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∂

∂σ

(
σ
∂Q

∂x

∂D

∂x

)∣∣∣∣∣
i,KB−1

≈ Di+1 −Di

∆x

[ZZKB−2(Qi+1,KB−2 −Qi,KB−2)

DZZKB−2 ∆x

−ZZKB−1(Qi+1,KB−1 −Qi,KB−1)

DZZKB−2 ∆x

]

+
Di −Di−1

∆x

[ZZKB−2(Qi,KB−2 −Qi−1,KB−2)

DZZKB−2 ∆x

−ZZKB−1(Qi,KB−1 −Qi−1,KB−1)

DZZKB−2 ∆x

]

+
1

2

(Qi+1,KB−1 −Qi,KB−1

∆x

Di+1 −Di

∆x

+
Qi,KB−1 −Qi−1,KB−1

∆x

Di −Di−1

∆x

)
, (B.2)

∂

∂σ

(
∂Q

∂x

∂η

∂x

)∣∣∣∣∣
i,KB−1

≈ 1

4∆x

ηi+1 − ηi
∆x

[(Qi+1,KB−2 −Qi,KB−2)

DZZKB−2

−(Qi+1,KB−1 −Qi,KB−1)

DZZKB−2

]

+
1

4∆x

ηi − ηi−1

∆x

[(Qi,KB−2 −Qi−1,KB−2)

DZZKB−2

−(Qi,KB−1 −Qi−1,KB−1)

DZZKB−2

]
,

∂

∂σ

(
∂Q

∂σ

(
σ
∂D

∂x
+
∂η

∂x

)2)∣∣∣∣∣
i,KB−1

≈ 1

4(∆x)2

[
(ZZKB−2((Di+1 −Di−1))

+(ηi+1 − ηi−1))
]2 Qi,KB−2

DZZKB−2

− 1

4Di(∆x)2

[
(ZZKB−2((Di+1 −Di−1))

+(ηi+1 − ηi−1))2 Qi,KB−1

DZZKB−2

]
.

The term ∂
∂x

(D ∂Q
∂x

) is treated in the same way as for inner points.
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B.3.2 Finite Difference Approximations at the Surface

If we apply a Neumann condition on the surface, we get difference approx-
imations similar to the ones used at the bottom, just replace KB − 2 and
KB − 1 with 1 and 2, respectively. Also, ZZ1 is the σ-value at the surface,
that is zero. Hence, the expressions get somewhat simplified.

For the Dirichlet condition, we have Q = 0 at the surface. We will
get the same contributions as for the Neumann condition, except from the
discretization of the term ∂Q

∂x
∂η
∂x

in Equation (B.2), which disappears as a
consequence of σ being equal to zero. In addition, we get some extra terms:

∂

∂x

(
∂Q

∂σ

∂η

∂x

)∣∣∣∣∣
i,1

→ 1

DZ1∆x

[(ηi+1 − ηi
∆x

Qi+1,1 +Qi,1

2

)

−
(ηi − ηi−1

∆x

Qi,1 +Qi−1,1

2

)]
,

1

D

∂2Q

∂σ2

∣∣∣∣∣
i,1

→ − 1

DiDZ1

Qi,1

1
2
DZ1

,

1

D

∂

∂σ

(
∂Q

∂σ

(
∂η

∂x

)2)∣∣∣∣∣
i,1

→ 1

DDZ1

Qi,1

1
2
DZ1

(ηi+1 − ηi−1

2∆x

)2

.

B.4 Limitations

There are more ways to do the interpolations needed to estimate the derivat-
ives. The discretization given here is only valid for equidistant σ-layers. For
a non-equidistant grid, the accuracy of the approximations given here will be
lower. Weights should then be introduced to keep second order accuracy.
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