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Abstract 

The synthesis of 10-Bromo-1-Decandiol was monitored using Raman and near infrared 

spectroscopy. Optical fiber Raman and near infrared probes were immersed in the reaction 

mixture. Raman spectra were recorded every 50 second whereas near infrared spectra were 

recorded every 30 second. The reaction was carried out for 150 minutes. Data obtained from the 

spectroscopic techniques went through statistical pretreatment methods. The pretreated data then 

subjected to multivariate data analysis techniques. Principal component analysis, multivariate 

curve resolution and partial least square regression were used to identify major trends in the 

reaction, to identify and monitor the concentration and spectral profiles of the components 

involved in the reaction and to develop a regression model for the reaction respectively. For the 

purpose comparison and model development, GC-MS analysis of the reaction mixture was done 

in 15 minutes interval during the course of the reaction.  

 

Principal component analysis on Raman and near infrared data indicated that there were three 

main components in each data one component in decreasing trend and the other two in increasing 

trend. This was also confirmed by the GC-MS analysis as there were only three components in 

the reaction mixture. The decreasing component was assigned to 1,10-decanediol(reactant) while 

the other two components are assigned to 10-Bromo-1-Decandiol (Product) and 1,10-

dibromodecane(byproduct).From concentration profiles obtained from multivariate curve 

resolution it was also shown that the three components in the reaction mixture followed the same 

trend as suggested by the principal component analysis and GC-MS analysis. Partial least square 

regression model was built for both Raman and near infrared data using ten variables from the 

GC-MS analysis and ten variables from Raman and near infrared. A good prediction was 

obtained for both data when the model was tested under a different set of variables. As a result, it 

was concluded that monitoring the synthesis of 10-Bromo-1-Decandiol using Raman and near 

infrared spectroscopy proved to be feasible.   
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Abbreviations   

 

     CCD                 Charge coupled device  

     DT                    De-trending 

     EMR                Electromagnetic radiation 

     GC-MS            Gas Chromatography Mass spectrometry  

     IR                     Infrared 

     MCR-ALS       Multivariate curve resolution – alternate least squares 

     NIR                  Near Infrared 

     PC’s                 Principal Components 

     PCA                 Principal Component Analysis 

     PCR                 Principal Component Regression 

     PLS                 Partial Least Square  

     SNV                Standard Normal Vitiate 

     TBAB             Tetrabutylammonium bromide 

     UV                  Ultra violate 
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1. Introduction 

 

This paper is part of a project which aims at finding an easy approach for the production of 

idebenone. Idebenone has several pharmaceutical applications including the treatment of 

Friedriech’s ataxia [1], in skincare and anti-ageing treatments [2]. It is also under research for a 

possible application in the treatment of Alzheimer’s disease [3].  

 

 

 

Fig.1 Idebenone 

 

10-Bromo-1-Decandiol is one of the derivatives for the synthesis of idebenone. An easy and 

cheap way to synthesize 10-Bromo-1-Decandiol is the ultimate goal of the project. This paper 

specifically focuses on monitoring of the reaction that leads to the synthesis of 10-Bromo-1-

Decandiol. 

 

 

                                                            

 

Fig 2-Schematic process for the production of 10-Bromo-1-Decandiol. 1: 1,10-decanediol, 2: 

10-Bromo-1-Decandiol(Product), 3:1,10-dibromodecane(byproduct)  

and TBAB: Tetrabutylammonium bromide [4] 
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The progress of the reaction can be monitored online using Raman and NIR spectroscopy. 

Chemometrics techniques such as PCA, PLS regression and MCR-ALS will be applied on the 

resulting data using Matlab 7.5.5 (R2007b) (MathWorks, Natick, MA), Sirius 8.0 (PRS, Bergen 

,Norway), Unscrambler X  version 10.1 (CAMO software AS, Oslo, Norway) and Excel ver. 7.0 

(Microsoft, Redmond, WA, USA). The result obtained from the analysis of data from Raman and 

NIR spectroscopy will be compared to a result obtained from GC-MS analysis. 

 

Specific objectives in this thesis are to study the concentration profile of the reactant, product 

and byproduct of the reaction, to compare results obtained from Raman and NIR data with the 

result obtained from GC-MS analysis and to assess the feasibility of coupling Raman and NIR 

systems for the monitoring of the reaction in organic chemical syntheses of 10-Bromo-1-

Decandiol. 

 

2. Theory 

 

2.1. Raman spectroscopy 

 

When an incident radiation of certain energy interacts with matter, there are two possibilities, 

either the radiation may not have any effect on the matter and passes through it or it causes 

various effects on the matter. One such effect is that the photons that make up the incident 

radiation may be absorbed by molecules of the matter (Absorption /emission spectroscopy). This 

happens when energy of the incident photon matches with the energy needed to excite molecules 

from ground state to excited state [5]. 

 

On the other hand the incident radiation may interact with the matter and scatter from it. If the 

energy of the scattered radiation remains the same as the incident radiation it is called elastic 

scattering (Rayleigh scattering). If the energy of the scattered radiation is weaker or stronger than 

the incident radiation, it is called inelastic scattering. It is this inelastic scattering which has come 

to be known as Raman scattering. Raman scattering occurs due to vibrational energy transfer 

between the radiation and the molecule. Rayleigh scattering is the dominant type of scattering 

with millions of degree of magnitude stronger than the Raman scattering [6]. Raman scattering 
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results the scattered radiation to be either higher (anti-Stokes line) or lower (Stokes line) in 

energy than the incident radiation.  

 

Raman scattering is characterized by a shift from the frequency of the incident radiation. If V1 

denotes wavenumber of a peak for a Raman band, then the wavenumber shift from frequency of 

the incident radiation V can be defined as: ΔV=V-V1. For Stokes-Raman scattering V1 =V-VM 

(VM is characteristic frequency of the band) thus, ΔV is positive but for anti-Stokes Raman 

scattering it is negative because V1 =V+VM  [7]. Raman spectrum for cyclohexane in figure 3 

shows the difference in Raman shift and intensity between Stokes and anti-Stokes scattering. 

 

 

Fig.3. Stokes and anti-Stokes scattering for cyclohexane. To show the weak anti-Stokes spectrum 

the y-axis has been extended in the inset [5] 

 

Anti-Stokes effect transfers energy from the system to the incident radiation. This means 

transition is carried out from a higher energy level to ground level. Such transitions are typically 

rare because according to Maxwell-Boltzmann distribution law, higher energy levels are less 

populated than the ground level. As a result, the anti-Stokes intensity is less than the Stokes 

intensity. Therefore, Stokes-Raman spectrum is detected in most cases [8, 9]. 
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Fig.4. IR & NIR absorption and the Raman effect [10]
 

 

Raman spectroscopy (along with NIR spectroscopy) is becoming more and more crucial 

technique for process monitoring particularly in the pharmaceutical industry. This is because 

Raman spectroscopy allows rapid, real-time, non-destructive measurements without sample 

preparation. It also allows measurements to be carried out from relatively long distance by using 

probes attached to the instrument through optical fibers [10, 11].  

 

For a molecular vibration to be Raman active there must be change in the polarizability in the 

molecule and this polarizability is intense in symmetric vibrations. Hence, unlike IR absorption 

where asymmetric vibrations result in larger change in dipole moment, intense Raman scattering 

is achieved in symmetric vibrations [5]. Fluorescence is a major source of interference in Raman 

spectroscopy. Even in a very small quantity, contaminants can be excited to emit fluorescence 

which is much stronger than the Raman intensity [12].
  

 

The chemical reaction investigated in this paper mainly involves three compounds that are 

Raman/NIR active. During the course of the reaction, the main structural molecular change is the 

conversion of -CH2-OH into –CH2-Br. As a result, the appearance and disappearance of peaks or 

change in intensities of the peaks associated with the above structural molecular changes will be 

utilized for reaction monitoring. C-O, O-H and C-Br bond vibrations will be mainly used for this 

purpose.  
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2.2. NIR Spectroscopy  

 

NIR spectroscopy measures absorption of NIR radiation by organic molecules. All absorption 

bands are the result of overtones or combination of overtones from the mid IR region [13]. NIR 

region is found in between 800 nm and 2500 nm in the electromagnetic spectrum (figure 5).  

 

 

 

 

 

                                                                                         

                                                                                        

                                                                                               

                      

Fig.5. Location of NIR in the electromagnetic spectrum 

 

Interaction between electromagnetic radiations and molecules can be explained using the 

classical model and the quantum mechanical model. The classical model assumes interaction 

between EMR and the molecule occurs when the energy of EMR matches the energy associated 

with change in an electrical characteristic of the molecule. The Quantum model on the other 

hand says that interaction can happen when the energy difference between two energy levels of a 

molecule matches the energy of a photon of an EMR. This means various types of changes in 

electrical characteristic of a molecule can be a source of interaction with EMR (for example 

visible light interacts with the electron cloud surrounding the molecule whereas UV radiation 

interacts with electron cloud around an atom).  

 

According to the classical model for molecular vibrations, vibrational modes corresponding to 

the transitions that are active in the near infrared are forbidden. However, in quantum mechanical 

model these vibrational modes are not forbidden. Moreover, unlike the classical model, the 
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energy levels that a molecule can attain are not equally spaced (figure 6). Instead the gap in 

energy levels decrease with increasing energy so that the gaps at higher energy levels are 

virtually nonexistent [14, 15].
 
As a result multilevel vibrational energy transitions are possible. 

Since the energy of such multilevel transitions corresponds to the photons in the NIR region, 

they result in NIR absorption bands. NIR absorption bands are often called ‘overtones’ and for 

each fundamental molecular vibration several overtones appear with decreasing intensity.  

Combination bands occur when absorbed photon excites two or more vibrations simultaneously. 

For this to happen, sum of energies of the coupling vibrations should be equal with the energy of 

the exciting photon [16]. 

 

 

 

 

 

 

 

 

 

 

                                           Vibrational energy 

                                                  Levels 

  

                A                                                B 

 

                                               Interatomic distance 

 

Fig.6. Energy diagram: A. classical model (harmonic oscillator) B. quantum model (anharmonic 

oscillator) 

 

The most common absorption bands occurring in the NIR region are overtones and combination 

overtones of CH, NH and OH functional groups. Even if NIR ranges from 800 nm to 2500 nm, 
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practically most measurements are carried out between 1100 nm and 2500 nm because majority 

of first and second overtones appear in this region. 

 

NIR bands are considerably weaker than their mid-IR counterparts. In addition, they are broad 

and susceptible to band overlap. Due to this, it is often difficult to assign a specific band to 

chemical components. This leads to a complex but information rich NIR spectra that requires 

multivariate data analysis techniques for interpretation.  

 

 

Bond Raman NIR 

O-H Weak intensity 3650-3000cm
-1

 1900 nm stretching/deformation 

combination 

C-Br Strong intensity 700-500 cm
-1

 Non-specific 

        C-O 1030 cm
-1

 Non-specific 

 

Table 1 Bonds of interest and their absorption bands [17] 

 

 

2.3. Multivariate data analysis techniques  

2.3.1. Principal component analysis 

 

PCA analysis is a common data analysis tool used to identify patterns, compress huge data and 

provide evidence to explain relationships, between variables and samples in a dataset. It mainly 

works by avoiding variables that least explains major trends in the data without losing much 

information and by finding variables and combination of variables that describe the dataset well. 

 

PCA extracts principal components which are far fewer in number than the original variables 

[11] (usually 2-3). If X is a data matrix with M rows and N columns, PCA decomposes X as the 

sum of r ti and pi, where r is the rank of the matrix X: 
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X = t1p
T

1 + t2p
T

2 + ... + tkp
T

k + ... + trp
T

r 

 
The rank of the matrix should be less than or equal to the smaller dimension of the data matrix. 

The ti vectors are called scores and contain information about relationship among samples. The pi 

vectors are called loadings and contain information about relationship within variables. Scores 

have equal number of rows with the original data matrix whereas loadings have equal number of 

columns with the original data matrix [18, 19].  

 

Generally, few numbers of principal components are chosen to represent the original data. If k is 

the number of principal components chosen, then the score matrix will have M rows and k 

columns and the loadings matrix will have k rows and N columns. After the number of principal 

components to use is decided the remaining little variance in the data is merged into a residual 

matrix; E. then the PCA model of data matrix can be represented as follows (figure 7 shows 

graphical representation of PCA decomposition):  

 

X = t1p
T

1 + t2p
T

2 + ... + tkp
T

k + E                                          

                                                               N 

 

                              M 

 

 

                                                             

                                                          PCA 

                                          k                     N 

 

                               M                                                      k 

 

                                           Scores                 Loadings 

Fig.7. Graphical representation of PCA 

 

X 
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In order to understand how PCA works mathematically it is good to start from covariance. For a 

data with a single variable, standard deviation and variance can describe the spread of the data. 

For a data with two variables covariance provides a similar measure to find out how the variables 

vary from the mean with respect to each other. For example covariance between variables A and 

B calculated as follows: 

 

cov(A,B)  =          ∑ n
i=1 ( Ai - A )( Bi - B ) 

                                            

                                                  n-1 

 

Where A is mean of A values, B is mean of B values and n is the number of samples in each 

variable. The sign of result of result of the covariance tells whether there is relationship between 

the variables or not. If the result is positive it means the variables increase or decrease together. 

But if the covariance value is negative it means there is opposite relationship. Zero covariance 

value means the variables are independent to each other. 

 

When a data consists of a large number of variables, covariance values are calculated between 

each of the variables. This leads to a covariance matrix Cm. the covariance matrix is a square 

matrix. If a data set X consists of N variables the covariance matrix is given as: 

 

                                        

 

                        C = 

 

 

 

The covariance matrix contains cov(1,1), cov(2,2) up until cov(N,N) along the diagonal of the 

matrix. In such cases the covariance values are equal to the variance values. Moreover, since the 

covariance values for cov(A,B) and cov(B,A) are equal, the covariance matrix is symmetrical. 

 

cov(1,1) cov(1,2)        cov(1,N) 

 

cov(2,1) cov(2,2)        cov(2,N) 

 

 

cov(N,1) cov(N,2)       cov(N,N) 
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An important property of covariance matrices is that, since they are square matrices eigenvectors 

can be calculated. Eigenvectors are non-zero vectors which remain the same (or multiplied by a 

factor) after multiplied by a square matrix. It is these eigenvectors that have come to be known as 

loading vectors (pi). Eigenvectors of a matrix are perpendicular to each other. When an 

eigenvector is multiplied by the covariance matrix, the result will be the eigenvector itself 

multiplied by a factor. This factor is called eigenvalue (λ). This can be denoted as follows: 

 

Cmpi= λipi 

 

Where, Cm is the covariance matrix, λi is the eigenvalue associated with pi  [20].The score vector 

ti is a linear combination of the original variables in the data (X) defined by pi. Hence, ti can be 

described mathematically as: 

 

ti = Xpi 

 

Based on the eigenvalue associated with pi, the ti, pi pairs are arranged in decreasing order. The 

first ti, pi pair holds the largest variance then the second pair holds the second largest variance 

and so on.PCA extracts components that hold much of the information about the data matrix and 

in doing so it relieves researchers from a great deal of burden of dealing with huge number of 

variables. The result is presented in a form of scores and loading vectors. Scores describe 

relationship among objects while loadings describe relationship among variables.  

 

In this project the data obtained from NIR and Raman spectrometers were subjected to PCA 

analysis (wavenumbers as variables and number of spectra recorded as objects). Hence, 

information about relationship among spectra at different times; which can explain the yield and 

conversion of the reaction can be obtained from the score plots whereas the loading plot gives 

clues about the relationship among different wavelengths. 
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2.3.2. Multivariate curve resolution-alternate least squares 

 

Monitoring organic chemical reactions can be a difficult task as such reactions usually involve a 

number of compounds whose individual contribution to the instrument response is complex to 

identify and interpret. This problem is hugely reduced by using a chemometrics technique called 

multivariate curve resolution. MCR is a very useful technique for spectral data obtained from 

chemical reactions. This is particularly manifested when monitoring chemical reactions [21] as it 

resolves the data into spectral and concentration profiles of pure components involved in the 

reaction.  

 

 Multivariate curve resolution decomposes a two-way data matrix into the product of two smaller 

matrices which are each related to one of the two orders of the data matrix (e.g. spectral or 

concentration) [22]. Multivariate curve resolution methods can be classified as iterative and non-

iterative methods [23]. 

 

Multivariate curve resolution –alternate least square (MCR-ALS) is an iterative method which is 

based on optimization of initial estimates by using data structure and chemical constraints [24]. 

For example both concentration and spectra are necessarily non-negative. If there is sufficient 

selectivity in the data non-negativity is a sufficient constraint to extract the pure component 

spectra through alternate least square procedure [18]. However, analysis of single data matrix 

using curve resolution decomposition does not always guarantee that the true solutions are 

obtained. This is particularly the case when there is no selectivity in the data. 

 

Curve resolution methods operate based on the assumption that the experimental data follows a 

linear model. For a data matrix X, with M number of rows and N number of columns, the model 

can be written as follows: 

 

X=CS
T
+E       

 

Where, C is an M by n matrix called concentration profiles of the n components involved in the 

reaction mixture whereas S
T
 is an n by N matrix called spectral profiles of the n pure components 
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in the mixture and E describes the residual matrix [25]. This equation can be solved iteratively 

using alternate least square optimization. New estimates of C and S are obtained after each 

iteration of optimization. 

 

Usually, after principal component analysis a preselected number of principal components will 

be truncated and used instead of the original data matrix, X in order to get a better result as the 

new matrix, Xest is relatively noise free. Then, an initial estimate of C will be available. As a 

result: 

 

S
T
=C

+T
Xest 

C= XestS
+ 

 

Where, C
+
 = C(C

T
C)

-1
 and  S

+
 = S(S

T
S)

-1
  

 

However, ambiguity about the exact magnitude of the pure component spectra and concentration 

profiles remain. This ambiguity is called intensity ambiguity [18, 22]. The ambiguity can be 

resolved for a particular component if concentration of the component is known at some point 

within the data. Another type of ambiguity is called rotational ambiguity and it also affects the 

accuracy of the solutions for C and S. intensity and rotational ambiguities can be represented in 

the following equations respectively: 

 

Xest =CS
T
 =CDD

−1
 S

T 

 

Xest =CS
T
 =CRR

-1
 S

T
  

 

Where, D and R are arbitrary invertible diagonal matrices. Presence of the above ambiguities in 

the solution for C and S means the results from multivariate curve resolution methods have 

limitations and should not be overly interpreted. However, multivariate curve resolution methods 

can be quite effective in qualitative analysis. The method used by MCR-ALS is summarized in 

the following diagram. 
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                                          X=CS
T
+E       

                                                (Bilinear model) 

 

 

 

 

 

 

Fig.8. Diagrammatic representation of MCR-ALS [26] 

 

 

MCR-ALS technique can be used without prior knowledge about the reaction mixture. In such 

cases determination number of components that cause majority of variability in the data matrix 

can be tricky. When there is prior knowledge about the reaction (for example knowledge about 

the number of major components involved in the reaction) MCR-ALS can be used to help build 

the reaction profile and further confirm results obtained from other methods like PCA. 

 

 

2.3.3. Partial least square regression 

 

PLS regression is a statistical method that comprises features of PCR (Principal component 

regression) and MLR (Multiple linear regressions). Like PCR, it decomposes the data so as to 

retain as much of variation as possible and like MLR it finds correlation between predicted and 

observed variables [27].  

 

PLS regression tries to make relationship between predicted variables (dependent variables or X-

block) and observed variables (independent variables Y-block) by finding a linear regression 

model. It is useful for constructing predictive models from a large number of variables that are 

highly collinear. PLS emphasizes on predicting the responses and not necessarily on trying to 

Data 

Matrix 

 

X 

Initial 

Estimation 

 

 

C 

S
T
 

E 

PCA 

ALS 

optimization 
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understand the underlying relationship between the variables [28]. There are several ways to 

calculate PLS model parameters. The most common algorithms are SIMPLS and NIPALS 

algorithms. PLS model can be considered as consisting two outer relationships (for each X and Y 

blocks) and an inner relationship to link both blocks using a regression coefficient [29].
 
The two 

outer relationships can be represented as follows: 

 

X = TP
T 

+ E = ∑ tapa
T 

+ E 

 

Y = UQ
T 

+ F = ∑ uaqa
T 

+ F 

 

Where, T and U are score matrices, P
T 

and Q
T
 are loading matrices and E and F are residual 

matrices for X and Y blocks respectively. In PLS regression the predictor matrix X and the 

response matrix Y are modeled as linear combinations of a set of orthogonal components. The 

components are latent variables which are linear combinations of the predictor variables. These 

linear combinations are chosen successively in such a way to achieve maximum covariance with 

Y [30].
 

 

PLS regression first extracts small numbers of loading weights, W(X), from the data matrix, X. 

Then the extracted loading weights will be stored in scores matrix, T, and used iteratively to 

model variables in X and Y. Variables in Y can be modeled through variables in X using a 

regression coefficient, B. the regression coefficient is estimated as a function of P and Q 

(loadings of X and Y). 

 

B=W(P
T
W)

-1
Q

T 

 

The regression coefficient enables a sample to be predicted without the need to resolve it into 

scores and loadings matrices. If xi is a vector representing a spectrum in a dataset, then its 

concentration, yi, can be estimated using the regression coefficient as follows: 

 

yi = xi
T
B 
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After PLS regression model is built an important step still remains and this step is validation of 

the model. There are several methods for model validation. Among the most common one is 

cross validation method. Cross validation is extensively used to test model stability and 

robustness. It involves using a sample dataset for training followed by test data set from the same 

population to evaluate how well the model predicts [31].
 

 

2.3.4. Standard normal variate transformation 

 

SNV transformation is used to reduce additive and multiplicative effects in spectra. The 

transformation is done for each spectrum individually by subtracting the spectrum mean and 

scaling with the spectrum standard deviation according to the following equation: 

 

 
 

Where, xi,SNV is the transformed Raman intensity for wavenumber xi, and  is the mean intensity 

of all the k wavenumbers in the spectrum. The above equation should be repeated for 

all k wavenumbers in the spectrum. SNV is effectively centering and normalizing the rows [32]. 

 

 

 

3. Experimental 

3.1. Materials and methods 

 

Chemicals 

Commercially available chemicals and reagents were used directly without further purification. 

The starting chemicals and reagents were: 1,10-decanediol, the phase transfer catalyst 

tetrabutylammonium bromide (TBAB) and HBr (48%). Methanol and silica were used to quench 

aliquots of the reaction mixture taken for GC-MS analysis. 
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Equipments 

An oil bath was used to keep the reaction mixture at maintained temperature of 105
o
C. The 

reaction was carried out in a 500 ml beaker. An electronic radial turbine (flat blades, 50 mm) was 

used to stir the reaction mixture at a speed of 200 rotations per minute. In addition, a 

thermometer, vials, small beakers and micropipettes were also used. 

 

Instrumentation 

A RAMANRXN1 Raman spectrometer from Kaiser Optical Systems (Ann Arbor, MI, USA) was 

used. This spectrometer is equipped with a CCD detector, a holographic transmission grating and 

a probe attached to an optical fiber. The laser used was a 785 nm Invictus laser with a 

measurement range from -92 to 3543 cm
-1

. Spectral recording was carried out with exposure 

time of 1 second, 32 scans and with 4 cm
-1

 resolution. 

 

For NIR spectral measurement, NIRSystems model 6500 manufactured by PERSTORP 

Analytical (Perstorp analytical incorporated, MD, USA) was used. This spectrometer is equipped 

with a probe attached to an optical fiber. Spectral recording was done from 1100 nm to 2500 nm 

with an interval of 2 nm and 32 scans for each recording. The detector was in a transmission 

mode and a fiber optical module was selected. 

 

GC-MS analysis was done using GC-8000 model gas chromatograph made by Fison instruments 

(Manchester, UK) and it is equipped with MD 800 mass spectrometer and fused-silica gas 

chromatographic capillary column with 25m X 0.25 mm internal diameter. Carrier gas was 

Helium. Ionization mode was electron impact with 70 eV. The injector and detector temperature 

were 250 
o
C and 300

o
C respectively.  

 

 

 

 

 



Fasil Ayelegn                                                                                                               Page 22 of 54 

 

 

 

3.2. Experimental Procedures 

 

3.2.1. Raman & NIR measurements 

 
An upscaled reaction protocol [4] was used for the reaction as a procedure with some 

modifications for proper instrumental measurement. 16.67 g of 1,10-Decandiol and 15.34 g of 

degranularized tetrabutylammonium bromide were added into a 500 ml beaker and placed into 

an oil bath of maintained temperature of 105 
o
C the mixture was melted for 10 minutes and 5 ml 

of aqueous HBr (48%) was added.  

 

The reaction mixture was stirred at a rate of 200 turns per minute using a radial turbine. Both the 

Raman and NIR probes were inserted into the mixture and spectra were recorded after every 30 

seconds for a period of 150 min.(Though sampling time was set to 30 seconds for both Raman 

and NIR spectrometers, Raman spectra were actually recorded approximately every 50 seconds. 

This results in different number of spectra in Raman and NIR measurements for the same 

reaction). 

 

 

3.2.2. GC-MS analysis 

 

The reaction started as soon as HBr was added to the reaction vessel. While Raman and NIR 

spectra were taken every few seconds, sampling for GC-MS analysis was done every 15 minutes 

as follows: 

 First a micropipette was taken and a small amount of cotton was inserted in it as a filter.  

 Then small amount of silica powder was added on top of the cotton. 

 Then an aliquot of the reaction mixture was added on top of the silica powder and 5-10 

drops of methanol was added. This step effectively stops the reaction from proceeding 

further.  

 Then the contents in the micropipette were filtered into a vial assigned for GC-MS 

analysis using a small pipette pump.  

 Finally the vial was sealed, labeled and taken to the GC-MS vial holder. 
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The above steps were repeated every 15 minutes for 2 and1/2 hrs. A total of 10 samples were 

taken for GC-MS analysis.  

 

4. Result and discussion 

 

4.1. Data description 

 
A spectrum recorded by a Raman or NIR instrument can be considered as a row vector 

consisting of M elements where M is the number of variables. In this case the variables are 

wavenumbers (3546 for Raman and 700 for NIR). This row vector represents only a single 

spectrum but during reaction monitoring several spectra are recorded in a certain time interval to 

follow the progress of a reaction. This results an N x M data matrix where N is the number of 

spectra taken.                       

 

                                        

                                                                    Wavenumber                   M                                                                       

                                 Number of spectra 

                                     

                                                                                   

                                          

                                              N                              

                      

Fig.9. Set up of the data matrix 

 

Therefore in the data matrix, every row represents a spectrum recorded at a specific time, while a 

column represents the absorption at a specific wavenumber (in NIR) and Raman intensity at a 

specific wavenumber (in Raman). Plots of the raw data for Raman and NIR data are shown later. 
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4.2. Data pretreatment 

 

4.2.1. Raman spectroscopy 

Four different Raman data sets were collected independently on four different experiments. 

However, the first three Raman data sets were collected without periodic GC-MS analysis of the 

reaction mixture (this applies for NIR data too). The last data set was collected while there was 

GC-MS analysis of aliquots of the reaction mixture and all the pretreatment, analysis and 

interpretation will be based on this data set. The raw data contains 176 rows and 3546 columns. 

However, a simple visual inspection shows that there are apparent outliers (spikes) characterized 

by sharp increase in intensity in some of the rows (figure 10). These spikes were removed from 

the data set. Usually the sources of such sudden increase in intensity are attributed to cosmic ray 

interferences which are quite common in Raman instruments that use charge coupled devices 

(CCD) as a detector. Such interferences are characterized by large intensities that usually eclipse 

the small Raman intensities by several degree of magnitude and should be removed prior to any 

data analysis method [33,34]. Two of the spikes that have been removed from the dataset are 

shown in the following figure. 

 

 

 

Fig.10.Plot of transposed raw data with spikes in the data set  
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Fig.11.Intensity comparison of one of the outlier spikes (red) with other spectra (blue) 

 

 

Furthermore, the score plot (figure 12) on the raw data shows that there are few more outliers 

that can be removed. Spectrum 39 and 90 are the spikes shown in figure 10, whereas spectrum 

175 and 176 shows a steep decline in intensity. Perhaps this is because these are the last two 

spectra taken and the steep decline might be due to technical rather than chemical causes. 

Nevertheless, spectrum 39, 90, 175 and 176 were removed from the data. Spectrum 44, though 

the reason is unknown, shows a marked difference with other spectra around and it is also 

removed.  

 

As shown in figure 13 the first 7 spectra (particularly spectrum 6) on the raw data seems to be 

relatively different than other spectra in close proximity, however this is because HBr, which 

kicks off the reaction as soon as it is added into the reactants, was added after the first few 

spectra were recorded (this helps to see what change addition HBr caused on the spectra of the 

reaction mixture).  
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Fig.12. Score plot shows that sample 39, 44, 90,175 & 176 are outliers 

 

 

 
Fig.13. The first 7 samples can also be considered outliers 
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Fig.14.Plot of transposed raw data after the spikes are removed 

 

After the spikes and other outliers are removed, very strong fluorescence background remains 

another issue to be resolved. Several background correction methods were tried to reduce or 

remove the effect of fluorescence using different methods ranging from polynomial fitting to 

Standard normal variate method (SNV) [35, 36, 37]. 

 

However, better result was obtained using a MATLAB function called MSBACKADJ 

(Mathworks bioinformatics toolbox) [38]. This function estimates baseline based on input values 

of window size (window size sets width of a shifting window in which a background point is 

estimated for windows of selected width) and step size (step size sets steps of a shifting window 

in which a background point is estimated for windows at every selected step size value) then it 

regresses the baseline using approximation methods such as linear interpolation or spline 

interpolation before it corrects the baseline of the spectrum.  

 

Though this function was designed at first for mass spectral data, it can also be used for other 

spectral data [38] including Raman spectral data provided that the appropriate window and step 

sizes are selected. Default values of 200 window size and step sizes are too big for Raman data 

and doesn’t work quit well because of bad peak resolution instead, by trial and error window and 
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step size values of 11 were found to give the best result. The effect of the pretreatment method 

can be seen in figure 15 and 16. 

 

 

 

Fig.15. Raman data before background correction 

 
 

Fig.16. Raman data after background correction 
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4.2.2. NIR spectroscopy 

 
Raw data for NIR spectroscopy contains 322 rows and 700 columns. The score plot below 

(figure 17) shows spectrum 1 and 10 to be clearly outliers. It also shows the effect of addition of 

HBr in to the reaction vessel. This is shown by a separate grouping of samples from 2-8 in score 

plot.  10 outliers were removed from the raw data and the remaining data consists of 312 rows 

and 700 columns.  

Fig.17. Score plot of the raw NIR data 

 

 

Fig.18. NIR spectroscopy raw data 
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The raw dataset as shown in Figure 18 shows baseline variation and it was subjected to different 

spectral pretreatment methods like standard normal variate (SNV), detrending and others. 

However, once again MSBACKADJ function in MATLAB gives better result and this result is 

used for further interpretation. 

 

 

Fig.19.NIR data after baseline correction 

 

 

4.3. Principal component analysis 

 

PCA on Raman Data 

 
Principal component analysis on the Raman data reveals that there are 3 major principal 

components that can explain a total of 96% of the variation in the data: PC1 74%, PC2 19% and 

PC3 3%. 
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Fig.20A. Raman data score plot (PC1 Vs PC2) 

 

 

 

 
 

Fig.20B. Raman data score plot (PC1 Vs PC3) 
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Fig.20C. Raman data score plot (PC2 Vs PC3) 

 

 

From the above score plots it is apparent that there isn’t much variation in the objects after the 

100
th

 object (shown by the arrow in the above score plots) which corresponds to a reaction time 

of (about 90 min). This is also supported by the result from the NIR data. This indicates that 

shorter reaction time could be used instead of the one mentioned in the procedure [4]. Further 

increase in the reaction time increases the amount of the byproduct. This can be seen in the plot 

of score vectors (Figure 21 in red color). 

 

The score vectors can explain the progress of the reaction. The following is plot of score vectors. 

It shows three distinct patterns which can be attributed to the three main reaction components. 

The blue one can be attributed to 1,10-decanediol as its amount is expected to decrease 

throughout the reaction while the green one is for the product and the red one is for the 

byproduct. 
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Fig.21. Plot of score vectors: Blue (reactant), green (product) and red (byproduct) 

 

 

 

 
Fig.22. Raman data Loadings plot (PC1 Vs PC2) 
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506 cm
-1

 which is assigned to 1, 10-decanediol  is a reactant which is decreasing throughout  the 

reaction time and can account for the vast majority of the variation while peaks at 647 cm
-1

 and 

664 cm
-1

 are due to the product and byproduct respectively which are in increasing pattern [39]. 

 

PCA on the NIR data 

 

PCA on the NIR data gives two PC’S that can explain a total of 95 % of variation in the data 

(PC1 93% and PC2 2%). Visual inspection of the score plot reveals that most of the variation in 

the objects happens until object number 178, which corresponds to a reaction time close to 90 

minutes. This agrees with the reaction time indicated by the score plot from the Raman data. 

 

 

Fig.23. NIR data score plot (PC1 Vs PC2) 
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Fig.24. NIR data loadings plot (PC1 Vs PC2) 

 

The loading plot shows that there are three clear peaks at 2304 nm and 2260 nm on the far right 

side of PC1 and on the opposite end there is another peak at 1902 nm. The fact that the peaks 

appear on the opposite side of the main PC indicates that the peaks show opposite trends. The 

peak at 1902 nm can be assigned to the reactant while peaks at 2260 nm and 2304 nm are 

assigned for the product and byproduct respectively. 

 

 

Intensity plots of the three variables throughout the entire reaction time is given below and it 

shows that the product and byproduct follows an increasing pattern while the reactant follows a 

decreasing pattern as it is suggested in the loading plot. However, both the product and 

byproduct have a higher intensity at the beginning than the reactant. Initially the concentrations 

of the product and the byproduct are much smaller than the reactant and one would expect their 

intensities to be lower than the reactant at least at the beginning of the reaction. But this was not 

the case as shown in the plot below. One possible reason for this is contribution due to band 

overlap which is common in NIR spectroscopy.  
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Fig.25. Intensity plot at 1902 nm, 2304 nm and 2260 nm 

 

 

 

Fig.26. Pure component spectra for the reactant. 
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4.4. MCR-ALS analysis 

Application of MCR on the Raman data  

 
Both for the Raman and NIR data three components are selected because at least three 

compounds are expected to appear in the reaction: the reactant, product and byproduct. The pure 

component spectrum for the reactant is given in figure 26. 

 

The pure component spectrum for reactant clearly shows that the characteristic bands for C-Br 

bonds are not present in the regions ranging from 600-700 cm
-1

. Very high intensity band around 

506 cm
-1

 and lack of C-Br band is a common feature of this Raman data at the early stages of the 

reaction.  As the reaction progresses the intense band at 506 cm
-1

 decreases and bands due to C-

Br emerges. This can be seen in the components spectra for the reactant, product and byproduct 

(Figure 27). The concentration profile obtained from the Raman data for the three main 

components is largely in agreement with the result obtained in the PCA analysis. The reactant 

once again shows a decreasing pattern while the product and byproduct shows increasing 

patterns (figure 28). 

 

 
 

Fig.27. Comparison of spectral profiles: (Blue- reactant, Green - product and red- byproduct) 
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Fig.28. Pure component spectra of the three components (Raman) 

 

 

Application of MCR on the NIR data 

 
In order to see the three main reaction components, the NIR data was resolved into three 

components by MCR-ALS method. The plot of spectral profiles shows the common trends seen 

in the PCA score vector plot for NIR data. 

 

The PCA loading plot shows that the majority of variance is due to variables 1902 nm, 2304 nm 

and 2260 nm. On the other hand figure 29 shows that the three spectral profiles behave 

differently around these variables. For example around 1902 nm which is assigned for O-H 

stretching-bending combination vibrations [40], the first spectral profile has intense peak while 

the second has medium peak and the third one has very weak intensity peak. From this it is 

possible to deduce that the pure component shown in the spectral profile number three (red 

color) doesn’t have any O-H group and can be assigned to the byproduct (1,10-dibromodecane). 

This is further proved by the fact that there is a strong peak at 2304 nm and 2260 nm which are 

bands due to C-Br bonds. 
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Fig.29. Pure component spectra of the three components (NIR) 

 

By following the same logic, it is possible to assign the spectrum in blue color in the above 

figure to the reactant and the green colored spectrum to the product. The corresponding 

concentration profile for the three components (figure 30) is in agreement with the result from 

PCA analysis. 

 

Fig.30. Reaction profile obtained by MCR-ALS method for NIR data 
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The above plot is comparable with intensity profile plot of variables at 1902 nm, 2304 nm and 

2260 nm (figure 25). These variables are the main sources of variability in the data and 

comparison of the two plots shows that, even though the similarity of the plots is not as good as 

expected, they still show the main trends happening in the reaction.  

 

 

 

4.5. GC-MS analysis 

 

In order to see the variation in percentage composition of the reactant, product and byproduct in 

the reaction mixture over time, peak area of their corresponding peaks were taken and calculated 

as follows: 

 

                 % Composition of A =       (Peak area of A) 100% 

                                                                   Total peak area 

 

However, the above calculation is based on two assumptions. The first one is that the relative 

response factor for the three compounds in the reaction mixture is the same (this assumption is a 

fair assumption considering that all the three compounds have similar molecular structures and 

hence expected to cause more or less similar response from the detector).  

 

The second assumption is that the reactant undergoes change only to the product and the 

byproduct as a result no other compound that might be formed during the reaction is accounted 

for in this calculation(there were no sign of peaks in the chromatograms apart from the three 

compounds of interest so,  this assumption is also fair ) [41]. 
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Sample Reactant Product Byproduct Total area % Reactant % Product %  Byproduct 

1 416184214 158147015 13853432 588184661 70.75741 26.887307 2.355286 

2 767502196 311217933 110206990 1188927119 64.55418 26.176368 9.269449 

3 772129916 372409680 157827437 1302367033 59.28666 28.594833 12.11851 

4 845310217 514627656 227378301 1587316174 53.25405 32.421244 14.3247 

5 866419934 721005526 340792667 1928218127 44.93371 37.392322 17.67397 

6 890724904 943551176 502488088 2336764168 38.11788 40.378537 21.50359 

7 637991903 733770496 439435144 1811197543 35.22487 40.513002 24.26213 

8 594954318 646923318 387172916 1629050552 36.52154 39.711679 23.76678 

9 617023471 782702103 479232586 1878958160 32.8386 41.656175 25.50523 

10 624679519 788011992 463707117 1876398628 33.29141 41.99598 24.71261 

 

Table .2. Composition of components calculated from chromatographic peak area 

 

 

 

Fig.31. Plot of percentage composition of the reaction mixtures against time. This plot is similar 

to score vector plots for Raman and NIR data.  

 

4.6. PLS models 

 
PLS models were built for Raman and NIR data separately by selecting 10 spectra from the 
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analysis was performed. This means, for the GC-MS analysis performed at the 15
th

 minute in the 

reaction time, the corresponding Raman and NIR spectra will be selected. Since the reaction was 

carried out for 150 minutes, a total of ten spectra are selected. At the same time ten response 

values are also obtained from GC-MS analysis. Table 3 (Raman) and table 4 (NIR) shows values 

used in the PLS model. 

 

 

No 

 

Spectrum No. 

 

Reaction time (min) 

GC-MS result (% composition) 

Reactant Product Byproduct 

1 18 15 70.8 26.9 2.4 

2 34 30 64.6 26.2 9.3 

3 50 45 59.3 28.6 12.1 

4 67 60 53.3 32.4 14.3 

5 82 75 44.9 37.4 17.7 

6 99 90 38.1 40.4 21.5 

7 115 105 35.2 40.5 24.3 

8 131 120 36.5 39.7 23.8 

9 148 135 32.8 41.7 25.5 

10 162 150 33.3 42 24.7 

 

Table .3. Spectra selected for Raman PLS model along with reaction time and % composition 

 

 

 

No 

 

Spectrum No. 

 

Reaction time (min) 

GC-MS result (% composition) 

Reactant Product Byproduct 

1 32 15 70.8 26.9 2.4 

2 64 30 64.6 26.2 9.3 

3 94 45 59.3 28.6 12.1 

4 125 60 53.3 32.4 14.3 

5 157 75 44.9 37.4 17.7 

6 190 90 38.1 40.4 21.5 

7 220 105 35.2 40.5 24.3 

8 250 120 36.5 39.7 23.8 

9 282 135 32.8 41.7 25.5 

10 311 150 33.3 42 24.7 

 

Table .4. Spectra selected for NIR PLS model along with reaction time and % composition 
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Raman PLS model 
 

A PLS model was established for Raman data using 3 components. The variance captured by the 

model is given in the following table. 

 

Components X-block Y-block 

Current Total Current Total 

1 99.01 99.01 93.55 93.55 

2 0.86 99.87 5.74 99.29 

3 0.08 99.95 0.45 99.74 

 

Table.5. Variation captured by Raman PLS model 

 

The prediction power of the model is compared by plotting the actual GC-MS analysis result 

along with the one predicted by the model (figure 32) and this seems to be a good prediction by 

the PLS model. 

 

 

 

Fig.32. Plot of measured (Blue) and predicted (red) composition 
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Fig.33A. Plot of predicted composition against measured composition for the reactant 

(Pearson’s r =0.9825) 

 

 

 

Fig.33B. Plot of predicted composition against measured composition for the product (Pearson’s 

r =0.9847) 
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Fig.33C. Plot of predicted composition against measured composition for the byproduct 

(Pearson’s r =0.9696) 

 

Raman model validation 

Raman model validation was carried out by forming a new set of dependent variables (X-block 

2) and performing the validation process using the previous Raman model. For this purpose 10 

other spectra were selected from the pretreated Raman data consisting 5 spectra between 15
th

 and 

30
th

 minute of reaction time and another 5 spectra between 135
th

 and 150
th

 minutes in the 

reaction time. In the table below, it is possible to see that the validation of the model is good as it 

predicts fairly well for a new X-block variables. 

  

Since the validation spectra are taken at reaction times between two GC-MS analyses, the 

predicted composition are expected to be close to the two measured GC-MS values. For example 

spectra taken at 16
th

, 19
th

, 22
nd

, 25th and 28
th

 minute in the reaction should have an estimated 

composition close to the measured GC-MS values at 15
th

 and 30
th

 minute for each component. 

As shown in the following table, the estimated values are within a reasonable range between the 

two GC-MS values. 
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Reaction time (min) 

 

Estimated % Composition by the model 

Reactant Product Byproduct 

16 68.6 26.9 4.5 

19 73.4 24.7 3.0 

22 76.4 23.7 2.6 

25 75.6 24.0 3.3 

28 69.4 25.5 5.7 

136 35.9 41.2 23.4 

139 34.7 41.8 24.0 

142 31.6 43.0 25.2 

145 33.7 42.3 24.5 

148 35.4 42.5 24.6 

 

Table.6. Prediction of composition using the Raman PLS model for new X-block variables 

 

 

NIR PLS model 

A PLS model was established for NIR data using three components. The variance captured by 

the model is given in the following table. 

 

Components X-block Y-block 

Current Total Current Total 

1 99.54 99.54 92.15 92.15 

2 0.39 99.94 6.30 98.45 

3 0.01 99.95 1.30 99.76 

 

Table.7. Variation captured by NIR PLS model 
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Fig.34. Plot of Measured (Blue) and Predicted (Red) % composition by NIR PLS model 
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prediction. There is a good correlation between the predicted and measured composition for all 

components at different reaction times. Figure 35 A-C shows how the measured and predicted 

compositions are correlated. 
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Fig.35A. Plot of predicted composition against measured composition for the reactant 

(Pearson’s r =0.9849) 

 

 

Fig.35B. Plot of predicted composition against measured composition for the product (Pearson’s 

r =0.9880) 
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Fig.35C. Plot of predicted composition against measured composition for the byproduct 

(Pearson’s r =0.9672) 

 

NIR model validation 

For the validation process another ten samples were taken as new set of X-block variables. Three 

samples from 15
th

 to 30
th

 minute range, four samples from 75
th

 to 90
th

 minute range and three 

samples from 135
th

 to 150
th

 minute range in the reaction time were selected. Then they were 

subjected to the model and their respective % composition values were compared with the 

prediction made for the first set of samples. This comparison is shown in table 8. 

 

 

Reaction time (min) 

 

Estimated % Composition by the model 

Reactant Product Byproduct 

17 73.1 23.8 2.1 

22 74.4 22.6 2.1 

27 68.3 25.6 5.7 

77 39.3 38.8 21.7 

81 38.5 39.3 22.1 

85 38.5 39.2 22.1 
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88 42.5 36.7 20.0 

137 37.7 39.8 22.6 

142 34.7 41.1 23.9 

147 36.8 39.9 22.7 

 

Table.8. Prediction of composition using NIR PLS- model for new X-block variables 

 

 

5. Conclusion 

Raman and NIR spectroscopy has been proven to be effective methods for online reaction 

monitoring of synthesis of 10-Bromo-1-Decandiol. GC-MS analysis of aliquots of the reaction 

mixture at different intervals of time during the reaction confirmed to be consistent with the 

result obtained from principal component analysis for Raman and NIR data. Moreover, PCA 

investigation of the score plots in the Raman and NIR data revealed that the reaction time can be 

shortened considerably without affecting the yield of the product. 

 

MCR-ALS method was successfully employed in identifying pure component spectra of the 

reactant, product and byproduct. PLS- regression models for Raman and NIR data made very 

good predictions and the correlation between the predicted and observed values for all 

components involved in the reaction have been very good. Therefore, both Raman and NIR 

spectroscopy equipped with multivariate data analysis techniques proved to be adequate 

techniques to monitor the synthesis of 10-Bromo-1-Decandiol. 

 

 

6. Suggestion for future work 

For future studies on reaction monitoring using Raman and NIR spectroscopy, I suggest the 

following points to be taken into consideration. In order to avoid complications during data 

pretreatment and interpretation, the spectra recorded by Raman and NIR spectroscopy should be 

carried out at equal intervals of time. This leads to equal numbers of spectra that are more 

convenient to deal with.   
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For a better data pretreatment, particularly for background correction of spectral data, addition of 

Raman and NIR active internal standard to the reaction mixture is advisable. For reactions 

carried out in a solvent, the solvent itself can be used as an internal standard but for reactions 

carried out without solvent (like the reaction monitored in this thesis) selection and addition of 

appropriate internal standard to the reaction mixture will assist the background correction step of 

data pretreatment.    
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