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Coefficient Alpha and the Expected Variance-Covariance Matrix
of Random Composite Measurements

Hans-Magne Eikeland,University of Osl01)

When coefficient alpha was introduced by Cronbach (1951),
it was as a special case regarded as an exact doterminatioi.J
of a particularly defined reliability coefficient, the coo£·­
ficient of equivalence.However,coefficient alpha more gener­
ally cl')nceived was described as an internal structure meas­
ure of tests,emphasizing a more independent role of alpha.
Also,it was pointed out that alpha could be considered an
estimate of the expected correlation between two tests drawn
at random from a pool of items,a universe of items,thus
anticipating more recent developments within test theory.

Nevertheless,coefficient alpha has continued to be conceived
of mainly as a computing form of tho equivalence coefficient
and has mostly been derived as such,or as a lower bound es­
timate of reliability.

Though describing and interpreting alpha,Cronbach (1951)
did not derive the coefficient. The derivation of alpha as an
internal consistency measure per se appears to have attracted
little attention in the test literature.With a conceptually
clear separation between coefficient alpha and the gener­
alizability coefficient as conceived by Cronbach,Rajaratnam,
and Gleser (1963) or a more generally defined coefficient
as conceived by Novick and Lewis (1967),it seems appropriate
that one should be concerned with deriving alpha as an
independent construct,standing on its own.

Within classical test theory coefficient alpha in its spe­
cial KR 20 form or in its general form as adopted by Cron­
bach (1951) has been derived as a computing form for the
parallel-form reliability by correlating rationally equi­
valent tests.Notable derivations within this tradition are
Kuder and Richardson (1937),Jackson and Ferguson (1941)9
Gulliksen (1950),and Tryon (1957).In this interclass cor­
relation type of derivation the concept of cO'}''lriance has
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been a central one in trying tn develop and explicate a
rationale fer coefficient alpha.

Alpha has also been derived by an analysis of varia~ce

technique,which represents an intraclass correlation type
of derivation.In the intraclass correlation approach we
apparently do not need the concept of rationally equivalent
tests in deriving the cnefficient.The first derivation of
this kind within classical test theory model was made by
Hoyt (1941),but he did not elaborate on alpha as an internal
oonsistency measure.

Within the framework of a domain-sampling test theory model
an analysis of variance rationale was adopted by Cronbach,
Rajaratnam,and GIeser (1963) in deriving alpha as a lower
bound estimate of the defined generalizability coefficient.
Their derivation,although not easily grasped by the un­
sophisticated reader,represents a deep penetration into the
logic and mathematics of alpha.

In the analysis of variance approach the concept of co­
variance,so useful in getting a feel for understanding the
meaning of alpha,is no longer apparent.Alpha derived as an
intraclass correlatinn coefficient has become somewhat ob­
scure,probably by applying a technique nf which the under­
lying rationale may ~ot be readily understood,and also by
using concepts that are not easily seen to be related to,
or how related to,covariance.For example,in the interclass
correlation approach we usually explicitly show that ob­
served-score covariance equals universe-score variance,
while in the intraclass correlation approach we are apt to
lose sight of this aspect by directly making use of concepts
like true-score variance,universe-score variance,or general
component variance without showing the linkage to the co­
variance concept in this particular technical context.

The purpose of the present paper is to describe an intuitive
and fnrmal approach to alpha that makes explicit use of a
covariance rationale in deriving the coefficient as an inter­
nal consistency construct within the framew~rk of a domain­
sampling test theory model.Particularly,the intention is to
rederive alpha as a generalization of Tryon's (1957) rec~)m­

mended form of the reliability of an unstr&tified compusite
without rescrt to correlating rationally equivalent com-
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posites and where the full consequence of the random-sampling
model is allowed for.Furthermore,the purpose is to show that
the covariance approach as here adopted is formally equi­
valent t~ the analysis of variance approach.Particularly,it
will be shown that what is called the general component
variance in the analysis of variance approach is just an­
other name for the expected covariance among items.

Essentially,nothing new is presented as the paper may be
said to draw considerably upon Tryon (1957) and Cronbach,

w
Rajaratnam,and GIeser (1963).Hoever,it is believed that the
discussi~n will help to make clear h0w an alpha construct
may be defined within a full-fledged random-sampling model
and how conceived of in terms of an inferred structural
property of the variance-covariance matrix. This basic
structure is more or less hidden in the analysis of variance
form,and alse in the traditi~nally usedcomputing for£falpha.

Tryon's derivation of alpha.

In classical test theory one frequently defineS reliability
in terms of covariance.As is well known,a product-moment
correlation can be written,

( ) - a(x'f)p x,y - a(x)a y) ,

which describes the correlation between x and y as the ratio
of the covariance between x and y to the product of the twu
standard deviations. When x and yare conceived of as parallel
tests,according to definition a(x) and a(y) are equal and
the correlation between the two tests becomes equal to the
reliability of one of the tests,

( ) ( ) a(x,x')
p x,y = p x,x' = 2'

a(x)

where the numeratur is the sum of covariances among test
samples2 ) fr0m parallel tests.

Tryon (1957) derived his general form of the reliability of
an unstratified composite,which equals alPha3~as a variant
of (2) where under random sampling assumptions the numerator
may be written as a function of the average covariance among
test samples in the given test,
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k 2-(. .)
p(x,x') = alpha(k) = ~(~)J ,where i ~ j

In the domain-sampling model Tryon correlated two randomly
drawn sets of test samples,each set consisting of k test
samples,with n0 one-to-one correspondence between test
samples in the two tests.Tryon thus changed from an item­
parallel model,or what might be called a fixed-parallel
m0del,t~ a random-parallel model which at first seemed to
solve a long-standing estimation problem in the numerator
t"f (2).

In the fixed-parallel model there are conceptually two
types of covariance among test samples,one among fixed­
parallel test samples,the other among random-parallel test
samples. The first type of covariance is naturally enough
assumed to be larger than the second type.As the interclass
correlation approach to the equivalence coefficient presumes
~ne given test and another hypnthetical test parallel to the
given one,there is no way 0f determining the covariance
among fixed-parallel test samples as there exists no such
pair 0f test samples.

While the estimation problem in the numerator of (2) within
a fixed-parallel model ~nly could be solved by making rather
restrictive and unreas~nable assumptions,as may be said did
Kuder and Richardson (1937),Jackson and Ferguson (1941 ),and
Gulliksen (1950),Tryon very elegantly came around the prob­
lem by his random-sampling m~del where there is only one
type of covariance,the covariances among random-parallel
test samples,which are determinable from the test samples
within the given test.

On the ~ther hand,Tryon in adopting his model ran into a
difficult prJblem concerning the denominator in (2),which
had caused no trouble in the classical model.In a full­
fledged random-sampling model test variances are not neces­
sarily equal.C)nsequently,nor does the product of the two
standard deviations necessalily equal thetest variance.In
order to escape this dilemma Tryon had to restrict his uni­
verse of random-parallel composites to sets of k randomly
drawn test samples with equal variances and intercorrelations.
Thus,Tryon ends up with a kind of Procrust~qn solution,and
he did not succeed in having a break-through in test theory.
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Another solution to Tryon's problem.

N0w,Tryon's solution might have taken a somewhat different
direction by allowing for unequal composite variances as
the model actually requires.Adopting a random-sampling
model and meeting the requirements of it,one may intuit
an expected value of the variances of all random-parallel
comp~sites in the defined universe,all with k test samples.

Correlating two rati~nally random-parallel composites
would give one an expected correlation coefficient where

the numerator is the sum ~f all k2 covariances,which all
are the same expected test sample covariance, and where
the denominator is the expected composite variance, being
the product of tw~ expected composite standard deviati0ns.

Thus,instead of determining alpha as an exact correlation
among comparable constructs in a Tryon sense,one can con­
ceive of alpha as an expected correlation among random­
parallel composites of k test samples each,

E(p(x,x'» = E(alpha(k» = k
2
E(cr(i,j» (4)
E(cr(x)2)

In (4) alpha is derived as an expected interclass cor­
relation and is in accordance with one of Cronbach's (1951)

interpretations of the coefficient.

However,what is now at issue, wanting to regard (4) as a
pure internal consistency estimate,is to construct (4) as
such by conceiving ~f a selfsufficient internal structure
rationale.We want to derive alpha as an expected intraclass
correlation where the concept of covariance is explicitly
accounted for.

Imposing structure on the expected test sample variance.

In using tests,or measuring devices generally,one is mostly
interested in observing individual differences.Reliability
studies are mainly concerned with establishing statistical
evidence that observed test variance is descriptive of real
differences in traits measured,and not attributable t() ran­
dom and irrelevant sources of variati~n.
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Having obtained only a single score by taking just one test
sample observation on a sample of persons,there is no em­
pirical basis to tell to what extent the distribution of
this score represents genuine trait differences among the
persons tested.Certainly,one can believe on a pure subjective
basis,as for example the test maker naturally will dn,that
this single score distribution is descriptive of individual
differences in the trait intended to measure.But this belief
can not be verified,nor falsified,on statistical evidence.
The belief reflects what Kelley (1942) called an a priori
act of judgment on the part of the test maker,a prior con­
ception of a construct to be checked by a quantitative
statement when enough data are gathered.

In order to make the quantitative statement on which to
base a conviction that one single score measure something
or nothing, one has to administer at least two test samples
believed to cover the same construct.To the extent that
thes-e repeated measurements covarY,one is according to con­
ventional practice prOVided with some statistical evidence
that the multiple measurement taps some common element
across the test samples administered, thus reinforcing the
a priori act of jUdgment that went intc the construction
of the test samples.

The statistical evidence thus obtained is the only basis
on which one can conclude that one test sample alone measures
something systematically.The statement is conditional in
that one has tn specify to which defined class of observations
this particular test sample belnngs.lt is only in relation to
other test sample scores that one can have some assurance
that a single test sample acc~unts for systematic variation.
Conceiving of belongingnesffi is the only way to give a test
sample a frame of reference,and it leads naturally to the
concept nf a universe of observations.This is a crucial con­
cept in generalizability theory as presented by Cronbach,
Rajaratnam,and Gles:er (1963).A defined universe of obser­
vations specifies what can be considered similar measures
a priori.A test of the coherence in this universe is the co­
variance among randomly drawn test samples from this uni-
verse.
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From the covariance among test samples one believes to
':1ave c

l basis for concluding to what extent one test sample
measures a trait that the other test samples also measure.
One specific test sample observation is probably of no
particular interest.Rather,one tends to be intereste~ in
ceej.ng to what extent one cJ.n expect whatever test sample
if3 dravm to share a common variance with all other similar­
ly defined test samples.

The average test sample covariance in the universe of ob­
servations,a pure conceptual value,is also the value ex­
pected' between two actually drawn test samples. This expected
covariance is now imp~sed ~n the expected test sample vari­
ance to indicate the capability of ~ne average test sample
observation to tap a trait c~mmon to all test samples with­
in a defined universe of observations.The expected test
sample variance is conceptually the average test sample
variance in the universe.Both the expected covariance among
test samples and the expected test sample variance are
estimable from randomly drawn test samples.

By imposing the expected C0mmon variance shared by all test
samples in the universe on the expecte~ test sample vari&nce,
it is clear that one ignores test sample covariances shared
by some test samples but n0t all.Also,it is apparent that
one ignores the variance specific to each test sample. The
common-to-some-test-samples variance and the specific-to­
each-test-sample variance are probably not reflecting vari­
ance attributable to traits of substantive interest in most
practical testing situations.

The imp,'sement of the expected test sample covariance on
the expected test sample variance leaves cne with a residual
which is the difference between the expected variance and the
expected covariance.By adopting this additive model, one has
implicitly assumed two orthogonal comp,-,nents,a compunent due
to the covariance, and another component due to ether less
common elements,specificity and a random error component.
The last component is thus a mixed-up component.
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The expected random composite variance-covariance matrix.

From what was said about the inferred structure of an ex­
pected test sample variance in the previous section,it sh0uld
come as no surprise that it is possible to conceive nf an
expected random composite v~rianc~-covariancematrix.

Insert Table 1 about here

By adopting the test theory assumptions as developed by
Lord and Novick (1968),Chapter 8,it can be shown that the
expected variance-c~variancematrix takes the form presented
in Table 1.Frnm this table one can derive two interesting
intraclass correlation coefficients.

Expected alpha(1) and the structure of the expected test
sample variance.

By having imposed the e:~pected covariance on the expected
test sample variance, one is left with a structured test
sample variance.As is evident from Table 1,this structure
can be written,

E(O(i)2) = E(o(i,j» + E(a(res)2) (5)

From (5) une can find what prop~rtion of the expected test
sample variance is accounted for by expected common variance,
or covariance,

E(p(I» = E(alpha(1» = E(o(i,j»
E(a(i,j»+ E(a(res)2)

= E(a(i,j»
E(a(i)2)

(6)

Both in structure and content (6) is an intraclass correl­
ation.Structurally,(6) is eAplained or systematic variance
over observed variance.As to content,(6) describes to what
extent observations within a class go tugether,on the avarage.
In the present context (6) may be interpreted tn describe
how capable one average test sample observation is in tapping
a defined universal trait. Structurally and functionally,
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(6) is equivalent to alpha( 1), 2.:::: clc~:'::;nec. by Crcnl\::c.Q) R.aj a­

ratnam,and GIeser (1963).

An estimation of alpha('1) can he obta~Lncc_ by t:-lldJl_g -~h8

average observed test sample covaricmce in C~ rancJ.OI'1 carr-·
posite over the average test c2Q~lo rarianco from the same
random composite,

alpha(1) = c(i,.J.L where i I- 4 (7)
v(i) , .

Expected alpha(ld and the structm1 e of the, expec"t()Q C',:11-­

posite variance.

More often than being concerned with alpha(1 );0ne is

interested in knowing to what extent a linear comoination
of k randAm test samples fr0m a defined univors2 of obser­

vati~ns is measuring some cnmm()n construct. One if) 5,n'cer­

ested in estimating how much c~mmon variance is running
through a random-parallel composite.

A composite vf k test samples has a total test variance
which is the sum of the elements in the test sample variance­
covariance matrix. There are k test sample variance'3 a!ld
k(k-1) covariances in this matrix.

A latent structure of an expected variance-covariance matrix
is n~w conceived of,based on the previous considerations of
how the expected test sample variance is structured~and

shown in Table 1.The best guess one can make as to the cu­
variances among randomly drawn test samples is the expected

c0variance in the universe.Thus,k2 expected covariances are
defined intn the matrix. According to the rati0nale developed

for the test sample variance structure, one should note that
the expected covariance also goes i.nt'-) the principal dia­
gonal.lnt~ the principal diagonal was also defined the ex­
pected residual test sample variance as an addi. tinn -~0 t~'1.e

expected covariance.

The expected composite variance can now be 'NrJ_ tten as a sum
of the conceptually s'~ructured variance-co'rar.:Lcmce matri_x,
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(8)

From (8) one can now find the proportion of commnn vari­
ance running through the c~mposite to t~tal c~mposite

variance by taking the weighted expected covariance ever
the sum of the expected variance-covariance matrix, which
is equal to expected test variance,

E(alpha(k)) = k
2
E(a(i,j)) (9)

k2E(a(i,j)) + kE(a(res)2)

Though not the traditional form of alpha,(9) is neverthe­
less: a form of the alpha coefficient. This will become more
understandable when we are going to discuss the relationship
between the covariance approach and the analysis of variance
approach.Functionally,(9) is common variance over total
variance,here expressed as an expected value because one is
committed to a random-parallel conception of composites.

In relation to (6),(9) is a stepped-up intraclass correl­
ation,whlch might be represented by the symbol p(k).

By rewriting the denominat~r in (9) as expected composite
variance,~ne arrives at an alpha(k) form which is structur­
ally the Tryon form of the reliability nf an unstratified
composite,

E( alpha(k) ) = k 2E(a(i,j))
E(a(x)2)

(10)

(10) is identical to (4) which is a more generally con­
ceived Tryon form.However,while (4) was derived by conaeiving
of a correlation am~ng tw~ random-parallel composites,(10)
is derived by conceiving nf a latent variance-covariance
structure ~f ~ expected compnsite variance-covariance
matrix only.

In estimating (10),one would compute the average covariance
amomg nbserved test samples in a random compusite and multi­
ply by k 2 to get the numerator. The obtained test variance of
a random composite should be the proper estimate of the
denominator. Thus, the estimation form of (10) becomes,

k 2-(. . \
alpha(k) = c l,JL (11)

Vex) ,

.1.
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which is Tryon's general form.While (11) is an exact deter­
mination of Tryon's reliability coeffioient under his more
restricted random-sampling assumptions,it is in the present
cnntext an estimation form of the expected internal con­
sistency of a random-parallel composite with full obser­
vation of the random-samplLlg asst;.mptinns.

The estimati0n f~rm (11) is inconvenient as a computing
form.For computing convenience the traditional alpha form
is the best one and oan easily be derived from (11),

alpha(k) = k
2
c(i,j) = k

2
EC(i,j) = k EC(izj)

Vex) k(k-1)V(x) (k-1) vex)

= (l) (1 _ Ev( i)) (12)
k-1 Vex)

While the traditional alpha form as given by (12) is a
convenient computing formula,it sh~uld though be clear that
(12) is more obscure as a ~efining formula than is (10).
The basic structural properties of alpha is reflected in
(10),while (12) is a derived form where the multiplier
k/(k-1) is arrived at by reducing.The obscurity of tradi­
tional alpha seems to be connected with this multiplier,
which sometimes is being interpreted without making the
meaning of alpha clearer. (For a recent example,see Nun­
nally (1967),195).

One of the most successful endeavors to make olear the
meaning of the traditional alpha f~rm might be Cronbach's
comments,

"This important relationship states a clear meaning
for alpha as k/(k-1) times the ratio of interitem
covaria~ce to total oovariance.The multiplier
k/(k-1) allows for the proportion of varianoe in
any item whioh is due to the same elements as the
covariance."(Cronbach 1951,305)

According to the rationale as devel~ped for arriving at
(9),it is clear that Cronbaoh's comments reflect an intuiti0n
whioh,although not developed fnrmally,is nevertheless correct.
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Numerical example.

Given a hypothetical data matrix, Table 2, where rows oe-­
signate persons and columns test samples.According to the

Insert TabJe 2 ab~ut here

preViously developed rationale one has to cf)mpute the
average covariance among test samples and the average test
sample variance to estimate the expected values.Then,in
order to find the residual variance one has to subtract the

Insert Table 3 about here

average covariance from the average test sample variance.
From Table 3 the average covariance is found to be 1,358
and the average test sample variance 1,725.Consequently,the
residual is 1,725-1,358 = 0,367.

An estimate of the structured expected test sample var5­
ance is thus,

v(i) = c(i,j) + veres) = 1,358 + 0,367 = 1,725.

While the average test sample variance is 1,725;1,358
of the tutal test sample variance is conside~ed

explained variance, "due to the same elements as the cova:J..~i­

ance",to quote Cronbach once again.

The ratio of the average covariance to the average test
sample variance is an intraclass correlation coefficient,
or alpha(1),

p(I) = alphn(1) = 1,358/1,725 = 0,787,

which is the estimated capability of one average test sample
to tap a common-to-a-defined-universe trait.

The sum of the variance-covariance matrix, Table 3,is 23,2,
which is the variance of the sum scores,X(t),Table 2.Accor~

ding to the defined covariance structure as given by (8),the
partitioning of the composite variance give,

Vex) = k2c(i,j) + kv(res) = 16(1,358) + 4(0,367)
= 21,73 + 1,47 = 23,20
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Common variance running through the composite/to total com­
posite variance gives,

alpha(k) = k
2
c(i,j) =
Vex)

alpha(k) tells that 0,937 of the composite variance can be
considered due to a genuine difference among persons in the
common trait measured by the instrument. (Insert Table 4)

For comparison,an analysis of variance of the same data mat­
rix is presented in Table 4.This is a Hoyt analysis.By ap­
plying the formulas as given by Winer (1962),124-132,one ob­
tains coefficients corresponding to alpha(1) and alpha(k),

alpha(1) = 5,800 - Q,367 = 0,787
5,800+3(0,367)

alpha(k) = 5,800 - 0,367 = 0,938
5,800

The results obtained in the analysis of variance approach
are identical to what is obtained by the covariance appr~ach.

As it is believed that it may be difficult to see how the
two approaches converge,next an exploration into this con­
vergence is appropriate.

The relationship between the covariance approach and the
analysis of variance approach.

In the analysis of variance approach to alpha, the E(MS) f~r

persons reflects the conceptual variance structure,

E(MS(p)) = ko(p)2 + o(pi)2

In the covariance approach the expected composite variance
is structured,

E(o(x)2) = k2E(o(i,j)) + kE(o(res)2) (14)

There is an obvious structural similarity between (13) and
(14),although coefficients differ and components are seeming­
ly different.

The different coefficients used in the two models may be
said to be a matter of convention.In applying analysis of
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variance techniques to test data,the person variance,sym­
bolized as MS(p),is 11k of the total composite variance as
computed from the sum scores.Again,the variance of the
average person score is 11k of MS(p),and 1/k2 of V(x),the
sum score variance. The formal relationship between these
three ways of defining person variance written as an
equalityJis thUS,

Vex) = kMS(p) = k2V(x) (See,for example,Winer 1962,125)

Therefore,recalling (13) and (14),

1/k(E(o(x)2) = kE(o(i,j» + E(o(res)2)
= ko(p)2 + o(pi)2 (15)

Next,it should be shown that the components in the two
approaches are equal.Gulliksen (1950),54,has shown that
the residual variance in the analysis of variance,

o(pi)2 = v(i) - c(i,j) (16)

According to (16) the interaction term,o(pi)7can be written
as a function of the average test sample variance and the
average test sample covariance.Thus,(16) is an estimate of,

o(pi)2 = E(o(i)2) - E(o(i,j» (17)

Recalling that MS(p) is 11k of total composite variance,
it should be clear that MS(p) must equal 11k of the sum of
the composite variance-covariance oatrix.Also,taking advan­
tage of what Gulliksen has shown concerning the residual
variance,one can rewrite the two relevant E(MS)'s of the
analysis of variance table this way,

E(MS(p» = 1/k(kE(cr(i)2) + k(k-1)E(o(i,j»)
= E(O(i)2) + (k-1)E(o(i,j»

E(MS(pi»= E(o(i)2) - E(o(i,j))

Again,recalling that E(MS(p)) = ko(p)2 + o(pi)2,which is
the conceptual structure of person variance,one can do this,

ko(p)2 = (E(O(i)2) + (k-1)E(cr(i t j)) - (E(O(i)2) - E(o(i,j)))

= E(cr(i)2)+kE(cr(i,j))-E(cr(i,j))-E(cr(i)2)+E(cr(i,j))

= kE(cr(i,j» (18)
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From (18) it is apparent that the variance component for
persons in the analysis of variance approach,cr(p)2,iS

equal to the expected covariance among test samples,E(cr(i,j».

In the analysis of variance approach the deviation score,
i.e. a residualized deviation score,is partitioned into two
components,a mean score component and a residual component,
due to the interaction between persons and test samples,or
items.In the covariance approach one operates directly on
the ~bserved deviation score

In the analysis of variance the deviation scores of the
column-centered data matrix,as presented in Table 5,are

Insert Table 5 about here

considered to contain two orthogonal components for each
person/test sample combination.As mentioned, one is here con­
cerned with a residualized data matrix where only person­
relevant variance is involved. The total sum of squares of
the residualized matrix is now a sum of the person compo­
nents squared and the residual components squared.

The MS(p) obtained on the basis of the mean observed perS0n
score is in a test theory context regarded as an inflated
universe score variance because it is an observed
value, containing error. Therefore, the observed person vari­
ance,MS(p),has to be corrected by another variance supposed
to be an estimate of the inflation involved.In the analysis
of variance model at issue in the present context,the inter­
action term serves this purpose.

What is here described in common sense language,compares
in the formal model to the expected mean square for persons,

E(MS(p» = kcr(p)2 + cr(pi)2,

where kcr(p)2 is estimated by MS(p) - MS(pi).

In the covariance approach to alpha one can establish the
variance-covariance matrix from the residualized deviation
score matrix in Table 5.The deviation score is the sum of the
two components in Table 5.

In computing the covariances among observed test samples one
obtains in one step what is obtained in a two-step procedure
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in the analysis of variance.The average covariance obtained
by this method is an estimate of the expected covariance,
which is equivalent to the test theory result that observed
score covariance equals universe score covariance.A formal
proof of this result,and the assumptions made,can be found
in Novick and Lewis (1967),4.

The previous proof and discussion should leave one with the
impression that the socalled variance component in the
analysis of variance of test data, reflecting differences in
universe scores among persons,is a misnomer for what should
appropriately be called a covariance component.It is believed
to facilitate a clearer understanding of what is implied in
the technically sophisticated analysis of variance approach
to alpha by pointing to the variance component for persons
as the expected covariance among universe scores.

Concluding re~arks.

While coefficient alpha,i.e.observed alpha,is an underestioate
of the defined reliability or generalizability coefficient,it
can likewise be shown that observed alpha is an underestimate
of expected alpha.

Bxpected alpha is equal to the reliability coefficient and
to the expected correlation between two randomly drawn com­
posites.Thus the equality that existed within classical test
theory on the observed level,but not within a random-sampling
test theory model,this equality is within the latter model
restored on the expected level, such that

E(alpha) = E(p(x,x')) = E(p(X,T)2).

Expected alpha as here derived from the expected variance­
covariance matrix of a random composite is shown to be an in­
ternal consistency construct per se,not necessarily dependent
upon conceiving of it in terms of the expected intercorrel­
ation among random composites nor upon the expected oorrelation
between observed score and true score,or universe score.
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Eikeland

1) Most of the work on this paper was completed while the
author was a Research Associate at state University of New
York at Buffalo,1968-1969.

2) Test sample and composite are used for item and test,con­
sistent with Tryon's {1957) use of the terms.

3) For alternative alpha formulas,see Tryon (1957) and
Edwards (1959).

Table 1

Expected Variance-Covariance
Matrix of a Random Composite

1 2 3 4

cr(i,j)+
cr(i,j) cr(i,j) cf( i , j )1 <f(res)2

d(i,j)
d(i,j)+

cf(i,j) d'(i,j)2 d(res)2

cf( i, j ) d(i,j)
d(i,j )+

d(i,j)3 d(res)2

cf( i , j ) d'(i,j) d(i,j)
cf(i,j)+

4 cf(res)2
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Table 2

Hypothetical Data Matrix

1 2 3 4

a 4 5 4 5 18
b 3 4 5 4 16

c 4 4 3 3 14
d 2 3 3 2 10

e 1 2 1 2 6

14 18 16 16 64

Table 3

Sample Covariance Matrix

1 2 3 4

1 1. 70 1.40 1. 30 1. 30
2 1.40 1. 30 1. 35 1.35

3 1. 30 1.35 2.20 1.45
4 1. 30 1.35 1.45 1.40

Table 4

Analysis of Variance of Hypothetical Data

Source df SS MS E(MS)

Persons 4 23.2 5.800 0.367 + 4 ( 1. 358 )
Test samples 3 1.6 0.533
P x T 12 4.4 0.367 0.367

Total 19 29.2
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Table 5

Decomposed Residualized Deviation Scores

1 2 3 4
a 1.3 - 0.1 1.3 + 0.1 1.3 - 0.5 1 .3 + 0.5
b 0.8 - 0.6 0.8 - 0.4 0.8 + 1.0 0.8 + 0.0
c 0.3 + 0.9 0.3 + 0.1 0.3 - 0.5 0.3 .. 0.5
d -0.7 - 0.1 ,-0.7 + 0.1 -0.7 + 0.5 -0.7 - 0.5
e -1. 7 - 0.7 -1.7 + 0.1 -1.7 - 0.5 -1.7 + 0.5


