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Introduction 

In this thesis, I first present the grassland birds ‘data from Wells(2007)  which is 

used by several different methods of estimating the nest survival rates. The 

hierarchical Bayesian method from Cao(2009) then is introduced as a new model 

to estimate nest-specific survival rates with double censored, left-truncated data. I 

compare two methods and during the comparison, cox-proportional model and 

intrinsic autoregressive prior are studied 

 

In the second half of this thesis, different data analysis methods are introduced, 

the deviance information criterion is presented and the Bayesian method is 

compared with the Mayfield method.  

 

The hierarchical Bayesian method is relatively new and is a complicated model 

indeed for those people who are not familiar with the Bayesian and higher 

dimension of integration. Nevertheless, it is still a valuable statistical tool. The 

deviance information criterion is a new method of analyses data; users could 

choose the different priors in order to get different estimating results, therefore it 

is very applicable in the statistical world.  
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1. Information in Wells et al. (2007) 

1.1 Practical information in Wells et al.(2007) 

In Wells(2007), the main research goal is to explain patterns of survival for two 

species of grassland birds during the post fledging period in southwestern 

Missouri. To achieve this goal, Wells(2007) observed the two species of birds, 

collected the necessary information about them and then used certain statistical 

model to evaluate the data. Wells(2007) has got the conclusion that the probability 

for survival for these birds are mainly depended on their body condition (body 

mass, the heavier the better). 

 
 

Wells(2007) monitored each nest every 3-4 days until 2-3 days before the bird are 

fledging and then changed it to daily observations. During this procedures, the 

birds were also being attached by a band on their legs . Wells(2007) also weighted 

each bird and attached transmitter on every bird for radio tracking.  

 

There are three outcomes for Wells (2007) in the data collection period : 

a. Transmitter was recovered from dead bird. 
b. The battery of the transmitter ran out. (50-60 days) 
c. The signal of the transmitter could not be located inside the study area. 

 

During the statistical analyses, Wells(2007) have developed some important 

covariates which were very essential for choosing the right model. There are five 

different covariates in total, two biological, two temporal and one spatial. The 

biological covariates are body mass and natal brood size, because according to 

earlier researches for those two species of birds, the body mass and the number of 

siblings are the key factor for survival; The seasonal and yearly effect on the study 

environment are the two temporal covariates, which means the weather and the 

temperatures have their effects of predation and predator activities in the study 

area; And Wells(2007) also assume the potential differences in landscape 

composition may affect the birds’ survival, this is the spatial covariate. 

 

Wells(2007) stated that they used Cox proportional hazard models to estimate 

survival as a function of multiply covariates. The main reason of doing this is that 

they were able to observe and obtain a continuous measure of time until the birds’ 

deaths at least daily.  
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Under the statistical analyses, Wells(2007) used days from fledging as the unit of 

time and determined the number of days of risk for each bird by assuming that 

every individual was at risk until they observed a certain fate or censored an 

individual based on some assumptions. To insure their data that only included the 

birds were successfully fledged, they made some restrictions for their censorship:  

1. They removed those individuals who fledged but then without at least one detection 
after the fledging. 

2. They removed those individuals who died within the first few days after fledging because 
they were accidently stepped under the radio-tracking process. 

3. They assumed the individual was at risk at its last shown location if there was a time gap 
for the bird between the last visual detection and the determination of its fate. 

4. They used the last confirmed visual observation as the date of censorship if the 
individual was missing over 30 days. 

 

Before using Cox proportional hazard model to analysis the data, Wells(2007) 

tested first on several assumptions related to the statistical analyses of multiple 

brood members in their observation sample. They wanted to test whether the 

independence of the survival probabilities were related to the size of brood from 

the same nest or not, if the hypothesis is false, they assume it would lead to 

overdispersion to the whole data and underestimates of variance. Wells(2007) 

used a modified chi-square test to test the assumption of brood independence, 

X
2
/df, where X

2
 was the sum of partial chi-square values ( [observed – 

expected]
2
/[expected] ). For example, for a brood size of two, there are three 

potential outcomes: complete failure, complete success and partial success. They 

too calculated the expected values for brood loss at each level of brood size as 

p
r
(1-p)

n-r
 , where p is the survival rate , r is the number of individuals surviving to 

independence and n is the brood size. The result from their data showed no 

evidence of dependence in survival among brood siblings for both species, and 

therefore they considered that individual survival probabilities were independent.  

 

Causes of mortality were part of the observations in Wells(2007). The main cause 

was predation in the study area, and rest four minor causes were deaths related to 

general equipment(farm and management), death related to research accident, 

death related to weather and temperatures and death from unknown causes(natural 

death). To estimate daily mortality rates, they used the number of mortalities from 

each cause and the total number of exposure days for the birds were at risk during 

the study period. And at last , they combined the mortality rates with brood size, 



Master of Science in Statistics  

Page 3 

to estimate if the fate of multiple individuals from the same brood were not 

independent, or caused by the same predator (practically for simultaneously 

predation or within the short interval). 

1.2 Survival function and Cox proportional hazard model: 

In order to understand the data analysis from Wells (2007), it is necessary to 

explain briefly about the Survival Function and the Cox proportional hazard 

model. Let T represent survival time. We regard T as a random variable with 

cumulative distribution function P(t) = Pr(T ≤ t) and probability density function 

p(t) = 
       

  
. Then the survival function S(t) is the complement of the distribution 

function, S(t) = Pr(T > t) = 1 − P(t). A fourth representation of the distribution of 

survival times is the hazard function, which assesses the instantaneous risk of 

demise at time t, conditional on survival to that time: 

h(t) =          [(          |   )] 

= 
    

    
 

Modeling of survival data usually employs the hazard function or the log hazard. 

For example, assuming a constant hazard, h(t) = ν, implies an exponential 

distribution of survival times, with density function p(t) =           .    

 

Normally the survival analysis examines the relations between the survival 

distribution and its corresponding covariates. This examination commonly uses a 

linear-like model for the log hazard. For example, a parametric model based on 

the exponential distribution could be written like this:  

                                              or equivalently be 

written as:                                                

 

that is, as a linear model for the log-hazard or as a multiplicative model for the 

hazard. Here, i is a subscript for observation, and the x’s are the covariates. The 

constant α in this model represents a kind of log-baseline hazard, since log hi(t) = 

α [or hi(t) = exp(α)] when all of the x’s are zero. 

 

The Cox model, in contrast, leaves the baseline hazard function α(t) = log h0(t) 

unspecified: 
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                                                 or equivalently be 

written as:                                                  

 

Consider, now, two observations i and i_ that differ in their x-values, with the 

corresponding linear predictors 

 

                                   

and 

                                       

 

The hazard ratio for these two observations, 

 

 

                                                                   

 

is independent of time t. Consequently, the Cox model is a proportional-hazards 

model. 

 

 

 

 

1.3 Results and brief analyses from Wells (2007) 

The final sample size in Wells (2007) for survival analysis was: 

Dickcissels(from 

69 broods) 

 Meadowlarks(from 

30 broods) 

 

Year 2002 40 Year 2002 17 

Year 2003 42 Year 2003 43 

Year 2004 73 Year 2004 48 

Total 155 Total 107 

 

 

 

 

The confirmed or estimated mortality rate for individuals: 
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44% of individual Dickcissels (n=69), 60 out of 69 died within the first week of 

fledging. 

28% of individual Meadowlarks (n=30), 27 out of 30 died within the first week of 

fledging. 

 

 

Other important observing results: 

Average body 

mass at the time 

of transmitter 

attachment 

Age associated 

with individuals 

confirmed or 

assumed dead 

Average body 

mass at the time 

of transmitter 

attachement 

Age associated 

with  censored 

individuals 

14.3g-15.1g 

(range: 9g – 27g) 

Dickcissels 

2.9days-4.1days 

(range: 0day-

29days) 

Dickcissels 

14.9g-15.5g 

(range:7g – 22g) 

Dickcissels 

29.5days-32.1days 

(range: 3days-

58days) 

Dickcissels 

42.4g-45.0g 

(range: 43.7g – 

46.3g) 

Meadowlarks 

4.2days-6.4days 

(range: 5days-

7days) 

Meadowlarks 

44.9g-46.5g 

(range: 29g – 59g) 

Meadowlarks 

38.5days-41.5days 

(range: 12days-

72days) 

Meadowlarks 

 

These results above in Wells (2007) had proved the importance of body condition 

on the probability of individual survival. In other word, Wells’ study had 

estimated or assumed that the heavier individuals had an advantage over the 

lighter individuals. 

 

We know that by using the Cox model, there might be a lot of more covariates 

that do not affect the hazard rate. Therefore it is desirable to work with as less as 

covariates as possible. However, the results from Wells(2007) show that there are 

still some covariates included. The reason for that spurious variables are often 

included(especially AIC) is that because as far as model performance is concerned, 

it is a lot worse to exclude an important variable than to include a spurious 

variable. As a result, in the evolutionary process, a model that contains all the 

important variables will have a higher fitness score than a model that does not 
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contain all the variables, because all other spurious variable in the model will be 

regarded as important.  

 

Wells(2007) used AICc to test the pattern of survival. For AIC, the lower fitness 

score means the better. Generally, the AIC is: 

 

AIC = 2p – 2ln(L) 

 

Where p is numbers of parameters and L is the maximized likelihood function for 

the estimated model (pattern in Wells). And as we mentioned above, AICc is used 

here, which is AIC with second order correction for small sample size: 

 

AICc = AIC + 
       

     
 

 

AICc will converge to AIC when n becomes large. (Results are shown in TABLE 

1 and TABLE 2 in Wells(2007)) 

 

 

 

1.4 Difference between Wells et al. (2007) and Cao et al.(2009) 

Wells(2007) used each individual bird as the observation unit and Cao (2009) 

used each nest as the observation unit. 

 

Cao(2009) used the same data that Wells(2007) had collected, but analyses by 

using another statistic method: the Hierarchical Bayesian approach. 

The main idea in Cao(2009) is they proposed a Bayesian hierarchical model, and 

this model is easier than the Cox model in Wells(2007) to be applied in the nest 

survival study with unknown nest ages, double interval censored and left-

truncated data, and some other nest-specific covariates. 
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Cao(2009) pointed that the Bayesian model does not need continuous time 

measure as the Cox model, it only needed the number of days that a nest is 

required to survive and the following information of every observed nest:  

a. The outcome of the nest, either success or failure 
b. The date of the first encounter 
c. The date of the second-to-last revisit 
d. The date of the last revisit 
e. The specific value of covariates 

 

Cao(2009) assumed that let J is total days required for a nest to survive 

successfully, n is the total observed nests, and k is the kth observed nest. Then 

they defined Uk and Tk to be the nest age at the first discovery and the nest age at 

the outcome of the kth nest respectively, and they are both positive discrete 

variables, measured in days. Let Tk = J + 1 if the nest is a success. Under an 

irregular visiting schedule, it is obviously helpful that we let [ULk URk] to be the 

lower and upper interval for Uk, and let [TLk TRk] to be the lower and upper 

interval for Tk . This is so called double interval censored data. 

The nests would be categorized into three different groups: 

1. Undiscovered nests, which means U > J . 
2. Truncated nests that failed before thery were even discovered: T < U <= J . 
3. Observed nests, U <= T  

 

Because only observed nests were recorded in the data, therefore the nest survival 

data were truncated.   

 

And Cao(2009) let: 

                         δi = P(U = i|U ≤ J) for i = 1, 2, …… , J, 

                  qjk = P(Tk = j) for j = 1, 2, ...... , J + 1; k = 1, 2, ...... , n. 

 

δi is the conditional probability that nest age at first encounter is i given that the 

nest is discoverable. qjk(j ≤ J) is the kth nest’s failure probability at age j, and the 

nest success probability for the kth nest is q(J + 1)k.(Because for the failure 

probabilities, both the age effect and the nest-specific covariates are different for 

each nest, so we have to consider this fact and therefore each q is different, that’s 

the reason we mark a second lower index for each q.) Then the following 

equations are: 

 

δ1 + δ2 + ... ... + δJ = 1 
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q1k + q2k + ... ... + qJk + q(J + 1)k = 1 

 

Consider the nests are discovered at age i and would either be failed or be 

succeeded at age j, then the probability for these nests are δiqj. If Cao(2009) set 

the exact discover age to be Uk and set the exact outcome age to be Tk for the kth 

nest, then the kth nest has probability  

 

 

   
    

∑         
⁄ . 

with the fact that the nest is already active when it is first found in the study area. 

The denominator above could be rewritten as: 

 

∑           = ∑  ∑    
   
   

 
       

 

We will also define  

δ = (δ1 , δ2 , δ3 , ... ... , δJ)’ 

 

and 

q = (q11 , ... ... q(J+1)1 , ... ... q1n , ... ... q(J+1)n)’ 

 

Therefore the Cao(2009) concluded that the likelihood function of δ and q given 

observed data and variables is: 

 

L(δ , q ; data, variables) = ∏
   

    

∑         

 
    

 

Cao(2009) also introduced two variables to help people understand the double 

interval censoring: Let Z1k be the number of days from the encounter of the kth 

nest to its second-to-last visit and let Z2k be the number of days for the kth nest 

from the second-to-last visit to its last visit. If the nest is observed to be a failure, 

then: 

 

1 ≤  Uk  ≤  J - Z1k  and  Uk + Z1k  ≤  Tk  ≤  min(Uk + Z1k + Z2k , J). 
 

If the nest is observed to be a success, then: 
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J - Z1k – Z2k  ≤  Uk  ≤  J - Z1k   and  Tk = J + 1. 

 

Cao(2009) have given us a simple example to help us understand the setting 

above. It supposed that Z1k = J – 4 and Z2k = 2, then  

 

J - Z1k = J – J + 4 = 4, 

Uk + Z1k = Uk + J – 4, 

Uk + Z1k + Z2k = Uk + J – 2 

and   

J - Z1k – Z2k = 2, 

J - Z1k = J – J + 4 = 4, 

 

so if we put the results above back to the inequality for Uk and Tk , we have: 

 

1       ,   + J – 4                     

 

for the nest is observed to fail and : 

 

2       ,    = J + 1 

 

for the nest is observed to succeed. 

 

From here Cao(2009) used a set Vk which is supported from (Uk , Tk) that are 

defined from the inequalities above. It is said that Vk then is a set of encounter and 

termination ages that could not be cancelled out by the observed data of the kth 

nest. With (u0, t0) is a possible realization in the Vk to determine the probability 

mass function:  

 

P(Uk = u0, Tk = t0) = 
       

∑             
 , 

 

And Cao (2009) defined a multinomial logit transformation, which is: 

 

log
  

  
 = Ei , for i = 2, 3, ... ... , J, 
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log
   

       
 = Aj +    

 β, for j = 1, 2, ... ... , J . 

 

where Ei is the age effect on the encounter probabilities and Aj is the age effect on 

the failure probabilities,     is the vector of covariates the β is the vector of 

regression parameters. Also it is easy to see that this transformation has given the 

right hand side’s parameters the range from minus infinity to plus infinity (-∞. +

∞). 

 

With some calculations we have the followings: 

 

δi = 
   

  ∑    
 
   

 , for i = 2, 3, ... ..., J , 

 

δ1 = 
 

  ∑    
 
   

 , 

 

qjk = 
         

 β

   ∑          
 β 

   

 , for j = 1, 2, ... ..., J , 

 

q(J + 1)k = 
 

   ∑          
 β 

   

 . 
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2. Information in Cao et al. (2009) 

2.1 Introduction on the Hierarchical Bayesian Method: 

According to Bayes’theorm, we have the following conditional probability:  

 

P(H|E) = P(E|H)P(H) / P(E) 

 

where 

 H represents a specific hypothesis, which may or may not be some null 

hypothesis. 

 P(H) is called the prior probability of H that was inferred before new 

evidence, E, became available. 

 P(E | H) is called the conditional probability of seeing the evidence E if the 

hypothesis H happens to be true. It is also called a likelihood function 

when it is considered as a function of H for fixed E. 

 P(E) is called the marginal probability of E: the a priori probability of 

witnessing the new evidence E under all possible hypotheses. 

 P(H | E) is called the posterior probability of H given E.  

 

And the hierarchical Bayes method is a useful and powerful tool for expressing 

the rich statistical models that could more fully show many given problems than a 

simper model could. In other words:  

For given data x and parameter β, the simple Bayesian analysis will start with a 

prior probability p(β) and likelihood p(x|β) to calculate a posterior probability 

p(β|x) by using its relation to  p(x|β) p(β). 

Usually the prior on β depends on another parameter y that are not being noticed 

in the likelihood. Then we must replace a prior p(β) with a prior p(β|y), and then 

the a posterior probability could be rewritten as : 

p(β,y|x) related to p(x|β) p(β|y)p(y) 

This is the simplest example for hierarchical Bayesian model. Therefore we know 

the basic idea in a hierarchical model is that when you look at the likelihood 

function, and decide on the right 

http://en.wikipedia.org/wiki/Prior_probability
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priors, it may be appropriate to use priors that themselves depend on other 

parameters not mentioned in the likelihood. These parameters themselves will 

require priors, which themselves may (or may not) depend on new parameters. 

Eventually the process terminates when we no 

longer introduce new parameters. 

 

Two sample illusions to show the simple Bayesian model and the hierarchical 

Bayesian model by using DAG(Directed Acyclic Graph): 

Sample 1 

 

x is stochastically dependent on X and ζ in this model above. 

 

Sample 2 

    

The new red part of the above diagram indicates the new hierarchical structure, 

and we can clearly find out that W and V are not going to be part of the likelihood.  

 

2.2 Priors 

2.2.1 Something about Inverse gamma prior 

The probability density function for inverse gamma distribution is : 
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Where we have two parameters α and β, α is the shape parameter and β is the 

scale parameter. It is called inverse gamma because if Χ ～ gamma(α, β), then 1 / 

Χ ～ inv-gamma(α, 1/β). Let Y = 1 / X, with application from the transformation 

theorem, we will get: 

 

            fY(y) = fX(1/y)   | 
 

  
y

-1
| 

                     = 
 

     
α         exp( -βy) y

-2
 

                     = 
  

    
                  ) 

 

And for moments of inverse gamma, we could calculate for Χ ～ inv-gamma(α, β) 

and if α > n: 

 

      E(X
n
)  =  

  

    
  ∫                ⁄     

 

 
 

                 = 
  

    
  ∫               ⁄     

 

 
 

                 = 
  

    
  ∫               ⁄     

 

 
 
      

       
      

      
 

                 =  
  

    
 
      

     ∫
 

        

      

      
       ⁄    

 

 
 

                 =  
  

    
 
      

       

                 = 
  

    
  
      

    
 

                 = 
         

                   
 

                 = 
  

             
 

It is easy for us now to get the expectation and variance from here: 

 

E(X) = 
 

   
,  E(X

2
) = 

  

          
, and 

Var(X) = E(X
2
) – (E(X))

2
 = 

  

           
. 

 

Inverse gamma distributions are often used to be a conjugate priori in Bayesian 

studies when likelihood is related with exponential families. For example, if we 

have an observation with   X|μ～ exponential(μ), and μ is an inverse gamma 
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distributed, we will get the posterior distribution on μ given X = x is proportional 

to: 

 

  

  
exp (   ⁄ )

 

            ⁄   = 
 

    exp(       ⁄   

 

 

2.2.2 Intrinsic autoregressive priors or IAR(2) prior 

Before we continue to discuss about the selecting of the priors for the hierarchical 

Bayesian model, we have to make some explanations on the term of IAR(2) prior, 

or so called intrinsic autoregressive priors. 

 

Clayton(1994) defined IAR(2) prior as: an autoregressive prior specification for 

the baseline rates, in which the expected value for each   
   

 is predicted by a log-

linear extrapolation from its two immediate predecessors,   
     

 and   
     

, plus a 

random perturbation     . In the mathematical form, we could write this like: 

 

log   
   

 = 2 log   
     

 – log   
     

 +     , t = 1, 2, ... ..., T and t > 2. 

 

And the side condition is that      is not too large, with:  

 

     ～ N(0,   ) 

 

The hyperparameter    means the smoothness; the small values allow baseline 

rate to be smoother, while the large values allow rough variation. If the value of 

 is 0, which tells that a log-linear relationship between baseline rates and time. 

Gelman(2006) says that if    has an inverse-gamma prior distribution, then the 

conditional posterior distribution is also inverse-gamma. This is a very good 

choice for the hierarchical Bayesian model, and indeed from Cao(2009),      is 

assmumed to be inverse-gamma prior. 
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2.2.3 Specification of Prior Hyper-parameters 

Cao(2009) assumed many things, and for the hyper-parameter specification, it set 

(  ,     from the inverse gamma prior for    to be (2.0, 1.0), to give inverse 

gamma prior an infinite variance. And Gelman(2006) recommended that uniform 

priors on  
 

  and   itself could be useful for hierarchical variance parameters, it 

stated that ‘in fitting hierarchical models, we recommend starting a non-

informative uniform prior density on standard deviation parameter’. And during 

the simulation and data analysis in Cao(2009), the two choices of uniform priors 

are resulting almost the same outcome. 

 

Variance for   is also a hyper-parameter, we use    to notify. Cao(2009) set    = 

10 to serve as large variance. Gelman(2006) said that for the inverse-gamma(a,b) 

family of non-informative prior distribution, if the variance parameter is too 

small(near zero), the result will be very sensitive. And Cao (2009) also examined 

different values of    s, and little inference sensitivity were found after a 

reasonable large     Therefore, a normal prior with zero as mean and 10 as 

variance is chosen as a non-informative prior for the regression parameters 

 

2.3 All about the full conditional posterior distributions 

There are different types of priors in Bayesian method; usually we have 

informative priors and uninformative priors. An informative priors could be 

explained from its name, this kind of priors have definite information about 

variables. A simple example is that a prior distribution for the people died in 

traffic accident next year, the reasonable way to estimate is that we could make 

the prior to be a normal distribution with expected value equal to this years’ death 

from traffic accident and the variance equal to a fixed value (an average value we 

choose from year-to-year traffic accident death variance). An uninformative prior 

expresses vague or general information about a variable, it could express the 

variable’s information such as the variable is less than average or the variable is 

positive. 

 

 

Three priors have been pointed out in Cao (2009), they are: 
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β = (β1 , β2, …… , βp)
’ 
, A = (A1 , A2, …… , AJ)

’ 
, and E = (E2, E3, …… ,EJ)

’
 

 

And Cao assumed that β
’
s are independent and one stage normal prior, which is 

written as: 

 

βi ～ N(0, sβ),   i = 1, 2, …… , p, 

 

where β is the vector of regression  parameters and we set sβ to be a fixed value. 

 

A and E are the so called second-order difference IAR(2) priors on the age effects 

of the nests, and the nest survival curse is mainly estimated by the nest age. A and 

E are basically the second-order random walk smoothness priors, written as: 

 

Aj = 2Aj-1 – Aj-2 + εj , j = 3, …… , J 

 

A is the age effect on the failure probabilities and A prior assumes that there is an 

unknown smooth function fits the nest survival curve. 

 

Ej = 2Ej-1 – Ej-2 + θj , j = 4, …… , J 

 

E is the age effect on the encounter probabilities and we also assume smooth nest 

encounter probabilities.  

 

With i.i.d. Gaussian errors: 

 

εj ～ N(0, η1),  and  θj ～ N(0, η2), 

 

And the diffuse priors (Diffuse prior definition: In Bayesian inference, a prior 

probability density function that reflects little or no information regarding the 

value of an unknown parameter): 

 

p (A1) ∝ 1,   p (A2) ∝ 1, 

 

The IAR(2) priors means that Aj and Ej are depend on its two immediate 

neighbors, this also tells us that the estimation could borrow strength and the 
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estimated survival curve is going to be smooth. The IAR(2) priors have the 

following density function written in the vector format: 

 

For A prior,       [ A︱η1 ] ∝ 1 / (η1)
(J-2)/2 

· exp ( -1/2η1· A
’ 
VA A ), 

 

And for E prior,    [ E︱η2 ] ∝ 1 / (η2)
(J-3)/2 

· exp ( -1/2η2· E
’ 
VE E ), 

 

Where VA and VE are the matrixes which could be written as: 

 

VA = C
T 

C , VE = D
T 

D , 

 

C and D are tridiagonal matrixes with constant diagonal elements (In linear 

algebra, a tridiagonal matrix is a matrix that is "almost" a diagonal matrix. To be 

exact: a tridiagonal matrix has nonzero elements only in the main diagonal, the 

first diagonal below this, and the first diagonal above the main diagonal).  

 

In Cao(2009), it also states that (VA / η1) and (VE / η2) are two IAR(2) precision 

matrixes, with VA has rank J – 2 and VE has rank J – 3. Additionally, Cao(2009) 

defined that the IAR(2) priors are improper. 

 

The variance parameters η1 and η2 are controlling the degree of smoothness of the 

survival and encounter curves, and they are assumed to be inverse gamma priors, 

which are written as: 

 

ηi  ～  IG (ai , bi) ,  i = 1, 2, 

 

Where ai and bi (i = 1, 2) are fixed values. 

 

Example of calculations about priors for j = 1, 2, 3 (J=3): 

 

Aj = 2Aj-1 – Aj-2 + εj 

    

εj = Aj - 2Aj-1 – Aj-2 
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( 

  
  
  

)  =( 
  

      

         

) 

 

=(
   
    
    

) ( 
  

  

  

) 

 

the matrix C
T
 is (

   
    
    

),  C then is (
    
    
   

) 

 

VA = C
T 

C = (
   
    
    

)·(
    
    
   

) = (
    
     
    

) 

 

because we have [ A︱η1 ] ∝ 1 / (η1)
(J-2)/2 

· exp ( -1/2η1· A
’ 
VA A ), so set in all the 

numbers and we will get : 

 

[ A︱η1 ] ∝ 1 / (η1)
1/2 

· exp ( -1/2η1· A
’ 
VA A ) 

 

Where A
’ 
VA A will be : 

 

(       )·(
    
     
    

)·( 
  

  

  

) 

 

= 6  
  + 5  

  +   
  - 8     - 4     + 2     

 

 

Take a new example for J = 4 and we have:  

 

                           

( 

  
  
  
  

)  ( 

  

      

         

         

) 
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The matrix C
T 

is: 

 

(

  
   

  
  

   
  

  
   

) 

 

And the matrix C is: 

 

(

   
  

  
   

  
  

   
  

) 

 

VA = C
T 

C will be: 

 

(

   
   

  
  

   
  

   
   

) 

 

Then for [ A︱η1 ] ∝ 1 / (η1)
 
· exp ( -1/2η1· A

’ 
VA A ) 

 

Where A
’ 
VA A will be:  6  

  + 5  
  +  

 - 8    -4    +2        
 -8     

      

 

2.3.1 The full conditional posterior distribution of the encounter age effect E 

The full conditional posterior distribution is proportional to the product of the 

likelihood function and the parameter’s prior. As we know from before, the joint 

prior for E = (E2 , E3 , …… , EJ)’ is an IAR(2) prior, then the prior distribution of 

El (l = 2, 3, …… , J) is a normal distribution with: 

 

   
 = - 

∑         

   
 ,       

 = 
 

   
 

 

where     is the element of the precision matrix 
  

  
. 
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We now rewrite the prior for El, as we noted before, we have: 

 

[ E︱η2 ] ∝ 1 / (η2)
(J-3)/2 

· exp ( -1/2η2· E
’ 
VE E ) 

 

When we think about the posterior, we only take consideration on the part of the 

prior that proportional to the posterior, which here is the exponential part:  

 

exp( -1/2η2· E
’ 
VE E ) 

       

We take a close look, and we find out that: 

 

 
 

 η 
       =  

  

 η 
     

=       (   -    
)’ (   -    

) 

=   
 

      

 (   -    
)’ (   -    

) 

=  
 

      

 (   -    
)
2
 

=   
         

  

      

 

 

l = 2, 3, …… , J, 

 

And we have the likelihood: 

 

L (                    = ∏
   

    

∑         

 
    

 

so the conditional posterior distribution of encounter effect El given parameters is: 

 

[   | .] ∝ ∏
   

    

∑         

 
      exp{  

         
  

      

 } 

 

∝   ∏
            

∑          

 
      exp{  

         
  

      

 } 

 

∝   
     

∏      
          

 
   

  exp{  
         

  

      

 } 



Master of Science in Statistics  

Page 21 

 

l = 2, 3, …… , J, 

 

where: 

 

   = ∑          
   , 

 

    = ∑    
   
   , 

 

       = 1.0 + ∑     
       

   
    

 

and      is the indicator function. 

 

2.3.2 The full conditional distribution of the survival age effect A 

Like we did for encounter age effect E, we will do the exactly same steps to find 

the full conditional distribution of the survival age effect A. We know from before 

too that joint prior for A = (A1 , A2 , …… , Ai)’ is an IAR(2) prior, then the prior 

distribution of Aj (j = 2, 3, …… , J) is also a normal distribution with: 

 

   
 = - 

∑         

   
 ,       

 = 
 

   
 

 

where     is the element of the precision matrix 
  

  
. 

 

 

We rewrite prior of A: 

 

[ A︱η1 ] ∝ 1 / (η1)
(J-2)/2 

· exp ( -1/2η1· A
’ 
VA A ), 

 

Then look at the exponential part: 

 

 
 

 η 
 A'    =  

  

 η 
 A'  

=       (   -    
)’ (   -    

) 
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=   
 

      

 (   -    
)’ (   -    

) 

=  
 

      

 (   -    
)
2
 

=   
         

  

      

 

 

j = 1, 2, 3, …… , J, 

 

And we have the likelihood: 

 

L (                    = ∏
   

    

∑         

 
    

 

So the full conditional posterior distribution of survival age effect Aj is: 

 

[   | .] ∝ ∏
   

    

∑         

 
      exp{  

         
  

      

 } 

 

∝   ∏
         

   

∑  
        

 
      exp{  

         
  

      

 } 

 

∝   
 
    

∏      
       

 
   

  exp{  
         

  

      

 } 

 

j = 1, 2, …… , J, 

 

where: 

 

   = ∑          
   , 

 

    =    
 β ∑ δ 

 
   , 

 

    = 1.0 + ∑     
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2.3.3 The full conditional posterior distribution of   

From the priors we know that  ’s are set as independent and they have one-stage 

normal prior with expectation zero and a fixed variance value   . 

 

Because the normal distribution are conjugate distribution, the posterior 

distribution of   is also normal distribution. Then we have: 

 

[   | .] ∝ 
     

∏      
           

   

       
  

   
 ,    i = 1,2,……,p, 

 

Where : 

  

   = ∑           
 
    

And 

     ∑     

   

 ∑      

   
 

 

xki is the ith element of xk. 

 

2.3.4 The full conditional posterior distribution of the τi 

We recall that ηi are the variance components that control the smoothness of the 

survival and encounter curves and they are assumed to be:  

 

ηi  ～  IG (ai , bi) ,  i = 1, 2, 

 

From hyperparameter specification we know that ai and bi are already assumed in 

order to give ηi an infinite variance. Combine these information with the two 

IAR(2) priors we have, the followings are shown: 

 

(η1 | .) ～ IG( 
   

 
   , 

 

 
∑                

    
         

(η2 | .) ～ IG( 
   

 
   , 

 

 
∑                
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2.3.5 Existence of posterior distribution 

Because very little has been done by way of verifying the existence of posterior 

distributions resulting from improper priors, therefore it is also hard for us to find 

the necessary and sufficient conditions that could prove the existence of posterior 

distribution. However, Cao (2009) did some proof under certain conditions, which 

is not very relevant to this thesis’ main topic. I will explain it in Appendix at last 

for the readers who have the interests. 

 

2.4 Simulation study results and analyses from Cao(2009) 

The simulation study consist a sample size equal to 300 of each type of bird, and 

Cao(2009) generated 100 samples from the pool. Cao(2009) assumed there were 

two independent covariates and 300 pairs of the covariates observation were 

extracted from uniform distribution            . And the regression parameters 

      were assumed to be 0.9 and -1.1 respectively.  

 

Beside the generated values, Cao(2009) used the true values of the survival age 

effect A and the encounter age effect E based on the real data analysis results. 

And the true encounter and failure probabilities were calculated from: 

 

δi = 
   

  ∑    
 
   

 , for i = 2, 3, ... ..., J , 

 

δ1 = 
 

  ∑    
 
   

 , 

 

qjk = 
         

 β

   ∑          
 β 

   

 , for j = 1, 2, ... ..., J , 

 

q(J + 1)k = 
 

   ∑          
 β 

   

 . 

 

And there was another condition that in each sample, the data were generated for 

300 nests under a schedule of visit-every-three-days. 
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Gibbs sampling with 51000 cycles were selected as the computation tool, with the 

burn-in was 1000. The result was: 

 

  True value Mean √    

   0.9 0.8960 0.3524 

   -1.1 -1.0848 0.3599 

 

The mean and √    values from above table were the Bayesian estimates of 

          over the 100 samples. It is straight to see that the estimates are unbiased 

and significant.  

 

 

As we see from the figure about two estimated survival probabilities of two 

different nests, we could easily get the difference, the first nest had lower survival 

probabilities than the second one. And another good thing showed from this figure 

is that the estimated value followed the true survival curve quite precisely.  

 

 

 

There were the simulation results for the nest success probabilities: 

 

Nest NO. True      Mean est. of 

     

      √MS  
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1 0.2673      0.2710      0.0462 

2      0.4899      0.4848      0.0553 

3      0.3765      0.3738      0.0332 

               4      0.2182      0.2199      0.0292 

5      0.2574      0.2577      0.0319 

  

There were only the first five nests’ result on the table, but the true value and the 

estimated value were all within 1% difference, these were very well estimated.  

 

Cao(2009) also did another simulation with lesser sample. The lesser sample 

conducted with 100 as the sample size and the results for the estimations of   s 

were still unbiased, but the √    

Increased from 0.35 to 0.52, however, the estimated survival curves matched the 

true survival curve closely again. This showed that this was a good model 

(Cao(2009) told that all 300 nests had a very satisfactory estimated survival 

curves).  

 

The data collected by Wells(2005) was the core to this section and Cao(2009) 

used Bayesian hierarchical model with nest-specific covariates to analyze it. In 

this data set, there were 217 observations valid in total and there were six nest 

specific covariate measurements recorded for the surrounding vegetation of the 

nest immediately when an outcome occurred.   

These six were: 

  : percentage of grass cover, 

  : percentage of litter cover, 

  : percentage of forbs(a type of herb) cover, 

  : percentage of woody cover, 

  : height (cm) of the tallest plant, 

  : distance to the nearest woody plant within one meter of the nest, 

 

In Cao (2009), the deviance information criterion (DIC) is chosen to select the 

proper subset of the covariates. The DIC provides a Bayesian measure of model 

fit and complexity and the smaller value of DIC means the better models. To 
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understand the DIC, we first need to find deviance D(β), where β is the unknown 

parameter: 

 

D(β) = -2log(f(y|β)) + C 

 

f(y|β) is the likelihood function and C is a constant but will be cancelled out 

during the calculation. 

 

Then we need to know the expectation of deviance which is: 

 

Ð = E
β
[D(β)] 

 

And the effective number of parameters of the model is : 

 

pD = Ð - D(β) 

 

Finally the DIC is : 

 

DIC = pD + Ð = Ð - D(β) + Ð = 2 Ð - D(β) 

 

This is only a brief definition about DIC, we will explain it with more details later 

in this thesis. Now we look back to the six different covariates we have here, and 

we examine thought all the different combinations of the covariates in the linear 

model: 

 

log
   

       
 = Aj +    

 β, for j = 1, 2, ... ... , J . 

 

The figure below shows the different DIC scores with different numbers of 

covariates. As we have shortly noticed above: lower DIC score suggest better 

model. From the figure, it appears that subsets (X1, X5) and (X1, X3, X5) are the 

better fit. Cao(2009) also examined models with interaction term and quadratic 

terms, the result turned out that those models with different terms were not good 

enough, this was the proof that a linear model was adequate. Then Cao(2009) 

chose the model with covariate X1 and X5 to be the final one not only because it 
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had the lowest DIC score, but also it was simpler compare to another model 

candidate.(model with covariates X1, X3 and X5) 

 

 

When the model is chosen, we have to consider the regression parameter  , and 

the estimate of it. To help readers understand the meaning of regression parameter, 

the following expression was given in Cao(2009): 

 

 

   
       

⁄

   
       

⁄
 = 

          
   

          
   

 = 
       

   

       
   

 

 

This expression showed that the value     was an odds ratio, this means that if we 

assume that the other covariates remain the same, the value of     would be the 

ratio of the odds that a nest failing at a certain age against the nest failing at the 

same age but with one less covariate   . 
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One example was given in Cao(2009): Assume that we have two nests A and B, A 

has X1 = 20% and X5 = 67cm, where B has the same X1, but X5 = 66cm. The 

failing probability at age one for A is 0.04348 and the nest success probability is 

0.26109. For nest B, the failing probability at age one is 0.04374 and the nest 

success probability is 0.25661. We take those numbers back into the expression 

we have, it becomes: 

   
       

⁄

   
       

⁄
 = 

       
       ⁄

       
       ⁄

 = 0.976, 

 

And: 

 

0.976=     =        , 

 

Then we have    = -0.024. The estimated regression parameter is negative means 

two things: One is that a negative   is favorable for the nest survival; in this 

example, X5 is the height of the tallest plant in the observing area, and it is correct 

for Dickcissels to have a better survival rate with taller plant in the neighborhoods, 

because higher plants would minimize the chances for predators to catch their 

nests. Second thing to notice is that with a negative estimated regression 

parameter, the larger value of the covariate, the higher survival probability.  

 

Cao(2009) also estimated    , which is the regression parameter for X1, the grass 

cover percentage of the observing area.    was positive and have the value 0.012, 

it may look strange to our common knowledge that for a grassland bird that the 

grass covering percentage have negative effect on its nest surviving rate. The truth 

is the main threat to the bird nests in that area are the predators like snakes and 

small mammals, which usually are observed on moving outside or on the edge of 

the grass, but well hidden in the grass cover. This may explain why grass cover is 

negatively related to the nest survival rate. And from these two estimated 

regression parameters, Cao(2009) pointed out that the highlight of their study was 

the need of higher plant or vegetation with minimal percentage of grass cover 

were the key to the nest survival for Dickcissels. 
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3. Further Studies 

3.1 Deviance information criterion 

There are many models today that are used to estimate the real world complexities 

of data, but not all of them are good enough. We wish that there could be a way 

which would compare the different models for us and eventually could identify 

the most fit model appear to describe the data information adequately. Generally 

within the classical modeling framework, this kind comparison normally takes 

place by defining a measure of fit, most of the time it is a deviance statistic; and 

by estimating the number of free parameters in the model, so called complexity of 

the model.  

 

When we briefly introduced the DIC in Cao(2009), the complexity measure    for 

the effective number of parameters in a model was mentioned. This quantity is the 

difference between the posterior mean of deviance and the deviance for the 

posterior estimates of the parameters of interest, Spiegelhalter(2002) also stated 

that    could be trivially determined by using MCMC. 

 

The posterior mean deviance  ̅ is meant to be the Bayesian measure of fit, it 

shows the adequacy or how adequate the model could be.  

 

The complexity of Bayesian model or even hierarchical Bayesian model could be 

very different if we choose the different prior distribution. The example is simple, 

if we choose a prior and parameterize it with unknown hyper-parameters  , the 

hierarchical Bayesian model we created will be: 

 

         =          |        

 

For this model, if we choose prior      and likelihood function       : 

 

     = ∫    |      
 

 d  

 

Or we can choose prior      and likelihood function       : 
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       = ∫    |     |  
 

 d  

 

Whatever we choose, it will lead us to the same marginal distribution: 

 

     = ∫    |      
 

 d  

 

But they two choices have different complexity because they do not have the same 

number of parameters. As a consequence for hierarchical Bayesian model, 

Gelfand and Trevisani(2002) stated that we cannot find a likelihood without 

defining the level of hierarchy of the model. This means that we would rather 

choose the existing parameter as prior and likelihood than the hyper-parameter, 

this is a way to reduce all models to non-hierarchical structure and reduce model’s 

complexity. 

 

Now here comes a new question: ‘How could we choose the better model to get 

the most accurate results?’. We know that it is very useful for us to have measures 

of fit and complexity, and try to combine them into overall criteria which would 

have better theoretical justification. However, we also feel that there won’t be a 

formula for model ‘selection’ because there are too many things we have to take 

into consideration before we could even use it. Spiegehalter(2002) have discussed 

this in section 7(A model comparison criterion). In his theory, both classical and 

Bayesian approaches will start with a concept of an independent replicate data set, 

this is not the observed data but by using the same data-generating system which 

gave the observed data. If we suppose the loss of a data set Y with a probability 

 ( | ̃) is  (   ̃), it is nature for us to select the model for  ( | ̃) with the 

least  (   ̃). Then a criterion is based on the estimate of            

                                               |   [ {             ̃   }]. 

With an optimistic estimated loss  (   ̃   ) that is suffered on re-predicting the 

observed y which gave rise to  ̃   . Efron(1986) defined the ‘optimism’ with an 

estimator   , then we have:   

 

            |   [ {             ̃   }]    (   ̃   ) +   (      ̃   ) 
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Spieghalter(2002) explained from here that both classical and Bayesian 

approaches to estimate the    would now be examined as a logarithmic loss 

function  (   ̃)        { ( | ̃)}. And the main difference for the classical 

and the Bayesian approaches were: The classical approach will attempt to estimate 

the sampling expectation of   , whereas the Bayesian approach will concentrate 

on a direct calculation of the posterior expectation of   . 

 

Although the Bayesian approach is the main point we should focused on, the 

classical approach has some foundations we have to take a look. From the 

Speeghalter(2002), we have an approximate forms for the expected optimism: 

 

         |   *  (      ̃   )+ 

 

Put this back to the expectation of the replicated data loss, we will have: 

 

            |   [ {             ̃   }]    (   ̃   ) +  ̃     

 

Efron(1986) again defined the expression for       both for exponetial families 

and for general loss functions, and paticularly for the logarithmic loss function 

which is very useful here: 

 

    
       ∑     (  ̂   )      

 

We could rewrite it as we could generalize Akaike(1973) under broad conditions: 

 

         

 

These classical criteria for general model comparison are thus all based on the 

equation of the expectation of the replicated loss functions, and more importantly 

could be considered as corresponding to a plugged estimate of fit, plus twice the 

effective number of parameters in the model. This is the basic structure we should 

adapt in the Bayesian context. 
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As we have discussed before, a deviance information criterion (DIC) could be 

defined as a classical estimate of fit, plus twice the effective number of parameters, 

which has the simplest form below: 

 

DIC = D  ̅  + 2   

If we look at this definition, it is very similar to the AIC and has the same 

structure of the classical criteria. However, if we rewrite it as: 

 

DIC =  ̅ +    

 

This is how we define DIC with a Bayesian measure of fit, added by an extra 

complexity term   . 

 

The following content will try to prove the DIC definition equations; it might be 

hard to understand for the readers. 

 

We have defined the equation of expectation of the replicated loss function, which 

is: 

 

            |   [ {             ̃   }]    (   ̃   ) +   (      ̃   ) 

 

By mimicking the Ripley(1996) and Burnham and Anderson(1998), and using the 

logarithmic loss function on the equation above, we get: 

 

  (      ̃   )               |   [           ( ̃)]   ( ̃) 

 

Where we have that: 

 

                          [ {           | ̃    }]             ( ̃)  

 

Because we now are taking a Bayesian perspective, we could replace the true    

with a random  . And with the condition that D is an unstandardized deviance 

(        ), we could now expand    into three terms: 
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   =         {       ( ̃)} , 

 

      (   ̃)  

            |  ,  ( ̃   )
 
             
  ( ̃   )

 
             
  ( ̃   )-, 

 

                         |  [     { (           |  )}]      {   |   } 

 

We could rewrite    with the knowledge that 

                 { (           |  )} and             |  (             
 )   , it then 

become: 

 

      (   ̃)    ,  ( ̃   )( ̃   )
 
-, 

                |  (             
  ) 

 

The    is supposed to be the Fisher information in            , and hence also in y. 

   then again could be approximately rewrite as: 

 

                            (   ̃)    ,   ̃
  ( ̃   )( ̃   )

 
- 

 

Now under a particular model assumption we could calculate a posterior 

distribution    |  , and then our posterior expected optimism under this model 

and the estimator  ̃ is: 

 

 

 

By using the posterior mean  ̅ as our estimator could change the expected 

optimism as below: 

 

  |         (   ̅
   )    |  {       }    , 

 

Where V is defined as the posterior covariance of  , and as we mentioned before  
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    ̅     ̅ , 

 

  [  |  {       }]    [  |  {       }]   , 

 

     (   ̅
   ), 

 

 

With all those conditions above, the expected posterior loss when adopting a 

particular model then would be: 

 

   ̅    |          ̅          

 

This proof above shows that the main idea behind the DIC from Speighalter(2002): 

Common standardization across models will leave unchanged the property that 

difference in DIC are estimates of differences in expected loss in prediction. 

 

The conclusion for DIC is, it could be treated as a Bayesian analogue of AIC 

because it has similar justification, however, the DIC has a much wider 

applicability than the AIC and therefore the DIC could be applicable to almost any 

class of model which involves negligible additional analytic work or contains 

Monte Carlo sampling. The DIC today is still a new thing but it deserves further 

investigation and promotion to be a tool for model selection and comparison. 

 

 

 

3.2 Mayfield method 

Mayfield method is another way of estimating the nest survive rate. Although it is 

not wildly being used by either biologist or statistician, it is the method that 

among those focused on the truncated data. Mayfield (1960) stated that the data 

that gathered for estimation were only those data we could observe, and there 

were data we could not able to observe and thus the predicted results were often 

over-estimated; he introduced a new observing units: nest days   and a simple 
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method. If the mortality rate is being calculated as                   

                                     
                         

                                  
  ,  

then the probability of survival is       . He also declared that there were five 

different parts of surviving calculation during the nest fledging, however the 

simple thing was by using his method to determine the survival probabilities for 

each five parts: P1, P2, P3, P4 and P5, and multiplied them together.  

 

The mathematics of this method seems quite friendly to us compare to the 

Bayesian method, but how accurate could Mayfield method be? Hensler and 

Nichols (1981) present an experimental situation for Mayfield; they used the 

maximum likelihood estimators of this experimental model and also used the 

Monte Carlo simulation to test them in order to compare them with the traditional 

method before Mayfield. They assumed that every nest they observe could be 

considered as a vector:           , where    is a random variable with value to 

be either 1 if the kth nest was successful or 0 if it failed during the observation;    

is a random variable that indicates the number of days that the kth nest needed to 

be either successful or failed. Under this conditions, the joint distribution of    is : 

 

     |   [       
 ]

 
*         ∑   

     
   +

   

, 

 

Where J is the total number of days that all nests need for their nesting process 

based on the Mayfield concept of ‘nest days’; p(0<p<1) is a constant probability 

for a nest to survive from day j to day j+1, this probability is unknown. Mayfield 

also called the value of    to be the nest succeeding probability; and    is also an 

unknown nest encounter probability for the Mayfield method.  

 

When we find out the log-likelihood function of this joint distribution, which is: 
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                                   ∏[        
 ]

  
    

 

   

     [∑    

 

   

]     

 ∑                  (  ∑  

 

   

)         

 

   

    ∏* ∑   

      

   

+

     

   

 

 

If we differentiate this with respect to p and we solve it, just like we do when we 

try to determine the maximum likelihood estimator, we could find  ̂  

 
∑   

 
    ∑   

 
     

∑   
 
   

 . 

Compare this to the Mayfield method; we easily notice that the Mayfield 

estimator is in fact the same as the maximum likelihood estimator. (Mayfield’s 

total number of nest days observed is    and the total number of failures is   

∑   
 
   ) 

 

The results from the test example on Hensler and Nichols (1981) indicated that the 

accuracy of the Mayfield method is limited. If the model we assumed at the 

beginning was not far from the real situation and the overall probabilities of 

survival were not low, the Mayfield method would be a better estimator compare 

to the traditional method. However, a basic assumption of the Mayfield method is 

that the daily failure hazard rate is constant. This assumption is obviously very 

unrealistic from the world we are lived in. If we want to get more accurate result 

from the data and thus find a better estimator, we have to take every small detail 

into consideration.  

 

3.3 Comparisons between Bayesian method and Mayfield method with some 

examples 

Like we have mentioned before, an unknown parameter is often estimated by its 

posterior mean in the Bayesian analysis because the posterior mean is the most 

accurate estimator of a parameter under a squared error loss. But this kind of 
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analysis often needs high dimensional integrations which are not so friendly for 

most of people. With the help of computer, He(2003) presented some examples to 

show the difference between the Bayesian method and the Mayfield method. 

 

   

 This is the first example with J = 24 and n = 30. The Mayfield estimate of the 

survival rate is much higher than the Bayesian one, and the Mayfield survival rate 

value indeed has smaller difference when compare to the sample proportion, 

which has the tendency to overestimate the survival rate. And here we could 

clearly look the Mayfield method assumed the daily hazard rate to be the same 

(0.0009); while the Bayesian method estimated different daily hazard rate. When 

we look at the day 23 and day 24, we notice that the significant survival rate drop 

for the Bayesian method, which is indeed indicates that the birds’ behaviors: when 

the first chick comes out from its egg, it starts to peck egg shells which would 

eventually kill other chicks by destroying the others’ eggs or get killed by 

predators who attracted by its pecking sound. 

 

This example was from an observed data set, He(2003) also introduced another 

example of two simulated data sets. 
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This is for the first data set, with J=21 and n=300. Because the Mayfield method 

assumes that the encounter probabilities are unknown, therefore only the Bayesian 

estimates are presented. From the figure, both methods have no significant 

difference on the estimated survival rate from day 1 to day 18, but from day 19, 

the Mayfield method starts to overestimate the survival rate which has over 10% 

difference compare to the true values; the Bayesian estimates have the same 

tendency as the true values. 

 

Another simulated data set with J=21 and n=300: 

 

 

Maybe the estimates will change if the sample sizes become smaller? Let’s cut the 

sample size to half: 
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Still not too much difference compare to the one with sample size 300. Let’s make 

it even smaller,  

 

 

 

From the data above, the tendency suggest that the estimates under the Bayesian 

method are better compare to the Mayfield, especially when the nest age are at 

their lastest stages.  
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4. Conclusion 

In this thesis, I study about the hierarchal Bayesian model and try to get a clear 

picture of it. The model itself is a better model compare to other existing models 

today; it clearly states that the more parameters we take into consideration, the 

more accurate result we will get; and furthermore because we could choose the 

priors and therefore we could also choose the difficult level of the model.  

 

Bayesian or hierarchal Bayesian methods are not easy for people without 

mathematical knowledges such as the higher dimensions of integration, this is the 

main reason that why it does not become a popular model. If we could develop a 

friendly IT software program that could make this model relatively easy for most 

people, this model could evolve into a new valuable tool for statistical analyses.  

 

But the suggestion at the moment is that for most nest data analysis today, the 

survival rates are having minor different from day to day until the last few days; it 

is reasonable to use easier model to estimate the first part of days’ survival 

probabilities, like the Mayfield estimates. And for the last few days survival 

probabilities, we could either use the Hierarchal Bayesian model if we require 

very accurate result or just lower the Mayfield estimates with respect to historical 

datas’ basic hazard rate which were estimated by the Cox model.  

 

DIC is a useful tool to analyse what’s the most important parameters for data. As 

we said before: DIC could be recognized as an Bayesian update of AIC, with 

similar justification but much wider applicability. Despite to its difficulty for most 

people to understand, we could use DIC and the hierarchical Baysesian model 

togather to find the real parameters that affect the data. 

 

There might be some kind of link between nest data and medical data, like the 

extensive usage from brid survival analysis to human survival analysis in the 

future when the method becomes more mature. Due to the lack of information on 

the medical data, the realistic usefulness of this model for medical statitistical 

analysis remains unknown. However, with more research and more effort, I 

personally believe that the Bayesian model would serve us better in the future. 

 



Master of Science in Statistics  

Page 42 

Appendix 

Appendix A: Simple proof of the existence of posterior distribution 

 

Before we start the proof, we need to make two conditions: 

Condition 1 is that there are at least three nests discovered at age one and there are 

at least three successful nests at the end;  

Condition 2 is that we define two matrix QE and QA, both to be full rank matrix 

with some special requirement(check Wells(2007) for details); 

 

We know that to prove the existence of the posterior distribution is the same to 

prove that: 

∫                      

 

 

Where                            |        |     |    and C is a constant  

independent of            . We learn that the likelihood is actually from a  

 

multinomial distribution with the given parameters: 
   

    

∑         
⁄   , and 

let Cx =     (   
  )   , 

 

   ∑          is the NO. of nests discovered at age one; 

 

   ∑            is the NO. of successful nests at the end. 
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For   , we then determine that: 
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And for   , we have: 
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After this, we rewrite it as: 

 

∫                              , if      

 

and 

 

∫                              , if      
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Where    and    are normalizing constants. 

It is easy from here to show that   ,   ,    and    are all less than infinty, which 

proves the existence of the posterior distribution. 

 

This is just the shorter version of the proof that Wells(2007) had showed, if 

readers wish to acquire more details about the existence of the posterior 

distribution, I recommand  to read the full proof from it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Master of Science in Statistics  

Page 45 

Appendix B: Additonal facts of the DIC 

PD is the effective number of parameters in DIC, as we have learnt that to choose 

the different prior would have change the PD and thus change the value of the DIC. 

But is the chioce of parameterzation would to have a strong effect for different 

type of priors?  

 

Section 5 and section 8 in Spiegehalter(2002) have tested this by choosing 

binomial, Poisson and Bernoulli priors and by observing the corresponding results 

of PD, the conclusion was a mixture. It seemed that for binomial and Possion 

priors, the parameterization didnt show any strong effect, however, as for the 

Bernoulli model, the result was different and the PD did affect much. The reason 

for this special behaviour of PD may have many explainations; PD may be only 

approximately invariant to the chosen parameterization, because the different 

fitted deviance D( ̅) could arise from replacing posterior means of an alternative  . 

This is like in the section 8 of Spiegehalter(2002) and could be important for 

Bernoulli data. If we use the posterior median as an estimator and use it to find PD, 

it may have little effect as there are two possible disadvantages if we do so: we do 

not know that PD will be postive and additionally there are some computational 

difficulties theoretically because the approximate properties which are based on 

the Taylor expansions may not hold.  So DIC today are recommanded that the 

calculations are based on several different estimators with a preference for 

posterior means that its parameterization obeying approximate likelihood 

normality. 
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