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Preface

The structure of the thesis is as follows:
Chapter 1. We give an abbreviated review covering the history of sub-Riemannian

geometry and some other related geometric and algebraic structures that play an impor-
tant role in this work. The mathematical prerequisites that are treated include contact,
CR and qCR manifolds, as well as principal bundles and the real division algebras of
quaternions and octonions.

Chapter 2. We discuss the main results of the present thesis, based on the tools
described in the previous chapter. The results presented in this thesis belong to two
topics in sub-Riemannian geometry namely, the sub-Riemannian structures on odd di-
mensional spheres arising from their structure as principal S1 or S3−bundles, and the
kinematic system of a manifold rolling on another manifold without twisting or slipping.

In the former, we compare the horizontal distributions on odd dimensional spheres
arising from different points of view and we prove that they coincide. This allows us
to explicitly determine the sub-Riemannian geodesics in each case and obtain several
geometric corollaries. In addition we find a geodesic equation in the first quaternionic
H−type group H1 by using variational arguments, and we describe the intrinsic sub-
Laplacian and heat kernel of the sphere S7 with respect to the contact distribution.

In the latter, we introduce the notion of intrinsic rolling and we show that all the
relevant information of the dynamics is contained in this coordinate-free definition. We
study the controllability problem in some examples and afterwards we study the exis-
tence of intrinsic rollings under various hypotheses. We finish this chapter with a sum-
mary and a list of open questions related to the results obtained here that will be dealt
with in future research.

Chapter 3. We include four papers, two of which are accepted for publication, one
is submitted and one is in preparation.
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Chapter 1

Introduction

This chapter contains some preliminaries in sub-Riemannian geometry as well as pre-
senting the main results of this thesis. In Section 1.1 we give a brief historical account of
the most relevant developments in sub-Riemannian geometry that are of importance for
us. Section 1.2 consists of an overview of the thesis, contextualizing the relevance of the
results here presented. Finally, Section 1.3 presents some mathematical prerequisites
and notations that are necessary for understanding the main ideas of this thesis.

1.1 Historical background

It is fair to say that sub-Riemannian geometry, as an area of differential geometry and
global analysis of importance on its own, was born with the paper [37] and its adden-
dum [38]. In this reference it is possible to find the introduction of some important
concepts for the theory, such as the cometric or the sub-Riemannian Christoffel sym-
bols, as well as the solution to early problems of the theory. The articles [7, 15, 27] were
also fundamental for the growth of the theory into an independent field of research. Cer-
tainly some of the techniques, the main examples of the theory and some applications
can be traced back to very early stages of differential geometry; for example, the prob-
lem of the sphere rolling on the plane as a quintessential example of a non-holonomic
system can be found in the scientific literature as far back as the late 19th and early
20th century [11, 12]. In any case, sub-Riemannian geometry owes its existence to the
–nowadays elementary– idea of non-integrable constraints, and thus, it has received in-
creasing interest in recent years in applied disciplines such as robotics, control theory,
financial mathematics and diverse physical theories.

Sub-Riemannian geometry can be thought of as a generalized Riemannian geometry
in the sense that we admit some of the eigenvalues of the metric to be infinite: some
directions in the tangent spaces are forbidden as velocity vectors of curves. The curves
whose velocity vectors almost everywhere satisfying the constraints are usually referred
to as horizontal or admissible. With this point of view, sub-Riemannian geometry can
be considered as an application of the well-known penalization methods to differential
geometry [28]. In this new framework, problems of existence of admissible trajectories
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and search for optimal ones become much harder than in classical Riemannian geometry,
but nevertheless they offer new techniques and sometimes even challenges to try to
extend some of the old results to more general situations.

The existence of admissible trajectories, also known as the accessibility problem,
has been known to differential geometers and control theorists for a long time. An early
particular solution –but nevertheless widely employed nowadays– is the Chow-Rashevskĭı
theorem [13, 30], by which any two points can be joined by an admissible curve, as long
as the space of admissible directions forms a completely non-integrable distribution. It
is interesting to note that this result contains as a particular case the celebrated Kalman
rank condition for controllability of linear systems, see for instance [35]. The complete
solution of the accessibility problem was found in [39] via a control theoretic approach.
The search for optimal solutions requires more subtle distinctions and it is currently
a subject of active research, see for example [8, 9, 10, 24]. In fact, the fundamental
question of the smoothness of minimizers, remains open and its solution is known only
in a few particular cases.

Finally, as a way of stressing the benefits of the symbiosis between sub-Riemannian
geometry and geometric control theory, let us briefly discuss the particular example of
rolling manifolds without slipping or twisting. The well-known two dimensional version
of this mechanical system has been important in robotics, see [26], while its higher di-
mensional formulation has shown to be very convenient when dealing with interpolation
problems, see [19]. The first time this dynamics was presented in the higher dimensional
context was in [33], where the definition is given for submanifolds of Rn. The questions
of existence of rollings and of controllability of the system in dimensions bigger or equal
than three have been usually treated in a case-by-case approach, see [6, 18, 23, 40],
mostly employing the geometry and mechanics of Euclidean space and techniques of
control theory on Lie groups. An interesting fact to remark is that the particular case
of rolling a manifold over Euclidean space, known as development has been previously
addressed by geometers and probability theorists. In geometry it is used to obtain the
tangent space in any point, once the tangent space in one point is known [33], and in
probability it is used in order to define Brownian motion on a manifold [17, 21].

1.2 Overview of the thesis

The aim of this thesis is to study two topics in sub-Riemannian geometry: the sub-
Riemannian structures on odd dimensional spheres arising from their structure as prin-
cipal S1 or S3−bundles and the kinematic system of a manifold rolling on another
manifold without twisting or slipping.

A first important result concerning the first of the problems treated in this thesis is
the equivalence between sub-Riemannian structures on S3 arising from several geome-
trical contexts. More precisely, the CR geometry, the contact geometry, the principal
S1−bundle structure and the Lie group structure of S3 can be given a common sub-
Riemannian framework by understanding the holomorphic tangent space as the contact
distribution, and this distribution as an Ehresmann connection for the Hopf fibration.
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This vector bundle is trivializable via the Lie group action of S3 to itself. Interestingly,
the first three constructions coincide for all odd dimensional spheres in the classical
settings. Some of the previous results were extended to the case of the action of S3 on
spheres S4n+3 as subsets of (n+1)−dimensional quaternionic space. In all of these cases,
the sub-Riemannian metric is the one induced by the standard Riemannian metric on the
corresponding sphere. As a consequence of this equivalences, formulas for normal sub-
Riemannian geodesics as “twisted” Riemannian geodesics are presented and, moreover,
it is possible to detect when these geodesics are closed curves by determining whether
certain parameters are rational or not, extending a similar result for S3.

In addition, using variational arguments, it is possible to emulate a sub-Riemannian
geodesic equation for the quaternionic H−type group H1 which resembles an analogous
one for the case of three dimensional Sasakian pseudo-Hermitian manifolds.

The problem of constructing an intrinsic sub-Laplacian for the contact S7 is also
addressed. We show that the sub-Laplacian of S7, considered as an S1−bundle, corres-
ponds to a sum of squares of vector fields. Such a result seems to be false for S7 with the
structure of an S3−bundle. The above characterization allows us to find a convenient
realization of the sub-Riemannian heat kernel of S7, considered as an S1−bundle, as a
composition of the Riemannian heat kernel of S7 and the unbounded operator of heat
flow along the Reeb vector field for negative times.

Concerning the problem of rolling manifolds, we construct the configuration space of
the mechanical system as an SO(n)−bundle, which captures the information determined
by the geometry of the manifolds. Additionally we construct an SO(N − n)−bundle,
which captures the information determined by the imbedding. With this definitions we
are able to formulate the no-twisting and no-slipping conditions in terms of a distri-
bution on the imbedding independent SO(n)−bundle, giving rise to the notion of an
intrinsic rolling. These conditions can be seen as direct generalizations of an analogous
construction for surfaces.

An important result in this direction is that given an intrinsic rolling of two manifolds
of dimension n and concrete isometric imbedding of these into RN , then there exists a
unique extrinsic rolling corresponding to the given intrinsic rolling, up to the initial
configuration of the rolling.

Having this appropriate coordinate-free setting, it is possible to address questions
related to controllability and geometric behavior of rollings in a better way. For example
it is possible to show that the sphere Sn rolling on Rn is a controllable system in contrast
to the case of the group of Euclidean rigid motions SE(3) rolling on its Lie algebra se(3),
which in fact induces a foliation of its 27-dimensional configuration space, where the
leaves have dimension 12. Finally, we present conditions for the existence of intrinsic
rollings under different assumptions, in terms of the generalized geodesic curvatures of
the rolling curves on each of the manifolds.
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1.3 Mathematical prerequisites

The aim of this section is to present briefly some general ideas, which will satisfy a
twofold purpose: to set the context for some of the results in this thesis, as well as to
fix notational conventions.

1.3.1 Sub-Riemannian manifolds

Let M be an n− dimensional connected smooth manifold. A smooth subbundle of the
tangent bundle TM → M is called a horizontal distribution or simply a distribution. If
H is a distribution then, for each p ∈ M , Hp denotes the fiber of H at p. The dimension
of Hp is the rank of the distribution at p.

It is important to stress that the definition for distribution employed in this thesis
corresponds to the one used in the context of differential geometry. In problems moti-
vated by control theory or analysis, for example [25, 34], it is often convenient to define
a distribution D as a map D : M → Grass(TM), where Grass(TM) denotes the Grass-
manian bundle of TM , such that D(p) is a vector subspace of TpM for all p and then
require extra conditions. Though this setting contains the aforementioned definition as
a particular case, its generality will be unnecessary for the purposes of the present work.

One of the main goals of sub-Riemannian geometry is to study curves that are ad-
missible in a certain sense. To be precise, an absolutely continuous curve γ : [0, 1] → M
is called admissible or horizontal if γ̇(t) ∈ Hγ(t) almost everywhere.

A distribution H is said to be bracket generating if the Lie-hull of its sections Lie(H)
equals TpM at each p ∈ M . To be more precise, define the following vector bundles

H1 = H, Hr+1 = [Hr,H] +Hr for r ≥ 1,

where [H,Hk] = span{[X, Y ] : X is a section of H, Y is a section of Hk}. This vector
bundles naturally give rise to the flag

H = H1 ⊆ H2 ⊆ H3 ⊆ . . . .

A distribution is bracket generating if for all p ∈ M there is an r(p) ∈ Z+ such that

Hr(p)
p = TpM. (1.3.1)

If the dimensions dimHr
p do not depend on p for any r ≥ 1, we say that H is a regular

distribution. The least r such that (1.3.1) is satisfied is called the step of H.
One of the core results used in order to relate the notion of path-connectedness by

means of horizontal curves and the assumption that H is a bracket generating distribu-
tion is the following theorem, usually referred to as Chow-Rashevskĭı theorem.

Theorem 1 ([13, 30]) Let M be a connected manifold. If a distribution H ⊂ TM is
bracket generating, then any two points in M can be joined by a horizontal path.
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With all of this at hand, we can define what a sub-Riemannian manifold is. A
sub-Riemannian structure on a manifold M is a pair (H, 〈·, ·〉sR), where H is a bracket
generating distribution and 〈·, ·〉sR a fiber inner product defined on H, which varies
smoothly from point to point. A sub-Riemannian manifold is a triple (M,H, 〈·, ·〉sR),
where (H, 〈·, ·〉sR) is a sub-Riemannian structure on M . If the sub-Riemannian structure
is clear from the context, we say that M is a sub-Riemannian manifold. In this setting,
the length of a horizontal curve γ : [0, 1] → M is

�(γ) :=

∫ 1

0

‖γ̇(t)‖sR dt,

where ‖γ̇(t)‖sR = 〈γ̇(t), γ̇(t)〉1/2sR whenever γ̇(t) exists.
Thus, it is possible to define the sub-Riemannian distance d(p, q) ∈ [0,+∞) between

two points p, q ∈ M by d(p, q) := inf �(γ), where the infimum is taken over all absolutely
continuous horizontal curves joining p to q. An absolutely continuous horizontal curve
that realizes the distance between two points is called a horizontal length minimizer.

In order to define what a normal geodesic is in the sub-Riemannian context, let
us digress briefly about the underlying Hamiltonian formalism. The sub-Riemannian
metric 〈·, ·〉sR defines a linear mapping βp : T ∗

pM → TpM , referred to as the cometric,
by requiring that:

• The image of T ∗
pM under βp is Hp.

• The equality 〈X, βpλ〉sR = λ(X) holds for all X ∈ Hp, λ ∈ T ∗
pM .

Observe that βp induces a bilinear form β̃p : T
∗
pM×T ∗

pM → R. An important feature
of the cometric βp is that its dual map β∗

p : T ∗
pM → T ∗∗

p M ∼= TpM coincides with βp,
where ∼= denotes the the inverse of the canonical isomorphism of evaluation. On the
other hand, two important features of the induced map β̃p are that it is symmetric and
nonnegative definite, meaning that β̃p(λ, μ) = β̃p(μ, λ) and that β̃p(λ, μ) ≥ 0 for all
λ, μ ∈ T ∗

pM .
Given the cometric βp : T

∗
pM → Hp we have the Hamiltonian function

H(p, λ) =
1

2
λ(βp(λ))

on T ∗M . Considering a trivializing neighborhood Up around p ∈ M for the subbundle
H, one can find a smooth local orthonormal basis X1, . . . , Xk with respect to 〈·, ·〉sR.
The associated sub-Riemannian Hamiltonian is given by

H(q, λ) =
1

2

k∑
m=1

λ(Xm(q))
2,

where (q, λ) ∈ T ∗Up and λ /∈ ker βp. A normal geodesic corresponds to the projection to
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Up ⊂ M of the solution of the Hamiltonian system

q̇i =
∂H

∂λi

(1.3.2)

λ̇i = −∂H

∂qi
, (1.3.3)

where (qi, λi) are the coordinates in the cotangent bundle of M .
On the contrary from the Riemannian case, for sub-Riemannian manifolds there can

be found examples of curves minimizing the length functional but not being the solution
of the Hamiltonian system (??). These curves are known as abnormal geodesics and to
this day it is still unknown whether all of them are smooth or not.

1.3.2 Contact manifolds

A manifold M of dimension 2n+1 is said to be a contact manifold if there is a one form
ω such that ω ∧ (dω)n never vanishes. The subbundle ξ = kerω is usually called contact
distribution. We can define ω equivalently by requiring that dω defines a symplectic form
on ξ, see [14]. This explains why contact manifolds must have odd dimension, since it
is a well known fact from linear algebra that symplectic forms can only exist in even
dimensional vector spaces.

An important construction in contact geometry is the Reeb vector field, which is a
nowhere vanishing vector field R uniquely determined by the condition dω(R, ·) = 0 and
ω(R) = 1.

As a consequence of Cartan’s formula for one forms, the contact distribution ξ is
always a bracket generating distribution of step two.

1.3.3 Principal bundles

Let Q and M be two manifolds. For a submersion π : Q → M with fiber Qp = π−1(p)
through p ∈ M , the vertical space at q ∈ Q is given by TqQπ(q) and is denoted by Vq.
Note that Vq = ker dqπ. In this context, an Ehresmann connection for π : Q → M is a
distribution H ⊂ TQ which is everywhere transverse to the vertical space, that is:

Vq ⊕Hq = TqQ for every q ∈ Q.

Let us assume that the submersion π : Q → M is a fiber bundle with fiber G, where
G is a Lie group acting on Q on the right. We say that π is a principal G−bundle with
connection H if the following conditions hold: G acts freely and transitively on each
fiber, the group orbits are the fibers of π : Q → M , and the action of G on Q preserves
the connection H. Observe that the second condition implies that M is isomorphic to
Q/G and that π is the canonical projection.

Let us denote the Lie algebra of G by g, and the corresponding exponential map by
expG : g → G. For the principal G−bundle π : Q → M , the infinitesimal generator for
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the group action is the map σq : g → TqQ defined by

σq(ξ) =
d

dε

∣∣∣∣
ε=0

q expG(εξ)

for q ∈ Q and ξ ∈ g. In the case of a principal G−bundle, for each q ∈ Q the infinitesimal
generator σq is an isomorphism between the vertical space Vq and g. We refer to its
inverse as the g−valued connection one form.

1.3.4 CR and qCR manifolds

Let W be a real vector space. A linear map J : W → W is called an almost complex
structure map if J ◦ J = −I, where I : W → W is the identity map. In the case
W = TpR2n, p = (x1, y1, . . . , xn, yn) ∈ R2n, we say that the standard almost complex
structure for W is defined by setting

Jn(∂xj
) = ∂yj , Jn(∂yj) = −∂xj

, 1 ≤ j ≤ n.

For a smooth real submanifold M of Cn and a point p ∈ M , in general the tangent
space TpM is not invariant under the almost complex structure map Jn for TpCn ∼= TpR2n.
For a point p ∈ M , the complex or holomorphic tangent space of M at p is the vector
space

HpM = TpM ∩ Jn(TpM).

Note that HpM is the largest subspace of TpM which is invariant under the action of Jn.
It can be shown, see [5], that if M is a real submanifold of Cn of real dimension

2n− d, then
2n− 2d ≤ dimR HpM ≤ 2n− d,

and dimR HpM is an even number.
A real submanifold M of Cn is said to have a CR structure if dimR HpM does not

depend on p ∈ M . In particular, every smooth real hypersurface S embedded in Cn

satisfies dimR HpS = 2n− 2, therefore S is a CR manifold.
The definition of qCR manifolds, as quaternionic analogues of CR manifolds, is more

involved and requires some extra care in the hypotheses. For the moment, let us assume
that M is a manifold of dimension 4n + 3. For a triple of linearly independent 1-forms
ω = (ω1, ω2, ω3) we define a triple of 2-forms ρ = (ρ1, ρ2, ρ3) as follows:

ρ1 = dω1 − 2ε ω2 ∧ ω3, ρ2 = dω2 + 2ω3 ∧ ω1 and ρ3 = dω3 + 2ω1 ∧ ω2,

where ε = ±1.
The triple ω is called an ε−quaternionic CR structure (ε = ±1), if the associated

2-forms ρα, α = 1, 2, 3 satisfy the following conditions :

1. They are non degenerate on the codimension three distribution H = kerω1 ∩
kerω2 ∩ kerω3 and have the same 3-dimensional kernel V ,
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2. The three fields of endomorphisms Jα of the distribution H, defined by

J1 = −ε(ρ3|H)−1 ◦ ρ2|H, J2 = (ρ1|H)−1 ◦ ρ3|H and J3 = (ρ2|H)−1 ◦ ρ1|H,

anti-commute and satisfy the ε−quaternionic relations

J2
2 = −εJ2

2 = −εJ2
3 = −1 and J2J3 = −εJ1.

For ε = −1, the ε−quaternionic CR structure is called a qCR structure and for ε = +1
the ε−quaternionic CR structure is called para-qCR structure. The manifold M with
an ε−quaternionic CR structure is called ε−quaternionic CR manifold.

For more details on the geometry and examples of qCR manifolds, see [3].

1.3.5 Quaternions and octonions

The set of quaternions H is an associative real division algebra of dimension four, gen-
erated by the so-called quaternion units i, j, k and 1, that is

H = {a+ bi+ cj + dk : a, b, c, d ∈ R},

where the quaternion units satisfy the Hamilton relations

i2 = j2 = k2 = ijk = −1.

The conjugate of a quaternion q = a+bi+cj+dk ∈ H is the quaternion q̄ = a−bi−cj−dk.
The norm of q is the real number

|q| = (a2 + b2 + c2 + d2)1/2 = qq̄1/2.

The real part of q is a and the imaginary part of q is (b, c, d) ∈ R3. Observe that the
quaternions of norm one form a Lie group which is diffeomorphic to the three dimensional
sphere S3.

The quaternionic exponential is defined by

eai+bj+ck = cos
√
a2 + b2 + c2 + sin

√
a2 + b2 + c2 · ai+ bj + ck√

a2 + b2 + c2
,

for a, b, c ∈ R.
The projective quaternionic space is the 4n−dimensional manifold

HP n =
Hn+1 \ {(0, . . . , 0)}

∼ ,

where ∼ is the equivalence relation

v ∼ w if and only if v = w · λ,
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for some λ ∈ H \ {0}. Note that HP 1 is diffeomorphic to the four dimensional sphere
S4. This can be shown by constructing a stereographic projection completely analogous
to the complex one.

The set of octonions O is a non-associative real division algebra of dimension eight,
generated by the so-called octonion units e1, . . . , e7 and 1, that is

O = {a0 + a1e1 + . . .+ a7e7 : a0, . . . , a7 ∈ R},

where the octonion units satisfy the relations in Table 1.1.

e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Table 1.1: Multiplication table for the octonion units.

The conjugate of an octonion o = a0 + a1e1 + . . . + a7e7 ∈ O is the octonion
ō = a0 − a1e1 − . . .− a7e7. The norm of o is the real number

|o| = (a20 + . . .+ a27)
1/2 = oō1/2.

The real part of o is a0 and the imaginary part of o is (a1, . . . , a7) ∈ R7. The octonions
of norm one do not form a Lie group, but as a manifold they are diffeomorphic to the
seven dimensional sphere S7.

Analogously to the construction for quaternions, it is possible to define the octonionic
projective line OP 1 and the Cayley plane OP 2. As commented in [4], the definition of
OP n makes sense only when n ≤ 2. As in the case of quaternions, there is a stereographic
projection that corresponds to a diffeomorphism between OP 1 and the sphere S8.
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Chapter 2

Main Results

2.1 Sub-Riemannian geometry of odd dimensional

spheres

This is the main interest of Papers A and B. We study the distributions of codimension
one on the spheres S2n+1 arising from its CR, contact and principal S1−bundle struc-
tures. We show that these distributions coincide. Moreover in the case of S3 as a Lie
group, the same distribution is shown to be generated by left invariant vector fields.
Similar considerations follow for the spheres S4n+3, where the distributions arising from
the qCR structure and the principal S3−action on S4n+3 coincide. As a consequence of
these equivalences we find explicit formulas for the sub-Riemannian geodesics in all of
the above mentioned cases.

2.1.1 Codimension one case

Let us consider the complex hypersurface

S2n+1 = {(z0, . . . , zn) ∈ Cn+1 : |z0|2 + . . .+ |zn|2 = 1}, (2.1.1)

which corresponds to an odd dimensional unit sphere. For the rest of this subsection,
we will denote zj = xj + iyj, where xj, yj ∈ R for all j = 0, . . . , n.

An important fact that holds immediately from (2.1.1) is that S2n+1 is naturally
endowed with the structure of a CR manifold. Additionally, S2n+1 is also a contact
manifold since

ωn+1 = −y0dx0 + x0dy0 − . . .− yndxn + xndyn

is a contact form. In fact one has the following Theorem.

Theorem 2 (Paper A) The one-form ωn+1 satisfies

(dωn+1)
n ∧ ωn+1 = n! · 2ndvolS2n+1 ,

where dvolS2n+1 is the Riemannian volume form for S2n+1 with respect to the usual
Riemannian metric 〈·, ·〉.
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Note that if we give S2n+1 the usual Riemannian metric 〈·, ·〉, then its holomorphic
tangent space and the contact distribution coincide, since both of them correspond to
the orthogonal complement of the vector field

Vn+1 = −y0∂x0 + x0∂y0 − . . .− yn∂xn + xn∂yn .

In fact, Vn+1 is the Reeb vector field for the chosen contact structure of S2n+1.
Additionally, we see from (2.1.1) that S2n+1 has a natural U(1) action given by

(z0, . . . , zn) �→ (λz0, . . . , λzn)

where λ ∈ U(1) denotes a complex number of norm one. This action induces the
projection

HC : S2n+1 → CP n

(z0, . . . , zn) �→ [z0 : . . . : zn]

which is a principal U(1)−bundle. This projection is sometimes called generalized Hopf
fibration.

The Ehresmann connection corresponding to the orthogonal complement of the ver-
tical space for the submersion HC coincides with the contact distribution and complex
tangent space of S2n+1, since the vector field Vn+1 is tangent to the fibers of the projection
HC. The respective su(1)−valued connection form is given by iωn+1.

Now let us consider horizontal curves with respect to the distribution H = kerωn+1.
Since it is a contact distribution, it is bracket generating of step two and thus, by
restricting the metric 〈·, ·〉 of TS2n+1 to H, we obtain a sub-Riemannian manifold
(S2n+1,H, 〈·, ·〉sR), where 〈·, ·〉sR denotes the restricted metric.

In this context we have the following characterization of normal sub-Riemannian
geodesics.

Theorem 3 (Paper B) Let p ∈ S2n+1 = {(z0, . . . , zn) ∈ Cn+1 : |z0|2 + . . .+ |zn|2 = 1}
and v ∈ TpS

2n+1. If γR(t) = (z0(t), . . . , zn(t)) is the great circle satisfying γR(0) = p and
γ̇R(0) = v, then the corresponding sub-Riemannian geodesic is given by

γ(t) =
(
z0(t)e

−it〈v,Vn+1〉, . . . , zn(t)e−it〈v,Vn+1〉) . (2.1.2)

A remarkable fact is that in the case of dimension three all the above mentioned
structures coincide with the left invariant sub-Riemannian structure induced by the Lie
group multiplication of S3. More precisely, S3 is a Lie group isomorphic to the symplectic
group Sp(1) consisting of quaternions of norm one. By right translating the canonical
basis at the identity of the group (1, 0) ∈ S3, we obtain the vector fields

V (y) = −y0∂x0 + x0∂y0 − y1∂x1 + x1∂y1 ,

X(y) = −x1∂x0 + y1∂y0 + x0∂x1 − y0∂y1 ,

Y (y) = −y1∂x0 − x1∂y0 + y0∂x1 + x0∂y1 ,
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which are orthonormal with respect to 〈·, ·〉. It can be easily seen that V = V2 as
defined before, and thus the distribution span{X, Y } coincides with the corresponding
distribution H constructed above. Though not in the form of a theorem, this equivalence
can be viewed as one of the main accomplishments of Paper A.

In the case of dimension seven, S7 can be considered as the set of octonions of norm
one. In a similar way as in the case of S3, the sub-Riemannian geometry of S7 can
be described by means of octonion multiplication, even though this structure does not
endow S7 with a Lie group structure. Straightforward calculations give the orthonormal
vector fields

Y1(z) = −y0∂x0 + x0∂y0 − y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2 − y3∂x3 + x3∂y3 ,

Y2(z) = −x1∂x0 + y1∂y0 + x0∂x1 − y0∂y1 − x3∂x2 + y3∂y2 + x2∂x3 − y2∂y3 ,

Y3(z) = −y1∂x0 − x1∂y0 + y0∂x1 + x0∂y1 + y3∂x2 + x3∂y2 − y2∂x3 − x2∂y3 ,

Y4(z) = −x2∂x0 + y2∂y0 + x3∂x1 − y3∂y1 + x0∂x2 − y0∂y2 − x1∂x3 + y1∂y3 ,

Y5(z) = −y2∂x0 − x2∂y0 − y3∂x1 − x3∂y1 + y0∂x2 + x0∂y2 + y1∂x3 + x1∂y3 ,

Y6(z) = −x3∂x0 + y3∂y0 − x2∂x1 + y2∂y1 + x1∂x2 − y1∂y2 + x0∂x3 − y0∂y3 ,

Y7(z) = −y3∂x0 − x3∂y0 + y2∂x1 + x2∂y1 − y1∂x2 − x1∂y2 + y0∂x3 + x0∂y3 ,

by right translating the canonical basis at (1, 0, 0, 0) ∈ S7 using octonion multiplication.
Here the well-known fact that S7 is parallelizable can be seen explicitly. It can be easily
seen that Y1 = V4 as defined before, and thus the distribution span{Y2, . . . , Y7} coincides
with the corresponding distribution H as constructed above.

2.1.2 Codimension three case

Let us consider the quaternionic analogues of Subsection 2.1.1

S4n+3 = {(q0, . . . , qn) ∈ Hn+1 : |q0|2 + . . .+ |qn|2 = 1}. (2.1.3)

For the rest of this subsection, we will denote qs = xs + iys + jzs + kws, where
xs, ys, zs, ws ∈ R for all s = 0, . . . , n.

As before, the spheres S4n+3 can be naturally endowed with the structure of a qCR
manifold, see for example [3]. An important difference is that in this situation, S4n+3

possesses three independent contact forms, namely

ω1
n+1 = −y0dx0 + x0dy0 + w0dz0 − z0dw0 − . . .− yndxn + xndyn + wndzn − zndwn,

ω2
n+1 = −z0dx0 − w0dy0 + x0dz0 + y0dw0 − . . .− zndxn − wndyn + xndzn + yndwn,

ω3
n+1 = −w0dx0 + z0dy0 − y0dz0 + x0dw0 − . . .− wndxn − zndyn + yndzn + xndwn.

In a similar way, the spheres S4n+3 have a natural right Sp(1) action given by

(q0, . . . , qn) �→ (q0 · λ, . . . , qn · λ)
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where λ ∈ Sp(1) denotes a quaternion of norm one. This action induces the projection

HH : S4n+3 → HP n

(q0, . . . , qn) �→ [q0 : . . . : qn]
,

which is a principal Sp(1)−bundle. This projection is sometimes called quaternionic
Hopf fibration.

Observe that if we give S4n+3 the usual Riemannian metric 〈·, ·〉, then the Ehresmann
connection corresponding to the orthogonal complement of the vertical space for the
submersion HH coincides with the distribution H = kerω1

n+1 ∩ kerω2
n+1 ∩ kerω3

n+1, since
the vector fields

V 1
n+1(p) = −y0∂x0 + x0∂y0 + w0∂z0 − z0∂w0 − . . .− yn∂xn + xn∂yn + wn∂zn − zn∂wn ,

V 2
n+1(p) = −z0∂x0 − w0∂y0 + x0∂z0 + y0∂w0 − . . .− zn∂xn − wn∂yn + xn∂zn + yn∂wn ,

V 3
n+1(p) = −w0∂x0 + z0∂y0 − y0∂z0 + x0∂w0 − . . .− wn∂xn − zn∂yn + yn∂zn + xn∂wn ,

are tangent to the fibers of the projection HH. The respective sp(1)−valued connection
form is given by A = iω1

n+1 + jω2
n+1 + kω3

n+1. Observe that V 1
n+1, V

2
n+1 and V 3

n+1 are the
corresponding Reeb vector fields determined by the contact forms ω1

n+1, ω
2
n+1 and ω3

n+1.
Now let us consider horizontal curves with respect to the distribution H. Since

S4n+3 is a qCR manifold, the distribution H is bracket generating of step two and thus,
by restricting the metric 〈·, ·〉 of TS4n+3 to H, we obtain a sub-Riemannian manifold
(S4n+3,H, 〈·, ·〉sR), where 〈·, ·〉sR denotes the restricted metric.

In this context we have the following characterization of normal sub-Riemannian
geodesics.

Theorem 4 (Paper B) Let p ∈ S4n+3 = {(q0, . . . , qn) ∈ Hn+1 : |q0|2 + . . . + |qn|2 = 1}
and v ∈ TpS

4n+3. If γR(t) = (q0(t), . . . , qn(t)) is the great circle satisfying γR(0) = p and
γ̇R(0) = v, then the corresponding sub-Riemannian geodesic is given by

γ(t) =
(
q0(t) · e−tA(v), . . . , qn(t) · e−tA(v)

)
. (2.1.4)

Note that the curve e−tA(v) corresponds to the Riemannian geodesic in S3 starting
at the identity of the group e = (1, 0, 0, 0), with initial velocity vector

(0,−ω1
n+1(v),−ω2

n+1(v),−ω3
n+1(v)).

In this case an analogy to the remark at the end of Subsection 2.1.1 is not straight-
forward. It turns out that in the case of dimension seven, the vector fields V 1

2 , V
2
2 and

V 3
2 coincide with the vector fields 1

2
[Y5, Y4],

1
2
[Y6, Y4] and

1
2
[Y5, Y6] respectively, thus the

distribution in this case can be seen as the orthogonal complement to the Lie brackets
between Y4, Y5 and Y6. A major inconvenience is that a global basis of such a distribu-
tion is unknown, however, it can be completely described by appropriately constructed
charts. This corresponds to Theorem 5 in Paper A.
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2.2 Curvature of sub-Riemannian geodesics in H1

In recent years, mathematicians have seen the need for trying to obtain geodesic differ-
ential equations for different model sub-Riemannian manifolds. The case of the three
dimensional Heisenberg group with its usual sub-Riemannian structure was studied
in [31] and as was noted in [20], the same proof holds for all three dimensional Sasakian
pseudo-Hermitian sub-Riemannian manifolds, up to obvious modifications. It is of spe-
cial interest to observe that these differential equations are naturally connected with the
Riemannian concept of curvature.

Note that similar geodesic equations were found in [32], which hold for
all pseudo-Hermitian manifolds. An important difference is that the affine
connection considered , since the affine connection considered there is the
Webster connection and, in general, its torsion does not vanish.

2.2.1 Case of S3

By studying the first variation of the sub-Riemannian length functional it is possible
to obtain a geodesic equation in the three dimensional case, assuming that the sub-
Riemannian manifold satisfies additional conditions on its geometry.

In this case it is fundamental to consider only variations that are admissible. More
precisely, a variation of a curve γ : [a, b] → M is a C2-map γ̃ : I1× I2 → M , where I1, I2
are open intervals, 0 ∈ I2 and γ̃(s, 0) = γ(s). The variation curves γ̃(·, ε) for fixed ε are
often denoted by γε(·). A variation γε of a horizontal curve γ is called admissible if all
curves γε : I1 → M are horizontal, γε(a) = γ(a) and γε(b) = γ(b) for all ε ∈ I2.

In this context the following result has essentially been proved in [20, 31].

Proposition 1 (Hurtado, Ritoré, Rosales) Let (M,H, 〈·, ·〉sR) be a Sasakian pseudo-
Hermitian sub-Riemannian manifold of dimension 3. Let γ : I → M be a C2 horizontal
curve parameterized by arc-length. Then γ is a critical point of length functional for any
admissible variation if and only if there is λ ∈ R such that γ satisfies the second order
ordinary differential equation

∇γ̇ γ̇ + 2λJ(γ̇) = 0, (2.2.1)

where ∇ is the Levi-Civita connection associated to the Sasakian metric, and J : H → H
is the almost complex structure.

The parameter λ is called the curvature of γ since in the case of the three dimensional
Heisenberg group, after projecting it to R2 via the orthogonal projection

R2 × R → R2

(z, t) �→ z
,

then λ becomes precisely the curvature of the projected curve in R2. In the case of S3,
the parameter λ is the curvature of the projection of γ to S2 via the Hopf fibration

S3 → S2

(z, w) �→ (2zw̄, |z|2 − |w|2) ,
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where S2 ⊂ C× R.
An interesting result in this direction is a geometric realization of λ in terms of the

initial velocity of the great circle which determines it.

Proposition 2 (Paper B) The curvature of the sub-Riemannian geodesic

γ(t) = e−i〈v,V2〉tγR(t)

in S3, parameterized by arc-length, equals 〈v, V2〉.
In [20] it is given a criterion saying that a sub-Riemannian geodesic in S3 is a closed

curve if and only if λ/
√
1 + λ2 is a rational number. By Proposition 2, this criterion

can be written in terms of the initial velocity of the great circle giving rise to the
corresponding sub-Riemannian geodesic. This gives us the feeling that a more general
statement should hold. In fact, we have the following result.

Proposition 3 (Paper B) Let γ : R → S2n+1 be a complete sub-Riemannian geodesic
parameterized by arc-length, with initial velocity v ∈ TpS

2n+1, where S2n+1 is considered
as a principal S1−bundle. Then γ is closed if and only if

〈v, Vn+1〉√
1 + 〈v, Vn+1〉2

∈ Q.

Similarly, if γ : R → S4n+3 be a complete sub-Riemannian geodesic parameterized by
arc-length, with initial velocity v ∈ TpS

4n+3, where S4n+3 is considered as a principal
S3−bundle. Then γ is closed if and only if

〈v, V 1
n+1〉

‖v‖2 ,
〈v, V 2

n+1〉
‖v‖2 ,

〈v, V 3
n+1〉

‖v‖2 ∈ Q.

2.2.2 Case of H1

When trying to extend Proposition 1 to the case of manifolds of dimension 7 with a sub-
Riemannian structure of corank three, one finds some technical problems not present in
the case of dimension 3. The first step in this direction is studying the first quaternionic
H−type group H1, see [9].

Let us consider the 4× 4 matrices I,J and K, given by

I =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , J =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ ,

K =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ .
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Note that I,J and K are a fixed representation of the quaternion units, that is if U
denotes the identity matrix of size 4 × 4, then span{U , I,J ,K} is isomorphic to H as
algebras via the isomorphism

ϕ : span{U , I,J ,K} → H

given by ϕ(U) = 1, ϕ(I) = i, ϕ(J ) = j, ϕ(K) = k and extended by linearity.
The seven dimensional quaternionic H−type group H1 corresponds to the manifold

R4 ⊕ R3 with the group operation ◦ defined by

(x, z) ◦ (x′, z′) =
(
x+ x′, zI + z′I +

1

2
x′TIx, zJ + z′J +

1

2
x′TJ x, zK + z′K +

1

2
x′TKx

)
where z = (zI , zJ , zK) ∈ R3, x, x′ are column vectors in R4 and xT , x′T are the corre-
sponding row vectors obtained by transposition.

The Lie algebra h1 corresponding to H1 is spanned by the left invariant vector fields

X1(x, z) =
∂

∂x1

+
1

2

(
+x2

∂

∂zI
− x4

∂

∂zJ
− x3

∂

∂zK

)
,

X2(x, z) =
∂

∂x2

+
1

2

(
−x1

∂

∂zI
− x3

∂

∂zJ
+ x4

∂

∂zK

)
,

X3(x, z) =
∂

∂x3

+
1

2

(
+x4

∂

∂zI
+ x2

∂

∂zJ
+ x1

∂

∂zK

)
,

X4(x, z) =
∂

∂x4

+
1

2

(
−x3

∂

∂zI
+ x1

∂

∂zJ
− x2

∂

∂zK

)
,

ZI(x, z) =
∂

∂zI
, ZJ (x, z) =

∂

∂zJ
, ZK(x, z) =

∂

∂zK
.

at a point (x, z) = (x1, x2, x3, x4, zI , zJ , zK) ∈ H1. A Riemannian metric 〈·, ·〉 in H1 is
declared so that X1, . . . , X4, ZI , . . . , ZK is an orthonormal frame at each (x, z) ∈ H1.
The sub-Riemannian structure on H1 we are interested in is defined by the left invari-
ant distribution D = span{X1, X2, X3, X4} and the restriction of the metric previously
defined.

In this context, the following theorem holds.

Theorem 5 (Paper B) Let γ : [a, b] → H1 be a horizontal curve, parameterized by arc
length. Then γ is a critical point of the sub-Riemannian length functional if and only if
there exist λI , λJ , λK ∈ R satisfying the second order differential equation

∇γ̇ γ̇ − 2
∑

r=I,J ,K
λrJr(γ̇) = 0. (2.2.2)

where ∇ is the Levi-Civita connection associated to the Riemannian metric previously
defined and JI , JJ , JK : D → D are the almost complex structures

Jr(X) = 2∇XZr, r = I,J ,K,
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2.3 Intrinsic sub-Laplacian of S7

The notion of hypoelliptic operators in connection with sub-Riemannian geometry first
came up in the seminal paper [16], where the celebrated Hörmander condition is intro-
duced. Interestingly enough, the condition for hypoellipticity of differential operators
in the form of a sum of squares is equivalent to the condition of the Chow-Rashevskĭı
theorem for the corresponding vector fields. During several decades, a mayor interest
in CR geometry and in the study of Carnot groups was the analytic properties of sub-
Laplacians satisfying Hörmander condition, regardless of eventual dependence on the
choice of coordinates. This technical inconvenience was solved in [1] by using the notion
of Popp’s measure to define a sub-Riemannian divergence, which naturally defines an
intrinsic sub-Laplacian maintaining its hypoelliptic character.

Employing the aforementioned construction, we show that the intrinsic sub-Laplacian
of S7, considered as a principal S1−bundle, is a sum of squares and as a corollary we see
that the heat kernel of the sub-Laplacian commutes with the heat flow in the direction
of the Reeb vector field.

2.3.1 Popp’s measure for contact manifolds

In this subsection, we briefly come back to the general situation in which (M,H, 〈·, ·〉sR)
is a sub-Riemannian manifold, where H is a bracket generating distribution of rank k,
and M has dimension n. As observed in [1], for analytical reasons it is convenient to
assume that H is a regular distribution. Recall that H is a regular distribution if the
so-called growth vector

(dimHq, dimH2
q , . . . , dimHk

q )

does not depend on the point q ∈ M . The reason for this assumption will be made clear
in Subsection 2.3.2.

The construction of a sub-Laplacian defined intrinsically required a correct definition
of divergence in the sub-Riemannian setting. On the other hand, an appropriate defini-
tion of sub-Riemannian divergence required the knowledge of a volume form capturing
the geometric information of the bracket generating distribution at the level of vector
fields.

The main idea in this context is to note that a flag

F : F1 ⊂ F2 ⊂ · · · ⊂ Fk = E

of vector subspaces of a vector space E induces a canonical isomorphism∧n E∗ ∼= ��
∧n Gr (F )∗ ,

where Gr (F ) is the graded vector space associated to the flag F defined as

Gr (F ) = F1 ⊕ F2/F1 ⊕ · · · ⊕ Fk/Fk−1.
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For the construction of the isomorphism, see [28, Chapter 10].
Given the fact that a surjection from an inner product space to a vector space induces

an inner product on the target, we see that if H is a bracket generating distribution,
then the map ⊗j Hq → (Hj/Hj−1)q

v1 ⊗ v2 ⊗ · · · ⊗ vj �→ [v1, [v2, [· · · , vj] · · · ]]
endows the space Gr (H)q with an inner product, arising from the inner product on⊕k

j=1

⊗j Hq inherited from 〈·, ·〉sR. Since any finite dimensional inner product space
possesses a natural volume form, there is a canonical isomorphism∧n Gr (H)∗q

∼= �� R ,

which, up to sign, induces a well-defined element in
∧n T ∗

q M . The corresponding
n−form, denoted by μsR is called the Popp measure of the sub-Riemannian manifold
(M,H, 〈·, ·〉sR).

An important example is provided by contact manifolds. As it is observed in Paper B,
in the case of Riemannian contact manifolds of dimension 2n+1, the n−form μsR locally
takes the form

μsR = π1 ∧ . . . ∧ π2n ∧ π2n+1,

where π1, . . . , π2n is a dual basis for a local orthonormal frame of the contact distribution
and π2n+1 is dual to the Reeb vector field. In particular, given the trivialization of TS7

presented in Subsection 2.1.1, we have a global description of Popp’s measure for S7

with distribution of corank 1, given by

dY1 ∧ . . . ∧ dY7.

2.3.2 Sub-Laplacian and heat kernel for S7

In [1] the definition of an intrinsic sub-Laplacian is introduced by generalizing the Rie-
mannian concepts of gradient and divergence to the sub-Riemannian context. The ho-
rizontal gradient ∇sRf is defined by the equation

〈∇sRf(p), v〉sR = dpf(v),

and the sub-Riemannian divergence divsRX of a horizontal vector field X by

divsRXμsR = LXμsR,

where μsR is Popp’s volume form, and LX denotes the Lie derivative in the direction
of X. Note that the bracket generating condition is essential for the choice of Popp’s
measure, and thus, essential for the definition of the sub-Riemannian divergence.The
intrinsic sub-Laplacian ΔsRf is given by

ΔsRf = divsR(∇sRf). (2.3.1)
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If the distribution under consideration is regular, this operator is hypoelliptic. As it is
noted in [1], the Grushin plane gives an example of a bracket generating distribution
which is not regular and its intrinsic sub-Laplacian is not hypoelliptic.

Let {X1, . . . , Xk} be a local orthonormal basis of H and consider the corresponding
dual basis {dX1, . . . , dXk}. It is possible to find vector fields {Xk+1, . . . , Xn} such that
the vector fields {X1, . . . , Xn} span TM and such that Popp’s volume form is locally
given by

μsR = dX1 ∧ . . . ∧ dXk ∧ dXk+1 ∧ . . . ∧ dXn. (2.3.2)

In this setting, the sub-Laplacian ΔsRf can be written explicitly as

ΔsRf =
k∑

r=1

(
L2
Xr
f + LXrf

n∑
s=1

dXs([Xr, Xs])

)
. (2.3.3)

Thus we have the following result.

Theorem 6 (Paper B) Let H be the contact distribution for S7 and 〈·, ·〉sR the restric-
tion of the usual Riemannian metric in R8 to H. Then the intrinsic sub-Laplacian of
(S7,H, 〈·, ·〉sR) is given by the sum of squares

ΔsR =
7∑

a=2

Y 2
a .

An important fact that the operator ΔsR on S7 satisfies is that it commutes with the
operator defined by the Reeb vector field Y1. In other words, the following result holds.

Theorem 7 (Paper B) The operators ΔsR and Y 2
1 commute.

Theorem 7 has as a consequence a characterization of the sub-Riemannian heat kernel
in S7 in terms of the Riemannian heat kernel and the unbounded operator of heat flow
along the Reeb vector field for negative times.

Corollary 1 Denoting by ΔS7 the Riemannian Laplacian in S7 with respect to the usual
Riemannian structure, we have that

e−tΔsR = e−tΔS7etY
2
1 .

2.4 Intrinsic rolling of manifolds

The aim of this section is to provide a coordinate-free version of the definition given
in [33] for the system of two connected Riemannian manifolds of dimension n ≥ 2,
one of which is rolling on the other one without slipping or twisting. The so-called
controllability question asks if any given configuration of the manifolds can be obtained
from any other one by an appropriate rolling. The idea is to find the answer to the
controllability question from geometric information of the manifolds.
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The fact that the kinematic constraints of no-slipping and no-twisting can be under-
stood as a distribution of rank n over the manifold corresponding to the configuration
space of the system, which is a manifold of dimension n(n+3)

2
, transforms the controlla-

bility question into a sub-Riemannian problem: if we know that the rolling distribution
is bracket generating, then the system is controllable. We can give an answer to the
converse statement in the analytic category. If the manifolds and the distribution are
analytic, the converse of the Chow-Rashevskĭı theorem is true, thus controllability holds
if and only if the distribution is bracket generating. This section treats the results
obtained in Paper C.

2.4.1 Extrinsic definition of rolling

Let M and M̂ be connected oriented Riemannian manifolds of dimension n. Let ι and ι̂
be orientation preserving isometric imbeddings ofM and M̂ into Rn+ν for an appropriate
choice of ν, which exist due to [29]. Here Rn+ν is equipped with the standard Euclidean

metric and standard orientation. Let us identify the abstract manifolds M and M̂ with
their image under the corresponding imbeddings. These imbeddings of M and M̂ into
Rn+ν split the tangent space of Rn+ν into direct sums:

TxRn+ν = TxM ⊕ TxM
⊥, x ∈ M,

Tx̂Rn+ν = Tx̂M̂ ⊕ Tx̂M̂
⊥, x̂ ∈ M̂.

(2.4.1)

A notational convention that will be used throughout this section is that a vector
v ∈ TxRn+ν , x ∈ M , will be written as v = v� + v⊥, where v� ∈ TxM and v⊥ ∈ TxM

⊥.
Let ∇ denote the Levi-Civita connection on M or on M̂ . The context will indicate

on which manifold the connection is defined. The Levi-Civita connection on Rn+ν is
denoted by ∇. If X and Y are tangent vector fields on M , then

∇XY (x) =
(∇X̄ Ȳ (x)

)�
, x ∈ M,

where X̄ and Ȳ are any local extensions to Rn+ν of X and Y , respectively. Similarly, if
Υ is a normal vector field on M and X is a tangent vector field on M , then the normal
connection is defined by

∇⊥
XΥ(x) =

(∇X̄Ῡ(x)
)⊥

, x ∈ M,

where Ῡ is any local extension to Rn+ν of Υ. Equivalent statements hold for M̂ . Capital
Latin letters X, Y, Z denote tangent vector fields and capital Greek letters Υ,Ψ denote
normal vector fields. We denote by D

dt
the covariant derivative associated to the Levi-

Civita connection on M or on M̂ , and similarly D⊥
dt

denotes the covariant derivative
corresponding to the normal connection.

The following definition is a reformulation of rolling as presented in [33, Appendix B]
with the additional condition of preserving orientation.
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Definition 1 A rolling of M on M̂ without slipping or twisting is an absolutely conti-
nuous curve (x, g) : [0, τ ] → M × Isom+(Rn+ν) satisfying the following conditions:

(i) x̂(t) := g(t)x(t) ∈ M̂ ,

(ii) dg(t)Tx(t)M = Tx̂(t)M̂ ,

(iii) No slip condition: ˙̂x(t) = dg(t)ẋ(t), for almost every t.

(iv) No twist condition (tangential part):

dg(t)
D

dt
Z(t) =

D

dt
dg(t)Z,

for any tangent vector field Z(t) along x(t) and almost every t.

(v) No twist condition (normal part):

dg(t)
D⊥

dt
Ψ(t) =

D⊥

dt
dg(t)Ψ(t),

for any normal vector field Ψ(t) along x(t) and almost every t.

(vi) dx(t)g(t)|Tx(t)M : Tx(t)M → Tx̂(t)M̂ is orientation preserving.

Here Isom+(Rn+ν) denotes the space of affine oriented isometries of Rn+ν , that is,
the Lie group SE(n+ ν).

2.4.2 Intrinsic definition of rolling manifolds

Let us introduce the configuration space Q, which can be thought of as all the relative
positions in which M can be tangent to M̂ . Define the SO(n)−bundle over M × M̂ by

Q =
{
q ∈ Isom+

0 (TxM,Tx̂M̂)
∣∣∣ x ∈ M, x̂ ∈ M̂

}
. (2.4.2)

Here Isom+
0 (V, V̂ ) denotes the group of linear orientation preserving isometries between

the oriented inner product spaces V and V̂ . We denote by π : Q → M×M̂ the canonical
projection. In what follows, Q will denote indistinctly both the configuration space of
the kinematic problem and the SO(n)−bundle (2.4.2). It is important to stress that the
SO(n)−bundle Q is, in general, not principal for n ≥ 3.

Fixing a pair of imbeddings ι and ι̂ of M and M̂ into Rn+ν , respectively, we can
construct an SO(ν)−bundle Pι,̂ι of isometries of the normal tangent space over M × M̂ .
This construction is analogous to Q, but restricted to the normal directions of the
imbeddings. The aforementioned bundle is given by

Pι,̂ι :=
{
p ∈ Isom+

0 (TxM
⊥, Tx̂M̂

⊥)
∣∣∣ x ∈ M, x̂ ∈ M̂

}
. (2.4.3)

The dimension of Pι,̂ι is 2n+ ν(ν−1)
2

. Observe that Q is invariant of the choice of imbed-
dings, while Pι,̂ι is not. As in the case of Q, the SO(ν)−bundle Pι,̂ι is, in general, not
principal for ν ≥ 3.
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Proposition 4 (Paper C) If a curve (x, g) : [0, τ ] → M × Isom+(Rn+ν) satisfies (i)-
(vi) of Definition 1, then the mapping

t �→ (dg(t)|Tx(t)M , dg(t)|Tx(t)M
⊥) =: (q(t), p(t)) ,

defines a curve in Q⊕ Pι,̂ι with the following properties:

(I) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost every t.

(II) no twist condition (tangential part): q(t)D
dt
Z(t) = D

dt
q(t)Z(t) for any tangent vector

field Z(t) along x(t) and almost every t.

(III) no twist condition (normal part): p(t)D
⊥

dt
Ψ(t) = D⊥

dt
p(t)Ψ(t) for any normal vector

field Ψ(t) along x(t) and almost every t.

Conversely, if (q, p) : [0, τ ] → Q ⊕ Pι,̂ι is an absolutely continuous curve satisfying
(I)–(III), then there exists a unique rolling (x, g) : [0, τ ] → M × Isom+(Rn+ν), such that
dg(t)|Tx(t)M = q(t) and dg(t)|Tx(t)M

⊥ = p(t).

Proposition 4 is the first step in a coordinate free version of the rolling manifolds
problem, since it allows to split the information of the rolling in the tangent directions
and the normal directions with respect to the imbedding. This motivates the following
definition.

Definition 2 An extrinsic rolling of M on M̂ is an absolutely continuous curve

(q, p) : [0, τ ] → Q⊕ Pι,̂ι

satisfying (I)-(III) in Proposition 4.

Note that Proposition 4 means that a rolling in the sense of Definition 1 uniquely de-
fines an extrinsic rolling and vice versa. Restricting conditions (I)–(III) to the bundle Q
gives a purely intrinsic definition of rolling.

Definition 3 An intrinsic rolling of M on M̂ is an absolutely continuous curve

q : [0, τ ] → Q,

satisfying the following conditions: if x(t) = prMq(t) and x̂(t) = prM̂q(t), then

(I’) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost all t;

(II’) no twist condition: q(t)D
dt
Z(t) = D

dt
q(t)Z(t) for any tangent vector field Z(t) along

x(t) and almost every t.
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Observe that condition (II’) implies that Z(t) is a parallel tangent vector field along
x(t), if and only if q(t)Z(t) is parallel along x̂(t) for almost all t. In this sense, Definition 3
naturally generalizes the definition given in [2, Chapter 24] for 2-dimensional Riemannian
manifolds imbedded in R3.

A natural question is whether an intrinsic rolling extends uniquely to an extrinsic
one dependent on given imbeddings. This is answered by the following theorem.

Theorem 8 (Paper C) Let q : [0, τ ] → Q be an intrinsic rolling and let (x0, x̂0) ∈
M × M̂ be the point prM×M̂ q(0). Assume ι : M → Rn+ν and ι̂ : M̂ → Rn+ν are given
imbeddings.

Then, given an initial configuration p0 in the fiber of Pι,̂ι over (x0, x̂0), there exists a
unique rolling (q, p) : [0, τ ] → Q⊕ Pι,̂ι satisfying p(0) = p0.

2.4.3 Distribution

The goal of this subsection is to find a distribution corresponding to the restrictions of
no-twisting and no-slipping. This distribution is called rolling distribution. Let U ⊂ M
denote a neighborhood around x, such that both bundles TM → M and TM⊥ → M
become trivial when restricted to U . Define Û ⊂ M̂ around x̂ similarly. Let {ej}nj=1,
{ελ}νλ=1, {êi}ni=1 and {ε̂κ}νκ=1 denote positively oriented orthonormal frames of TM |U ,
TM⊥|U , TM̂ |Û and TM̂⊥|Û , respectively. There is a trivialization

(Q⊕ Pι,̂ι)|U×Û

h→ U × Û × SO(n)× SO(ν),
(q, p) �→ (x, x̂, A,B),

(2.4.4)

given by
x = prU(q, p), x̂ = prÛ(q, p),

A = (aij)
n
i,j=1 = (〈qej, êi〉)ni,j=1 ,

B = (bκλ)
ν
κ,λ=1 = (〈pελ, ε̂κ〉)νκ,λ=1 .

Let us consider the following global left invariant basis of TSO(n) defined by

Wij(A) =
n∑

r=1

(
ari

∂

∂arj
− arj

∂

∂ari

)
,

where A = (aij) ∈ SO(n).

Definition 4 For a vector field X on M , we define the vector fields V(X) and V⊥(X)
on Q ⊕ Pι,̂ι, such that under any local trivialization h as in (2.4.4) and for any pair of
isometries (q, p) ∈ (Q⊕ Pι,̂ι)(x,x̂), the following hold

dh (V(X)(q, p)) =
∑
i<j

( 〈∇X(x)ej(x), ei(x)
〉− n∑

s=1

asj
〈∇qX(x)ês(x̂), qei(x)

〉 )
Wij(A),
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dh
(V⊥(X)(q, p)

)
=
∑
κ<λ

( 〈∇⊥
X(x)ελ(x), εκ(x)

〉− ν∑
α=1

bαλ
〈∇⊥

qX(x)ε̂α(x̂), pεκ(x)
〉 )

Wκλ(B),

for A = (aij) ∈ SO(n), B = (bκλ) ∈ SO(ν) and (x, x̂) ∈ M × M̂ .

The vector fields V(X) and V⊥(X) allow us to define the rolling distributions for
the case of intrinsic and extrinsic rolling. This definition is contained in the following
proposition.

Proposition 5 (Paper C) A curve (q(t), p(t)) in Q⊕ Pι,̂ι is a rolling if and only if it
is almost everywhere tangent to the distribution E, defined by

E(q,p) = {X0 + qX0 + V(X0)(q, p) + V⊥(X0)(q, p)|X0 ∈ TxM},

where (q, p) ∈ (Q⊕ Pι,̂ι)(x,x̂), the fiber of Q⊕ Pι,̂ι → M × M̂ over (x, x̂) ∈ M × M̂ .
Moreover, a curve q(t) in Q is an intrinsic rolling if and only if it is almost everywhere

tangent to the distribution D

Dq = {X0 + qX0 + V(X0)(q)|X0 ∈ TxM} ,
for each q ∈ Q(x,x̂).

2.4.4 Examples of controllability

In this subsection we briefly discuss two examples of manifolds rolling: The group SE(3)
rolling on its Lie algebra se(3) and the n−dimensional sphere Sn rolling on Rn. The
first of these examples is non-controllable while the second one is completely controllable.
More details concerning both examples can be found in Paper C.

SE(3) rolling on se(3)

Let SE(3) be the group of orientation preserving isometries of R3. We consider the case
of SE(3), endowed with a left invariant metric that will be defined later, rolling over its
tangent space T1SE(3) = se(3) at the identity, with the restricted metric.

Give SE(3) coordinates as follows. For any x ∈ SE(3) there exist C = (cij) ∈ SO(3)
and r = (r1, r2, r3) ∈ R3, such that x = (C, r) acts via

x(y) = Cy + r, for all y ∈ R3.

The tangent space of SE(3) at x = (C, r) is spanned by the left invariant vector fields

e1 = Y1 =
1√
2

(
C · ∂

∂c12
− C · ∂

∂c21

)
=

1√
2

3∑
j=1

(
cj1

∂

∂cj2
− cj2

∂

∂cj1

)
(2.4.5)

e2 = Y2 =
1√
2

(
C · ∂

∂c13
− C · ∂

∂c31

)
=

1√
2

3∑
j=1

(
cj1

∂

∂cj3
− cj3

∂

∂cj1

)
(2.4.6)
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e3 = Y3 =
1√
2

(
C · ∂

∂c23
− C · ∂

∂c32

)
=

1√
2

3∑
j=1

(
cj2

∂

∂cj3
− cj3

∂

∂cj2

)
(2.4.7)

ek+3 = Xk = C · ∂

∂rk
=

3∑
j=1

cjk
∂

∂rj
, k = 1, 2, 3. (2.4.8)

Define a left invariant metric on SE(3) by declaring the vectors e1, . . . , e6 to form an
orthonormal basis. We will determine whether this system is controllable or not. Note
that Q = SE(3)× R6 × SO(6), because both manifolds SE(3) and R6 are Lie groups, so
their tangent bundles are trivial.

By Proposition 5 and Definition 4, the distribution D over Q is spanned by

Z1 = Y1 + qY1 +
1

2
√
2
W23 +

1√
2
W45,

Z2 = Y2 + qY2 − 1
2
√
2
W13 +

1√
2
W46,

Z3 = Y3 + qY3 +
1

2
√
2
W12 +

1√
2
W56,

(2.4.9)

K1 = X1 + qX1, K2 = X2 + qX2, K3 = X3 + qX3. (2.4.10)

The distribution D defined by the vector fields (2.4.9) and (2.4.10) is not bracket
generating, indeed

D2 = D ⊕ span {W12,W13,W23},
D3 = D2 ⊕ span{qY1, qY2, qY3},
D4 = D3,

(2.4.11)

and so dimD2 = 9, dimDk = 12 for all k ≥ 3 and the step of D is 3.
The fact that the system is not controllable follows from a version of the Orbit

theorem in the analytic category, see [2, Chapter 5]. In this case, the tangent space of
the orbits and the Lie hull of D coincide. Since the manifold Q and the distribution D
are analytic, the non-controllability of the system is equivalent to the fact that D is not
bracket generating.

Sn rolling on Rn

It is proved in [40] that rolling Sn on Rn, n ≥ 2, as submanifolds imbedded in Rn+1 is a
controllable system, i.e. any configuration can be obtained from an initial one by rolling
without twisting or slipping. To prove this result the author first rewrites the kinematic
equations as a right-invariant control system without drift, evolving on a connected Lie
groupG, in order to apply a theorem for controllability on Lie groups proved by Jurdjevic
and Sussmannn [22] which reduces the controllability issue to proving that the rolling
distribution generates the Lie algebra of G. This theorem results from an adaptation to
Lie groups of the Chow-Rashevskĭı theorem. Here we briefly discuss the fact that the
distribution D from Definition 4 is bracket generating in this case, thus obtaining the
controllability of this system directly as consequence of the Chow-Rashevskĭı theorem.
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Consider the unit sphere Sn as the submanifold of the Euclidean space Rn+1,

Sn =
{
(x0, . . . , xn) ∈ Rn+1| x2

0 + · · ·+ x2
n = 1

}
,

with the induced metric.
For an arbitrary point x̃ = (x̃0, . . . , x̃n) ∈ Sn, at least one of the coordinates

x̃0, . . . , x̃n does not vanish. Assume that x̃n �= 0, and consider the neighborhood
U = {(x0, . . . , xn) ∈ Sn| ± xn > 0} , where the choice of the ± sign corresponds to
the sign of x̃n. To simplify the notation, we define the following functions on U

sj(x) =
n∑

r=j

x2
r .

These functions are always strictly positive on U , and we use them to define an or-
thonormal basis of TU . We will write simply sj instead of sj(x), since dependence of x
is clear from the context. Define the following vector fields on U

ej =

√
sj
sj−1

(
− ∂

∂xj−1

+
xj−1

sj

n∑
r=j

xr
∂

∂xr

)
, j = 1, . . . , n. (2.4.12)

These vector fields form an orthonormal basis of the tangent space over U .
Consider the vector fields Xk = ek + qek + V(ek) which generate the distribution D,

introduced in Proposition 5, restricted to U . We have the explicit form

Xk(x, x̂, A) = ek(x) +
n∑

i=1

aikêi(x̂)−
k−1∑
i=1

xi−1√
si−1si

Wik(A).

In order to determine the commutators [Xk, Xl], let us assume that k > l. Lengthy
calculations show that

[Xk, Xl] =
xl−1√
sl−1sl

Xk −Wlk.

Define the vector fields Ylk, for l < k, by

Ylk := [Xl, Xk] +
xl−1√
sl−1sl

Xk = Wlk.

Finally, let Z1 = [Y12, X2] =
n∑

i=1

ai1êi, and

Zk = [X1, Y1k] =
n∑

i=1

aikêi , k = 2, . . . , n.

We conclude that the entire tangent space TQ is spanned by {Xk}nk=1, {Ylk}1≤l<k≤n

and {Zk}nk=1. Hence, D is a regular bracket generating distribution of step 3, which
implies that the system of rolling Sn over Rn without slipping or twisting is completely
controllable.
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2.5 Existence of rollings

Paper D of the present thesis deals with problems of existence of intrinsic rollings as
defined in the previous section. This is a work in progress, here we show some of the
results obtained so far.

In the literature of probability theory, see for instance [17, 21], the notion of de-
velopment is the main tool to construct Brownian motions on Riemannian manifolds.
This procedure starts with a curve x : [0, τ ] → M and an initial rolling configuration
q0 = (x0, x̂0, A0) ∈ Q of M rolling on Rn. The development along x is equivalent to
constructing a curve x̂ : [0, τ ] → Rn as follows:

x̂(t) = q0 ◦ exp−1
x0

◦x(t), (2.5.1)

where expx0
denotes the Riemannian exponential mapping of M at x0 = x(0). Note that

x̂(0) = x̂0. Using this curve, we can define A : [0, τ ] → SO(n) as follows. Let X1, . . . , Xn

be an orthonormal basis of Tx0M and X̂i = q0Xi be the corresponding orthonormal basis
of Tx̂0R

n. By parallel translating both bases along x and x̂, we define the vector fields

Xi(t) and X̂i(t) along x and x̂ respectively. The map A(t) is defined as the isometry

mapping Xi(t) to X̂i(t). Note that by construction A(0) = A0.
With these notations, we have the following result.

Proposition 6 (Paper D) Let x : [0, τ ] → M be a geodesic in M and let x̂ : [0, τ ] →
Rn be defined by equation (2.5.1). The curve

q : [0, τ ] → Q ∼= U × Û × SO(n)
t �→ (x(t), x̂(t), A(t))

(2.5.2)

defined for a sufficiently small time τ and a sufficiently small neighborhood U × Û of
(x0, x̂0) ∈ M × Rn is an intrinsic rolling.

This shows that given a geodesic in M , it is possible to construct an intrinsic rolling
over Rn. A natural step is to discuss the existence of an intrinsic rolling of two manifolds,
M and M̂ , following given trajectories x : [0, τ ] → M and x̂ : [0, τ ] → M̂ . More precisely,
the problem asks whether a rolling of the form

q : [0, τ ] → Q
t �→ (x(t), x̂(t), A(t))

(2.5.3)

exists, whenever the curves x : [0, τ ] → M and x̂ : [0, τ ] → M̂ are given.
The following theorem gives necessary and sufficient conditions for the existence of

the map (2.5.3) in the case of Riemannian surfaces.

Theorem 9 (Paper D) Let M and M̂ be two Riemannian connected surfaces. Let

x : [0, τ ] → M and x̂ : [0, τ ] → M̂ be two curves of class C1 parameterized by arc-length

and geodesic curvatures kg(t) and k̂g(t) respectively. Then, there is a rolling along x and

x̂ if and only if kg(t) = k̂g(t).
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An interesting consequence of Theorem 9 is the following corollary.

Corollary 2 (Paper D) With the notation and hypotheses of Theorem 9, let us assume

that M̂ = R2 with the usual Riemannian structure and the curves x : [0, τ ] → M and
x̂ : [0, τ ] → R2 are simple loops, where x(0) = x(τ) and x̂(0) = x̂(τ). Let α be the angle
between ẋ(0) and ẋ(τ), then ∫ τ

0

kg(t)dt = α.

In order to find a condition similar to the one in Theorem 9 in the case of rolling
manifolds of higher dimension, it is necessary to find the correct analog to the geodesic
curvature. The definition that is suitable in this context can be found in [36, pp. 21–32].

Then the analog of Theorem 9 in higher dimension is the following.

Theorem 10 (Paper D) Let M and M̂ be two Riemannian manifolds of dimension

n, and let x : [0, τ ] → M and x̂ : [0, τ ] → M̂ be two curves of class Cn parametrized by
arc-length. Suppose that both x and x̂ have n well defined Frenet vector fields and n− 1
geodesic curvatures {κj}n−1

j=1 and {κ̂j}n−1
j=1 respectively. Then there exists a rolling along

x(t) and x̂(t) if and only if

κj = ±κ̂j, j = 1, . . . , n. (2.5.4)

As a consequence of Theorem 10 for sufficiently small τ , Proposition 6 and the
uniqueness of rollings, see [33, p. 381], we have the following corollary.

Corollary 3 (Paper D) With the notation and hypotheses of Theorem 10, consider a
given initial configuration for a rolling (x0, x̂0, q0) ∈ Q, where x0 = x(0) and x̂0 = x̂(0),
and assume x is a geodesic in M . Then, for sufficiently small values of τ , the equality

x̂(t) = q0 ◦ exp−1
x0

◦x(t)

holds if and only if κj = ±κ̂j.
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2.6 Future research

Based on the results described in the previous sections, some related questions arise and
are posed here as open problems to be treated in the future.

• Detailed study of the intrinsic sub-Laplacian and heat kernel of general sub-
Riemannian principal bundles, in terms of the geometry of the fibers and base
spaces.

• Formulation of a geodesic equation for S7 endowed with its qCR structure.

• Connectivity by geodesics in general sub-Riemannian principal bundles.

• Applications of intrinsic rollings to interpolation theory and controllability.

• Geometric characterization of abnormal extremals in rolling problems.

• Study of the motion planning problem for rollings of higher dimensional manifolds.

• Extend the results of existence of rollings to more general cases.
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SUB-RIEMANNIAN GEOMETRY OF PARALLELIZABLE
SPHERES

MAURICIO GODOY MOLINA
IRINA MARKINA

Abstract. The first aim of the present paper is to compare various sub-
Riemannian structures over the three dimensional sphere S3 originating
from different constructions. Namely, we describe the sub-Riemannian
geometry of S3 arising through its right action as a Lie group over itself,
the one inherited from the natural complex structure of the open unit ball
in C2 and the geometry that appears when it is considered as a principal
S1−bundle via the Hopf map. The main result of this comparison is that
in fact those three structures coincide.

We present two bracket generating distributions for the seven dimen-
sional sphere S7 of step 2 with ranks 6 and 4. The second one yields to a
sub-Riemannian structure for S7 that is not widely present in the litera-
ture until now. One of the distributions can be obtained by considering
the CR geometry of S7 inherited from the natural complex structure of
the open unit ball in C4. The other one originates from the quaternionic
analogous of the Hopf map.

1. Introduction

One of the main objectives of classical sub-Riemannian geometry is to
study manifolds which are path-connected by curves admissible in a certain
sense. In order to define what does admissibility mean in this context, we
begin by setting notations that will be used throughout this paper. Let M
be a smooth connected manifold of dimension n, together with a smooth dis-
tribution H ⊂ TM of rank 2 ≤ k < n. Such vector bundles are often called
horizontal in the literature. An absolutely continuous curve γ : [0, 1] → M
is called admissible or horizontal if γ̇(t) ∈ H a.e.
Distributions satisfying the condition that their Lie-hull equals the whole

tangent space of the manifold at each point play a central role in the search
for horizontally path-connected manifolds. Such vector bundles are said

2000 Mathematics Subject Classification. 53C17, 55R25, 32V15.
Key words and phrases. sub-Riemannian geometry, CR geometry, Hopf bundle, Ehres-

mann connection, parallelizable spheres, quaternions, octonions.
The authors are partially supported by the grant of the Norwegian Research Coun-

cil # 177355/V30 and by the grant of the European Science Foundation Networking
Programme HCAA.
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to satisfy the bracket generating condition. To be more precise, define the
following real vector bundles

H1 = H, Hr+1 = [Hr,H] +Hr for r ≥ 1,

which naturally give rise to the flag

H = H1 ⊆ H2 ⊆ H3 ⊆ . . . .

Then we say that a distribution is bracket generating if for all x ∈ M there
is an r(x) ∈ Z+ such that

(1) Hr(x)
x = TxM.

If the dimensions dimHr
x do not depend on x for any r ≥ 1, we say that

H is a regular distribution. The least r such that (1) is satisfied is called
the step of H. We will focus on regular distributions of step 2. In [18] the
reader can find detailed definitions and broad discussion about terminology.

The following classical result shows the precise relation between the notion
of path-connectedness by means of horizontal curves and the assumption
that H is a bracket generating distribution.

Theorem 1 ([11, 23]). Let M be a connected manifold. If a distribution
H ⊂ TM is bracket generating, then any two points in M can be joined by
a horizontal path.

We recall the definition of sub-Riemannian manifold.

Definition 1. A sub-Riemannian structure over a manifold M is a pair
(H, 〈·, ·〉), where H is a bracket generating distribution and 〈·, ·〉 a fiber inner
product defined on H. In this setting, the length of an absolutely continuous
horizontal curve γ : [0, 1] → M is

�(γ) :=

∫ 1

0

‖γ̇(t)‖dt,

where ‖γ̇(t)‖2 = 〈γ̇(t), γ̇(t)〉 whenever γ̇(t) exists. The triple (M,H, 〈·, ·〉) is
called sub-Riemannian manifold.

Thereby, restricting our considerations to connected sub-Riemannian man-
ifolds endowed with bracket generating distributions, it is possible to define
the notion of sub-Riemannian distance between two points.

Definition 2. The sub-Riemannian distance d(p, q) ∈ [0,+∞) between two
points p, q ∈ M is given by d(p, q) := inf �(γ), where the infimum is taken
over all absolutely continuous horizontal curves joining p to q.

An absolutely continuous horizontal curve that realizes the distance be-
tween two points is called a horizontal length minimizer.
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Remark: The connectedness ofM and the fact thatH is bracket generating,
assure that d(p, q) is a finite nonnegative number. Nevertheless the bracket
generating hypothesis, required for the previous definition, is possible to
be weakened. In fact, in [25] the author finds a necessary and sufficient
requirement to horizontal path-connectedness for a manifold in terms of the
corresponding distribution. Clearly, this theorem contains, as a particular
case, the bracket generating condition.

Historically, the first examples of sub-Riemannian manifolds that have
been considered were Lie groups, see e.g. [2, 6, 9, 14, 17]. Due to its alge-
braic structure, it is sufficient to define appropriate distributions at the iden-
tity of the group. Right (or left) translations allow to find globally defined
bracket generating distributions of right (or left) invariant vector fields. An
important role has been played by considering domains in Euclidean spaces
with special algebraic structures (such as the Heisenberg groups, H−type
groups as their natural generalizations to Clifford algebras, Engel groups,
Carnot groups, etc.). Particular attention have had the three dimensional
unimodular Lie groups which were studied, for example, in [2, 6, 14] and
the Heisenberg group, see [13]. The main purpose of this communication is
to present recent results concerning different sub-Riemannian structures of
the second simplest family of examples of manifolds, namely, spheres. The
main tool for the study of sub-Riemannian structures on spheres arise from
the G−principal bundle structure given by the Hopf fibrations. We are also
inspired by the article [26], where the close relation between the Hopf map
and physical applications is presented.

The following celebrated theorem in topology, see [1], gives a very strong
restriction on the problem of finding globally defined sub-Riemannian struc-
tures over spheres.

Theorem 2 (Adams). Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} be the unit sphere in
Rn, with respect to the usual Euclidean norm ‖ · ‖. Then Sn−1 has precisely
�(n)−1 linearly independent, globally defined and non vanishing vector fields,
where �(n) is defined in the following way: if n = (2a+ 1)2b and b = c+ 4d
where 0 ≤ c ≤ 3, then �(n) = 2c + 8d.
In particular, two classical consequences follow: S1, S3 and S7 are the only

spheres with maximal number of linearly independent globally defined non
vanishing vector fields, and the even dimensional spheres have no globally
defined and non vanishing vector fields.

The condition that a manifold M has maximal number of linearly inde-
pendent globally defined non vanishing vector fields is usually rephrased as
saying that M is parallelizable. The fact that S1, S3 and S7 are the only par-
allelizable spheres was proved in [7] and that the even dimensional spheres
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have no globally defined and non vanishing vector fields is a consequence of
the Hopf index theorem, see [27].

This theorem permits to conclude at least two major points of discussion:
there is no possible global basis of a sub-Riemannian structure for spheres
with even dimension and it is impossible to find a globally defined basis for
bracket generating distributions, except for S3 and S7. The fact that S3 and
S7 can be seen as the set of quaternions and octonions of unit length will
play a core role in many arguments throughout this paper.

The main results that we present here are: a comparison between three
sub-Riemannian structures of S3 and the constructions for two different
sub-Riemannian structures for S7. More specifically, the first result can be
summarized as an equivalence between the sub-Riemannian geometry of S3

arising through its right Lie group action over itself as the set of unit quater-
nions, the one inherited from the natural complex structure of the open unit
ball in C2 and the geometry that appears when considering the Hopf map
as a principal S1−bundle. Notice that this structure admits a tangent cone
isomorphic to the one dimensional Heisenberg group in the sense of Gromov-
Margulis-Mitchell-Mostow construction of the tangent cone [15, 20, 21, 22].
With respect to the second result, by considering the CR structure of S7

inherited from the natural complex structure of the open unit ball in C4, we
obtain a 2-step bracket generating distribution of rank 6. This construction
is intimately related to the Hopf fibration S1 → S7 → CP 3, in the sense that
the holomorphic tangent space defining the CR structure is an Ehresmann
connection, that is, the orthogonal complement to the vertical space defined
by the Hopf fibration as a principal S1−bundle. This fact is generalized
to all odd-dimensional spheres and, moreover, it implies that the tangent
cone for (2n + 1)−dimensional spheres is isomorphic to the n−dimensional
Heisenberg group. Making use of the quaternionic analogue of the Hopf map
S3 → S7 → S4, we present another 2-step bracket generating distribution
that has rank 4. We conclude that the sphere S7 admits at least two different
sub-Riemannian structures. The tangent cone, in the first case, is isomor-
phic to the 3-dimensional Heisenberg group, and in the second case it has
the structure of the quaternionic Heisenberg-type group with 3-dimensional
center [9]. In both cases we present the basis of the horizontal distribution
that is very useful in future studies of geodesics and hypoelliptic operators
related to the sub-Riemannian geometry of spheres. We would like to note
that, in the case of the rank 6 distribution the given basis is globally defined,
while in the case of the rank 4 distribution the search for a globally defined
basis will be analyzed in a forthcoming paper. It is also expected that S7

with the structure induced by the quaternionic Hopf fibration satisfies the
conditions of a qCR−manifold in the sense of [3].
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2. S3
as a sub-Riemannian manifold

Throughout this paperH will denote the quaternions, that is, H = (R4,+, ◦)
where + stands for the usual coordinate-wise addition in R4 and ◦ is a non-
commutative product given by the formula

(x0 + x1i+ x2j + x3k) ◦ (y0 + y1i+ y2j + y3k) =

= (x0y0 − x1y1 − x2y2 − x3y3) + (x1y0 + x0y1 − x3y2 + x2y3)i+

+(x2y0 + x3y1 + x0y2 − x1y3)j + (x3y0 − x2y1 + x1y2 + x0y3)k.

It is important to recall that H is a non-commutative, associative and
normed real division algebra. Let q = t + ai + bj + ck ∈ H, then the
conjugate of q, is given by

q̄ = t− ai− bj − ck.

We define the norm |q| of q ∈ H by |q|2 = qq̄.
The realization of the sphere S3 as the set of unit quaternions, produces

a Lie group structure induced by quaternion multiplication.
The multiplication rule in H induces a right translation Ry(x) of an el-

ement x = x0 + x1i + x2j + x3k by the element y = y0 + y1i + y2j + y3k.
The right invariant basis vector fields are defined as Y (y) = (Ry(x))∗Y (0),
where Y (0) are the basis vectors at the unity of the group. The matrix
corresponding to the tangent map (Ry(x))∗, obtained by the multiplication
rule, becomes

(Ry(x))∗ =

⎛⎜⎜⎝
y0 y1 y2 y3
−y1 y0 −y3 y2
−y2 y3 y0 −y1
−y3 −y2 y1 y0

⎞⎟⎟⎠ .

Calculating the action of (Ry(x))∗ in the basis of unit vectors of R4 we
get the four vector fields

N(y) = y0∂y0 + y1∂y1 + y2∂y2 + y3∂y3 ,

V (y) = −y1∂y0 + y0∂y1 − y3∂y2 + y2∂y3 ,

X(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 ,

Y (y) = −y3∂y0 − y2∂y1 + y1∂y2 + y0∂y3 .

It is easy to see that N(y) is the unit normal to S3 at y ∈ S3 with respect
to the usual Riemannian structure 〈·, ·〉 in T R4. Moreover, for any y ∈ S3

〈N(y), V (y)〉y = 〈N(y), X(y)〉y = 〈N(y), Y (y)〉y = 0

and

〈N(y), N(y)〉y = 〈V (y), V (y)〉y = 〈X(y), X(y)〉y = 〈Y (y), Y (y)〉y = 1.
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Since the matrix ⎛⎝ −y1 y0 −y3 y2
−y2 y3 y0 −y1
−y3 −y2 y1 y0

⎞⎠
has rank three, we conclude that the vector fields {V (y), X(y), Y (y)} form
an orthonormal basis of TyS

3 with respect to 〈·, ·〉y, for any y ∈ S3.
Observing that [X, Y ] = 2V , we see that the distribution span{X, Y } is

bracket generating, therefore it satisfies the hypothesis of Theorem 1. The
geodesics of the left invariant sub-Riemannian structure of S3 are determined
in [10], while in [17] the same results are achieved by considering the right
invariant structure of S3.

Notice that the distribution span{X, Y } can also be defined as the kernel
of the contact one form

ω = −y1 dy0 + y0 dy1 − y3 dy2 + y2 dy3.

Remark: It is easy to see that [V, Y ] = 2X and [X, V ] = 2Y , therefore the
distributions span{Y, V } and span{X, V } are also bracket generating. The
corresponding contact forms are

θ = −y2 dy0 + y3 dy1 + y0 dy2 − y1 dy3

and
η = −y3 dy0 − y2 dy1 + y1 dy2 + y0 dy3

respectively. This means that there is a priori no natural choice of a sub-
Riemannian structure on S3 generated by the Lie group action of multipli-
cation of quaternions. Any choice that can be made, will produce essentially
the same geometry.

3. S3
as a CR manifold

Consider S3 as the boundary of the unit ball B4 on C2, that is, as the
hypersurface

S3 := {(z, w) ∈ C2 : zz̄ + ww̄ = 1}.
The sphere S3 cannot be endowed with a complex structure, but nevertheless
it possess a differentiable structure compatible with the natural complex
structure of the ball B4 = {(z, w) ∈ C2 : zz̄ + ww̄ < 1} as an open set
in C2. We will show that this differentiable structure over the sphere S3

(CR structure) is equivalent to the sub-Riemannian one considered in the
previous section. We begin by recalling the definition of a CR structure,
according to [5].

Definition 3. Let W be a real vector space. A linear map J : W → W is
called an almost complex structure map if J ◦ J = −I, where I : W → W is
the identity map.
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In the case W = TpR2n, p = (x1, y1, . . . , xn, yn ∈ R2n, we say that the
standard almost complex structure for W is defined by setting

Jn(∂xj
) = ∂yj , Jn(∂yj) = −∂xj

, 1 ≤ j ≤ n.

For a smooth real submanifold M of Cn and a point p ∈ M , in general the
tangent space TpM is not invariant under the almost complex structure map
Jn for TpCn ∼= TpR2n. We are interested in the largest subspace invariant
under the action of Jn.

Definition 4. For a point p ∈ M , the complex or holomorphic tangent space
of M at p is the vector space

HpM = TpM ∩ Jn(TpM).

In this setting, the following result takes place, see [5].

Lemma 1. Let M be a real submanifold of Cn of real dimension 2n − d.
Then

2n− 2d ≤ dimR HpM ≤ 2n− d,

and dimR HpM is an even number.

A real submanifold M of Cn is said to have a CR structure if dimR HpM
does not depend on p ∈ M . In particular, by Lemma 1, every smooth real
hypersurface S embedded in Cn satisfies dimR HpS = 2n− 2, therefore S is
a CR manifold. This fact applies to every odd dimensional sphere.

The question addressed now is to describe HpS
3. By the discussion in the

previous paragraph, HpS
3 can be seen as a complex vector space of complex

dimension one. This description is achieved by considering the differential
form

ω = z̄dz + w̄dw

and observing that kerω is precisely the set we are looking for. Straightfor-
ward calculations show that

kerω = span{w̄∂z − z̄∂w}.
In real coordinates this corresponds to

w̄∂z − z̄∂w =
1

2
(−X + iY ),

where X and Y were defined in Section 2. It is important to remark that
this is precisely the maximal invariant J2−subspace of TpS

3, namely

J2(X) = Y, J2(Y ) = −X,

then J2(span{X, Y }) = span{X, Y }, but J2(V ) = −N /∈ TpS
3 for any point

p ∈ S3. Therefore, the distribution corresponding to the right invariant
action of S3 over itself is the same to its one dimensional (complex) CR
structure.
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Remark: The distribution associated to the anti-holomorphic form

ω̄ = zdz̄ + wdw̄

is the conjugate to the previous one and isomorphic and isomorphic to the
2-dimensional real distribution H. More explicitly:

kerω = span{−w∂z̄ + z∂w̄}
and in real coordinates this corresponds to

−w∂z̄ + z∂w̄ =
1

2
(X + iY ).

The same almost complex structure as the previously described can be
obtained by means of the covariant derivative of S3 considered as a smooth
Riemannian manifold embedded in R4. Namely, in [17] it is introduced
the mapping J(Z) = ∇ZV , for Z ∈ TS3, were ∇ denotes the Levi-Civita
connection on the tangent bundle to S3 and V is the vector field defined in
Section 2.

4. S3
as principal bundle

In this section we describe how the structure of a principal S1−bundle over
S3 induces a bracket generating distribution on S3. Namely, it is possible
to consider S3 as a S1−space, according to the action

λ · (z, w) = (λz, λw),

where λ ∈ S1 = {λ ∈ C : |λ|2 = 1} and (z, w) ∈ S3 = {(z, w) ∈ C2 :
|z|2 + |w|2 = 1}.
Consider the Hopf map h : S3 → S2 as a principal S1−bundle, see [16, 19],

given explicitly by
h(z, w) = (|z|2 − |w|2, 2zw̄),

where S2 = {(x, ζ) ∈ R × C : x2 + |ζ|2 = 1}. Clearly, h is a submersion
of S3 onto S2, and it is a bijection between S3/S1 and S2, where S3/S1 is
understood as the orbit space of the S1−action over S3, previously defined.
Let p = (x0, ζ0) ∈ S2. It is easy to verify that h−1(p) = (z0, w0) mod S1,

where (z0, w0) is one preimage of p under h. Consider the great circle

γp(t) = e2πit(z0, w0), t ∈ [0, 1],

in S3, that projects to p under the Hopf map. Consider the tangent vector
field, defined by

γ̇p(t) = 2πie2πit(z0, w0) ∈ Tγp(t)S
3.

We write the curve γp and the map dγp(t)h in real coordinates, then

γp(t) = (z(t), w(t)) = (x0(t) + ix1(t), x2(t) + ix3(t))

= (x0(t), x1(t), x2(t), x3(t))
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and

[dγp(t)h] = 2

⎛⎝ x0(t) x1(t) −x2(t) −x3(t)
x2(t) x3(t) x0(t) x1(t)
−x3(t) x2(t) x1(t) −x0(t)

⎞⎠ .

Thus, the Hopf map induces the following action over the vector field γ̇p(t):

[dγp(t)h]γ̇p(t) = 4π

⎛⎝ x0(t) x1(t) −x2(t) −x3(t)
x2(t) x3(t) x0(t) x1(t)

−x3(t) x2(t) x1(t) −x0(t)

⎞⎠
⎛⎜⎜⎝
ẋ0(t)
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ .

Therefore, if [dγp(t)h] is a full rank matrix, we would have characterized the
kernel of it, by

(2) ker dγp(t)h = span{γ̇p(t)}.
Notice that, using the notation of Section 2, the following identity holds

γ̇p(t) = 2πV (γp(t)).(3)

To see that the matrix [dγp(t)h] is full rank, observe that

[dγp(t)h][dγp(t)h]
t = 4I3,

where I3 denotes the identity matrix of size 3× 3. This implies that [dγp(t)h]
is full rank.

Before describing how the Hopf map induces a horizontal distribution, it
is necessary to present some definitions found for example in [22, Chapter
11].

Definition 5 (Ehresmann Connection). Let M and Q be two differentiable
manifolds, and let π : Q → M be a submersion. Denoting by Qm = π−1(m)
the fiber through m ∈ M , the vertical space at q is the tangent space at the
fiber Qπ(q) and it is denoted by Vq.
An Ehresmann connection for the submersion π : Q → M is a distribution

H ⊂ TQ which is everywhere transversal to the vertical, that is:

Vq ⊕Hq = TqQ.

We apply Definition 5 to the map h in order to define the Ehresmann
connection. Since we know that ker dph = span{V (p)}, for every p ∈ S3

by (2) and (3), and moreover,

〈X(p), V (p)〉p = 〈Y (p), V (p)〉p = 〈X(p), Y (p)〉p = 0,

where 〈·, ·〉p stands for the usual Riemannian structure defined at p ∈ S3,
we see that

Hp = span{X(p), Y (p)}(4)

is an Ehresmann connection for the submersion h : S3 → S2 with V (p) as a
vertical space.
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Definition 6. Let G be a Lie group acting on Q and π : Q → M a submer-
sion, with Ehresmann connection H, which is a fiber bundle with fiber G.
The submersion π is called a principal G−bundle with connection, if the
following conditions hold:

• G acts freely and transitively on fibers,
• the group orbits are the fibers of π : Q → M (thus M is isomorphic
to Q/G and π is the canonical projection) and

• the G−action on Q preserves the horizontal distribution H;

We conclude that the Hopf fibration is a principal S1−bundle with con-
nection H, defined by (4).

Definition 7. A sub-Riemannian metric 〈·, ·〉 on the principal G-bundle
π : G → M is called a metric of bundle type if the inner product 〈·, ·〉 on the
horizontal distribution H is induced from a Riemannian metric on M .

The sub-Riemannian metric 〈·, ·〉|H, obtained by restricting the usual Rie-
mannian metric of S3 to the distribution H is, by construction, a metric of
bundle type.

Thus the Hopf map indicates, in a topological way, how to make a nat-
ural choice of the horizontal distribution H that was not obvious when we
considered the right action of S3 over itself.
Remark: Observe that the considered vector fields coincide with the right
invariant vector fields. This phenomenon does not appear when we change
the right action to the left action of S3 over itself.

5. Tangent vector fields for S7

In Sections 5 to 7 we will study different sub-Riemannian structures over
the sphere S7, using the ideas of Sections 2 to 4. As a result, we obtain two
structurally different types of horizontal distributions. One of them of rank
6 and other of the rank 4. Moreover, as we shall see, the sub-Riemannian
structure induced by the CR structure and quaternionic analogue of the Hopf
map are essentially different. We start from the construction of a convenient
basis of tangent vector fields to S7.

The multiplication of unit octonions is not associative, therefore S7 is
not a group in a contrast with S3. Nevertheless, we still able to use the
multiplication law in order to find global tangent vector fields. To do this,
we present a multiplication table for the basis vectors of R8. This non-
associative multiplication gives rise to the division algebra of octonions

O = span{e0, e1, e2, e3, e4, e5, e6, e7}.
According to Table 1, the formula for the product of two octonions is pre-

sented in Subsection 8.1 of the Appendix. This multiplication rule induces
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e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

Table 1. Multiplication table for the basis of O.

a matrix representation of the right octonion multiplication, given explicitly
by:

(Ry(x))∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 −y1 −y2 −y3 −y4 −y5 −y6 −y7
y1 y0 y3 −y2 y5 −y4 −y7 y6
y2 −y3 y0 y1 y6 y7 −y4 −y5
y3 y2 −y1 y0 y7 −y6 y5 −y4
y4 −y5 −y6 −y7 y0 y1 y2 y3
y5 y4 −y7 y6 −y1 y0 −y3 y2
y6 y7 y4 −y5 −y2 y3 y0 −y1
y7 −y6 y5 y4 −y3 −y2 y1 y0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We are able to find globally defined tangent vector fields which are invari-
ant under the right product rule. We proceed by analogy with Section 2.
The explicit formulae are given in Subsection 8.2 of the Appendix. The
vector fields {Y0, . . . , Y7} form a frame for TR8 and, as in Subsection 8.2,
the vector fields {Y1, . . . , Y7} form a frame for TS7. More explicitly, we have
that the following identities hold

〈Yi(y), Yj(y)〉y = δij, y ∈ S7, i, j ∈ {0, 1, . . . , 7},

where 〈·, ·〉 is the standard Riemannian structure over R8 and δij stands for
Kronecker’s delta.
Remark: Recall that in contrast with quaternions, the matrix represen-
tation (Ry(x))∗ of right octonion multiplication is only a convenient way
of writing the formula presented in Subsection 8.1 of the Appendix. For
quaternions this is actually a representation of quaternion product, but it
cannot be such for octonions since they are non-associative and matrix mul-
tiplication is associative.
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6. CR structure and the Hopf map on S7

In [22, Chapter 11] it is briefly discussed the general idea of studying a
sub-Riemannian geometry for odd dimensional spheres via the higher Hopf
fibrations. Namely, consider S2n+1 = {z ∈ Cn+1 : ‖z‖2 = 1}, then the
S1−action on S2n+1 given by

λ · (z0, . . . , zn) = (λz0, . . . , λzn),

for λ ∈ S1 and (z0, . . . , zn) ∈ S2n+1, induces the well-known principal

S1−bundle S1 → S2n+1 H−→ CP n given explicitly by

S2n+1 � (z0, . . . , zn) �→ H(z0, . . . , zn) = [z0 : · · · : zn] ∈ CP n,

where [z0 : · · · : zn] denotes homogeneous coordinates. This map is called
higher Hopf fibration. The kernel of the map h : S2n+1 → CP n produces the
vertical space and a transversal to the vertical space distribution gives the
Ehresmann connection. We show that the vertical space is always given by
an action of standard almost complex structure on the normal vector field
to S2n+1, and the Ehresmann connection coincides with the holomorphic
tangent space at each point of S2n+1.
Theorem 2 asserts that any odd dimensional sphere has at least one glob-

ally defined non vanishing tangent vector field. If the dimension of the sphere
is of the form 4n+1, then it has only one globally defined non vanishing tan-
gent vector field. In the case that the dimension of the sphere is of the form
4n+3, then the sphere admits at least three globally defined non vanishing
vector fields. Any sphere S2n+1 possesses the vector field

Vn+1(y) = −y1∂y0 + y0∂y1 − y3∂y2 + . . .− y2n+2∂y2n+1 + y2n+1∂y2n+2 .

Observe that this vector field has appeared already in two opportunities:
the vector field V in Sections 2, 3 and 4 corresponds to V2; and the vector
field Y1 in Subsection 8.2 of the Appendix corresponds to V4.
The vector field Vn+1 encloses valuable information concerning the CR

structure of S2n+1. We know by Lemma 1 that, as a smooth hypersurface
in Cn+1 the sphere S2n+1 admits a holomorphic tangent space of dimension

dimR HpS
2n+1 = 2n

for any point p ∈ S2n+1. The following lemma implies the description of
HpS

2n+1 as the orthogonal complement to Vn+1.

Lemma 2. Let W be an Euclidean space of dimension n + 2, n ≥ 1,
and inner product 〈·, ·〉W . Consider an orthogonal decomposition W =

span{X, Y } ⊕⊥ W̃ with respect to 〈·, ·〉W and an orthogonal endomorphism
A : W → W such that

A(span{X, Y }) = span{X, Y },
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then W̃ is an invariant space under the action of A, i.e.

A(W̃ ) = W̃ .

Proof. Let v ∈ W̃ , then for any α, β ∈ R it is clear that

〈Av, αX + βY 〉W = 〈v, At(αX + βY )〉W = 〈v, A−1(αX + βY )〉W .

Since A(span{X, Y }) = span{X, Y }, there exist a, b ∈ R such that

A−1(αX + βY ) = aX + bY,

and therefore

〈Av, αX + βY 〉W = 〈v, aX + bY 〉W = 0,

which implies that Av ∈ W̃ . �

As an application of Lemma 2, it is possible to obtain the explicit char-
acterization of the previously mentioned space HpS

2n+1.

Lemma 3. The vector space HpS
2n+1 is the orthogonal complement to the

vector Vn+1(p) in TpS
2n+1, for any p ∈ S2n+1.

Proof. Consider the vector space

Wp = span{Nn+1(p)} ⊕⊥ TpS
2n+1 ∼= TpR

2n+2,

where Nn+1(p) is the normal vector to S2n+1 at p. The standard almost
complex structure map Jn+1 : Wp → Wp is orthogonal. Moreover

Jn+1(Vn+1(p)) = −Nn+1(p), Jn+1(Nn+1(p)) = Vn+1(p).

Using the decomposition Wp = W̃p⊕⊥ span{Vn+1(p), Nn+1(p)}, it is possible
to apply Lemma 2 in order to conclude that W̃p, which is the orthogonal

complement to Vn+1(p) in TpS
2n+1, is invariant under Jn+1. Since dimR W̃p =

2n, we conclude that W̃p = HpS
2n+1. �

Remark: The space HS2n+1 can also be described as the kernel of the one-
form

θn+1 = z̄0dz0 + . . .+ z̄ndzn.

Indeed, consider X ∈ HS2n+1, then by straightforward calculations we have

(5) θn+1(X) = 〈X,Nn+1〉+ i〈X, Vn+1〉 = 0.

Lemma 3 provides a horizontal distribution of rank 2n for the spheres
S2n+1, by considering the holomorphic tangent space. The goal now is to
prove that this distribution is bracket generating. In order to do this, let
us state a simple result establishing the bracket generating property for an
arbitrary contact manifold.
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Lemma 4. Let M be a (2n+1)−dimensional contact manifold with contact
form ω, then ξ = kerω is a bracket generating distribution of rank 2n and
step 2.

Proof. Recall Cartan’s formula for a differential one-form ω, namely

(6) dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]),

for all X, Y ∈ TM . See [8] for the general formulation. It follows from (6)
that ξ is Frobenius integrable if and only if dω(X, Y ) = 0 for all X, Y ∈ ξ.
Thus, if ω is a contact form, then dω(X, Y ) �= 0 for all X, Y ∈ TM and,
therefore ξ is not Frobenius integrable. This implies the bracket generat-
ing property for ξ, since if [X, Y ](p) /∈ ξp at any point p ∈ M for some
X(p), Y (p) ∈ ξp then span{[X, Y ](p)} ⊕ ξp = TpM . �

By Lemma 4, to prove that HS2n+1 is bracket generating, it is sufficient
to find a contact one-form ωn+1 such that HS2n+1 = kerωn+1. In order to
achieve this, consider

(7) ωn+1 = Im θn+1 = −y1dy0 + y0dy1 − . . .− y2n+1dy2n + y2ndy2n+1

defined on S2n+1. By (5), the relation HS2n+1 = kerωn+1 holds immediately.

Theorem 3. The one-form ωn+1 defined in (7) is a contact form. More
specifically, ωn+1 satisfies

(dωn+1)
n ∧ ωn+1 = n! · 2ndvolS2n+1 ,

where dvolS2n+1 is the volume form for S2n+1.

Proof. We observe that

dωn+1 = 2(dy0 ∧ dy1 + . . .+ dy2n ∧ dy2n+1).

Now, recalling the multinomial formula

(x1 + . . .+ xm)
p =

∑
i1+...+im=p

(
p

i1 · · · im

)
xi1
1 · . . . · xim

m ,

where

(
p

i1 · · · im

)
denotes the multinomial coefficient

p!

i1! · . . . im! . Then

(8) (dωn+1)
n = 2n

∑
i0+...+in=n

(
n

i0 · · · in

)
(dy0∧dy1)i0∧. . .∧(dy2n∧dy2n+1)

in =

(9) = n! · 2n
n∑

j=0

(dy0 ∧ dy1) ∧ . . . ∧ (d̂y2j ∧ d̂y2j+1) ∧ . . . ∧ (dy2n ∧ dy2n+1),

where d̂yk means that this term is ommited. The fact that the differential
one-forms are grouped in pairs in (8), permits us to use the multinomial
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formula. Equality (9) holds since in the summation the only non-zero terms
are those when i0, . . . , in ∈ {0, 1} and i0 + . . .+ in = n. In this case(

n

i0 · · · in

)
=

n!

0! · 1! · . . . · 1! = n!.

Taking the exterior power of ωn+1 and expression (9) we see that

(dωn+1)
n ∧ ωn+1 = n! · 2n

2n+1∑
j=0

(−1)jyjdy0 ∧ . . . ∧ d̂yj ∧ . . . ∧ dy2n+1

= n! · 2ndvolS2n+1 .

�
The following corollary holds, by Lemma 4 and Theorem 3.

Corollary 1. The holomorphic tangent bundle HS2n+1 is a bracket gener-
ating distribution of step 2 and rank 2n.

An important consequence of Theorem 3 follows by considering a classical
result by G. Darboux, see [12]. In modern terms, this theorem asserts that
every (2n + 1)−dimensional contact manifold is locally the n−dimensional
Heisenberg group. This means precisely that the tangent cone of S2n+1 as
a sub-Riemannian manifold with distribution HS2n+1 and metric induced
by the usual Euclidean metric in R2n+2 is isomorphic to the n−dimensional
Heisenberg group.

It is necessary to remark that in general there is no globally defined basis
for HS2n+1. By Theorem 2, this is only possible for S3 and S7. A basis for
this distribution in the case of S3 was already discussed in Section 2. Here
we present an explicit proof that shows the bracket generating property of
the basis of HS7 invariant under right octonion multiplication. A similar
proof and other considerations concerning the hypoelliptic nature of the
sub-Laplacian associated with the distribution HS7 can be found in [4].

Theorem 4. The subbundle H = span{Y2, . . . , Y7} = HS7 of TS7 is a
bracket generating distribution of rank 6 and step 2.

Proof. Define the following vector fields

v41(y) = −y4∂y0 + y5∂y1 + y0∂y4 − y1∂y5 ,

v42(y) = y6∂y2 − y7∂y3 − y2∂y6 + y3∂y7 ,

v51(y) = −y5∂y0 − y4∂y1 + y1∂y4 + y0∂y5 ,

v52(y) = −y7∂y2 − y6∂y3 + y3∂y6 + y0∂y7 ,

and observe that v41 + v42 = Y4 and v51 + v52 = Y5. By straightforward
calculations we see that

〈v41(y), Y0(y)〉y = 〈v42(y), Y0(y)〉y = 〈v51(y), Y0(y)〉y = 〈v52(y), Y0(y)〉y = 0,
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〈v41(y), Y1(y)〉y = 〈v42(y), Y1(y)〉y = 〈v51(y), Y1(y)〉y = 〈v52(y), Y1(y)〉y = 0,

which implies that v41, v42, v51, v52 ∈ span{Y2, . . . , Y7}. The following com-
mutation relation

[v41, v51] + [v42, v52] = −2Y1

implies that the distribution H is bracket generating of step 2. �
Remark: It is possible to repeat the previous argument with other pairs of
vector fields. For example, if instead of Y4 and Y5 we employ Y2 and Y3, we
can consider the vector fields

v21(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 ,

v22(y) = −y6∂y4 + y7∂y5 + y4∂y6 − y5∂y7 ,

v31(y) = −y3∂y0 − y2∂y1 + y1∂y2 + y0∂y3 ,

v32(y) = y7∂y4 + y6∂y5 − y5∂y6 − y4∂y7 ,

satisfy v21 + v22 = Y2, v31 + v32 = Y3 and

[v21, v31]− [v21, v31] = −2Y1.

We can proceed in a similar way if we use Y6 and Y7.

We conclude this section by proving that the line bundle span{Vn+1} is
the vertical space for the submersion given by the Hopf fibration S1 →
S2n+1 H−→ CP n. This implies that the distribution H defined in Theorem 4
is an Ehresmann connection for H. To achieve this, we recall that the charts
defining the holomorphic structure of CP n are given by the open sets

Uk = {[z0 : · · · : zn] : zk �= 0},
together with the homeomorphisms

ϕk : Uk → Cn

[z0 : . . . : zn] �→ ( z0
zk
, . . . , zk−1

zk
, zk+1

zk
, · · · , zn

zk
).

Then, without loss of generality we will assume that n = 3 and we will
develop the explicit calculations for k = 0. The other cases can be treated
similarly.

Using the chart (U0, ϕ0) defined above, we have the map

ϕ0 ◦H : S7 → C3

(z0, z1, z2, z3) �→ ( z1
z0
, z2
z0
, z3
z0
),

which in real coordinates can be written as

ϕ0 ◦H(x0, . . . , x7) =

(
x0x2 + x1x3

x2
0 + x2

1

,
x0x3 − x1x2

x2
0 + x2

1

,
x0x4 + x1x5

x2
0 + x2

1

,

x0x5 − x1x4

x2
0 + x2

1

,
x0x6 + x1x7

x2
0 + x2

1

,
x0x7 − x1x6

x2
0 + x2

1

)
.
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The differential of this mapping is given by the matrix

d(ϕ0 ◦H) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(x2
1−x2

0)x2−2x0x1x3

(x2
0+x2

1)
2

(x2
0−x2

1)x3−2x0x1x2

(x2
0+x2

1)
2

x0

x2
0+x2

1

x1

x2
0+x2

1
0 0 0 0

(x2
1−x2

0)x3+2x0x1x2

(x2
0+x2

1)
2

(x2
1−x2

0)x2−2x0x1x3

(x2
0+x2

1)
2 − x1

x2
0+x2

1

x0

x2
0+x2

1
0 0 0 0

(x2
1−x2

0)x4−2x0x1x5

(x2
0+x2

1)
2

(x2
0−x2

1)x5−2x0x1x4

(x2
0+x2

1)
2 0 0 x0

x2
0+x2

1

x1

x2
0+x2

1
0 0

(x2
1−x2

0)x5+2x0x1x4

(x2
0+x2

1)
2

(x2
1−x2

0)x4−2x0x1x5

(x2
0+x2

1)
2 0 0 − x1

x2
0+x2

1

x0

x2
0+x2

1
0 0

(x2
1−x2

0)x6−2x0x1x7

(x2
0+x2

1)
2

(x2
0−x2

1)x7−2x0x1x6

(x2
0+x2

1)
2 0 0 0 0 x0

x2
0+x2

1

x1

x2
0+x2

1
(x2

1−x2
0)x7+2x0x1x6

(x2
0+x2

1)
2

(x2
1−x2

0)x6−2x0x1x7

(x2
0+x2

1)
2 0 0 0 0 − x1

x2
0+x2

1

x0

x2
0+x2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By straightforward calculations, we know that

det([d(ϕ0 ◦H)][d(ϕ0 ◦H)]t) = (x2
0 + x2

1)
−8 = |z0|−16 �= 0,

therefore, the matrix d(ϕ0 ◦H) has rank 6 or equivalently:

dimR ker d(ϕ0 ◦H) = 2.

Moreover, since

d(ϕ0 ◦H)(Nn+1) = d(ϕ0 ◦H)(Vn+1) = 0,

by direct calculations, we conclude

ker d(ϕ0 ◦H) = span{Nn+1, Vn+1}.
This implies that

ker dH = span{Vn+1}.

7. Application of the first quaternionic Hopf map

Trying to imitate the work already done for S3, we find through the
quaternionic Hopf bundle S3 → S7 → S4 a natural choice of horizontal
distributions. We consider the quaternionic Hopf map given by

(10)
h : S7 → S4

(z, w) �→ (|z|2 − |w|2, 2zw̄) ,

which can be written in real coordinates as:

h(x0, . . . , x7) = (x2
0 + x2

1 + x2
2 + x2

3 − x2
4 − x2

5 − x2
6 − x2

7,(11)

2(x0x4 + x1x5 + x2x6 + x3x7), 2(−x0x5 + x1x4 − x2x7 + x3x6),

2(−x0x6 + x1x7 + x2x4 − x3x5), 2(−x0x7 − x1x6 + x2x5 + x3x4)).

The differential map dh is the following:
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dh = 2

⎛⎜⎜⎜⎜⎝
x0 x1 x2 x3 −x4 −x5 −x6 −x7

x4 x5 x6 x7 x0 x1 x2 x3

−x5 x4 −x7 x6 x1 −x0 x3 −x2

−x6 x7 x4 −x5 x2 −x3 −x0 x1

−x7 −x6 x5 x4 x3 x2 −x1 −x0

⎞⎟⎟⎟⎟⎠ .

Since none of the commutators [Yi, Yj], i, j = 1, . . . , 7 coincides with the
Yk, k = 1, . . . , 7, we look for the kernel of dh among the commutators Yij,
i, j = 1, . . . , 7. We found that [dh]Y45 = [dh]Y46 = [dh]Y56 = 0. Define
V = {Y45, Y46, Y56}.

Our next step is to find the horizontal distribution span{H} that is
transversal to span{V } and bracket generating: span{H}p ⊕ span{V }p =
TpS

7 for all p ∈ S7. To begin with we define five basis for horizontal distri-
butions, that we will work with

H0 = {Y47, Y57, Y67,W},
H1 = {Y34, Y35, Y36, Y37}, H2 = {Y24, Y25, Y26, Y27},
H3 = {Y14, Y15, Y16, Y17}, H4 = {Y04, Y05, Y06, Y07},

where the vector field W will be defined later and the notation Y0k = Yk is
chosen for convenience. The numeration is valid only for this section.
We collect some useful information about sets Hm, m = 0, . . . , 4, that we

will exploit later.

1. All vector fields inside Hm, m = 0, 1, 2, 3, 4 are orthonormal (we do
not count W before we precise it).

2. All of collections Hm, m = 0, 1, 2, 3, 4 are bracket generating with
the following commutator relations:

1

2
[Yj4, Yj5] = Y45,

1

2
[Yj4, Yj6] = Y46,

1

2
[Yj5, Yj6] = Y56, j = 0, 1, 2, 3,

1

2
[Y47, Y57] = Y45,

1

2
[Y47, Y67] = Y46,

1

2
[Y57, Y67] = Y56.

3. We aim to calculate the angles between the vector fields from Hm,
m = 0, 1, 2, 3, 4 and between vector fields from Hm and V . Before-
hand, we introduce the following notations for the coordinates on the
sphere S4 given by the Hopf map S3 → S7 → S4.

a00 = y20 + y21 + y22 + y23 − y24 − y25 − y26 − y27,

a11 = 2(y0y4 + y1y5 + y2y6 + y3y7),

a22 = 2(−y0y5 + y1y4 − y2y7 + y3y6),(12)

a33 = 2(−y0y6 + y1y7 + y2y4 − y3y5),

a44 = 2(−y0y7 − y1y6 + y2y5 + y3y4).
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The first index of amk reflects the number of the collectionHm, where
they will appear and the second one is related to the number of the
coordinate on S4.

We start from H0 and calculate the inner products:

(13) 〈Y45, Y67〉 = −〈Y46, Y57〉 = 〈Y56, Y47〉 = a00.

All other vector fields are orthogonal. We continue for H1.

(14)

〈Y45, Y36〉 = −〈Y46, Y35〉 = 〈Y56, Y34〉 = a11
〈Y45, Y37〉 = 2(−y0y5 + y1y4 + y2y7 − y3y6) = a12
〈Y46, Y37〉 = 2(−y0y6 − y1y7 + y2y4 + y3y5) = a13
〈Y56, Y37〉 = 2(y0y7 − y1y6 + y2y5 − y3y4) = a14.

All other vector fields in H1 ∪ V are orthogonal. For the set H2 we see the
following:

(15)

−〈Y45, Y26〉 = 〈Y46, Y25〉 = −〈Y56, Y24〉 = a22
〈Y45, Y27〉 = 2(y0y4 + y1y5 − y2y6 − y3y7) = a21
〈Y46, Y27〉 = 2(−y0y7 + y1y6 + y2y5 − y3y4) = a24
〈Y56, Y27〉 = 2(−y0y6 − y1y7 − y2y4 − y3y5) = a23

The other products between vector fields from H2 ∪ V vanish. For H3 the
situation is similar.

(16)

〈Y45, Y16〉 = −〈Y46, Y15〉 = 〈Y56, Y14〉 = a33
〈Y45, Y17〉 = 2(−y0y7 − y1y6 − y2y5 − y3y4) = a34
〈Y46, Y17〉 = 2(−y0y4 + y1y5 − y2y6 + y3y7) = a31
〈Y56, Y17〉 = 2(−y0y5 − y1y4 + y2y7 + y3y6) = a32

All other vector fields from H3 ∪ V are orthogonal. For the last collection
H4 we obtain.

(17)

〈Y45, Y06〉 = −〈Y46, Y05〉 = 〈Y56, Y04〉 = a44
〈Y45, Y07〉 = 2(y0y6 − y1y7 + y2y4 − y3y5) = a43
〈Y46, Y07〉 = 2(−y0y5 − y1y4 − y2y7 − y3y6) = a42
〈Y56, Y07〉 = 2(y0y4 − y1y5 − y2y6 + y3y7) = a41

with the rest of the product vanishing.
We notice some relations between the coefficients amk. The coordinates

on S4 possesses the equality

(18) a200 + a211 + a222 + a233 + a244 = 1.

The direct calculations also show

a200 + a211 + a212 + a213 + a214 = 1

a200 + a221 + a222 + a223 + a224 = 1(19)

a200 + a231 + a232 + a233 + a234 = 1

a200 + a241 + a242 + a243 + a244 = 1.
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In other words the sum of the squares of the cosines between vector fields
from Hm ∪ V , m = 1, 2, 3, 4 is equal to 1 − a200. Let us consider 2 cases:
0 < a200 ≤ 1 and a200 = 0.

Case 0 < a200 ≤ 1.

This case corresponds to any point on S4 except of the set

(20) S1 = {y20 + y21 + y22 + y23 = y24 + y25 + y26 + y27 = 1/2}.
We observe that the sum of the square of the cosines from (19):

4∑
k=1

a2mk = 1− a200, m = 1, 2, 3, 4

belongs to the interval (0, 1) and no one of the cosines can be equal to 1. We
conclude that each of Hm, m = 1, 2, 3, 4, is transverse to V . Particularly, if
a200 = 1 then

∑4
k=1 a

2
mk = 0 and Hm⊥V . The latter situation occurs in the

antipodal points (±1, 0, 0, 0, 0) ∈ S4 or is to say on the set

S2 = {y20 + y21 + y22 + y23 = 0, y24 + y25 + y26 + y27 = 1} ∪

(21) {y20 + y21 + y22 + y23 = 1, y24 + y25 + y26 + y27 = 0} ∈ S7.

We also can consider a collection H0, as a possible horizontal bracket
generating distribution, if we choose an adequate vector field W . If a00 ∈
(0, 1) we have

0 < a241 + a242 + a243 + a244 = 1− a200 < 1

and none of the products in (17) can give 1. We conclude that Y07 can not
be collinear to V = {Y45, Y46, Y56}. Therefore, we choose W = Y07. By
the same reason we could take Yj7, j = 1, 2, 3. In the case when a200 = 1
the vector fields Yj7, j = 0, 1, 2, 3 are orthogonal to V from (14)- (17) but
H0 is collinear to V from (13) and the collection H0 with W = Yj7 is not
transverse to V .

Case a200 = 0.
In this case the distribution H0 nicely serves as a bracket generating if we

find a suitable vector field W . Notice that (18) becomes

(22) a211 + a222 + a233 + a244 = 1.

The amm can not vanish simultaneously. Without lost of generality, we can
assume that a44 �= 0. Then a241 + a242 + a243 = 1 − a244 < 1 from (19) and
the products (17) imply that Y07 is transverse to V and can be used as a
vector field W . In the case a244 = 1 we get that Y07 is orthogonal to V . Since
W⊥Yj7, j = 4, 5, 6 the collection H0 with any choice of Yj7, j = 0, . . . , 3 will
be orthonormal.

We formulate the latter result in the following theorem
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Theorem 5. Let (10) be the quaternionic Hopf map with the vertical space

V = {Y45, Y46, Y56},
S1 and S2 are given by (20) and (21). Then the Hopf map produces the
following Ehresmann connection Hp, p ∈ S7:

(i) if p /∈ S1 then Hp = (Hm)p, for any choice of m = 1, 2, 3, 4;
(ii) if p /∈ S2 then Hp = (Y47, Y57, Y67, Yj7)p, for any choice of j =

0, 1, 2, 3;

and we have respectively

(i) span{(Hm)}p ⊕ span{V }p = TpS
7, m = 1, 2, 3, 4 for p ∈ S7 \ S1.

(ii) span{Y47, Y57, Y67, Yj7}p ⊕ span{V }p = TpS
7, j = 0, 1, 2, 3 for p ∈

S7 \ S2.

Remark: During the referee process, we were pointed out of the paper [4]
where a globally defined basis of the horizontal distribution of rank 4 was
constructed considering the Clifford algebra structure of S7. However, in
this case a globally defined basis of the vertical space was not found. In our
case, we present a globally defined basis of right invariant vector fields of the
vertical space that correspond to the Lie algebra su(2) of the S3−bundle.
Nevertheless we did not succeeded in constructing a globally defined basis for
the horizontal distribution. The question if both the horizontal distribution
and the S3−fiber are trivializable, remains open.

8. Appendix

8.1. Multiplication of octonions. Let

o1 = (x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7)

and

o2 = (y0e0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7)

be two octonions. Then we have according to Table 1

o1 · o2 = (x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7)◦
(y0e0 + y1e1 + y2e2 + y3e3 + y4e4 + y5e5 + y6e6 + y7e7) =

= (x0y0 − x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7)e0+

+(x1y0 + x0y1 − x3y2 + x2y3 − x5y4 + x4y5 + x7y6 − x6y7)e1+

+(x2y0 + x3y1 + x0y2 − x1y3 − x6y4 − x7y5 + x4y6 + x5y7)e2+

+(x3y0 − x2y1 + x1y2 + x0y3 − x7y4 + x6y5 − x5y6 + x4y7)e3+

+(x4y0 + x5y1 + x6y2 + x7y3 + x0y4 − x1y5 − x2y6 − x3y7)e4+

+(x5y0 − x4y1 + x7y2 − x6y3 + x1y4 + x0y5 + x3y6 − x2y7)e5+

+(x6y0 − x7y1 − x4y2 + x5y3 + x2y4 − x3y5 + x0y6 + x1y7)e6+
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+(x7y0 + x6y1 − x5y2 − x4y3 + x3y4 + x2y5 − x1y6 + x0y7)e7.

8.2. Vector fields. According to the previous multiplication rule, we have
the following unit vector fields of R8 arising as right invariant vector fields
under the octonion product.

Y0(y) = y0∂y0 + y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 + y5∂y5 + y6∂y6 + y7∂y7
Y1(y) = −y1∂y0 + y0∂y1 − y3∂y2 + y2∂y3 − y5∂y4 + y4∂y5 − y7∂y6 + y6∂y7
Y2(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 − y6∂y4 + y7∂y5 + y4∂y6 − y5∂y7
Y3(y) = −y3∂y0 − y2∂y1 + y1∂y2 + y0∂y3 + y7∂y4 + y6∂y5 − y5∂y6 − y4∂y7
Y4(y) = −y4∂y0 + y5∂y1 + y6∂y2 − y7∂y3 + y0∂y4 − y1∂y5 − y2∂y6 + y3∂y7
Y5(y) = −y5∂y0 − y4∂y1 − y7∂y2 − y6∂y3 + y1∂y4 + y0∂y5 + y3∂y6 + y2∂y7
Y6(y) = −y6∂y0 + y7∂y1 − y4∂y2 + y5∂y3 + y2∂y4 − y3∂y5 + y0∂y6 − y1∂y7
Y7(y) = −y7∂y0 − y6∂y1 + y5∂y2 + y4∂y3 − y3∂y4 − y2∂y5 + y1∂y6 + y0∂y7 .

The vector fields Yi, i = 1, . . . , 7 form an orthonormal frame of TpS
7,

p ∈ S7, with respect to restriction of the inner product 〈·, ·〉 from R8 to the
tangent space TpS

7 at each p ∈ S7.

8.3. Commutators between vector fields. Let us denote by Yij(y) =
1
2
[Yi(y), Yj(y)] the commutator between the right invariant vector fields un-

der the octonion product, described in the previous Subsection, we have the
following list:

Y12(y) = y3∂y0 + y2∂y1 − y1∂y2 − y0∂y3 + y7∂y4 + y6∂y5 − y5∂y6 − y4∂y7
Y13(y) = −y2∂y0 + y3∂y1 + y0∂y2 − y1∂y3 + y6∂y4 − y7∂y5 − y4∂y6 + y5∂y7
Y14(y) = y5∂y0 + y4∂y1 − y7∂y2 − y6∂y3 − y1∂y4 − y0∂y5 + y3∂y6 + y2∂y7
Y15(y) = −y4∂y0 + y5∂y1 − y6∂y2 + y7∂y3 + y0∂y4 − y1∂y5 + y2∂y6 − y3∂y7
Y16(y) = y7∂y0 + y6∂y1 + y5∂y2 + y4∂y3 − y3∂y4 − y2∂y5 − y1∂y6 − y0∂y7
Y17(y) = −y6∂y0 + y7∂y1 + y4∂y2 − y5∂y3 − y2∂y4 + y3∂y5 + y0∂y6 − y1∂y7
Y23(y) = y1∂y0 − y0∂y1 + y3∂y2 − y2∂y3 − y5∂y4 + y4∂y5 − y7∂y6 + y6∂y7
Y24(y) = y6∂y0 + y7∂y1 + y4∂y2 + y5∂y3 − y2∂y4 − y3∂y5 − y0∂y6 − y1∂y7
Y25(y) = −y7∂y0 + y6∂y1 + y5∂y2 − y4∂y3 + y3∂y4 − y2∂y5 − y1∂y6 + y0∂y7
Y26(y) = −y4∂y0 − y5∂y1 + y6∂y2 + y7∂y3 + y0∂y4 + y1∂y5 − y2∂y6 − y3∂y7
Y27(y) = y5∂y0 − y4∂y1 + y7∂y2 − y6∂y3 + y1∂y4 − y0∂y5 + y3∂y6 − y2∂y7
Y34(y) = −y7∂y0 + y6∂y1 − y5∂y2 + y4∂y3 − y3∂y4 + y2∂y5 − y1∂y6 + y0∂y7
Y35(y) = −y6∂y0 − y7∂y1 + y4∂y2 + y5∂y3 − y2∂y4 − y3∂y5 + y0∂y6 + y1∂y7
Y36(y) = y5∂y0 − y4∂y1 − y7∂y2 + y6∂y3 + y1∂y4 − y0∂y5 − y3∂y6 + y2∂y7
Y37(y) = y4∂y0 + y5∂y1 + y6∂y2 + y7∂y3 − y0∂y4 − y1∂y5 − y2∂y6 − y3∂y7
Y45(y) = y1∂y0 − y0∂y1 − y3∂y2 + y2∂y3 + y5∂y4 − y4∂y5 − y7∂y6 + y6∂y7
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Y46(y) = y2∂y0 + y3∂y1 − y0∂y2 − y1∂y3 + y6∂y4 + y7∂y5 − y4∂y6 − y5∂y7
Y47(y) = −y3∂y0 + y2∂y1 − y1∂y2 + y0∂y3 + y7∂y4 − y6∂y5 + y5∂y6 − y4∂y7
Y56(y) = −y3∂y0 + y2∂y1 − y1∂y2 + y0∂y3 − y7∂y4 + y6∂y5 − y5∂y6 + y4∂y7
Y57(y) = −y2∂y0 − y3∂y1 + y0∂y2 + y1∂y3 + y6∂y4 + y7∂y5 − y4∂y6 − y5∂y7
Y67(y) = y1∂y0 − y0∂y1 − y3∂y2 + y2∂y3 − y5∂y4 + y4∂y5 + y7∂y6 − y6∂y7 .
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SUB-RIEMANNIAN GEODESICS AND HEAT OPERATOR
ON ODD DIMENSIONAL SPHERES

MAURICIO GODOY MOLINA
IRINA MARKINA

Abstract. In this article we study the sub-Riemannian geometry of the
spheres S2n+1 and S4n+3, arising from the principal S1−bundle structure
defined by the Hopf map and the principal S3−bundle structure given
by the quaternionic Hopf map respectively. The S1 action leads to the
classical contact geometry of S2n+1, while the S3 action gives another
type of sub-Riemannian structure, with a distribution of corank 3. In
both cases the metric is given as the restriction of the usual Riemannian
metric on the respective horizontal distributions. For the contact S7

case, we give an explicit form of the intrinsic sub-Laplacian and obtain
a commutation relation between the sub-Riemannian heat operator and
the heat operator in the vertical direction.

1. Introduction

One of the main objectives of classical sub-Riemannian geometry is to
study manifolds which are path-connected by curves admissible in a certain
sense. Admissibility refers to a constraint on the velocity vector of an ab-
solutely continuous curve γ : [0, 1] → M , where M is a smooth connected
manifold. More precisely, if H ⊂ TM is a smooth distribution, then γ is
admissible or horizontal if γ̇(t) ∈ H a.e. The distribution H is often called
horizontal distribution in the literature.

The idea of studying sub-Riemannian geometry arising from well-behaved
fiber bundles was introduced by R. Montgomery in [15], although the Rie-
mannian analogue had been studied many decades before. The idea is the
following: given a submersion π : Q → M between two Riemannian man-
ifolds Q and M , where dimM < dimQ, define a “horizontal” distribution
over Q by the pull-back bundle π∗(TM) of the tangent bundle of M via π.
In the case when we have a principal G−action over Q preserving the fibers
of the submersion, the manifold M can be identified with the orbits of the
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action and, after some technical assumptions, it is possible to obtain an
explicit characterization of sub-Riemannian geodesics.

The aim of the present article is to describe the sub-Riemannian geom-
etry of two sub-Riemannian structures for odd-dimensional spheres. More
specifically, we study the sub-Riemannian geometry arising from the contact
distribution for the spheres S2n+1 with metric given as a restriction of the
usual Riemannian metric, and the one arising from the quaternionic Hopf
fibration for the spheres S4n+3.

This article is organized as follows. In Section 2, we give some standard
definitions of sub-Riemannian geometry which will be needed in the rest of
the paper. In Section 3 we give an explicit description of sub-Riemannian
geodesics in spheres S2n+1 endowed with the standard contact distribution
and we study some of their geometric properties. In Section 4 we use the
obtained form of geodesics in the case of S3 to give another interpretation to
a result by Hurtado and Rosales in [11]. With this new point of view, we are
able to extend their result to contact spheres of an arbitrary odd dimension.
Section 5 is the analogue to Sections 3 and 4 for the case of spheres of the
form S4n+3 endowed with a distribution of corank 3. Section 6 is somewhat
different technically, but it is in spirit related to the core of this article.
It deals with a geodesic differential equation for the quaternionic H−type
group studied in [4], obtained generalizing the techniques in [17]. The reason
for studying this equation here is to pose the question of a similar equation
for the case of S7 and a distribution of rank 4. Section 7 consists of the
construction of the intrinsic sub-Laplacian for S7. The main result states
that it is the sum of the squares of an orthonormal basis of the horizontal
distribution. Finally, Section 8 employs the previous construction to obtain
a simple form of the heat operator for S7 in a similar way as obtained in [3].

2. Preliminaries and notations

2.1. Sub-Riemannian geometry. Let us first give some general defini-
tions, which will be adapted to our purposes when it will be necessary. Let
M be a smooth connected manifold of dimension n, together with a smooth
distribution H ⊂ TM of rank k, 2 ≤ k < n. The manifolds of our interest
are endowed with distributions satisfying the bracket generating condition,
i.e. distributions whose Lie hull equals the full tangent bundle of M . To be
more precise, define inductively the vector bundles

H1 = H, Hr+1 = [Hr,H] +Hr for r ≥ 1,

which naturally induce the flag

H = H1 ⊆ H2 ⊆ H3 ⊆ . . . .
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We say that H is bracket generating if for all x ∈ M there is an r(x) ∈ Z+

such that

(1) Hr(x)
x = TxM.

If the dimensions dimHr
x do not depend on x for any r ≥ 1, we say that H

is a regular distribution. The least r such that (1) is satisfied is called the
step of H. In this paper we will focus on regular distributions of step 2.
A natural question to pose is, given M and H, whether one can join any

two points of M via a horizontal curve, i.e. an absolutely continuous curve
γ : [0, 1] → M which satisfies γ̇(t) ∈ H almost everywhere. A complete
answer to this question was given in [19], which shows a deep generalization
the celebrated Chow-Rashevskĭı theorem, see [7, 16], that gives a sufficient
condition and can be stated as follows:

Theorem 1. Let M be a connected manifold and H ⊂ TM be a bracket
generating distribution, then the set of points that can be connected to p ∈ M
by a horizontal path coincides with M .

Remark: A slightly more general version of Theorem 1 states that, if M is
not connected, then the set of points that can be connected to p ∈ M by a
horizontal path is the connected component containing p. Since we assumed
the manifold to be connected, the general formulation is unnecessary.

After these preliminaries, we are ready to specify the class of manifolds
of our interest.

Definition 1. A sub-Riemannian structure over a manifold M is a pair
(H, 〈·, ·〉sR), where H is a bracket generating distribution and 〈·, ·〉sR is a
fiber inner product defined on H. The triple (M,H, 〈·, ·〉sR) is called sub-
Riemannian manifold.

In this context, the length of a horizontal curve γ : [0, 1] → M is defined
to be

�(γ) :=

∫ 1

0

‖γ̇(t)‖dt,

where ‖γ̇(t)‖2 = 〈γ̇(t), γ̇(t)〉sR whenever γ̇(t) exists.

This notion of length gives rise to the Carnot-Carathéodory distance
d(p, q) between two points p, q ∈ M , given by d(p, q) := inf �(γ), where
the infimum is taken over all absolutely continuous horizontal curves joining
p to q. An absolutely continuous horizontal curve that realizes the distance
between two points is called a horizontal length minimizer. It is clear that
if H is bracket generating then d(p, q) is a finite nonnegative number.
Considering a trivializing neighborhood Up around p ∈ M for the sub-

bundle H, one can find a local orthonormal basis X1, . . . , Xk with respect



4 MAURICIO GODOY M., IRINA MARKINA

to 〈·, ·〉sR. The associated sub-Riemannian Hamiltonian is given by

H(q, λ) =
1

2

k∑
m=1

λ(Xm(q))
2,

where (q, λ) ∈ T ∗Up. A normal geodesic corresponds to the projection to
Up ⊂ M of the solution of the Hamiltonian system

q̇i =
∂H

∂λi

λ̇i = −∂H

∂qi
,

where (qi, λi) are the coordinates in the cotangent bundle of M .
Remark: It is possible to define sub-Riemannian geodesics in a more general
context. There are many interesting problems related to the classification
of such curves, their analytic and geometric properties. In [12] the prob-
lem for the case of rank two distributions is studied and essentially solved.
Nevertheless, in the case of step two distributions, the general notion of
geodesic gives rise to two cases: curves consisting of one point and normal
geodesics. Thus, normal geodesics are the only interesting case for our pur-
poses. Note that in this case normal geodesics are local length minimizers,
in the sense that any sufficiently small arc of a normal geodesic minimizes
the length functional. On the other hand one of the particular features of
sub-Riemannian geometry, as the sub-Riemannian Heisenberg group exem-
plifies, is that it is possible to find arbitrarily close points that can be joined
by normal geodesics with different lengths.

2.2. Sub-Riemannian principal bundles. Our first goal is to recall a full
characterization of normal geodesics in the case of sub-Riemannian princi-
pal bundles. As a direct application we obtain an explicit formula for the
sub-Riemannian geodesics on odd-dimensional spheres, with respect to dis-
tributions of corank 1 and 3 in Sections 3 and 5 respectively. For the sake
of completeness we recall some definitions and notations given in [15].

For a submersion π : Q → M with fiber Qm = π−1(m) through m ∈ M ,
the vertical space at q ∈ Q is given by TqQπ(q) and it is denoted by Vq. In
this context, an Ehresmann connection for π : Q → M is a distribution
H ⊂ TQ which is everywhere transversal to the vertical space, that is:

Vq ⊕Hq = TqQ for every q ∈ Q.

Let us assume that a Lie group G acts on Q in such a way that π : Q → M
becomes a fiber bundle with fiber G. We say that the submersion π is a
principal G−bundle with connection H if the following conditions hold: G
acts freely and transitively on each fiber, the group orbits are the fibers of
π : Q → M , and the G−action on Q preserves the connection H. Observe



SUB-RIEMANNIAN ODD DIMENSIONAL SPHERES 5

that the second condition implies that M is isomorphic to Q/G and π is the
canonical projection. We will refer to the connection H as the horizontal
distribution.

For the rest of this section, let us denote the Lie algebra of G by g, and
the corresponding exponential map by expG : g → G.

Definition 2. For the principal G−bundle π : Q → M , the infinitesimal
generator for the group action is the map σq : g → TqQ defined by

σq(ξ) =
d

dε

∣∣∣∣
ε=0

q expG(εξ)

for q ∈ Q and ξ ∈ g. If the metric 〈·, ·〉 in Q is G−invariant, we have a
well-defined bilinear form

Iq(ξ, η) = 〈σqξ, σqη〉 , ξ, η ∈ g,

which is called the moment of inertia tensor at q.

The G−invariant Riemannian metric on Q is said to be of constant bi-
invariant type if its moment of inertia tensor Iq is independent of q ∈ Q.
Recall also that, in the case of a principal G−bundle, for each q ∈ Q the
infinitesimal generator σq is an isomorphism between the vertical space Vq

and g. We refer to its inverse as the g valued connection one form.
With all of these at hand, we can state the main tool required in this

section. This will imply almost immediately Corollaries 1 and 2 which are
of core importance in the present paper. The proof of the following theorem
can be found in [15].

Theorem 2 (Horizontal Geodesics for Principal Bundles). Let π : Q → M
be a principal G−bundle with a Riemannian metric of constant bi-invariant
type. Let H be the induced connection, with g valued connection one form A.
Let expR be the Riemannian exponential map, so that γR(t) = expR(tv) is
the Riemannian geodesic through q with velocity vector v ∈ TqQ. Then any
horizontal lift γ of the projection π◦γR is a normal sub-Riemannian geodesic
and is given by

γ(t) = expR(tv) expG(−tA(v))

where expG : g → G is the exponential map of G. Moreover, all normal
sub-Riemannian geodesics can be obtained in this way.

Remark: In Theorem 2, the sub-Riemannian geodesics are considered with
respect to the metric induced by restricting 〈·, ·〉 to H. Recall that constant
bi-invariant metrics must be G−invariant.

3. Sub-Riemannian Geodesics on S2n+1

In the case of odd dimensional spheres S2n+1, embedded as the boundary
of the unit ball in Cn+1, there is a natural action of S1 ∼= U(1) on it, via
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componentwise multiplication by a complex number of norm 1. This action
induces the well known Hopf fibration S1 → S2n+1 → CP n, which forms a
principal S1−bundle with connectionH given by the orthogonal complement
to the vector field

(2) Vn+1(p) = −y0∂x0 + x0∂y0 − . . .− yn∂xn + xn∂yn

at each p = (x0, y0, . . . , xn, yn) ∈ S2n+1, with respect to the usual Riemann-
ian metric of S2n+1 as embedded in R2(n+1) ∼= Cn+1. In [9] it is shown that
this distribution coincides with the holomorphic tangent space HS2n+1 of
S2n+1 thought as an embedded CR manifold and that it also coincides with
the contact distribution given by kerω with respect to the contact form

ω = −y0dx0 + x0dy0 − . . .− yndxn + xndyn.

Note that the components of the vector Vn+1(p) are the same as in the u(1)
action i · p.
As a direct application of Theorem 2, it is possible to describe all sub-

Riemannian geodesics for the sphere S2n+1 as a sub-Riemannian manifold
equipped with connection H and with metric restricted from R2(n+1). By
the results discussed in [9], the holomorphic tangent space for S2n+1 is the
distribution induced by the principal S1−bundle given by the Hopf fibration
S1 → S2n+1 → CP n with u(1)−valued connection form A(v) = i〈v, Vn+1〉,
v ∈ TpS

2n+1, Vn+1 denotes Vn+1(p) and 〈·, ·〉 stands for the standard inner
product in R2(n+1). Moreover, the usual Riemannian structure on S2n+1 is
of constant bi-invariant type, since we have

d

dε

∣∣∣∣
ε=0

q expu(1)(εξ) = αi · q = αVn+1(q),

for any q ∈ S2n+1 and ξ = iα ∈ u(1). Therefore, the inertia tensor is given
by

Iq(iα, iα̃) = 〈αVn+1(q), α̃Vn+1(q)〉 = αα̃,

which does not depend of the point.
By Theorem 2, we have the following result.

Corollary 1. Let p ∈ S2n+1 = {(z0, . . . , zn) ∈ Cn+1 : |z0|2 + . . .+ |zn|2 = 1}
and v ∈ TpS

2n+1. If γR(t) = (z0(t), . . . , zn(t)) is the great circle satisfying
γR(0) = p and γ̇R(0) = v, then the corresponding sub-Riemannian geodesic
is given by

(3) γ(t) =
(
z0(t)e

−it〈v,Vn+1〉, . . . , zn(t)e−it〈v,Vn+1〉) .
In order to analyze in more details formula (3), let us introduce some

notations and the necessary setup. Recall that the Riemannian geodesic
starting at p ∈ Sn with velocity v ∈ TpS

n of any sphere Sn as a submanifold
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of Rn+1, with the standard Riemannian structure, is given by:

(4) γR(t) = p cos(‖v‖t) + v

‖v‖ sin(‖v‖t),

where ‖v‖2 = 〈v, v〉. In the case of our interest, a great circle γR(t) in S2n+1

as a submanifold of R2(n+1) ∼= Cn+1 will be written in complex notation as
γR(t) = (z0(t), . . . , zn(t)). For notational simplicity, the action of λ ∈ S1

over (p0, . . . , pn) ∈ S2n+1 is denoted by λ · p = (λp0, . . . , λpn). Let us write
γ(0) = γR(0) = p = (a0 + ib0, . . . , an + ibn) ∈ S2n+1 and γ̇R(0) = v =
(α0 + iβ0, . . . , αn + iβn) ∈ TpS

2n+1. Observe that Vn+1(γ(t)) = i · γ(t). As
above, Vn+1 = Vn+1(γ(0)).
Remark: In the subsequent calculations, the notation 〈·, ·〉H will denote
the standard Hermitian product in Cn+1. We recall that the standard inner
product 〈·, ·〉 in R2(n+1) satisfies

Re 〈·, ·〉H = 〈·, ·〉.
Theorem 2 assures that γ is a horizontal curve, i.e. 〈γ̇(t), Vn+1(γ(t))〉 = 0,

nevertheless it is possible to check directly this by straightforward calcula-
tions. Since some of the computations will appear later, it is convenient to
write them down. First notice that

〈γ̇(t), Vn+1(γ(t))〉H = 〈(−i〈v, Vn+1〉γR(t) + γ̇R(t))e
−i〈v,Vn+1〉t,

ie−i〈v,Vn+1〉tγR(t)〉H
= −〈v, Vn+1〉〈γR(t), γR(t)〉H − i〈γ̇R(t), γR(t)〉H
= −〈v, Vn+1〉 − i〈γ̇R(t), γR(t)〉H .

Thus the problem is now to determine the value of

〈γ̇R(t), γR(t)〉H =
n∑

k=0

żk(t)zk(t).

By straightforward calculations, it is easy to see that
n∑

k=0

żk(t)zk(t) = (cos2(‖v‖t)− sin2(‖v‖t))
n∑

k=0

(akαk + bkβk) +

+i

n∑
k=0

(akβk − bkαk)

= 〈p, v〉 cos(2‖v‖t) + i〈v, Vn+1〉
= i〈v, Vn+1〉,(5)

yielding to 〈γ̇(t), Vn+1(γ(t))〉H = 0, which implies the horizontality of the
curve γ(t).

Let us now address the problem of connecting two points in S2n+1 by sub-
Riemannian geodesics. We know by Theorem 1 that it is possible to find a
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horizontal curve Γ : [0, T ] → S2n+1 such that

(6) Γ(0) = p and Γ(T ) = q,

for any pair p, q ∈ S2n+1 and all fixed time parameter T > 0. A natural
question to ask is whether Γ can be taken as a geodesic in (6). Due to the
complexity of the problem, we will give a partial answer to it. It is important
to remark that Proposition 1 is a direct analogue of the result obtained in
[5, Theorem 1] in the particular case of n = 1, i.e. for the three dimensional
sphere.

Proposition 1. The set of sub-Riemannian geodesics arising from great
circles γR(t) such that γ̇R(0) ∈ H = kerω is diffeomorphic to CP n.

Proof. In this case any sub-Riemannian geodesic starting at p ∈ S2n+1 with
initial velocity v ∈ H ⊂ TpS

2n+1 coincides with the corresponding great
circle, since the condition γ̇R(0) ∈ H = kerω is equivalent to 〈v, Vn+1〉 = 0,
thus

γ(t) = p cos(‖v‖t) + v

‖v‖ sin(‖v‖t)
whose loci is uniquely determined by the point [v] ∈ CP n. �
Observe that this CP n can be seen as a submanifold of S2n+1 which is

transversal to Vn+1 along the fiber containing p. As remarked in [5] for S3,
this can be seen as a sophisticated analogue of the horizontal space at the
identity in the (2n+ 1)−dimensional Heisenberg group.

Let us conclude this discussion with an interesting result which will be
of importance in the following Section. This can be thought of as a sort of
Pythagoras theorem for contact spheres.

Proposition 2. For a horizontal sub-Riemannian geodesic of the form

γ(t) =
(
z0(t)e

−it〈v,Vn+1〉, . . . , zn(t)e−it〈v,Vn+1〉)
the following equation holds

‖γ̇(t)‖2 + 〈v, Vn+1〉2 = ‖v‖2.
Thus, its velocity is constant and its sub-Riemannian length for t ∈ [a, b] is

�(γ) = (b− a)
√‖v‖2 − 〈v, Vn+1〉2.

Proof. By straightforward calculations, we have

〈γ̇(t), γ̇(t)〉H = 〈(−i〈v, Vn+1〉γR(t) + γ̇R(t))e
−i〈v,Vn+1〉t,

(−i〈v, Vn+1〉γR(t) + γ̇R(t))e
−i〈v,Vn+1〉t〉H

= 〈v, Vn+1〉2〈γR(t), γR(t)〉H + 〈γ̇R(t), γ̇R(t)〉H
+〈v, Vn+1〉(i〈γ̇R, γR〉H − i〈γR, γ̇R〉H)

= 〈v, Vn+1〉2 + ‖v‖2 − 2〈v, Vn+1〉2.
Here we have used equation (5). The proposition follows. �
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Remark: According to Proposition 2, the condition that a curve γ(t) =
e−it〈v,Vn+1〉γR(t) is parameterized by arclength is equivalent to require that
‖v‖2 = 1 + 〈v, Vn+1〉2.

4. Curvature of sub-Riemannian geodesics on S3

In [11], the authors describe the horizontal geodesics of the three dimen-
sional sphere with respect to its contact distribution, obtaining an explicit
expression for these curves. The key tool to achieve this is the following
proposition.

Proposition 3. Let γ : I → S3 be a C2 horizontal curve parameterized by
arc-length. Then γ is a critical point of length for any admissible variation
if and only if there is λ ∈ R such that γ satisfies the second order ordinary
differential equation

(7) ∇γ̇ γ̇ + 2λJ(γ̇) = 0,

where ∇ is the Levi-Civita connection and J is the standard almost complex
structure on S3.

The authors call the parameter λ above the curvature of γ, since after
projecting it via the Hopf fibration, λ becomes precisely the curvature of the
projected curve in S2. Note that the curves with zero curvature are precisely
the horizontal great circles. It is our purpose to find an explicit expression
for λ in terms of known parameters of the sub-Riemannian geodesics of S3,
as presented in Corollary 1.

Proposition 4. The curvature of the sub-Riemannian geodesic

γ(t) = e−i〈v,V2〉tγR(t)

in S3, parameterized by arc-length, equals 〈v, V2〉.
Proof. The Lie group structure of S3 as the set of unit quaternions, induces
the globally defined vector fields

(8)
V (p) = −y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2 ,
X(p) = −x2∂x1 + y2∂y1 + x1∂x2 − y1∂y2 ,
Y (p) = −y2∂x1 − x2∂y1 + y1∂x2 + x1∂y2 ,

at p = (x1, y1, x2, y2) ∈ S3, which are orthonormal with respect to the usual
Riemannian structure of R3. Observe that V (p) = V2(p) as defined in (2).
Let p = (x1, y1, x2, y2) = γ(0) ∈ S3 be the initial point of γ and let v =

(vx1 , vy1 , vx2 , vy2) = γ̇R(0) ∈ TpS
3 be the initial velocity of the corresponding

great circle. By direct calculation, we have

(9) γ̇(t) = fX(t)X(γ(t)) + fY (t)Y (γ(t)),

where, denoting α = 〈v,X〉, β = 〈v, Y 〉, we have

fX(t) = α cos(2t〈v, V 〉) + β sin(2t〈v, V 〉),
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fY (t) = β cos(2t〈v, V 〉)− α sin(2t〈v, V 〉).
It follows from this decomposition that

(10) J(γ̇(t)) = −fY (t)X(γ(t)) + fX(t)Y (γ(t)).

It remains to determine the term ∇γ̇ γ̇. It is well-known that for sub-
manifolds of Rn, the vector field ∇γ̇ γ̇ corresponds to the projection of the
second derivative γ̈ to the tangent space of the submanifold. In this case,
differentiating (9) we obtain

∇γ̇ γ̇ = 2〈v, V 〉(fY (t)X(γ(t))− fX(t)Y (γ(t)))

= −2〈v, V 〉 J(γ̇(t)).
The proposition follows. �

Remark: Note that in case p = (1, 0, 0, 0) ∈ S3, a great circle starting at p
with velocity vector v = (0, vy1 , vx2 , vy2) ∈ TpS

3 is given by

γR(t) =

(
cos(‖v‖t), vy1‖v‖ sin(‖v‖t), vx2

‖v‖ sin(‖v‖t), vy2‖v‖ sin(‖v‖t)
)
.

Then, the corresponding sub-Riemannian geodesic is

(11) γ(t) = e−ivy1 tγR(t),

where v2x2
+v2y2 = 1, since the curve is parameterized by arc-length. It follows

that the curvature is given by 〈v, V2〉 = vy1 .
In [11] the problem of existence of closed sub-Riemannian geodesics is also

discussed. Their result is that a complete geodesic γ in S3 parameterized
by arc-length, with curvature λ is closed if and only if λ/

√
1 + λ2 ∈ Q. This

result can be generalized to any odd dimensional sphere.

Proposition 5. Let γ : R → S2n+1 be a complete sub-Riemannian geodesic
parameterized by arc-length, with initial velocity v ∈ TpS

2n+1. Then γ is
closed if and only if

〈v, Vn+1〉√
1 + 〈v, Vn+1〉2

∈ Q.

Proof. The curve γ : R → S2n+1 is closed if and only if for some T > 0

p = e−i〈v,Vn+1〉T
(
p cos(‖v‖T ) + v

‖v‖ sin(‖v‖T )
)
.

Since v ∈ TpS
2n+1, we know that v is orthogonal to the vector joining

0 ∈ R2n+2 to p, with respect to the usual Riemannian structure of R2n+2.
This means that sin(‖v‖T ) = 0, which forces T = kπ/‖v‖, k ∈ Z.
To complete the argument, we only need to see that

±e−ik(〈v,Vn+1〉/‖v‖)πp = p
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if and only if
〈v, Vn+1〉

‖v‖ =
〈v, Vn+1〉√

1 + 〈v, Vn+1〉2
∈ Q,

where we have used the remark after Proposition 2. �

5. Sub-Riemannian Geodesics on S4n+3

Let us consider the sphere S4n+3 embedded as the boundary of the unit
ball in (n+1)−dimensional quaternionic space Hn+1. As usual, let us denote
the quaternionic units as i, j, and k. There is a natural right action of
Sp(1) ∼= S3 on Hn+1, via componentwise multiplication by a quaternion of
norm one. This action induces a quaternionic Hopf fibrations S3 → S4n+3 →
HP n, given by

H : S4n+3 → HP n

(q0, . . . , qn) �→ [q0 : . . . : qn].

This submersion forms a principal S3−bundle with connection given by
the orthogonal complement to the vector fields

V 1
n+1(p) = −y0∂x0+x0∂y0+w0∂z0−z0∂w0−. . .−yn∂xn+xn∂yn+wn∂zn−zn∂wn ,

V 2
n+1(p) = −z0∂x0−w0∂y0+x0∂z0+y0∂w0−. . .−zn∂xn−wn∂yn+xn∂zn+yn∂wn ,

V 3
n+1(p) = −w0∂x0+z0∂y0−y0∂z0+x0∂w0−. . .−wn∂xn−zn∂yn+yn∂zn+xn∂wn ,

at each p = (x0, y0, z0, w0 . . . , xn, yn, zn, wn) ∈ S4n+3, with respect to the
usual Riemannian metric of S4n+3 as embedded in R4(n+1) ∼= Hn+1. It is easy
to see that the following commutation relations hold for V 1

n+1, V
2
n+1, V

3
n+1

[V 1
n+1, V

2
n+1] = 2V 3

n+1, [V 2
n+1, V

3
n+1] = 2V 1

n+1, [V 1
n+1, V

3
n+1] = −2V 2

n+1.

Thus one recovers the fact that span{V 1
n+1(p), V

2
n+1(p), V

3
n+1(p)} is isomor-

phic as Lie algebra to sp(1), the Lie algebra associated to S3.
It is a well established fact that this distribution is bracket generating.

In fact, the geometry of this spheres S4n+3 is known to be a quaternionic
analogue of CR-geometry, see [2]. Note that the components of the vector
V 1
n+1(p) are the same as in the sp(1) action p · i. Similar statements hold for

V 2
n+1(p), V

3
n+1(p) and p · j, p · k respectively.

In order to apply Theorem 2 in this situation, it is necessary to specify
the sp(1)−valued connection form associated to the submersion H. In this
case, the connection form is given by

A(v) = i〈v, V 1
n+1〉+ j〈v, V 2

n+1〉+ k〈v, V 3
n+1〉

where v ∈ TpS
2n+1, V α

n+1 denotes V α
n+1(p) (α = 1, 2, 3) and 〈·, ·〉 stands for

the standard inner product in R4(n+1). Moreover, the usual Riemannian
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structure on S4n+3 is of constant bi-invariant type, since for any q ∈ S4n+3

and ξ = iα + jβ + kγ ∈ sp(1), α, β, γ ∈ R we have

d

dε

∣∣∣∣
ε=0

q expsp(1)(εξ) = αq · i+ βq · j + γq · k

= αV 1
n+1(q) + βV 2

n+1(q) + γV 3
n+1(q).

Therefore, the inertia tensor is given by

Iq(iα + jβ + kγ, iα̃ + jβ̃ + kγ̃) =

= 〈αVn+1(q)βV
2
n+1(q) + γV 3

n+1(q), α̃Vn+1(q)β̃V
2
n+1(q) + γ̃V 3

n+1(q)〉 =
= αα̃ + ββ̃ + γγ̃,

which does not depend of the point.
As for Corollary 1, we have the following result.

Corollary 2. Let p ∈ S4n+3 = {(u0, . . . , un) ∈ Hn+1 : |u0|2+ . . .+ |un|2 = 1}
and v ∈ TpS

4n+3. If γR(t) = (u0(t), . . . , un(t)) is the great circle satisfying
γR(0) = p and γ̇R(0) = v, then the corresponding sub-Riemannian geodesic
is given by

(12) γ(t) =
(
u0(t) · e−tA(v), . . . , un(t) · e−tA(v)

)
.

In Corollary 2, the quaternionic exponential is defined by

eai+bj+ck = cos
√
a2 + b2 + c2 + sin

√
a2 + b2 + c2 · ai+ bj + ck√

a2 + b2 + c2
,

for a, b, c ∈ R. Note that the curve e−tA(v) is simply the Riemannian geodesic
in S3 starting at the identity of the group e = (1, 0, 0, 0), with initial velocity
vector (0,−〈v, V 1

n+1〉,−〈v, V 2
n+1〉,−〈v, V 3

n+1〉).
Corollary 2 implies immediate analogues to Proposition 1 and to Proposi-

tion 5, which we state for the sake of completeness. Proofs are adaptations
of the aforementioned Propositions.

Proposition 6. The set of sub-Riemannian geodesics in S4n+3 arising from
great circles γR(t) such that γ̇R(0) is orthogonal to V 1

n+1, V
2
n+1 and V 3

n+1 is
diffeomorphic to HP n.

Proposition 7. Let γ : R → S4n+3 be a complete sub-Riemannian geodesic
parameterized by arc-length, with initial velocity v ∈ TpS

2n+1. Then γ is
closed if and only if

〈v, V 1
n+1〉

‖v‖2 ,
〈v, V 2

n+1〉
‖v‖2 ,

〈v, V 3
n+1〉

‖v‖2 ∈ Q.

In analogy with Proposition 2, let us consider a similar statement in the
case of the spheres S4n+3.
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Proposition 8. For a horizontal sub-Riemannian geodesic of the form

γ(t) =
(
w0(t) · e−tA(v), . . . , wn(t) · e−tA(v)

)
the following equation holds

‖γ̇(t)‖2 + ‖A(v)‖2 = ‖v‖2,
where ‖A(v)‖2 = 〈v, V 1

n+1〉2 + 〈v, V 2
n+1〉2 + 〈v, V 3

n+1〉2.
Proof. Recall that if γ is a sub-Riemannian geodesic, then the length of the
velocity vector ‖γ̇(t)‖ does not depend on t. Thus without loss of generality
we can assume t = 0. Let us introduce the following notation

p = γ(0) = (x0, y0, z0, w0, . . . , xn, yn, zn, wn) ∈ S4n+3,

v = γ̇R(0) = (vx0 , vy0 , vz0 , vw0 , . . . , vxn , vyn , vzn , vwn) ∈ TpS
4n+3.

Differentiating equation (12) and evaluating at t = 0, we have

γ̇(0) = v − 〈v, V 1
n+1〉V 1

n+1 − 〈v, V 2
n+1〉V 2

n+1 − 〈v, V 3
n+1〉V 3

n+1.

The orthogonality of the vector fields V 1
n+1, V

2
n+1, V

3
n+1 implies the desired

relation.
�

6. Curvature of sub-Riemannian geodesics on H1

The proof of Proposition 3 is given in [17] for the case of the three di-
mensional Heisenberg group. As mentioned in [11], the proof for the case
of the sub-Riemannian three dimensional sphere is basically the same. The
authors have pointed out, in private communication, that the same result
holds for all three Sasakian pseudo-Hermitian manifolds.

Note that that ifM is either the Heisenberg group of topological dimension
3 or the sphere S3, with Reeb vector field R, then the quotient vector bundle

TM/span{R} → M

is trivial. We have not been able to show that the corresponding vector
bundle

TS7/span{V 1
2 , V

2
2 , V

3
3 } → S7

is trivial, which makes difficult to find an analogous argument to the one
employed in [11].

The main goal of this section is to find an analogue to Proposition 3 for the
Gromov-Margulis-Mitchell-Mostow tangent cone of S7, see [10, 13, 14, 15],
which corresponds to the seven dimensional quaternionic H−type group H1,
as presented in [4]. Observe that the idea of studying the tangent cone before
the sub-Riemannian manifold of interest corresponds to the case in [17],
since the three dimensional Heisenberg group is the tangent cone to the
sub-Riemannian S3. We will study whether this method extends to S7 in a
forthcoming paper.
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6.1. The quaternionic H−type group H1. Let us consider the 4 × 4
matrices I,J and K, given by

I =

⎛⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , J =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ ,

K =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ .

Note that I,J and K are a fixed representation of the quaternion units, i.e.
if U denotes the identity matrix of size 4× 4, then span{U , I,J ,K} ∼= H as
algebras via the isomorphism

ϕ : span{U , I,J ,K} → H

given by ϕ(U) = 1, ϕ(I) = i, ϕ(J ) = j, ϕ(K) = k and extended by linearity.
The seven dimensional quaternionic H−type group H1 corresponds to the

manifold R4 ⊕ R3 with the group operation ◦ defined by

(x, z) ◦ (x′, z′) =
(
x+ x′, zI + z′I +

1

2
x′TIx,

zJ + z′J +
1

2
x′TJ x, zK + z′K +

1

2
x′TKx

)
where x, y, z are column vectors and x′T , y′T , z′T are row vectors in R4.
The Lie algebra h1 corresponding to H1 is spanned by the left invariant

vector fields

X1(x, z) =
∂

∂x1

+
1

2

(
+x2

∂

∂zI
− x4

∂

∂zJ
− x3

∂

∂zK

)
,

X2(x, z) =
∂

∂x2

+
1

2

(
−x1

∂

∂zI
− x3

∂

∂zJ
+ x4

∂

∂zK

)
,

X3(x, z) =
∂

∂x3

+
1

2

(
+x4

∂

∂zI
+ x2

∂

∂zJ
+ x1

∂

∂zK

)
,

X4(x, z) =
∂

∂x4

+
1

2

(
−x3

∂

∂zI
+ x1

∂

∂zJ
− x2

∂

∂zK

)
,

ZI(x, z) =
∂

∂zI
, ZJ (x, z) =

∂

∂zJ
, ZK(x, z) =

∂

∂zK
.

at a point (x, z) = (x1, x2, x3, x4, zI , zJ , zK) ∈ H1. A Riemannian metric
〈·, ·〉 inH1 is declared so thatX1, . . . , X4, ZI , . . . , ZK is an orthonormal frame
at each (x, z) ∈ H1. The sub-Riemannian structure on H1 we are interested



SUB-RIEMANNIAN ODD DIMENSIONAL SPHERES 15

in is defined by the left invariant distribution D = span{X1, X2, X3, X4} and
the restriction of the metric previously defined.

Observe that D is bracket generating of step two. In fact, we have the
commutator relations

(13)
[X1, X2] = [X3, X4] = −ZI ,
[X2, X3] = [X1, X4] = ZJ ,
[X1, X3] = [X4, X2] = ZK.

All the remaining commutators between the chosen basis of h1 vanish.
From the well-known Koszul formula for the Levi-Civita connection asso-

ciated to the metric 〈·, ·〉

〈Z,∇YX〉 = 1

2
(X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉−

−〈[X,Z], Y 〉 − 〈[Y, Z], X〉 − 〈[X, Y ], Z〉),
see for example [8], the orthonormality of the basis {X1, . . . , X4, ZI , . . . , ZK},
and equations (13) we get that

〈Xb,∇XaZr〉 = −1

2
〈[Xa, Xb], Zr〉, 〈Zs,∇XaZr〉 = 0,

for any a, b = 1, . . . , 4, r, s = I,J ,K. This translates to the equation

(14) ∇XaZr = −1

2

4∑
b=1

〈[Xa, Xb], Zr〉Xb,

which reduces to the following identities

∇X1ZI =
1

2
X2, ∇X2ZI = −1

2
X1, ∇X3ZI =

1

2
X4, ∇X4ZI = −1

2
X3,

∇X1ZJ = −1

2
X4, ∇X2ZJ = −1

2
X3, ∇X3ZJ =

1

2
X2, ∇X4ZJ =

1

2
X1,

∇X1ZK = −1

2
X3, ∇X2ZK =

1

2
X4, ∇X3ZK =

1

2
X1, ∇X4ZK = −1

2
X2.

Therefore, it follows that the maps Jr : D → D defined by

Jr(X) = 2∇XZr, r = I,J ,K,

are almost complex structures. Note that the equation

(15) 〈Jr(U1), U2〉+ 〈U1, Jr(U2)〉 = 0

holds for every r = I,J ,K and every U1, U2 ∈ D. Note in particular that
equation (15) implies that 〈U, Jr(U)〉 = 0 for all U ∈ D.
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6.2. A variational argument. Consider a manifold M and let H ⊂ TM
be a distribution. A variation of a curve γ : [a, b] → M is a C2-map γ̃ :
I1 × I2 → M , where I1, I2 are open intervals, 0 ∈ I2 and γ̃(s, 0) = γ(s). In
what follows, we will denote γ̃(s, ε) = γε(s).

Let Wε be the vector field along γε given by

Wε(s) =
∂γτ (s)

∂τ

∣∣∣∣
τ=ε

=
∂γ

∂τ
(s, ε).

Note that the vector fields Wε and γ̇ε commute

[Wε, γ̇ε] =

[
∂γ

∂ε
(s, ε),

∂γ

∂s
(s, ε)

]
=

[
∂

∂ε
,
∂

∂s

]
γ(s, ε) = 0.

A variation γε of a horizontal curve γ is called admissible if all curves
γε : I1 → M are horizontal, γε(a) = γ(a) and γε(b) = γ(b) for all ε ∈ I2.
Observe that for an admissible variation of γ, the vector field W0 vanishes
at the endpoints of γ: W0(γ(a)) = W0(γ(b)) = 0.
Let us study an admissible variation γε of a horizontal curve γ in the case

ofH1, with the Riemannian metric defined in the previous Subsection. Since
the variation is admissible, we have

〈γ̇ε, ZI〉 = 〈γ̇ε, ZJ 〉 = 〈γ̇ε, ZK〉 = 0.

In what follows, for an arbitrary vector field X on H1, we will denote by
XH and XV the orthogonal projections of X to the horizontal distribution
D ⊂ TH1 and the vertical bundle span{ZI , ZJ , ZK} respectively.
The horizontality conditions 〈γ̇ε, Zr〉 = 0, for r = I,J ,K, yield

0 =
d

dε

∣∣∣∣
ε=0

〈γ̇ε, Zr〉 = 〈∇W0 γ̇, Zr〉+ 〈γ̇,∇W0Zr〉
= 〈∇γ̇W0, Zr〉+ 〈γ̇,∇W0H

Zr〉
= γ̇〈W0, Zr〉 − 〈W0,∇γ̇Zr〉+ 〈γ̇, Jr(W0H )〉
= γ̇〈W0, Zr〉 − 〈W0H , Jr(γ̇)〉 − 〈Jr(γ̇),W0H 〉
= γ̇〈W0, Zr〉 − 2〈W0H , Jr(γ̇)〉,

where we have used equation (15) and ∇ZsZr = 0.
In fact the converse statement also holds.

Lemma 1. Let W be any C1 vector field along γ such that W (γ(a)) =
W (γ(b)) = 0 and that satisfies

0 = γ̇〈W,Zr〉 − 2〈WH , Jr(γ̇)〉.
Then there exists an admissible variation γε of γ such that

∂

∂ε

∣∣∣∣
ε=0

γ(s, ε) = W.
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Proof. Let us decompose W = fγ̇+W̃ , with W̃⊥γ̇ and f(γ(a)) = f(γ(b)) =
0. With this definition, we have

〈W, γ̇〉 = f, 〈W,Jr(γ̇)〉 = 〈W̃ , Jr(γ̇)〉, 〈W,Zr〉 = 〈W̃ , Zr〉.
Observe that the term fγ̇ will not contribute to any admissible variation,
therefore we can assume that W⊥γ̇. Let s ∈ I1 and ε > 0 sufficiently small.
Define the mapping

F (s, ε) = expγ(s)(εW (s)),

where exp is the exponential map associated to the metric 〈·, ·〉 of H1.
If W is horizontal in some nonempty interval I ⊂ I1, then W = WH and

also 〈WH , Jr(γ̇)〉 = 1
2
γ̇〈WH , Zr〉 = 0. This implies WH = λ(p)γ̇, but since

WH⊥γ̇, then WH = 0.
If W (s0) is not horizontal, then F (s, ε) defines locally a surface which is

foliated by horizontal curves and it is transversal to the horizontal distribu-
tion, since it contains curves in nonhorizontal directions. This implies there
exists a C2 function g(s, ε) such that

γε(s) = expγ(s)(g(s, ε)W (s))

is a horizontal curve. Choosing g such that
∂

∂ε

∣∣∣∣
ε=0

f(s0, ε) = 1, we obtain

an admissible variation γε of γ with associated vector field W . �

With this result at hand, we can formulate the main theorem of this
section.

Theorem 3. Let γ : [a, b] → H1 be a horizontal curve, parameterized by arc
length. Then γ is a critical point of the length functional if and only if there
exist λI , λJ , λK ∈ R satisfying the second order differential equation

(16) ∇γ̇ γ̇ − 2
∑

r=I,J ,K
λrJr(γ̇) = 0.

Proof. Let γ : I = [a, b] → H1 be a horizontal curve, parameterized by arc
length, and let γε be an admissible variation of γ, with vector field U . The
first variation of the length functional, see [6], is given by

(17)
d

dε

∣∣∣∣
ε=0

L(γε) = −
∫
I

〈∇γ̇ γ̇, U〉.

Suppose γ is a critical point of the first variation, that is∫
I

〈∇γ̇ γ̇, U〉 = 0.
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The condition ‖γ̇‖ = 1 implies 〈∇γ̇ γ̇, γ̇〉 = 0. Since 〈γ̇, Zr〉 = 0 for
r = I,J ,K, we have

0 = γ̇〈γ̇, Zr〉 = 〈∇γ̇ γ̇, Zr〉+ 〈γ̇,∇γ̇Zr〉
= 〈∇γ̇ γ̇, Zr〉+ 〈γ̇, Jr(γ̇)〉
= 〈∇γ̇ γ̇, Zr〉.

Therefore, counting dimensions

(18) ∇γ̇ γ̇ =
∑

r=I,J ,K
gr(γ)Jr(γ̇).

In order to prove that the functions gr are constant, fix three C1 functions

fI , fJ , fK : I → R such that fr(a) = fr(b) = 0 and

∫
I

fr = 0 for r = I,J ,K.

Consider a vector field Ũ such that ŨH =
∑

r=I,J ,K frJr(γ̇) and 〈Ũ , Zr〉(s) =
2
∫ s

a
fr(t)dt. We claim that Ũ satisfies

γ̇〈Ũ , Zr〉 = 2〈ŨH , Jr(γ̇)〉,
for r = I,J ,K. To see this, observe that

γ̇〈Ũ , Zr〉 = d

ds

(
2

∫ s

a

fr(t)dt

)
= 2fr(s)

and also

2〈ŨH , Jr(γ̇)〉 = 2

〈 ∑
s=I,J ,K

fsJs(γ̇), Jr(γ̇)

〉
= 2fr(s).

Thus, by Lemma 1, we can conclude that Ũ is a vector field for an admis-
sible variation of γ. By the variational identity (17), we obtain the equality

0 =

∫
I

〈∇γ̇ γ̇, Ũ〉 =
∑

r=I,J ,K

∫
I

fr〈∇γ̇ γ̇, Jr(γ̇)〉,

which is valid for any three functions with mean zero. This implies that the
functions 〈∇γ̇ γ̇, Jr(γ̇)〉 are constant, and thus we obtain equation (16), for
suitable constants λI , λJ , λK ∈ R.
Conversely, let us assume that γ is a horizontal curve, such that ‖γ̇‖ = 1

and it satisfies the differential equation (16), for some λI , λJ , λK ∈ R. We
need to show that ∫

I

〈∇γ̇ γ̇, U〉 = 0

for any C1-smooth vector field U , vanishing at the endpoints of γ and sa-
tisfying

γ̇〈U,Zr〉 = 2〈UH , Jr(γ̇)〉,
where r = I,J ,K.
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Let us write U = UH + UV = UH +
∑

r=I,J ,K
grZr, where gr(γ(a)) =

gr(γ(b)) = 0, then∫
I

〈∇γ̇ γ̇, U〉 = −2
∑

r=I,J ,K
λr

∫
I

〈Jr(γ̇), U〉 = −2
∑

r=I,J ,K
λr

∫
I

〈Jr(γ̇), UH〉

= −
∑

r=I,J ,K
λr

∫
I

γ̇〈U,Zr〉 = −
∑

r=I,J ,K
λr

∫
I

γ̇〈UV , Zr〉

= −
∑

r=I,J ,K
λr

∫
I

γ̇(gr) = −
∑

r=I,J ,K
λr

∫ b

a

d

dt
(gr(γ(t))) = 0.

�

7. The intrinsic sub-Laplacian for S7
with growth vector (6, 1)

In [1] the authors presented an intrinsic form of the sub-Laplacian, by
means of Popp’s measure μsR, introduced in [15]. The aim of this section is
to construct this differential operator for the case of S7 endowed with the
contact distribution, introduced in Section 3.

7.1. Construction of the intrinsic sub-Laplacian. Let (M,H, 〈·, ·〉sR)
be a sub-Riemannian manifold, where H is a regular distribution. The basic
idea is to define the intrinsic sub-Laplacian ΔsRf of a function f : M → R
of class C2, in analogy to the Riemannian case. To do this, let us define the
horizontal gradient ∇sRf by the equation

(19) 〈∇sRf(p), v〉sR = dpf(v),

and the sub-Riemannian divergence divsRX of a horizontal vector field X
by

(20) divsRXμsR = LXμsR,

where μsR ∈ ∧n(T ∗M) is a fixed non-vanishing n−form, known as Popp’s
volume form, and LX denotes the Lie derivative in the direction of X. The
intrinsic sub-Laplacian is given by

(21) ΔsRf = divsR(∇sRf).

For full details about its construction, see [1, 15].
Remark: In the Riemannian case this definition coincides with the classical
definition of the Laplacian, see for example [18]. As pointed out in [1], the
regularity hypothesis over the distribution cannot be avoided since for exam-
ple, in the case of the Grushin plane, the operator (21) is not hypoelliptic.

Let {X1, . . . , Xk} be a local orthonormal basis of H ⊂ TM and consider
the corresponding dual basis {dX1, . . . , dXk}. It is possible to find vector
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fields {Xk+1, . . . , Xn} such that span{X1, . . . , Xn} = TM and such that
Popp’s volume form is locally given by

(22) μsR = dX1 ∧ . . . ∧ dXk ∧ dXk+1 ∧ . . . ∧ dXn.

In this setting, the sub-Laplacian ΔsRf can be written explicitly as

(23) ΔsRf =
k∑

r=1

(
L2
Xr
f + LXrf

n∑
s=1

dXs([Xr, Xs])

)
.

7.2. Examples. The case of the intrinsic sub-Laplacian for S3 is implied by
the following result, characterizing Popp’s volume form for contact manifolds
of dimension 3.

Proposition 9 ([1, 15]). Let M be a three dimensional orientable contact
manifold with a sub-Riemannian metric defined on its contact distribution.
Let {X1, X2} a local orthonormal frame for its contact distribution. Let
X3 = [X1, X2] and {dX1, dX2, dX3} be the dual basis to {X1, X2, X3}. Then
the form dX1 ∧ dX2 ∧ dX3 is an intrinsic volume form.

In particular, for the sphere S3 endowed with the contact distribution
generated by the globally defined vector fields (8), with commutator

[X, Y ](x) = 2V (x) = 2(−x1∂x0 + x0∂x1 − x3∂x2 + x2∂x3),

Popp’s volume form, as constructed above, is 2dX ∧ dY ∧ dV , and the
intrinsic sub-Laplacian is given by

ΔsRf = (X2 + Y 2)f.

In general, we can extend the previous result to construct locally Popp’s
volume form over contact manifolds of arbitrary dimension. Let M be a
contact manifold of dimension 2n+ 1, with contact form ω and contact dis-
tribution ξ = kerω. The distribution ξ is bracket generating of step two,
see [9]. Assume that M has a Riemannian metric g such that, in a neighbor-
hood of each p ∈ M , there is an orthonormal basis B = {v1, . . . , v2n, v2n+1}
for TpM satisfying ξp = span{v1, . . . , v2n}. Following the construction in [15]
we have that Popp’s volume form in this case is given locally by

(24) μsR = π1 ∧ . . . ∧ π2n+1,

where B∗ = {π1, . . . , π2n+1} is the dual basis for B.
In the case of the contact structure of S7, let us consider the vector fields

X1, . . . , X7 presented in the Appendix. Since the vector fields X1 and V4

from equation (2) coincide, the contact distribution on S7 introduced in
Section 3 corresponds to

H = kerω = span{X2, . . . , X7}.
In this context we have the following
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Theorem 4. Let H be the contact distribution for S7 and 〈·, ·〉sR the re-
striction of the usual Riemannian metric in R8 to H. Then the intrinsic
sub-Laplacian of (S7,H, 〈·, ·〉sR) is given by the sum of squares

ΔsR =
7∑

a=2

X2
a .

Proof. The construction of Popp’s measure leads to the globally defined n
form

μsR = dX1 ∧ . . . ∧ dX7,

which is precisely the Riemannian volume form of S7. Simple calculations
show that

(25) dXb([Xa, Xb]) = 〈Xb, [Xa, Xb]〉sR = 0, a = 2, . . . , 7 b = 1, . . . 7.

The theorem follows from formula (23). �
Remark: A complete list of the commutators [Xa, Xb], for a < b, can be
found in [9, Section 8]. This list can be used to check equation (25) directly.

8. Heat operator for S7
with growth vector (6, 1)

The aim of this section is to show that the above constructed operator
ΔsR commutes with the operator X2

1 . A similar observation was exploited
to study the heat operator for the sub-Riemannian structure of SU(2) ∼= S3

in [3].
The main result of this Section is formulated as follows.

Theorem 5. The operators ΔsR and X2
1 commute.

Proof. Let us introduce the following change of coordinates for S7:

(26)

x0 + ix1 = eiξ1 cos η1 cosψ
x2 + ix3 = eiξ2 sin η1 cosψ
x4 + ix5 = eiξ3 cos η2 sinψ
x6 + ix7 = eiξ4 sin η2 sinψ

By the chain rule, the symbol of the sub-Laplacian ΔsR = X2
2 + . . .+X2

7

is a quadratic form with matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1(η1, ψ) −1 −1 −1 0 0 0
−1 h2(η1, ψ) −1 −1 0 0 0
−1 −1 h3(η2, ψ) −1 0 0 0
−1 −1 −1 h4(η2, ψ) 0 0 0
0 0 0 0 sec2 ψ 0 0
0 0 0 0 0 csc2 ψ 0
0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the coefficient functions h1, h2, h3 and h4 are given by
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h1(η1, ψ) = −sec2(η1) sec
2(ψ)

8

(
− 6 + 2 cos(2η1) + cos(2(η1 − ψ))+

+2 cos(2ψ) + cos(2(η1 + ψ))
)
,

h2(η1, ψ) =
csc2(η1) sec

2(ψ)

8

(
6 + 2 cos(2η1) + cos(2(η1 − ψ))−

−2 cos(2ψ) + cos(2(η1 + ψ))
)
,

h3(η2, ψ) =
sec2(η2) csc

2(ψ)

8

(
6− 2 cos(2η2) + cos(2(η2 − ψ))+

+2 cos(2ψ) + cos(2(η2 + ψ))
)
,

h4(η2, ψ) = −csc2(η2) csc
2(ψ)

8

(
− 6− 2 cos(2η2) + cos(2(η2 − ψ))−

−2 cos(2ψ) + cos(2(η2 + ψ))
)
.

Observe that h1, . . . , h4 are independent of ξ1, . . . , ξ4. On the other hand,
the vector field X1, written in the new coordinates, becomes

X1 = ∂ξ1 + ∂ξ2 + ∂ξ3 + ∂ξ4 .

Since the coefficients of ΔsR are independent of the variables ξ1, ξ2, ξ3
and ξ4, it is clear that the operators ΔsR and X1 commute. The Theorem
follows. �
Let us denote by e−tΔsR the semigroup of operators acting on L2

μsR
, with

infinitesimal generator ΔsR. The operator e−tΔsR is known as the sub-
Riemannian heat operator. As a consequence of Theorem 5, we get the
announced result.

Corollary 3. Denoting by ΔS7 the Laplace-Beltrami operator in S7 with
respect to the usual Riemannian structure, we have that

e−tΔS7 = e−t(ΔsR+X2
1 ) = e−tΔsRe−tX2

1 .

Proof. Since ΔS7 = ΔsR+X2
1 , we have by the commutativity of the operators

(27) e−tΔS7 = e−t(ΔsR+X2
1 ) = e−tΔsRe−tX2

1 ,

yielding to the stated result. �
The theory of unbounded operators allows us to rephrase the result in

Corollary 3 as:

Corollary 4. The sub-Riemannian heat operator e−tΔsR is given by

e−tΔsR = e−tΔS7etX
2
1 .
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9. Appendix: Tangent vector fields to S7

Octonion multiplication induces the following orthonormal basis of TS7

with respect to the restriction of the inner product 〈·, ·〉 from R8 to the
tangent space TpS

7 at each p ∈ S7.

X1(x) = −x1∂x0 + x0∂x1 − x3∂x2 + x2∂x3 − x5∂x4 + x4∂x5 − x7∂x6 + x6∂x7

X2(x) = −x2∂x0 + x3∂x1 + x0∂x2 − x1∂x3 − x6∂x4 + x7∂x5 + x4∂x6 − x5∂x7

X3(x) = −x3∂x0 − x2∂x1 + x1∂x2 + x0∂x3 + x7∂x4 + x6∂x5 − x5∂x6 − x4∂x7

X4(x) = −x4∂x0 + x5∂x1 + x6∂x2 − x7∂x3 + x0∂x4 − x1∂x5 − x2∂x6 + x3∂x7

X5(x) = −x5∂x0 − x4∂x1 − x7∂x2 − x6∂x3 + x1∂x4 + x0∂x5 + x3∂x6 + x2∂x7

X6(x) = −x6∂x0 + x7∂x1 − x4∂x2 + x5∂x3 + x2∂x4 − x3∂x5 + x0∂x6 − x1∂x7

X7(x) = −x7∂x0 − x6∂x1 + x5∂x2 + x4∂x3 − x3∂x4 − x2∂x5 + x1∂x6 + x0∂x7 .
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AN INTRINSIC FORMULATION OF THE ROLLING
MANIFOLDS PROBLEM

MAURICIO GODOY MOLINA
ERLEND GRONG
IRINA MARKINA

FÁTIMA SILVA LEITE

Abstract. We present an intrinsic formulation of the kinematic prob-
lem of two n−dimensional manifolds rolling one on another without twist-
ing or slipping. We determine the configuration space of the system,

which is an n(n+3)
2 −dimensional manifold. The conditions of no-twisting

and no-slipping are encoded by means of a distribution of rank n. We
compare the intrinsic point of view versus the extrinsic one. We also show
that the kinematic system of rolling the n-dimensional sphere over Rn

is controllable. In contrast with this, we show that in the case of SE(3)
rolling over se(3) the system is not controllable, since the configuration
space of dimension 27 is foliated by submanifolds of dimension 12.

1. Introduction

Rolling surfaces without slipping or twisting is one of the classical kine-
matic problems that in recent years has again attracted the attention of
mathematicians due to its geometric and analytic richness. The kinematic
conditions of rolling without slipping or twisting are described by means of
motion on a configuration space being tangential to a smooth sub-bundle
that we call a distribution. The precise definition of the mentioned motion in
the case of two n-dimensional manifolds imbedded in Rm, given for example
in [11], involves studying the behavior of the tangent bundles of the man-
ifolds and the normal bundles induced by the imbeddings. This approach
leads to significant simplifications, for instance, it suffices to study the case
in which the still manifold is the n−dimensional Euclidean space. The draw-
back is that the geometric descriptions depend strongly on the imbedding
under consideration.

2000 Mathematics Subject Classification. 37J60, 53A55, 53A17.
Key words and phrases. Rolling maps, moving frames, nonholonomic constraints.
The first three authors are supported by the grant of the Norwegian Research Coun-
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ing Programme HCAA. The last author is partially supported by FCT under project
PTDC/EEA-ACR/67020/2006.
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So far, however, little attempts have been made to formulate this prob-
lem intrinsically. An early enlightening formulation is given in [2], in which
the authors study the case of two abstract surfaces rolling in the above de-
scribed manner. This is achieved by means of an intrinsic version of the
moving frame method of Élie Cartan which, for this case, coincides with the
classical intrinsic study of surfaces, see [12]. One of the important results
established in [2] is the non-integrability property of the rank two distri-
bution corresponding to no-twisting and no-slipping restrictions, namely, if
the two surfaces have different Gaussian curvature, then the distribution is
of Cartan-type, see [4]. A control theoretic approach to the same problem,
studied in [1], has the advantage that the kinematic restrictions are written
explicitly as vector fields on appropriate bundles.

We present a generalization of the kinematic problem for two n−dimensio-
nal abstract manifolds rolling without twisting or slipping via an intrinsic
formulation. We define the configuration space of the system, which is an
n(n+3)

2
−dimensional manifold and which is a direct analogue to the one found

in the references [2] and [1]. We give several equivalent definitions of rolling
motion involving intrinsic characteristics and those that depend only on
imbedding and discuss their relations. This new definitions permit to de-
termine the imbedding-independent information contained in the extrinsic
definition of the rolling bodies problem presented in [11]. Moreover, we re-
lax the smoothness condition of the rolling map up to absolutely continuity.
This allows to enlarge the class of mappings under consideration, still giving
the possibility to apply the fundamental theorems of differential geometry
and control theory without changing drastically the main classical ideas of
rolling maps. The conditions of no-twisting and no-slipping define a dis-
tribution of rank n in the tangent bundle of the configuration space. We
write explicitly the distribution as a local span of vector fields defined on
the configuration space. We test the bracket generating condition of the
above mentioned distribution on the known example [14] of rolling the n-
dimensional sphere over the n-dimensional Euclidean space and the special
group of Euclidean rigid motions SE(3) rolling over se(3). As a result we
obtain the controllability of the first system and the non controllability of
the latter.

The structure of the present paper is the following. Section 2 is an in-
troductory section where we collect necessary definitions and discuss the
motivation for the reformulations of kinematic conditions of no-twisting and
no-slipping for the rolling problem. We present two formulations and show
their equivalence. Section 3 gives a good starting point for comparing differ-
ent approaches, known in the literature for 2-dimensional rolling manifolds.
In Section 4 we give the main formulation of extrinsic rolling as a curve on a
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configuration space defined as a direct sum of fiber bundles over the Carte-
sian product of the two rolling manifolds and we prove the equivalence of
the new extrinsic definition of rolling with the previous ones and deduce the
intrinsic definition of a rolling map. We also prove a theorem distinguish-
ing the imbedding independent information contained in the definition of
extrinsic rolling. Section 5 is dedicated to the construction of two distribu-
tions in the tangent bundle of the configuration space. These distributions
encode the no-twisting and no-slipping kinematic conditions of the extrinsic
and intrinsic rollings. These rollings can be written as curves in the con-
figuration spaces tangent to the corresponding distributions. In Sections 6
and 7 we present detailed calculations for the two aforementioned examples:
rolling the n-dimensional sphere over the n-dimensional Euclidean space and
rolling SE(3) over se(3). In the first case the distribution is bracket generat-
ing, coinciding with the result obtained in [14]. In the second case we obtain
that the configuration space, of dimension 27, is foliated by 12 dimensional
submanifolds.

2. Definition of rolling map for manifolds imbedded in

Euclidean space

2.1. Rolling without twisting or slipping for imbedded manifolds.
We start from the classical definition of rolling without slipping or twisting
of one manifold over another manifold inside the Euclidean space.

Let us start with some notations. Throughout this paper, M and M̂ will
always be oriented connected Riemannian manifolds of dimension n. By the
well known result of Nash, see [8], there are isometric imbeddings of M and

M̂ , denoted by ι and ι̂ respectively, into Rn+ν for an appropriate choice of ν.
Here and in what follows Rn+ν will always be equipped with the standard
Euclidean metric and standard orientation. As long as there is no possibility

for confusion, we will identify the abstract manifolds M and M̂ with their
images under the corresponding imbeddings. The imbedding of M into Rn+ν

splits the tangent space of Rn+ν into a direct sum:

(1) TxR
n+ν = TxM ⊕ TxM

⊥, x ∈ M.

In general, any objects (points, curves, . . . ) related to the manifold M̂ will
be marked by a hat (̂) on top, objects related to M will be free of it,
while terms related to the ambient Rn+ν space carry a bar ( − ). We use
Isom(M) for the group of isometries of M , and Isom+(M) for the group of
sense preserving isometries.

We start by given the definition of rolling without twisting and slipping
as found in [11].

Definition 0. Let M, M̂ be submanifolds of Rn+ν. Then, a differentiable
map g : [0, τ ] → Isom(Rn+ν) satisfying the following conditions for any
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t ∈ [0, τ ] is called a rolling M on M̂ without slipping or twisting. The
rolling conditions:

• there is a piecewise smooth curve x : [0, τ ] → M , such that

– g(t)x(t) ∈ M̂ ,

– Tg(t)x(t) (g(t)M) = Tg(t)x(t)M̂ .
• Furthermore, the curve x̂(t) := g(t)x(t) satisfies the following

– no-slip condition:

ġ(t)g(t)−1x̂(t) = 0,

– no-twist condition, tangential part:

d(ġ(t)g(t)−1)Tx̂(t)M̂ ⊆ T0(ġ(t)g(t)
−1M̂)⊥,

– no-twist condition, normal part:

d(ġ(t)g(t)−1)Tx̂(t)M̂
⊥ ⊆ T0(ġ(t)g(t)

−1M̂).

Remark 1. In the previous definition, we explicitly state that g : [0, τ ] →
Isom(Rn+ν) is differentiable. This is not stated in [11], but conditions con-
taining ġ are required to hold for all t. Also, a minor inaccuracy in the
no-twisting conditions is corrected.

It is clear that Definition 0 is of extrinsic nature. Thus, in order to
obtain an intrinsic formulation of the rolling problem, we want to change
the original definition as follows:

(1) Making x(t) part of the data of the rolling: The reason is to give a
local character to conditions of rolling without twisting or slipping. This
will emphasize the dependence of the rolling not just on the isometry g but

also on a curve x along which the rolling of M on M̂ can be realized. In
some particular cases, this may lead to small changes in terminology. The
following example illustrates these ideas.

Example 1. Consider the submanifolds of R3, defined by

M =
{
(x̄1, sin θ, 1− cos θ) ∈ R3| x̄1 ∈ R, θ ∈ [0, 2π)

}
,

M̂ =
{
(x̄1, x̄2, 0) ∈ R3| x̄1, x̄2 ∈ R,

}
.

The rolling map

g(t) : x̄ =

⎛⎝ x̄1

x̄2

x̄3

⎞⎠ �→
⎛⎝ x̄1

x̄2 cos t+ (x̄3 − 1) sin t+ t
−x̄2 sin t+ (x̄3 − 1) cos t+ 1

⎞⎠ ,

describes the rolling of the infinite cylinder M on M̂ along the x̄2-axis with
constant speed 1. Then there is an infinite choice of curves x(t) ∈ M , given
by

x(t) = (x̄1, sin t, 1− cos t), x̄1 ∈ R
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along which the rolling g can be realized. However, if we make x(t) as part
of the data, then each choice of the curve x(t) will correspond to different
rollings

(
x(t), g(t)

)
.

(2) Relaxing the differentiability conditions for g(t): We think that the con-
ditions of differentiability of g(t) for all t ∈ [0, τ ] and piecewise smooth-
ness of x(t) are too restrictive. The requirement that (x, g) : [0, τ ] →
M × Isom(Rn+ν) is absolutely continuous or Lipschitz seems more natu-
ral, since this allows us to implement results from control theory, see Sub-
section 3.2. In this context, absolute continuity of a curve

(
x(t), g(t)

)
on

M × Isom(Rn+ν) is considered with respect to the parameter t, as in [1,
Chapter 2].

(3) Introducing orientability assumptions: In order to have a connected con-

figuration space, we exploit the orientability assumption ofM and M̂ . Since,
as mentioned before, the rolling conditions will be local, we may choose an
orientable neighborhood of the starting point even on any non-orientable
manifold. We will use this to impose some practical restrictions to the defi-
nition of a rolling.

• Since g(t) is continuous, it is either always orientation preserving or
orientation reversing isometry of Rn+ν for all t. Given a rolling g(t) of

M on M̂ , we may assume that g(t) is always orientation preserving by
changing the orientation of Rn+ν . To obtain an orientation preserving

rolling from an orientation reversing rolling g(t) of M on M̂ , pick any
constant orientation reversing isometry g0 of Rn+ν . Then g0g(t) is

an orientation preserving rolling of M on g0(M̂).
• It is intuitively clear that for a fixed t, dx(t)g(t) maps elements from

Tx(t)M to Tx̂(t)M̂ and elements from Tx(t)M
⊥ to Tx̂(t)M̂

⊥ (for more
details see Subsection 2.2). Hence, the matrix form of dx(t)g(t) splits
in the following way:

Tx(t)M Tx(t)M
⊥

dx(t)g(t) =

(
A(t) 0
0 B(t)

)
Tx̂(t)M̂

Tx̂(t)M̂
⊥.

Since g(t) is orientation preserving, both linear maps dx(t)g(t)|Tx(t)M

and dx(t)g(t)|Tx(t)M
⊥ are either orientation preserving or orientation

reversing. By continuity, dx(t)g(t)|Tx(t)M is either orientation preserv-

ing or orientation reversing for all t. We will require that dx(t)g(t)|Tx(t)M

is always orientation preserving. If dx(t)g(t)|Tx(t)M is orientation re-

versing, pick any constant orientation preserving isometry g0 : Rn+ν →
Rn+ν so that

dg0|TM̂ : TM̂ → T (g0M̂)
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is orientation reversing. It is sufficient to show that it reverses the
orientation at one point in order to show that it reverses orientation
at all points due to the fact that M is oriented. Then g0g(t) will be

a rolling of M on g0M̂ which is orientation preserving on the tangent
space at x(t).

Implementing the above changes to Definition 0, we obtain the following,
from which several equivalent reformulations will be presented later.

Definition 1. A rolling of M on M̂ without twisting or slipping is an ab-
solutely continuous curve (x, g) : [0, τ ] → M × Isom+(Rn+ν), satisfying the
following conditions:

(i) x̂(t) := g(t)x(t) ∈ M̂ , for all t ∈ [0, τ ].

(ii) Tx̂(t)(g(t)M) = Tx̂(t)M̂ , for all t ∈ [0, τ ].
(iii) No slip condition: ġ(t) ◦ g−1(t)x̂(t) = 0, for almost every t.
(iv) No twist condition (tangential part):

d(ġ(t) ◦ g−1(t))(Tx̂(t)M̂) ⊆ T0(ġ(t) ◦ g−1(t)M̂)⊥,

for almost every t.
(v) No twist condition (normal part):

d(ġ(t) ◦ g−1(t))(Tx̂(t)M̂
⊥) ⊆ T0(ġ(t) ◦ g−1(t)M̂),

for almost every t.

(vi) dx(t)g(t)|Tx(t)M : Tx(t)M → Tx̂(t)M̂ is orientation preserving, for all

t ∈ [0, τ ].

We omit, from now on, the words “without twisting or slipping”, just

writing “a rolling of M on M̂”. Furthermore, for given curves x(t) and x̂(t)

in M and M̂ , respectively, the expression ”a rolling of M on M̂ along x(t)
and x̂(t)” will mean a rolling (x, g) : [0, τ ] → M × Isom+(Rn+ν) so that
g(t)x(t) = x̂(t).

Remark 2. The definitions we will be working with ignore physical restric-
tions given by the actual shapes of the manifolds. Intuitively, if we think
of the manifolds in Definition 1 as physically touching along the curves x(t)
and x̂(t) and rolling according to the isometry g(t), then we cannot rule out
the possibility that there might be non-tangential intersections between the
manifolds other than the contact points.

Example 2. Consider the imbedded surface

M = {(x1, x2, x3) ∈ R3
∣∣ x2

1 − x2
2 + x3 = 0, x2

1 + x2
2 < 1},

and M̂ = R2, imbedded as an affine plane. Assume that both manifolds M

and M̂ carried the induced metric. We can clearly define a rolling of M on

M̂ in terms of Definition 1, but there is no way to connect the saddle point
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in M with any point in M̂ without there being intersections between the
surfaces.

2.2. First reformulation. We aim to give a definition of the rolling of

M on M̂ in a way that is more fruitful for future considerations. We fix
some notations first. According to the splitting (1), any vector v ∈ TxRn+ν ,
x ∈ M , can be written uniquely as the sum v = v� + v⊥, where v� ∈ TxM
is tangent to M at x, while v⊥ ∈ TxM

⊥ is normal. Analogous projections

can be defined for M̂ .
Let ∇ denote the Levi-Civita connection on M or on M̂ . The context

will indicate on which manifold the connection is defined. The “ambient”
Levi-Civita connection on Rn+ν is denoted by ∇. Note that if X and Y are
tangent vector fields on M , then

∇XY (x) =
(∇X̄ Ȳ (x)

)�
, x ∈ M,

where X̄ and Ȳ are any local extensions to Rn+ν of the vector fields X and
Y , respectively. Similarly, if Υ is a normal vector field on M and X is a
tangent vector field on M , then the normal connection is defined by

∇⊥
XΥ(x) =

(∇X̄Ῡ(x)
)⊥

, x ∈ M,

where Ῡ is any local extension to Rn+ν of the vector field Υ. Equivalent

statements hold for M̂ . If no confusions arise, we will use capital Latin
letters X, Y, Z to denote tangent vector fields and capital Greek letters Υ,Ψ
for notation of normal vector fields.

For a fixed value of x ∈ M and a fixed vector field Y , the vector ∇XY (x)
only depends on the value of X(x). Therefore, for v ∈ TxM , we will use∇vY
or ∇vY (x) to mean ∇XY (x), where X is an arbitrary vector field satisfying
X(x) = v. We will use the same convention when ∇ is interchanged with
∇⊥.

If Z(t) is a vector field along x(t), we will use D
dt
Z(t) to denote the covariant

derivative (corresponding to∇) of Z(t) along x(t), and for any normal vector

field Ψ(t) along x(t), D⊥
dt
Ψ(t) denotes the normal covariant derivative (see [7,

p. 119]). Recall that if M is imbedded isometrically into Rn+ν , then

D

dt
Z(t) =

(
d

dt
Z(t)

)�
,

D⊥

dt
Ψ(t) =

(
d

dt
Ψ(t)

)⊥
,

where Z(t) and Ψ(t) are tangential and normal vector fields, respectively,
along a curve in M .

We say that a tangent vector Y (t) along an absolutely continuous curve
x(t) is parallel if D

dt
Z(t) = 0 for almost every t. Notice that it is possible to

define the notion of parallel transport even though the derivative ẋ(t) exists
only almost everywhere, see, e. g., Existence and Uniqueness Theorem in [10,
Appendix C]. Namely, for any absolutely continuous curve x : [0, τ ] → M
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and for any v ∈ Tx(t0)M , 0 ≤ t0 ≤ τ , there exists a unique absolutely
continuous tangent vector field Z(t) along x(t), such that Z(t) is parallel
and satisfies Z(t0) = v.

We say that a normal vector field Ψ(t) along x(t) is normal parallel if
D⊥
dt
(t)Ψ = 0 for almost every t. A normal analogue of parallel transport is

defined likewise.
We are now ready to give a new formulation of the rolling map.

Definition 2. A rolling of M on M̂ without slipping or twisting is an ab-
solutely continuous curve (x, g) : [0, τ ] → M × Isom+(Rn+ν) satisfying the
following conditions:

(i’) x̂(t) := g(t)x(t) ∈ M̂ ,

(ii’) dg(t)Tx(t)M = Tx̂(t)M̂ ,

(iii’) No slip condition: ˙̂x(t) = dg(t)ẋ(t), for almost every t.
(iv’) No twist condition (tangential part):

dg(t)
D

dt
Z(t) =

D

dt
dg(t)Z,

for any tangent vector field Z(t) along x(t) and almost every t.
(v’) No twist condition (normal part):

dg(t)
D⊥

dt
Ψ(t) =

D⊥

dt
dg(t)Ψ(t),

for any normal vector field Ψ(t) along x(t) and almost every t.

(vi’) dx(t)g(t)|Tx(t)M : Tx(t)M → Tx̂(t)M̂ is orientation preserving.

Lemma 1. Definitions 1 and 2 are equivalent.

Proof. Since (i) and (i’) coincide, we begin by proving the equivalence of (ii)
and (ii’). Restricting the action of g(t) to M , we observe that the differential
dx(t)g(t) maps Tx(t)M into Tg(t)x(t) (g(t)M) by definition, and hence (ii) holds
if and only if (ii’) holds.

In order to prove the equivalence between (iii) and (iii’) we write a curve
g(t) in Isom+(Rn+ν) as

g(t) : x̄ �→ Ā(t)x̄+ r̄(t), x̄ ∈ Rn+ν ,

where Ā : [0, τ ] → SO(n + ν) and r̄ : [0, τ ] → Rn+ν . Thus dx̄g(t)v = Ā(t)v,
v ∈ Tx̄Rn+ν , and we get

ġ(t) ◦ g−1(t) x̂(t) = ġ(t)x(t) = ˙̄A(t)x(t) + ˙̄r(t)

=
d

dt

(
Ā(t)x(t) + r̄(t)

)− Ā(t)ẋ(t) = ˙̂x(t)− dg(t)ẋ(t).

whenever ẋ(t) is defined. Hence ġ(t) ◦ g−1(t)x̂(t) = 0 almost everywhere if

and only if ˙̂x(t) = dg(t)ẋ(t) almost everywhere.
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Before we continue with the final two conditions, notice that (ii’) actually

states that both dg(t)(Tx(t)M) = Tx̂(t)M̂ and dg(t)(Tx(t)M
⊥) = Tx̂(t)M̂

⊥ hold
due to the splitting (1). Hence, the inverse differential dg−1(t) = (dg(t))−1

also maps tangent vectors to tangent vectors and normal vectors to normal
vectors. This allows us to restate (iv) and (v) as the conditions(

dġ(t)v�
)�

= 0, and
(
dġ(t)v⊥

)⊥
= 0,

holding for almost every t and for any v ∈ Tx(t)Rn+ν , decomposed as the
sum of v� ∈ Tx(t)M and v⊥ ∈ Tx(t)M

⊥ via the splitting (1). We calculate

0 = (dġ(t)Z(t))� =

(
d

dt

(
dg(t)Z(t)

)− dg(t)

(
d

dt
Z(t)

))�

=
D

dt
dg(t)Z(t)− dg

D

dt
Z(t)

for any tangent vector field Z(t) along x(t), for any value of t where ẋ(t) is
defined. By similar calculations, using a normal vector field Ψ(t) along x(t),
we obtain

dg(t)
D⊥

dt
Ψ(t) =

D⊥

dt
dg(t)Ψ(t).

�

Remark 3. The following observations are useful for the understanding of
the nature of a rolling map.

• The proof of Lemma 1 shows that indeed condition (ii’) is equivalent
to the statement

dg(t)Tx(t)M
⊥ = Tx̂(t)M̂

⊥.

• Condition (iv’) is equivalent to the requirement that any tangent
vector field Z(t) is parallel along x(t) if and only if dg(t)Z(t) is
parallel along x̂(t). As a consequence, this condition is automatically
satisfied in the case of one dimensional manifolds.

• We can reformulate (v’) in terms of normal parallel vector fields.
Namely, condition (v’) is equivalent to the statement that any normal
vector field Ψ(t) is normal parallel along x(t) if and only if dg(t)Ψ(t)
is normal parallel vector field along x̂(t). Thus, if the manifolds
are imbedded into Euclidean space and the codimension is one (i.e.
ν = 1), condition (v’) always holds.

3. Previous intrinsic descriptions of rolling maps dimension 2

The aim of this Section is to present the different intrinsic formulations
of a rolling map appearing in literature for two dimensional manifolds. The
two best known formulations are given in [1, 2]. We start by introducing the
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configuration space of the rolling for the general case of n dimensional mani-
folds and then proceed to describe the previously mentioned two dimensional
situation.

3.1. Frame bundles and bundles of isometries. Let SO(V, V̂ ) denote
the collection all linear orientation preserving isometries between the ori-

ented inner product spaces V and V̂ . We write simply SO(V ) for the group
SO(V, V ).

For any pair M and M̂ of oriented connected Riemannian n-dimensional
manifolds, we introduce a manifold Q of all the relative positions in which

M can be tangent to M̂ . This SO(n)−fiber bundle over M×M̂ is defined by

Q =
{
q ∈ SO(TxM,Tx̂M̂)

∣∣∣ x ∈ M, x̂ ∈ M̂
}

and can be considered as the configuration space of the rolling.
The configuration space Q can be also described in the following way. Let

F and F̂ be the oriented orthonormal frame bundle frame bundles of M and
M̂ , respectively. If f1, . . . , fn is an oriented orthonormal frame at x, then
each such frame may be considered as a mapping f ∈ SO(Rn, TxM), where
Rn has the Euclidean structure and standard orientation, and

(2) f
(
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

1 in the j−th place

)
= fj.

This gives us an obvious action of SO(Rn) = SO(n) on the right, inducing
a principal SO(n)-bundle structure on F . On the fiber over each point x,
we also have a left action by SO(TxM). This group is isomorphic to SO(n),
although not canonically when n ≥ 3. Therefore we have no natural left

action of SO(n) on Q. Similar considerations holds for F̂ .

Consider F × F̂ as a bundle over M ×M̂ with SO(n) acting diagonally on

the fibers. Then, we can identify Q with (F × F̂ )/ SO(n) by the following

map. Let f be a frame in F at x ∈ M and similarly let f̂ be a frame in F̂

at x̂ ∈ M̂ . Then to each equivalence class (f, f̂) · SO(n) we associate the

mapping q ∈ SO(TxM,Tx̂M̂), so that

(3) f̂ = q ◦ f,
that is, the mapping satisfying f̂j = qfj for j = 1, . . . , n. Clearly, this con-
struction does not depend on the choice of a representative of an equivalence

class of (F×F̂ )/ SO(n). Conversely, given an isometry, there exists a unique
equivalence class of frames satisfying (3).

Except for the case when n = 2, Q does not possess the structure of a
principal SO(n)−bundle in a natural way. However, Q does look locally like
a trivial product of M × M and SO(n). Let U be a neighborhood in M ,
such that F trivializes over U . Then there is a section e of F |U , that is, a
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smooth function on U so that for any x ∈ U , e(x) ∈ SO(Rn, TxM). Another
way to see this is that, if we define vectors ej(x) in a similar way as in (2)
for e(x), then each mapping ej : x �→ ej(x) is a vector field on U . These
vector fields have the property that for any x ∈ U ,

e1(x), . . . , en(x),

is a positively oriented orthonormal basis of TxM . On this section of F |U ,
we can define a left action of SO(n) on F |U relative to e. This can be done
by using e(x) : Rn → TxM at any point x ∈ U , to give an isomorphism of
SO(n) and SO(TxM). The corresponding action takes the following form.
If f ∈ Fx, x ∈ U is any other frame, and

fj =
n∑

i=1

fijei(x),

then the left action of A = (aij)
n
i,j=1 ∈ SO(n) relative to e is defined by

A · fj =
n∑

i,k=1

fijakiek, j = 1, . . . , n.

From this we can locally define a left and right action on Q. Let U and

Û be neighborhoods in M and M̂ respectively, so that both frame bundles

trivialize over these neighborhoods. Let e : U → F |U and ê : Û → F̂ |Û be
sections. Then the left action of A ∈ SO(n) with respect to ê, is defined so

that if f̂j = qfj for j = 1, . . . , n, then

A · f̂j = (A · q)fj,
where the left action of A on f̂j is defined with respect to ê. Similarly, the
right action with respect to e is defined by

f̂j = (q · A)(A−1 · fj
)
.

Remark that if A0 = (〈êi, qej〉)ni,j=1, then

(〈êi, (A · q)ej〉)ni,j=1 = AA0, and (〈êi, (q · A)ej〉)ni,j=1 = A0A.

Since Q is an SO(n)−fiber bundle over M × M̂ , it has dimension n(n+3)
2

as a manifold.

3.2. Agrachev-Sachkov formulation of rolling surfaces. A previous
definition of a rolling map can be found in [1], where only 2-dimensional
manifolds imbedded into R3 are considered. Although it only deals with the
imbedded case, the definition of the rolling is intrinsic in the sense that it
does not depend on the imbedding.

The configuration space for rolling one surface on another is Q, which is

now 5-dimensional, since M and M̂ are 2-dimensional. A rolling is then an
absolutely continuous curve q : [0, τ ] → Q satisfying the following: if x(t)
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and x̂(t) are the projections of q(t) into M and M̂ then the following two
conditions are satisfied:

• no slip condition: ˙̂x = q(t) ẋ(t) for almost every t ∈ [0, τ ];
• no twist condition: Z(t) is a parallel tangent vector field along x(t)
if and only if q(t)Z(t) is a parallel tangent vector field along x̂(t).

Notice that there is no condition corresponding to the normal no-twist, since
the manifolds here have codimension 1. In Section 4 we will show how this
definition fits into our Definition 2.

The no-slip and no-twist conditions can be described by means of a dis-
tribution D in the tangent bundle of Q. By distribution, we mean a smooth
subbundle of the tangent bundle. Then the “no slip – no twist” condition
will correspond to the requirement q̇(t) ∈ Dq(t) for almost every t. The
distribution D has the following local description. In any sufficiently small
neighborhood U ⊂ M of y ∈ M we pick a pair of tangent vector field e1, e2,
such that {e1(x), e2(x)} is a positively oriented orthonormal basis for every

x ∈ U . Define ê1, ê2 in a similar way in a sufficiently small neighborhood Û .
Since the rotation group SO(2) has dimension 1, we simply need to know
the relative angle θ to describe q with respect to the frames given by {e1, e2}
and {ê1, ê2}. More precisely, θ is defined by

q e1 = cos θê1 + sin θê2,

q e2 = − sin θê1 + cos θê2.

Thus, if π : Q → M ×M̂ is the natural projection, then any q ∈ π−1(U × Û)

is uniquely determined by the coordinates (x, x̂, θ), (x, x̂) ∈ U × Û .
Let c1, c2, ĉ1 and ĉ2 be the so-called “structural constants”, defined by the

commutation relations

[e1, e2] = c1e1 + c2e2, [ê1, ê2] = ĉ1ê1 + ĉ2ê2.

Define the vector fields X1 and X2 on π−1(U × Û) by

X1 = e1 + cos θê1 + sin θê2 + (−c1 + ĉ1 cos θ + ĉ2 sin θ)
∂

∂θ
,

X2 = e2 − sin θê1 + cos θê2 + (−c2 − ĉ1 sin θ + ĉ2 cos θ)
∂

∂θ
.

(4)

Then D|π−1(U×Û) is spanned by X1, X2.
The connectivity by a curve tangent to the distribution D is the princi-

pal problem. More precisely, given two different states q0, q1 ∈ Q, we ask
whether there exists a rolling motion q : [0, τ ] → Q, such that q(0) = q0 and
q(τ) = q1? The advantage of the formulation of no slipping and no twisting
conditions in terms of a distribution, is that the question of connectivity
may be reformulated through admissible sets or orbits in control theory.
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Given a distribution D on an arbitrary manifold Q, a curve q : [0, τ ] → Q
is said to be horizontal (or admissible) with respect to D if q is an abso-
lutely continuous curve satisfying q̇(t) ∈ D for almost every t. The orbit
of D at a point q0 is the set of all points q1 ∈ Q so that there exists a
curve q : [0, τ ] → Q, with q(0) = q0 and q(τ) = q1, which is horizontal with
respect to D. We denote this set by Oq0(D). It is clear that if q1 ∈ Oq0(D),
then Oq0(D) = Oq1(D). The Orbit Theorem [6, 13] asserts that Oq0 is an
immersed submanifold of Q and describes the tangent space of the orbit in
terms of the diffeomorphisms of Q. A precise statement using the chrono-
logical exponential and a broad discussion about the Orbit Theorem can be
found in Chapter 5 of [1].

Also, define the flag associated to the distribution D inductively by

D1 = D and Di+1 = D + [D,Di].

We say that D has step k ≥ 2 at q if k is the maximal integer, so that

Dk−1
q � Dk

q = Dk+1
q .

If Dk
q = Dq for any integer k, we say that D has step 1 at q. The Orbit

Theorem then tells us that Dk
q ⊆ TqOq0(D), where k is the step at q ∈

Oqo(D). In particular, if Q is connected and there is an integer k such
that Dk = TQ, then Oq0(D) = Q. The previous result is known as the
Chow-Rashevskĭı theorem [5, 9] and the distribution D is called bracket
generating.

We will use the expression that D has step k if D has step k for any q ∈ Q.
Remark that if D is of step k, and there is a local basis of vector fields of
Dk in a neighborhood around any point in Q, then

Dk
q = TqOq0(D).

We now go back to the intrinsic definition presented in [1], where Q is
the described 5-dimensional configuration space and D is spanned locally
by (4). This definition can be restated as following: a curve q(t) : [0, τ ] → Q

is the rolling map of M on M̂ if it is tangent to D. The main result of [1],
is the following description of orbits of D. Let κ(x) and κ̂(x̂) denote the

Gaussian curvature of M at x and of M̂ at x̂, respectively.

Theorem 1. For any q0 ∈ Q, the orbit at q0 satisfies dimOq0(D) = 2 if
and only if κ(prM q) − κ̂(prM̂ q) = 0 for every q ∈ Oq0(D). Otherwise,
dimOq0(D) = 5.

Remark 4. In contrast to the definition in [11], the definition in [1] deals
with absolutely continuous curves. The advantage of this, is the ability to
apply the Orbit theorem and the Chow-Rashevskĭı theorem. This was one of
the reasons for us to define a rolling map in terms of absolutely continuous
curves. Remark that all these theorems also hold if we consider Lipschitz
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curves instead of absolutely continuous. Hence, we always may interchange
“absolutely continuous” with “Lipschitz” for all considerations in the present
paper.

3.3. Bryant-Hsu formulation of rolling surfaces. In [2] the authors
give an intrinsic formulation to the problem of rolling two abstract surfaces

M and M̂ with respect to each other. The main tool in this formulation is
Cartan’s general method of moving frames, that is, determining canonical
forms on an appropriate SO(2)−bundle.

Let M and M̂ be two connected oriented Riemannian manifolds of di-
mension 2. Consider the respective frame bundles F , F̂ . Then, as discussed
in Subsection 3.1, the configuration space Q for this kinematic system can

be identified with (F × F̂ )/ SO(2). The conditions of no twisting and no
slipping can be understood by means of the canonical one-forms α1, α2, α21

on F and α̂1, α̂2, α̂21 on F̂ . Recall, that these forms satisfy the structure
equations

dα1 = α21 ∧ α2,

dα2 = −α21 ∧ α1,

dα21 = κ α1 ∧ α2,

dα̂1 = α̂21 ∧ α̂2,

dα̂2 = −α̂21 ∧ α̂1,

dα̂21 = κ̂ α̂1 ∧ α̂2,

where κ and κ̂ are the Gauss curvatures of M and M̂ respectively, see [12,
Chapter 7].

The rank two distribution D over Q corresponding to the “no slip – no
twist” conditions is the push-forward of the vector fields, solving the Pfaffian
equations

(5) α1 − α̂1 = α2 − α̂2 = α21 − α̂21 = 0,

under the natural projection π : F × F̂ → Q. At the points where κ− κ̂ �= 0
the distribution D is of Cartan type, that is, the distributions

D2 = D + [D,D] and D3 = D2 + [D,D2]

have rank 3 and 5 respectively, see [2]. This implies that, under the condition
κ − κ̂ �= 0, the distribution D is bracket generating of step 3. To see under
which conditions D is of Cartan type, define the following one-forms over

the product F × F̂

θ1 =
1

2
(α1 − α̂1), θ2 =

1

2
(α2 − α̂2), θ3 =

1

2
(α21 − α̂21),

ω1 =
1

2
(α1 + α̂1), ω2 =

1

2
(α2 + α̂2),
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and observe that the following identities hold:

dθ1 = θ3 ∧ ω2 +
1

2
(α21 + α̂21) ∧ θ2,

dθ2 = −θ3 ∧ ω1 − 1

2
(α21 + α̂21) ∧ θ1,

dθ3 =
1

2
(κ − κ̂)ω1 ∧ ω2 +

1

2

(
(κ + κ̂)(ω1 ∧ θ2 − ω2 ∧ θ1) + (κ − κ̂)θ1 ∧ θ2

)
.

Denote by D = ker θ1 ∩ ker θ2 ∩ ker θ3 the space of solutions of the system
(5) and let X = (X1, X2), Y = (Y1, Y2), Z = (Z1, Z2) be a local basis of D
chosen such that

α1(X1) = 1, α2(X1) = 0, α̂1(X2) = 1, α̂2(X2) = 0,
α1(Y1) = 0, α2(Y1) = 1, α̂1(Y2) = 0, α̂2(Y2) = 1,
α1(Z1) = 0, α2(Z1) = 0, α̂1(Z2) = 0, α̂2(Z2) = 0.

Observe that for a sufficiently small open neighborhood U × Û ⊂ M × M̂
of (p, p̂), the differential of the projection π is

d((p,C),(p̂,Ĉ))π : TpU × so(2)× Tp̂Û × so(2) → TpU × Tp̂Û × so(2)

(x,A, y, B) �→ (x, y, A− B)

for any C, Ĉ ∈ SO(2) and where TC SO(2), TĈ SO(2) and TCĈ−1 SO(2) are
identified with so(2) in the usual manner. By the construction of the canon-
ical forms on the frame bundles, it is clear that X, Y /∈ ker dπ, whereas it
is possible to choose locally Z such that Z ∈ ker dπ. Thus since ker dπ has
dimension one, we have locally

ker dπ = span{Z}.

This implies that a local description of D is given by

D = span{dπ(X), dπ(Y )}.

Recall Cartan’s formula for a differential one form η and any two local
vector fields v, w, given by

dη(v, w) = v(η(w))− w(η(v))− η([v, w]).
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In our case, the previous equation implies the following equalities

dθ1(X, Y ) = −θ1([X, Y ]) = 0,

dθ1(X,Z) = −θ1([X,Z]) = 0,

dθ1(Y, Z) = −θ1([Y, Z]) = 0,

dθ2(X, Y ) = −θ2([X, Y ]) = 0,

dθ2(X,Z) = −θ2([X,Z]) = 0,

dθ2(Y, Z) = −θ2([Y, Z]) = 0,

dθ3(X, Y ) = −θ3([X, Y ]) =
1

2
(κ − κ̂),

dθ3(X,Z) = −θ3([X,Z]) = 0,

dθ3(Y, Z) = −θ3([Y, Z]) = 0,

It follows from these equations, that [X,Z], [Y, Z] belong to D and [X, Y ] /∈
D if and only if the difference of curvatures κ−κ̂ does not vanish identically.
In fact, counting dimensions, we see that span{X, Y, Z, [X, Y ]} = ker θ1 ∩
ker θ2. It is clear from the choice of Z that [X, Y ] /∈ ker dπ since if [X, Y ] =
kZ for some k ∈ R, then dθ3(X, Y ) = −kθ3(Z) = 0 which contradicts our
assumption. This implies that span{dπ(X), dπ(Y ), dπ([X, Y ])} = D1 is a
distribution of rank 3. Analogously we obtain

dθ1([X, Y ], X) = −θ1([[X, Y ], X]) = 0,

dθ1([X, Y ], Y ) = −θ1([[X, Y ], Y ]) = θ3([X, Y ]),

dθ2([X, Y ], X) = −θ2([[X, Y ], X]) = −θ3([X, Y ]),

dθ2([X, Y ], Y ) = 0.

By similar considerations, we can see that

span{X, Y, Z, [X, Y ], [[X, Y ], X], [[X, Y ], Y ]} = T (F × F̂ ),

which implies that

span{dπ(X), dπ(Y ), dπ([X, Y ]), dπ([[X, Y ], X]), dπ([[X, Y ], Y ])} = D2,

is a distribution of rank 5.
These calculations imply that D is of Cartan type whenever κ − κ̂ does

not vanish identically. Since the configuration space Q is 5-dimensional,
the distribution D is bracket generating and thus, by the Chow-Rashevskĭı
theorem we can completely solve the connectivity problem. In the case
when κ = κ̂, the distribution D is integrable and therefore Q is foliated by
submanifolds of dimension 2.
It is mentioned in [2], that their construction does not depend on imbed-

ding into Euclidean space, however no attempts are made to compare this
definition to the one for imbedded manifolds.
We present a simple example, illustrating the above mentioned approach.
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Example 3. Let us consider the problem of the two dimensional sphere S2

rolling over the Euclidean plane R2. We can embed these surfaces in the
three dimensional Euclidean space R3 via the parameterizations

S2 = {(cos θ cosϕ, sin θ cosϕ, sinϕ) : −π < θ ≤ π,−π

2
< ϕ ≤ π

2
},

R2 = {(x, y, 0) : x, y ∈ R}.
It follows from straightforward computations that, in this case, we have

α1 = cosϕdθ, α2 = dϕ, α21 = sinϕdθ;

α̂1 = dx, α̂2 = dy, α̂21 = 0.

Thus, equations (5) take the form

cosϕdθ − dx = dϕ− dy = sinϕdθ = 0.

It is easy to see that

dα21 = cosϕdθ ∧ dϕ = α1 ∧ α2, dα̂21 = 0,

from which it follows that κ = 1 and κ̂ = 0. Since the difference of the
Gaussian curvatures does not vanish identically, we obtain the well-known
result that it is always possible to achieve any configuration from a given
one by rolling the sphere over the plane without slipping or twisting.

4. Intrinsic rolling

4.1. Reformulation of the rolling motion in terms of bundles. Both
formulations of rolling maps given in [1] and [2] only use the configuration

space as a manifold of isometries of tangent spaces of M and M̂ , without
taking into account the imbedding into an ambient space. However, neither
of these descriptions attempts to give any justifications for why the ambient
space may be ignored, nor do they attempt to compare the intrinsic definition
and the extrinsic definition given for imbedded manifolds in [11]. We would
like to find a reformulation of Definition 2 in such a way that the conditions
(i’)-(vi’) are stated both in terms of intrinsic conditions given on Q and some
additional conditions given on another bundle, that carries the information
on imbedding.

The conditions imposed over a rolling (x, g) by Definitions 1 and 2 are
nontrivial in normal directions for the imbedding of the manifolds with codi-
mension ν greater than 1. So, it is natural to suppose that the total config-
uration space of the rolling dynamics will have a normal component which
will takes care of the action of g on the normal bundle. Therefore, we make
the following analogue construction, as we did for Q, in order to construct a

fiber bundle over M×M̂ of isometries of the normal tangent space. We start

from a pair of imbeddings ι : M → Rn+ν and ι̂ : M̂ → Rn+ν , given as initial
data. Let Φ be the principal SO(ν)−bundle over M , such that the fiber
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over a point x ∈ M consists of all positively oriented orthonormal frames

{ελ(x)}νλ=1 spanning TxM
⊥. Let Φ̂ be the principal SO(ν)−bundle similarly

defined on M̂ . Likewise we did in Section 3.1, identifying (F × F̂ )/ SO(n)
with

(6) Q =
{
q ∈ SO(TxM,Tx̂M̂)

∣∣∣ x ∈ M, x̂ ∈ M̂
}
,

we identify (Φ× Φ̂)/ SO(ν) with

(7) Pι,̂ι :=
{
p ∈ SO(TxM

⊥, Tx̂M̂
⊥)
∣∣∣ x ∈ M, x̂ ∈ M̂

}
.

As for Q, the space Pι,̂ι is not in general a principal SO(ν)−bundle, but there
are ”local” left and right actions defined similarly as on Q in Section 3.1.
We notice and reflect it in notations that Q is invariant of imbeddings, while
Pι,̂ι is not.

By abuse of notation, we will use Q⊕Pι,̂ι for the fiber bundle over M×M̂ ,

so that the fiber over (x, x̂) ∈ M × M̂ , is Q(x,x̂) × Pι,̂ι(x,x̂).

Proposition 1. If a curve (x, g) : [0, τ ] → M × Isom+(Rn+ν) satisfies (i’)-
(vi’) of Definition 2, then the mapping

t �→ (dg(t)|Tx(t)M , dg(t)|Tx(t)M
⊥) =: (q(t), p(t)) ,

defines a curve in Q⊕ Pι,̂ι with the following properties:

(I) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost every t.
(II) no twist condition (tangential part): q(t)D

dt
Z(t) = D

dt
q(t)Z(t) for any

tangent vector field Z(t) along x(t) and almost every t.

(III) no twist condition (normal part): p(t)D
⊥

dt
Ψ(t) = D⊥

dt
p(t)Ψ(t) for any

normal vector field Ψ(t) along x(t) and almost every t.

Conversely, if (q, p) : [0, τ ] → Q ⊕ Pι,̂ι is an absolutely continuous curve
satisfying (I)-(III), then there exists a unique rolling (x, g) : [0, τ ] → M ×
Isom+(Rn+ν), such that dg(t)|Tx(t)M = q(t) and dg(t)|Tx(t)M

⊥ = p(t).

Proof. Assume that (x, g) : [0, τ ] → M × Isom+(Rn+ν) is a rolling map
satisfying (i’)-(vi’). The statements (i’) and (ii’) assure that

dg(t)|Tx(t)M ∈ SO(Tx(t)M,Tx̂(t)M̂) and

dg(t)|Tx(t)M
⊥ ∈ SO(Tx(t)M

⊥, Tx̂(t)M̂
⊥).

(8)

Since dg(t) must be orientation preserving in Rn+ν we conclude that both of
the mappings (8) are either orientation reversing or orientation preserving.
The additional requirement (vi’) implies that (q, p) is orientation preserving.
The conditions (I)-(III) correspond to the conditions (iii’)-(v’).

Conversely, if we have a curve (q(t), p(t)) in Q ⊕ Pι,̂ι with projection

(x(t), x̂(t)) into the product manifold M × M̂ , then we may construct the
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isomorphism g ∈ Isom+(Rn+ν) in the following way. We write g(t) : x̄ �→
Ā(t)x̄ + r̄(t), Ā(t) ∈ SO(n + ν), where Ā(t) = dg(t) is determined by the
conditions

dg(t)|Tx(t)M = q(t)|Tx(t)M , dg(t)|Tx(t)M
⊥ = p(t)|Tx(t)M

⊥ .

Then

Image dg(t)|Tx(t)M = Tx̂(t)M̂, Image dg(t)|Tx(t)M
⊥ = Tx̂(t)M̂

⊥.

The vector r̄(t) is determined by r̄(t) = x̂(t)− Ā(t)x(t). �
The one-to-one correspondence between rolling maps and absolutely con-

tinuous curves in Q⊕Pι,̂ι, satisfying (I)-(III), naturally leads to a definition
of a rolling map in terms of these bundles.

Definition 3. A rolling of M on M̂ without slipping or twisting is an abso-
lutely continuous curve (q, p) : [0, τ ] → Q⊕Pι,̂ι such that (q(t), p(t)) satisfies

(I) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost every t,
(II) no twist condition (tangential part): q(t)D

dt
Z(t) = D

dt
q(t)Z(t) for any

tangent vector field Z(t) along x(t) and almost every t,

(III) no twist condition (normal part): p(t)D
⊥

dt
Ψ(t) = D⊥

dt
p(t)Ψ(t) for any

normal vector field Ψ(t) along x(t) and almost every t.

A purely intrinsic definition of a rolling is deduced from Definition 3,
by restricting it to the bundle Q. This concept naturally generalizes the
definition given in [1] for 2-dimensional Riemannian manifolds imbedded
into R3 and we use the term intrinsic rolling for this object.

Definition 4. An intrinsic rolling of two n-dimensional oriented Riemann-

ian manifolds M on M̂ without slipping or twisting is an absolutely con-
tinuous curve q : [0, τ ] → Q, satisfying the following conditions: if x(t) =
prM q(t) and x̂(t) = prM̂ q(t), then

(I’) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost all t,
(II’) no twist condition: Z(t) is a parallel tangent vector field along x(t), if
and only if q(t)Z(t) is parallel along x̂(t) for almost all t.

4.2. Comparing rolling and intrinsic rolling along the same curves.

Suppose that the projection of a rolling map into M × M̂ is a fixed pair of
curves. Questions that naturally arise are:

• If (q1(t), p1(t)) and (q2(t), p2(t)) are two rollings of M on M̂ , along
x(t) and x̂(t), how do they relate to one another? How many of the
properties of the rolling are fixed by choosing paths?

• Suppose that an intrinsic rolling q(t) and two imbeddings, ι : M →
Rn+ν and ι̂ : M̂ → Rn+ν , are given. When can the intrinsic rolling
q(t) be extended to a rolling (q(t), p(t))? Is this extension unique?
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Before we start working with this, let us consider the following simple ex-
ample, where the different imbeddings are easy to picture.

Example 4. Let us consider M̂ = R, with the usual Euclidean structure, and
M = S1, with the subspace metric, when considered as the unit circle in R2,
with positive orientation counterclockwise. Let x : [0, τ ] → S1 be written as
x(t) = eiϕ(t), ϕ : [0, τ ] → R being an absolutely continuous function. Since

SO(1) is just the trivial group, Q ∼= M × M̂ . It is clear from the no-slipping
condition that

x̂(t) = x̂(0) + ϕ(t)− ϕ(0).

Without loss of of generality, we may assume x̂(0) = ϕ(0) = 0. We consider
the possible rollings under different imbeddings. In the following cases, e1
and ê1 will always be positively oriented unit basis vectors for TM and TM̂
respectively (when they are seen as sub-bundles of TR1+ν restricted to either

M or M̂), while {ελ}νλ=1 and {ε̂κ}νκ=1 are positively oriented bases of TM⊥

and TM̂⊥. The coordinates of R1+ν will be denoted by (x̄1, . . . , x̄n).

Case 1: Let us consider the simplest example, with

ι1 : M → R2, ι1 : e
iϕ �→ (sinϕ, 1− cosϕ),

ι̂1 : M̂ → R2, ι̂1 : x̂ �→ (x̂, 0).

Then

e1(e
iϕ) = cosϕ

∂

∂x̄1

(ι1(e
iϕ)) + sinϕ

∂

∂x̄2

(ι1(e
iϕ)),

ε1(e
iϕ) = − sinϕ

∂

∂x̄1

(ι1(e
iϕ)) + cosϕ

∂

∂x̄2

(ι1(e
iϕ)),

ê1(x̂) =
∂

∂x̄1

(ι̂1(x̂)), ε̂1(x̂) =
∂

∂x̄2

(ι̂1(x̂)).

Here, also SO(ν) is trivial, so there is so there is only one way to roll.
Case 2: We do the same imbeddings as above, only increasing the codimen-

sion by one.

ι2 : M → R3, ι2 : e
iϕ �→ (sinϕ, 1− cosϕ, 0),

ι̂2 : M̂ → R3, ι̂2 : x̂ �→ (x̂, 0, 0).

Then

e1(e
iϕ) = cosϕ

∂

∂x̄1

(ι2(e
iϕ)) + sinϕ

∂

∂x̄2

(ι2(e
iϕ),

ε1(e
iϕ) = − sinϕ

∂

∂x̄1

(ι2(e
iϕ)) + cosϕ

∂

∂x̄2

(ι2(e
iϕ)),

ε2(e
iϕ) =

∂

∂x̄3

(ι2(e
iϕ)),
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ê1(x̂) =
∂

∂x̄1

(ι̂2(x̂)), ε̂1(x̂) =
∂

∂x̄2

(ι̂2(x̂)), ε̂2(x̂) =
∂

∂x̄3

(ι̂2(x̂)).

Now we know that the matrix representation B of p(t) with respect
to the bases {eλ}νλ=1 and {êκ}νκ=1, can be represented as

B =

( 〈ê1, p(t)e1〉 〈ê1, p(t)e2〉
〈ê2, p(t)e1〉 〈ê2, p(t)e2〉

)
=

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)
∈ SO(2).

We calculate the restrictions of θ(t) given by (III).

p(t)
D

dt
ε1(x(t)) = p(t)∇⊥

ẋ(t)ε1 = 0 =
D⊥

dt
p(t)ε1(x(t))

= −θ̇(t)(sin θ(t)ε̂1 + cos θ(t)ε̂1) + cos θ(t)∇⊥
˙̂x(t)

ε̂1 − sin θ(t)∇⊥
˙̂x(t)

ε̂2

= −θ̇(t)(sin θ(t)ε̂1 + cos θ(t)ε̂2),

for almost every t, so θ(t) is a constant.

Case 3: We continue with ν = 2, but change the imbedding of M̂ to a spiral.

ι2 : M → R3, ι2 : e
iϕ �→ (sinϕ, 1− cosϕ, 0),

ι̂3 : M̂ → R3, ι3 : x̂ �→ 1√
2
(cos x̂, sin x̂, x̂).

Then

e1(e
iϕ) = cosϕ

∂

∂x̄1

(ι2(e
iϕ)) + sinϕ

∂

∂x̄2

(ι2(e
iϕ),

ε1(e
iϕ) = − sinϕ

∂

∂x̄1

(ι2(e
iϕ)) + cosϕ

∂

∂x̄2

(ι2(e
iϕ)),

ε2(e
iϕ) =

∂

∂x̄3

(ι2(e
iϕ)),

ê1(x̂) =
1√
2

(
− sin x̂

∂

∂x̄1

(ι̂2(x̂)) + cos x̂
∂

∂x̄2

(ι̂3(x̂)) +
∂

∂x̄3

(ι̂3(x̂))

)
,

ε̂1(x̂) =
1√
2

(
− sin x̂

∂

∂x̄1

(ι̂2(x̂)) + cos x̂
∂

∂x̄2

(ι̂3(x̂))− ∂

∂x̄3

(ι̂3(x̂))

)
,

ε̂2(x̂) = − cos x̂
∂

∂x̄1

(ι̂2(x̂))− sin x̂
∂

∂x̄2

(ι̂3(x̂)).

We have the same matrix representation of p(t),

B =

( 〈ê1, p(t)e1〉 〈ê1, p(t)e2〉
〈ê2, p(t)e1〉 〈ê2, p(t)e2〉

)
=

(
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

)
∈ SO(2).

We calculate the restrictions of θ(t) given by (III).

p(t)∇⊥
ẋ(t)ε1 = 0 =

D⊥

dt
p(t)ε1

= −θ̇(t)(sin θ(t)ε̂1 + cos θ(t)ε̂1) + cos θ(t)∇⊥
˙̂x(t)

ε̂1 − sin θ(t)∇⊥
˙̂x(t)

ε̂2
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=

(
˙̂x(t)√
2
− θ̇(t)

)
(sin θ(t)ε̂1 + cos θ(t)ε̂2),

so θ(t) = θ0 +
1√
2
x̂(t). So now, the circle M will rotate along the

spiral M̂ , but its path is determined by the initial angle. Notice also

that if we define a new orthonormal frame of TM̂⊥ by

Υ̂1 = cos

(
x̂√
2

)
ε̂1 − sin

(
x̂√
2

)
ε̂2,

Υ̂2 = sin

(
x̂√
2

)
ε̂1 + cos

(
x̂√
2

)
ε̂2,

then p(t) becomes a constant matrix with respect to the bases ε1, ε2
and Υ̂1, Υ̂2.

We see that for cases above, the intrinsic rolling t �→ (eiϕ(t), ϕ(t)) either
uniquely induces a rolling, or the rolling is determined by an initial config-
uration of the normal tangent spaces given by θ(0) = θ0. Note also that we
are able to find a choice of bases so that p(t) is constant with respect to this
basis. Notice that these bases consist of normal parallel vector fields.

We continue to work with oriented manifolds M and M̂ imbedded in Rn+ν

and containing curves x(t) and x̂(t), respectively. In the remaining of this
section we will use the following notations: {ej(t)}nj=1 will be a collection
of parallel tangent vector fields along x(t) that forms an orthonormal basis
for Tx(t)M at each point of M , {ελ(t)}νλ=1 will be a collection of normal
parallel vector fields along x(t) forming an orthonormal basis for Tx(t)M

⊥.
We know that we can construct such vector fields by parallel transport and
normal parallel transport along x(t). Parallel frames {êi}ni=1 and {ε̂κ}νκ=1

will be defined similarly along x̂(t). Recall that Latin indices i, j, . . . always
go from 1 to n, while Greek ones κ, λ, . . . vary from 1 to ν.

The following lemma reflects that a rolling map preserves parallel vector
fields. Namely, the image of a parallel frame overM has constant coordinates

in a parallel frame over M̂ .

Lemma 2. A curve (q(t), p(t)) in Q ⊕ Pι,̂ι in the fibers over (x(t), x̂(t)),
satisfies (II) and (III) if and only if the matrices A(t) = (aij(t)) and B(t) =
(bκλ(t)), defined by

aij(t) = ê∗i (t)q(t)ej(t), bκλ(t) = ε̂∗κ(t)p(t)ελ(t),

are constant.

Proof. Let (q(t), p(t)) be an absolutely continuous curve. Then we have

〈êi, ˙̂ej〉 = 〈ei, ėj〉 = 0 and

ȧij(t) = 〈 ˙̂ei, q(t)ej〉+
〈
êi,

d

dt
(q(t)ej)

〉
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by the product rule. The vectors q(t)−1êi, q(t)ej are tangent, so 〈q(t)−1êi, ėj〉 =
〈 ˙̂ei, q(t)ej〉 = 0 and

ȧij(t) = 〈êi, q̇(t)ej〉+ 〈êi, q(t)ėj〉+ 〈 ˙̂ei, q(t)ej〉
= 〈êi, q̇(t)ej〉+ 〈q(t)−1êi, ėj〉 =

〈
êi,

d

dt

(
q(t)ej

)− q(t)ėj

〉
=

〈
êi,

D

dt
q(t)ej − q(t)

D

dt
ej

〉
= 0.

So (II) holds if and only if ȧij(t) = 0. Similar result holds for the basis of
the normal tangent bundle. �

The following two theorems give the answer to the questions raised at the
beginning of this section.

Theorem 2. Let q : [0, τ ] → Q be a given intrinsic rolling map without
slipping or twisting with the projection prM×M̂ q0(t) = (x(t), x̂(t)). Define
the vector spaces

V = {v(t) is a parallel vector field along x(t), and 〈v(t), ẋ(t)〉 = 0 for a.e. t} ,

V̂ =
{
v̂(t) is a parallel vector field along x̂(t), and 〈v̂(t), ˙̂x(t)〉 = 0 for a.e. t

}
,

with the inner product and orientation induced by the metric and orienta-

tion on M and M̂ , respectively. Then the two vector spaces have the same
dimension, and if we denote this dimension by k, the following holds.

(a) The map q is the unique intrinsic rolling of M on M̂ along x(t) and
x̂(t) if and only if k ≤ 1.

(b) If k ≥ 2, all the rollings along x(t) and x̂(t) differ from q by an

element in SO(V̂ ).

Remark 5. Both the inner product and orientation are preserved under par-
allel transport. Hence, for any pair v, w ∈ V , the value of 〈v(t), w(t)〉 remains
constant for any t. The metric on M therefore induces a well defined inner
product on V . Similarly, we can say that a collection of vector fields is pos-
itively oriented if it has this property for one value of t (and consequently

for all values of t). Similar considerations hold for V̂ .

Proof. Pick frames of parallel vector fields {ei}ni=1 and {êi}ni=1 along x(t) and
x̂(t), respectively, such that q(t)ei = êi. This is possible due to Lemma 2. We
also choose the frames in a way that the k first vector fields are orthogonal

to ˙̂x. Notice that e1, . . . , ek then forms a basis for V , and ê1, . . . , ên for V̂ .
Writing ˙̂x =

∑n
i=1

˙̂xi(t)êi(t) and ẋ =
∑n

i=1 ẋi(t)ei(t), we get ˙̂xi(t) = ẋi(t)

and ˙̂x1(t) = · · · = ˙̂xk(t) = 0. So, if q̃ is any other rolling, then A = (aij) =
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(〈êi(t), q̃(t) ej(t)〉) is clearly of the form

(9) A =

(
A′ 0
0 1n−k

)
, A′ ∈ SO(k),

where 1n−k is the
(
(n− k)× (n− k)

)
-unit matrix. This will be unique if k

is 0 or 1.If k ≥ 2, there is more freedom, since it is not determined how an

arbitrarily rolling q̃ should map V into V̂ .
The converse also holds, that is, for any matrix A on the form (9), there

is a rolling corresponding to it. �

Theorem 3. Let q : [0, τ ] → Q be an intrinsic rolling and let ι : M → Rn+ν

and ι̂ : M̂ → Rn+ν be given imbeddings. Then, given an initial configuration
p0 ∈ (Pι,̂ι)(x0,x̂0), (x0, x̂0) = prM×M̂ q(0), there exists a unique rolling (q, p) :
[0, τ ] → Q⊕ Pι,̂ι satisfying p(0) = p0.

Proof. We pick normal parallel frames {ελ(t)}νλ=1 and {ε̂κ(t)}νκ=1 along x(t)
and x̂(t), respectively. Let B0 ∈ SO(ν) be defined by

B = (bκλ) = (〈ε̂κ(0), p0 ελ(0)〉) .
Then p(t) must satisfy

bκλ = 〈ε̂κ(t), p(t) ελ(t)〉,
by Lemma 2, and it is uniquely determined by this. �

Remark 6. Define the vector spaces

E = {ε(t) is a normal parallel vector field along x(t)} .

Ê = {ε̂(t) is a normal parallel vector field along x̂(t)} ,
with inner product and orientation induced by TM⊥ and TM̂⊥ respectively,
in a similar way to what we described in remark 5. For a fixed intrinsic
rolling q, a way of describing any extrinsic rolling (q, p) extending q is to

say that it is determined up to a left action of SO(Ê) or, equivalently, it

is determined up to a right action of SO(E). Both SO(E) and SO(Ê) are
isomorphic to SO(ν), but not canonically.

Corollary 1. Assume that x(t) is a geodesic in M . Then there exists an

intrinsic rolling of M on M̂ along (x(t), x̂(t)) if and only if x̂(t) is a geodesic

with the same speed as x(t). Moreover, if n ≥ 2, and if V̂ is defined as in
Theorem 2, then

dim V̂ = n− 1,

and all the rollings along x(t) and x̂(t) differ by an element in SO(V̂ ).
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Proof. Taking into account the equality D
dt
˙̂x(t) = D

dt
q(t)ẋ(t) = q(t)D

dt
ẋ(t), we

conclude that if x(t) is a geodesic then x̂(t) is also geodesic. In order to

satisfy (I) we need to require that the speed of ˙̂x(t) is the same as the speed
of ẋ(t). Conversely, the equality of speeds implies condition (I).

We start the construction of rolling map by choosing e1(t) =
ẋ(t)

〈ẋ(t),ẋ(t)〉 that
is parallel along x(t). The remaining n− 1 parallel vector fields we pick up
in a way that they form an orthonormal basis together with e1(t) along the
curve x(t). We repeat the same construction for a parallel frame {êi(t)}ni=1

along x̂(t). Define the intrinsic rolling q(t) by

ê∗1(t) q(t) ej(t) = ê∗j(t) q(t) e1(t) = δ1,j,

A′ =
(
ê∗i+1(t) q(t) ej+1(t)

)n−1

i,j=1
,

(10)

where A′ ∈ SO(n−1) will be a constant matrix. Conversely, we can construct
a rolling by formulas (10) starting from A′ ∈ SO(n− 1). �

5. Distributions for rolling and intrinsic rolling maps

The aim of this Section is to formulate the kinematic conditions of no-
slipping and no-twisting in terms of a distribution. In this setting, a rolling
will be an absolutely continuous curve almost everywhere tangent to this
distribution.

5.1. Local trivializations of Q. Let π : Q ⊕ Pι,̂ι → M × M̂ denote the
canonical projection. Consider a rolling γ(t) = (q(t), p(t)), then π ◦ γ(t) =
(x(t), x̂(t)). Given an arbitrary t0 in the domain of γ(t), let U and Û denote

neighborhoods of x(t0) and x̂(t0) in M and M̂ , respectively, such that the
both bundles TM → M and TM⊥ → M trivialize being restricted to U .

In the same way we chose Û , such that both TM̂ → M̂ and TM̂⊥ →
M̂ trivialize when they are restricted to Û . This implies that the bundle

Q⊕Pι,̂ι → M ×M̂ , trivializes when it is restricted to U × Û . To see this, let
{ej}nj=1, {ελ}νλ=1, {êi}ni=1 and {ε̂κ}νκ=1 denote positively oriented orthonormal

bases of vector fields of TM |U , TM⊥|U , TM̂ |Û and TM̂⊥|Û , respectively.
Then there is a trivialization

(11) Q⊕ Pι,̂ι|U×Û

h→ U × Û × SO(n)× SO(ν)
(q, p) �→ (x, x̂, A,B),

given by projections

x = prU(q, p), x̂ = prÛ(q, p),

A = (aij)
n
i,j=1 = (〈qej, êi〉)ni,j=1 , B = (bκλ)

ν
κ,λ=1 = (〈pελ, ε̂κ〉)νκ,λ=1 .

The domain of γ can be chosen connected, containing t0, and such that its

image lies in π−1(U × Û). Let us identify γ(t) with its image under the
trivialization given by (x(t), x̂(t), A(t), B(t)).
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Each of the requirements (I)-(III) can be written as restrictions to γ̇(t).
We will show, that all admissible values of γ̇(t) form a distribution; that is
a smooth sub-bundle, of T (Q⊕Pι,̂ι). We will use the local trivializations to
describe this distribution.

5.2. The tangent space of SO(n). Let U and Û be as in Section 5.1. Then
we get in trivialization

Tπ−1(U × Û) = TU × T Û × T SO(n)× T SO(ν).

The decomposition requires that we present a detailed description of the
tangent space of SO(n) in terms of left and right invariant vector fields.

We start by considering the imbedding of SO(n) in GL(n), the group of
invertible real n × n matrices. Denote the matrix entries of a matrix A by
(aij) and the transpose matrix by At. Then, differentiating the condition
AtA = 1, we obtain

T SO(n) =
⋂
i≤j

kerωij, ωij =
n∑

r=1

(arj dari + ari darj) .

It is clear that the tangent space at the identity 1 of SO(n) is spanned by

Wij(1) :=
∂

∂aij
− ∂

∂aji
, 1 ≤ i < j ≤ n.

We denote so(n) = span{Wij(1)} following the classical notation. We use
the left translation of these vector to define

(12) Wij(A) := A ·Wij(1) =
n∑

r=1

(
ari

∂

∂arj
− arj

∂

∂ari

)
as global left invariant basis of T SO(n). Note that the left and right action
in T SO(n) is described by

A · ∂

∂aij
=

n∑
r=1

ari
∂

∂arj

∂

∂aij
· A =

n∑
s=1

ajs
∂

∂ais
.

We have the following formula to switch from left to right translation

A · ∂

∂aij
=

n∑
r=1

ari
∂

∂arj
=

n∑
l,r=1

ariδj, l
∂

∂arl
=

n∑
l,r,s=1

ariasiasl
∂

∂arl

=
n∑

r,s=1

ariasi

(
∂

∂ars
· A
)
,

and the other way around,

∂

∂aij
· A =

n∑
s=1

ajs
∂

∂ais
=

n∑
l,s=1

ajsδi,l
∂

∂als
=

n∑
l,r,s=1

ajsairalr
∂

∂als
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=
n∑

r,s=1

ajsair

(
A · ∂

∂ars

)
.

Therefore, the right invariant basis of T SO(n) can be written as

Wij(1) · A = Ad(A−1)Wij(A) =
∑
r<s

(airajs − ajrais)Wrs(A).

If we letWij be defined (12) also when i is not less then j, (soWij = −Wji)
then the bracket relations are given by

[Wij,Wkl] = δj,kWil + δi,lWjk − δi,kWjl − δj,lWik.

5.3. Distributions. Now we are ready to rewrite the kinematic conditions
(I)-(III) as a distribution. Let γ(t) be a rolling satisfying the conditions
(I)-(III). Consider it image under the trivializations. Then

(13) γ̇(t) = ẋ(t) + ˙̂x(t) +
n∑

i,j=1

ȧij
∂

∂aij
+

ν∑
κ,λ=1

ḃκλ
∂

∂bκλ
.

If we denote ẋ(t) by Z(t), then (I) holds if and only if ˙̂x(t) = q(t)Z(t).
We want, basing on conditions (II) and (III), write the last two terms

in (13) in right invariant basis of corresponding tangent spaces of SO(n) and
SO(ν). We start from (II) and remark that

q(t)ej =
n∑

i=1

aij(t)êi, and q−1(t)êi =
n∑

j=1

aij(t)ej

for orthonormal bases {ej}nj=1 and {êj}nj=1. Condition (II) holds if and only

if qD
dt
ej(x(t)) =

D
dt
qej(x(t)) for j = 1, . . . , n, that yields

0 =

〈
q
D

dt
ej(x(t))− D

dt
qej(x(t)), êi

〉

=
〈∇Z(t)ej, q

−1êi
〉−〈 n∑

l=1

ȧlj êl, êi

〉
−
〈

n∑
l=1

alj∇qZ(t)êl, êi

〉
.

=
n∑

l=1

ail
〈∇Z(t)ej, el

〉− ȧij −
n∑

l=1

alj
〈∇qZ(t)êl, êi

〉
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for every i, j = 1, . . . , n. Hence, the third term in (13) can be written as
follows
n∑

i,j=1

ȧij
∂

∂aij
=

n∑
i,j=1

(
n∑

l=1

ail
〈∇Z(t)ej, el

〉− n∑
l=1

alj
〈∇qZ(t)êl, êi

〉) ∂

∂aij

=
n∑

j,l=1

〈∇Z(t)ej, el
〉
A · ∂

∂alj
−

n∑
i,l=1

〈∇qZ(t)êl, êi
〉 ∂

∂ail
· A

=
n∑

i,j=1

〈∇Z(t)ej, ei
〉
A · ∂

∂aij
−

n∑
i,j,r,s=1

airajs
〈∇qZ(t)êj, êi

〉
A · ∂

∂ars

=
n∑

i,j=1

(〈∇Z(t)ej, ei
〉− n∑

s=1

asj

〈
∇qZ(t)ês,

n∑
r=1

ariêr

〉)
A · ∂

∂aij

=
n∑

i,j=1

(〈∇Z(t)ej, ei
〉− 〈∇qZ(t)qej, qei

〉)
A · ∂

∂aij
(14)

The coefficients in the basis A · ∂
∂ij

in the sum (14) are skew symmetric, from

the property of the Levi-Civita connection. Now we can write

(15)
n∑

i,j=1

ȧij
∂

∂aij
=
∑
i<j

(〈∇Z(t)ej, ei
〉− 〈∇qZ(t)qej, qei

〉)
Wij(A).

Written in a right invariant basis, we obtain
(16)

n∑
i,j=1

ȧij
∂

∂aij
=
∑
i<j

(〈∇Z(t)q
−1êj, q

−1êi
〉− 〈∇qZ(t)êj, êi

〉)
Ad(A−1)Wij(A).

Similarly, (III) holds if and only if
(17)

ν∑
κ,λ=1

ḃκλ
∂

∂bκλ
=
∑
κ<λ

(〈
∇⊥

Z(t)ελ, εκ

〉
−
〈
∇⊥

qZ(t)pελ, pεκ

〉)
Wκλ(B).

=
∑
κ<λ

(〈
∇⊥

Z(t)p
−1ε̂λ, p

−1ε̂κ

〉
−
〈
∇⊥

qZ(t)ε̂λ, ε̂κ

〉)
Ad(B−1)Wκλ(B).

Definition 5. If X is a vector field on M , then let us define V(X) and
V⊥(X) the vector fields on Q⊕ Pι,̂ι, such that under any local trivialization
h as in (11) and any (q, p) ∈ π−1(x) they satisfy

(18) dh (V(X)(q, p)) =
∑
i<j

(〈∇X(x)ej, ei
〉− 〈∇qX(x)qej, qei

〉)
Wij(A).

(19) dh
(V⊥(X)(q, p)

)
=
∑
κ<λ

(〈∇⊥
X(x)ελ, εκ

〉− 〈∇⊥
qX(x)pελ, pεκ

〉)
Wκλ(B).
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Notice that if Y (x) = X(x) = X0 ∈ TxM , then V(Y )(q, p) = V(X)(q, p)
for every (q, p) ∈ (Q ⊕ Pι,̂ι)x. Hence, we may define V(X0)(q, p) whenever
X0 ∈ TxM and (q, p) ∈ (Q⊕ Pι,̂ι)x. Also notice that the map X �→ V(X) is
linear. The same holds for V⊥.

Remark 7. Notice that, at first glace, it may seem that all of the coefficients
of Wij(A) and Wκλ(A) in (18) and (19) vanish from conditions (II) and (III).
This is not true, however. Even though, for any tangential vector field X

D

dt
X(x(t)) = ∇ẋ(t)X(x(t)),

in general, ∇qẋ(t)q(t)ej does not coincide with D
dt
q(t)ej(x(t)). To see this,

notice that

D

dt
asj ês(x̂(t)) = ȧsj ês(x̂(t))+asj∇ ˙̂x(t)ês(x̂(t)) = ȧsj ês(x̂(t))+asj∇qẋ(t)ês(x̂(t)),

while

∇qẋ(t)asj ês(x(t)) = asj∇qẋ(t)ês(x(t)).

Similar relations hold for D⊥
dt
.

We may now sum up our considerations that have been made in this
Section in the following result.

Proposition 2. A curve (q(t), p(t)) in Q⊕ Pι,̂ι is a rolling if and only if it
is a horizontal curve with respect to the distribution E, defined by

E(q,p) =
{
X0 + qX0 + V(X0)(q, p) + V⊥(X0)(q, p)|X0 ∈ TxM

}
, (q, p) ∈ (Q⊕Pι,̂ι)x.

If we use the same symbol to denote the restriction of V(X) to Q, we also
have

Proposition 3. A curve q(t) in Q is an intrinsic rolling if and only if it is
a horizontal curve with respect to the distribution D, defined by

Dq = {X0 + qX0 + V(X0)(q)|X0 ∈ TxM} , q ∈ Qx.

6. A controllable example: Sn
rolling over Rn

6.1. Formulation of the rolling. We want to illustrate the properties of
the distributions, by proving that the unit sphere Sn in Rn+1 rolling over Rn

is a completely controllable system, by showing that the distribution D is
bracket generating. This result was obtained in [14], but we want to present
this example here in order to illustrate the advantages of our theory.

Consider the unit sphere Sn as the submanifold of the Euclidean space
Rn+1,

Sn =
{
(x0, . . . , xn) ∈ Rn+1| x2

0 + · · ·+ x2
n = 1

}
,

with the induced metric.
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For an arbitrary point x̃ = (x̃0, . . . , x̃n) ∈ Sn, at least one of the coordi-
nates x̃0, . . . , x̃n does not vanish. Without lost of generality, we may assume
that x̃n �= 0, and consider the neighborhood

U = {(x0, . . . , xn) ∈ Sn| ± xn > 0} ,
where the choice of the ± sign depends on the sign of x̃n. To simplify the
notation, we define the following functions on U

sj(x) =
n∑

r=j

x2
r .

These functions are always strictly positive on U , and we use them to define
an orthonormal basis of TU . We will write simply sj instead of sj(x), since
dependence of x is clear from the context. Define the following vector fields
on U

(20) ej =

√
sj
sj−1

(
− ∂

∂xj−1

+
xj−1

sj

n∑
r=j

xr
∂

∂xr

)
, j = 1, . . . , n.

These vector fields form an orthonormal basis of the tangent space over U .

We set êi =
∂

∂x̂i

to be the standard basis of Rn.

Before proceeding with the necessary calculations, let us state two tech-
nical Lemmas whose proofs can be found in section 6.2 and 6.3.

Lemma 3. Let 1 ≤ i < j ≤ n. Then

〈∇ekej, ei〉 = −xi−1δk,j√
si−1si

= −〈∇ekei, ej〉 ,

for any k = 1, . . . , n.

Remark 8. The properties of the connection ∇ have the following conse-
quences:

• The compatibility of ∇ with the metric and 〈ei, ej〉 = δi,j, imply that

〈∇ekej, ei〉 = −〈∇ekei, ej〉 .
In particular, 〈∇ekei, ei〉 = 0.

• The symmetry of ∇, imply that if l < k, then

[ek, el] = ∇ekel −∇elek =
n∑

i=1

〈∇ekel −∇elek, ei〉 ei =
xl−1√
sl−1sl

ek.

Lemma 4. For k, l = 1, 2, . . . , n

ek

(
xl−1√
sl−1sj

)
=

⎧⎪⎪⎨⎪⎪⎩
0 k > l

− 1
sk

k = l

− xk−1xl−1√
sk−1sksksj−1

k < l.
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It is a direct consequence of the choice of the vector fields êk that ∇êk êl =
0, and [êk, êl] = 0 for all k, l = 1, . . . , n.
Consider the vector fields Xk = ek + qek + V(ek) which generate the

distribution D, introduced in Proposition 3, restricted to U . In this case,
we have the explicit form

Xk(x, x̂, A) = ek(x) +
n∑

i=1

aikêi(x̂)−
k−1∑
i=1

xi−1√
si−1si

Wik(A).

In order to determine the commutators [Xk, Xl], let us assume that k > l.
Then

[Xk, Xl] = [ek, el]−
k−1∑
i=1

n∑
j=1

xi−1√
si−1si

Wikajlêj +
l−1∑
j−1

n∑
i=1

xj−1√
sj−1sj

Wjlaikêi

−
l−1∑
j=1

ek

(
xj−1√
sj−1sj

)
Wjl+

k−1∑
i=1

el

(
xi−1√
si−1si

)
Wik+

k−1∑
i=1

l−1∑
j=1

xi−1xj−1√
si−1sisj−1sj−1

[Wik,Wjl]

=
xl−1√
sl−1sl

ek−
k−1∑
i=1

n∑
j=1

xi−1√
si−1si

(ajiδk,l − ajkδi,l) êj+
l−1∑
j−1

n∑
i=1

xj−1√
sj−1sj

(aijδl,k − ailδj,k) êi

− 1

sl
Wlk−

k−1∑
i=l+1

xi−1xl−1√
sl−1slsi−1si

Wik+
k−1∑
i=1

l−1∑
j=1

xi−1xj−1√
si−1sisj−1sj

(−δi,lWjk+ δi,jWlk)

=
xl−1√
sl−1sl

(
ek +

n∑
j=1

ajkêj −
k−1∑
i=l+1

xi−1√
si−1si

Wik −
l−1∑
j=1

xj−1√
sj−1sj

Wjk

)

− 1

sl
Wlk +

l−1∑
j=1

x2
j−1

sj−1sj
Wlk

=
xl−1√
sl−1sl

(
ek +

n∑
j=1

ajkêj −
k−1∑
i=1

xi−1√
si−1si

Wik

)
+

(
− 1

sl
+

x2
l−1

sl−1sl
+

l−1∑
j=1

(
1

sj
− 1

sj

))
Wlk

=
xl−1√
sl−1sl

Xk −Wlk.

Define the vector fields Ylk, for l < k, by

Ylk := [Xl, Xk] +
xl−1√
sl−1sl

Xk = Wlk.
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Finally, let

Z1 = [Y12, X2] =
n∑

i=1

ai1êi,

Zk = [X1, Y1k] =
n∑

i=1

aikêi , k = 2, . . . , n.

We conclude that the entire tangent space is spanned by {Xk}nk=1, {Ylk}1≤l<k≤n

and {Zk}nk=1. Hence, D is a regular bracket generating distribution of step
3, which implies that the system of rolling Sn over Rn is completely control-
lable.

6.2. Proof of Lemma 3. The proof of this Lemma is rather technical and
it consists mostly of rewriting formulas in an appropriate way. We begin
with some observations.

• sj−1 = x2
j−1 + sj.

• If H is the Heaviside function

H(x) =

{
1 when x ≥ 0
0 when x < 0

,

then
∂

∂xk

sj = 2xkH(k − j).

• For any integer j,

H(j) = δ0,j +H(j − 1).

• Due to the identity〈
∂

∂xk

, ei

〉
=

√
si
si−1

(
−δk,i−1 +

xkxi−1H(k − i)

si

)
,

we obtain〈
n∑

r=k

xr
∂

∂xr

, ei

〉
=

√
si
si−1

n∑
r=k

(
−xrδr,i−1 +

xi−1x
2
rH(r − i)

si

)
= xi−1

√
si
si−1

(
smax{k,i}

si
−H(i− k − 1)

)
= xi−1

√
si
si−1

(
δi,k +

skH(k − i− 1)

si

)
.
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Step 1: Finding ∇ ∂
∂xk

ej. We calculate

∂

∂xk

√
sj
sj−1

=
xkH(k − j)√

sj−1sj
− xkH(k − j + 1)

√
sj
s3j−1

= xkH(k − j)

√
sj
sj−1

(
1

sj
− 1

sj−1

)
− xkδk,j−1

√
sj
s3j−1

=

√
sj
sj−1

(
xkx

2
j−1H(k − j)

sj−1sj
− xkδk,j−1

sj−1

)
and get

∇ ∂
∂xk

ej =

(
xkx

2
j−1H(k − j)

sj−1sj
− xkδk,j−1

sj−1

)
ej

+

√
sj
sj−1

(
δk,j−1

sj

n∑
r=j

xr
∂

∂xr

− 2xj−1xkH(k − j)

s2j

n∑
r=j

xr
∂

∂xr

+
xj−1H(k − j)

sj

∂

∂xk

)

=

(
xkx

2
j−1H(k − j)

sj−1sj
− 2xkH(k − j)

sj
− xkδk,j−1

sj−1

)
ej

+

√
sj
sj−1

(
δk,j−1

sj

n∑
r=j

xr
∂

∂xr

− 2xkH(k − j)

sj

∂

∂xj−1

+
xj−1H(k − j)

sj

∂

∂xk

)

= −
(
xkH(k − j)

sj−1 + sj
sj−1sj

+
xkδk,j−1

sj−1

)
ej

+
1

sj

√
sj
sj−1

(
δk,j−1

n∑
r=j

xr
∂

∂xr

+H(k − j)

(
xj−1

∂

∂xk

− 2xk
∂

∂xj−1

))
Step 2: Calculating ∇ekej. Using Step 1 and formula (20), we are able to
compute

∇ekej =

√
sk
sk−1

(
−∇ ∂

∂xk−1

ej +
xk−1

sk

n∑
l=k

xl∇ ∂
∂xl

ej

)

=

√
sk
sk−1

((
xk−1H(k − j − 1)

sj−1 + sj
sj−1sj

+
xk−1δk,j
sj−1

)
ej

− 1

sj

√
sj
sj−1

(
δk,j

n∑
r=j

xr
∂

∂xr

+H(k − j − 1)

(
xj−1

∂

∂xk−1

− 2xk−1
∂

∂xj−1

))

+
xk−1

sk

(
−
(
smax{j,k}

sj−1 + sj
sj−1sj

+
x2
j−1H(j − k − 1)

sj−1

)
ej
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+
1

sj

√
sj
sj−1

⎛⎝xj−1H(j − k − 1)
n∑

r=j

xr
∂

∂xr

+ xj−1

n∑
r=max{j,k}

xr
∂

∂xr

− 2smax{j,k}
∂

∂xj−1

⎞⎠⎞⎠⎞⎠
Step 3: Obtaining 〈∇ekej, ei〉. We calculate it case by case,

• if k = j, then

∇ekek =

√
sk
sk−1

(
xk−1

sk−1

ek − 1

sk

√
sk
sk−1

n∑
r=k

xr
∂

∂xr

+
xk−1

sk

(
−sk−1 + sk

sk−1

ek +
1

sk

√
sk
sk−1

(
xk−1

n∑
r=k

xr
∂

∂xr

− 2sk
∂

∂xk−1

)))

=

√
sk
sk−1

(
xk−1sk − xk−1sk − xk−1sk−1

sk−1sk
ek − 1

sk

√
sk
sk−1

n∑
r=k

xr
∂

∂xr

+
xk−1

sk

(
ek −

√
sk
sk−1

∂

∂xk−1

))

= − 1

sk−1

n∑
r=k−1

xr
∂

∂xr

and so

〈∇ekek, ei〉 = −xi−1

sk−1

√
si
si−1

(
δi,k−1 +

sk−1H(k − i− 2)

si

)
= −xi−1H(k − i− 1)√

si−1si

• if k < j, then

∇ekej =

√
sk
sk−1

(
xk−1

sk

(
−
(
sj−1 + sj

sj−1

+
x2
j−1

sj−1

)
ej

+
1

sj

√
sj
sj−1

(
xj−1

n∑
r=j

xr
∂

∂xr

+ xj−1

n∑
r=j

xr
∂

∂xr

− 2sj
∂

∂xj−1

)))

=

√
sk
sk−1

(
xk−1

sk
(−2ej + 2ej)

)
= 0

• if j < k, then

∇ekej =

√
sk
sk−1

((
xk−1

sj−1 + sj
sj−1sj

)
ej − 1

sj

√
sj
sj−1

(
xj−1

∂

∂xk−1

− 2xk−1
∂

∂xj−1

)

+
xk−1

sk

(
−
(
sk
sj−1 + sj
sj−1sj

)
ej +

1

sj

√
sj
sj−1

(
xj−1

n∑
r=k

xr
∂

∂xr

− 2sk
∂

∂xj−1

)))
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=

√
sksj

sk−1sj−1

(
−xj−1

sj

∂

∂xk−1

+
2xk−1

sj

∂

∂xj−1

+
xk−1xj−1

sksj

n∑
r=k

xr
∂

∂xr

− 2xk−1

sj

∂

∂xj−1

)
=

xj−1√
sj−1sj

ek

The conclusion is that all the Christoffel symbols Γi
kj = 〈∇ekej, ei〉 vanish,

except for

Γk
kj = −Γj

kk =
xj−1√
sj−1sj

, j < k.

6.3. Proof of Lemma 4. We need to consider three cases. Observe that

∂

∂xk

(
xl−1√
sl−1sl

)
=

δl−1,k√
sl−1sl

− 1

sl−1

x2
l−1δl−1,k√
sl1sl

− 1

sl−1

xl−1xkH(k − l)√
sl−1sl

− 1

sl

xl−1xkH(k − l)√
sl−1sl

=
1√
s3l−1sl

(
δl−1,ksl − (sl + sl−1)xl−1xkH(k − l)

sl

)
,

so

ek

(
xl−1√
sl−1sl

)
=

√
sk

s3l−1slsk−1

(
−
(
δl,ksl − (sl + sl−1)xl−1xk−1H(k − l − 1)

sl

)
+
xk−1

sk

n∑
r=k

xr

(
δl−1,rsl − (sl + sl−1)xl−1xrH(r − l)

sl

))
.

=

√
sk

s3l−1slsk−1

(
−δl,ksl +

(sl + sl−1)xl−1xk−1H(k − l − 1)

sl

+
xk−1

sk

(
xl−1slH(l − 1− k)− (sl + sl−1)xl−1smax{k,l}

sl

))
.

• If k = l, then

ek

(
xk−1√
sk−1sk

)
=

1

s2k−1

(
−sk − xk−1

sk

(sk + sk−1)xk−1sk
sk

)
= − 1

s2k−1

s2k + (sk + sk−1)(sk−1 − sk)

sk
= − 1

sk
.

• If k > l, then

ek

(
xl−1√
sl−1sl

)
=

√
sk

s3l−1slsk−1

(
(sl + sl−1)xl−1xk−1

sl
− xk−1

sk

(sl + sl−1)xl−1sk
sl

)
= 0.
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• If k < l, then

ek

(
xl−1√
sl−1sl

)
=

√
sk

s3l−1slsk−1

(
xk−1

sk

(
xl−1sl − (sl + sl−1)xl−1sl

sl

))
= − xk−1xl−1√

sk−1sksl−1sl
.

7. A non-controllable example: SE(3) rolling over R6

7.1. Calculation of the dimension of the orbits. Let SE(3) be the
group of orientation preserving isometries of R3. We consider the case of
SE(3), endowed with a left invariant metric defined later, rolling over its
tangent space at the identity T1 SE(3) = se(3), with metric obtained by
restricting the left invariant metric on SE(3) to the identity. Our goal is to
determine whether any two points in the configuration space can be joined by
a curve tangent to the distribution presented in Definition 5. This problem
is equivalent to the controllability of the system, that is, we want to obtain
any configuration by rolling without twisting or slipping, from a given an
initial configuration.

We give SE(3) coordinates as follows. For any x ∈ SE(3) there exist
C = (cij) ∈ SO(3) and r = (r1, r2, r3) ∈ R3, such that x = (C, r) acts via

x(y) = Cy + r, for all y ∈ R3.

The tangent space of SE(3) at x = (C, r) is spanned by the left invariant
vector fields

(21)

e1 = Y1 = 1√
2

(
C · ∂

∂c12
− C · ∂

∂c21

)
= 1√

2

∑3
j=1

(
cj1

∂
∂cj2

− cj2
∂

∂cj1

)

(22)

e2 = Y2 = 1√
2

(
C · ∂

∂c13
− C · ∂

∂c31

)
= 1√

2

∑3
j=1

(
cj1

∂
∂cj3

− cj3
∂

∂cj1

)

(23)

e3 = Y3 = 1√
2

(
C · ∂

∂c23
− C · ∂

∂c32

)
= 1√

2

∑3
j=1

(
cj2

∂
∂cj3

− cj3
∂

∂cj2

)



ROLLING MANIFOLDS 37

ek+3 = Xk = C · ∂

∂rk
=

3∑
j=1

cjk
∂

∂rj
k = 1, 2, 3.(24)

Define a left invariant metric on SE(3) by declaring the vectors e1, . . . , e6
to form an orthonormal basis. The mapping

6∑
j=1

x̂jej(1) �→ (x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) ∈ R6,

permits to identify se(3) endowed with the induced metric, with R6 with the
Euclidean metric. We write êk =

∂
∂x̂k

on R6 and try to see how the intrinsic

rollings of SE(3) on R6 behave. Note that Q = SE(3)×R6×SO(6), because
both manifolds SE(3) and R6 are Lie groups, so their tangent bundles are
trivial, and dimQ = 27.

Let us denote by ∇ the Levi-Civita connection on SE(3) or R6 with re-
spect to the corresponding Riemannian metrics defined above. The covariant
derivatives ∇eiej are nonzero only in the following cases

∇Y1Y2 = −∇Y2Y1 = − 1

2
√
2
Y3

∇Y1Y3 = −∇Y3Y1 =
1

2
√
2
Y2

∇Y2Y3 = −∇Y3Y2 = − 1

2
√
2
Y1

∇Y1Xk =
1√
2
(δ2,kX1 − δ1,kX2)

∇Y2Xk =
1√
2
(δ3,kX1 − δ1,kX3)

∇Y3Xk =
1√
2
(δ3,kX2 − δ2,kX3) ,

where δi,j denotes the Kronecker symbol. On the other hand, it is well-
known that ∇êi êj = 0 for any i, j. Proposition 3 and Definition 5 show that
the distribution D over Q is spanned by

(25)

Z1 = Y1 + qY1 +
1

2
√
2
W23 +

1√
2
W45,

Z2 = Y2 + qY2 − 1
2
√
2
W13 +

1√
2
W46,

Z3 = Y3 + qY3 +
1

2
√
2
W12 +

1√
2
W56,

K1 = X1 + qX1,
K2 = X2 + qX2,
K3 = X3 + qX3.
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In order to determine the controllability of rolling SE(3) over R6, we
employ the Orbit Theorem [6, 13]. In the case of D, defined by the vector
fields (25) straightforward calculations yield that the flag associated to D is
on the form

(26)
D2 = D ⊕ span {W12,W13,W23},
D3 = D2 ⊕ span{qY1, qY2, qY3},
D4 = D3,

and so dimD2 = 9, dimDk = 12 for all k ≥ 3 and the step of D is 3.
Let (x0, x̂0, A0) be an arbitrary point in Q, and let O(x0,x̂0,A0) denote the

subset of all points in Q which are connected to (x0, x̂0, A0) by an intrinsic
rolling. The Orbit Theorem asserts that, at each point, D3 is contained in
the tangent space of the orbits. However, since we know that D3 has a local
basis, we have the stronger result of

T(x,x̂,A)O(x0,x̂0,A0) = D3
(x,x̂,A),

holding for all (x, x̂, A) ∈ O(x0,x̂0,A0).
It follows from (26) that O(x0,x̂0,A0) has dimension 12. Since O(x0,x̂0,A0) is

not the entire Q, we conclude that the system is not controllable.
We end this Section with a concrete example of an intrinsic rolling q(t) =

(x(t), x̂(t), A(t)), where

x(0) = idR3 , x̂(0) = 0, A(0) = 1.

Define the curve x : [0, τ ] → SE(3) by

(27) x(t)y =

⎛⎝ cos θ(t) sin θ(t) 0
− sin θ(t) cos θ(t) 0

0 0 1

⎞⎠⎛⎝ y1
y2
y3

⎞⎠+

⎛⎝ 0
0

ψ(t)

⎞⎠ ,

where θ(t) and ψ(t) are absolutely continuous functions with θ(0) = ψ(0) =

0. Then ẋ =
√
2 θ̇(t)Y1 + ψ̇(t)X3 for almost every t, and the rolling has the

form q̇ =
√
2 θ̇(t)Z1 + ψ̇(t)K3, or equivalently

ẋ(t) =
√
2 θ̇(t)Y1 + ψ̇(t)X3(28)

˙̂x(t) =
√
2 θ̇(t) qY1 + ψ̇(t) qX3(29)

Ȧ(t) = θ̇(t)

(
1

2
W23(A) +W45(A)

)
(30)

for almost every t. It follows from equation (29) that

x̂(t) =

⎛⎜⎜⎜⎜⎜⎜⎝

√
2 θ(t)
0
0
0
0

ψ(t)

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Equation (30) can be written as

Ȧ(t) = A ·
(
θ̇(t)

2
W23(1) + θ̇(t)W45(1)

)
,

which can be solved by exponentiating to obtain

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 cos
(

θ(t)
2

)
sin
(

θ(t)
2

)
0 0 0

0 − sin
(

θ(t)
2

)
cos
(

θ(t)
2

)
0 0 0

0 0 0 cos θ(t) sin θ(t) 0
0 0 0 − sin θ(t) cos θ(t) 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

7.2. Imbedding of SE(n) into Euclidean space. Since it is less obvious
how to extend an intrinsic rolling of SE(3) on se(3) to an extrinsic rolling
in ambient space, we describe an isometric imbedding of SE(n) into the

Euclidean space R(n+1)2 . Identify an element C ∈ R(n+1)2 with the matrix

C =

⎛⎝ c11 · · · c1,n+1
...

. . .
...

cn+1,1 · · · cn+1,n+1

⎞⎠ .

Define the inner product on R(n+1)2 by〈
C1, C2

〉
= trace

((
C1

)t
C2

)
.

Note that since 〈
C,C
〉
=

n+1∑
i,j=1

|cij|2 ,

the metric 〈·, ·〉 coincides with the Euclidean metric. From this we get that{
∂

∂cij

}n+1

i,j=1
is an orthonormal basis for the tangent bundle TR(n+1)2 with

respect to 〈·, ·〉.
We define the imbedding of SE(3) into R(n+1)2 by

ι : SE(n) → R(n+1)2

x = (C, r) �→ C =

(
C r
0 1

)
This mapping is in fact an isometry of SE(n) onto its image. To see this, no-

tice that the metrics coincide at the identity, and that the metric of R(n+1)2 ,
restricted to Image ι, is left invariant under the action of SE(n). Hence, the
metrics on SE(n) and Image ι coincide, and ι defines an isometric imbedding.
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7.3. Extrinsic rolling. We will use the imbedding from Subsection 7.2 to
construct an extrinsic rolling of SE(3) over se(3) in R16. We use ∂ij to
denote ∂

∂cij
. For the sake of clarity, we denote by M the image of SE(3) by

ι. Then the vector fields spanning TM are

e1 = Y1 =
1√
2

3∑
i=1

(ci1∂i2 − ci2∂i1) ,

e2 = Y2 =
1√
2

3∑
i=1

(ci1∂i3 − ci3∂i1) ,

e3 = Y3 =
1√
2

3∑
i=1

(ci2∂i3 − ci3∂i2) ,

e3+k = Xk =
3∑

j=1

cik∂i4, k = 1, 2, 3,

where we suppressed dι in the notation. We introduce an othonormal basis
of TM⊥

Υ1 =
1√
2

3∑
j=1

(cj1∂j2 + cj2∂j1) ,

Υ2 =
1√
2

3∑
j=1

(cj1∂j3 + cj3∂j1) ,

Υ3 =
1√
2

3∑
j=1

(cj2∂j3 + cj3∂j2) ,

Ψλ =
3∑

j=1

cjλ∂jλ, λ = 1, 2, 3

Ξλ = ∂4μ, μ = 1, 2, 3, 4

We denote by M̂ the image of R6 into R16 by the imbedding

(x̂1, x̂2, x̂3, x̂4, x̂5, x̂6)
ι̂�→

⎛⎜⎜⎝
0 1√

2
x̂1

1√
2
x̂2 x̂4

− 1√
2
x̂1 0 1√

2
x̂3 x̂5

− 1√
2
x̂2 − 1√

2
x̂3 0 x̂6

0 0 0 0

⎞⎟⎟⎠ .

We have the following orthonormal basis of TM̂ ,

ê1 =
1√
2
(∂12 − ∂21),

ê2 =
1√
2
(∂13 − ∂31),
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ê3 =
1√
2
(∂23 − ∂32),

ê3+k = ∂k4 k = 1, 2, 3

while the vector fields spanning TM̂⊥,

ε̂1 =
1√
2
(∂12 + ∂21),

ε̂2 =
1√
2
(∂13 + ∂31),

ε̂3 =
1√
2
(∂23 + ∂32),

ε̂3+κ = ∂κκ, κ = 1, 2, 3,

ε̂6+κ = ∂4κ κ = 1, 2, 3, 4.

In order to extend an intrinsic rolling q(t) with π(q(t)) = (x(t), x̂(t)), we
will find an orthonormal frame of normal parallel vector fields along x(t)
and x̂(t). Along x̂(t), we may use the restriction of {ε̂κ}10κ=1. For the curve
x(t) the answer is more complicated.

We first study the value of ∇⊥ for different choices of vector fields.

(1) ∇⊥
XΞλ = 0, for any tangential vector field X.

(2) ∇⊥
Xk

Υ = 0, for any normal vector field Υ.
(3) Otherwise

Υ1 Υ2 Υ3 Ψ1 Ψ2 Ψ3

∇⊥
Y1

1
2
(Ψ1 −Ψ2) − 1

2
√
2
Υ3

1
2
√
2
Υ2 −1

2
Υ1

1
2
Υ1 0

∇⊥
Y2

− 1
2
√
2
Υ3

1
2
(Ψ1 −Ψ3)

1
2
√
2
Υ1 −1

2
Υ2 0 1

2
Υ2

∇⊥
Y3

− 1
2
√
2
Υ2

1
2
√
2
Υ1

1
2
(Ψ2 −Ψ3) 0 −1

2
Υ3

1
2
Υ3

.

We use the above relation to construct an extrinsic rolling. We will illustrate
this by considering the curve (27).

Since ẋ(t) =
√
2 θ̇(t)Y1(x(t)) + ψ̇(t)X3(x(t)), the vector field

Ψ(t) =
3∑

λ=1

(υλ(t)Υλ(x(t)) + υ3+λ(t)Ψλ(x(t))) ,

is normal parallel along x(t) if(
υ̇1 − θ̇√

2
(υ4 − υ5)

)
Υ1 +

(
υ̇2 +

θ̇

2
υ3

)
Υ2 +

(
υ̇3 − θ̇

2
υ2

)
Υ3

+

(
υ̇4 +

θ̇√
2
υ1

)
Ψ1 +

(
υ̇5 − θ̇√

2
υ1

)
Ψ2 + υ6Ψ3 = 0.
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Hence we define a parallel orthonormal frame along x(t) by

ε1(t) = cos θΥ1(x(t))− 1√
2
sin θΨ1(x(t)) +

1√
2
sin θΨ2(x(t)) ,

ε2(t) = cos

(
θ

2

)
Υ2(x(t)) + sin

(
θ

2

)
Υ3(x(t)) ,

ε3(t) = − sin

(
θ

2

)
Υ2(x(t)) + cos

(
θ

2

)
Υ3(x(t)) ,

ε4(t) =
1√
2
sin θΥ1(x(t)) +

cos θ + 1

2
Ψ1(x(t)) +

1− cos θ

2
Ψ2(x(t)) ,

ε5(t) = − 1√
2
sin θΥ1(x(t)) +

1− cos θ

2
Ψ1(x(t)) +

1 + cos θ

2
Ψ2(x(t)) ,

ε6(t) = Ψ3(x(t)) ,

ε6+λ(t) = Ξλ(x(t)) , λ = 1, 2, 3, 4.

Thus p(t) is represented by a constant matrix in the bases {ελ(t)}10λ=1 and
{ε̂κ(t)}10κ=1. Let us choose p(t) to be the identity in these bases, since this is
the configuration given by the imbedding.
The curve g(t) = (q(t), p(t)) in Isom+(R16) is given by

g(t)x = Ax+ r(t),

where

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 θ
2

− sin θ
2

0 0 sin θ
2

cos θ−1
2

0 0 0 0
sin θ
2

cos2 θ
2

0 0 sin2 θ
2

sin θ
2

0 0 0 0

0 0 cos θ
2

0 0 0 sin θ
2

0 0 0

0 0 0 1 0 0 0 0 0 0

− sin θ
2

sin2 θ
2

0 0 cos2 θ
2

− sin θ
2

0 0 0 0 010×6
cos θ−1

2
− sin θ

2
0 0 sin θ

2
cos2 θ

2
0 0 0 0

0 0 − sin θ
2

0 0 0 cos θ
2

0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 cos θ
2

− sin θ
2

0 0 0 0 0 0 0 0 sin θ
2

cos θ
2

06×10 16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and r(t) =

(
−1,

θ√
2
, 0, 0,

θ√
2
,−1, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0

)t

. Here, 0m×n de-

notes the zero matrix of size m×n and 16 is the identity matrix of size 6×6.
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GEOMETRIC CONDITIONS FOR THE EXISTENCE OF
INTRINSIC ROLLINGS

MAURICIO GODOY MOLINA
ERLEND GRONG

Abstract. We present necessary and sufficient conditions for the exis-
tence of intrinsic rollings of manifolds. Given a curve in one manifold
and an initial configuration, the existence of a rolling follows from the
construction of the development of a curve. We show that it corresponds
to a rolling without slipping or twisting. Given two curves one in each of
the rolling manifolds we find conditions under which an intrinsic rolling
exists following the curves in terms of generalized geodesic curvatures.

1. Introduction

Rolling surfaces without slipping or twisting is one of the classical kine-
matic problems that in recent years has again attracted the attention of
mathematicians due to its geometric and analytic richness. A very interest-
ing historical account of problems in non-holonomic dynamics can be found
in [3] in which the problem of the rolling sphere is presented as one of the
first examples of a non-holonomic mechanical system. The interest in this
particular case can be traced as far as the late 19th century and early 20th
century, for instance, see [5, 6]. Recent developments searching to explain
the symmetries of the system can be found in [1, 4] and a detailed exposition
of the non-holonomy of the rolling sphere is presented in [11].

The definition of the so-called rolling map, which corresponds to rolling
manifolds of dimension higher than two imbedded in Rm without slipping
or twisting, was given for the first time in [14]. This was the starting point
of [7] where this extrinsic point of view was shown to be equivalent to a
purely intrinsic condition and a condition depending solely on the imbed-
dings of the manifolds. The extrinsic point of view, which depends on the
imbeddings, has been successfully applied in some particular cases, obtaining
interpolation results [9] and controllability [12, 16].

In the present article we address the problem of existence of rollings for
two abstract manifolds of dimension n. We employ the coordinate-free ap-
proach introduced in [7] which allows us to consider the problem with purely
intrinsic methods. The existence questions treated in this paper are two:

2000 Mathematics Subject Classification. 37J60, 53A55, 53A17.
Key words and phrases. Rolling maps, moving frames, Frenet vector fields.
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finding a rolling along a given curve in one of the manifolds and an initial
configuration, and determining conditions for a rolling to exist whenever the
projection curves of the rolling are given in both of the manifolds.

This paper is organized as follows. In Section 2 we briefly recall the
definition of an intrinsic rolling. In Section 3 we show that the well-known
construction of development corresponds to a rolling without slipping or
twisting. In Section 4 we find a complete characterization of curves along
which surfaces can roll on each other. As a corollary, we obtain a geometric
consequence of rolling a surface on R2 along a loop. Finally in Section 5 we
deal with the higher dimensional situation, which requires the introduction
of Frenet vector fields in order to generalize the notion of geodesic curvature.

Acknowledgments: We thank Georgy Ivanov, Irina Markina and Mar-
tin Stolz for their willingness to discuss some of the results presented here,
as well for their useful suggestions and remarks.

2. Intrinsic rolling

The aim of this Section is to provide the necessary background and nota-
tions of the coordinate-free approach of rolling manifolds without slipping
or twisting as presented in [7]. As customary, in the rest of the article we
use simply rolling to refer to rolling without slipping or twisting.

Let M and M̂ be two connected Riemannian manifolds of dimension n.
The configuration space Q for the intrinsic rolling is the SO (n)−bundle

(1) Q =
{
q ∈ Isom+(TxM,Tx̂M̂)

∣∣∣ x ∈ M, x̂ ∈ M̂
}
,

where Isom+(V,W ) stands for the space of linear isometries of the inner-
product spaces V and W . As noted in [7], the bundle Q can also be repre-
sented as

Q = (FM × FM̂)/SO (n),

where FM denotes the oriented unit frame bundle of M , i.e. the principal
SO (n)−bundle where the fiber over a point x ∈ M is the collection of all
oriented orthonormal frames in TxM , and the quotient is with respect to the

diagonal SO (n)−action on the cartesian product of FM and FM̂ .

Remark 1. Unless n = 2, the SO (n)−bundle Q is not principal in the
general case.

Denoting by prM : Q → M the projection onto M and similarly the
projection prM̂ , we have the following definition.

Definition 1. An intrinsic rolling of M on M̂ is an absolutely continuous
curve q : [0, τ ] → Q, satisfying the following conditions: if x(t) = prMq(t)
and x̂(t) = prM̂q(t), then
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(I) no slip condition: ˙̂x(t) = q(t)ẋ(t) for almost all t;
(II) no twist condition:

q(t)
D

dt
Z(t) =

D

dt
q(t)Z(t)

for any vector field Z(t) along x(t) and almost every t.

In the previous definition, the symbol D
dt
stands for the covariant derivative

associated to the Levi-Civita connection on M or M̂ .
The main result in [7] states that given an intrinsic rolling q, isometric

imbeddings of M and M̂ into RN , for a sufficiently big N , and an initial
configuration of the imbedded manifolds, there is a unique rolling in the
sense of Sharpe [14, Appendix B] yielding to the same dynamics as the
original rolling q.

In the following Sections, the letter Q is employed uniquely as the config-
uration space of the intrinsic rolling for the manifolds under consideration
and it will always be considered as the bundle of isometries (1). Similarly,
all the manifolds are connected and Riemannian.

3. Construction of a rolling: Development

3.1. Development. In the construction of stochastic trajectories on man-
ifolds, the idea of a development plays a central role. Let us shortly recall
the definition and construction of a development.

A general frame at x ∈ M is an isomorphism f : Rn → TxM , and denote
the set of all general frames at x by Fx(M). Any general frame at x induces
a choice of a basis of TxM given by

fj := f(0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 in the j−th place

), j = 1, . . . , n.

The general frame bundle F(M) =
∐

xFx(M) can be naturally be given the
structure of a manifold of dimension n(n+1) with a principal GLn(R)−struc-
ture. The manifold structure of F(M) is such that the natural projection
π : F(M) → M is a smooth map.

Let M be equipped with an affine connection ∇. A curve into the general
frame bundle f : [0, τ ] → F(M) is called horizontal if the vector fields fj(t)
are parallel along the curve π ◦ f : [0, τ ] → M . The tangent vectors of all
horizontal curves form a distribution E called the Ehresmann connection
associated to ∇. For any point f ∈ F (M), a horizontal vector v ∈ Ef is
called the horizontal lift of X ∈ Tπ(f)M at f , if π∗v = X . Since π∗|Ef

is an
isomorphism of vector spaces, the horizontal lift is well defined. WriteHX(f)
to denote the horizontal lift ofX at f . Note that, given a differentiable curve
x : [0, τ ] → M , the horizontal lift f(t) = (f1(t), . . . , fn(t)), where each fj(t)
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is parallel along x(t), satisfies the differential equation

(2) Hẋ(t)(f(t)) = ḟ(t).

The horizontal curve f(t) solving (2) is only determined up to an initial
condition f1(0), . . . , fn(0).

Definition 2. A curve x̂ : [0, τ ] → Rn, where x̂(0) = 0, is called the anti-
development of x : [0, τ ] → M , if there is a horizontal curve f(t), so that
(π ◦ f)(t) = x(t) and

(3) f(t)( ˙̂x(t)) = ẋ(t).

It is convenient to remark that, using (2), equation (3) is often equivalently
written as

(4) ḟ(t) = Hf(t)( ˙̂x(t))(f(t)).

For the applications of developments to Brownian motion on manifolds
and related topics, the interested reader can consult [8, Chapter 2] and [10].
In the firt reference it is also possible to find the comment that the develop-
ment corresponds to a rolling with no slipping of M on Rn, but no further
interpretation is given.

3.2. Development as an intrinsic rolling. The aim of this subsection
is to reinterpret the definition of development presented in Subsection 3.1
as an intrinsic rolling, where one of the manifolds is Rn. The main idea is
to show that equation (3) is equivalent to the no-slip condition, while the
requirement of f(t) being horizontal with respect to E is equivalent to the
no-twist condition.

Let x(t) be a differentiable curve in a connected oriented Riemannian
manifold M . Let ∇ be the Levi-Civita connection on M and let FM be
the oriented unit frame bundle. Note that we can consider the Ehresmann
connection E as a subbundle of TFM , since parallel transport preserves the
orientation and orthonormality of a frame in FM .

Without loss of generality, we can assume that the tangent bundle of M
is trivial. This is possible since our considerations are of local nature. Let
e1, . . . , en be a global oriented basis of orthonormal vector fields. This choice
induces coordinates in FM given by

(5) F (M)
∼=−→ M × SO(n)

f �−→ (x , (fij))
whenever fj =

n∑
i=1

fijei(x).

Note that the choice of the basis {ei}ni=1 implies that

Hk(f) := Hek(f) = ek −
n∑

i,j,r=1

frjΓ
i
kr

∂

∂fij
,

where Γr
is := 〈er,∇eies〉 are the Christoffel symbols of M .
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Let M̂ = Rn with the Euclidean metric and the standard orientation and
let x̂(t) = (x̂1(t), . . . , x̂n(t)) be the anti-development of x(t). Let

êj =
∂

∂x̂j
,

be the standard basis for TM̂ . As in (5), this choice of basis defines a

trivialization of FM̂ . Let f̂(t) be a horizontal lift of x̂(t) to F (M̂). By
straightforward calculations, we have that

(6)
˙̂
f ij(t) = 0, f̂j(t) =

n∑
i=1

f̂ij(t)êi(x̂(t)),

For practical purposes, we will pick the horizontal lift f̂(t) satisfying the

relations f̂j(t) = êj(x̂(t)).

Let us consider the coordinates of the velocity vectors ẋ(t) and ˙̂x(t) given
by

ẋj(t) = 〈ẋ(t), ej(x(t))〉 and ˙̂xj(t) = 〈 ˙̂x, êj(x̂(t))〉.
Note that the relations (3) and (4) imply that

(7) ˙̂xj =
n∑

i=1

fjiẋi,

(8) fij = −
n∑

k,r=1

ẋkfrjΓ
i
kr.

In this terms, the connection between developments and rollings is rather
straightforward. For each t ∈ [0, τ ], define an isometry q(t) by

f̂(t) = q(t)f(t).

If we write qij = 〈êi, qej〉, then qij =
∑n

r=1 f̂irfjr. Simple computations allow
us to reformulate equation (7) as the no-slip condition

˙̂x = q(t) ẋ(t),

and similarly, equations (6) and (8) imply the relation

q̇ij =

n∑
k,r=1

ẋkqirΓ
r
kj,

which is equivalent to the no-twist condition, see [7].
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3.3. Construction of a rolling. The aim of this subsection is to show an
explicit construction of the development along a curve x : [0, τ ] → M for a
sufficiently small τ > 0 in terms of the Riemannian exponential of M . As
seen in Subsection 3.2, this is essentially the same as constructing an intrinsic
rolling ofM on Rn along the curve x starting at a given q0 = (x0, x̂0, A0) ∈ Q,
where x(0) = x0 and A0 is an isometry between Tx0M and Tx̂0R

n.
Let us assume that the curve x is a geodesic in M . This condition is

necessary for the proof of Proposition 1 to be valid. The case for general
curves will be addressed in future research.

Let U × Û ⊂ M × Rn be a neighborhood of (x0, x̂0) ∈ M × Rn such that
the bundle Q|U×Û is trivial and the inverse of Riemannian exponential map
at x0 restricted to U is an isometry. Assume τ is sufficiently small so that
x([0, τ ]) ⊂ U .

We construct a curve x̂ : [0, τ ] → Rn as follows:

(9) x̂(t) = A0 ◦ exp−1
x0

◦ x(t),
where expx0

denote the Riemannian exponential mapping of M at x0. Using
this curve, we can define a map A : [0, τ ] → SO(n) as follows. LetX1, . . . , Xn

be an orthonormal basis of Tx0M and X̂i = q0Xi be the corresponding
orthonormal basis of Tx̂0R

n. By parallel translating both bases along x and

x̂, we define the vector fields Xi(t) and X̂i(t) along x and x̂ respectively.

The map A(t) is defined as the isometry mapping Xi(t) to X̂i(t). Note that
by construction A(0) = A0.

With these notations, we have the following result.

Proposition 1. Let x : [0, τ ] → M be a geodesic in M and let x̂ : [0, τ ] → Rn

be defined by equation (9). The curve

(10)
q : [0, τ ] → Q ∼= U × Û × SO(n)

t �→ (x(t), x̂(t), A(t))

defined for a sufficiently small τ , is an intrinsic rolling.

Proof. The no-twist condition is satisfied by construction, thus we only need
to check that the no-slip condition

˙̂x(t) = A(t) ẋ(t)

holds. Since x is a geodesic, it can be written locally as expx0
(tv), where

v = ẋ(0). This implies that locally

x̂(t) = A0(v) t,

and thus ˙̂x(t) = A(t) ẋ(t) = v. �
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4. Existence of intrinsic rollings in dimension 2

The aim of the present section and Section 5 is to discuss the existence of

an intrinsic rolling of two manifolds, M and M̂ , following given trajectories

x : [0, τ ] → M and x̂ : [0, τ ] → M̂ . More precisely, the problem asks whether
a rolling of the form

(11)
q : [0, τ ] → Q

t �→ (x(t), x̂(t), A(t))
.

exists. Before trying to give sufficient conditions for the general situation,
let us see the concrete case of surfaces. We follow the notation in [2].

Let us assume that the curves x and x̂ are parametrized by arc-length.
It is clear that requiring x and x̂ to have the same length is a necessary
condition for the existence of q as in (11). It is easy to construct examples
to see that this is not sufficient. For the case of surfaces this problem has
a complete solution, assuming the curves are sufficiently regular, as seen in
the following Theorem.

Theorem 1. Let M and M̂ be two Riemannian connected surfaces. Let

x : [0, τ ] → M and x̂ : [0, τ ] → M̂ be two curves of class C2, parameterized

by arc-length and geodesic curvatures kg(t) and k̂g(t) respectively. Then,
there is a rolling

q : [0, τ ] → Q
t �→ (x(t), x̂(t), θ(t))

along x and x̂ if and only if kg(t) = k̂g(t).

Proof. Note that the condition that x and x̂ have the same length assures
that, if there is a rolling, the no-slip condition is already satisfied. This
means we should prove the no-twist condition only.

Let v : [0, τ ] → [0, 2π) be a curve of class C1 such that

ẋ(t) = cos(v(t))e1 + sin(v(t))e2,

where {e1, e2} is an oriented local orthonormal frame in M , and define the
curve θ : [0, τ ] → [0, 2π) of class C1 such that

˙̂x(t) = cos(v(t)− θ(t))ê1 + sin(v(t)− θ(t))ê2,

where {ê1, ê2} is an oriented local orthonormal frame in M̂ .
Define the local normal vector fields

N(t) = − sin(v(t))e1 + cos(v(t))e2,

N̂(t) = − sin(v(t)− θ(t))ê1 + cos(v(t)− θ(t))ê2,
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and then the geodesic curvatures of x and x̂ have the form

(12) kg(t) =

〈
D

dt
ẋ(t), N(t)

〉
= v̇(t)− cos(v(t))Γ1

12 − sin(v(t))Γ1
22,

(13) k̂g(t) =

〈
D

dt
˙̂x(t), N̂(t)

〉
=

= v̇(t)− θ̇(t)− cos(v(t)− θ(t))Γ̂1
12 − sin(v(t)− θ(t))Γ̂1

22,

where Γ1
12,Γ

1
22 are the Christoffel symbols of the basis {e1, e2}, and similarly

for Γ̂1
12, Γ̂

1
22.

From the equations (12) and (13), we see that the equality

kg(t) = k̂g(t) is equivalent to the condition

θ̇(t) = cos(v(t))Γ1
12 + sin(v(t))Γ1

22 − cos(v(t)− θ(t))Γ̂1
12 − sin(v(t)− θ(t))Γ̂1

22

which coincides with the no-twist condition in dimension 2 found in [2,
Chapter 24]. �

This result has the following Corollary, which is a very interesting geo-
metric consequence and answers a question posed by R. Montgomery [13] in
the case that one of the manifolds is R2 and the trajectories are loops, as
seen in Figure 1.

�

R2

π − α

S

x̂(t)
˙̂x(0) − ˙̂x(τ)

Figure 1. A sphere S rolling following a loop x̂(t) in R2.

Corollary 1. With the notation and hypotheses of Theorem 1, assume that

M̂ = R2 with the usual Riemannian structure and the curves
x : [0, τ ] → M and x̂ : [0, τ ] → R2 are simple loops, where x(0) = x(τ)
and x̂(0) = x̂(τ). Let α be the angle between ẋ(0) and ẋ(τ), then∫ τ

0

kg(t)dt = α.
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Proof. Since M̂ = R2, we have Γ̂1
12 = Γ̂1

22 = 0, thus

kg(t) = k̂g(t) = v̇(t)− θ̇(t).

Since the curve θ : [0, τ ] → [0, 2π) must be a loop, we have that∫ τ

0

θ̇(t)dt = 0,

which implies that∫ τ

0

kg(t)dt =

∫ τ

0

(v̇(t)− θ̇(t))dt = v(τ)− v(0) = α.

The Corollary follows. �

5. Existence of intrinsic rollings in dimension n

In order to find a condition similar to the one in Theorem 1 in the case
of rolling manifolds of higher dimension, it is necessary to find the correct
analog to the geodesic curvature. The definition that is suitable in this
context can be found in [15, pp. 21–32].

Let x(t) be a curve of class Cn parametrized by arc length. Consider the
following process

• Define v1(t) = ẋ(t).

• If
D

dt
v1 �= 0, a.e., define v2 to be a unit vector field satisfying

D

dt
v1(t) = κ1(t)v2(t),

for some function κ1(t) of class C
n−2.

• If
D

dt
vj−1 + κj−2vj−2 �= 0, a.e., define vj to be a unit vector field

satisfying

(14)
D

dt
vj−1(t) + κj−2vj−2(t) = κj−1(t)vj(t),

for some function κj−1(t) of class C
n−j .

Note that k1(t) is a direct analog to the geodesic curvature. Whenever
it exists, the vector field v2(t) is orthogonal to v1 as can be seen from the
definition of covariant derivative〈

v1(t),
D

dt
v1(t)

〉
=

1

2

d

dt
〈v1(t), v1(t)〉 = 0,

where the last equality hold since v1(t) has norm one. Similarly, since v2(t)
has norm one, it follows that

(15)

〈
v2(t),

D

dt
v2(t)

〉
= 0.
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The fact that 〈v1(t), v2(t)〉 = 0 implies

(16) 0 =
d

dt
〈v1(t), v2(t)〉 =

〈
v1(t),

D

dt
v2(t)

〉
+

〈
v2(t),

D

dt
v1(t)

〉
=

=

〈
v1(t),

D

dt
v2(t)

〉
+ κ1(t) =

〈
v1(t),

D

dt
v2(t) + κ1(t)v1(t)

〉
,

Equations (15) and (16) imply that the vector field

D

dt
v2(t) + κ1(t)v1(t)

is orthogonal to both v1(t) and v2(t). By defining the vector fields vj(t)
inductively by (14), we see that 〈vi(t), vj(t)〉 = δi,j for all i, j as long as the
vector fields exist.

Definition 3. The vector field vj(t) is called the the j−th Frenet vector field
of the curve x. The function κj(t) is called the j−th geodesic curvature of
the curve x.

Remark 2. In the literature it is common to require that κj−1 is positive,
see for example [15, Chapter 7B]. We do not adopt this convention since, in
that case, it is usual to also require that D

dt
vj−1 + κj−2vj−2 �= 0 for all t. For

the purpose of the following results both vj and κj−1 are only defined up to
signs.

Theorem 2. Let M and M̂ be two Riemannian manifolds of dimension n,

and let x : [0, τ ] → M and x̂ : [0, τ ] → M̂ be two curves of class Cn,
parametrized by arc-length. Suppose that both x and x̂ have n well defined
Frenet vector fields and n − 1 geodesic curvatures {κj}n−1

j=1 and {κ̂j}n−1
j=1 re-

spectively. Then there exists a rolling along x(t) and x̂(t) if and only if

(17) κj = ±κ̂j , j = 1, . . . , n.

Proof. Write {vj}nj=1 and {v̂j}nj=1 for the Frenet vector fields along x and x̂.
Assume that there is a rolling q(t) along x(t) and x̂(t). From the no-slip

condition, we know that q(t)v1(t) = v̂1(t). From the no-twist condition and
induction, it follows that q(t)κj−1(t)vj = κ̂j−1(t)v̂j(t).

Conversely, assume that (17) holds. By changing the sign of v̂j, we may
assume that κj = κ̂j for j = 1, . . . , n. Define

v̂(t) = q(t)vj(t).

In order to see that q(t) is a rolling, we need to show that if w is any vector
field along x(t), we have

D

Dt
q(t)w(t) = q(t)

D

dt
w(t).
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This equality holds since

q(t)
D

dt
w(t) = q(t)

k∑
j=1

D

dt
wjvj =

=

k∑
j=1

(ẇv̂j + wj(−κj−1v̂j−1 + κj+1v̂j+1)) =
D

dt
q(t)w(t).

This concludes the proof. �

Proposition 2.4 in [14, p. 381] establishes the existence and uniqueness
of the rolling map, whenever a curve in one of the manifolds and an initial
configuration are given. This proposition, as written in the source, has an
innocent error in the formulation, since the result holds only for sufficiently
small time intervals. To see this, simply pick

M = {(x, y, z) ∈ R3 : x2 + y2 + (z − R)2 = R2} and

M̂ = {(x, y, z) ∈ R3 : x2 + y + 2 < 1, z = 0},
where R > 1/π, the curve in M to be geodesic arc

x(t) = (R sin t, 0, R(1− cos t)), t ∈ [0, π],

and the initial contact point in (0, 0, 0). As can be easily seen, when rolling
along x, we “run out of space”, see Figure 2.

�

y

�

M̂

x(t)

�

R

�

(0, 1, 0)

M

x

z

Figure 2. An impossible rolling: the manifold M̂ is “too small”.

Corollary 2. With the notation and hypotheses of Theorem 2, consider a
given initial configuration for a rolling (x0, x̂0, q0) ∈ Q, where x0 = x(0) and
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x̂0 = x̂(0), and assume x is a geodesic in M . Then, for sufficiently small
values of τ , the equality

x̂(t) = q0 ◦ exp−1
x0

◦ x(t)
holds if and only if κj = ±κ̂j.

Proof. By Proposition 1, for sufficiently small t, the curve q0 ◦ exp−1
x0

◦x(t) is
the projection onto Rn of a rolling. By uniqueness, it must satisfy κj = ±κ̂j

by Theorem 2. The converse holds by similar arguments. �
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