Additional File 1: List of compomics-utilities features:

Proteomics:

- GraphicsPanel
 - o for:
 - spectra (both profile and centroid)
 - chromatograms
 - (multiple) isotope distributions
 - o with:
 - peak annotation with annotation filtering
 - support for multiple datasets in the same plot
 - peak selection/peak picking with distance calculation between peaks, automatically matching amino acid residue masses (with and without PTMs) for spectra
 - drag-and-drop zooming
 - mouse-over tooltips for each peak
 - linking multiple GraphicsPanel for zooming (when one panel is zoomed, all linked panels will zoom to exactly the same range)
 - user defined color selection
 - export to common image file formats, svg, png, pdf, etc.
- Isotope distribution calculation and visualization
 - Simultaneously display multiple datasets/peptide sequences (e.g. isotopic labeled peptides)
 - with different charges
 - with different number of neutrons added (e.g. due to stable isotope labeling)
- Mass calculation
 - o based on a sequence in IUPAC format, or element composition
 - handles monoisotopic biochemical element masses and monoisotopic single-letter amino acid masses, but also supports user-defined alphabets and masses
 - o also implemented as a ready-to-deploy Servlet
- NucleotideSequence
 - read from/to FASTA format
 - o read from sequence of nucleotides
 - o includes mass calculation
 - o translation into 6 reading frames with stop codons
 - calculation of the reverse complementary strand
 - translate the specified DNA sequence into a single String of amino acids, starting from a specified base
 - o Configurable translation table
- Protein/peptide sequence

- o calculate GRAVY scores
- o estimate Meek HPLC retention score for AA residues
- Fully supports modifications (both terminal and internal modifications, including multiple modifications per residue)
- calculate mass and m/z
- can be created from an annotated sequence, including modifications; e.g., Ace-MATHM<Mox>PIR-COOH
- o can be created from FASTA sequence
- o can be created from amino acid sequence
- o truncation of sequence:
 - N-terminal truncation
 - C-terminal truncation
 - both sides
- o calculate molecular formula
- o calculate isotope distribution

Enzymatic digestion

- o simple enzymes:
 - residues after which cleavage will occur
 - residues which inhibit cleavage
 - number of allowed missed cleavages
 - N- or C-terminal cleavage
- Bi-functional enzymes
 - enzyme with a dual specificity; the N-terminus of a resultant peptide will be derived from one cleavage pattern, while the C-terminus will be derived from another cleavage pattern, mimicking serial digest (e.g., in vivo followed by in vitro cleavage)
- RegExEnzyme
 - digestion based on a regular expression pattern
- Load Enzyme properties from Mascot formatted text files, or define on-the-fly
- Protein header parsing
 - o Fully parses a wide variety of FASTA format header lines
 - Automatically detects and parses a broad range of headers, from UniProtKB/Swiss-Prot, UniProtKB/TrEMBL (multiple versions, including the latest HUPO PSI standard formatting), NCBI and Ensembl formatted FASTA headers to often-used variants for Drosophila and Arabidopsis species specific databases

Standardized Customizable Objects for Proteomics Experiments:

- Standardized customizable objects that can abstract the representation of:
 - Biological samples
 - Mass spectrometry results
 - Identification output (search engine independent)

- Quantification process based on reporter ions (technology independent)
- Automated generation of Standardized customizable objects based on user designed xml files for:
 - o Glycans
 - o Enzymes
 - o PTMs
 - o Reporter ion based quantification methods
- Automated generation of Standardized customizable objects based on files for:
 - Mascot
 - o OMSSA
 - o X!Tandem
 - o Mgf files

General utilities of interest:

- automatic code generation of database accessor based on existing tables
 - Fully automatic code generator that creates robust, ready-to-compile and fully documented Java classes to interact with a database table
 - All generated classes implement a set of interfaces that define their behaviour, allowing the high-level abstraction of database interaction, regardless of table or content
 - Requires only a database table and output package name for the generated class as input
 - Automatically detects all relevant table information: column types, (automatically generated) primary keys, and special columns such as 'creationdate' and 'modificationdate'. The latter are automatically used for logging insert and update operations, respectively
 - o Direct access to automatically generated primary keys after insert operation
 - Generated code is transaction aware
 - Transparently handles BLOB and CLOB data types
- methods for exporting graphics components to common image file formats
 - o svg, png, pdf, etc.
- generic interface for the parsing of command-line arguments, options and flags
 - o Simple but powerful mechanisms for interpreting a user-specified command-line
 - Efficiently enables unified command-line structure and definition across applications