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Introduction

In this thesis an extension of the 2HDM (see chapter 2) is explored. The extension admits
an extra inert singlet which is a dark matter candidate. Before the exploration a large part
of the thesis (chapter 1) is an overview of dark matter theory that includes the evidence
of dark matter existence, list of the most popular candidates, information of experimental
detection and others. The phenomenology of the relic abundance is discussed in detail.

Scanning over parameters of the considered model the abundance of the dark matter
is constrained in agreement with WMAP data. Imposing all relevant collider and theoret-
ical constraints the allowed parameter space for which dark matter is appropriate will be
determined.

It is done using two methods. The first one is to draw histograms of allowed regions
with some parameters fixed and others are arbitrary (chapter 3). The second method is
to draw scatter plots where all parameters are random (chapter 4). The important case of
the theory with quadratic divergency cancellation will be discussed in chapter 4 together
with the usual one.

Some attempts to use different numerical methods (appendices A and B) of searching
for such allowed regions in the parametric space are presented. But it is rather a training
of them than an active application or at least an attempt to find any new method of the
calculation optimization.





Chapter 1

Dark matter

This chapter will be about general Dark matter (DM) information. It may be found in a
great amount of literature, in particular [1, 2, 3, 4] and others. This is just a short summary
of this material. In the first subsection the evidence for DM will be discussed. The second
one is about general important properties and necessary condition of any DM theory. The
most popular of such theories will be listed in the third subsection. And in the fourth part
of this section some experimental results will be presented. The phenomenology of DM
relic abundance plays an important role in the present investigation and will be discussed
in detail in the last section.

1.1 Observational evidence

A series of astronomical observations indicate that not all matter in the universe is visible.
It is intended to be read that not all matter which is visible through its gravitational effects
can be detected through electromagnetic emission as known kinds of baryonic matter. This
hypothetical form of matter was called “dark matter”. This term was coined by Fritz
Zwicky in 1934 who is the “Father of Dark Matter”. But besides of “darkness” it is also
utterly transparent at least for the largest part of dark matter models.

It is convenient to measure an amount of any kind of matter in the Universe as

ΩX =
ρX
ρc

, (1.1)

where

ρc =
3H2

8πG
. (1.2)

is the critical density which is the value at which in accordance with the Friedman model
the Universe is at balance, and expansion is stopped.

So the mass of visible (luminous) matter (stars, gas etc.) is estimated as

Ωlum < 0.003h−1 = 0.003...0.007 , (1.3)
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Figure 1.1: Rotational curve for the spiral galaxy NGC 6503. The points are the mea-
sured circular rotation velocities as a function of distance from the center of the galaxy.
The dashed and dotted curves are the contributions to the rotational velocity due to the
observed disk and gas, respectively, and the dot-dashed curve is the contribution from the
dark halo. (From [2] with a reference to [5].)

where h = 0.4−1 parameterizes the uncertainty in the Hubble constant,H0 = 100h km2s−1Mpc−1.
There is a great amount of experimental evidence for dark matter [1, 2, 3, 4]. This

evidence can be classified by the physical principles of the investigation, space scale or
historical order. This is just a review of the first way.

• Galactic rotation curves [5]

From the observation of spiral galaxies it appears that the velocity of stars and gas
rotation speed decrease too slowly with the distance from the centre. It may be
explained as a result of the presence of extra invisible matter in the galactic halo.

For an example, see fig. 1.1. This galaxy is typical. So from [6]

Ωhalo > 0.017 . (1.4)

The same situation is with external galaxy rotation. Using as example of satellite
galaxies around spirals similar to the Milky Way, Zaritsky [7] estimated the total
mass of a “typical” spiral. It implies

Ωspiral & 0.087h−1 (1.5)
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in the space which is outside of the spirals. It is interesting that there is no strong
evidence that rotation speed decreases with the investigated satellites radius. So it
is only an upper limit.

• Velocity dispersions of galaxies

This is an evaluation of the measurements of velocity curves in spiral galaxies. More
detail and exact method is for example connected with velocity dispersions of ellip-
tical galaxies [10].

The fraction of the total amount of gravitational matter is found to be about 95%
which is now the accepted value. Furthermore it was found that the distribution
of dark matter is not so homogeneous. In particular in 2005 a galaxy made almost
entirely of dark matter was found (VIRGOHI21) [11]. On the other hand there are
small galaxies which velocity profile indicate an absence of dark matter, for instance
NGC 3379 [12].

• Galaxy clusters and gravitational lensing

The light from a distant source is bent around a cluster of galaxies which is a suffi-
ciently massive object to generate a detectable specific effect that is known as grav-
itational lensing. In accordance with gravitational theory the background picture
must be deformed. From such consideration the visible mass is at most only 13% of
the estimated one [13].

• Galaxy clusters collision observation

In the process of galaxy cluster collision the visible matter deforms its space distri-
bution. But dark matter halo does not because its interaction with both kinds of
matter is weak. A numerical calculation of the galaxy collision process gives us an
obvious picture of collided visible matter distribution. This picture is in wonderful
accordance with the one estimated from gravitational lensing [14, 15, 16].

• Anisotropy of the Cosmic Microwave Background (CMB)

The anisotropy of the CMB is determined by two factors: acoustic oscillations and
diffusion damping. The pressure of the photons tends to erase anisotropies (diffusion)
but the gravitation of baryon matter which is moving at speeds much slower than
light collapse them to form dense haloes. This effect leads to a characteristic peak
structure of the CMB power spectrum (see fig. 1.2) [20]. The first peak is connected
with the curvature of the Universe. The second one is connected with baryon density.
The third peak can be used to extract information about the dark matter density.

There are also some attempts to modify the theory of gravitation, like [17, 19] to explain
the gravitationally based discrepancies which would be more elegant. But they are not
successful yet. Furthermore a large family of different arguments leads to the similar order
of the amount of dark matter and the argument about galaxy clusters collision observation
is too convincing for non dark matter explanation [21, 22].
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Figure 1.2: The power spectrum of the cosmic microwave background radiation tempera-
ture anisotropy in terms of the angular scale (or multipole moment). The data shown come
from the WMAP (2006), Acbar (2004) Boomerang (2005), CBI (2004), and VSA (2004)
instruments. Also shown is a theoretical model (solid line). From [20].

1.2 Ten points for a new DM particle

Before giving a list of DM candidates let us discuss the main requirements for them.
In [3] a ten-point test that a new particle has to pass, in order to be considered a

viable DM candidate is presented. This section is structured in accordance with these ten
questions. The answers for the two Higgs doublet plus 1 inert singlet model (see chapter
2) which is the subject of the present thesis will be given separately.

1. Does it match the appropriate relic density? For some cases such as exotic
baryonic candidates this question is solved individually and often connected with
Big Bang Nucleosynthesis (BBN). For other types of DM such weakly interacting
particles (WIMP) and in particular the present case (2HDM+1S) this theory will be
presented in sec. 1.5. This test plays the main role in the present investigation of
the model.

2. Is it cold? DM is called “cold”(CDM) if the particles moved at nonrelativistic speed
at freeze-out epoch (see sec. 1.5). And it is called “hot” if the speed was relativistic.
There is also term the “warm” DM for the intermediate case with mass of order 1
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keV. Hot DM in distinction from cold one cannot cluster on galaxy scales until it
has cooled to nonrelativistic speeds. So it leads to different primordial fluctuation
spectrum (see the previous section). The typical example of hot DM is the light
neutrino. Gravitinos in gauge-mediated supersymmetry breaking models might be
warm DM. The cold one is the most popular choice and is the present one.

3. Is it neutral? In spite of the often stated condition for DM to not take part in
electromagnetic and strong interactions there are some investigations that consider
such scenarios. The typical example is CHAMP (see 1.3). The singlet field in the
2HDM is neutral.

4. Is it consistent with BBN? The SM predicts in particular a baryon to photon
ratio η with fairly high accuracy (95%) [23]. An extension of the SM may affect that.
For example, the presence of a new light particle may change the effective relativistic
degrees of freedom g∗ (see sec. 1.5) for the epoch of nucleosynthesis T ∼ 1 MeV. In
the case of the 2HDM the new particles are sufficiently heavy (of order 10−100 GeV)
to not change this parameter so this test should be OK for the present model.

5. Does it leave stellar evolution unchanged? If a weakly interacting particle is
light, it may be produced in the hot plasma of stars. Escaping without further in-
teractions it represents an energy loss channel that may modify the stellar evolution.
It is very sensitive to fractionally charged particles (see 1.3). Furthermore DM anni-
hilations may provide an important source of energy that may be comparable to the
one from nuclear reactions in the case of small stars [24]. Analysis for the case of the
2HDM+1S is not considered here.

6. Is it compatible with constraints on self-interactions? For the collisionless
CDM there is a conflict between the cuspy DM halos predicted by N-body simulations
and the constant core profiles (see “Galactic rotation curves” in the previous section).
Possible solutions are “warm” DM (see point 2) and self-interacting DM (SIDM). If
the particle has large elastic scattering cross section the central cusp reduces to an
almost constant core [31]. In the 2HDM+1S the self-coupling parameter λϕ (see sec.
2.2) is actually arbitrary (but it is bounded by unitarity (see sec. 2.4.1)). So this
problem can in principle be fixed but the analysis is quite involved and will not be
done here.

7. Is it consistent with direct DM searches? This question will be discussed in
section 1.4.1. For the case of the 2HDM+1S it will not be done here.

8. Is it compatible with gamma-ray constraints? This question will be discussed
in section 1.4.2. For the case of 2HDM+1S it will not be done here.

9. Is it compatible with other astrophysical bounds? This question will be
discussed in section 1.4.2. For the case of the 2HDM+1S it will not be done here.
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10. Can it be probed experimentally? Some DM candidates such as gravitino and
axino interact too weakly with SM matter and can hardly be detected. In order to
have a good physical model one can add a condition of “discoverability”. This point
is individual for each model. A model with DM candidates that may be probed in the
near future experiments are usually the most popular. For the case of the 2HDM+1S
this analysis will not be done here.

There are of course also many restrictions for any model itself due to theoretical and
experimental (in accelerators) requirements that are not connected with astrophysics. They
are obviously individual and for the case of the 2HDM+1S will be discussed in section 2.4.2.

1.3 Dark matter candidates

“It is fairly easy to invent a DM relic, it is much (!) harder to invent a (lasting) model of
‘new physics’ ”1

An overview of different DM candidates is given in for example [4, 2]. This is just a
brief review of all (that the author has found) DM candidates and corresponding models.

1. WIMPs (weakly interacting massive particles)

This term is used for a group of DM candidates (the most popular ones) which
consist of theories with a DM particle that interacts weakly. It is a natural solution
when the DM can not by its very definition take part in electromagnetic interaction.
Furthermore it should preferably not interact strongly. These particles as expected
can be generated immediately after the Big Bang.

It is the most popular candidates of DM. WIMPs must be stable particles (in some
case just long lived such that the life time is comparable with the age of the Universe).

(a) Neutrino

i. SM neutrino
This stable particle is the most abundant in the universe after relic photons.
Since the SM neutrino indeed is a massive particle it contributes to the DM
density. The maximum contribution can be calculated from the Big Bang
cosmology [25]

Ωνh
2 =

∑
i mνi

94 eV
. (1.6)

From the experimental restrictions on neutrino masses follows

Ωνh
2 < 0.07 . (1.7)

So it is only a small part of the necessary value.

1Leszek Roszkowski, from presentation “Dark Matter” (Spaatind 2010, Nordic Conference in Particle
Physics).
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ii. Sterile neutrinos
These are extra fermion particles that do not take part in electro-weak
interactions but can mix with SM neutrinos. Such SM extension can solve
contradiction in experiments of neutrino oscillations. As DM candidates
these particles were suggested in [26].
Their lifetime may be larger than the age of the Universe. Experimental
results give the restriction for the mass [37]

mster ≥ 14 keV .

iii. Heavy and very heavy neutrinos
There are some models with heavy and very heavy neutrinos. For example
[27] with natural fourth generation heavy neutrino. Its mass must be

45 GeV ≤ mνH ≤ 1 TeV

The lower limit is from the LEP experiment [4]. The upper one is from
perturbative unitarity.

(b) Supersymmetric particles.

Supersymmetric theory (in particular MSSM) is the most popular extension
of the SM and gives the most popular DM candidates. Due to R-parity con-
servation the lightest supersymmetric particle (LSP) is stable and is a good
DM candidate. The next to lightest supersymmetric particle (NLSP) could be
long-lived which leads to interesting collider signatures [3].

i. Neutralino. This is a linear combination of superpartners of gauge bosons
and Higgs particles with spin 1

2
. It is the most popular DM candidate.

ii. Gravitino. This is a superpartner of the graviton in theories with super-
gravity and has spin 3

2
. Due to only gravity interaction of the gravitino it is

not an interesting candidate of direct and indirect DM search experiments
[60].

iii. Axino. This particle appears in supersymmetric models implementing the
Peccei-Quinn mechanism for solving the strong CP problem. As it appears
from the name, Axino is a superpartner of the Axion. Its mass ranges
from the eV to the GeV scale. Direct detection and collider production are
strongly suppressed [59].

(c) Inert Higgs models. Using different SM extensions in the Higgs sector it is
possible to have a scalar DM candidate. This is the topic of the present thesis.

(d) WIMPZILLAS. This is a very heavy (mχ ≤ 1013 GeV) WIMP which was not
in thermodynamical equilibrium in the early universe [32].

(e) Axion. This emerges from a possible solution to the strong CP problem [41, 42].
Its mass must be m ∼ 10−5eV. If axions exist in our halo, they may be detected
via resonant conversion to photons in a magnetic field. There is also a pseudo-
Nambu-Goldstone boson, similar to the axion, that can be a DM candidate.
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2. Exotic baryon candidates

(a) MACHOs (Massive compact halo objects) [38]

These include:

i. Brown dwarfs.
They are balls of H and He with masses less than 0.08M⊙, and they never
begin nuclear fusion of hydrogen.

ii. Jupiters.
It is the same as brown dwarfs but with masses of order 0.001M⊙.

iii. Stellar black hole.
Masses are near 100M⊙. They may be remnants of an early generation of
stars.

iv. White dwarfs.

v. Neutron stars.

Of course there are some restriction like the Big Bang nucleosynthesis constraint.
Furthermore there are several theoretical [39] and experimental [40] arguments
against the dark matter consisting entirely of MACHOs.

(b) Strangelets and nuclearites. Strangelets are particles (of course hypotheti-
cal) that consist of a bound state of roughly equal numbers of u, d and s quarks
[56]. The size may be about a light nucleus or macroscopic of order meters.
In the second case they are called quark stars or “strange stars”. A state of
positively charged strangelet surrounded by electrons is called nuclearite. In an
aerostatic experiment [57] there is a hint of the existence of fast massive charged
particles in cosmic rays.

(c) Technibaryons. The idea of technicolor and technimatter may be used as well
as the idea of strange matter for the DM problem. Technibaryon must have
mass around 1 TeV [58].

(d) CHAMP. This is a charged massive particle. In [28] a hypothetical particle
with positive or negative electric charge was suggested as a DM candidate.
Positive ones can capture an electron to form a bound state which is chemically
equivalent to hydrogen. This leads to the existence of “heavy water” XHO
that can be found in the Earth oceans. The negative CHAMP can instead bind
to an α++ particle and an electron, which leads to heavy-hydrogen-like atom
again. There are a lot of experiments that excluded the existence of CHAMP
with mass between 102 GeV and 1016 GeV [4].

(e) Fractionally electric charge particles. Theoretical frameworks have been
proposed where particles with fractional electric charge exist (see for example
[29]). From the experiment the region with m < 1 keV and q > 10−5e was
excluded.
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(f) SIMP. Strongly interacting massive particle. In principle, the DM particle
could have an SU(3)c charge and be “colored” (see for example [30]). In the
framework of such models colored particles can be stable. Of course there are
many essential experimental restrictions [3]. However very heavy such parti-
cles with mass of order 1020 − 1033 GeV can exist without contradiction with
experiment.

(g) SIMPZILLA. This is just a strongly interaction analogue of WIMPZILLA [33].

(h) SUSY Q-balls. In the frameworks of supersymmetric theories there exist
nontopological solitons. It is a coherent state of squarks, sleptons and Higgs
field that can have large baryon number (QB ≤ 1024) and be rather heavy
(m ≈ 1 TeV). Such particles are absolutely stable and can be generated in the
early universe [53].

(i) Crypto-baryon candidates. The idea of crypto-baryon matter (for example
[54]) is that there exist at least one other phase of the vacuum degenerate with
the usual one. The DM is a phase of the matter which is a compressed set of
atoms with a size of order 20 cm. The mass of such an object may be of order
of 1011 kg.

(j) Magnetic monopoles. The idea of magnetic monopoles was first discussed
by Dirac. Now such hypothetical particles in the framework of different models
may have mass of order 1 GeV, 1017 GeV in GUT [55] and 107 − 1013 GeV
in some modifications [1]. Such particles were not found experimentally. The
best experimental limits for the monopole DM flux is from the MACRO, Φ <
1, 4 · 10−16cm−2c−1cp−1 [34].

(k) Mirror matter. The idea of mirror matter [35] is that there is a “second SM”
with particles that almost do not interact with ordinary SM particles but has
the opposite CP-symmetry breaking. The interaction between the two kinds of
matter is only gravitational or in some modification is in phonon, neutrino or
Higgs particles mixing [36]. The important difference of this kind of DM is a
rich self-interaction.

This list may prove for someone that the fantasy of people is much more rich than any
experimental ability to limit it.

1.4 Detection of dark matter particles

1.4.1 Direct detection

WIMP dark matter particles (if they exist) can in principle be detected directly through
detection of elastic scattering with nuclei.

WIMP-nuclei interactions can be split into spin independent (SI) (scalar) and spin
dependent (SD) interactions. For example a scalar DM particle (which is the case of the
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Figure 1.3: Upper limits on the spin independent WIMP-nucleon cross section, ver-
sus WIMP mass. The blue dashed (points) line is the Ge (Si) CDMS bound. The
dark red, pink, green and dark blue curves are the experimental limits respectively
from EDELWEISS and WARP. The lowest red solid line shows the first results from
XENON 10. The red shaded region is the parameter space favored by the DAMA
experiment. Supersymmetric models allow the filled regions colored: pink, green,
dark red and blue. This figure has been obtained with the use of the interface at
http://dendera.berkeley.edu/plotter/entryform.html. From [3].

present thesis) can only have a spin-independent interaction. Detectors made of heavy
nuclei (for example Germanium, Xenon) are the best for probing the scalar interaction but
they also have a sensitivity to the spin-dependent one. The sensitivity of both types of
detectors for spin dependent interaction is similar.

Many experiments involving a variety of nuclei have been set up or are being planned.
An overview of SI results is presented in fig. 1.3, the same for SD results in fig. 1.4.

1.4.2 Indirect detection

If DM particle exists and can annihilate the products in principle can be detectable. The
annihilation must be most active in areas of high concentration which should be galactic
centers and star cores and even the Earth interior where WIMPs can be accumulated. Four
types of annihilation product are usually distinguished.

• Gamma-ray
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Figure 1.4: Upper limits on spin-dependent WIMP cross section as a function of the WIMP
mass, in the case of a pure neutron (left) and proton (right) coupling. The solid (dashed)
blue line is the Ge (Si) CDMS bound. The dotted blue line is the CDMS limit with an
alternative form factor. The light red, cyan, magenta and red curves are the experimental
limits respectively from EDELWEISS, PICASSO, NAIAD 2005 and ZEPLIN I. The dark
green shaded region shows the parameter space favored by DAMA experiments. Finally the
green points represent the CRESST results, the black crosses stand for Super-Kamiokande
and the black circles for KIMS 2007. The figures have been obtained with the use of the
interface at http://dendera.berkeley.edu/plotter/entryform.html. From [3].

Photons of energies from 1 GeV to 1 TeV, can not be detected near the Earth surface
because almost all of them are absorbed by the atmosphere. So direct detectors such
as PAMELA and GLAST are on satellites. Another way is to detect Cherenkov light
from electromagnetic cascade from the interaction of the photon in the atmosphere.
This is the idea of CANGAROO, HESS, MAGIC and VERITAS. Observations of
gamma-ray energy band of 50 keV - 1 MeV have been performed by Osse experiments
[61], INTEGRAL [51] and others. The results for the spectrum of the inner Galactic
plane are presented in fig. 1.5. This figure shows that there is no conclusive evidence
for DM annihilations. But it is remarkable that the Galactic center is a source of
gamma rays in the 1 TeV region, which are unexplainable by known SM processes.
This in particular can be interpreted as DM annihilation.

There are also some observations of extragalactic gamma-ray background (EGB)
by EGRET and others and a bump at a few GeV has been found. It can also be
interpreted as DM annihilation. However this can not be considered as evidence of
DM since an arbitrariness in DM parameters allow enough freedom to explain almost
any excess [50].

By INTEGRAL a 511 keV emission line towards the galactic center was also discov-
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  0.5<l< 30.0 , 330.0<l<359.0

 -5.0<b<  5.0

Figure 1.5: Photon spectrum from the inner Galactic plane measured by different experi-
ments for energies ranging from sub MeV up to tens of GeV. From Ref. [3] and [49].

ered. It coincides with positron annihilation. But the size and morphology of the
line can hardly be explained by conventional astrophysical scenarios [51]. One of the
solutions is WIMP DM models for example [52].

• Neutrinos

Neutrinos, as very weakly interacting particles are almost not absorbed by the Earth
and Sun in contradiction to other SM particles. So the excess of neutrino flux from
the Galactic center, Sun and Earth interior can be a good experimental confirmation
of the DM theory.

1. Super Kamiokande. On the basis of such detection (actually absence of any
results of such high energy neutrino detection) strong restrictions on WIMPs
was obtained [43].
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2. MACRO, AMANDA and others. In [44, 46] the restrictions from muons
that are generated from the neutrino flux were published.

3. IceCube, ANTARES, NESTOR, NEMO, KM3NeT and others. They
may give more results for DM annihilation rate or at least prove the possibility
to do it.

• Antimatter

Antimatter SM particles can also be produced in DM annihilation and be measur-
able as an exotic contribution in the spectra in cosmic-ray fluxes. But due to the
interaction with interstellar magnetic fields it cannot give information about their
source.

The HEAT experiment has observed an excess of positrons, with respect to standard
propagation models, at energies beyond 7 GeV [47]. This result has been confirmed by
further measurements (HEAT and AMS-01 data). It may by explained in particular
in the framework of supersymmetry and Kaluza-Klein DM.

An analysis of antiproton excess can also be done. In particular the data collected by
BESS, CAPRICE and BESS-Polar. This does not show evidence of primary antipro-
tons and is not even a constraint on DM candidate because of large uncertainties
[48].

Much more data will be available from BESS-Polar, PAMELA and AMS-02.

1.5 DM relic abundance calculation

1.5.1 Derivation of the Boltzmann equation

An idea of the genesis of WIMP Dark matter is that it was kept in thermal equilibrium
with SM (or any of its extension) visible matter because of the process

χ+ χ̄ ↔ X + X̄, (1.8)

where χ (χ̄) is a DM particle (antiparticle) and X (X̄) is a SM (or any of its extension)
visible particle (antiparticle). This process acted during an early epoch and afterwards χ
was “frozen out” because of roughly speaking too fast Universe expansion relative to the
interaction rate. This chapter is about this phenomenology, see [1] (chapter 5), and for a
brief review [2] (chapter 3) and [3].

Let us consider any species in the Universe which is in thermodynamic equilibrium with
itself.

In our case it will be just WIMP. But it may also be for example cosmic background
radiation (CMB) as well. It may be described using a distribution function f(pµ, xµ) (where
x and p are respectively coordinates and momenta of the particles) and the relativistic
Boltzmann equation

Lf = Cf, (1.9)
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where

L = pα
∂

∂xα
− Γα

βγp
βpγ

∂

∂pα
, (1.10)

and C is an interaction which will be discussed below. For the FRW model (Friedman-
Robertson-Walker model) f is spatially homogeneous f = f(E, t) and using the metric
properties

Lf(E, t) = E
∂f

∂t
−H(E2 −m2)

∂f

∂E
, (1.11)

where

H =
Ṙ

R
, (1.12)

is the Hubble parameter, and R is the Universe radius.
The number density is

n(t) =
g

(2π)3

∫
d3pf(E, t) , (1.13)

where g counts internal degrees of freedom. After the integration over d3p of (1.9) with
(1.11) and multiplication by g

(2π)3E
one will have

g

(2π)3

∫
d3p

[
∂f

∂t
−H

(E2 −m2)

E

∂f

∂E

]
=
∂n

∂t
− gH4π

(2π)3

∞∫
0

dp
p2

(p2 +m2)
1
2

p2
∂p

∂E

∂f

∂p

=
∂n

∂t
− gH4π

(2π)3

∞∫
0

dp
p4

(p2 +m2)
1
2

(p2 +m2)
1
2

p

∂f

∂p

=
∂n

∂t
− gH4π

(2π)3

∞∫
0

dpp3
∂f

∂p

=
∂n

∂t
+

gH4π

(2π)3

∞∫
0

dp3p2f

=
∂n

∂t
+ 3H

g

(2π)3

∞∫
0

d3pf

=
∂n

∂t
+ 3Hn .

(1.14)
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The right-hand side of (1.9) describes a contribution of the process between different species

χ+ a+ b+ · · · ↔ i+ j + · · · . (1.15)

and it is after the integration

g

(2π)3

∫
d3pχCf(Eχ)

= −dΠχdΠadΠa...dΠidΠj...(2π)
4δ(pχ + pa + pb + ...− pi − pj − ...)×

×
[
|M |2χ+a+b→i+j+...fχfafb...(1± fi)(1± fj)...−
−|M |2i+j+...→χ+a+b+...fifj...(1± fχ)(1± fa)(1± fb)...

]
.

(1.16)

Here, fX is the phase space density of the X particle, ± is plus for bosons and minus for
fermions, and

dΠ ≡ g

(2π)3
d3p

2E
. (1.17)

In principle, if any species interacts with any other strongly enough, besides the inter-
action that we are interested in, this group of species will have equilibrium phase space
distribution function, reducing the problem to a single integral-partial-differential equation
for the one species of interest.

We assume CP invariance of the key process (1.15) which leads to

|M |2i+j+...→χ+a+b+... = |M |2χ+a+b+...→i+j+... = |M |2 . (1.18)

Furthermore, we will assume Maxwell-Boltzmann statistics for all species. In the absence
of Bose condensation or Fermi degeneracy 1± f ≈ 1 and

fX(EX) = exp [−(EX − µX)/T ] , (1.19)

where µX is the chemical potential of species X. So one has

ṅχ + 3Hnχ

=−
∫

dΠχdΠadΠb...dΠidΠj...(2π)
4δ(pχ + pa + pb + ...− pi − pj − ...)×

×|M |2 [fχfafb...− fifj...] .

(1.20)

In the absence of any interaction (M = 0) nχ will be defined by the expansion of the
universe only: nχ ∼ R−3. In the contrary case when the universe expansion is negligible
the system would just exponentially approach the state of thermodynamic equilibrium or
simply be in the equilibrium. If the first case replaces the second during the history of the
universe or in other words the universe begins to expand faster than the species interact
the phase of equilibrium will be replaced by the phase with “frozen” χ species.
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We suppose now that χ is stable. So we are interested in annihilation processes only.
In our case of the first nontrivial perturbative order it will be just 2 to 2 processes

χ̄+ χ ↔ X + X̄ , (1.21)

where X is any species into which χ can annihilate. We consider a case with not identical
χ and χ̄ for generality,

ṅχ + 3Hnχ

=−
∫

dΠχdΠχ̄dΠXdΠX̄(2π)
4δ(pχ + pχ̄ − pX − pX̄)|M |2 [fχfχ̄ − fXfX̄ ] .

(1.22)

We assume that there is no asymmetry between χ and χ̄. The next assumption is that

fX = c−1
X exp

[
−EX

T

]
, fX̄ = c−1

X̄
exp

[
−EX̄

T

]
,

fχ = c−1
χ exp

[
−Eχ

T

]
, fχ̄ = c−1

χ̄ exp

[
−Eχ̄

T

]
,

(1.23)

which means that X, X̄, χ and χ̄ are in thermal equilibrium and cX , cX̄ , cχ, and cχ̄ are
proper T -dependent normalization coefficients. So

fχfχ̄ = c−1
χ c−1

χ̄ exp

[
−Eχ + Eχ̄

T

]
, (1.24)

fXfX̄ = c−1
X c−1

X̄
exp

[
−EX + EX̄

T

]
= c−1

X c−1
X̄

exp

[
−Eχ + Eχ̄

T

]
= fEQ

χ fEQ
χ̄ , (1.25)

because of the energy conservation law EX + EX̄ = Eχ + Eχ̄. Here fEQ
χ and fEQ

χ̄ are
equilibrium values of the χ and χ̄ phase functions. So

nχnχ̄

nEQ
χ nEQ

χ̄

=

∫
d3pχd

3pχ̄c
−1
χ c−1

χ̄ exp
[
−Eχ+Eχ̄

T

]
∫
d3pχd3pχ̄c

−1
X c−1

X̄
exp

[
−Eχ+Eχ̄

T

] =
c−1
χ c−1

χ̄

c−1
X c−1

X̄

(1.26)

and

fχfχ̄ − fXfX̄ = fχfχ̄ − fEQ
χ fEQ

χ̄ = exp

[
−Eχ + Eχ̄

T

][
1−

c−1
χ c−1

χ̄

c−1
X c−1

X̄

]

=exp

[
−Eχ + Eχ̄

T

][
1− nχnχ̄

nEQ
χ nEQ

χ̄

]
.

(1.27)

Following [1] let us define

⟨σχχ̄→XX̄ |v|⟩
def
=

def
=(nEQ

χ nEQ
χ̄ )−1

·
∫

dΠχdΠχ̄dΠXdΠX̄(2π)
4δ(pχ + pχ̄ − pX − pX̄)|M |2 exp

[
−Eχ + Eχ̄

T

]
,

(1.28)
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then

ṅχ + 3Hnχ = −⟨σχχ̄→XX̄ |v|⟩
[
nχnχ̄ − nEQ

χ nEQ
χ̄

]
, (1.29)

It is convenient to use the variable

Y =
nχ

s
, (1.30)

where s is the entropy density, instead of nχ. Due to the entropy conservation property
sR3 = const one has

ṡR = −3sṘ (1.31)

and

sẎ =
ṅχs− nχṡ

s
= ṅχ + 3

Ṙ

R
nχ = ṅχ + 3Hnχ , (1.32)

which is exactly the left-hand side of (1.38).
It will also be useful to introduce

x =
m

T
, (1.33)

wherem is a mass scale, for example the mass of χ, instead of time t because the interaction
depends upon temperature rather than time.

During the history of the Universe as the temperature decreases the number of effective
degrees of freedom g∗ decreases too. Fig. 1.6 illustrates this dynamics.

In the early Universe epoch which is a time of radiation domination [1]

H =
g

1
2
∗ T 2

2cmPl

= x−2H(m) , (1.34)

H(m) =
g

1
2
∗ m2

2cmPl

, (1.35)

where c ≈ 0.301, g∗ is an effective number of degrees of freedom [1], and mPl = 1.22 ·
1019 GeV is the Planck mass, H is still a Hubble parameter and H(m) is mass dependent
Hubble parameter (terminology from [1]). Furthermore [1]

t = cg
− 1

2
∗

mPl

T 2
=

cg
− 1

2
∗ mPlx

2

m2
, (1.36)

where t is time. So

Ẏ = −dY

dx

m2

2cg
− 1

2
∗ mPlx

= −dY

dx

H(m)

x
. (1.37)
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Figure 1.6: The number of effective relativistic degrees of freedom, g∗ as a function of
temperature. From [2].

So the Boltzmann equation can be rewritten as

dY

dx
= −

xs⟨σχχ̄→XX̄ |v|⟩
H(m)

[
YχYχ̄ − Y EQ

χ Y EQ
χ̄

]
. (1.38)

Summing over all annihilation channels one will have ⟨σA|v|⟩ and

dY

dx
= −xs⟨σA|v|⟩

H(m)

[
YχYχ̄ − Y EQ

χ Y EQ
χ̄

]
. (1.39)

We assume now that there is no asymmetry between χ and χ̄:

Yχ = Yχ̄

Y EQ
χ = Y EQ

χ̄ .
(1.40)

Dividing (1.39) by Y EQ
χ one has

x

Y EQ

dY

dx
= −x2nEQ⟨σA|v|⟩

H(m)

[(
Y

Y EQ

)2

− 1

]
. (1.41)
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Figure 1.7: Comoving number density of a WIMP in the early Universe. The dashed curves
the are actual abundance, and the solid curve is the equilibrium abundance. From [1] and
[2].

Let

ΓA = nEQ⟨σA|v|⟩ . (1.42)

So (see eq. (1.34))

x

Y EQ

dY

dx
= −ΓA

H

[(
Y

Y EQ

)2

− 1

]
, (1.43)

It is easy to see that the ratio ΓA

H
defines what process is faster, the interaction ΓA or the

expansion H.

1.5.2 Solution of the Boltzmann equation

Let us consider first the case of energy independent ⟨σA|v|⟩ for the purpose of illustration.
In the early Universe H ∝ T 2 (see eq. (1.34)) so the ratio ΓA

H
is large and the inter-

action term dominates, number density tracks its equilibrium abundance, at later times
after the fast expansion comoving abundance of χ’s remains unchanged, see fig.1.7. The
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characteristic temperature Tf of freeze-out is given by the equation

H(Tf ) = Γ(Tf ). (1.44)

And for typical weak-scale numbers it turns out that Tf = cfmχ, for cf ≃ 1
20

(see [2]). So
the particles are mostly moving with nonrelativistic velocities when they freeze out.

We suppose that the entropy per comoving volume in the Universe remains constant
as well as nχ, so nf/s remains constant as well. In accordance with [2]

s = csg∗T
3 , (1.45)

where cs ≃ 0.4. Using (1.34) and (1.44) one can find

nχ

s

∣∣∣∣
now

=
nχ

s

∣∣∣∣
freeze-out

=
H

csg∗T 3⟨σA|v|⟩
=

g
1
2
∗ T 2

csg∗T 3⟨σA|v|⟩2cmPl

=
1

2ccsg
1
2
∗ mPlT ⟨σA|v|⟩

=
1

2ccscfg
1
2
∗ mPlmχ⟨σA|v|⟩

=
cn/s

mPlmχ⟨σA|v|⟩
,

(1.46)

with cn/s ≃ 100. Using that now s0 ≃ 4000 cm−3 and ρc ≃ 105h2 GeV, one can find

Ωχh
2 =

ρχ
ρc

h2 =
mχnχ

ρc
h2 =

mχcn/s
ρcmPlmχ⟨σA|v|⟩

h2 =
cΩ

⟨σA|v|⟩
, (1.47)

with cΩ = 3 · 10−27cm3s−1.
In this approximation the DM abundance is independent of the mass of the WIMP

and defined by ⟨σA|v|⟩ only. As the annihilation cross section increases the WIMPs stay
in equilibrium longer, and we are left with a smaller relic abundance.

The partial-wave unitarity of the S-matrix means [62]

⟨σA|v|⟩ ≈
1

m2
WIMP

, (1.48)

which leads to MWIMP ≤ 340 TeV (WMAP data gives MWIMP ≤ 120 TeV [3]).
In some cases, as for example if the annihilation occurs through a resonance in the

s-channel (which is the case of the model considered in this text) the cross section can
not be considered as constant. Although the freeze-out occurs for nonrelativistic velocities
part of the DM particles move fast in accordance with the Maxwell distribution which may
seriously deform the solution. Naive calculation as above leads to errors by a factor of two
or more. Nevertheless (1.47) may be used for estimation and for qualitative analysis.

The microMEGAs software is able to calculate DM relic density by freeze-out approx-
imation as well as by Runge-Kutta method for (1.38). The second way requires much
machine time which is one of the technical problems.



Chapter 2

Two Higgs Doublets plus 1 Singlet

2.1 General structure of the two Higgs doublet model

In the general case the Two-Higgs-Doublet Model (2HDM) is just the SM with two Higgs
doublets instead of one. Such models are described in [63, 64, 65, 66, 67, 68, 69, 70, 71].
This is a very brief review of the model structure.

The 2HDM can be seen as just an unconstrained version of the Higgs sector of the
MSSM.

In the general case the Higgs interaction sector in terms of doublet fields ϕ1 and ϕ2 is
given by the potential

Vdoublet(ϕ1, ϕ2) =− 1

2
m2

11ϕ
+
1 ϕ1 −

1

2
m2

22ϕ
+
2 ϕ2 −

[
1

2
m2

12ϕ
+
1 ϕ2 +H.c.

]
+

+
1

2
λ1

(
ϕ+
1 ϕ1

)2
+

1

2
λ2

(
ϕ+
2 ϕ2

)2
+ λ3

(
ϕ+
1 ϕ1

) (
ϕ+
2 ϕ2

)
+ λ4

(
ϕ+
1 ϕ2

) (
ϕ+
2 ϕ1

)
+

+
1

2

[
λ5

(
ϕ+
1 ϕ2

)2
+H.c.

]
+

+
1

2

[
λ6(ϕ

+
1 ϕ1)(ϕ

+
1 ϕ2) +H.c.

]
+

1

2

[
λ7(ϕ

+
2 ϕ2)(ϕ

+
1 ϕ2) +H.c.

]
,

(2.1)

where the parameters m12 , λ5 , λ6 , λ7 can be complex and all other parameters are real
because of the hermiticity requirement.

After the gauge symmetry is spontaneously broken, the doublet fields can be represented
as

ϕi =

(
ϕ+
i

1√
2
(vi + ηi + iχi)

)
, (2.2)

tan β =
v2
v1

. (2.3)
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Two complex doublets with SU(2) × U(1) broken to the U(1) gauge group generate
one electrically charged (H±) and three neutral (Hi, i = 1, 2, 3) massive Higgs particles
instead of one neutral Higgs boson in the SM. There are also the usual Goldstone boson
degrees of freedom G0 and G+. It is convenient to define

η3 = − sin βχ1 + cos βχ2 , (2.4)

Hj = Rjiηi , (2.5)

H+ = − sin βϕ+
1 + cosβϕ+

2 , (2.6)

G0 = cos βχ1 + sin βχ2 , (2.7)

G+ = cos βϕ1 + sin βϕ2 . (2.8)

Here, Rji is a rotation matrix which can be expressed as a function of m’s and λ’s. It can
also be parametrized through rotation angles α1, α2 and α3:

R =

 c1c2 s1c2 s2
−c1s2s3 − s1c3 c1c3 − s1s2s3 c2s3
−c1s2c3 + s1s3 −c1s3 − s1s2c3 c2c3

 , (2.9)

where

ci = cosαi , si = sinαi . (2.10)

Masses of the Higgs bosons (M1 ≤ M2 ≤ M3, MH±) are also functions of m’s and λ’s
as well as the parameters

v2 = v21 + v22 , (2.11)

ν = Rem2
12/(2v1v2) , (2.12)

µ2 = v2ν . (2.13)

We will be interested in the case of λ6 = λ7 = 0.
So instead of m’s and λ’s we have a set of parameters, which is more convenient for our

purpose

v , tan β , µ ,M1 ,M2 ,M3 ,MH± , α1 , α2 , α3 , (2.14)
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which is overcomplete, one parameter can be excluded. It will be convenient to remove
M3:

M2
3 =

M2
1R13 (−R11 +R12 tan β) +M2

2R23 (−R21 +R22 tan β)

R33 (R31 −R32 tan β)
(2.15)

(see [72]). The parameter v is fixed from experiment like in the SM

v = 246 GeV . (2.16)

So 8 parameters remain free at this step of the investigation.

2.2 2HDM + 1 Singlet

We will introduce an extra singlet ϕ which is a dark matter candidate:

Vsinglet = µ2
ϕϕ

2 +
1

4!
λ4
ϕ + ϕ2

(
η1ϕ

+
1 ϕ1 + η2ϕ

+
2 ϕ2

)
. (2.17)

This singlet is unbroken (µ2
ϕ > 0). So the mass of the particle is

m2
ϕ = 2µ2

ϕ + η1v
2
1 + η2v

2
2 . (2.18)

One can get the interaction in terms of physical fields [63]

Vsinglet = ϕ2(κivHi + λijHiHj + λ±H
+H−) , (2.19)

with

κi = η1Ri1cβ + η2Ri2sβ (2.20)

λij =
1

2

[
η1(Ri1Rj1 + s2βRi3Rj3) + η2(Ri2Rj2 + c2βRi3Rj3)

]
, (2.21)

λ± = η1s
2
β + η2c

2
β . (2.22)

The singlet sector can be parametrized using 4 parameters:

Mϕ , λϕ , η1 , η2 . (2.23)

We will suppose for simplicity that

η1 = η2 = η (2.24)
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2.3 Quadratic divergence cancellation

in the 2HDM+1S

Quadratic divergence cancellation are discussed in [80, 81, 63]. It is an extra requirement for
the theory which leads to fixing two of the parameters that were left arbitrary before. Both
versions of the 2HDM+1S (constrained and unconstrained) will be discussed. In chapter
3 only the unconstrained case will be considered. Chapter 4 is about both versions.

The cancellation for the DM singlet particle ϕ requires the presence of fermions in
the theory that can interact with ϕ because boson and fermion one-loop contributions to
mass corrections are always with opposite sign. In [63] these fermions are right-handed
neutrinos:

LY = −φ(νR)cYφνR +H.c. , (2.25)

where Yφ is a matrix.
The full set of equations is for the present case of 2HDM + 1S [63]

3

2
m2

W +
3

4
m2

Z +
v2

2

(
1

2
η1 +

3

2
λ1 + λ3 +

1

2
λ4

)
= 3

m2
b

c2β
,

3

2
m2

W +
3

4
m2

Z +
v2

2

(
1

2
η2 +

3

2
λ2 + λ3 +

1

2
λ4

)
= 3

m2
t

s2β
,

λφ

2
+ 4(η1 + η2) = 8Tr{YφY

†
φ}. (2.26)

The first two equations guarantee the cancellation in the doublet sector and the last one
is for DM singlet mass.

The first two equations can be satisfied by fixing M1 and M2 (usually they are in the
region from 100 GeV to 600 GeV as well as M3). So these parameters are fixed and we
have only 3 instead of 5 doublet parameters, they are µ, tan β and M±.

2.4 Constraints

Because of natural physical requirements such as positivity, unitarity and perturbativity
there are some restrictions for the parameters.

2.4.1 General theoretical restrictions

First of all, all squares of masses must be positive (they must also be larger then exper-
imental limits but it will be discussed later). In particular, that means that (2.15) must
give a value M2

3 > M2
2 .

1. Positivity or classical potential stability
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These restrictions for the 2HDM are known from [73]:

λ1, λ2 > 0 ,

λ3 >
√
λ1, λ2

λL = λ3 + λ4 − |λ5| >
√

λ1, λ2 ,

(2.27)

there are also conditions from the singlet sector

λϕ, η1, η2 > 0 . (2.28)

Roughly speaking λ1,λ2 and λ3 must be positive and λ3 and λ4 must be sufficiently
large.

2. Unitarity

Tree-level unitarity requirements on the Higgs-Higgs-scattering sector for the 2HDM
are formulated in [74]:

Λeven
21± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4|λ5|2

)
,

Λeven
01± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
,

Λeven
00± =

1

2

(
3(λ1 + λ2)±

√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

)
,

Λodd
21 = λ3 + λ4 ,

Λodd
20 = λ3 − λ4 ,

Λodd
01± = λ3 ± |λ5| ,

Λodd
00± = λ3 + 2λ4 ± 3|λ5| .

(2.29)

|ΛZ2
Y σ±| < 8π . (2.30)

Roughly speaking all λ’s may not be too large.

3. Perturbativity

This means that the couplings can not be larger than of order unity.

2.4.2 Experimental constraints

These constraints are discussed in [69] for the general case of 2HDM and take into account
only doublet sector parameters. The SM satisfies the constraints that will be discussed in
this section quite well. But the contribution from extra particles can spoil the agreement.
From an other side it may make some restrictions free, for example the lightest Higgs
particle mass may be smaller than the one from the SM scenario (see point 1 from the next
list).
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1. B − B̄ oscillations. This constraint excludes scenarios with small tanβ (less than
1) or small M± (less than 400 GeV) [69].

2. b → sγ. The restriction due to this branching ratio limits the mass and Yukawa
couplings of the H+. For the case of the 2HDM it is discussed in [77]. Because of
this constraint fermion couplings must be sufficiently small.

3. Higgs non-discovery at LEP. The neutral Higgs boson is not discovered at LEP2.
This excluded SM scenarios with mass less than 114.4 GeV but it is also possible that
the particle interacts with the Z boson more weakly (as for example in the 2HDM)
or it decays to final states that are more difficult to detect.

So this constraint is not only for M1, but also (alternatively) for the ZZH and f̄fH
couplings. It restricts mostly tanβ (not too large) and the rotation angles [69].

4. ∆ρ. This constraint is discussed in [67] in detail. In SM the parameter

ρ =
m2

W

m2
Z cos2 θW

, (2.31)

which is just 1 at tree level has loop corrections. The precise measurements are in
striking agreement with the SM predictions. They are [78]

ρ = 1.0050± 0.0010 . (2.32)

So there is a strong constraint on extended electroweak models. In the case of the
2HDM, roughly speaking, Higgs masses must not be too far from the gauge boson
masses and not very much apart [69] (for the detailed analysis see the same paper).

5. Muon anomalous magnetic moment aµ. This parameter [79]

aµ exp =
1

2
(g − 2)µ exp = 11659208(5.4)(3.3)× 10−10 (2.33)

is predicted by the SM with high accuracy. Two-loop corrections of the 2HDM may
corrupt that. But in our case this constraint is negligible [69].

6. Electron electric dipole moment. It must be

|de| . 1× 10−27[ecm] . (2.34)

Two-loop effects from 2HDM may also violate this constraint.



Chapter 3

Allowed region in the (Mϕ, η) plane

Using micrOMEGAs [82] which is a tool for DM studies it is possible to calculate Ωdark in
any extension of the SM, in particular the 2HDM+1S and compare it with WMAP data.

The purpose of this section is to find allowed areas in the parameter space that satisfy
all model constraints which includes proper values for Ωdark. It is done with a program
written in fortran77 which is just a modification of the analogous one that was used in
[64]. In this chapter only the unconstrained 2HDM+1S is discussed, i.e., no condition of
quadratic divergence cancellation is imposed.

There will be two main difficulties:

1. The large number of parameters of the model:

(a) 2HDM parameters: M1,M2,µ, tan β,M
±, α1,α2 and α3

(b) Singlet parameters: Mϕ,η1,η2. We will assume η1 = η2 = η

So one has to draw a lot of composite plot series and/or fix some parameters arbitrary.

2. The procedure of Ωdark calculation requires much machine time. So one has to draw
histograms with low resolution and it will be necessary to find nontrivial methods
(computer program algorithms) that limit the number of Ωdark evaluations.

The second purpose of this thesis is also a drill of different methods of calculation
optimization that allow to save machine time. These are very technical and are carried out
in appendix A and B. They are not so informative as just drill of a new method.

3.1 Calculation method and parameters.

It is convenient for the investigation to divide all free parameters into 2 groups:

1. Fixed parameters, which are

• Mϕ=20,30,...120 GeV.
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• η = 0.1, 0.2, ...0.9

• M1 = 100, 200, ..., 600 GeV

• M2 = 100, 200, ..., 600 GeV, and M1 ≤ M2

2. Flexible (random) parameters, that means that they are will be put random for each
value of the fixed parameters. These are

• µ = 200...700 GeV

• log10 tan β = −1...2 (tan β = 0.1...100),

• M± = 200...700 GeV,

• αi = −π/2...+ π/2, i = 1, 2, 3.

The density of the probability to get the value of any parameter is homogeneous in
this parameterisation.

So the program just selects the second group of parameters randomly. After that it
goes over all possible values of the parameters from the first group, and check if the model
with this combination of parameters satisfies all theoretical and experimental constraints
that were discussed in sec. 2.4.

The result of this calculation in the form of Mϕ×η histograms with the allowed regions
for the case when M1 = 300 GeV and M2 = 400 GeV is presented in fig. 3.1.

It should be remarked that the histogram consists of “squares” which means that a
point in the center of them is “good”. It means that there is (has been found) at least one
combination of the other (from the second group) parameters such that the model satisfies
all constraints. But the existence of a “square” does not means that all point in the square
are allowed.

Before the comments and the explanation of this result let us discuss some properties
of these calculations.

3.2 The problem of validity

The first problem is that there is a chance that not all allowed “squares” are found and
the presented area on the histogram is smaller then the true one. It is the case when the
allowed area in the space of the second group of parameters with fixed ones from the first
group is very small and the probability to find even one good point is very small too.

In principle it is also possible that the allowed area in the (Mϕ, η) histogram is not
limited at all but the size of the allowed area in the random parameter space is just very
small. So the question is:“Is the allowed area limited or not.” It is not easy to answer
this question through analytical analysis of the model and theoretical and experimental
constraints and it will not be attempted here. The numerical analysis is easier but by its
very nature it can not give a complete answer. In the present thesis there will be three
attempts (three methods) to give the numerical method answer: in sections 3.3, 3.5 and
appendix B.
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Figure 3.1: Allowed region (dark) histogram in the space of Mϕ × η for M1 = 300 GeV,
M2 = 400 GeV.

3.3 Squares-attempts analysis

This subsection is to check the validity of the histograms in fig. 3.1 using the following
analysis.

Let us consider the dependence of the number of found “squares” in the histograms and
the number of attempts to find them (see fig. 3.2). As is easy to see the function grows
slowly after about 105.5 attempts. So it will be a good assumption that the function will
not grow faster and not many new “squares” will be found.

This result can convince one that the result of this histogram in fig. 3.1 for such masses
is valid and the area is limited (or at least there is a quality leap of the density function
behavior (see sec. 3.5)).

3.4 Dependence on the Ωdark inaccuracy

To find the main reason which defines the form of the allowed areas let us change the
inaccuracy of Ωdark. This parameter is called σΩdark. Increasing σΩdark makes the main
experimental constraint softer (the allowed region is increased) and allows us to understand
whether the boundary of the allowed areas is defined by the DM abundance or by any other
reasons.

It will be studied in this section for the case of M1 = 300 GeV and M2 = 400 GeV (see
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Figure 3.2: Dependence of the number of found allowed “squares” on the number of at-
tempts in logarithmic scale for the case of M1 = 300 GeV, M2 = 400 GeV. It is visible
that after about 105.5 attempts not many new “squares” are found. It would be useful to
make more attempts but it requires too much machine time.

fig. 3.3). It is clear that the boundary position is defined by σΩdark. But it is remarkable
that the boundary near 80 GeV (see the scale in fig. 3.1) for large and medium η is quite
stable (independent of the inaccuracy). It is because of the W -boson threshold in the DM
annihilation channel (see sec. 3.6). Furthermore, as one can see, the third, fourth and fifth
histograms are similar. The inaccuracy from the fifth histogram is σΩdark · 10+1 = 0.034
which is about 30%. So the allowed region does not depend strongly on Ωdark.

3.5 Boundary searching

This section is dedicated to attempts to explore the existence of a boundary and its precise
value. For this purpose a mention of point density must be introduced.

Let us define density d as a ratio of the number of all found points for any value of the
fixed parameters to the number of all attempts (checked random parameter combinations)
to find them:

d =
number of found allowed points

number of attempts
. (3.1)
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Figure 3.3: The same histograms as in fig. 3.1 but for different inaccuracies of Ωdark from
σΩdark → σΩdark · 10−3 (the left one) to σΩdark → σΩdark · 10+2 (the right one). From left
to right the σΩdark increases by a factor of 10 (see expressions under each histogram). The
fourth histogram is with the actual σΩdark, as in fig. 3.1.
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Figure 3.4: Two fictitious density functions. The horizontal axis corresponds to an argu-
ment x of these functions on which the function must be analysed if the boundary exists.
On the left plot the function evidently tends to zero near x ≈ 5.8 which is the boundary
position. For the function on the right, it is not clear if a zero is reached.
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This quantity reflects the probability to find an allowed point with given fixed parameters.
It may be useful to draw histograms with not only allowed regions but with a color

that characterizes the density but it will not be done here. Instead the dependence of the
density on Mϕ and η will be used to explore the boundary existence of the allowed region.

In order to make two-dimensional plots it will be convenient to fix one parameter in the
Mϕ×η space. Two quality types of the density dependence are possible (see fig. 3.4). The
first one may be enough for someone to believe in the existence of a certain boundary of the
region. Moreover it may allow us to calculate the boundary position with high accuracy.
The second alternative may indicate that the boundary is absent or it is not easy to see it
and determine its position.

The main technical difficulty is that the calculation of smaller values of d requires a
large machine time because a lot of attempts are required.

This test was done for the case presented in fig. 3.1. Unfortunately such calculations
(with fixed and random parameters defined as in sec. 3.1) requires much machine time
and it was not possible to find many points for the graphs. But it will be much easier if
one fixes some more parameters:

M± = 400 GeV,

tan β = 1,

µ = 200 GeV.

(3.2)

So only the three α’s are random. This assumption must not change the fact of boundary
existence. The results for both choices of fixed and random parameters will be presented.

Two regions near the expected boundary in fig. 3.1 were tested in the above described
way. The first one is near Mϕ = 50 GeV, η ≈ 4, see fig. 3.5 with the density defined
as in sec. 3.1 and fig. 3.6 with three fixed parameters. The second region is η = 0.6,
Mϕ ≈ 75 GeV. The analogous graphs are presented in figs. 3.7 and 3.8.

The results from the plots without extra parameter fixing are not very clear. But, as
one can see, the pictures with fixed parameters is rather of the second type than of the
first one (a boundary is visible). It is also possible to find the boundary position with
high accuracy but it is not useful in the framework of the present investigation because
the position strongly depends on σΩdark (see discussion in sec 3.4).

The points (in this case mass Mϕ for fixed η or η for fixed Mϕ) for such graphs can be
taken at equidistant point (for example Mϕ = 70 GeV, 80 GeV, 90 GeV...) or one can get
them “by hand” such that they are concentrated near the expected boundary position in
order to save calculation resources. The third alternative is to create a computer program
that will finds an optimal way itself (automatic). Such program was developed and its
algorithm is described in appendix A. All points from graphs in fig. 3.5, 3.6, 3.7 and 3.8
were found with this software.



3.5 Boundary searching 41

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

-3
10´

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-610

-5
10

-410

d

η

d

η

Figure 3.5: Density behavior for Mϕ = 50, M1 = 300 GeV, M2 = 400 GeV.
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Figure 3.6: Density behavior forMϕ = 50,M1 = 300 GeV,M2 = 400 GeV,M± = 400 GeV,
tan β = 1, µ = 200 GeV. A boundary does exist near η = 0.658.
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Figure 3.7: Density behavior for η = 0.6, M1 = 300 GeV, M2 = 400 GeV.
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Figure 3.8: Density behavior for η = 0.6, M1 = 300 GeV, M2 = 400 GeV, M± = 400 GeV,
tan β = 1, µ = 200 GeV. A boundary does exist near Mϕ = 76.2 GeV.
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3.6 Discussion of figure 3.1

In this chapter there will be an attempt to explain the results presented in fig. 3.1.
As in sec. 1.5 let us limit ourselves to 2 → 2 tree-level precesses. First of all there

may be different products of the DM annihilation processes. Because of coldness of the
DM (Eϕ ≈ Mϕ) the possible products of the annihilation are limited by the DM particle
mass Mϕ. In GeV scale the important threshold is in W -boson mass because such channel
is possible (and essential) only if Mϕ & MW ≈ 80 GeV (symbol “&” but not “>” is
used because temperature Maxwell distribution allows a small probability of more heavy
annihilation products).

One can see that the histogram (see fig. 3.1) can be separated into two parts: below and
above 80 GeV. Allowed values of η are larger on the left side than on the right one. This
is because beyond this threshold a new channel of annihilation is opened. It essentially
contributes to the amplitude and the annihilation cross section is increased. To compensate
that the coupling η has to be smaller which is observed in the histograms.

3.7 Results for different Higgs particle masses

The same result as in fig. 3.1 but for different values of M1 and M2 is presented in fig. 3.9.
Some of these histograms are not so clear-cut (see for example the cases M1 = 100 GeV,

M2 ≥ 300 GeV). So more attempts than are actually done are necessary. But it demands
more and more machine time. Doing the same squares-attempts analysis as in sec. 3.3
one can see that indeed for these histograms the result does not seem to be complete.
For example let us consider the case for M1 = 100 GeV, M2 = 300 GeV presented in fig.
3.10. The result confirms that the histogram is still not completed. On the other hand the
same analysis for the case M1 = 600 GeV, M2 = 600 GeV presented in fig. 3.11 gives the
opposite result that can convince one that the histogram is completed.

3.8 Analytic structure of DM annihilation cross sec-

tion

In this section the approximate formula (1.47) will be used for qualitative analysis of the
Ωdark functional behavior. The cross section is defined by only s-channel resonance graph
presented in fig. 3.12. So the cross section is proportional to
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Figure 3.9: The same histograms as in fig. 3.1 but for different values of M1 and M2. The
columns are with fixed M1 from 100 GeV (the left column) to 600 GeV (the right column).
The rows are with fixed M2 from 100 GeV (the upper row) to 600 GeV (the bottom row).
The numbers for each histogram indicate the validity of them. The first number is an
order of number of attempts that were necessary to find the most part of the “squares”.
The second number is an order beyond which new “squares” were no longer found. “7?”
means that it looks like to be completed but it is required more attempts to be sure. See
the discussion in the text and comments for fig. 3.2, 3.10 and 3.11.
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Figure 3.10: The dependence number of found allowed “squares” on the number of attempts
in logarithmic scale for the case of M1 = 100 GeV, M2 = 300 GeV. The most part
of “squares” is found only after about 106.5 attempts. Most likely after more than 107

attempts many new “squares” will be found.
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Figure 3.11: The dependence number of found allowed “squares” on the number of attempts
in logarithmic scale for the case of M1 = 600 GeV, M2 = 600 GeV. Most likely all allowed
points have been found and only about 104 attempt was required for that.
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Figure 3.12: The only tree-level graph that contributes to DM annihilation cross section.
Here, f and f̄ are any 2HDM particles, fermions or gauge bosons, charged or neutral Higgs
particles.

σA ∼
∑

i=1,2,3

∣∣∣∣λHff̄

1

s−M2
i

λHϕϕ

∣∣∣∣2 , (3.3)

which for cold DM (Eϕ ≈ Mϕ, T ≪ Mϕ) gives

⟨σA|v|⟩ ∼
∑

i=1,2,3

∣∣∣∣λHff̄

1

(2Mϕ)2 −M2
i

λHϕϕ

∣∣∣∣2 ∼ ∑
i=1,2,3

ci

∣∣∣∣λHff̄

1

2Mϕ −Mi

λHϕϕ

∣∣∣∣2 , (3.4)

where ci are some coefficients. This is not an exact formula, but it is true at the “qualitative
level” and will be enough for the explanation. There are three factors:

1. λHϕϕ, the singlet-sector coupling that is proportional to η,

2. λHff̄ , defined by the doublet-sector parameters,

3. 1
2Mϕ−Mi

, which depends on a neutral Higgs particle mass.

It clear from (3.4) that if Mi ≈ 2Mϕ the contribution to the cross section from the third
factor (see above list) is very large which requires a low value of the product of singlet and
doublet couplings.

Using the above facts one can explain some details of the histograms from fig. 3.9. For
example a narrow hole near 50 GeV in the case ofM1 = 100 GeV, M2 = 200 GeV is because
it corresponds to the first Higgs particle. For Mϕ = 1

2
M1 the third factor contribution is

very large and only very small η is allowed. The same must be true for the other values of
M2.

Another consequence of the dependance on neutral Higgs masses is that with larger
M2 the allowed region before the threshold “moves up” (not allowed region with small η
grows) and allowed region after the threshold grows to larger η too.



Chapter 4

Scatter plots

In contrast to the previous chapter, here another strategy of analysis is used. Instead
of fixing some parameters, all of them will be random (in the second group) in certain
intervals.

So the result is a large group of parameter combinations (points) that satisfy all con-
straints. This allows to draw scatter plots (2D or 3D) with any parameters along the axes
using the same base of points.

This was done for the case of the (quadratic divergence cancellations) constrained model
as well as for unconstrained.

4.1 The unconstrained model

As noted, all 10 parameters of the unconstrained model are random

• Mϕ=20...120 GeV.

• η = 0...1

• M1 = 100...600 GeV

• M2 = 100...600 GeV, and M1 ≤ M2

• µ = 200...700 GeV

• log10 tan β = −1...2 (tan β = 0.1...100),

• M± = 200...700 GeV,

• αi = −π/2...+ π/2, i = 1, 2, 3.

The result is shown in fig. 4.1. The upper leftMϕ×η panel results are in full accordance
with the WW threshold discussion presented in sec. 3.6.

The situation for the other plots is not closely connected with the singlet sector and
the DM constraint. It illustrates general properties of the 2HDM that are discussed (but
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without such scatter plots histograms) in [69]. For example in the tanβ × M± plot it is
easy to see the constraints from B-physics for low M± and low tan β or the region with
large tan β has not so many points because of the unitarity constraint.

4.2 The constrained model

As noted all 8 arbitrary parameters of the constrained model are now random

• Mϕ=20...120 GeV.

• η = 0...1

• µ = 200...700 GeV

• log10 tan β = −1...2 (tan β = 0.1...100),

• M± = 200...700 GeV,

• αi = −π/2...+ π/2, i = 1, 2, 3.

The analogous to the result of the previous section is shown in fig. 4.2. It is similar to
the previous one but there are some differences.

First of all the number of points in fig. 4.2 is smaller than in fig. 4.1 (because much
machine time is required). On other hand the number of attempts to find them is larger in
the constrained case. In other words the average density in the constrained case is lower.
This is why there are many points for tanβ > 10 for the constrained case but not for the
unconstrained one. If one will do the same number of attempts in the unconstrained case
as in the second one will get the same result for tan β > 10 but the region tanβ ≈ 1 will
be very dense.

The other visible detail is in the tan β ×M± plot. All possible values of tan β are split
into two groups: of tanβ ≈ 1 (red points) and of tanβ ≈ 10..100 (blue points). This
separation does not affect the first histogram but for the red group of points it leads surely
to smaller Higgs particle masses and large µ (see M1×M2 and µ×M± histograms). But it
is actually a general property of the constrained 2HDM but not of the special 2HDM+1S
case. Indeed the analogous scatter plots but without the constraint on Ωdark (WMAP data)
are almost the same, except of course the Mϕ × η plot.
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Figure 4.1: Scatter plots for the model without quadratic divergency cancellation. The
left-top one is in Mϕ × η space like in histograms from chapter 3. The right-top one is in
tan β ×M± space, the lower left – M1 ×M2 and the lower right – µ×M±.
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Figure 4.2: Scatter plots for the constrained model. The left-top one is in Mϕ × η space
like in histograms from chapter 3. The right-top one is in tanβ×M± space, the lower-left
– M1 ×M2 and the lower-right – µ×M±. All points are divided into two groups: the red
ones are for small tanβ (< 2) and the blue ones are for large tanβ (> 2).



Summary

The 2HDM + 1S model has been explored as a theory with a DM particle. In both cases,
with and without quadratic divergency cancellation constraints. WMAP data does not
limit the parameters of the 2HDM+1S much. This constraint changes the allowed regions
for the doublet parameters only very littele.

However the singlet parameters are limited, but allow any values of the DM particle
mass in the explored region from 20 GeV to 120 GeV. It was found that the appropriate
values of singlet parameters depend strongly on the Higgs particle masses (in the case of
the unconstrained model) and this dependence was explored. It was also found that this
allowed region of the singlet parameters does not strongly depend on the Ωdark value (see
sec. 3.4).

This result is in the agrement with the one from [64] (see fig. 5 in [64]), which was
obtained with approximate formula (48) in [64] but not with more advanced methods such
as micrOMEGAs.

Several different calculation methods such as “squares-attempts analysis” (see sec. 3.3)
and “boundary searching” (see sec. 3.5) were used. These methods helped to analyze the
result of direct search of allowed points in the parametric space. In particular the fact that
the allowed region is limited was obtained. Furthermore they allow to estimate the validity
of the results of numerical calculations (see sec. 3.2).

Some new numerical methods for the calculation of allowed regions were developed as
algorithms, realized in fortran77 and tested (see appendix). They allow to someone to
make an exact and economical calculation in any model, not only in the 2HDM+1S.
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Appendix A

Algorithm for boundary calculation

This appendix is about a numerical calculation problem that arose in sec. 3.5. A new
algorithm for automatic calculation and optimization was developed.

The general problem can be formulated as follows. Let there be a function f(x, y),
where x (y) is one or a set of arguments. The function is 1 or 0 (“good” or “bad” point
(x, y)). We are interested in “good” areas for x, which means that for any y from Y there
is at least one “good” point (x, y). The problem is that the f calculation requires much
machine time. So the idea is to first define a density function d(x) for any area Y for y

d(x) =
number of “good” points of f(x, y) with y ∈ Y

number of all points of f(x, y) with y ∈ Y
. (A.1)

Of course the number of points in Y is actually infinite, but for the case of “good” functions
f , d(x) can be defined as a ratio of areas in parametric space for y. In our case there is
no possibility to investigate f analytically but numerically only a finite number of points
(x, y) can be calculated. So we suppose that f is “good” and calculate d numerically using
a finite random set of points in Y . So d(x) ≥ 0 and if it is 0 there is always a possibility
that it is so small that just among the given finite number of all points no one happens to
be “good”.

The second point of the idea is to explore d(x) in a region where it is very small and
using any interpolation of the function it is possible first to find if the boundary of a “good”
region exists or d(x) just decreases asymptotically.

The direct calculation of d(x) with any number of points in Y (10N) for different values
of x is too “wasteful”. It is because for x with large d not many points are required and
for regions with zero d it will not be useful to make so many attempts. Furthermore if it is
necessary to find the boundary of the zero region with high accuracy it will require many
points for x.

The present algorithm makes such calculation optimal and automatic. Let us suppose
that d(x) is a monotonically decreasing function from a point x. The idea is to do calcu-
lation in a region with large d with a small number of points (n) and move forward for
larger values of x, increasing the n only if it allows to calculate nonzero d(x) in this point.
If it is not possible with current n (no point with current n have been found) one should
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Figure A.1: Algorithm for boundary calculation.

move back a little and try to calculate d(x) there. After that it is possible to return to the
old points but with higher value of n. The algorithm is presented in fig. A.1.

The starting (input) data is N which specifies the maximal number of points (10N) in
Y that will be used. It is actually an accuracy of the boundary calculation that define the
machine time that will be required. There is a starting point x, where the density is not
zero (with a basic value n (n < N)) and basic step ∆x. The result is a set of points xi

with d(xi) so that the points are concentrated near the boundary of zero region or at least
near the area of small (of order 10−N) d(x).

The number 10 was used as a sufficiently big number of points for the calculation of
d(x) (the calculating was stopped after 10 “good” points have been found) (see the second
from top left block in fig. A.1) and as a logarithmic “step” to increase the number of
points. Someone can change this parameter if it is necessary.
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A.1 Example

The algorithm was realized in fortran77 for the case of section 3.5. To illustrate how it
works let us consider a case as in fig 3.8. The role of x is played by Mϕ, the starting value
is 70 GeV, ∆x = 10 GeV. Starting n = 4. This is a protocol of the program (see also fig.
3.7 where the result point are presented in a form of graphic):

1. Mϕ = 70 GeV. The density is measured as d = 1.2 · 10−3. Move forward by 10 GeV.

2. Mϕ = 80 GeV. No point found with n = 4. Move backward by 5 GeV.

3. Mϕ = 75 GeV. The density is measured as d = 1.4 · 10−4. n was increased to n = 5
Move forward by 5 GeV.

4. Mϕ = 80 GeV. No point found with n = 5. Move backward by 2.5 GeV

5. Mϕ = 77.5 GeV. No point found with n = 5. Move backward by 1.25 GeV

6. Mϕ = 76.25 GeV. The density is measured as d = 4.5 · 10−5. n was increased to
n = 6. Move forward by 5 GeV.

7. Mϕ = 77.5 GeV. No point found with n = 6. Move backward by 0.625 GeV.

8. Mϕ = 76.25 GeV. The density is measured as d = 9.2 · 10−6. n was increased to
n = 7.

9. Mϕ = 77.5 GeV. The density is measured as d = 4.4 ·10−7. n was increased to n = 8.
Move forward by 0.625 GeV.

10. ...

8 can be a maximal value (N = 8) or the calculation can continue.
The points for graphs in fig. 3.5, 3.6and 3.8 were calculated with this software in the

same way.
So this method demonstrates that indeed the boundary exist. It may also be very

effective if someone needed to find a boundary position with high accuracy.
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Appendix B

Algorithm for quick “good” points
search

This appendix is about a numerical calculation problem that arose in chapter 3. A new
algorithm for automatic calculation and optimization was developed.

Let there be a function f(x, y) as in appendix A. The problem is to find at least one
“good” point at x with any y ∈ Y . The direct search with just large but finite number of
random points in Y may not give a result because of the smallness of the “good” region.
On the other hand there is a possibility to exclude most of Y where “good” points are
most likely absent.

The idea of the algorithm is as follows. As was discussed in sec. 3.4 the limitation
is connected with the uncertainty in the dark matter density which is called ∆Ω in this
appendix. The limitation is weaker (the “good” region broader) if ∆Ω is larger. So if one
lets ∆Ω be sufficiently large (∆Ω > ∆Ω0) it will be easy to find many “good” points (the
density d (see appendix A) will be large). With this amount of points one can calculate
the regions in Y where they are concentrated. After that one can make Y smaller Y → Y ′

so as to leave only regions with large density. After that the average density increases. It
allows to find “good” points faster. So one can make ∆Ω smaller. This operation can be
repeated until ∆Ω becames smaller than ∆Ω0 which is the required value. The algorithm
is illustrated in fig. B.1.

But these iterations may go on indefinitely without arriving to the value ∆Ω0 (the loop
in the right top part of the figure). It is possible in two cases:

1. The “good” regions with ∆Ω0 are absent.

2. The mechanism of the decreasing of Y is not perfect.

So this algorithm is only able to find “good” points in “difficult” regions of x without the
guarantee. But this is always the case for numerical methods.

Now let us concentrate on the methods of decreasing Y . In our case it will be just
n-dimensional cube with coordinates yni of a point number N . If one has N “good” points
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B.1 Example 59

one can calculate an average value of yi

⟨yi⟩ =
∑

n=1..N yni
N

, (B.1)

and dispersions

⟨∆y2i ⟩ =
∑

n=1..N ∆yni
2

N2
, (B.2)

where

∆yni = yni − ⟨yni ⟩ . (B.3)

Then the new Y ′ may be just a cube with ⟨yi⟩ ±
√

⟨∆y2i ⟩. So if the distribution of “good”
points in yi is flat then Y = Y ′.

There may be modifications of this method. The problem is that the most part of
“good” points with increased ∆Ω may be concentrated in an area which is far from the
required region Ω0 ± ∆Ω0. So the searching for the “comfortable” Y ′ may be too long.
The idea to accelerate it is to take into account a correlation between yi and Ω. This
method was developed and tested but it didn’t give an essential advantage for the present
calculations. It will not be discussed here.

B.1 Example

The algorithm was realized in fortran77 and tested for allowed points searching from chap-
ter 3. The role of ∆Ω is played by σΩdark. The starting (input) value was σΩdark = 1.
60 points for statistical information calculations were assumed to be sufficient. yi were
random parameters. The starting Y was the region described in sec. 3.1.

M± = 350± 150 GeV,

log10 tan β = 0.5± 1.5,

µ = 450± 250 GeV,

α1 = 0± π/2,

α2 = π/2± π/2,

α3 = π/2± π/2.

The “±” notation for the intervals is used because it will be important to compare the size
of final intervals with the starting one. It will also be convenient to move the region of α1

by π/2 because in this way the most part of “good” points is concentrated near the center
of the region (α1 = 0) but not near the boundaries of it.

Values of the fixed parameters were

M1 = 300 GeV,

M2 = 400 GeV,

Mϕ = 50 GeV,

η = 0.6, 0.3, 0.295, 0.29, 0.25, 0.2.
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These values correspond to the boundary of the allowed region in fig. 3.1.
The result is as follows

• η = 0.6. The allowed point was found after 4 iterations. The Y was not made much
smaller than the starting one.

• η = 0.3. 12 iterations were necessary. The regions for all the random parameters
were made smaller by about one order of magnitude.

• η = 0.295. 28 iterations were necessary. The regions for all the random parameters
were made smaller by about one order of magnitude but the last region was especially
small, log10 tan β = 0.807± 0.084.

• η = 0.29. After the 13th iteration the σΩdark stabilized near σΩdark = 0.0095 after
more than 200 iteration. Allowed point was not found.

• η = 0.25. A similar result as in the previous case but σΩdark was not made smaller
than σΩdark = 0.047.

• η = 0.2. A similar result, σΩdark = 0.12.

Another series of results is for the not clear-cut histograms from sec. 3.7. There are
many “squares” that are white but not grey just because of a small probability to find a
“good” point with the given values of fixed parameters (low density) (see sec. 3.3). For
example it is obvious for the “square” M1 = 100 GeV, M2 = 400 GeV, Mϕ = 80 GeV
and η = 0.3, see fig. 3.9 where this “square” is surrounded by grey “squares”. Indeed a
“good” point was easily (very quickly) found during only 5 iterations. By the same way
many other “gaps” were filled. But the problem is the program is not able to determine
the cases with truly absence of “good” points (zero density). It just works indefinitely.
Any criterion of such “unusefulness” of the further iterations may be investigated in the
future.

Using this method the allowed points in a region with small density can be found
much faster than using the direct search. However if the allowed points are absent it may
require much machine time to estimate this fact. In the present case with only 6 random
parameters the efficiency of the method is not so evident as it may be in a case with a
larger number of arbitrary parameters.
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