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Abstract

Energy minimization has become one of the most important paradigms for for-
mulating image processing and computer vision problems in a mathematical lan-
guage. Energy minimization models have been developed in both the variational
and discrete optimization community during the last 20-30 years. Some models
have established themselves as fundamentally important and arise over a wide
range of applications.

One fundamental challenge is the optimization aspect. The most desirable
models are often the most difficult to handle from an optimization perspective.
Continuous optimization problems may be non-convex and contain many inferior
local minima. Discrete optimization problems may be NP-hard, which means
algorithms are unlikely to exist which can always compute exact solutions without
an unreasonable amount of effort.

This thesis contributes with efficient optimization methods which can compute
global or close to global solutions to important energy minimization models in
imaging and vision. New insights are given in both continuous and combinatorial
optimization, as well as a strengthening of the relationships between these fields.

One problem that is extensively studied is minimal perimeter partitioning
problems with several regions, which arise naturally in e.g. image segmentation
applications and is NP-hard in the discrete context. New methods are developed
that can often compute global solutions and otherwise very close approximations
to global solutions. Experiments show the new methods perform significantly
better than earlier variational approaches, like the level set method, and earlier
combinatorial optimization approaches. The new algorithms are significantly
faster than previous continuous optimization approaches.

In the discrete community, max-flow and min-cut (graph cuts) have gained
huge popularity because they can efficiently compute global solutions to certain
energy minimization models. It is shown that new types of problems can be solved
exactly by max-flow and min-cut. Furthermore, variational generalizations of
max-flow and min-cut are proposed which bring the global optimization property
to the continuous setting, while avoiding grid bias and metrication errors which
are major disadvantages of the discrete models. Convex optimization algorithms
are derived from the variational max-flow models, which are very efficient and
are more parallel friendly than traditional combinatorial algorithms.
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Preface

This thesis is submitted as a partial fulfilment of the requirements for the degree
Doctor of Philosophy (PhD) at the Department of Mathematics, the University
of Bergen. The thesis is divided into two parts, where part I provides motiva-
tions, theoretical background, overview of the field, a summary of the scientific
contributions and conclusions. Part II is composed of a series of research papers,
which are listed on the next page. Most of the papers also involve co-workers. In
all papers, the authors are ordered according to their contributions, meaning the
first author contributed most, the second author contributed second most etc.,
some details can be found in the beginning of Section 6: Summary of papers.
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Chapter 1

Introduction

Image processing and computer vision are, broadly speaking, about inferring
information about the physical world from visual observations of the physical
world. Mathematically, it is the problem of finding order and pattern in high
dimensional data, such as two or three dimensional digital images. One important
example is the abstraction of objects from digital images, often called image
segmentation. Other examples include reconstruction of images that are damaged
or distorted in some way, such as removal of noise, or obtaining 3 dimensional
knowledge from 2 dimensional data (2D-3D reconstruction).

There has been a lot of research on this subject during the last decades, and
the field is expanding. The impact on society is constantly increasing. Med-
ical image processing allows medical doctors to diagnose deceases from image
modalities such MRI and CT. Driving assistants in automobiles help to prevent
accidents by analyzing visual and sensory data from the surroundings of the car.
In the industry, computer vision and image processing are used for visual inspec-
tion and manufacturing and has lead to significant reduction in manual labor.
Efficient compression algorithms have made possible the wide distribution and
accessibility of images and video on the internet.

Energy minimization has become an important paradigm for formulating im-
age processing and computer vision problems in a mathematical language. Vari-
ous problems can elegantly be formulated as the minimization of some predefined
energy function or functional. Of special importance are variational and optimiza-
tion problems composed of a data fitting term and a regularization term. The
data fitting term forces the unknown to fit some observed data. However, many
solutions can usually be explained by the observed data, therefore additional in-
formation is necessary to distinguish the best candidates and make the problem
well posed. One basic assumption which can be made in image processing and
computer vision, is that the data one wish to reconstruct is regular. That is,
the values at different data points are correlated. The physical world contains a
lot of order, as opposed to randomness, therefore information extracted from the
physical world will also contain order and patterns. Correlated or regular data
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will equivalently be sparse in some basis (such as in the fourier or wavelet basis),
therefore sparsity is another word that is frequently used with the same meaning.
The regularization term is designed such that regular solutions are favored. What
is meant by regular is rather vague, will depend on the problem, and is still an
open research question. Past research has shown that a very powerful criterion is
to favor solutions that are spatially varying smoothly in some sense, and penalize
random oscillatory patterns.

Models consisting of a data term and a regularization term have been devel-
oped both in the ”variational community” and the ”discrete optimization com-
munity” during the past 20-30 years. Variational models seek a function defined
over a continuous domain (typically the image domain) which takes values in
a continuous set and minimizes the energy. Such models are therefore in the
form of continuous optimization problems. On the contrary, discrete models re-
gard the image domain as discrete and seeks a variable at each discrete pixel
taking values in a predefined finite set which minimizes the energy. Therefore,
discrete models have the form of combinatorial optimization problems. In the
discrete optimization community such models are often called markov random
fields (mrfs).

Some models have established themselves as fundamentally important and
occur over a wide range of applications. One such type of models is the mini-
mal perimeter partitioning models, which divides the image into several regions
according to some data fitting measure, while minimizing the lengths of the re-
gion boundaries (in 2D) as spatial regularity. The most important application is
image segmentation into several regions. Such models are often called the ”piece-
wise constant Mumford-Shah model” or ”Chan-Vese model” in the continuous
setting and Potts model in the discrete setting. Other important models include
total variation regularized models, and some models which involve higher order
derivatives.

One fundamental challenge is the optimization aspects. The models can be
formulated in a relatively intuitively simple way, yet to compute the solutions
can be very difficult. The most desirable models are often the most difficult to
handle from an optimization perspective. Continuous optimization problems may
be non-convex and contain many inferior local minima. Discrete optimization
problems may be NP-hard, which means an algorithm is unlikely to exist which
can always compute an exact solution without an unreasonable amount of effort.

In the discrete optimization community, combinatorial optimization algo-
rithms have been developed and applied for solving the problems. One of the
most successful and effective class of methods are based on algorithms for the
graph optimization problems max-flow and min-cut. Some of the discrete opti-
mization problems encountered in image processing and computer vision can be
formulated as finding the minimum cut on a graph. The min-cut problem and
max-flow problems are dual to each other, therefore one can solve the much easier
max-flow problem to find minimum cuts. There exists very efficient algorithms
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for computing max-flow when implemented directly on CPU. These algorithms
can therefore be applied for efficiently solving the optimization problems exactly.
Such algorithms are popularly called graph cuts. The most important class of
problems that can be solved by graph cuts is partitioning problems, where the
number of regions is fixed to two. However, a large class of the discrete optimiza-
tion problems are NP-hard. Therefore, one cannot expect to develop algorithms
which can solve these problems exactly on all instances, unless a practically infi-
nite amount of computing time is allowed. Instead, algorithms have been devel-
oped for computing approximate solutions.

In the variational community, most existing optimization algorithms are based
on solving the Euler Lagrange partial differential equations associated with the
variational models. However, the Euler Lagrange equations do not distinguish
between local and global solutions. Therefore, these approaches may easily result
in local solutions, which could deviate far from the desired global solutions. The
only exception is if the variational model is convex, in which case every local
solution is also a global solution. For partitioning problems and geometrical
problems which involve curve lengths and surface area, the level set method has
become the most popular approach. It is attractive especially for its ability to deal
with unknown topologies. However, the level set method results in non-convex
formulations and may therefore easily get stuck in inferior local minima. This is
both a theoretical and practical problem, as such local minima may deviate far
from what one is trying to express with the model. For partitioning problems
with two regions, convex formulations have recently been developed, which makes
it possible to compute global solutions.

Discrete energy minimization models have the advantage over variational
models, that existing combinatorial optimization algorithms can compute global
solutions in some special cases. This is particularly the case for problems that
can be stated as the minimum cut problem on a graph. On the other hand, vari-
ational models have many advantages over discrete models. Most importantly is
the rotational invariance and ability to accurately represent geometrical entities
such as curve lengths and surface areas. The discrete models are always biased
by the discrete grid, and will favor curves or surfaces that are oriented along
with the grid, e.g. in horizontal, vertical or diagonal directions. In the varia-
tional framework, discretization is also necessary to compute solutions numeri-
cally. Instead of discretizing the variational model directly, the Euler-Lagrange
equations are discretized and solved numerically. This allows for much more ac-
curate representations of geometrical entities, without grid bias and metrication
artifacts. Furthermore, continuous optimization algorithms have a much more
parallel friendly nature. The algorithms most often reduce to large scale matrix
and vector operations, which are very suitable for implementation on graphic pro-
cessing units (GPUs) or general purpose GPUs. In the future, improvement in
processing technology is expected to be largely of the parallel aspect. Moore’s law
is reaching fundamental limits when it comes to the exponential improvements
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of single core CPUs, and we have already started to see a massive investment in
parallel hardware. Combinatorial algorithms can also be parallelized, but cannot
be expected to scale nearly as well as continuous optimization algorithms.

The main contributions of this thesis are efficient optimization methods that
can compute global or close to global solutions to energy minimization models
that arise in image processing and computer vision. They include both combina-
torial optimization and continuous optimization via variational models, as well
as stronger unifications between these fields. Before stating the contributions in
more detail, some more background information is provided.

1.1 Preliminary definitions, fundamental prob-

lems in imaging and vision and important

energy minimization models

In this section, we will give a brief overview of some of the most important prob-
lems in image processing and computer vision and introduce some fundamental
energy minimization models. We start with some preliminary definitions.

An image is a function I : Ω �→ L defined over the image domain Ω ⊂ R
N .

The image domain is usually a rectangular 2-dimensional domain, that is N = 2,
but 3-dimensional images also occur frequently, e.g. in medical imaging and
seismology. Ideally, Ω can be a continuous domain of infinitely many points. In
practice, Ω consists of a finite set of pixels. The image function I takes values
in the set L. For gray scale images, L ⊂ R and I is a scalar function. For color
images, L ⊂ R

3 consists of three color channels and I is a vector function. The
set L can either be discrete or continuous. If L is discrete, the image is said to
be quantized, typically L = {0, ..., L} consists of a set of integer gray values. If
L is continuous, it is typically assumed the image is scaled such that L = [0, 1].

Some of the most important problems in image processing and computer
vision are image segmentation, denoising, inpainting and 2D-3D reconstruction.
They will all be touched in this thesis. For completeness, we give a very brief
statement of these problems.

Image segmentation: Image segmentation is the problem of partitioning the
image domain Ω into several meaningful regions, based on the image intensity
function I. It is one of the most important problems in computer vision, and
perhaps also the most challenging one. The human brain is remarkably good at
abstracting objects from visual information, yet an algorithmic formulation of
the problem has turned out to be very difficult. In low level vision, one assume
no a priori knowledge of the shapes of the unknown objects, therefore the image
intensity function I is the only guide for abstracting the regions. The problem
can be defined more formally as obtaining a set of regions {Ωi}ni=1 which covers
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(a) (b)

Figure 1.1: Image segmentation is the problem of inferring objects from visual in-
formation. (a) Input MRI image. (b) Segmentation into 4 regions: cerebrospinal
fluid, gray matter, white matter and background. Each region is visualized with
a distinct gray value. The result was computed by the algorithm in paper C.

the whole image domain Ω without any overlap, i.e.

∪n
i=1Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 	= l.

The number of regions n can either be fixed in advance or be unknown. An
example is given in Figure 1.1, where one want to classify the input MRI image
into the regions: cerebrospinal fluid, gray matter, white matter and background.

Image denosing: Noise occurs naturally during the acquisition processes of
images due to uncertainty in the measurements. It also occurs during analogue
transmission of images. Digital image denoising is therefore one of the most
important tasks of image processing. Assume the image I is corrupted by noise.
We let I0 denote the true image, which is unknown. Most often it is assumed the
noise is additive, meaning the image function I can be written

I = I0 + η, (1.1)

where η is the unknown noise function defined over Ω. Image denoising is the
problem of reconstructing an image which as close as possible resembles I0 from
I

2D-3D reconstruction: The goal of 2D-3D reconstruction is to infer three
dimensional information about the physical world from one of several two dimen-
sional observations (i.e. 2D images) of the physical world. This is one of the
oldest problems in computer vision and has received considerable amounts of at-
tention. Shape from shading applies physical laws of light reflection to construct
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three dimensional objects from a two dimensional image. Multiview 2D-3D re-
construction searches for correspondences between several 2D images of a scene
to create a three dimensional representation of the scene. Shape from shading
and multiview reconstruction can also be combined.

Interpolation and inpainting: Other problems that can be formulated in an
energy minimization framework and will be touched in this thesis are interpo-
lation and inpainting. Both these problems are related, in that their goal is
to construct new data from existing data. Typically, some data is missing for
various reasons and should be reconstructed by using the information which is
available. In interpolation, the available data is scattered, while in inpainting the
data is missing in larger regions and data is available at the boundaries of the
regions. Both these problems can be formulated as the minimization of an en-
ergy function/functional composed of a data term and regularization term. The
regularization term play the role of filling in missing information, while the data
term forces the solution to coincide with, or approximate, the available data at
the known locations.

All the above problems can be formulated as the minimization of an energy
composed of a data fitting term and a regularization term. Some models arise
naturally in many of the above problems, and can be used over a wide range of
applications. The energy minimization models developed for image denoising,
inpainting and interpolation are closely related and can be used interchangeably
with small modifications. The same goes for models developed for problems
such as image segmentation, surface interpolation and 2D-3D reconstruction. As
stated in the last section, such optimization formulations have been developed
in both the variational community and discrete optimization community. The
discrete models and variational models are closely related. Some models have
established themselves as fundamentally important.

One important class are energy minimization formulations of segmentation
and grouping problems, which seek partitions of the image domain into several
regions. The data fitting term sets a cost for the assignment of each individual
image point (pixel) to each region based on its intensity value. A simple, but
powerful, spatial regularization term can be added which favors regions of small
boundary length (in 2D) or surface area (in 3D). In the special case of an L2

data fitting term, such models are often called piecewise constant Mumford-Shah
model in the variational setting. Equivalent discrete representations are often re-
ferred to as Pott’s model in the discrete optimization community. Generalizations
can also be made by introducing spatially varying strength of the regularization
term, to align the region boundaries to edges in the image, or using non-local
operators which distinguish texture from noise. The most important application
of these models are image segmentation, but they can also be applied in other
problems, like 3D reconstruction from 2D images.

Another important class of models, are the total variation regularized models.
Total variation has become one of the most popular and powerful regularization
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terms for inverse problems. Its attractiveness can be explained by its combined
ability to preserve edges and convexity, which makes computation trackable. To-
tal variation is perhaps best known in connection with the Rudin-Osher-Fatemi
model of image denoising, which uses the L2 norm between the noisy image and
the reconstructed image as data fidelity term and total variation as regulariza-
tion term. It also arise naturally in many other applications, like 2D-3D stereo
reconstruction, where the data term can possibly be non-convex. Total variation
has also been studied in the discrete setting as a special case of first order markov
random fields.

Other notable models have also been developed for image denoising and in-
painting. Except for total variation, the most successful first order image denois-
ing model is the general Mumford-Shah model, where the regularization term
favors solution images which are smooth everywhere except for a smooth discon-
tinuity set. The Mumford-Shah model has advantages over total variation, but
is much more difficult to handle computationally. It can also be cast as a special
case of first order markov random fields, where its computational complexity also
becomes apparent. Another class of denoising and inpainting models use higher
order regularization terms. In the recent years, there has been increasing activity
in this area. One of the first and most sucessful is the Euler’s elastica model
which uses a regularization term that favors solutions with level lines of small
curvature. It is one of the few higher order models, that are also discontinuity
preserving.

1.2 Contributions of this thesis

The main contribution of this thesis is the development of efficient methods that
can compute global or close to global solutions to important energy minimization
models in imaging and vision. The thesis contributes with new developments
in continuous and combinatorial optimization, as well as a strengthening of the
relationships between these fields.

Algorithms for computing global solutions are generally further developed in
the field of combinatorial and integer optimization than continuous optimization.
One example is the max-flow and min-cut (graph cuts) algorithms, which have
been used to compute global solutions to certain discrete energy minimization
models in imaging and vision for a long time. In fact, any first order markov
random field which is not NP-hard, can be minimized via graph cuts. Although
much has been said on this topic already, more insights will be given. In paper B it
is shown that a new type of multi-region problems, which has become very popular
in the variational community, can efficiently be solved exactly in the discrete
setting, by computing the minimum cut on a special graph, under some conditions
on the data term. If the conditions are not met, algorithms are proposed which
are not guaranteed to find the exact global optimum, but tends to do so in
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practice.
One goal of this thesis is a stronger unification of variational and discrete

optimization models, and continuous and combinatorial optimization methods.
Some initial relationships between the level set method and graph cuts are dis-
cussed in paper A. In paper D and E, continuous generalizations of max-flow and
min-cut are proposed. As pointed out, variational models have many advantages
over discrete models: they can much more accurately represent geometric enti-
ties like curve lengths, and hence avoid the metrication errors; continuous and
convex optimization algorithms are much more easily parallelizable than combi-
natorial algorithms. Continuous formulations of max-flow and min-cut combine
the advantages of both discrete and variational, they make possible the efficient
computation of global solutions to certain non-convex variational models. Paper
D deals with partitioning problem with two regions and Paper E deals with total
variation regularized problems, where the data term is arbitrary and the unknown
can take values in a predefined finite or continuous set. The discrete counterparts
of such problems can be solved globally via max-flow and min-cut. Continuous
generalizations of the discrete max-flow and min-cut models are proposed which
are shown form strong primal-dual pairs, and provide convex optimization frame-
works for solving the original non-convex variational problems globally. Convex
formulations of partitioning problems in the continuous setting with two regions
have also been presented in [19], and recently [70] presented a convex formulation
of total variation regularized models with arbitrary data term. The max-flow and
min-cut primal-dual treatment presented in paper D and E offers many algorith-
mic and analytical advantages.

For many problems, the computation of an exact solution is NP-hard in the
discrete setting. This is particularly the case for minimal perimeter partitioning
problems with several regions, which can be applied in e.g. image segmentation
models. In the variational setting, the level set method has been the most widely
used approach for solving such problems. As pointed out, the level set method
converges rather slowly and may get stuck in local minima which deviates far
from global solutions. In the discrete setting, the most popular optimization ap-
proaches are the alpha expansion and alpha beta swap algorithms, which solve a
sequence of two region problems by graph cuts until convergence to an approx-
imate solution of the original multi-region problem. A significant part of this
thesis is devoted to new and better methods for solving partitioning problems
with several regions, mainly in a variational setting. Instead of aiming to solve
the problems exactly in all cases, approximate convex models (convex relaxations)
are studied and developed, which can often compute global solutions of the origi-
nal models, and otherwise good approximations. During the last two years, there
has also been activity in this area from several research groups [92, 51, 67, 9].
In paper C, a relatively simple convex model [92, 51] is analyzed from a dual
perspective. The dual model gives insight into the exactness of the relaxation. It
is shown that global solutions of the original model can often be obtained from
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(a) (b) (c) (d)

Figure 1.2: (a) Input image, (b) ground truth, (c) the level set method, (d) new
global approach. Each region is visualized with a distinct gray value.

a dual solution of the convex model, and otherwise close approximations. The
convex models can approximate the original model more tightly by adding many
additional constraints, as was done in [67], however this significantly increases the
computational complexity. In paper F, a relaxation is proposed which is both the
simplest and tightest of all the approaches, but its application is so far limited to
problems with four regions. A formal proof that the dominance over [67] is also
strict needs to be worked out, but arguments are presented to support that this
is expected. In paper F it is also shown that the Chan-Vese model, a very pop-
ular level set formulation of partitioning problems, can be solved globally under
the same assumptions, by generalizing the results of Paper B to the continuous
setting. An illustration is given in Figure 1.2, where one seeks a partition of the
leftmost image into 4 regions. As seen in Figure 1.2 (c), the level set method
gets stuck in an inferior local minima, whereas the new approach from paper B
and F computes a true global solution, Figure 1.2 (d). Another example is given
in Figure 1.3. Alpha expansion (middle) produces an approximate solution with
noticeable errors, such as the green misclassifications between the flower and the
sky, and a bias towards the discrete grid. A result produced by the method in
paper C is shown on the right, which is closer to a global solution and avoids the
grid bias.

Another contribution of this thesis is the design of efficient algorithms, both
in the discrete and continuous setting.

There has been much work on fast optimization algorithms for total variation
regularized models with L2 (ROF) or L1 data fidelity terms, such as the ”split
bregman”/”augmented Lagrangian” [32, 88, 26] methods and algorithms based
on the dual formulation [14]. Total variation also arise naturally in many other
settings, like geometrical problems involving curve lengths or surface areas. For
example, it occurs naturally in the formulation of minimal perimeter partitioning
problems. For problems where the unknown is constrained to a finite set and
general data term, for instance L0 norm, one is also interested in fast algorithms.
Some of the algorithms are applications of more general frameworks, like the
projected gradient algorithm or the alternating direction method of multipliers.
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(a) (b) (c)

Figure 1.3: Segmentation into 10 regions by using Potts model. (a) Input, (b)
result graph cut-based alpha-expansion [7] with ”8-neighborhood system”, (c)
result of the optimization approach in paper C. Each region is visualized with a
distinct color. The full images and experiment are presented in Paper C.

The main novelties in these cases lie in reformulations of the problems in ways
that make realization of these algorithms possible. In particular, it is shown
that dual formulations of the problems offer many algorithmic advantages, such
as the dual formulation of partitioning problems in paper C and the variational
max-flow models. The dual problems deal with all the constraints of the primal
variables implicitly and has a simpler structure, which makes computation easier.
It is shown in numerical experiments, that the new algorithms are very efficient,
and outperform alternative approaches.

In paper G, a fast algorithm is constructed for solving energy minimization
problems with Euler’s elastica as regularization term (curvature of all level lines)
on a discrete grid with L quantized gray values. By solving a sequence of sim-
pler subproblems, each of which can be solved efficiently in O(log(L)) by graph
cuts, a local minimum of the Euler’s elastica model can be obtained. Alterna-
tive approaches instead solve the Euler Lagrange equation, which is a 4th order
PDE. Due to the small time step restrictions, such approaches are very slowly
convergent. The proposed iterative splitting algorithm is also new from a general
algorithmic point of view, and can be applied for other problems in the future.

A method for constructing open and non-orientable surfaces from point cloud
data is proposed in paper J. By specifying appropriate boundary condition on a
crust around the point cloud, it is shown that graph cuts can also be applied for
such problems.
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1.3 Outline of this thesis

This thesis is divided into Part I and Part II. Part I gives an overview of the field
and describes related work in detail. Part II is composed of 10 research papers.

In part I, we will give an introduction to some of the most important energy
minimization models in image processing and computer vision, some of their
properties and some of the most effective methods for computing solutions. Both
discrete and variational models will be covered and some relationships will be
revealed.

Part I is organized as follows: In Chapter 2 some background material on opti-
mization is provided. Section 2.1 deals with continuous optimization and Section
2.2 deals with integer and combinatorial optimization. Chapter 3 introduces fun-
damental variational models in image processing and computer vision. Chapter
4 gives an overview of existing continuous optimization methods. In Section 5.1
of Chapter 5, discrete energy minimization models, also called markov random
fields, are introduced. In Section 5.2 we give an overview of the most effective
combinatorial optimization algorithms.
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Chapter 2

Background on Optimization

This section introduces some background material on optimization, which will
be useful in this thesis. The introduction given here is very brief. For a detailed
treatment of the subject of convex optimization, we refer the reader to [25, 74],
nonlinear optimization to [64] and combinatorial optimization to [86].

2.1 Continuous optimization

A continuous optimization problem is in general the problem of finding the small-
est value of an objective function f : X �→ R over a given subset S ⊂ X

inf
x∈S

f(x). (2.1)

Usually X is a finite dimensional subset of RM . More generally, X can be any
Banach space with norm ||.||X . If X is infinite dimensional, the problem (2.1) is
called a variational problem. In this case X is usually some function space and
the objective f(x) in (2.1) is an energy functional which assigns a real value to
every x ∈ X. For ease of expression, we will also refer to the objective f as a
function in this chapter.

We say that a point x∗ is a global minimizer (or minimum) of (2.1) if f(x∗) ≤
f(x) for all x ∈ S. A point x∗ ∈ X is said to be a local minimizer of (2.1) if for
some ε > 0, f(x) ≥ f(x∗) for all x ∈ S such that ||x− x∗||X < ε.

Often S is described in terms of a set of inequalities and equalities, in which
case the optimization problem can be written

inf
x∈X

f(x), subject to

{
gi(x) ≥ 0, i = 1, ...,m1

hi(x) = 0, i = 1, ...,m2
(2.2)

If g, h and f are linear, (2.2) is often called a linear program. Linear programs
can be solved by e.g. algorithms such as the simplex method and interior point
methods when X is finite dimensional. In general, to find a global minimizer x∗

of (2.2) is very difficult. Convexity is a crucial notion for characterizing problems
that can be solved with reasonable computational effort.
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2.1.1 Convexity

Definition 2.1 A set S ⊂ X is called convex if for any x, y ∈ S all points on
the line segment between x and y are contained in S, i.e. if tx+ (1− t)y ∈ S for
every t ∈ [0, 1].

A function f is convex if and only if the set of points above the graph of f is
a convex set. Such a set is defined more formally as the epigraph of f .

Definition 2.2 The epigraph of f : X �→ [−∞,∞] is defined as

Epi(f) = {(x, t) ∈ X × R, s.t. t ≥ f(x)} (2.3)

Convex functions can also be defined as follows.

Definition 2.3 We say a function f : X �→ [−∞,∞] is convex if for any x, y ∈
X

f(tx+ (1− t)y) ≤ t f(x) + (1− t) f(y) (2.4)

for any t ∈ [0, 1].

A function is concave if and only if the set of points below the graph of f is
a convex set, or equivalently, if −f is a convex function.

We say that an optimization problem of the form (2.1) is convex if both the
objective function f is a convex function, and the constraint set S is a convex
set. If the inequality in (2.4) is strict, we say the problem is strictly convex. For
strictly convex problems the global minimizer is unique. In general, there can
exist several global minimizers. A fundamental property of convex optimization
problems is that any local minimizer is also a global minimizer. Therefore, to solve
convex problems it suffices to search for local minimizers. In the development
of convex optimization theory, it will be useful to assume the objective function
satisfies the following mild conditions.

Definition 2.4 A function f is said to be proper if f is not identically −∞ or
∞.

Definition 2.5 A function f is lower semi-continuous (l.s.c.) if and only if for
any x ∈ X and any sequence {xn}∞n=1 converging to x

lim inf
n→∞

f(xn) = f(x) (2.5)

and upper semi-continuous (l.s.c.) if and only if for any such sequence

lim sup
n→∞

f(xn) = f(x) (2.6)

The Legendre-Fenchel conjugate is an important concept in the duality theory
of convex optimization. We start by defining the dual space X∗ of X.
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Definition 2.6 The dual space X∗ of X is defined as all linear functionals on
X, i.e.

X∗ = {φ : X �→ R, s.t. φ is linear} (2.7)

For any x ∈ X and φ ∈ X∗, we define the bilinear mapping 〈., .〉 : X ×X∗ �→ R

as
〈x, φ〉 = φ(x) (2.8)

A Hilbert space is a Banach space with an inner product 〈., .〉. If X is a Hilbert
space, the Riesz representation theorem (see e.g. [90]) says that any element in
X∗ can uniquely be ”represented” by an element of y ∈ X. That is, for any
φ ∈ X∗, there exists a unique y ∈ X such that

φ(x) = 〈x, y〉 , ∀x ∈ X (2.9)

It follows that if X is a Hilbert space, then X∗ is isomorphic to X. Essentially,
this means a Hilbert space is its own dual. Examples of Hilbert spaces include
subspaces of RM and L2 (space of square integrable functions, the inner product
between f, g ∈ L2 is given by

∫
fg).

We can now define the Legendre-Fenchel conjugate of a functional on X.

Definition 2.7 The Legendre-Fenchel conjugate f ∗ of a function f is defined for
each y ∈ X∗ as

f ∗(y) = supx∈X 〈x, y〉 − f(x) (2.10)

We denote f ∗∗ = f ∗∗. A fundamental result of convex duality is the following

Theorem 2.8 Let f be a convex, proper and l.s.c. function on X, then f ∗∗ = f .

The subgradient is a generalization of the gradient to non-differentiable convex
functions. It is a crucial tool for stating optimality conditions of non-convex
functions.

Definition 2.9 The subgradient ∂f of a convex function f : X �→ R, at x ∈ X
is defined as

∂f(x) = {v ∈ X∗ : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ X} (2.11)

Observe that if f is differentiable, the subgradient reduces to ∂f = ∇f if X is
finite dimensional and the Gateaux differential [25] if X is infinite dimensional.

Minimizers of convex functions can be characterized in terms of the subgra-
dient as follows.

Proposition 2.10 Let f : X �→ R be convex, then x ∈ argminx∈X f(x) if and
only if

0 ∈ ∂f(x) (2.12)
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This can be easily seen by inserting in (2.11): f(y) ≥ f(x) + 〈0, y − x〉 ∀y ∈ X.
The following, the Legendre-Fenchel identity, is another useful result.

Proposition 2.11 If f : X �→ R is convex, proper and l.s.c. then y ∈ ∂f(x) if
and only if x ∈ ∂f ∗(y)

see e.g. [75, 15].
Observe that any constrained minimization problem of the form (2.1) can be

written as the unconstrained problem

inf
x∈X

f(x) + IS(x) (2.13)

where IS is the indicator function of the set S, which is given by

IS(x) =

{
0 if x ∈ S
∞ if x /∈ S

. (2.14)

If S is a convex set and f is a convex function, one can easily check that f +
IS is a convex function. Therefore it suffices to state optimality conditions for
unconstrained problems.

2.1.2 Saddle point problems

Another important class of optimization problems aim to maximize the objective
function with respect to some variables while minimizing with respect to other
variables. Such problems are often called saddle point problems, because the
optimizers are saddle points of the objective function. Let X, Y be two Banach
spaces and let S ⊂ X and C ⊂ Y . Consider the problem

sup
x∈S

inf
y∈C

E(x, y), (2.15)

where E : X × Y �→ R. Convex saddle point problems are important special
cases. Under some more (mild) assumptions, the following important result can
be shown for such problems

Theorem 2.12 Assume S and C are convex, E(., y) is convex and l.s.c. for any
fixed y ∈ C and E(x, .) is concave u.s.c. for any fixed x ∈ S. Then the problem
(2.15) can equivalently be defined by interchanging the min and max operators of
(2.15), i.e.

sup
x∈S

inf
y∈C

E(x, y) = inf
y∈C

sup
x∈S

E(x, y) (2.16)

see e.g. [25] for a proof. Saddle point problems arise naturally in connection with
duality. Consider the primal problem

inf
x∈S

EP (x), (2.17)
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and assume that for each x ∈ S, EP (x) can be written as

EP (x) = sup
y∈C

E(x, y). (2.18)

for some E. This is in particular the case for convex, proper and l.s.c. functions.
Observe that under those assumptions EP ∗∗

= EP . Therefore, by applying the
formula for the convex conjugate twice, we obtain

EP (x) = EP ∗∗
(x) = sup

y∈X∗
〈x, y〉 − EP ∗

(y) (2.19)

which is exactly in the form (2.18).
The minimization problem (2.17) can therefore equivalently be formulated as

the saddle point problem (2.15). The associated dual problem of (2.17) is defined
as

sup
y∈C

ED(y) = sup
y∈C

{inf
x∈S

E(x, y)}. (2.20)

If the conditions of theorem 2.12 are satisfied it follows immediately that

inf
x∈S

EP (x) = inf
x∈S

sup
y∈C

E(x, y) = sup
y∈C

inf
x∈S

E(x, y) = sup
y∈C

ED(y). (2.21)

We then say that EP (.) and ED(.) form a strong primal-dual pair. For such a
pair we have in general that

EP (x) ≤ E(x, y) ≤ ED(y), ∀x ∈ S, y ∈ C. (2.22)

If for some x∗ ∈ S, y∗ ∈ C

EP (x∗) = E(x∗, y∗) = ED(y∗), (2.23)

we say that (x∗, y∗) is a saddle point. It follows that x∗ is optimal to the primal
problem (2.17) and y∗ is optimal to the dual problem (2.20).

2.1.3 Lagrange duality

Saddle point problems also arise naturally in connection with lagrange duality.
Consider the problem

inf
x∈S

f(x), s.t. gi(x) = 0, i = 1, ...,m1, ∀x ∈ S (2.24)

where gi : X �→ Y , i = 1, ...,m1 for some space Y ,
The side constraints can be moved directly to the objective functional, by

introducing Lagrange multipliers λi ∈ Y ∗, i = 1, ...,m1. Define the Lagrangian
functional as

L(x;λ1, ..., λm1) = f(x) +

m1∑
i=1

〈λi, gi〉 (2.25)
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The primal minimization problem (2.24) can be expressed as a saddle point prob-
lem in L, i.e. as

inf
x∈S

sup
λ1,...,λm1

L(x;λ1, ..., λm1) (2.26)

Clearly, at an optimum (x∗, λ∗) of (2.26)

∂λi
L = gi = 0. i = 1, ...,m1

We also introduce the augmented Lagrangian functional

Lc(x;λ1, ..., λm1) = f(x) +

m1∑
i=1

〈λi, gi〉+ 1

2
c

m1∑
i=1

||gi||2 (2.27)

An algorithm, known as the ”augmented Lagrangian method”, or ”alternating
direction method of multipliers” can be constructed for optimizing (2.26) when
X is finite dimensional. It is especially powerful for problems where the unknown
x can be separated into two or more groups, e.g. x = (x1, ..., xk), and there exists
subsets Si ⊂ X such that x ∈ S if and only if xi ∈ Si for all i = 1, ..., k. The
algorithm consists of optimizing (2.27) for each xi independently and computing
ascent steps in λi alternatively as follows: For n = 1, ...

xn+1
i = argmin

xi∈Si

Lc(x
n+1
1 , ..., xn+1

i1
, xi, x

n
i+1, ..., x

n
k , λ

n
1 , ..., λ

n
m1

), i = 1, ..., k

(2.28)

λn+1
i =λni + cgi, i = 1, ..., k,

(2.29)

see e.g. [36, 73]

2.1.4 Proximal operators

We introduce the proximal operator, which will be very useful in the design of
algorithms for constrained optimization problems. Let P be a convex, proper,
l.s.c. function. For any x ∈ X and δ > 0, the proximal operator proxδG is defined
as

proxδG(x) = argmin
y∈X

1

2
||x− y||2 + δG(y). (2.30)

The above minimization problem has a unique solution, hence the proximal op-
erator is well defined. By the first order optimality conditions, proxδG(x) is the
unique point y ∈ X which satisfies

0 ∈ δ∂G(y) + y − x (2.31)

Therefore, y is given by
y = (I + δ∂G)−1(x) (2.32)
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As one important special case, G is the indicator function of some set S ∈ X, i.e.

G(x) = IS(x) =

{
0 if x ∈ S
∞ if x /∈ S

. (2.33)

In this case prox
IS

is the orthogonal projection operator onto the set S, which
maps x to the point of S of smallest euclidian length to x. The projection operator
prox

IS
will also be denoted ΠS in this work.

The proximal operator can be applied in an algorithm for solving optimization
problems composed as

inf
x∈X

f(x) +G(x), (2.34)

where it is assumed proxG is easily computed. For instance, ifG(x) is the indicator
function of some set S ⊂ X, the above minimization problem is equivalent to

inf
x∈S

f(x).

The algorithm consists of alternatively computing one explicit step of gradient
descent in f and one implicit gradient descent step in G as follows

xn+1 = (I + δG)−1(xn − δ∇f(xn)), (2.35)

for n = 1, .... Such algorithms are often called forward-backward splitting algo-
rithms, see e.g. [57].

When G is the characteristic function IS of some set S ∈ X, algorithm 2.35
reduces to the projected gradient algorithm [31, 53]

xn+1 = ΠS(x
n − δ∇f(xn)). (2.36)

2.1.5 Relaxations

Relaxations are important tools for reformulating difficult problems in a simpler
manner. Sometimes, it is possible to reformulate non-convex problems as convex
problems.

Definition 2.13 A problem

inf
x∈S̃

f̃(x) (2.37)

is a relaxation of the problem

inf
x∈S

f(x) (2.38)

if S ⊆ S̃ and f̃(x) ≥ f(x) for all x ∈ S.
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If f and S in the original problem are nonconvex, one can instead attempt
to solve the relaxed problem, where f̃ and S̃ are convex. The question arises as
to how minimizers of the relaxed problem (2.37) are related to minimizers of the
original problem (2.38). Let x∗ be optimal to the relaxed problem (2.37), then x∗

is optimal to the original problem (2.38) if and only if x∗ ∈ S and f(x∗) = f̃(x∗).
A relaxation is said to be exact if there exists an x ∈ S such that

f(x) = f̃(x) = inf
x∈S̃

f̃(x) (2.39)

If one can prove there exists x ∈ S such that (2.39) holds for every input data f of
the problem class, the relaxed problem (2.37) is said to be a convex formulation
of the original problem (2.38).

2.2 Combinatorial and integer optimization

Integer optimization problems have the same form as (2.2) (most often f, g and
h are linear) with the additional constraint that the unknown variables should
take integer values, i.e.

xi ∈ Z, i = 1, ...,M (2.40)

In this case there are either finitely or countably many feasible solutions.
Closely related are combinatorial optimization problems. Given a finite set

Ω = {1, ...,M} and a set of feasible subsets of Ω, denoted F . A combinatorial
optimization problem can in general be formulated as

min
S⊆Ω :S∈F

f(S) =
∑
i∈S

ci (2.41)

Observe that there are also finitely many feasible solutions for combinatorial
optimization problems. By defining binary (integer) variables xi such that xi = 1
iff i ∈ S and xi = 0 iff i /∈ S, any combinatorial optimization problem can
equivalently be formulated as a (linear) integer optimization problem.

In this thesis, we are also interested in infinite dimensional combinatorial
optimization problem. That is, there are infinitely many variables, but each
variable is constrained to take values in a finite set.

In the last section we saw that convexity is a crucial notion to describe whether
a problem can be solved easily. However, convexity is not a necessary condition.
Sometimes non-convex problems can be transformed into convex problems and
therefore be solved globally, which we will see many examples of in this thesis.
Integer and combinatorial optimization problems are obviously non-convex be-
cause of the non-convex integer constraints. Yet, efficient algorithms exist which
can compute global solutions to some of these problems. Instead of convexity, a
much stronger classification theory exists for combinatorial and integer optimiza-
tion problems. This is the theory of computational complexity, which can also
be used to classify other combinatorial problems besides optimization problems.

22



2.2.1 Computational complexity theory: a brief overview

We will give a brief overview of computational complexity theory without going
into details, in order to give the reader a sense of the challenges associated with
some of the problems encountered in this thesis. By the size of a problem, we
shall mean the number of bits required for a ”standard” representation of the
input data. In image processing, the input data is typically an image. The size
of a typical image processing problem is therefore the number of bits required to
represent the input image (without any compression).

We say that a problem is polynomially solveable if there exists an algorithm
which can compute an exact solution in a number of iterations which is bounded
by a polynomial in the size of the problem, for any input data. The class of all
polynomially solveable problems is denoted P .

Obviously, if a problem is not polynomially solveable, exact solution becomes
very difficult in general. For certain input data, this means the best possible
algorithm for solving the problem will need a number iterations which grows at
least exponentially in the size of the problem. In image processing applications
there are millions of pixels and the sizes of the problems are huge. In practice,
this means infinite computation time is required to calculate an exact solution,
even with hypothetical future computers of superior efficiency.

A large class of problems, denoted NP , are believed to not be polynomially
solveable. All the problems in NP have in common, that if a polynomial algo-
rithms is discovered for one of them, the same algorithm can be used to solve all
the other problems in NP . If this was the case, one could immidiately conclude
that P = NP . However, it is widely believed that P 	= NP , although neither has
yet been proved. A consequence of P 	= NP is that problems which belongs to
NP are very difficult to solve exactly in general, and impossible for large problem
sizes. Problems in NP are often called NP -hard.

2.2.2 Submodular objective functions

One class of polynomially solvable combinatorial optimization problems, is prob-
lems with submodular objective function. The function f in (2.41) assigns a real
value to each subset S ⊆ Ω. f is said to be submodular if and only if for any two
subsets A,B ⊆ Ω

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (2.42)

If the objective function f satisfies the submodular condition (2.42), the opti-
mization problems of the form (2.41) can be solved polynomially by a ”greedy”
algorithm.
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2.2.3 Network flow problems

An important class of polynomially solveable combinatorial optimization prob-
lems is the network flow problems. A graph G = (V , E) consists of a set of vertices
V and a set of directed edges E ⊂ V × V . The directed edge from vertex v ∈ V
to w ∈ V is denoted (v, w). For each v ∈ V the neighborhood system N+(v) is
defined as all w ∈ V such that (v, w) ∈ E and N−(v) is defined as all w ∈ V such
that (w, v) ∈ E .

Optimization problems can be defined over the graph G. Of central impor-
tance in this thesis are the max-flow and min-cut problems. Assume the set V
contains two distinguished vertices, the source {s} and the sink {t}. For each
edge (v, w) ∈ E , let c(v, w) ∈ R be a predefined cost on (v, w).

Definition 2.14 The min-cut problem is to find a partition of the vertices into
two sets (Vs, Vt) which minimizes

min
(Vs,Vt)

∑
(v,w)∈E : v∈Vs, w∈Vt

c(v, w) (2.43)

subject to
Vs ∩ Vt = ∅, Vs ∪ Vt = V , s ∈ Vs, t ∈ Vt (2.44)

Closely related to the min-cut problem is the max-flow problem. For each (v, w) ∈
E define the ”flow” variable p(v, w) ∈ R. The weights c(v, w) are upper bounds
(capacities) on the the flows p(v, w) for all (v, w) ∈ E , i.e.

p(v, w) ≤ c(v, w), ∀(v, w) ∈ E (2.45)

In addition, flow conservation is required at each vertex except s and t∑
w∈N+(v)

p(v, w)−
∑

w∈N−(v)

p(w, v) = 0, ∀v ∈ V (2.46)

The max-flow problem is to find the maximum amount of flow that can be pushed
from {s} to {t} under the above flow constraints. The total amount of flow in
the graph is at any time equal to the total amount of outgoing flow on the source
edges. The max-flow problem can therefore be formulated as

Definition 2.15 The max-flow problem is to find a flow function p which max-
imizes

max
p

∑
v∈V

p(s, v) (2.47)

subject to (2.45) and (2.46).

The following is the most important theorem of network flow problems.
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Theorem 2.16 The maximum amount of flow (2.47) = the cost of the minimum
cut (2.43).

For proofs, see e.g. [29]. See also the paper D,E, where proofs are given in
the infinite dimensional setting in some special cases. This result says that the
max-flow problem and min-cut problem are strong dual problems. Therefore,
if one of the problems is solved, a solution also becomes available to the other
problem. The max-flow problem (2.47) has a structure which makes it very easily
solveable. One algorithm for doing so, is the Ford-Fulkerson algorithm [29], which
is essentially a greedy algorithm that iteratively pushes flow along paths from s
to t until no such s-t path with at least one saturated edge exists. An efficient
implementation specialized for problems in imaging and vision can be found in
[6].

The variables of the max-flow problem (primal problem) are related to the
variables in the min-cut problem (dual problem) as follows. Given a maximal
flow function p∗ : E �→ R. Define the graph Gr where each of the edges are
assigned the residual capacity function f − p∗ : E �→ R. A vertex v ∈ V is
contained in the set Vs if there exists a path of edges of non-zero capacities from
s to v in the graph Gr. Similarly, a vertex v ∈ V is contained in the set Vt if there
exists a path of edges of non-zero capacities from v to t in the graph Gr. Vertices
that satisfy neither of these criteria, can belong to either Vs or Vt.
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Chapter 3

Fundamental Variational Models
in Imaging and Vision

In this chapter we introduce some variational models in image processing and
computer vision, which have become fundamentally important and occur over a
wide range of applications. They all have in common a data fitting term and a
regularization term. Section 3.1 - 3.3 deal with first order models, meaning the
energy functional only involves the first order derivatives of the unknowns. Some
higher order models are introduced in Section 3.4.

3.1 Pott’s model and the piecewise constant Mumford-

Shah model

Image segmentation with several regions is one of the core problems in image
processing and computer vision. One would like to classify the image into regions,
each representing an object. Each object should in some sense share the same
intensity profile. As a prior assumption, the objects should possesses a certain
regularity. They are not just random noise scattered around the image domain. In
a variational framework, a simple, but very powerful, integration of such a prior is
to seek objects with small boundary lengths (in 2D), or surface area (in 3D). Such
formulations were first proposed [17] in a variational framework. The discrete
equivalent of such models are called Pott’s model. The Pott’s model originates
from statistical mechanics [72], but has become fundamentally important in image
processing and computer vision, especially as energy minimization formulation
of segmentation and grouping problems. Its first appearance in this connection
dates back to [30], but in the discrete setting and a little different form, we refer
the reader to Section 5.1.2 for more details. In this thesis we also refer to Pott’s
model as its the continuous counterpart.

If the image domain Ω is continuous, one seeks a partition {Ωi}ni=1 of Ω. Let
fi(x) be the cost of assigning x to Ωi, the Pott’s model tries to assign each x
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to the region Ωi with smallest cost fi(x), while minimizing the lengths of the
boundaries of the partitions Ωi as spatial regularity.

min
{Ωi}ni=1

n∑
i=1

∫
Ωi

fi(x) dx+ ν
n∑

i=1

|∂Ωi| (3.1)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 	= l ,

Here |∂Ωi| denotes the perimeter of the subdomain Ωi (e.g. the length of the
boundary ∂Ω in 2D). The data cost functions fi should depend in some sense on
the input image I. An important example is the Mumford-Shah data term

fi(x) = |I(x)− ci|β, i = 1, ..., n (3.2)

where ci ∈ R are parameters associated with each Ωi. The model (3.1) with data
term (3.2) and β = 2 can minimized over the parameters ci as proposed in [17]

min
{Ωi}ni=1,{ci}ni=1

n∑
i=1

∫
Ωi

|I(x)− ci|β dx+ ν
n∑

i=1

|∂Ωi| (3.3)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 	= l.,

The optimal values of {ci}ni=1 will naturally be the mean intensity values inside
Ωi when β = 2 (usually β = 2) as observed in [17]. Often (3.3) is referred to as
the piecewise constant Mumford-Shah model, although this is slightly incorrect,
see Section 3.3.

Segmentation models of the form (3.1) are often called region based models,
because the image is divided according to characteristics of each region. Another
type of segmentation models distinguish the objects by using edge information
of the image, i.e. they try to locate the object boundaries. In a variational
framework, such models are often called geodesic active contour models [45, 11].
In [8, 82], it was shown that combination of region based and edge based models
have many advantages. They only studied problems with two regions, but their
approach can straight forwardly be extended to problems with several regions.

Let Ci(si), si ∈ [0, 1) be a parametrization of the curve ∂Ωi. A more general
variant of (3.1) can be written as

min
{Ωi}ni=1

n∑
i=1

∫
Ωi

fi(x) dx+ ν
n∑

i=1

∫
si∈[0,1)

g(Ci(si)) dsi (3.4)

s.t. ∪n
i=1 Ωi = Ω , Ωk ∩ Ωl = ∅ , ∀k 	= l ,

If the function g(Ci(si)) = ν for all si ∈ [0, 1), then (3.4) reduces to (3.1). g(s)
be can also be an edge detector function, for instance

g(si) =
1

c|∇Iσ(Ci(si)|2 + 1
, (3.5)
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where Iσ is a smoothed version of the input image I. It forces the boundaries of
the regions to be aligned along the edges of the image. The more general model
(3.4) also fits directly into the optimization frameworks of this thesis.

Energy functionals of the form (3.1) also appear naturally in other problems,
like surface reconstruction from point cloud data and 2D-3D surface reconstruc-
tion. More details about these two applications can be found in Paper J and
Paper E respectively.

The Pott’s model is natural for problems like image segmentation, because
the regularization term does not favour any particular inclusion of the regions.
On the other hand, computation of a solution raises some fundamental problems.
The discrete counterpart of (3.1) can be be seen as a multiway cut problem,
which is known to be NP-hard for n > 2 [21].

3.2 Total variation

Total variation is an important concept in inverse problems and numerical anal-
ysis. In image processing it is the only regularizer which is both convex and edge
preserving. It also occurs naturally in implicit representations of geometrical
problems involving curve lengths and surface areas, like the Pott’s model.

The total variation (TV) of a function u : Ω �→ R is defined as

TV(u) =

∫
Ω

|∇u| dx, (3.6)

where |∇u| is meant in the distributional sense. A more strict definition can be
given by duality

Definition 3.1 The total variation of a function u ∈ L1(Ω), Ω ⊂ R
N , is defined

as

TV(u) = sup
p
{
∫
Ω

u div p dx : p ∈ C∞
c (Ω,RN), |p(x)| ≤ 1, ∀x ∈ Ω}. (3.7)

Here C∞
c (Ω,RN) is the set of smooth vector fields on Ω with compact support.

The norm |.| in (3.6) and (3.7) is usually the 2-norm, |p(x)|2 =
√
p21(x) + ...+ p2N(x),

in which case (3.6) and (3.7) are called isotropic total variation. If the 1-norm is
used, |p(x)|1 = |p1(x)| + ... + |pN(x)|, then (3.6) and (3.7) are called anisotropic
total variation. If u is smooth, the equivalence between (3.6) and (3.7) follows
directly by integration by parts. Functions with bounded total variation are said
to belong to the space of bounded variation.

Definition 3.2 The space of functions of bounded variation (BV) is defined as

BV(Ω) = {u ∈ L1(Ω) s.t. TV(u) <∞}. (3.8)
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Minimization problems involving total variation are examples of variational prob-
lems of the form (2.1), where X is typically BV(Ω). Note that BV(Ω) is a Banach
space, but not a Hilbert space (inner product space).

3.2.1 Important properties

A crucial property of the BV space is that it allows for discontinuous functions,
that is, the total variation of a discontinuous function is finite. For instance, it
can be shown

Theorem 3.3 Let u be the binary characteristic function of the set S ⊂ Ω ⊂ R
N ,

i.e.

u(x) :=

{
1 , if x ∈ S
0 else

, (3.9)

then ∫
Ω

|∇u| dx = |∂S| (3.10)

where |∂S| = HN−1(∂S) is the N − 1 - dimensional Hausdorff measure of ∂S,
i.e. the curve length of ∂S for N = 2 and the surface area of ∂S for N = 3.

For a proof see e.g. [2, 27, 61]. Therefore, total variation will be one of the
keys for representing geometrical minimization problems, like the Pott’s model,
in terms of functionals instead of subsets. Another important property of total
variation is the coarea formula, which will be used extensively in this thesis.

Theorem 3.4 Let u ∈ BV(Ω), denote by S� the 
- upper level set of u

S� = {x ∈ Ω : u(x) ≥ 
} (3.11)

and let u� denote its characteristic function

u�(x) :=

{
1 , if u(x) ≥ 

0 else

. (3.12)

Then

TV(u) =

∫ ∞

−∞
|∂S�| d
 =

∫ ∞

−∞

∫
Ω

|∇u�| dx d
. (3.13)

The equality (3.13) is called the coarea formula.

Proofs of can found in [28]. We also list some other important properties.

Theorem 3.5 TV(u) is

• convex
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• one-homogeneous, that is, for any t > 0

TV(tu) = tTV(u) (3.14)

• lower semi-continuous

For proofs, see e.g [15]. The second property can be seen from

tTV(u) = t sup
p
{
∫
Ω

u div p dx : p ∈ C∞
c (Ω), |p(x)| ≤ 1, ∀x ∈ Ω}

= sup
p
{
∫
Ω

u div(tp) dx : p ∈ C∞
c (Ω), |p(x)| ≤ 1, ∀x ∈ Ω}

= sup
p
{
∫
Ω

u div p dx : p ∈ C∞
c (Ω), |p(x)| ≤ t, ∀x ∈ Ω}

This expression can alternatively be written

tTV(u) = sup
p∈Ct

∫
Ω

u div p dx, (3.15)

where the set Ct is defined as

Ct = {p ∈ C∞
c (Ω,RN), s.t. |p(x)| ≤ t, ∀x ∈ Ω}. (3.16)

3.2.2 The ROF model and total variation regularized mod-
els

Discontinuity preservation is one of the motivations for the Rudin-Osher-Fatemi
(ROF) model of image denoising [49], which uses total variation as a regulariza-
tion term for reconstructing an image u from a noisy image I by minimizing

min
u

1

2

∫
Ω

|u(x)− I(x)|2 dx+ ν

∫
Ω

|∇u| dx. (3.17)

More general models can be formulated with data term

min
u

∫
Ω

ρ(u(x), x) dx+ ν

∫
Ω

g(x)|∇u| dx. (3.18)

For instance
ρ(u(x), x) = |u(x)− I(x)|β (3.19)

where β = 2 corresponds to the ROF model and β = 1 corresponds to the TV −L1
model. Both these models are convex, l.s.c. and coercive, therefore minimizers
exist. The ROF model, being strictly convex, possesses a unique solution, which
is in contrast to the TV − L1 model. Let us mention that models can also be
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formulated that does not have the exact form of (3.18), such as the deblurring
model

min
u

1

2

∫
Ω

|Au− I|2 dx+ ν

∫
Ω

|∇u| dx. (3.20)

where A is a blurring operator.
There has been a lot of attention paid to numerical method for the ROF

model and recently the TV − L1 model, some of the most successful algorithms
for ROF are based on its equivalent dual formulation.

3.2.3 Dual formulation of the ROF model

The ROF model (3.17) has the form of a saddle point problem

min
u

sup
p∈Cν

1

2

∫
Ω

|u(x)− I(x)|2 dx+
∫
Ω

u div p dx. (3.21)

A dual formulation can be derived which only depends on the variable p, see
e.g. [10, 20, 14]. Simpler and faster algorithms can be derived based on the dual
formulation. Observe that the min and sup operators can be interchanged by the
minimax theorem (see e.g., [25] Chapter 6, Proposition 2.4), resulting in

sup
p∈Cν

min
u

1

2

∫
Ω

|u(x)− I(x)|2 dx+
∫
Ω

u div p dx. (3.22)

For any p, the optimal u is given by the formula

u = I − div p. (3.23)

By inserting in (3.22), we obtain the dual formulation of the ROF model

sup
p∈Cν

1

2

∫
Ω

|I(x)|2 − (I − div p)2 dx,

which, by ignoring the constant term, is equivalent to

sup
p∈Cν

−1

2

∫
Ω

(I − div p)2 dx. (3.24)

In this work, we also derive dual formulations of other important models,
where total variation is involved, like total variation with general data term (3.18).

3.2.4 Discretization

In order to compute a solution numerically, discretization is necessary. There are
several ways to discretize energy functionals involving total variation. We state
here the most common approach based on finite differences, which will be useful
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in the review of related work. In the papers, discretizations based on the mimetic
finite difference method are also applied. More details about this scheme can be
found in paper C and [41, 40]. We restrict ourselves to 2-D grids for simplicity,
generalizations to N-D should be straight forward. Define the discrete grid Ωd as

Ωd = {(ih, jh) : i = 1, ..., N1, j = 1, ..., N2} (3.25)

where h is the grid size. Let ui,j denote the discrete approximation of u at the
point (ih, jh). The space of all discrete images is defined as X = R

N1N2 , which is
finite dimensional and therefore a Hilbert space. A forward discretization of the
gradient ∇ : X �→ X ×X can be derived as

(∇u)i,j =
(
(Dxu)i,j, (D

yu)i,j
)T

(3.26)

where

(Dxu)i,j = ui+1,j − ui,j/h, i = 1, ..., N1 − 1, j = 1, ..., N2, (3.27)

(Dxu)i,j = 0 i = N1, j = 1, ..., N2 (3.28)

(Dyu)i,j = ui,j+1 − ui,j/h, i = 1, ..., N1, j = 1, ..., N2 − 1, (3.29)

(Dyu)i,j = 0, i = 1, ..., N1, j = N2. (3.30)

A discrete approximation of the isotropic total variation can then be expressed
as

TVd(u) = h2
∑
i,j

√∣∣ui+1,j − ui,j
h

∣∣2 + ∣∣ui,j+1 − ui,j
h

∣∣2 (3.31)

and the anisotropic total variation can be written

TVd(u) = h2
∑
i,j

|ui+1,j − ui,j
h

|+ |ui,j+1 − ui,j
h

| (3.32)

The divergence div is defined as the adjoint ∇∗ of the operator ∇ by

〈∇u, p〉 =
∑
i,j

∇uTi,jpi,j =
∑
i,j

ui,j(∇∗p)i,j =
∑
i,j

ui,j(div p)i,j = 〈u,∇∗p〉 (3.33)

for all u ∈ X and p = (px, py) ∈ X ×X. The expression for the adjoint applied
to p is given by

(div p)i,j = (∇∗p)i,j =
pxi,j − pxi−1,j + pyi,j − pyi,j−1

h
(3.34)

where px0,j = 0, j = 1, ..., N2 and pyi,0 = 0, i = 1, ..., N1. For ease of notation
we will often use the continuous operators

∫
,∇, div as a replacement of the

corresponding discrete operators throughout this thesis.
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3.3 The general Mumford-Shah model

The Mumford-Shah model [63] is another discontinuity preserving model, besides
the ROF model, which can be used for image restoration, primarily image denois-
ing. The Mumford-Shah model seeks an approximation image u which is smooth
everywhere except for a discontinuity set Γ. Regularity is also imposed on the
discontinuity set Γ itself.

min
Γ,u

EMS
α (Γ, u) =

∫
Ω

|u(x)− I(x)|βdx+ α

∫
Ω\Γ

|∇u|2 dx+ ν

∫
Γ

ds. (3.35)

The Mumford-Shah model is in some ways more ideal than the ROF model.
The energy functional does not depend on the sizes of the discontinuities. The
staircasing artifacts are also avoided. However, from a computational perspective
it is much harder. The energy functional of (3.36) is obviously non-convex. Even
worse, a combinatorial variant of (3.36) is NP-hard, see Section 5.1.4.

In the limit as the smoothness parameter α goes to infinity, (3.36) becomes

min
Γ,u

lim
α→∞

EMS
α (Γ, u). (3.36)

which is often called the piecewise constant Mumford-Shah model. As α goes
to infinity, the solution u will naturally be constant everywhere except for the
discontinuity set Γ. In consequence, the discontinuity set Γ will be a set of closed
curves and will separate the image domain Ω into several regions {Ωi}Ni=1. Within
each Ωi, it can be easily seen that u will take the mean value of I

u|Ωi
=

∫
Ωi
I(x) dx∫
Ωi
dx

, i = 1, ..., N. (3.37)

The Mumford-Shah model has a close connection to the Chan-Vese model (3.3),
in which case the optimal parameters ci will be also be mean values within each
Ωi, i = 1, ..., n. One difference is that the number of regions is fixed in advance
in (3.3), while the number of regions are unknown in the piecewise constant
Mumford-Shah model (3.36).

3.4 Higher order models

Higher order models have recently been developed, mainly for the application of
noise removal and inpainting. The main motivation is to yield smoother results
and avoid artifacts, like staircasing, which is often associated with first order
variational models. The first such higher order models were based on Euler’s
elastica [62, 60]. You and Kaveh [89] studied 4th order diffusion equations, where
the diffusion coefficient depends on the laplacian of the unknown. Lysaker et al.
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[58] proposed a higher order extension of total variation, the corresponding Euler-
Lagrange equation is also a fourth order PDE. In [59] a method was proposed
where the total curvature of the image acted as a regularization term, by using
total variation to smooth the normal vectors. See also [16, 33, 91, 95] for related
works. Higher order models that minimize some functionals of the curvature of
the image [18], [76], [83] and [95] are especially important. The main disadvantage
of these models is the high computational cost of minimizing the energies. We
will concentrate especially on the Euler’s elastica model [62, 60]. In Paper G
a new algorithm is proposed for minimizing the energy in this model, which is
much more efficient than alternative PDE approaches [18].

3.4.1 Euler’s elastica

Euler’s elastica as an image processing model was first introduced in [62]. It was
studied further in [62, 60]. PDE based optimization methods were developed in
[18]. In image processing, the model can be formulated as the minimization of
Euler’s elastica of all level curves of the image. The Euler’s elastica of a curve Γ
is given by the energy

E(Γ) =

∫
Γ

(a+ b · |k|β(s))ds, (3.38)

where a and b are two parameters and k is the curvature of Γ at position s.
By setting b = 0, E(Γ) measures the total length of the curve. If a = 0, E(Γ)
measures the total curvature of the curve. Therefore, the Euler’s elastica of all
level curves of an image u can be written as:

∫ L

�=0

∫
γ�:u=�

(a+ b · |k|β(s))dsd
. (3.39)

The power β can be set to β = 1 as in [60], or β = 2 as in [18]. The choice
of β = 1 allows cracks (sharp corners) of the level curves. By setting β = 2
differentiation is much easier, such that the Euler-Lagrange equations do not get
too complicated.

Note that the curvature of the level curve can be expressed as a function of u
by

k(u) = ∇ ·
( ∇u
|∇u|

)
. (3.40)

Using this fact, (3.39) can be expressed more simply as

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣
β
)
|∇u| dx. (3.41)
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For the image denoising application, Euler’s elastica can be used as a regu-
larization term to approximate the noisy image I with an image u by minimizing

min
u
EEL(u) =

∫
Ω

|u− I|2 dx+

∫
Ω

(
a+ b

∣∣∣∣∇ · ∇u
|∇u|

∣∣∣∣
β
)
|∇u|dx. (3.42)
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Chapter 4

Continuous Optimization
Approaches for Variational
Models in Imaging and Vision

In this chapter, we give an overview of existing optimization approaches for the
variational problems introduced in Chapter 3.

4.1 Level set methods for partitioning problems

The first attempts to solve segmentation and partitioning problems in a varia-
tional framework was via the level set method [65]. The level set method was
originally developed as a computational tool for solving Hamilton-Jacobi equa-
tions involving evolving fronts and shocks. It has later been applied with great
success in image processing, computer vision and computer graphics. Given a
subset S ⊂ Ω ⊂ R

N , where Ω is a bounded domain in R
N . The boundary of

S is a closed orientable manifold in R
N denoted ∂S. If N = 2, then ∂S is a

curve, if N = 3 then ∂S is a two dimensional surface. The boundary ∂S can
be represented as the zero level set of a ”level set function” φ defined in R

N as
follows ⎧⎨

⎩
φ(x) > 0, for x ∈ S,
φ(x) < 0, for x ∈ Ω\S,
φ(x) = 0, for x ∈ ∂S,

(4.1)

For numerical stability reasons, φ should not be too steep or too shallow. A usual
choice of φ is the signed distance function.

φ(x) =

⎧⎨
⎩

dist(x, ∂S), for x ∈ S,
−dist(x, ∂S), for x 	∈ S,

0, for x ∈ ∂S.
(4.2)
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4.1.1 Chan-Vese model two regions

The Chan-Vese model (3.3) restricted to two regions can be written in terms of
a level set function φ by requiring φ(x) > 0 for x ∈ Ω1, φ(x) < 0 for x ∈ Ω2 and
φ(x) = 0 for x ∈ ∂Ω1 = ∂Ω2 as

min
φ,c1,c2

∫
Ω

{H(φ)|c1 − u0|β + (1−H(φ))|c2 − u0|β}dx+ 2ν|∇H(φ)| dx (4.3)

where H(·) : R �→ R is the Heaviside function: H(s) = 0 if x < 0 and H(s) = 1
if x ≥ 0. H(φ) is the characteristic function of the region Ω1, therefore the
last term of (4.3) equals 2|∂Ω1|, by the result (3.10). The functional in (4.3) is
highly nonconvex due to the heaviside function H. To solve the minimization
problem numerically, [17] proposed to solve the Euler Lagrange equation of (4.3)
by gradient descent. The gradient descent equation can be derived as

φt = δ(φ)

{
− {(c1 − u0)2 − (c2 − u0)2}+ ν∇ ·

( ∇φ
|∇φ|

)}
, (4.4)

The last term of (4.4) is the mean curvature of ∂S. For this reason, the evolution
(4.4) is often called the mean curvature flow if the data terms are ignored.

In addition, (4.3) can be optimized for c1, c2 by updating the means

c1 =

∫
Ω
H(φ(x; t) I(x) dx∫
Ω
H(φ(x; t) dx

, c2 =

∫
Ω
(1−H(φ(x; t)) I(x) dx∫
Ω
(1−H(φ(x; t)) dx

, (4.5)

after each time step of (4.4).

4.1.2 Multiphase level set method of Zhao et al.

There has been several attempts to extend the level set approach to problems
with multiple regions. Zhao et al. [37] did not study minimization problems of
the form (3.1), but developed a level set method for motion of multiple junctions
under mean curvature flow. However, their approach can also be extended to
minimization problems such as (3.1).

Any partition Ωi, i = 1, ..., n of the domain Ω satisfying the constraints in
(3.1), can be described in terms of n level set functions φi, i = 1, ..., n as follows⎧⎨

⎩
φi(x) > 0, for x ∈ Ωi,
φi(x) < 0, for x ∈ Ω\Ωi,
φi(x) = 0, for x ∈ ∂Ωi,

(4.6)

for i = 1, ..., n. The vacuum and overlap constraints (3.1) of the subsets Ωi,
i = 1, ..., n, can be imposed by placing the following constraint on φi, i = 1, ..., n

n∑
i=1

H(φi(x)) = 1, ∀x ∈ Ω. (4.7)
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The Potts model (3.1) can then be written in terms of φi, i = 1, ..., n as

min
φ

ν
n∑

i=1

∫
Ω

|∇H(φi)|+H(φi(x))fi(x) dx (4.8)

subject to (4.7). Gradient descent equations can be derived by introducing a
lagrange multiplier for the constraint (4.7), the details are omitted here. Since
both the objective function and constraint is non-convex, this approach can of
course not compute global solutions. This representation is especially relevant
for the material in Paper C.

4.1.3 Multiphase level set method of Vese and Chan

In [84] L. Vese and T. Chan proposed another level set approach for representing
multiple regions, which has become very popular. By using m = log2(n) level
set functions, denoted φ1, ..., φm, n region could be represented. An important
special case is the representation of 4 regions by two level set functions φ1,φ2, as
in Table 4.1. The energy functional could then be written

min
φ1,φ2,c1,...,c4

ECV (φ
1, φ2, c1, ..., c4) = ν

∫
Ω

|∇H(φ1)|+ ν

∫
Ω

|∇H(φ2)| (4.9)

+

∫
Ω

{H(φ1)H(φ2)|c1 − u0|β +H(φ1)(1−H(φ2))|c2 − u0|β)

+(1−H(φ1))H(φ2)|c3 − u0|β + (1−H(φ1))(1−H(φ2))|c4 − u0|β}dx.
(4.9) is often referred to as the multiphase Chan-Vese model. Observe that (4.9)
does not correspond exactly to the Potts model (3.1), because the regularization
term in (4.9) ”overcounts” two of the boundaries. The length of the boundaries
between Ω1, Ω4 and between Ω2, Ω3 are counted twice, while the remaining 4
different boundaries are counted twice. This small approximation usually does
not have a large impact on the results and the model (4.9) has become very
popular for its simplicity.

The energy functional of (4.9) is non-convex due to the heaviside functions
and multiplications between φ1 and φ2. The traditional minimization approach
of solving the gradient descent equations can therefore easily get stuck in a local
minima. Furthermore, the numerical solution of the gradient descent PDEs is
expensive computationally.

4.1.4 Piecewise Constant Level set Method

In [56, 55, 54], the piecewise constant level set method was proposed, and applied
to the Mumford-Shah model. The use of heaviside functions can be avoided by
instead requiring the level set function itself to take integer values. Let {Ωi}ni=1
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x ∈ phase 1 iff φ1(x) > 0, φ2(x) > 0
x ∈ phase 2 iff φ1(x) > 0, φ2(x) < 0
x ∈ phase 3 iff φ1(x) < 0, φ2(x) > 0
x ∈ phase 4 iff φ1(x) < 0, φ2(x) < 0

Table 4.1: Representation of four phases by two level set functions φ1 and φ2.

be a partition of the Ω into n regions. Any such partition can be described by a
piecewise constant level set function φ as follows

φ = i in Ωi for i = 1, 2, ..., n. (4.10)

Note that all interphases are represented by discontinuities in φ. The Mumford-
Shah functional can then be written in terms of φ as

E(c, φ) =

∫
Ω

(u− u0)2dx+ ν
n∑

i=1

∫
Ω

|∇ψi|dx, (4.11)

where u =
∑n

i=1 ciψi, and ψi is the characteristic function of Ωi. It can be
expressed as a polynomial in φ as

ψi =
1

αi

∏
j=1j �=i

(φ− j) with αi =
∏

k=1k �=i

(i− k). (4.12)

Due to the high nonlinearity and nonconvexity of ψi, (4.13) is often approximated
as

E(c, φ) =

∫
Ω

(u− u0)2dx+ ν

∫
Ω

|∇φ|dx, (4.13)

In order to force a solution taking only integer values, the following constraint
was imposed

K(φ) =
n∏

i=1

(φ− i) (4.14)

The constrained optimization problem (4.13)-(4.14) can be solved by the aug-
mented Lagrangian method as in [56, 55, 54], by introducing a lagrange multiplier
for the constraint (4.14). Some attempts to speed up the computation can be
found in [79].

4.2 Convex formulation of partitioning problems

with two regions

The level set methods cannot in general find global solutions due to the non-
convexity of their formulations. In practice they may easily get trapped in local
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minima, unless the initialization is very good, even for simple images. For prob-
lems with two regions, a convex formulation was given in [19, 78] which made it
possible to compute global solutions. Observe that by requiring φ1(x) = 1 for
x ∈ Ω1 and φ2(x) = 0 for x ∈ Ω2, like in the piecewise constant level set method,
the Potts model can be written

min
φ
ν

∫
Ω

|∇φ|dx+ {φf1 + (1− φ)f2}dx. (4.15)

such that
φ(x) ∈ {0, 1}, ∀x ∈ Ω (4.16)

This problem is non-convex since the binary set (4.16) is non-convex. A convex
relaxation can be formulated by instead minimizing (4.15) over the larger convex
set

φ(x) ∈ [0, 1], ∀x ∈ Ω. (4.17)

In [19, 78] it was shown that such a relaxation is always exact. That is, there
exists binary solutions of the relaxed problem (4.15) subject to (4.17), which are
also globally optimal to the original problem (4.15) subject to (4.16). Such binary
solutions can be obtained by thresholding the solutions of the relaxed problem
as the next result shows.

Theorem 4.1 Let φ be globally optimal to the relaxed problem (4.15) subject to
(4.17). For any t ∈ (0, 1] define φt by

φt(x) =

{
1 , if φ(x) ≥ t
0 , else.

. (4.18)

Then, for almost every t ∈ (0, 1], φt is a global solution of (4.15) subject to (4.16).

The proof can be found in [19].

4.3 Convex relaxation approaches for partition-

ing problems with more than two regions

Partitioning problems with more than two regions are NP-hard in general, as
mentioned in section 3.1, and which will be discussed in more detail in Section
5.1.2. In the last two years, and simultaneously with much of the work in this
thesis, attempts to convexify (3.1) have been proposed [92, 51, 67, 9]. One first
thing one might try, is to apply the same binary relaxation approach to the
multiphase level set formulation of Chan and Vese from Section 4.1.3. The model
(4.9) can be written with in terms of φ1, φ2 ∈ D = {φ | φ : Ω �→ {0, 1}} as

min
φ1,φ2∈D,c1,...,c4

ECV (φ
1, φ2, c1, ..., c4) = ν

∫
Ω

|∇φ1|dx+ ν

∫
Ω

|∇φ2|dx+Edata(φ1, φ2),

(4.19)
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where

Edata(φ1, φ2) =

∫
Ω

{φ1φ2|c1 − u0|β + φ1(1− φ2)|c2 − u0|β)

+(1− φ1)φ2|c3 − u0|β + (1− φ1)(1− φ2)|c4 − u0|β}dx.
The connections between φ1, φ2 and the regions are given in Table 4.2. In fact,
such a formulation appeared in [55], as a variant of the piecewise constant level
set method (PCLSM). In order to solve the equations, the constraints were repre-
sented with non-convex polynomials and lagrange multipliers in [55]. One could
attempt to replace the non-convex constraint φ1, φ2 ∈ {φ | φ : Ω �→ {0, 1}} with
the convex constraints φ1, φ2 ∈ {φ | φ : Ω �→ [0, 1]} and then solve the problem.
However, the objective function of (4.19) is not convex in φ1, φ2, therefore such
an approach will not produce a global solution.

As suggested in [92, 51], one could instead attempt the same binary relaxation
for the multiphase representation of Zhao et al. [37] from Section 4.1.2, i.e.
minimize (4.8) subject to (4.7). By writing (4.8) subject to (4.7) with binary
functions φi, i = 1, ..., n instead of level set functions, one obtains

min
φ

ν
n∑

i=1

∫
Ω

|∇φi|+ φi(x)fi(x) dx, (4.20)

subject to
n∑

i=1

φi(x) = 1, ∀x ∈ Ω, (4.21)

and the binary constraints

φ1, ..., φn ∈ {φ | φ : Ω �→ {0, 1}}. (4.22)

If one were to relax the binary constraints (4.22) with the convex constraint

φ1, ..., φn ∈ {φ | φ : Ω �→ [0, 1]}. (4.23)

the overall problem would be convex. The question which now arises, is how
minimizers of the relaxed problem (4.20) subject to (4.21) and (4.23) are related
to the original problem. There are no simple thresholding scheme, like theorem
4.1 for problems with two regions, to obtain binary solutions. In [92, 51], it was
proposed to use the indicator function of the largest component φi as the final φ,
i.e. the thresholded solution φ̃ was selected as

φ̃k(x) =

{
1 if k = argmaxi=1,...,n u

∗
k

0 otherwise
. (4.24)

Such a binary φ̃ may not be a global optimum of the original problem, but can be
accepted as an approximate solution. In paper C, the problem is analyzed from a

42



dual perspective. A thresholding scheme is derived for producing solutions of the
original problem from a dual solution of the relaxed problem. The thresholded
solution is global under some conditions and close to global otherwise. An efficient
algorithm is also proposed based on the dual formulation, which is shown to
produce final binary solutions significantly faster than other alternatives. In
paper H, the dual model is reformulated as continuous max-flow problem, and a
continuous max-flow algorithm is developed.

In [67] another attempt to convexify the problem (3.1) was made. This ap-
proach can in fact be shown to be tighter than (4.20) subject to (4.21) and
(4.23), but is much more difficult to handle computationally. Especially since the
number of side constraints grow quadratically in n. The proposed optimization
algorithm requires to project the variables onto the feasible set for every iteration
of the main algorithm. Since no closed form solution exists for such a complex
projection, it must be computed by an iterative algorithm. As part of Paper E, a
faster algorithm is proposed which avoid to compute projections by an iterative
algorithm, but is still much slower than the other approaches due to the quadratic
complexity of the problem. The details can be found in paper E.

In paper F, a convex formulation of the level set representation of the Chan
and Vese (4.9) model with 4 regions is proposed. This approach is guaranteed
to produce a global solution provided the data term satisfies some mild condi-
tions. Since there is a slight simplification of the length term in this model, the
optimization problem is not NP-hard. Furthermore, a new convex relaxation of
problems with Potts regularization (i.e. without such a simplification) is pro-
posed. This relaxation is both the tightest and most simple that exists, but is so
far limited to problems with 4 regions.

It should be mentioned that some other work on fast algorithms for the above
relaxations (except the one in paper F), have appeared after and simultaneously
with the papers in this thesis. A direct comparison have therefore not yet been
made with these. In [50, 52] algorithms for 4.20 and the relaxation [67] were
proposed based on the same idea as the augmented lagrangian / split-bregman
method for the ROF model (to be discussed in Section 4.4.2). It was shown
the expensive iterative algorithm for computing projections as in [67] could be
avoided by instead introducing more lagrange multipliers. Although no direct
comparison is made, in paper D it was shown that the new algorithms based on
continuous max-flow converged faster than the split-bregman algorithm applied
to convex formulations of partitioning problems with two regions.
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x ∈ phase 1 iff φ1(x) = 1, φ2(x) = 1
x ∈ phase 2 iff φ1(x) = 1, φ2(x) = 0
x ∈ phase 3 iff φ1(x) = 0, φ2(x) = 1
x ∈ phase 4 iff φ1(x) = 0, φ2(x) = 0

Table 4.2: Representation of four phases by binary level set functions.

4.4 Numerical methods for total variation min-

imization

There has recently been much efforts on designing efficient algorithms for mini-
mizing the energy in the ROF model and TV-L1 model. Some of these approaches
have been further applied in algorithms for solving more complex problems with
more constraints on the unknowns or more general data terms. We will briefly
discuss the most important approaches. In this section, we assume that the func-
tions involved are discretized. The operators

∫
,∇, div are used as replacements

for discrete integrals, gradients and sums for ease of notation. The algorithms
allow for many discretization schemes of these operators, for instance the dis-
cretization schemes discussed in Section 3.2.4 can be applied.

4.4.1 Algorithms for ROF based on the Dual formulation

An algorithm for the ROF model can be constructed based on its equivalent dual
formulation by the projected gradient method. Observe that the dual formulation
of the ROF model can be written

max
p∈Cν

−1

2
|| div p− I||2 +G(p), (4.25)

where

G(p) = ICν =

{
0 if |p| ≤ ν
∞ else

. (4.26)

The forward-backward splitting algorithm (2.35) then reduces to: for k = 1, ...

pk+1 = ΠCν (p
k + δ∇(div pk + I)) (4.27)

Such an algorithm can alternatively be written

pk+1 =
pk + δ∇(div pk + I)

max(ν, |pk + δ∇(div pk + I)|2) (4.28)

Chambolle [14] derived a little different algorithm based on the dual formulation
as follows

pk+1 =
pk + δ∇(div pk + I)

ν + |pk + δ∇(div pk + I)|2 (4.29)
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4.4.2 Augmented lagrangian approaches

In order to deal with non-differentiability of the primal formulation of the ROF
model (3.17) another variable can be introduced as q = ∇u. Then (3.17) can
equivalently be formulated as

min
u,q

∫
Ω

|q|+ (u− I)2 dx (4.30)

such that
q = ∇u (4.31)

By introducing a lagrange multiplier λ for the constraint (4.31), the augmented
Lagrangian functional of (4.30) can be written

min
u,q

sup
λ
L(u, q, λ) =

∫
Ω

|q|+ (u− I)2 + λ(∇u− q) +
c

2
(∇u− q)2 dx (4.32)

The augmented Lagrangian method (2.28) outlined in Section 2.1.3 reduces in
this case to

uk+1 =argmin
u

L(qk, u, λk) (4.33)

qk+1 =argmin
u

L(q, uk+1, λk) (4.34)

λk+1 =λk + c(qk+1 −∇uk+1) (4.35)

(4.36)

This algorithm is equivalent to the split-bregman algorithm introduced in [32],
which has been pointed out in several recent works [81, 26, 77]. The dual variables
λ also have a strong connection to the dual variables p in (4.25), see e.g. [81].

4.4.3 Primal-dual Arrow-Hurwicz type approaches

A third class of algorithms is the primal-dual methods, which alternates gradi-
ent descent steps in the primal variables and gradient ascent steps in the dual
variables. Consider the general problem

min
u∈S

max
p∈C

〈p, Au〉 − h(u), (4.37)

where A is some linear operator. We assume the function h(u) is differentiable.
If S = BV (Ω), C = Cν , h(u) = ||u − I||2, A = −∇ and C = Cν then (4.37)
corresponds to the ROF model. In [44] an algorithm for optimizing (4.37) was
proposed. Choose two time steps σ, τ and solve for k = 1, ...

pk+1 =ΠC(p
k + σAuk) (4.38)

uk+1 =ΠS(u
k + τ(A∗pk+1 +

∂h

∂u
(u)). (4.39)
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In the context of the ROF model, such a scheme was first proposed in [93]. The
scheme (4.38), (4.39) also applies directly if u constrained to some set S, like for
instance the set [0, 1] in the convex formulation of Pott’s model with two regions
(4.15) subject to (4.17). An acceleration of such schemes was later proposed by
Popov in 1980 [71]. This scheme has recently been applied in recent works where
the unknowns are constrained to various sets [68, 69, 67].

4.5 Algorithms for the Mumford-Shah model

and higher order models

We will just briefly mention some numerical approaches for the piecewise smooth
Mumford-Shah model and higher order models, without going into details. The
piecewise smooth Mumford-Shah model [63] can be addressed numerically by
phase field approaches [1]. It can also be solved approximately as the steady
state of the Perona-Malik nonlinear diffusion equations [66], which can be shown
converges to a local minimum of the piecewise smooth Mumford-Shah model.
Recently, a convex relaxation of the piecewise smooth Mumford-Shah model ap-
peared in [68], using a higher dimensional formulation of the problem. The higher
order models have typically been addressed by solving the Euler-Lagrange PDEs
directly, a process which is very time consuming due to the time strict step re-
strictions. Very recently, some faster optimization methods have been developed,
as applications of more general convex optimization algorithms, the Euler’s elas-
tica model in [80], and the LLT model in [87]. A more extensive review can be
found in the paper G.
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Chapter 5

Fundamental Discrete Energy
Models and Optimization
Methods

Variational models in imaging are formulated under the assumption of a contin-
uous image domain and are approached numerically by continuous optimization
techniques. Energy minimization models can also be formulated over the discrete
image domain directly. Such models have been independently developed in the
discrete and combinatorial optimization community. We will see that the discrete
models have a lot in common with the variational models discussed in Chapter
3 and are often equivalent in the continuum limit. The discrete optimization
algorithms have many advantages over the continuous algorithms. In some cases
they can find global solutions and often have a high efficiency. One crucial dis-
advantage of discrete models is the grid bias and lack of subgrid accuracy. The
algorithms do not parallelize as well as continuous optimization algorithms, which
can be easily implemented on GPU.

5.1 Discrete energy models and Markov ran-

dom fields

Optimization problems are defined over a set of grid points. For example, in 2-D,
such a set of pixels can be enumerated by

P = {(i, j), i = 1, ..., N1, j = 1, ..., N2}. (5.1)

If a uniform mesh, with mesh size h, is assumed, P enumerates the grid points
of the discrete grid

{(ih, jh), i = 1, ..., N1, j = 1, ..., N2}.
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Let u be a function defined over the discrete grid. For p = (i, j) ∈ P , the notation
up = ui,j = u(ih, jh) is used to refer to the function value of u at location (ih, jh).
Usually the mesh size h is assumed to be 1. For each p ∈ P a neighborhood system
Np is defined, consisting of elements q ∈ P that are ”close” to p according to
some measure. For the 2D grid (5.1) ”close” could mean (and usually means)
grid points with the smallest euclidian distance to p, two examples would be the
4 neighborhood system and 8 neighborhood systems.

N 4
p = {(i± 1, j), (i, j ± 1)} ∩ P

N 8
p = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)} ∩ P .

Extensions to 16, 32, 64 etc. neighbors should be obvious. For simplicity of
notation, we also define the set of neighboring grid points as

N = {(p, q) ∈ P × P : q ∈ N (p) for some p ∈ P}. (5.2)

An energy function can be constructed which contains one variable up for
each grid point p ∈ P . Such a function is often called a ”labeling function”
and is constrained to take values from a predefined finite set of real numbers
L = {
1, ..., 
n}. In quantized gray scale image restoration and processing, each
label may correspond to a gray value, for instance L = {1, ..., 256}. In image
segmentation and partitioning problems, each label may correspond to a region,
i.e. L = {1, ..., n} and up = i if and only if p is assigned to region i.

First order markov random fields (mrfs) contain interaction terms between
at most two of the variables. Since their introduction in imaging and vision by
Geman and Geman [30], they have become among the most popular and widely
used energy minimization models due to their simplicity and expressive power.
1st order mrfs can in general be written in the form

min
u

∑
p∈P

fp(up) +
∑

(p,q)∈N
V pq(up, uq) (5.3)

such that
up ∈ {
1, ..., 
n}, ∀p ∈ P (5.4)

The most useful first order mrfs in imaging and vision have the form of

min
u

∑
p∈P

fp(up) +
∑

(p,q)∈N
g(up − uq) (5.5)

such that
up ∈ {
1, ..., 
n}, ∀p ∈ P (5.6)

If the function g is convex, problems of the form (5.5) can be optimized exactly
by graph cuts, as shown in [42]. The function fp(.) can be arbitrary, possibly
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non-convex. In [23] it was shown that, more generally, if the function V pq is sub-
modular, (5.7) can be optimized exactly by graph cuts. Although polynomially
solveable, the algorithms are extremely computationally demanding in the gen-
eral case, especially since the number of edges in the graph grows quadratically
in n. In some special cases, faster algorithms are available. More details on this
will be provided in Section 5.2. If V pq is not submodular, or g is not convex, the
problems (5.7) and (5.5) are NP-hard.

5.1.1 1st order binary markov random fields

When the set of feasible labels is binary, the problem (5.7) becomes

min
u

∑
p∈P

fp(up) +
∑
p∈P

∑
q∈N k(p)

V pq(up, uq) (5.7)

such that
up ∈ {0, 1}, ∀p ∈ P (5.8)

One can assume, without loss of generality, that 
1 = 0 and 
2 = 1. Submodu-
larity reduces in this case to

V pq(1, 1) + V pq(0, 0) ≤ V pq(1, 0) + V pq(0, 1), ∀(p, q) ∈ N (5.9)

We will in particular consider

V pq(up, uq) = wpq|up − uq| (5.10)

If the 4-neighborhood system N 4
p is chosen and wpq = hν for all (p, q) ∈ N , (5.10)

reduces to

∑
p∈P

∑
q∈N 4(p)

hν|up − uq| =
N1∑
i=1

N2∑
j=1

h2ν(|ui+1,j − ui,j
h

|+ |ui,j+1 − ui,j
h

|) (5.11)

which is exactly the forward discretization of the anisotropic total variation from
Section 3.2.4. As discussed in Section 3.2.1, the total variation of a binary charac-
teristic function of a set S in 2-D, is equal to the euclidian length of the boundary
of the set S. However, this result only holds for the isotropic variant of total varia-
tion (3.7) with the 2-norm. It is also possible to approximate the euclidian length
with arbitrary precision with V pq(., .) chosen in the form (5.10). By using a result
from integral geometry called the Cauchy-Crofton formula, the weights wpq can
be derived as [5]

wpq =
ν h2 π

k|ph− qh|2 (5.12)

It can be shown that as the mesh size goes to zero and the number of neighbors k
in the neighborhood systemN k(p) goes to infinity, the last term of (5.7) converges
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to the curve length of the boundary of the set described by S. More precicely,
let S ⊂ Ω. For each p ∈ P define up = 1 if p ∈ S and up = 0 else. Choose the
weights wpq by (5.12), then as δ → 0 and k → ∞∑

p∈P

∑
q∈N k(p)

wpq|up − uq| → |∂S|E, (5.13)

where |∂S|E is the euclidian length of the boundary of S. More details can be
found in [5]. This result shows that the grid bias in the discrete models can be
reduced, but doing so requires progressively larger neighborhood systems, which
in turn complicates the computation. In contrast, the continuous models can ap-
proximate the euclidian curve length with arbitrary precision by only decreasing
the mesh size, while keeping the neighborhood system fixed to 4. In 3-D and
N-D, this property of the continuous models becomes even more important.

5.1.2 Potts model and the Potts interaction term

Pott’s model originates from statistical mechanics and describes the interaction
between spins of particles. By regarding each up as a particle it can be written
as a special case of the interaction term in the model (5.5) with

g(up − uq) = wpq

(
1− δ(up − uq)

)
, (5.14)

where

δ(s) =

{
1 , if s = 0
0 , else

. (5.15)

By inserting in (5.5) we obtain the model

min
u

∑
p∈P

fp(up) +
∑

(p,q)∈N
wpq

(
1− δ(up − uq)

)
(5.16)

such that
up ∈ {
1, ..., 
n}, ∀p ∈ P (5.17)

The interaction term (5.14) is valued wpq if up 	= uq and 0 else. All changes in
the labeling function are penalized equally.

Let L = {1, ..., n} and assume the labeling function u describes a partition of
P into n regions Pi, i = 1, ..., n such that up = i for all p ∈ Pi. Then, clearly

∩n
i=1Pi = ∅, ∪n

i=1Pi = P .
The Pott’s interaction term penalizes each jump in the labeling function equally,
independent of its actual values. In other words, the energy function penalizes
the transition between any two regions Pi and Pj, i, j ∈ {1, ..., n} equally. By
choosing the weights wpq by the Cauchy-Crofton formula (5.12), we obtain, in
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the continuous limit as the mesh size goes to zero and the number of neighbors k
goes to infinity, the continuous Pott’s model (3.1) from Section 3.1. The discrete
Pott’s model (5.16) can be seen as a multiway cut problem, which is known to
be NP-hard [21].

As proposed in [94], the Pott’s model can also be extended by adding a term
that places a penalty on the number of labels that appear in the solution

min
u

∑
p∈P

fp(up)+
∑

(p,q)∈N
wpq

(
1−δ(up−uq)

)
+ γ#{ 1 ≤ i ≤ n | up = i for some p ∈ P}.

(5.18)
This model may select the best ”models” (data cost functions corresponding to
each label) out of possibly many, in order to explain the image.

5.1.3 Linear interaction potential

Another important special case of the interaction term in (5.5) is

g(up − uq) = wpq|up − uq| (5.19)

As in Section 5.1.1, by choosing wpq = hν, the interaction potential then reduces
to, in case of a 4 neighborhood system

∑
p∈P

∑
q∈N 4(p)

hν|up − uq| =
N1∑
i=1

N2∑
j=1

h2ν(
|ui+1,j − ui,j|

h
+

|ui,j+1 − ui,j|
h

) (5.20)

which is the discrete anisotropic total variation. The complete model including
the data term is repeated here for convenience.

min
u

∑
p∈P

fp(up) +
∑

(p,q)∈N
wpq|up − uq| (5.21)

such that
up ∈ {
1, ..., 
n}, ∀p ∈ P (5.22)

Being a special case of (5.5) with convex g, (5.24) can be optimized by graph
cuts as in [42]. When fp(.) is a convex function for all p ∈ P , (5.24) can also
be optimized by an algorithm which solves a sequence of binary mrf problems.
More details will be given in Section 5.2.3.

5.1.4 Truncated quadratic interaction potential / Piece-
wise smooth Mumford Shah model

Another possible interaction potential is the truncated quadratic

g(up − uq) = wpq min(|up − uq|2, r) (5.23)
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In this case the complete energy function to be minimized is

min
u

∑
p∈P

fp(up) +
∑

(p,q)∈N
wpq min(|up − uq|2, r) (5.24)

In [13] a very similar problem to (5.24), was studied where fp(up) = |up − Ip|2,
k = 4, wpq = α and r = ν

α
. The only difference was that the unknown u takes

values in the continuous set [0, L−1] as opposed to the discrete set {0, ...., L−1}.
It was shown that such a model converges to the general Mumford-Shah model
in the continuum limit. Therefore the model (5.23) can be seen as a discrete
equivalent of the general piecewise smooth Mumford-Shah model.

Therefore, we can conclude that the model (5.24) is also NP-hard to optimize.
This gives some insight on the difficulty of optimizing the general Mumford-Shah
model.

5.1.5 Higher order Markov random fields

Higher order markov random fields, which contain interactions between more
than 2 variables, have advantages over 1st order mrfs. They have been largely
ignored in the past because of the difficult computational aspect. In all, except
for some very restricted special cases, such mrfs are NP-hard. A review of recent
literature can be found in the introduction of paper G. Let N 3 denote some set
of triple wise neighbors, i.e.

N 3 ⊆ P × P × P

2nd order mrfs can in general be written

min
u

∑
p∈P

fp(up) +
∑

(p,q,r)∈N 3

V pqr(up, uq, ur) (5.25)

such that

up ∈ {
1, ..., 
n}, ∀p ∈ P , (5.26)

where V p,q,r(., ., .)L×L×L �→ R. The generalization to n-order mrfs is straight
forward.

5.2 Optimization methods for discrete energy

models

We will give a brief overview of optimization methods for solving discrete prob-
lems of the form (5.7) and (5.5).
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5.2.1 Binary and submodular 1st order mrfs

Picard and Ratliffe [43] were the first to observe that optimization of binary ener-
gies interactions between at most two variables could be minimized by computing
the minimum cut on a graph. Greig et al. [34] showed essentially the same result
for problems which can be written in the form (5.7), under the submodularity
condition (5.9). Kolmogorov et al. [47] gave sufficient conditions on which en-
ergies with binary variables could be minimized by computing the minimum cut
on a graph. Details about the graph constructions can for instance be found in
Paper D and A. The details are therefore omitted here. Efficient implementations
specialized for image processing applications have been proposed in [6].

5.2.2 Convex g or submodular V pq

We consider now general problems of the form (5.7) and (5.5).

When g is convex, or V pq is submodular, (5.5) or (5.7) can be optimized
exactly by graph cuts for any data term fp(.) (possible non-convex). The details
are given in [42] for the former and [23] for the latter and are omitted here.
The idea is to construct a large graph where n vertices are associated with each
pixel. The min-cut strategy can be used to compute a global minimizer with
a max-flow algorithm of pseudo-polynomial complexity. Strictly, a polynomial
algorithm should grow as O(log(n)). Since the number of edges in the graph
grows quadratically in n, the complexity of such an an algorithm grows as O(n2).
This is too slow to be practical if n is relatively large, for instance if n is the
number of gray values in image restoration.

In the special case that g is linear, a smaller graph can be constructed, where
the number of edges instead grows linearly in n as was shown in [42]. This makes
computation more tractable, but still rather slow if n is large. Details about the
constructions are given in Paper E and A and are therefore omitted here.

Yet another special case occurs when the data term f is convex and g is linear.
In this case, very efficient algorithms are available of polynomial, as opposed to
pseudo polynomial complexity. This subject will be treated in the next section.

5.2.3 Convex f and linear g

Assume that the data term f is convex and the regularization term g is linear.
As was shown in [38], [12] and [22] the problem (5.5) can then be reduced to that
of solving a set of binary problems for each label. Furthermore, since there is a
lot of redundancy, one can get away with solving log2(n)− 1 binary problems.

Since u is constrained to take values in the set {1, ..., n}, there are n − 1
distinct functions of upper level sets 
 = 0, ..., n − 1, which are point-wise given
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by

θ�p =

{
1 if up ≥ 
,
0 else.

(5.27)

In the discrete setting, the coarea formula (3.13) can be written

∑
p∈P

∑
q∈N k

p

wpq|up − uq| =
n−1∑
�=0

∑
p∈P

∑
q∈N k

p

wpq|θ�p − θ�q|. (5.28)

To approximate the euclidian curve length, the weights wpq can be derived by the
Cauchy Crofton formula as (5.12).∫

Ω

|∇θ�(x)| dx d
 ≈
∑
p∈P

∑
q∈N k

p

wpq|θ�p − θ�q|. (5.29)

If u is a function, it must be single valued at each point p ∈ P . In that case the
family {θ�}n−2

�=0 is monotonically non-increasing: θ�+1 ≤ θ�, ∀ 
 = 0, ..., n− 2. For
any such family of monotonically decreasing binary functions, the function u can
be recovered by the formula up = max{
 : θ�p = 1}.

Note also that for each p ∈ P the data term of (5.5) can be written in terms
of {θ�p}� as ∑

p∈P
fp(up) =

n−1∑
�=0

∑
p∈P

(θ�p − θ�+1
p )fp(
). (5.30)

Therefore, combining (5.28) and (5.30), (5.5) with g(.) = |.| can be written

n−2∑
�=0

∑
p∈P

∑
q∈N k

p

wpq|θ�p − θ�q|+
n−2∑
�=0

∑
p∈P

(θ�p − θ�+1
p )fp(
) =

n−2∑
�=0

E�(θ�), (5.31)

subject to
θ�+1
p ≤ θ�p, ∀p ∈ P , 
 = 0, ..., n− 2, (5.32)

where
E�(θ�) =

∑
p∈P

∑
q∈N k

p

wpq|θ�p − θ�q|+ (θ�p − θ�+1
p )fp(
) (5.33)

It was shown in [12] that by minimizing each E�(θ�) independently, the constraints
(5.32) were automatically satisfied. Furthermore, it was observed that each E�(θ�)
has the form of a binary MRF, and could be efficiently minimized via graph cuts
as was shown by Greig et. al. [35]. This leads to several algorithms. Since there
is a lot of redundancy between the problems E�(θ�), it is not necessary to solve
the problems sequentially. That would yield an algorithm of linear complexity
in the number of gray values. Instead, a dyadic algorithm was proposed in [38],
[12], [22], which has a logarithmic complexity in the number of gray values, i.e.
at most log2(n)− 1 binary MRFs had to be solved.
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5.2.4 Approximate optimization for nonconvex g or non-
submodular V pq

If g is non convex, or V pq is non-submodular, (5.5) or (5.7) are NP-hard. In
particular this is the case for the Pott’s interaction potential (5.14) and the trun-
cated quadratic potential (5.23). There are several methods which can compute
approximate solutions for such problems, like iterated conditional modes [4], sim-
ulated annealing [30], message passing [85, 46], linear programming [48]. Most
popular are the graph cut based alpha expansion and alpha-beta swap [7], which
are widely considered state of the art for minimizing such energy functions. This
thesis proposes new methods for solving (5.16) and contains comparisons with
alpha expansion and alpha beta swap. We therefore give a brief review of these
approaches.

Alpha expansion and alpha-beta swap applies under some assumptions on
V pq. The interaction potential V pq(., .) is said to be a semi-metric if for any
α, β ∈ L and all (p, q) ∈ N , V pq(α, β) = V pq(β, α) ≥ and V pq(α, β) = 0 ⇔
α = β. If V pq(., .) also satisfies the triangle inequality, i.e. for any α, β, γ ∈ L,
V pq(α, β) + V pq(β, γ) ≤ V pq(α, γ), then V pq(., .) is said to be a metric.

The core of alpha expansion and alpha-beta swap is optimization of binary
energy functions of the form (5.7) by graph cuts. For any labeling function
u : P �→ L, define the set P�i(u) = {p ∈ P up = 
i}, i = 1, ..., n. Given two
label values α, β ∈ L, a move from a labeling function u to a labeling function v
is called an alpha-beta swap if P�i(u) = P�i(v) for all 
i ∈ L\(α ∪ β). For a label
value α ∈ L a move from u to v is called an alpha expansion if Pα(u) ⊆ Pα(v)
and P�i(v) ⊆ P�i(u) for all 
i ∈ L\α.

For any α, β ∈ L and any u, the optimal labeling function v which is within
one α − β swap from u and which minimizes the energy (5.7) can be computed
by binary graph cuts, provided V pq(., .) is a semi-metric. In the same vain, for
any α ∈ P and any labeling function u, the optimal labeling function v which
is within one α expansion from u and which minimizes the energy (5.7) can
be computed by binary graph cuts, provided V pq(., .) is a metric. The α − β
swap and α expansion algorithms starts with an initial labeling function u and
iteratively computes α − β swap moves and α expansion moves respectively,
until the energy does not change. The final labeling function is accepted as an
approximate solution to the minimization problem (5.7). The details are provided
in Algorithm 5.2.4 and Algorithm 5.2.4.

Observe that for each iteration, alpha expansion needs to solve n binary opti-
mization problems and alpha swap swap needs to solve n2 binary problems. This
iterative process is repeated until convergence.

The alpha expansion algorithm was also recently generalized in [24] to ap-
proximately minimize energies with label cost prior of the form (5.18).
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Algorithm 1 α− β swap algorithm

• Select initial labeling function u

• Repeat until wp = vp ∀p ∈ P
– For each pair α, β ∈ L

∗

u← argmin
u

E(u), s.t. u is one α− β swap move from v

(5.34)

∗ set v ← u

– set w ← v

• Output labeling function w.

Algorithm 2 α expansion algorithm

• Select initial labeling function u

• Repeat until wp = vp ∀p ∈ P
– For each α ∈ L

∗

u← argmin
u

E(u), s.t. u is one α expansion move from v

(5.35)

∗ set v ← u

– set w ← v

• Output labeling function w.

5.2.5 Higher order mrfs

Very little work has appeared on optimization methods for mrfs of order 2 or
higher, due to their difficult computational nature. Recently, some methods
have appeared for computing approximate solutions. An algorithm for solving
minimization problems where Euler’s elastica acts as a regularization term is
presented in paper G. A more detailed review of some recent work can be found
in the introduction of this paper, and is therefore omitted here.
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Chapter 6

Summary of Papers

There are 10 articles included in this thesis. All of them are based on global and
efficient optimization, and build to varying degree on each other. Each paper
stand on its own, but I also hope to give the reader a sense of progression and
unity. With some exceptions, most of them are ordered in chronological order,
according to when they were produced, as this is also the most reasonable order
in presenting them.

Both conference and journal papers/preprints are included. Two journal
preprints, B and D, are direct extensions of earlier conference papers. In those
cases the shorter conference versions are omitted from the thesis. Therefore,
each included paper presents its own scientific contribution. However, it should
be noted that there is some overlap in the review section, appendix and section
containing analysis of submodular condition between paper F and the extended
version of paper B.

As the papers also involve co-authors, a short clarification of the contributions
are given below:

• Paper A,B and F: The main idea, theoretical findings, implementations,
experiments and writing of the papers were done by me. The last author
was supervisor and gave useful advices. In paper A he had the idea of the
proof of Theorem 1.

• Paper C,D,E,H,I: The main ideas and theoretical findings were developed by
the two first authors, Jing Yuan and me. The first author of the respective
papers did the majority of writing, implementation and experiments. In
paper H and I, I also helped with some experiments. The remaining authors
were supervisors and gave useful advices.
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• Paper G: The initial idea and methodology were developed by me. I wrote
the majority of the paper, while the second author Shi Juan performed the
majority of experiments. The methods were implemented by both of us.
The last author was supervisor and gave useful advices.

• Paper J: I had the initial idea of computing the medial axis of the crust in
order to specify boundary conditions in such a way that graph cuts could be
applied to solve the problems. The first two authors did implementations,
experiments and wrote the majority of the paper. I helped writing the
paper and gave suggestions of revisions.
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6.1 Paper A: Graph Cut Optimization for the

Piecewise Constant Level Set Method Ap-

plied to Multiphase Image Segmentation

Egil Bae and Xue-Cheng Tai
In Scale space and variational methods in computer vision. Lecture Notes in
Computer Science 5567, pp. 1-13, Springer 2009.

Abstract: The piecewise constant level set method (PCLSM) has recently
emerged as a variant of the level set method for variational interphase prob-
lems. Traditionally, the Euler-Lagrange equations are solved by some iterative
numerical method for PDEs. Normally the speed is slow. In this work, we
focus on the piecewise constant level set method (PCLSM) applied to the mul-
tiphase Mumford-Shah model for image segmentation. Instead of solving the
Euler-Lagrange equations of the resulting minimization problem, we propose an
efficient combinatorial optimization technique, based on graph cuts. Because of
a simplification of the length term in the energy induced by the PCLSM, the
minimization problem is not NP hard. Numerical experiments on image segmen-
tation demonstrate that the new approach is very superior in terms of efficiency,
while maintaining the same quality.

Main results:

• A relationship between the piecewise constant level set method and a class
of discrete optimization methods is revealed

• A simplification of the graph of Ishikawa [42] is proposed, which requires
n−1 layers of vertices instead of n, and avoids edges with infinite capacities.
A proof is given that optimal cuts correspond to optimal level set functions
in a one-to-one manner.

• An alternating algorithm for minimizing the energy jointly with respect to
the regions and mean intensities of each region.
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6.2 Paper B: Efficient Global Minimization for

the Multiphase Chan-Vese Model of Image

Segmentation

Egil Bae and Xue-Cheng Tai
In Energy minimization methods in computer vision and pattern recognition (EMM-
CVPR). Lecture notes in Computer Science 5681, pp 28-41, Springer 2009 (an
extended journal version included).

Abstract: The Mumford-Shah model is an important variational image seg-
mentation model. A popular multiphase level set approach, the Chan-Vese model,
was developed as a numerical realization by representing the phases by several
overlapping level set functions. Recently, a variant representation of the Chan-
Vese model with binary level set functions was proposed. In both approaches,
the gradient descent equations had to be solved numerically, a procedure which
is slow and has the potential of getting stuck in a local minima.

In this work, we develop an efficient and global minimization method for a
discrete version of the level set representation of the Chan-Vese model with 4 re-
gions, based on graph cuts. If the average intensity values of the different phases
are sufficiently evenly distributed, the energy function is submodular. It is shown
theoretically and experimentally that the condition is expected to hold for the
most commonly used data terms. We have also developed a method for mini-
mizing nonsubmodular functions, that can produce global solutions in practice
should the condition not be satisfied, which may happen for the L1 data term.

Main results:

• It is shown that a new type of energy functions involving multiple regions
can be solved exactly, by computing the minimum cut on a graph.

• A discrete version of the level set representation of the Chan Vese model
(4.9) with 4 region fits into this framework, provided the data term satisfies
a condition.

• It is shown theoretically and experimentally that the condition is expected
to hold for the most commonly used data terms.

• An algorithm is proposed for minimizing non-submodular energy functions,
with particular emphasis on this energy function, should the condition not
be satisfied. The algorithm cannot be proven to always produce a global
solution, but tends to do so in practice.
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6.3 Paper C: Global Minimization for Continu-

ous Multiphase Partitioning Problems Us-

ing a Dual Approach

Egil Bae, Jing Yuan and Xue-Cheng Tai
International Journal on Computer Vision, 2010, DOI: 10.1007/s11263-010-
0406-y

Abstract: This paper is devoted to the optimization problem of continuous
multi-partitioning, or multi-labeling, which is based on a convex relaxation of the
continuous Potts model. In contrast to previous efforts, which are tackling the
optimal labeling problem in a direct manner, we first propose a novel dual model
and then build up a corresponding duality-based approach. By analyzing the dual
formulation, sufficient conditions are derived which show that the relaxation is of-
ten exact, i.e. there exists optimal solutions that are also globally optimal to the
original nonconvex Potts model. In order to deal with the nonsmooth dual prob-
lem, we develop a smoothing method based on the log-sum exponential function
and indicate that such a smoothing approach leads to a novel smoothed primal-
dual model and suggests labelings with maximum entropy. Such a smoothing
method for the dual model also yields a new thresholding scheme to obtain ap-
proximate solutions. An expectation maximization like algorithm is proposed
based on the smoothed formulation which is shown to be superior in efficiency
compared to earlier approaches from continuous optimization. Numerical experi-
ments also show that our method outperforms several competitive approaches in
various aspects, such as lower energies and better visual quality.

Main results:

• The relatively simple convex relaxation of Pott’s model (4.20) subject to
(4.21), (4.23) is formulated and analyzed from a dual perspective.

• Conditions are derived for when global solutions of Pott’s model can be
computed from a dual solution of the relaxed problem.

• A rounding scheme is proposed for obtaining obtaining global solutions of
Pott’s model when the conditions are satisfied, and approximate solutions
if they are not.

• An efficient algorithm based on the dual formulation is proposed.
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6.4 Paper D: A Study on Continuous Max-Flow

and Min-Cut Approaches

Jing Yuan, Egil Bae and Xue-Cheng Tai
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2010 (an extended journal version is included (with Yuri Boykov ))

Abstract: We propose and investigate novel max-flow models in the spatially
continuous setting, with or without supervised constraints, under a comparative
study of graph based max-flow / min-cut. We show that the continuous max-
flow models correspond to their respective continuous min-cut models as primal
and dual problems, and the continuous min-cut formulation without supervision
constraints regards the well-known Chan-Esedoglu-Nikolova model [19] as a spe-
cial case. In this respect, basic conceptions and terminologies applied by discrete
max-flow / mincut are revisited under a new variational perspective. We prove
that the associated nonconvex partitioning problems, unsupervised or supervised,
can be solved globally and exactly via the proposed convex continuous max-flow
and min-cut models. Moreover, we derive novel fast max-flow based algorithms
whose convergence can be guaranteed by standard optimization theories. Exper-
iments on image segmentation, both unsupervised and supervised, show that our
continuous max-flow based algorithms outperform previous approaches in terms
of efficiency and accuracy.

Main results:

• A continuous and convex formulation of max-flow and min-cut models for
solving binary partitioning problems.

• The max-flow and min-cut models are shown to form strong dual pairs.
Further, it is shown the max-flow model is a strong dual to the convex
model of Chan-Esedoglu-Nikolova [19] introduced in Section 4.2.

• The continuous max-flow model is extended to supervised partitioning prob-
lems, the same duality correspondence is shown for such problems.

• An algorithm is proposed based on the max-flow formulations of the prob-
lems. The algorithm is an application of the augmented Lagrangian method
and is shown to be very efficient.
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6.5 Paper E: A Fast Continuous Max-flow Ap-

proach to Non-convex Multilabeling Prob-

lems

Egil Bae, Jing Yuan, Xue-Cheng Tai and Yuri Boykov
Submitted for journal publication

Abstract: This work addresses a class of multilabeling problems over a spa-
tially continuous image domain, where the data fidelity term can be any bounded
function, not necessarily convex. Two total variation based regularization terms
are considered, the first favoring a linear relationship between the labels and
the second independent of the label values (Pott’s model). In the spatially dis-
crete setting, Ishikawa [42] showed that the first of these labeling problems can
be solved exactly by standard max-flow and min-cut algorithms over specially
designed graphs. We will propose a continuous analogue of Ishikawa’s graph
construction [42] by formulating continuous max-flow and min-cut models over
a specially designed domain. These max-flow and min-cut models are equivalent
under a primal-dual perspective. They can be seen as exact convex relaxations
of the original problem and can be used to compute global solutions. Fast con-
tinuous max-flow based algorithms are proposed based on the max-flow models
whose efficiency and reliability can be validated by both standard optimization
theories and experiments. In comparison to previous work [70, 69] on continuous
generalization of Ishikawa’s construction, our approach differs in the max-flow
dual treatment which leads to the following main advantages: A new theoreti-
cal framework which embeds the label order constraints implicitly and naturally
results in optimal labeling functions taking values in any predefined finite label
set; A more general thresholding theorem which, under some conditions, allows
to produce a larger set of non-unique solutions to the original problem; Numeri-
cal experiments show the new max-flow algorithms converge faster than the fast
primal-dual algorithm of [70, 69]. The speedup factor is especially significant at
high precisions. In the end, our dual formulation and algorithms are extended
to a recently proposed convex relaxation of Pott’s model [67], thereby avoiding
expensive iterative computations of projections without closed form solution.

Main results:

• A continuous and convex max-flow formulation of variational problems with
total variation regularization where the unknown is constrainted to a finite
set and general non-convex data term.

• A thresholding scheme which, under some conditions, can produce a larger
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set of solutions to the original problem than earlier works [70, 69].

• A new algorithm based on the max-flow formulation, which is significantly
more efficient than the primal-dual algorithm (4.38) with Popov’s acceler-
ation [71] from Section 4.4.3.

• A new algorithm for a recent convex relaxation of Pott’s model [68] which
avoids the bottleneck of iterative computations of projections of the dual
variables without closed form solution.
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6.6 Paper F: Exact Convex Formulation of the

Chan-Vese Model and a Tight Convex Re-

laxation of Pott’s Model with 4 Regions

Egil Bae and Xue-Cheng Tai
In finalization, to be submitted to a journal

Abstract: We propose an exact convex formulation of the Chan-Vese model
with 4 regions. A global solution is guaranteed if the data term satisfies a (mild)
submodularity condition. Theoretical and experimental arguments are given that
such a condition will hold in practice for the most commonly used type of data
terms. Otherwise, a convex truncation scheme is proposed which tends to produce
global solutions in practice, should this not be the case.

Secondly, we build up a convex relaxation for Pott’s model with 4 regions.
While several convex relaxations for Pott’s model have been proposed recently,
ours is both the most simple and tightest that exists for such problems. Algo-
rithms are proposed which we believe are more efficient than most previous work
due to the simple formulations.

Main results:

• A convex and global optimization framework for the Chan-Vese model (4.9)
with 4 regions in the continuous setting, under the same condition that
made the discrete counterpart in paper B graph representable.

• As in paper B, it is shown that the condition is expected to hold for the
most commonly used data terms.

• A truncation scheme to convexify the problem is proposed in case the con-
dition is not satisfied. A condition is derived for when a solution of the
truncated convex problem is also a solution of the original problem.

• A convex relaxation of Pott’s model (3.1) with 4 regions, which is both the
simplest and tightest that exists so far. That the dominance over [67] is
strict remains to be proved, but arguments are given to support that this
is expected.
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6.7 Paper G: Graph Cuts for Curvature based

Image Denoising

Egil Bae, Shi Juan and Xue-Cheng Tai
IEEE Transactions on Image processing, 2010, DOI: 10.1109/TIP.2010.2090533

Abstract: Minimization of total variation (TV) is a well known method for
image denoising. Recently, the relationship between TV minimization problems
and binary MRF models has been much explored. This has resulted in some very
efficient combinatorial optimization algorithms for the TV minimization problem
in the discrete setting via graph cuts. To overcome limitations, such as stair-
casing effects, of the relatively simple TV model, variational models based on
higher order derivatives have been proposed. The Eulers elastica model is one
such higher order model of central importance, which minimizes the curvature
of all level lines in the image. Traditional numerical methods for minimizing the
energy in such higher order models are complicated and computationally com-
plex. In this work we will present an efficient minimization algorithm based on
graph cuts for minimizing the energy in the Eulers elastica model, by simplifying
the problem to that of solving a sequence of easy graph representable problems.
This sequence has connections to the gradient flow of the energy function, and
converges to a minimum point. The numerical experiments show that our new
approach is more effective in maintaining smooth visual results while preserving
sharp features better than TV models.

Main results:

• A fast algorithm for minimizing the energy in the Euler’s elastica model
(3.42) is proposed, where the gray values are assumed quantized in L levels.

• The problem is decomposed into separate subproblems, each of which can
be solved by graph cuts with a complexity which is logarithmic in L, using
the algorithm described in Section 5.1.3.

• Numerical experiments demonstrate the efficiency and properties of the
algorithm.
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6.8 Paper H: A Continuous Max-Flow Approach

to Potts Model

Jing Yuan, Egil Bae, Xue-Cheng Tai and Yuri Boykov
In ECCV. Lecture Notes in Computer Science, 2010, Volume 6316/2010, 379-
392,

Abstract: We address the continuous problem of assigning multiple (un-
ordered) labels with the minimal perimeter. The corresponding discrete Potts
model is typically addressed with a-expansion which can generate metrication
artifacts. Existing convex continuous formulations of the Potts model use TV-
based functionals directly encoding perimeter costs. Such formulations are anal-
ogous to min-cut problems on graphs. We propose a novel convex formulation
with a continous max-flow functional. This approach is dual to the standard TV-
based formulations of the Potts model. Our continous max-flow approach has
significant numerical advantages; it avoids extra computational load in enforcing
the simplex constraints and naturally allows parallel computations over different
labels. Numerical experiments show competitive performance in terms of quality
and significantly reduced number of iterations compared to the previous state of
the art convex methods for the continuous Potts model.

Main results:

• The dual problem of Paper C is reformulated and given a new max-flow
interpretation.

• Another algorithm is constructed for solving the reformulated dual problem.
The algorithm is based on the augmented Lagrangian method.

• Numerical experiments demonstrate the efficiency of the algorithm.
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6.9 Paper I: A Continuous Max-Flow Approach

to Minimal Partitions with Label Cost Prior

Jing Yuan, Egil Bae, Yuri Boykov and Xue-Cheng Tai
In Third International Conference on Scale Space and Variational Methods in
Computer Vision, 2011

Abstract: This paper investigates a convex relaxation approach for minimum
description length (MDL) based image partitioning or labeling, which proposes
an energy functional regularized by the spatial smoothness prior joint with a
penalty for the total number of appearences or labels, the so-called label cost
prior. As common in recent studies of convex relaxation approaches, the total-
variation term is applied to encode the spatial regularity of partition boundaries
and the auxiliary label cost term is penalized by the sum of convex infinity norms
of the labeling functions. We study the proposed such convex MDL based image
partition model under a novel continuous flow maximization perspective, where
we show that the label cost prior amounts to a relaxation of the flow conservation
condition which is crucial to study the classical duality of max-flow and min-cut!
To the best of our knowledge, it is new to demonstrate such connections between
the relaxation of flow conservation and the penalty of the total number of active
appearences. In addition, we show that the proposed continuous max-flow for-
mulation also leads to a fast and reliable max-flow based algorithm to address
the challenging convex optimization problem, which significantly outperforms the
previous approach by direct convex programming, in terms of speed, computation
load and handling large-scale images. Its numerical scheme can by easily imple-
mented and accelerated by the advanced computation framework, e.g. GPU.

Main results:

• An extension of the max-flow model in the previous paper to Potts model
with label cost prior (5.18), where the number of appearing regions are
penalized linearly. It is shown that such problems can be formulated by re-
laxing the flow conservation condition in the max-flow model of the previous
paper.

• An efficient algorithm for solving the problem is proposed in a convex frame-
work, again by exploiting the dual formulation of the problem.

• Numerical experiments demonstrate a significantly faster convergence rate
than direct second order cone programming. The problem can be solved in
a few minutes instead of several hours.
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6.10 Paper J: Reconstructing Open Surfaces via

Graph-Cuts

Min Wan, Yu Wang, Egil Bae, Xue-Cheng Tai, Desheng Wang
Submitted for journal publication

Abstract: A novel graph-cuts-based method is proposed for reconstructing
open surfaces from unordered point sets. Through a boolean operation on the
crust around the data set, the open surface problem is translated to a watertight
surface problem within a restricted region. Integrating the variational model,
Delaunay-based tetrahedra mesh framework and multi-phase technique, the pro-
posed method can reconstruct open surfaces robustly and effectively. Further-
more, a surface reconstruction method based on domain decomposition is pre-
sented, which is based on the new open surface reconstruction method. This
method can also handle more general surfaces, like non-orientable surfaces. The
algorithm is designed in a parallel-friendly way, such that the surface patch in each
subdomain can be approached independently. Necessary measures are taken to
eliminate the cracks at the interface between the subdomains. Numerical exam-
ples are included to demonstrate the robustness and effectiveness of the proposed
method on open surfaces, non-orientable surfaces and combinations of such.

Main results:

• An algorithm for reconstructing open and non-orientable surfaces from
point cloud data is proposed

• The algorithm consists of two steps. In the first step, a crust is constructed
around the point cloud. By calculating the medial axis of the crust, bound-
ary conditions can be specified in such a way that graph cuts can be used
to reconstruct the open surface in the second step.

• Non-orientable surfaces are regarded as the union of open surfaces, and
are approached by domain decomposition, where the subproblem in each
domain involves the reconstruction of an open surface.
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Chapter 7

Conclusions

7.1 Summary

This thesis has focused on the development of efficient global optimization meth-
ods for important variational and discrete energy minimization problems that
arise in image processing and computer vision. Powerful image processing and
computer vision models have been developed during the last decades, both in
the variational and discrete optimization community. They all have in common
an objective function consisting of a data fitting term and a regularization term.
However, the design of methods for computing solutions to the models have been
very challenging, and the available methods have many limitations. Variational
optimization approaches, such as the level set method may easily get stuck in
inferior local minima and converges relatively slowly. Combinatorial optimiza-
tion algorithms can compute global solutions for certain problems, but suffer
from metrication errors and grid bias and does not parallelize as easily. Many
important discrete optimization problems are NP-hard, like minimal perimeter
partitioning problems. For such problems the available combinatorial algorithms
compute approximate solutions which may lead to noticeable errors.

The thesis has contributed to both combinatorial optimization and continuous
optimization and has aimed to bring these fields closer together. The contribu-
tions can roughly be divided in two parts. First is the development of algorithms
which are guaranteed to compute global solutions to their respective problems.
Second is the development of algorithms for NP-hard problems, that cannot be
guaranteed to compute a global solution for every input data, but often do so
and otherwise provide good approximations. In particular, minimal perimeter
partitioning problems have been studied extensively. In both cases, it has been
a central aim to develop methods that are also efficient, or have a nature which
makes them easily computable (e.g. on parallel processors).

Max-flow and min-cut (graph cuts) have been central in the achievement of
the first goal. Max-flow and min-cut can be used to solve many polynomially
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solvable combinatorial optimization problems that arise in image processing and
computer vision, but their application is somewhat limited, reflecting the fact that
most combinatorial problems are NP-hard. In particular, segmentation problems
with multiple regions have been problematic, unless one assume a linear inclusion
property of the regions. In paper B it was shown that graph cuts can be used
to globally solve a new class of problems with multiple regions: segmentation
problems with 4 regions in the popular overlapping level set framework of Chan
and Vese. In paper G, problems with higher order regularization terms involving
curvature were solved by graph cuts, by decomposing the problem into a set of
easier 1st order subproblems. The approach cannot be guaranteed to compute a
global solution, but performs well in experiments. In paper J, graph cuts were
generalized to solve problems involving open or non-orientable surfaces from point
cloud data.

Global minimization methods are generally less developed in the variational
setting. In paper D and E, continuous generalizations of max-flow and min-
cut were given, which made it possible to compute global solutions to certain
variational problems, while avoiding the metrication artifacts and grid bias of
combinatorial max-flow and min-cut. Convex formulations of such problems have
also recently been proposed in [19, 70]. The max-flow and min-cut generalizations
resulted in the same convex relaxation of two phase problems as in [19] and a
comparable convex relaxation of the total variation regularized problems in [70].
The max-flow and min-cut models had a structure which allowed for very efficient
computation and were useful in analyzing the connections between the convex
relaxed problems and original problems. In paper F, a continuous generalization
of the max-flow and min-cut formulation of the Chan-Vese model presented in
paper B was given, which resulted in a convex optimization framework for solving
the problem.

Minimal perimeter partitioning problems, which are NP-hard in the discrete
context, have been studied extensively in this thesis. Several methods have been
developed for solving variational formulations of the problem in a convex man-
ner. During the last two years, there has also been a lot of activity in the area
from several research groups [92, 51, 67, 9]. They all have advantages and dis-
advantages compared to each other which will be elaborated here. A relatively
simple binary relaxation approach that was suggested in [92, 51], was analyzed
from a dual perspective in Paper C. It was shown that by instead solving the
dual problem, a global solution of the original problem could be obtained via a
new thresholding scheme under some conditions on the dual variables. A smooth
approximation of the dual problem was proposed, which tended to force the con-
ditions to be satisfied (but on the contrary introduced an approximation error)
and led to an efficient algorithm which was significantly faster than other al-
ternatives. Another efficient algorithm based on the dual formulation without
smoothing was proposed in paper H, where some connections between the dual
model and the max-flow models of paper E and D were also pointed out. The
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dual formulation and algorithm were also be extended to problems which penal-
izes the number of regions in paper I, with some significant structural advantages
over other alternatives. The relaxation of [67] is tighter than those in paper C,I
and [92, 51], but is much more computationally complex for two reasons: (1)
the number of side constraints grow quadratically in the number of regions, (2)
iterative computation of projections without closed form solution of the variables
are required every iteration of the main algorithm. In paper E, an algorithm
was proposed which avoided to compute projections by an iterative algorithm,
but was still significantly slower than those in paper C, I, due to the quadratic
complexity of the problem. In paper F a relaxation was proposed, which was so
far limited to applications with 4 regions, but was both the simplest and tightest
that exists. A formal proof that the dominance over [67] is also strict remains to
be worked out, but arguments were given to support that this is expected.

7.2 Future research

In this section some open challenges and new research opportunities are discussed,
some are rather concrete, while others are more abstract.

In paper G, an algorithm was constructed for solving minimizing problems
with Euler’s elastica as regularization term (curvature of all level lines) on a
discrete grid with L quantized gray values. The problem was decomposed into
a set of simpler subproblems, each of the form (5.24), which could be solved
efficiently by graph cuts in O(log(L)) as discussed in Section 5.2.3. The algorithm
can also be applied for other problems, one of the most interesting extensions
would be first order mrfs with general convex data term and convex regularization
term. Existing algorithms for such problems are much more computationally
complex and grow at least linearly in L as discussed in Chapter 5. Instead of a
penalty parameter, a lagrange multiplier can be introduced to force the solution
between successive iterations to be close, and be updated every iteration. I believe
it is possible to prove convergence to an exact solution in a finite number of steps
when applied to such problems. The efficiency of the algorithm can be improved
even further by reusing flow from each iteration to the next, instead of solving
the subproblems from scratch each iteration. Another extension of the algorithm
is to reconstruct surfaces of minimal curvature. It could for instance be applied
to reconstruct surfaces from point cloud data of minimal curvature, instead of
minimal surface area as in paper J. The curvature of the distance function to the
surface at iteration n could be used as weights during iteration n+1. Regularizing
with curvature has many advantages, such an approach would present an efficient
algorithm for solving the minimization problem.

Minimal perimeter partitioning problems (Potts model) have been a central
topic of this thesis. Image segmentation is one of the most fundamental problems
in image processing and computer vision, and the Pott’s model has a structure
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which is the most intuitive for energy minimization formulation of such problems:
it does not favor any particular inclusions of the unknown regions. Different con-
vex relaxations have been studied in this work. The relaxation proposed in paper
F is both the tightest and most simple of them all, meaning it is the least compu-
tationally demanding and will most often produce global solutions, but it is so far
only applicable to problems with four or less regions. A natural extension of this
work will be problems with more than four regions, but the submodularity condi-
tion will become more strict for such problems. An alternative is to formulate the
problems in such a way, that four phases suffices to find the optimal partitions.
By the four colour theorem, any partition can be described with four phases. An
open problem would be to assign different region parameters to each connected
component of the 4 phases. The method would apply directly in some cases when
rough a priori information about the object locations are provided in advance,
and thereby a four colour map, in the same way as the four colour theorem was
exploited in a 4 phase level set framework in [39] for such problems. In the same
manner, some of the less tight relaxations could be used to provide more rough
partitioning, and thereby a 4 color map, in the general case. For instance, the
method in paper C can produce a hard partition whereever f(x) + div p∗(x) has
two or less minimizers, which would provide an excellent such 4 colour map.

As we have seen, the convex models for partitioning problems perform well
in practice, an open challenge is to derive error bounds in worst case scenarios.
In paper C, it would be interesting to investigate further the case where the dual
solution vector f + div p∗ has 3 or more non-unique smallest components.

The algorithm in paper F avoided iterative projections of the dual variables
as in earlier works. With some modifications on the constraint sets, the same
algorithm can be applied to a recently proposed convex relaxation of the gen-
eral Mumford-Shah model [68], which is also very slow to optimize by existing
algorithms due to expensive iterative computations of projections.

Image segmentation is by no means a solved problem. The results produced
by todays most advanced algorithms cannot compete with the human brain in
recognizing and classifying objects. I believe many future research challenges
from a modeling perspective will involve incorporation of a priori knowledge in
the image segmentation models. There has already been devoted work in this
direction, where the a priori information is incorporated via new parameters
(such as rotations and translations of a shape or family of shapes), see e.g [3] for
a review. Good optimization algorithms for these problems are challenging and
still lacking. Another open challenge is better algorithms for optimizing jointly
with respect to the regions and the parameters (such as mean intensity values)
describing each region.

The Pott’s model will continue to be a core energy minimization formulation
of segmentation problems in the future. I believe many of the future modeling
developments will involve either modifications of the data term in Pott’s model or
the addition of new terms. The regularization term itself can also be made more
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sophisticated. The most natural extensions would be applications of non-local op-
erators, or to seek partitions with small curvature. This of course introduces new
computational challenges. For the former, exactly the same algorithms can be
applied with small modifications. For the latter, deeper structural modifications
will be necessary.

We have seen the importance of optimization in image processing and com-
puter vision. Many problems can be formulated and modeled in a mathematical
language as the minimization of some energy function or functional. Equally
important, and perhaps even more challenging, is the development of methods
for solving the minimization problems. For computational complexity reasons, it
is often not possible to compute exact solutions, except for some simpler special
cases. We have seen that it is still possible to solve the problems very closely and
often exactly. In the future, energy minimization models will only get more com-
plicated, and the development of good optimization methods will become even
more important. We now have a rather good knowledge of optimization problems
in imaging and vision that can be solved exactly and their respective algorithms.
Most new models that are developed can be expected to be NP-hard. A key
characteristic of image processing and computer vision problems is their large
scale nature. One assume a theoretically continuum of variables. Algorithms
that have a higher than polynomial complexity in the number of pixels become
very impractical. The large scale nature of the problems also raises new questions
and research opportunities. Can one develop simpler (e.g. convex) models that
approximates the NP-hard models tightly? Is it possible that the approximation
error decreases as the resolution increases? Can conditions be derived for when
the simpler model provide a solution to the original model, even if it is NP-hard?
Optimization is a powerful and expressive modeling language in image/signal
processing and computer vision. At the same time, the application of optimiza-
tion in these fields raises many interesting challenges and opportunities for new
mathematical developments of high practical value.
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