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Chapter 1

Outline and Motivation

To model the �uid �ow in a porous media we need information about the
permeability. Unfortunately the only way to obtain measurements of the per-
meability is by conducting experiments on core samples. There is a high cost
related to obtaining these cores, and we only get point measurements. This
means that we are only able to obtain sparsely distributed data points of the
permeability. The permeability �eld might have a simple structure making the
interpolation between these points good, but most likely the permeability �eld
has a complex structure, making the interpolation useless.
Instead of relying on measured data, there has been developed methods for
estimating the permeability. These methods are based on solving an inverse
problem. This procedure is inherently very complex, and it is generally hard
to solve. The theory for solving these kind of problems are vast, and we can
approach the problem in many ways. This means that choosing a solution
procedure can be di�cult. We therefore try to investigate some of the prop-
erties that exist between the given data type, and the parameter we want to
estimate. If we are successful in this, we can choose estimation schemes that
takes advantage of these properties.

In [13] the e�ect of using a multiscale basis for estimation of the di�usion co-
e�cient in an elliptic, and parabolic equation was investigated. The authors
showed that by application of a multiscale basis it was possible to obtain better
estimation results. This theory was carried further in [31] where the degree of
ill-posedness of the invese problem was analyzed by utilizing a multiscale basis.
This showed that the model problem was more non-linear with respect to co-
e�cients of the �ner scales, but less sensitive with respect to these coe�cients.
The results in [31] was based on the estimation of a(x) from measurements of
u(x) in the 1-D elliptic equation

− d

dx

(
a(x)

du(x)

dx

)
= f(x), x ∈ (0, 1) . (1.0.1)

1



2 Outline and Motivation

In [23] the correlation between sensitivity, non-linearity and scale was investi-
gated for a more general class of models. It was shown that there is a strong
correlation between low sensitivity, high non-linearity and directions in pa-
rameter space associated with small-scale oscillations for the class of models
investigated.

For the purpose of estimating the permeability in a porous media it would be of
great value if there existed a relationship between sensitivity, non-linearity and
scale (denoted SNS) related to the problem. This question was addressed in
[33]. Here the SNS relationship for the problem of estimating the permeability
from sparsely distributed time series of pressure data was considered. It was
rigorously shown that this relationship does exist for one-dimensional single-
and two-phase �ow.
The �ndings in [33] motivates the use of speci�c methods that utilize the SNS
relationship for the estimation of permeability from pressure data.

It is now reasonable to ask if there is a similar SNS relationship between per-
meability and other data. This will be the main issue adressed in this thesis.
Motivated by the approach in [33] we try to determine if there is a SNS re-
lationship associated with the inverse problem of permeability identi�cation
from sparsely distributed time series observations of �uid �ow. This is done
by rigorously analyzing the one-dimensional �uid �ow equation for one- and
two-phase �ow. After this, we perform numerical experiments to test the the-
oretical results. We now look at the outline of the thesis

In Chapter 2 we give an introduction to the general inverse problem. We
look at the �ow equations, and de�ne the di�erent properties that are related
to �uid �ow in a porous media. We also introduce di�erent ways of solving the
inverse problem and look at some problems related to this.

In Chapter 3 we look speci�cally at how we can utilize the relationship
between sensitivity, non-linearity and scale for solving the inverse problem.

In Chapter 4 we establish a method for deriving expressions for the sensitivity
and non-linearity in di�erent directions of parameter space.

In Chapter 5 we look at some foundations for the multiresolution analysis.
We introduce a multiresolution basis, that will be used in later chapters. We
also use this to illustrate some of the properties of multiresolution analysis.

In Chapter 6 we analyze the sensitivity, non-linearity and scale structure of
one-dimensional single-phase �ow.

In Chapter 7 we analyze the sensitivity, non-linearity and scale structure of
one-dimensional two-phase �ow.
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In Chapter 8 we look into the e�ects of the simpli�cation that was made in
Chapter 5, and Chapter 6. We conduct some numerical experiments in order
to analyze the reactions of these simpli�cation.

In Chapter 9 we utilize the comercially available reservoir simulator Eclipse
for the calculation of sensitivity values for a one-dimensional two-phase prob-
lem. We transform these values such that they are represented by the mul-
tiresolution basis, and compare these results to the ones obtained in Chapter
6.

In Chapter 10 we also utilize Eclipse in the same manner as for Chapter
8 but now we do the sensitivity calculations for a two-dimensional two-phase
problem. We give an introduction to multidimentional multiresolution bases,
and utilize a two-dimensional multiresolution basis to transform the sensitivies.

In Chapter 11 we summarize and comment on the results obtained in the
thesis.
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Chapter 2

Introduction

2.1 Inverse problems

In a typical mathematical problem we want to �nd, or estimate some unknown
value. In order to do this we �rst have to understand which physical princi-
ples that apply. Then we have to formulate the problem into a mathematical
problem. After this we can try to solve the mathematical problem either by
analytical, or numerical calculations. The inverse problem is somewhat di�er-
ent.

For an inverse problem we have measurements of the value we found by solving
the mathematical problem. This measurements can be continuous or discrete.
We can have measurements at di�erent times, or at di�erent spatial positions.
The task in an inverse problem is to use these measurements to �nd, or esti-
mate, some of the parameters that characterize the mathematical model.
As an example we can consider the physical system of a beaker with water
sitting over a bunsen burner. The measurements is the temperature of the
water, and the parameter we want to estimate is the thermal conductivity of
the water.

The problem of predicting the measurement results are called the forward prob-
lem. The inverse problem is then to use the measurement to determine the
value of parameters that characterize the system. The forward problem is
shown in (2.1.1). We are given a set of parameters, m, that describe the sys-
tem. Assuming that we have a complete physical theory, we have a function G
that relates the parameters to the measured data d

G(m) = d. (2.1.1)

For an inverse problem, the task is to �nd m, given d. This is not a trivial task.
For real observations we always have some amount of noise. This noise can

5



6 Introduction

come from many di�erent sources, we therefore look at our data as consisting
of a noiseless component, plus a noise component η

d = G(mtrue) + η. (2.1.2)

Assuming that the forward modeling is correct, then G(mtrue) = dtrue. If we
were to �t d by (2.1.1) with d described in (2.1.2) we would also �t η. This is
of course undesirable, and it is often the case that measurements d with even
a small η produces a m that has little or no correspondence to mtrue. This
means that the task of �nding mtrue is unstable, and because of η we might
never �nd a model that exactly �ts the data.

There is another issue that makes inverse problems hard. For many problems
there is in�nite numbers of m aside from mtrue that �t the error free data
dtrue. That is the inverse problem does not have a unique solution. As an
example of this we can consider the measurements of the gravity �eld around
a planet. Given the distribution of mass inside a planet, we can uniquely
predict the values of the gravity �eld around the planet. But there can be
many distributions of mass that produce this exact same gravity �eld. Thus
the inverse problem of determining the mass distribution from observations of
the gravity �eld has many solutions.

The inverse problem is in general ill-posed. The solution might not exist, it
might not be unique, and the process of computing an inverse solution can be
extremely unstable. For this reason the process of �nding the solution to an
inverse problem can be challenging.

We typically distinguish between linear and nonlinear inverse problems. We
write

• Gm = d for a linear inverse problem.

• G(m) = d for a nonlinear problem.

When we consider a "normal" non-linear problem the non-linearities are found
in the variables like

y = ax2 + b. (2.1.3)

Considering a non-linear inverse problem, it is the parameters representation
in the function that are non-linear

y = a2x+ b. (2.1.4)

More on the topic of inverse problems can be found in e.g. [5, 45].
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2.2 Flow equations

Fluid �ow in a porous media are governed by the same fundamental laws
that govern the motion of �uids in for example; the atmosphere, pipelines
and rivers. These laws are based on the conservation of mass, momentum
and energy [6]. When we consider a porous media there are some problems
with applying these laws. The scale of a pore is extremely small compared
to the scale of a whole reservoir, and we do not know anything about the
shapes, or sizes of the pores. This makes it tedious to do simulations of �ow
within each pore. Instead of looking at individual pores, the basic concept for
porous media equations is to make averages over a volume that is big enough1

so that local variations of parameters, like the pore size will even out. This
volume is called a Representative Elementary Volume. Using this approach
we can replace the actual porous medium with a �ctive continuum. This is
a structureless substance where at any point with spatial coordinates we can
assign variables and parameters that are continuous functions of coordinates
and time [8]. These variables and parameters allows us to describe the �uid
�ow within a porous media by means of partial di�erential equations (PDE).

We now describe the most important parameters, and the PDEs that govern
the �ow in a porous media.

2.2.1 Porous media

Many natural and synthetic materials are not complete solids. Inside they
can have small or large voids. We refer to these voids as pores. We can �nd
numerous examples of porous media, from a concrete slab to a sponge. The
di�erence lies in the amount, size, and in the way the pores are connected.
As an example of a porous media we can look at a sandstone. A sandstone is
a sedimentary rock composed mainly of "sand-sized" minerals or rock grains.
Between these grains we �nd pores that are interconnected and pores that are
isolated. A petroleum reservoir does not have to be composed of sandstone.
But it needs to be a porous media with interconnected pores in order for
hydrocarbons to accumulate and be produced.

Each �uid in a porous media is called a phase. Oil and water are two separate
phases. The phases can move through the porous media within the network of
interconnected pores. We de�ne the volume of all the connected pores as Vp,
and the total volume of the porous media as Vt. Now we write the e�ective

1�Big enough� is usually very small compared to a typical reservoir, a volume of 1 cm3 is
normally plenty. So this is no limitation.



8 Introduction

porosity φ in the following way

φ =
Vp
Vt
.

This dimensionless quantity is usually expressed as a percentage. From now
on we refer to the e�ective porosity as the porosity.

2.2.2 Fluid properties

For every phase in the porous media there are speci�c properties that is unique
for each phase. The properties we introduce is the density ρ, the viscosity µ,
and the compressibility c.

The density of a �uid is de�ned as the mass per unit volume. The units in the
SI system is [kg/m3]. From now on we denote the density of phase i as ρi.

Viscosity is a measure of a �uids internal resistance to �ow and may be thought
of as a measure of �uid friction. The units for viscosity in the SI system is
[N · s/m2] = [kg/m · s]. The most commonly used unit for viscosity is Poise
[P ] and centipoise [cP ]. This is the unit in the the cgs (centimeter, gram, and
second) system, and it is the unit we will use for viscosity. The relationship
between the two is 1 [kg/m · s] = 10 [g/cm · s] = 10P . From now on we denote
the viscosity of phase i, as µi. For more on viscosity we refer the reader to e.g.
[47, 8].

In �uid mechanics the compressibility c of a phase is the measure of the volume
change of the phase due to a pressure change in the phase. This can be de�ned
as

c = − 1

V

dV

dp
=

1

ρ

dρ

dp

where V is the total volume and p is the pressure [29].

The properties we have presented so far is independent of the number of phases
there is in the porous media. There are on the other hand some quantities that
only apply when there are two or more phases present.

2.2.3 Saturation

If we have more than one phase is present in the porous media, we need some
kind of quantity that tells us how much of the volume that is occupied by each
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Figure 2.2.1: Wetting

phase. If a pore is occupied by oil, water and gas, we can write the total pore
volume as the sum of the volume of oil, water and gas, i.e.

Vp = Vo + Vg + Vw.

The saturation, S, is de�ned as the fraction of pore volume occupied by a
particular �uid

Si =
Vi
Vp
, i = o, w, g.

Since the porous media always is completely �lled with �uids we have∑
i=o,w,g

Si = 1.

2.2.4 Wettability

Considering a case with more than one phase in equilibrium inside a porous
media, the phases will be distributed according to each phases density. This is
due to gravitational e�ects. When two phases (e.g. oil and water) coexist in a
pore they are, because of adhesive forces on the pore wall, distributed unevenly
in the pore space[47]. The force is always stronger for one of the phases. Which
phase that is preferred depends on the properties of the reservoir. This property
is called the wettability preference of the rock. We now de�ne one of the phases
as the wetting and the other as the non-wetting phase. We can decide which
phase is wetting by looking at a droplet of one phase resting on the reservoir
rock surrounded by the other phase. If the contact angle is small (φ < 90◦) the
droplet is the wetting phase. If the contact angle is large (φ > 90◦) the droplet
is the non-wetting phase, this is illustrated in �gure 2.2.1.

2.2.5 Darcy's Law

Darcy's law is an empirical relationship for the �ow of water through a porous
media. This relationship was �rst discovered by Henry Darcy [14] while do-
ing experiments on �ow through a vertical column packed with sand. These
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experiments demonstrated that the volumetric �ow rate through the porous
medium, Q , is proportional to the pressure di�erence over the column, p2−p1,
the cross-sectional �ow area, A, and inversely proportional to the the height of
the packed column, L. With a proportionality constant K, this is stated as:

Q = −KAp2 − p1
L

.

Darcy's experiments has been repeated with more general conditions. Many
types of �uids has been tested, and the �ow direction has been varied. This
has resulted in a more general way of de�ning Darcy's law in three dimensions:

u = − 1

µ
K (∇p+ ρg) , (2.2.1)

where u is the Darcy velocity, ∇ is the di�erential operator, g represents the
gravity vector. K is the proportionality constant called permeability, this is
the same used in Darcy's original version of the law.

Even though equation (2.2.1) is the foundation for most theory on �uid �ow in
porous media, it is important to remember that this is an empirical law that
in no way represents the actual �uid �ow within the porous media. Darcy's
law only contain data collected at points external to the porous media [22]. It
has been shown that Darcy's law is valid for any Newtonian �uid [20], and by
using theory from continuummechanics the validity of Darcy's law is con�rmed,
under the assumptions that the experimental apparatus is similar to the one
Darcy used in his experiments [22].

The permeability K is of great importance since it tell us how easily the �uid
�ows through the porous medium. Hence the form of K depends somewhat
on the possible �ow directions. We now describe this important parameter in
more detail.

2.2.6 Permeability

Darcy noted that the �ow rate was dependent on some constant that accounted
for the properties of the porous media, this constant is known as the perme-
ability. The value only depends on the rock. In Darcy's original equation the
permeability was a scalar value. This is only valid if the media is homogeneous
and isotropic, i.e. the media is spatially uniform, and the permeability does
not change value when we look in other directions. If the media is not spatially
uniform, we say that it is heterogeneous. And if the permeability changes value
depending on the direction, the media is anisotropic.

When the media is anisotropic, the permeability must be represented by a
second order tensor. If the media in addition is heterogeneous, the permeability
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is dependent on the position in the medium. Permeability can thus be written
in a general form, with x, y, z equal to the spatial coordinate directions:

K(x, y, z) =


K11(x, y, z) K12(x, y, z) K13(x, y, z)
K21(x, y, z) K22(x, y, z) K23(x, y, z)
K31(x, y, z) K32(x, y, z) K33(x, y, z)

 . (2.2.2)

Using units from the SI system in (2.2.1) we get [K] = m2 . A problem arises
when we apply this unit for �uid �ow, the unit is to big, hence we must use
very small numbers for permeability. Another unit is much more suited, and
is widely used in all �elds related to �ow in porous media. Hence we make
an exception from the SI system when we de�ne the unit for permeability as
Darcy. It is commonly de�ned (see e.g. [29]) as follows:

De�nition 1. The permeability of a porous medium is 1 Darcy if a �uid with
viscosity of 1 cp and a pressure di�erence of 1 atm/cm is �owing through the
mediums cross-section of 1 cm2 at a rate of 1 cm3/s.

Inserted in (2.2.1) gives 1Darcy ≈ 0.987 · 10−12m2.

2.2.7 Multiphase extension of Darcy's Law

Darcy's law was introduced to model �ow of one �uid through a porous media,
it can be expanded to n phases.

ui = −Kkri(Si)

µi
(∇pi + ρig), i = 1, . . . , n. (2.2.3)

This expansion of Darcy's law looks similar to the original version. The only
di�erence is the factor kri(Si) which is called the relative permeability. This
factor accounts for the reduction of permeability as a result of the other phases.
The idea is to think of each phase individually and pretend that the other
phases are just a part of the rock matrix. Hence it is obvious that the relative
permeability is dependent on the �uid saturation. The form of this functional
relationship is dependent on the rocks properties, but in general the relative
permeability is taken to be a nonlinear function of saturation.

In order to simplify the equation, we introduce mobility as

λi =
kri
µi
, i = 1, . . . , n.

For a case where water is displacing oil, we de�ne the mobility ratio as the
ratio between the displacing and the displaced �uids mobility. For this case we
write

Mwo =
λw
λo

=
krw
kro

µo
µw
.
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By performing an analysis of the fronts stability we distinguish between two
types of displacements [34].

µw > µo = subcritical displacement,

µw < µo = supercritial displacement.

We do not perform this analysis but we can summarize by concluding that
a subcritical displacement leads to a stable �uid front, and a supercritical
displacement leads to an unstable �uid front.

2.3 Solving the Inverse Problem

In section 2.1 we introduced the general inverse problem and explained some
of the reasons why it is so hard to solve. In this section we look into some of
the techniques used to solve the inverse problem.

2.3.1 Least squares

Given a discrete linear inverse problem, we have a data vector, d, of k observa-
tions, and a vector m consisting of n model parameters. We let rank(G) = n
so the matrix G has full column rank. The inverse problem can then be written
as a linear system of equations

Gm = d.

Since k 6= n we have an inconsistent system of equations, but we still want to
�nd an approximate solution. We therefore introduce the residual to measure
the mis�t between the actual data and Gm. The residual is de�ned as

r = d−Gm.

A natural measure for the quality of any approximate solution is the 2-norm
of the residual ‖r‖2 = ‖d−Gm‖2. The approximate solution that minimizes
this norm is called a least squares solution. This solution can be obtained by
projecting d onto the range of G. Let

G(m) = p

= projR(G)d
(2.3.1)

then Gm − d is perpendicular to the range of G. In particular each of the
columns of G is orthogonal to G(m)− d. Thus

GT (Gm− d) = 0 (2.3.2)
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this is called the normal equations and the least squares solution is from this

mL2 =
(
GTG

)−1
GTd. (2.3.3)

It can be shown that if G is of full column rank then
(
GTG

)−1
exists.

A typical problem that can be solved by the least squares method is �nding
the parameters m1 and m2 for a line y = m1 +m2x, that best �ts a set of k > 2
data points.

2.3.2 Continuous Inverse Problems

When we want to describe a physical system in the best possible way the
parameters m, and the data d can be functions of time and space. When this
is the case, the problem of estimating m from d is called a continuous inverse
problem. One example of such a problem is the Fourier transform

Φ(f) =

ˆ ∞
−∞

e−2πifxφ(x) dx (2.3.4)

where we want to obtain the continuous φ(x) from the continuous Φ(f). This
is solved by deconvolution.

In many cases a continuous inverse problem can be well approximated by a
discrete inverse problem. The way we perform this discretization is important
for the solution procedure.

2.3.2.1 Discretization with Basis Functions

One way to discretize the continuous inverse problem is to represent the model
m(x) as a linear combination of p representers. With suitable functions h1(x), h2(x), . . . , hp(x)
that form a basis for a function space H. We can write our continuous inverse
problem like

d(s) =

ˆ b

a

g(s, x)m(x) dx,

we approximate m(x) by

m(x) =

p∑
j=1

αjhj(x).
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When this approximation is substituted into the inverse problem we get

d(si) =

ˆ b

a

gi(x)

p∑
j=1

αjhj(x) dx

=

p∑
j=1

αj

ˆ b

a

gi(x)hj(x) dx, i = 1, . . . , k.

Now the continuous inverse problem is reduced to a k by p linear system

Gα = d,

where

Gi,j =

ˆ b

a

gi(x)hj(x) dx,

and

α =

p∑
j=1

αj,

This is one way to discretize our continuous inverse problem. We can now solve
the linear system for α, and then �nd the model m(x). For this approach we
must make an intelligent choice of basis functions hj(x) in order to make the
solution process as easy as possible.

2.3.3 Regularization

It can be shown that the general inverse problem is ill-posed by utilizing the
SVD (Singular Value Decomposition). The generalized inverse solution can be
written as (see e.g. [5])

m† = VpS
−1
p UT

p d =

p∑
i=1

UT
·,id

si
V·,i (2.3.5)

here the Moore-Penrose pseudo inverse [36, 40] is utilized. The U is an k by k
orthogonal matrix with columns that are unit basis vectors spanning the data
space. V is an n by n orthogonal matrix with columns that are basis vectors
spanning the model space. The Moore-Penrose pseudo inverse is de�ned as

G† = VpS
−1
p UT

p

where the pseudo inverse is denoted by a dagger. The elements of S are called
the singular values of the matix. Some of the singular values might be zero.
We choose to arrange them by decreasing size, and only use the �rst p positive
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singular values. This is denoted by the subscript p. BothU and V is truncated
so that p columns of U and V are included. This is denoted by the subscript
p.

From (2.3.5) we see that in presence of a noisy data vector, small singular val-
ues can act as a noise ampli�er making the resulting answer practically useless.
To solve the problem we need to introduce some remedies called regularization.
There are many ways of performing regularization. To obtain good results we
often utilize some information about the problem. This can be the relation-
ship between sensitivity, non-linearity and scale associated with estimation of
a given parameter from a given data-type. We can obtain good results by
reparametrization of the parameters. This type of regularization is the main
subject in our thesis and will hence be treated in a separate chapter. To illus-
trate some general properties of regularization we introduce three well known
types of regularization:

• Truncated Singular Value Decomposition

• Zeroth-order Tikhonov Regularization

• Higher-order Tikhonov Regularization

2.3.3.1 Truncated Singular Value Decomposition

The truncated singular value decomposition (TSVD) is the simplest regular-
ization method we introduce. From (2.3.5) we saw that small singular values
combined with a noisy data vector could destroy our answer. One way to �x
this problem is to remove the smallest singular values. We remember that the
singular values was arranged in decreasing order down to the smallest positive
value with index p. For the TSVD method we truncate at some p′ < p. With
this we can eliminate the smallest singular values but we also remove some of
the model space basis vectors since V·,j is also truncated. The resulting solution
will not match the data as good as solutions based on all the model space basis
vectors. This is a typical dilemma of regularization, there is always a trade-o�
between �tting the data and solution stability.

2.3.3.2 Zeroth-order Tikhonov Regularization

The Tikhonov regularization is perhaps the most widely used regularization
technique. We will see that the Tikhonov solution e�ectively gives greater
weight to large singular values in the SVD solution, and less weight to small
singular values.
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Considering an ill-posed problem Gm = d with noisy data. To solve this, we
would try to minimize the residual

min ‖r‖22 = min ‖Gm− d‖22 . (2.3.6)

Solving this does not always produce a useful answer. We therefore introduce
a regularization term α. The solution will now minimize

min ‖Gm− d‖22 + α2 ‖m‖22 . (2.3.7)

This is also called the damped least squares problem. Augmenting this we get
an equivalent formulation as for the ordinary least squares problem

min

∥∥∥∥∥
[
G

αI

]
m−

[
d

0

]∥∥∥∥∥
2

2

. (2.3.8)

This is solved by the normal equations which gives[
GT αI

] [ G

αI

]
m =

[
GT αI

] [d
0

]
, (2.3.9)

or simpli�ed as (
GTG + α2I

)
m = GTd. (2.3.10)

It can be shown (see e.g. [5]) that the solution to this is

mα =

j∑
i=1

s2i
s2i + α2

(U·,i)
T d

si
V·,i (2.3.11)

recall that U is k by k, and V is n by n, we let j = min(k, n). This way all
the singular values are included in this representation. By comparing (2.3.5)
and (2.3.11) we see that the only di�erence is the factor

fi =
s2i

s2i + α2
. (2.3.12)

This is called the �lter factors. The advantage of Tikhonov regularization is
clear when we look at how the �lter factors behave. For si � α, fi ≈ 1, and for
si � α, fi ≈ 0. For singular values between these extremes the �lter factors
decrease monotonically as the singular values decrease. It is now up to us to
choose correct values of α.

2.3.3.3 Higher-order Tikhonov Regularization

In many situation we have some prior knowledge about the solution model.
This information can be used in Tikhonov regularization. We introduce a new
factor L, in the damped least squared problem.

min ‖Gm− d‖22 + α2 ‖Lm‖22 (2.3.13)
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The factor L can be any suitable matrix. If we know that the solution is rela-
tively �at, we might prefer to favor solutions with a small �rst derivative. Then
L can be some �nite-di�erence approximation to the �rst derivative. This is
called a �rst-order Tikhonov regularization. If we prefer solutions with small
second derivatives, we have to �nd a matix L that is some �nite-di�erence
approximation to the second derivative. This is called the a second-order
Tikhonov regularization.

2.3.4 Non-linear Problems

The process of solving a non-linear inverse problemG(m) = d is more complex
than for the linear case. To be able to solve the non-linear problem we need to
introduce some new methods.

Considering a system of k equations in k unknowns

F(x) = 0 (2.3.14)

to solve this problem we construct a sequence of vectors, x0,x1, . . . , that con-
verges to a solution x?. If F is continuously di�erentiable, we can construct a
Taylor series approximation around x0

F(x0 + ∆x) ≈ F(x0) +∇F(x0)∆x (2.3.15)

where ∇F(x0) is the Jacobian. To obtain an approximate equation for the
di�erence between x0 and the unknown x?

F(x?) = 0 ≈ F(x0) +∇F(x0)∆x (2.3.16)

with ∆x = x? − x0. We can now state Newton's method.

Algorithm 2.1 : Newton's method

Given a system of equations F(x) = 0 and an initial solution x0, repeat the
following steps to compute a sequence of solutions x1,x2, . . . Stop if and when
the sequence converges to a solution with F(x) = 0.

1. Use Gaussian elimination to solve

∇F(xp)∆x = −F(xp)

2. Let xp+1 = xp + ∆x.

3. Let p = p+ 1.
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If the initial solution x0 is close enough to x?, F(x) is continuously di�erentiable
in a neighborhood of x?, and ∇F(x?) is non-singular, then Newton's method
will converge to x?.

Newton's method for systems of equations can not always be used for nonlinear
inverse problems. There are many cases where the number of data points and
number of model parameters are not similar. For these problems we might not
have an exact solution. For linear problems we solved this by minimizing the
residual function. This can be done for nonlinear problems as well. To do this
we introduce Newton's method for minimizing f(x).

If we wish to minimize a function, we remember from calculus that the deriva-
tive needs to be zero. In order to minimize a scalar-valued function f(x) a
necessary condition is ∇f(x) = 0. Solving this for a nonlinear function is a
non-trivial task. A remedy is to approximate f(x) by a second order Taylor
expansion

f(x0 + ∆x) = f(x0) +∇f(x0)T∆x +
1

2
∆xT∇2f(x0)∆x. (2.3.17)

Now we want to �nd a ∆x such that the gradient of this approximation is zero.
Keeping x0 constant, we take the gradient of (2.3.17) with respect to ∆x;

∇f(x0 + ∆x) ≈ ∇f(x0) +∇2f(x0)∆x. (2.3.18)

Setting the approximate gradient equal to zero we get

∇2f(x0)∆x = −∇f(x0) (2.3.19)

where ∇f(x0) is the gradient, ∇2f(x0) is the Hessian and ∆x = x1 − x0. We
now state the Newton's method for minimizing f(x).

Algorithm 2.2 : Newton's method for minimizing f(x)

Given a twice continuously di�erentiable function f(x) and an initial solution
x0, repeat the following steps to compute a sequence of solutions x1,x2, . . .
Stop if and when the sequence converges to a solution with ∇f(x) = 0.

1. Solve ∇2f(xp)∆x = −∇f(xp).

2. Let xp+1 = xp + ∆x.

3. Let p = p+ 1.

When the initial solution x0 is close enough to the minimum x?, f(x) is twice
continuously di�erentiable, and ∇2f(x) is positive de�nite, then the method
converge to x?.
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In the case of solving a nonlinear inverse problem we want to �nd values of the
parameters that minimizes the 2-norm of the residuals. The residuals can be
stated like r = G(m)− d. We want to minimize

r(m) =
k∑
i=1

(G(m)i − di)2 . (2.3.20)

We denote
ri(m) = G(m)i − di i = 1, 2, 3, . . . , k (2.3.21)

and

R(m) =

 ri(m)
...

rk(m)

 . (2.3.22)

With this we state our residual as:

r(m) =
k∑
i=1

ri(m)2. (2.3.23)

We want to use Newton's method for minimizing scalar valued functions. From
algorithm 2.2 we see that we need to �nd both the gradient and the Hessian
of r(m). The gradient can be written as the sum of the gradients of each
individual term:

∇r(m) =
k∑
i=1

∇
(
ri(m)2

)
. (2.3.24)

This gives the following elements of the gradient:

∂r(m)

∂mj

=
k∑
i=1

∂

∂mj

(
ri(m)2

)
=

k∑
i=1

2ri(m)
∂ri(m)

∂mj

,

(2.3.25)

or in matrix notation
∇r(m) = 2R(m)J(m)T (2.3.26)

where J(m) is the jacobian matrix

J(m) =


∂r1(m)
∂m1

· · · ∂r1(m)
∂mn

...
. . .

...
∂rk(m)
∂m1

· · · ∂rk(m)
∂mn

 . (2.3.27)
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We �nd an expression for the Hessian of r(m) in the same manner . Writing
the sum of each individual term

∇2r(m) =
k∑
i=1

∇2
(
ri(m)2

)
=

k∑
i=1

H i(m),

(2.3.28)

where H i(m) is the Hessian of ri(m)2. We write one element of the Hessian to
clarify

H i
j,l(m) =

∂2(ri(m)2)

∂mj∂ml

=
∂

∂mj

2

(
ri(m)

∂ri(m)

∂ml

)
= 2

(
∂ri(m)

∂mj

∂ri(m)

∂ml

+ ri(m)
∂2ri(m)

∂mj∂ml

)
,

(2.3.29)

in matrix notation
H(m) = 2J(m)TJ(m) + Q(m), (2.3.30)

where

Q(m) = 2
k∑
i=1

ri(m)∇2ri(m). (2.3.31)

2.3.4.1 Gauss-Newton Method

In the Gauss-Newton method we ignore the Q(m) term in (2.3.30) so that the
Hessian becomes

H(m) ≈ 2J(m)JT (m). (2.3.32)

To solve the non linear inverse problem by the Gauss-Newton method we use
this expression for the Hessian in the Newton's method for minimizing. The
iteration becomes

J(mp)TJ(mp)∆m = −J(mp)TF(mp) (2.3.33)

The Gauss-Newton method often works well, but can fail. This is partly be-
cause the method is based on Newton's method, and can fail for the same rea-
sons as Newton's method. The method will also fail if the matrix J(mk)TJ(mk)
is singular.
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2.3.4.2 Levenberg-Marquardt Method

The Levenberg-Marquardt Method is introduced in order to �x some of the
�aws in the Gauss-Newton method.(

J(mp)TJ(mp) + λI
)

∆m = −J(mp)TF(mp). (2.3.34)

Here the λI term has been introduced to ensure convergence. By adjusting λ
during the iterations we can ensure that the matrix always is non-singular. For
large values of λ we get:

J(mp)TJ(mp) + λI ≈ λI, (2.3.35)

which gives

∆m ≈ −1

λ
∇r(m). (2.3.36)

This is called the steepest-descent step. This means that the algorithm moves
in direction of the gradient to most rapidly reduce r(m). This approach as-
sures convergence but is very slow. On the other hand if λ is very small the
Levenberg-Marquardt method reverts to the Gauss-Newton method, which is
fast but does not guarantee convergence.

λ is adjusted during the iterations, and one challenge is how to determine an
optimal value of λ. We want a small value of λ when the Gauss-Newton method
is working well, and we want a higher value of λ in situations where the Gauss-
Newton method is failing. There are many di�erent ways of determining λ and
robust implementations uses sophisticated strategies for adjustment. For more
on this we refer the reader to [37].

It is important to note that even though the λI term in the Levenberg-Marquardt
method resembles a Tikhonov regularization term it does nothing to regularize
the solution. The λI term is only used as way to stabilize the solution of the
linear system and improve the convergence of the method. We observe that λI
does not enter in the objective function.

For more information on the Gauss-Newton or Levenberg-Marquardt method
we refer the readers to e.g. [11, 38, 39].

2.3.5 Statistical approach

In the previous sections we began with a mathematical model of a given prob-
lem Gm = d. We assumed that there exists some true model mtrue which
corresponds to a true data set dtrue is such a way that Gmtrue = dtrue. In
a typical inverse problem we are given some data d which are a combination
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of dtrue and some noise. Our task is then to �nd the model mtrue. Since the
inverse problem is ill-posed we need to implement regularization. This means
that we are making a choice about which solutions we want. This works for
many cases but it is not the only way of obtaining a solution. We now look at
some fundamentally di�erent ways of solving the inverse problem.

2.3.5.1 Bayesian methods

The Bayesian approach is based on completely di�erent ideas than the classical
approach. Instead of looking for the speci�c unknown model mtrue we express
the model as an random variable. In this mind frame the solution is a proba-
bility distribution for the model parameters. With the Bayesian approach we
naturally incorporate prior information about the solution that comes from the
data or from experience based intuition. The factors in the Bayesian method
are

• p(m): The prior distribution of the model parameters, m, based on
knowledge available.

• f(d|m): The conditional distribution of the measurements d, given
parameters m.

• q(m|d): The posterior distribution of the model parameters.

Bayes theorem is named after the 18-century mathematician Thomas Bayes.
It is the foundations for the Bayesian methods and it allows us to combine the
prior and the conditional distribution to form a posterior distribution.

Theorem 2. Bayes Theorem

q(m|d) =
f(d|m)p(m)´

allmodels
f(d|m)p(m) dm

. (2.3.37)

A controversy concerning the Bayesian approach is the fact that we need to
choose a prior distribution. Our choice here colors the �nal result. The method
is therefore said to be "unscienti�c". As a response to this we can choose a
uninformative prior distribution. Here all the models m are equally probable.

When we are using the Bayesian approach it is important to remember that
the solution we obtain is a probability distribution. We can however obtain a
single model,m, as our solution. This is done by simply picking the model that
maximizes q(m|d). This is called the Maximum a posteriori (MAP) model.
Another way of getting a single model would be to use the mean of the posterior
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distribution. In situations where the posterior distribution is normal, the MAP
model and the posterior mean model would be identical [5].

For a general problem the computation of the integral
´
allmodels

f(d|m)p(m) dm
can be very expensive. Fortunately we can perform some simpli�cations if the
prior distribution is uninformative, or if the noise in the measured data is
independent and normally distributed with standard deviation σ. For more
information on Bayesian methods we refer the reader to e.g. [44, 45].

2.3.5.2 Data assimilation methods

The value of data assimilation methods can be illustrated by an example. If
we have information of the temperature at som points in space, is it then
possible to use this measurements to say something about how the temperature
is at other points? An intelligent way is to use these measurements combined
with a mathematical model. We assume that our mathematical model is not
correct, we need to make better estimations of the parameters. If we make
our mathematical model predict the measured temperatures, it is natural to
believe that it will do a better job in estimating future temperatures. This
is the idea of Data assimilation methods. There are many methods based on
data assimilation, especially weather forecasting has applied these methods. In
the �eld of �uid �ow in porous media, the Ensemble Kalman �lter has been
used. This is based on the Kalman �lter [28]. For readers who want more
information about the Ensemble Kalman �lter we refer to e.g. [2, 18, 19, 17].
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Chapter 3

Multiscale approach to the inverse

problem

In section 2.3 we looked into di�erent ways of regularizing the problem. It
was brie�y mentioned that information about the problem could be important
when chosing a regularization method. If there exists an interrelation between
sensitivity, non-linearity and scale, denoted SNS, we can obtain good results by
reparameterization of the parameters. We devote this chapter to this method of
regularization because it is central to our thesis. Before we describe how to use
this for solving an inverse problem we look into what we mean by sensitivity,
non-linearity and scale.

3.1 Sensitivity

The objective of all inverse problems is to determine a set of parameters, m,
based on a set of data, d = G(m) + η . When we de�ne sensitivity we always
mean the sensitivity of data to the parameters that de�ne the problem. This is
an important property of any inverse problem. We use the following measure
for sensitivity

Si,j =
∂di
∂mj

=
∂G(mj)i
∂mj

, (3.1.1)

where G(m) is the forward model, and m is the true parameters that de�ne
the system. If a given sensitivity value, Si,j, is low it means that big changes
in the parameter, mj, will correspond to small changes in the data ,di. We will
then have a hard time to estimate the parameter mj by measurements of the
data vector di = G(mj)i + ηi where we also have an error term ηi.

25
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To obtain a good result for any inverse problem it is hence important to have
knowledge about how the sensitivity values behave. We will have much higher
sucess in �nding correct values of the parameters if the sensitivity values are
high.

3.2 Non-linearity

The inverse problem is often a non-linear problem. It is normally solved by
some gradient based algorithm like the Gauss-Newton method, where we per-
form a linearization. If the problem is to non-linear the linearization may cause
big problems for the algorithm. It may not converge, or it converges at some lo-
cal minima instead of the global minima giving a useless answer. We therefore
want the non-linearity to be as small as possible, to ensure that our method
converges and to the correct solution. A good measure for non-linearity is thus
important to ensure the stability of the numerical solution.

3.3 Scale

A typical petroleum reservoir is often characterized on many di�erent scales.
The geological model is very detailed and contains many small scale features.
In order to perform sensible numerical calculations we perform an upscaling of
the geological model to a reservoir model. This model does not have as many
grid cells as the geological model and is more suited for numerical calculations.

We want to solve the inverse problem for some parameter in every grid block of
the reservoir model, to do this we need a dense grid of data points. In real life
we have measurement points in the wells of petroleum reservoirs. Because of
the costs related to drilling wells we get sparsely distributed data points. This
means that even though the reservoir model is coarser than the geological model
we still have problems solving the inverse problem. One solution procedure
would be to regularize the inverse problem in a classical Tikhonov way. We
do not look further into this, but instead consider reparameterizing the inverse
problem.

For the method of reparameterization to work we need an interrelation between
sensitivity, non-linearity and scale. This interrelation must be such that there
is large sensitivity, and small non-linearity associated with perturbations on
a coarse scale. And correspondingly low sensitivity, and high non-linearity
associated with perturbations on a �ne scale.
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ψ3 ψ4

ψ1 ψ2

γ1 γ2 γ3 γ4 γ5 γ6
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γ31 γ32 γ33 γ34 γ35 γ36

Figure 3.3.1: Support of basis function γj and ψj

As an example of how regularization by reparameterization would work we
consider a numerical grid with 36 grid cells. The parameter we want to estimate
can be written as:

m =
36∑
j=1

αjγj(x). (3.3.1)

We now assume that there exists an SNS interrelation for this example, and
that the parameter can not be determined for all 36 grid cells. When we
reparameterize the parameter so that we only need to determine the value for
4 grid cells, hence making the problem more coarse scaled

m =
4∑
j=1

βjψj(x). (3.3.2)

Because of the SNS interrelation we expect the sensitivity of each parameter to
be high, and the non-linearity to be low. This means that we should be more
successful in solving the inverse problem. The support of the basis functions
ψj and γj can be seen in �gure 3.3.1

3.4 Applications

There has been done considerable work on this topic, and many di�erent al-
gorithms has been proposed. They all try to solve the inverse problem by
reparametrizing the sought-after parameters so that it is represented on a dif-
ferent way than the grid of the reservoir model. In the following we give a
short introduction to some di�erent ways of achieving this.

3.4.1 Zonation

When we conduct zonation, the reservoir is partitioned into a gradually �ner
prede�ned set of zoned with constant but unknown permeability. In �gure
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Figure 3.4.1: True permeability (upper row) and corresponding estimates
(lower row) estimated by adaptive re�nement. White dots show well location

3.3.1 we observed an example of zonation. We start by a low number of basis
functions, and gradually re�ne the parameter space. In �gure 3.3.1 we started
with 4 grid cells and ended up with 36 grid cells. The problem with this method
is that you need to know the structure of the zones prior to the estimation,
and there is low �exibility for matching the real permeability �eld. More on
zonation can be found e.g. [27].

3.4.2 Adaptive re�nement

A more advanced way to solve the problem is multi-level, adaptive re�nement
strategies. Here the zonation structure is gradually re�ned, based on some
measure of how much the objective function is reduced by a new re�nement of
the zonation structure. This means that the re�nement is much more �exible
with regards to matching the real permeability �eld. More on this strategy can
be found in e.g. [3, 24, 26, 1] . A few estimation results from [24] are shown in
�gure 3.4.1, we see that even though we have a more �exible way of representing
the di�erent zones we still have some limitations. The shape of each zone is
rectangular and hence the zones are not very �exible for representing complex
shaped permeability zones, for this reason we still risk over-parameterization
of the problem. To this end the theory of level-set has been applied to generate
more smooth transitions between the re�nement zones. For more on adaptive
re�nement methods that utilize this we refer the reader to e.g. [10, 30]. For
more on the general theory of level-set we refer the reader to [16].



Chapter 4

Measures for sensitivity and

non-linearity

In this chapter we introduce quantities that we use in the following chapters.
We start by establishing some notation. The superscript T denotes the matix or
vector transpose. Other superscripts on variable quantities are indexes. Excep-
tions from this is of course when the superscript is a �xed number (x2 = x · x),
and when we have a superscript on a �xed number 10k = 10·10 · · · 10 (k-times).

4.1 Directional Derivatives in Parameter Space

We want to investigate the Sensitivity and non-linearity associated with scale
(denoted SNS) for an inverse problem. We are given some data-vector m,
and a unit vector in parameter space h. In order to say something about
the sensitivity of m in direction of h we look at the �rst-order derivatives in
parameter space

Sh = ‖(m)h‖ . (4.1.1)

To obtain a measure for the model non-linearities we turn to the second-order
derivatives. Bates and Watts [7] introduced a relative curvature measure of
non-linearity in direction of h.

κh =
‖(m)hh‖
‖(m)h‖

2 . (4.1.2)

We now give a introduction into how we can calculate Sh and κh.

In our case we want to estimate the spatially variable permeability k. We let
the permeability be parametrized by

k(x; c) =
N∑
i=1

ciψi(x) =cTψ(x), (4.1.3)
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where ψ is an N-vector of piecewise constant basis functions, c is the associated
parameter vector, and x is the spatial coordinate vector. The semicolon is used
to separate between variables and parameters. We have variables on the left,
and parameters on the right.

We de�ne a function u by

u(x; c) = f(k(x; c)), (4.1.4)

and assume that we have a sequence of model data {mi}i=M−1i=0 . We can de�ne
one of the elements as

mi(c) = F(u(x; c); ζi), (4.1.5)

where F is a linear functional acting on u(x; c).

When we let h be a unit vector in the parameter space. We then �nd the
�rst-order directional derivative by

(mi)h =
∂mi

∂h
. (4.1.6)

All h-directional derivatives of the model data vector then becomes(
mT
)
h

=
∂m0

∂h
,
∂m1

∂h
, . . . ,

∂mM−1

∂h
= ((m0)h , (m1)h , . . . , (mM−1)h) .

(4.1.7)

The second-order directional derivative of mi in h-direction is then given by

(mi)hh =
∂2mi

∂h2
, (4.1.8)

and all second-order h-directional derivatives of the model data vector can then
be written as (

mT
)

=
∂2m0

∂h2
,
∂2m1

∂h2
, . . . ,

∂2mM−1

∂h2

= ((m0)hh , (m1)hh , . . . , (mM−1)hh) .
(4.1.9)

4.2 Calculating the directional derivatives

A general expression for elements of the data-vector is found in (4.1.5). Using
this we can show how to calculate the directional derivatives. The �rst-order
directional derivative can be written as

(mi)h =
∂mi

∂h
= hT∇mi(c), (4.2.1)
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where ∇ is the N-dimensional gradient vector in parameter space:

∇mi =
∂mi

∂c1
e1 +

∂mi

∂c2
e2 + · · ·+ ∂m1

∂cN
eN , (4.2.2)

with ei being the i-th unit vector in parameter space. When we apply the
general expression for the data-vector we get:

∇mi(c) = ∇F(u(x; c); ζi), (4.2.3)

as noted earlier F is a linear operator working on k(x; c) this means that the
gradient can be moved inside F

∇mi(c) = F(∇u(x; c); ζi). (4.2.4)

Using (4.1.4) and the chain rule we get

∇u(x; c) = ∇f(k(x; c)) = f ′(k(x; c))∇k(x; c). (4.2.5)

Since we parametrized k(x; c) in (4.1.3) we have

∇k(x; c) = ∇cTψ(x) =
N∑
i=1

∂

∂ci
ciψi(x)ei = ψ(x), (4.2.6)

since c is the parameter vector associated with k(x; c). Using this we get the
following expression for the �rst-order h-directional derivative of one element
in the model data vector.

(mi)h = hT∇mi(c) = hTF(f ′(k(x; c))ψ(x); ζi) (4.2.7)

hT can be moved inside equation (4.2.7), and using

hTψ(x) = k(x;h) (4.2.8)

we can write

(mi)h = F(f ′(k(x; c))k(x;h); ζi) (4.2.9)

The second-order h-directional derivative can be found in a similar manner.
Writing

(mi)hh =
∂

∂h

(
∂mi

∂h

)
= hT∇ ((mi)h) (4.2.10)

Using (4.2.9) and still noting that F is a linear functional we get

(mi)hh = F(∇(f ′(k(x; c))k(x;h)); ζi), (4.2.11)
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using the product rule we get

∇(f ′(k(x; c))k(x;h)) = ∇f ′(k(x; c))k(x;h) + f ′(k(x; c))∇k(x;h). (4.2.12)

Since h is a constant vector in parameter space we get

∇k(x;h) = 0. (4.2.13)

Applying the chain rule we get

∇(f ′(k(x; c))) = f ′′(k(x; c))∇k(x; c) (4.2.14)

using (4.2.6), and (4.2.8) while remembering that hT can be moved inside equa-
tion (4.2.10) we get the following expression for the second order h-directional
derivative of one element in the model data vector:

(mi)hh = F(f ′′(k(x; c))k2(x;h); ζi). (4.2.15)

Our approach to �nding expressions for sensitivity and non-linearity can then
be summarized in a few steps:

• Find an expression for the sequence of data {mi}i=M−1i=0 .

• Calculate the �rst-order h-directional derivatives
(
mT
)
h
.

• Calculate the second-order h-directional derivatives
(
mT
)
hh
.

• Find expression for the sensitivity by equation (4.1.1).

• Find expression for the non-linearity by equation (4.1.2).



Chapter 5

Foundations for multiresolution

analysis, and the Haar basis

5.1 Multiresolution analysis

Multiresolution analysis was �rst formulated by Meyer [35] and Mallat [32]. In
this part we go through some of the basic concepts that characterize multireso-
lution analysis, and we use the Haar-basis as an example of an multiresolution
basis. Most of the theory in this chapter is from [15, 41]. Corresponding the-
ory can be found in other literature as well (see e.g. [42, 9, 12]). The basic
idea of mulitresolution analysis is to create a sequence of successive approxi-
mation spaces, Vj, for representing functions from the space L2. This can be
formulated in the following way

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · , (5.1.1)

∩j∈ZVj = {0} , (5.1.2)

∪j∈ZVj = L2(R). (5.1.3)

Here, and for the rest of this thesis, Z is the set of all integers, and the over-
bar in (5.1.3) denotes closure. Denoting the Pj as the orthogonal projection
operator onto Vj. Then (5.1.3) guarantees that when j → −∞, Pjf = f for
all f ∈ L2(R). There are many ladders that ful�ll (5.1.1)-(5.1.3). They do not
necessary have anything to do with multiresolution. The multiresolution is a
consequence of the additional requirements

∀f ∈ L2(R) and ∀j ∈ Z, f(x) ∈ Vj ⇐⇒ f(2jx) ∈ V0, (5.1.4)

∀f ∈ L2(R) and ∀l ∈ Z, f(x) ∈ V0 ⇐⇒ f(x− l) ∈ V0, (5.1.5)

33
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∃φ ∈ V0 such that {φ(x− k}k∈Z is a Riesz basis of the subspace V0. (5.1.6)

This means that every approximation space Vj, j ∈ Z, is a scaled version of
the basic space V0. This is obtained by dyadic scaling (by a factor of 2j) of
the space V0. We achieve contraction or expansion depending on the sign of
j. In this manner the space Vj has a resolution of 2−j, and contains details
twice as �ne as those contained by the space Vj+1. We see in (5.1.5) that V0
is invariant under integer translations. This is a feature that we require from
multiresolution analysis. According to (5.1.6), the space V0 is generated by the
function φ(x) ∈ L2(R), and its translations. This function is called the scaling
function:

φjl (x) = 2−j/2φ(2−jx− l), j, l ∈ Z, (5.1.7)

scaled j times and translated by l. The Riesz basis of the space Vj is the set
of functions

{
φjl (x)

}
, l ∈ Z.

The basic principle of multiresolution analysis is that whenever a collection of
closed subspaces satis�es (5.1.1)-(5.1.6), there exists an orthonormal wavelet
basis

{
ψjl ; j, l ∈ Z

}
of L2(R), where ψjl (x) = 2−j/2ψ(2−jx − l). This is called

the "mother" wavelet, and it is a basis for the wavelet spaces Wj. This space
retains the details that are lost when we move from the space Vj−1 to the
space Vj since Vj ⊂ Vj−1. The space Wj is the orthogonal compliment of the
subspace Vj related to the space Vj−1

Vj−1 = Vj ⊕Wj. (5.1.8)

Where ⊕ denotes the orthogonal sum. This relationship gives us that for an
arbitrary J

VJ ⊕WJ ⊕WJ−1 ⊕ · · · ⊕Wj = Vj−1, J > j, (5.1.9)

that is, all spaces Wk, k ≥ j, are orthogonal to the space Wj−1, because
it is orthogonal to the space Vj−1 which contains them. Thus we see the
orthogonality of the spaces Wj. When we apply the completeness conditions
(5.1.2), (5.1.3), the equation (5.1.9) gives in the limit j → −∞

L2(R) = VJ ⊕
−∞∑
j=J

Wj, (5.1.10)

and when J →∞

L2(R) =
∞∑

j=−∞

Wj, (5.1.11)

Similar to Vj the wavelet spaces Wj can also be constructed by scaling and
dyadic translations of a "mother" wavelet

Wj =
{
ψjl ∈ L2 | l ∈ Z

}
, ψjl (x) = 2−j/2ψ(2−jx− l), j ∈ Z. (5.1.12)
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Because of the scaling properties f(x) ∈ Wj ⇐⇒ f(2jx) ∈ W0 we see that
our task is reduced to �nding ψ ∈ W0 such that the ψ(x − l) constitute an
orthonormal basis forW0. But if we look at equation (5.1.8) it is clear that the
subspaces W0 and V0 are both contained in the space V−1. That means that
functions φ(x) ∈ V0, and ψ(x) ∈ W0 belong to the space V−1. Thus they can
be represented by the basis functions φ−1l (x) =

√
2φ(2x − l). The matching

representations can be written.

φ(x) =
∑
l

c(l)
√

2φ(2x− l), (5.1.13)

ψ(x) =
∑
l

d(l)
√

2ψ(2x− l). (5.1.14)

We see that (5.1.13) contains two scales, the function value at x, and at 2x.
Thus it has an in�nite number of solutions. In order to de�ne a unique solution,
we require a normalisation

ˆ ∞
−∞

φ(x)dx = 1, (5.1.15)

when we integrate (5.1.13) we get

1 =

ˆ ∞
−∞

φ(x) dx =
√

2
∑
l

c(l)

ˆ ∞
−∞

φ(2x− l) dx. (5.1.16)

Here we have required φ ∈ L1 to allow interchange of sum and integral. Now
we perform a change of variables so that y = 2x, and note that the integral is
independent of translation

1 =
√

2
∑
l

c(l)
1

2

ˆ ∞
−∞

φ(y − l) dy, (5.1.17)

thus we get the following condition on the coe�cients c(l) of equation (5.1.13).∑
l

c(l) =
√

2. (5.1.18)

5.2 The Haar basis

We now construct one of the simplest multiresolution basis functions. This
basis was �rst introduced by Haar [25] long before the concept of wavelets was
introduced. We construct, and use the basis to illustrate some of the concepts
de�ned in section 5.1.
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V0 V−1 V−2 V−3
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φ (2−jx− k)

Figure 5.2.1: Haar scaling functions adopted from [12]

For the Haar basis system we want the scaling function to span the space
of piecewise constant functions, on the unit interval n ≤ x < n + 1. Those
functions are uniquely determined by their values f(n) in all integer points
x = n. We see that the function f(2x) ∈ V−1 is constant at the interval
halves, and in general f(2−jx) ∈ Vj is constant in intervals 2j in length. As j
decreases the space Vj is more able to approximate arbitrary functions by �ner
and �ner piecewise constant functions. Since translation of a piecewise constant
function, is still a piecewise constant function the spaces Vj is invariant relative
to translation. The simplest way of de�ning this type of function is the Haar
basis de�ned on the interval [0, 1]

φ(x) =

{
1, x ∈ [0, 1],

0, otherwise.
(5.2.1)

The coe�cients of (5.1.13) is obviously c(0) = c(1) = 1/
√

2. In �gure 5.2.1 the
spaces V0,V−1,V−2, and V−3 are illustrated.

We are interested in representing the L2 space. From (5.1.10) and (5.1.11) we
see that we either need all the wavelet spaces Wj from j = ∞, to j = −∞ or
start from a scaling space Vj and use the wavelet spaces Wj−1 with j → −∞.
We choose the representation from 5.1.10, and start with the scaling space V0.
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To �nd the corresponding wavelet we look at the wavelet space Wj. When
the space V0 contains functions that are constant on the unit interval, the
space V−1 contains functions that are constant at halves of the unit intervals.
According to equation (5.1.8) it is clear that W0 ⊂ V−1, that is functions from
W0 are constants at half intervals, and the space W0 is orthogonal to V0. This
means that for arbitrary constant functions g ∈ V0 and f ∈ W0 the following
condition is met.

(f, g) =
∑
n

ˆ n+1

n

g(x)f(x)dx =
∑
n

g(n)

ˆ n+1

n

f(x)dx = 0.

.For this to apply for an arbitrary g(n), n = 0,±1, . . . the integral over every
whole interval of the function in W0 must be zero.

ˆ n+1

n

f(x)dx = 0, n = 0,±1, . . .

Now the wavelet space can be summarized in the following way

W0 = {constant at half intervals with the condition: f(n) + f(n+ 1/2) = 0} .

The basis is then de�ned by the Haar wavelet

ψ(x) =


1, x ∈

[
0, 1

2

]
,

−1, x ∈
[
1
2
, 1
]
,

0, otherwise.

(5.2.2)

Translations ψ(x − l), l ∈ Z generate the space W0. The more general space
Wj is created by translations of the function ψ(2−jx) , from (5.1.2), and (5.1.3)
it follows that

ψjl (x) = 2−j/2ψ(2−jx− l) j, l ∈ Z (5.2.3)

is a basis in L2, where the index j de�nes the resolution of the system. In
�gure 5.2.2 we see an example of how the space V−3 can be decomposed by the
Haar scaling function and the Haar Wavelets.

Due to the discontinuity of the basis functions the Haar basis has small approx-
imation smoothness. This has been the drawback of the Haar wavelets. For
our analysis we assume that the permeability is made up of piecewise constant
functions, in that sense the Haar-basis works excellent. It is also in the essence
of the SNS study to chose a hierarchical basis. Some elements of the Haar basis
are shown in the �gure 5.2.3.
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φ(8x− k) V−3 φ(4x− k) V−2 φ(2x− k) V−1 φ(x− k) V0

j = −3 j = −2 j = −1 j = 0

φ(x− k) V0

ψ(x− k) W0

ψ(2x− k) W−1

ψ(4x− k) W−2

V−3 = V0 ⊕W0 ⊕W−1 ⊕W−2

Figure 5.2.2: Decomposition of V−3 adopted from [12]

Figure 5.2.3: Haar basis



Chapter 6

SNS structure of single-phase �ow

Single-phase �ow occurs in many settings. Groundwater �ow or oil �ow in a
naturally driven petroleum reservoir with no connecting aquifer is both exam-
ples of single-phase �ow. In [33] the SNS structure associated with the inverse
problem of identifying permeability from �uid pressure measurements was in-
vestigated. We now analyse the SNS structure associated with permeability
identi�cation from measurements of the �uid �ow.

6.1 Equations

From chapter 2 we saw that 1-D single-phase �ow can be modeled using Darcy's
law:

u = −µ−1k(x; c)
dp

dx
, (6.1.1)

where u denotes the Darcy velocity, µ the viscosity, and p pressure. We assume
that the Darcy velocity can be observed at di�erent time steps ti. We let µ
and u be constant in space, and we assume that the pressure is known at each
end of the interval [0, 1]. Integrating (6.1.1) from 0 to 1 gives

p(0, i)− p(1, i) = uµ

ˆ 1

0

k−1(x; c) dx. (6.1.2)

By denoting ∆xp(ti) = p(0, i)−p(1, i) we get an expression of the Darcy velocity
at time i

u(ti) =
∆xp(ti)

µ
´ 1
0
k−1(x; c) dx

, (6.1.3)

39
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we also denote ∆t∆xp = ∆xp(ti+1)−∆xp(ti) and arive at an expression for the
di�erence in �ow rates between two time steps

u(ti+1; c)− u(ti; c) =
∆t∆xp

µ
´ 1
0
k−1(x; c) dx

. (6.1.4)

We have now obtained a sequence of data we use to analyse the SNS structure.
By the approach we derived in section 4.2 and letting ζi = ti

mi(c) = u(ti+1; c)− u(ti; c), (6.1.5)

f(c) =
1

I(g(?; c))
, (6.1.6)

I(g(?; c)) =

ˆ 1

0

g(x; c) dx, (6.1.7)

g(x; c) = r(k(x; c)), (6.1.8)

r(k) = k−1, (6.1.9)

F(f ; ti) =
∆t∆xp

µ
f. (6.1.10)

Now we �nd an expression for (mi)h by using

(mi)h = F(f ′(k(x; c))k(x;h)), (6.1.11)

where f ′ is the derivative of f with respect to its argument. This gives

f ′(k(x; c)) = − 1

I2(g(?; c))
I(g′(?; c)), (6.1.12)

written out we get the following expression

(mi)h =
∆t∆xp

µ

´ 1
0
k−2(x; c)k(x;h)dx[´ 1
0
k−1(x; c)dx

]2 . (6.1.13)

We can also get an expression for (mi)hh by using

(mi)hh = F(f ′′(k(x; c))k2(x;h); ζi), (6.1.14)

with

f ′′ =
2 {I(g′(?; c))}2

I3(g(?; c))
− I(g′′(?; c))

I2(g(?; c))
, (6.1.15)

and ζi = ti. Written out this gives the following expression

(mi)hh =
2∆t∆xp

µ


{´ 1

0
k−2(x; c)k(x;h)dx

}2

{´ 1
0
k−1(x; c)dx

}3

+

´ 1
0
k−3(x; c)k2(x;h)dx{´ 1

0
k−1(x; c)dx

}2

 .
(6.1.16)
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6.2 Analysis of sensitivity and non-linearity

The expressions derived for (mi)h and (mi)hh enables us to analyze the value
of sensitivity and non-linearity in direction of h. By letting h take values
corresponding to di�erent Haar-basis elements, and then calculating Sh and
κh for each Haar element, we get insight into how sensitivity and non-linearity
changes with scale. Before we proceed we make some simpli�cations.

We assume that the permeability k(x; c) is constant. This means that we can
write k(x; c) = k(c), and this allows us to simplify (6.1.13) and (6.1.16) such
that we get

(mi)h =
∆t∆xp

µ

k−2(c)
´ 1
0
k(x;h) dx

k−2(c)
=

∆t∆xp

µ

ˆ 1

0

k(x;h) dx. (6.2.1)

and

(mi)hh =
2∆t∆xp

µ


[
k−2(c)

´ 1
0
k(x;h)dx

]2
k−3(c)

+
k−3(c)

´ 1
0
k2(x;h)dx

k−2(c)


=

2∆t∆xp

µ
k−1(c)

{[ˆ 1

0

k(x;h)dx

]2
+

ˆ 1

0

k2(x;h)dx

}
.

(6.2.2)

We are now able to analyze what happens in di�erent directions of h. First
letting hT = (1, 0, . . . , 0) this corresponding to the direction of φ, (6.2.1) gives

(mi)φ =
∆t∆xp

µ
, (6.2.3)

and (6.2.2) gives us

(mi)φφ =
4∆t∆xp

µ
k−1(c). (6.2.4)

We apply (4.1.1), and (4.1.2) and get the following expressions for sensitivity
and non-linearity

Sφ =

∥∥∥∥∆t∆xp

µ

∥∥∥∥ , (6.2.5)

κφ =

∥∥∥∥4∆t∆xp

µ
k−1(c)

∥∥∥∥ . (6.2.6)

In similar fashion we let h be in direction of a basis element ψjl . This gives

(mi)ψj
l

= 0, (6.2.7)

(mi)ψj
l ψ

j
l

=
2∆t∆xp

µ
k−1(c). (6.2.8)
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We apply (4.1.1) and (4.1.2) and get the following result

Sψj
l

= 0, (6.2.9)

κψj
l

=∞. (6.2.10)

This means that only perturbations that change the average value of k on [0,1],
can be observed in m when k(x; c) is a constant function of x. This result is
not surprising, taking into account that we have single-phase �ow and with
our knowledge of how Darcy's law was derived. It is also similar to the results
obtained for pressure measurements in [33].



Chapter 7

SNS Structure of Two-Phase Flow

In this chapter we investigate SNS in the case of two-phase �ow. We perform
the analysis on a 1-D porous medium. The medium is initially �lled with oil,
and water is injected at one end, causing the oil to be produced at the other
end. This is continued until the water has displaced all the oil (in real life
there would be a residual water saturation before the water is injected, and a
residual oil saturation will remain. For the sake of simplicity we assume that
the medium is totally �lled with oil initially, and that all the oil is displaced).
During this process there is three di�erent zones in the porous medium: One
where the water has displaced the oil (this is closest to the injection point), one
zone where the water has yet to reach (this is closest to the production point).
The last zone is between these two containing both oil and water, denoted the
two-phase region. The position and extent of these zones changes as the water
displaces the oil, we can de�ne the position of the interfaces seperating the
zones in the following way:

zw(t) =position of water/two-pase interface at time t,

zo(t) =position of two-phase/oil interface at time t.

We model the �uid rates by the 1-D version of Darcy's law, which is written as
we introduced it in section 2.2.7. Neglecting the gravitational e�ects, we have

u = −λk(x; c)
dp

dx
, (7.0.1)

where u is the total Darcy velocity, λ the total mobility, and p the pressure. u
and λ can be given in terms of the corresponding phase quantities by

u = uo + uw,

λ = λo + λw.
(7.0.2)

43
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We assume for the rest of this analysis, that the pressure is known at the
end-points of the interval [0, 1] at all times.

As we described earlier, the process of �ooding a porous media generates three
di�erent regions. In this analysis we consider two di�erent scenarios. One
where the zone between oil and water has zero extension, and one where it has
nonzero extension.

7.1 Equations

We start by looking at how some of the factors in Darcy's law depend on
the �uid saturation. During the water injection process we get three di�erent
saturation zones. Using the de�nition of saturation introduced in section 2.2.3
we can write these three zones as

S(x, t) =


1 x < zw(t),

θ(x, t) x ∈ [zw(t), zo(t)] ,

0 x > zo(t).

(7.1.1)

Where θ(x, t) is a function describing the saturation inside the two-phase zone.
From section 2.2.7 we learned that mobility is dependent on the relative per-
meability. This again is dependent on the saturation. In our three de�ned
zones, this can be written as

kr,o(S(x, t)) =


0 x < zw(t),

kr,o(θ(x, t)) x ∈ [zw(t), zo(t)] ,

1 x > zo(t),

(7.1.2)

kr,w(S(x, t)) =


1 x < zw(t),

kr,w(θ(x, t)) x ∈ [zw(t), zo(t)] ,

0 x > zo(t).

(7.1.3)

Now we can de�ne the mobility for the di�erent regions

λ(S(x, t)) =


µ−1w x < zw(t),

λ(θ(x, t)) x ∈ [zw(t), zo(t)] ,

µ−1o x > zo(t).

(7.1.4)

We follow the approach developed in section 4.2 and start out by �nding an ex-
pression for the sequence of data. This is done from equation (7.0.1). Rewriting
and integrating from x = 0 to x = 1 gives

u(ti; c) =
p(0, ti)− p(1, ti)´ 1

0
λ−1(S(x, ti))k−1(x; c) dx

(7.1.5)
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inserting the de�nitions for the di�erent regions, and using the notation ∆xp(ti) =
p(0, ti)− p(1, ti) gives

u(ti; c) =
∆xp(ti)

µwJ1(ti) + µoJ2(ti) + J3(ti)
(7.1.6)

where

J1(ti) =

ˆ zw(ti)

0

k−1(x; c) dx

J2(ti) =

ˆ 1

zo(ti)

k−1(x; c) dx

J3(ti) =

ˆ zo(ti)

zw(ti)

λ−1(S(x, ti))k
−1(x; c) dx

(7.1.7)

in order to further simplify the equation we must make some assumptions
about how the water displaces the oil. During this analysis we will derive
several integrals, the superscipt p or np denotes if the integral belongs to the
piston, or non-piston section.

7.1.1 Piston displacement

We assume that the water displaces the oil in the same manner as a piston
would push a �uid out of a tube. For this scenario the two-phase zone have
zero extent, and the �uid interfaces zw(ti) and zo(ti) merge into one surface
z(ti) separating the two �uids. This means that in equation (7.1.6) J3(ti) = 0,
and we get

u(ti, c)
∆xp(ti)

µw
´ z(ti)
0

k−1(x; c) dx+ µo
´ 1
z(ti)

k−1(x; c) dx
, (7.1.8)

using that

µw

ˆ z(ti)

0

k−1(x; c) dx = µw

ˆ 1

0

k−1(x; c) dx− µw
ˆ 1

z(ti)

k−1(x; c) dx, (7.1.9)

we arrive at the following expression for the sequence of datami(c) = u(ti+1; c)−
u(ti; c)

mi(c) =
∆xp(ti+1)

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti+1)

k−1(x; c) dx

− ∆xp(ti)

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti)

k−1(x; c) dx
.

(7.1.10)
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To obtain the second step in the approach from section 4.2 we �nd an expression
for (mi)h by employing equation (4.2.9). We de�ne

f(c) = q (K1 (Ip1 (g(?, c)), Ip2 (g(?, c))) , K2 (Ip1 (g(?, c)), Ip3 (g(?, c)))) , (7.1.11)

with

q =
∆xp(ti+1)

K1

− ∆xp(ti)

K2

, (7.1.12)

K1 = IP1 + Ip2 , (7.1.13)

IP1 = µw

ˆ 1

0

g(x; c) dx, (7.1.14)

IP2 = (µo − µw)

ˆ 1

z(ti+1)

g(x; c) dx, (7.1.15)

K2 = Ip1 + Ip3 , (7.1.16)

Ip3 = (µo − µw)

ˆ 1

z(ti)

g(x; c) dx, (7.1.17)

g(x; c) = r(k(x; c)), (7.1.18)

r(k) = k−1, (7.1.19)

F(f ; ti) = f. (7.1.20)

This gives the following expression for f ′(c)

f ′(c) =
∂q1
∂K1

{
∂K1

∂Ip1

∂Ip1
∂g

+
∂K1

∂Ip2

∂Ip2
∂g

}
− ∂q2
∂K2

{
∂K2

∂Ip1

∂Ip1
∂g

+
∂K2

∂Ip3

∂Ip3
∂g

}
.

(7.1.21)

This gives the following expression for (mi)h assuming that we have constant
permeability. The calculations for this is found in appendix A.1.1

(mi)h =

(
∆xp(ti+1)

[µo + (µw − µo)z(ti+1)]
2

×
{
µw

ˆ 1

0

k(x;h) dx+ (µw − µo)
ˆ 1

z(ti+1)

k(x;h) dx

}
− ∆xp(ti)

[µo + (µw − µo)z(ti)]
2

×
{
µw

ˆ 1

0

k(x;h) dx+ (µw − µo)
ˆ 1

z(ti)

k(x;h) dx

})
.

(7.1.22)
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From (4.2.15) we �nd the expression for (mi)hh, still assuming constant per-
meability. The calculations for this is presented in appendix A.1.1.

(mi)hh =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo)z(ti+1)]
3

×
{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

z(ti+1)

k(x;h) dx

}2

− 2k−1(c)∆xp(ti+1)

[µ0 + (µw − µo)z(ti+1)]
2

×
{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

z(ti+1)

k2(x;h) dx

}
− 2k−1(c)∆xp(ti)

[µo + (µw − µo)z(ti)]
3

×
{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

z(ti)

k(x;h) dx

}2

+
2k−1(c)∆xp(ti)

[µ0 + (µw − µo)z(ti)]
2

×
{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

z(ti)

k2(x;h) dx

}
.

(7.1.23)

7.1.2 Non-Piston displacement

We now assume that there is a two-phase zone separating the water and the
oil. When this is the case J3(ti) in (7.1.6) does not equal zero. This means
that our functions need to be altered. We use the fact

µw

ˆ zw(ti)

0

k−1(x; c) dx = µw

ˆ 1

0

k−1(x; c) dx

− µw
ˆ zo(ti)

zw(ti)

k−1(x; c) dx

− µw
ˆ 1

zo(ti)

k−1(x; c) dx,

(7.1.24)

we get the following expression for the �uid rate at time ti

u(ti; c) =
∆xp(ti)

µwI
np
1 + (µo − µw)Inp2 (ti) + Inp3 (ti)

, (7.1.25)

Inp1 =

ˆ 1

0

k−1(x; c) dx, (7.1.26)
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Inp2 (ti) =

ˆ 1

zo(ti)

k−1(x; c) dx, (7.1.27)

Inp3 (ti) =

ˆ zo(ti)

zw(ti)

(λ−1(S(x, ti))− µw)k−1(x; c) dx, (7.1.28)

we now get the sequence of data mi(c) = u(ti+1; c)− u(ti; c)

mi(c) =
∆xp(ti+1)

µwI
np
1 + (µo − µw)Inp2 (ti+1) + Inp3 (ti+1)

− ∆xp(ti)

µwI
np
1 + (µo − µw)Inp2 (ti) + Inp3 (ti)

,

(7.1.29)

with Inp1 , Inp2 and Inp3 as in (7.1.26), (7.1.27), and (7.1.28).

We derive an expression for (mi)h by employing equation (4.2.9). We de�ne

f(c) =q (K1 (Inp1 (?, c), Inp2 (?, c), Inp3 (?, c)) ,

K2 (Inp1 (?, c), Inp4 (?, c), Inp5 (?, c))) ,
(7.1.30)

with

q =
∆xp(ti+1)

K1

− ∆xp(ti)

K2

, (7.1.31)

K1 = Inp1 + Inp2 + Inp3 , (7.1.32)

Inp1 = µw

ˆ 1

0

g(x; c) dx, (7.1.33)

Inp2 = (µo − µw)

ˆ 1

zo(ti)

g(x; c) dx, (7.1.34)

Inp3 =

ˆ zo(ti)

zw(ti)

(λ−1(S(x, ti))− µw)g(x; c) dx, (7.1.35)

K2 = Inp4 + Inp5 + Inp6 , (7.1.36)

Inp4 = µw

ˆ 1

0

g(x; c) dx, (7.1.37)

Inp5 = (µo − µw)

ˆ 1

zo(ti+1)

g(x; c) dx, (7.1.38)

Inp6 =

ˆ zo(ti+1)

zw(ti+1)

(λ−1(S(x, ti+1))− µw)g(x; c) dx, (7.1.39)

g(x; c) = r(k(x; c)), (7.1.40)

r(k) = k−1. (7.1.41)

This gives us
F(f ; ti) = f. (7.1.42)
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Like the case with piston displacement we assume that the permeability is
constant k(x; c) = k(c).

We would like to simplify the expression even further. The mobility λ(S(x, t))
typically varies slowly with S(x, t). The saturation in x ∈ [zw, zo] is given
by θ(x, t), and this function is decreasing monotonically. This means that the
function λ−1(S(x, t)) is replaced with an average value λ−1. We further assume
that the two fronts zw and zo are traveling with the same speed, this means
that the average value is the same on (zw,i, zo,i) as on (zw,i+1, zo,i+1).

The calculations to get (mi)h are given in appendix A.1.2, but with the as-
sumptions described above we have

(mi)h =
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
2

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k(x;h) dx

}

− ∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
2

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i

zw,i

k(x;h) dx

}
.

(7.1.43)

With δi+1 = zo,i+1 − zw,i+1, and δi = zo,i − zw,i.
The expression for (mi)hh is given by (4.2.15) and the calculation to get this
quantity is given in appendix A.1.2. With the same assumptions as for (mi)h
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and the same de�nition for δi+1 and δi we get

(mi)hh =2k−1(c)
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
3

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k(x;h) dx

}2

−2k−1(c)
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
2

×

{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k2(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k2(x;h) dx

}

−2k−1(c)
∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
3

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i

zw,i

k(x;h) dx

}2

+2k−1(c)
∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
2

×

{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k2(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i

zw,i

k2(x;h) dx

}
.

(7.1.44)

7.2 Analysis of Sensitivity and Non-linearity for

Two-Phase Flow

In section 7.1 we obtained equations for (mi)h and (mi)hh in the case of two-
phase �ow with piston displacement and non-piston displacement. We now use
these equations to analyze the SNS structure when estimating permeability
from measurements of the �uid �ow rate for two-phase �ow. In section 6.2 this
analysis was performed for a one-phase �ow example.
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We analyze the SNS structure by letting h take values corresponding to dif-
ferent Haar-basis elements. Then we calculate values for sensitivity S, and
non-linearity κ for the di�erent basis elements. Because of the hierarchical
structure of the Haar-basis we are able to study the sensitivity and non-linearity
on di�erent scales.

7.2.1 Piston displacement

We start by looking into the case of piston displacement. As described earlier
this corresponds to the water pushing the oil like a piston. This means that
the two-phase zone separating the two �uids are of zero extent, and we can
imagine the separation of the �uids like a surface with position z(ti) at time
equals ti.

From equation (7.1.22) we observe that the position of z(ti) is important as it
determines the integration limits, and will hence have in�uence on the value
of the integral. Thus the way we collect our measurements plays an important
role for the SNS structure. We distinguish between two types of data collection.

• Ordered measurement collection

• Non-ordered measurement collection

The ordered collection of data points means that we make measurements in
such a way that the front moves the same distance between each measurement
point. This can be written like:

z(ti+1)− z(ti) = constant. (7.2.1)

In the non-ordered case we take measurements in a random way. This means
that the front may, or may not move the same distance between each measure-
ment.

7.2.1.1 Ordered measurements

We start the analysis by looking at the value for sensitivity. The directional
derivative of mi(c) in direction of h is given by (7.1.22) . We calculate (mi)φ
corresponding to the directional derivative in direction of a constant basis,
and (mi)ψj

l
corresponding to the directional derivative in direction of di�erent

Haar wavelets. Using (4.1.1) we calculate the values of sensitivity for the two
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Figure 7.2.1: Elements of Haar basis, and measurement points. Case I repre-
sents ordered measurements. Case II represents non-ordered measurements.
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di�erent cases. We only look at one spatial dimension x ∈ [0, 1] this means
that we can simplify equation (7.1.22) by letting z(ti) = xi and z(ti+1) = xi+1.
This is done because z(ti) only represents the �uid fronts position at time ti.
We now calculate (mi)φ by observing that k(x;h) = 1. By inserting this in
(7.1.22) we get

(mi)φ =
∆xp(ti+1)

[µo + (µw − µo)xi+1]
2 {µo + (µw − µo)xi+1}

− ∆xp(ti)

[µo + (µw − µo)xi]2
{µo + (µw − µo)xi} ,

(7.2.2)

by cancellation this is

(mi)φ =
∆xp(ti+1)

[µo + (µw − µo)xi+1]

− ∆xp(ti)

[µo + (µw − µo)xi]
.

(7.2.3)

To calculate (mi)ψj
l
we still look at (7.1.22), but now k(x;h) 6= 1 , hence the

integrals will obtain di�erent values. Because of the properties of the Haar-
basis wavelet elements ψjl it is clear that when h is in direction of ψjl we have

ˆ 1

0

k(x;h) dx = 0. (7.2.4)

This means that the variation with scale of the directional derivative is deter-
mined by the integral ˆ 1

xi

k(x;h) dx, (7.2.5)

and ˆ 1

xi+1

k(x;h) dx, (7.2.6)

with h in direction of ψjl . To analyze these integrals we make use of �gure
7.2.1. We assume that we have xi observations where i = 0, 1, 2, . . . , 2L. In
�gure 7.2.1 Case I we see an example with L = 2. Depending on the value of
j we get three situations:

1. xi+1 − xi < 1
2

[
suppψjl

]
2. xi+1 − xi = 1

2

[
suppψjl

]
3. xi+1 − xi ≥

[
suppψjl

]
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There seems to be a gap between case 2, and case 3 that has been neglected.
Because of the ordered measurements, our maximum amount of measurements
being 2L, and that the Haar wavelets are translated with 2−j steps, there are
no cases where

1

2

[
suppψjl

]
< (xi+1 − xi) <

[
suppψjl

]
.

With measurements as illustrated by Case I in �gure 7.2.1 situation 1 corre-
sponds to h being in direction of ψ0 . We see that integration over ψ0 would
result in a non-zero value for both the integrals. Considering a more general
case of ordered measurements, we would see that if one of the integration lim-
its xi/xi+1 lined up with the start point of a basis element the integral value
is zero. But because of the distance between integration points described by
situation 1 the other integral would not line up with a start point, ensuring
that (mi)ψ is always non-zero for situation 1.

To illustrate situation 2 we use �gure 7.2.1 Case I. In this example Situation
2 corresponds to h in direction of ψ1

l . Integration over ψ1
l elements with mea-

surements as in case I would guarantee that one of the integrals becomes zero,
and the other integral becomes a non-zero value. When we consider a more
general situation, the results will still hold. As an simple example we con-
sider making xi ordered measurements with i = 0, 1, . . . , 23. Then the analysis
just conducted could be performed again with h in direction of ψ2

l to satisfy
the demand from situation 2. This ensures that (mi)ψ is always non-zero for
situation 2.

Situation 3 is illustrated by h being in direction of both ψ2
l and ψ3

l in �gure
7.2.1 Case I. We observe that both integral value becomes zero for integration
over ψ2

l and ψ3
l . This is also be valid for a more general situation as long as

the measurements are taken in an ordered way. And we apply the demands
from situation 3.

It is hard to give the exact value of the vector norm both in direction of φ and
in direction of ψjl . But by using (4.1.1) it is clear that:

Sφ > 0, (7.2.7)

Sψj
l

=

{
> 0, 0 ≤ j < L,

0, j ≥ L.
(7.2.8)

To analyze the non-linearity we utilize (4.1.2). To get insight into how non-
linearity depends on the scale we calculate values of (mi)hh when h is in di-
rection of φ, and ψjl . To do this we analyze equation (7.1.23) for the di�erent
basis elements.
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In direction of φ we still get that k(x;h) = 1, so we obtain the following
expression

(mi)φφ =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo)xi+1]
3 (µo + (µw − µo)xi+1)

2

− 2k−1(c)∆xp(ti+1)

[µo + (µw − µo)xi+1]
2 (µo + (µw − µo)xi+1)

− 2k−1(c)∆xp(ti)

[µo + (µw − µo)xi]3
(µo + (µw − µo)xi)2

+
2k−1(c)∆xp(ti)

[µo + (µw − µo)xi]2
(µo + (µw − µo)xi) ,

(7.2.9)

cancellation of terms and factorization gives

(mi)φφ =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo)xi+1]
(1− 1)

− 2k−1(c)∆xp(ti)

[µo + (µw − µo)xi]
(1− 1) ,

(7.2.10)

which leads to
(mi)φφ = 0. (7.2.11)

When evaluation (7.1.23) in direction of ψ we observe that k(x;h) 6= 1 and
thus the integrals take di�erent values. To �nd an expression for (mi)ψj

l ψ
j
l
we

need to analyze the integrals

ˆ 1

0

k(x;h) dx, (7.2.12)

ˆ 1

0

k2(x;h) dx, (7.2.13)

ˆ 1

xi

k(x;h) dx, (7.2.14)

ˆ 1

xi

k2(x;h) dx, (7.2.15)

ˆ 1

xi+1

k(x;h) dx, (7.2.16)

ˆ 1

xi+1

k2(x;h) dx. (7.2.17)

We instantly recognize integral (7.2.12), (7.2.14) and (7.2.16) from the case
with the �rst derivative. They act similar, and we do not need to analyze
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them any further. Integral (7.2.13), (7.2.15), and (7.2.17) are new. But since
the integrand is squared it is clear that the integral value will never become
zero. We do not calculate the exact vector norm but using equation (4.1.2) we
get that

κφ = 0, (7.2.18)

κψj
l

=

{
> 0, 0 ≤ j < L,

∞, j ≥ L.
(7.2.19)

7.2.1.2 Non-ordered measurements

We now investigate what happens when the measurements of �ow is taken at
random intervals. The fronts positions z(ti) and z(ti+1) can still be written
as xi and xi+1, but now these points does not have a structured placement,
as in the previous case. We still have xi observations with i = 0, 1, 2, . . . , 2L.
In �gure 7.2.1 case II we see one example of how the measurements can be
placed. The sensitivity and non-linearity is analyzed in the same manner as
for the ordered measurements. That is we analyze the equations (7.1.22) and
(7.1.23) in direction of the di�erent basis elements φ and ψjl .

When h is in direction of φ we have k(x;h) = 1. We thus obtain the same
expression for (mi)φ as for ordered measurements. The value is on the other
hand not the same since the points xi and xi+1 are di�erent for the two cases.

To �nd the derivative in ψjl -direction we use equation (7.1.22). For the same
reasons as for ordered measurements we simplify the equation by setting

ˆ 1

0

k(x;h) dx = 0. (7.2.20)

Now we must evaluate the integral
ˆ 1

xi+1

k(x;h) dx, (7.2.21)

and ˆ 1

xi

k(x;h) dx. (7.2.22)

For ordered measurements we performed our analysis by looking at three dif-
ferent situations, each corresponding to a di�erent relationship between the
measurement points and the support of the analyzed basis element. For non-
ordered measurements, the distance between two measurement point is not
constant, hence we need another approach to the analysis. From the example
of measurement placement in �gure 7.2.1 Case II we can make some observa-
tions.
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It is obvious that when we integrate over a basis element ψjl and the integration
limits xi+1 and xi align with the start-points of suppψLi+1 and suppψ

L
i the value

of the integral and, Sψj
l
, is zero. From �gure 7.2.1 Case II we see that xi+1 and

xi does not align for non-ordered measurement. This scenario can be expected
for any general placement of non-ordered measurement. Hence we have a value
greater than zero for the case with j = L.

When j < L the support of each basis element grows. By looking at �gure
7.2.1 we can imagine a di�erent placement of the measurements that allowed
some of the measurement point to aligned with the support of a basis element.
But since we have xi measurements, and i = 0, 1, 2, . . . , 2L it is guaranteed
that some measurement point will not align with the support of the basis
elements. This means that the integral values is greater than zero, for some of
the measurement points.

To �nd the point where the integrals become zero we need to let j > L. If we
forget the speci�c example given in �gure 7.2.1 Case II and think of a general
case of randomly placed measurements, we see that there must exists for each
xi a unique J > L, such that the start-point of suppψJi aligns with xi. This
means that one of the integrals are zero, further we observe that there exists a
universal K ≥ J such that all the xi aligns with a start point of suppψKi . We
summarize this in

Sφ > 0, (7.2.23)

Sψj
l

=


> 0, 0 ≤ j < L,

> 0, L ≤ j < K

0, j ≥ K.

, (7.2.24)

For the analysis of non-linearity we employ equation (7.1.23). In direction of
φ the expression is the same as for ordered measurements, that is

(mi)φφ = 0. (7.2.25)

To �nd the expression for (mi)ψψ we need to analyze the same integrals as for
the ordered measurements. Integral (7.2.12), (7.2.14) and (7.2.16) can be rec-
ognized from the expression of the �rst derivative, and obtains the same values
for both cases. The integrals (7.2.13), (7.2.15), and (7.2.17) never becomes
zero since the integrand is squared. We will not �nd exact values of the vector
norm in this case, but by using (4.1.2) it is clear that

κφ = 0, (7.2.26)

κψj
l

=


> 0, 0 ≤ j < L,

> 0, L ≤ j < K,

∞, j ≥ K.

(7.2.27)
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7.2.2 Non-piston displacement

We now investigate the case of non-piston displacement. Water is still injected
to displace the oil, but instead of a surface separating the two �uids we get a
two-phase zone. To analyze the SNS interrelation in this case we use equations
(4.1.1) as a measure of sensitivity in h-direction, and (4.1.2) as a measure of
non-linearity in h-direction. In section 7.1.2 we found expressions for (mi)h and
(mi)hh that were valid for a case with non-piston displacement. To analyze the
e�ect scale has on sensitivity and non-linearity we let h correspond to di�erent
Haar-basis elements.

To make things simple we assume that we have measured the �ow veloc-
ity in such a manner that zo,i is perfectly aligned with the points xi for
i = 0, 1, 2, . . . , 2L.

We start the analysis by looking at the sensitivity and non-linearity in direction
of φ. We use equation (7.1.43) and let k(x;h) = 1 this gives

(mi)φ =
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
2

×
{
µo + (µw − µo) zo,i+1 +

(
λ−1 − µw

)
δi+1

}
− ∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
2

×
{
µo + (µw − µo) zo,i +

(
λ−1 − µw

)
δi
}
,

(7.2.28)

with δi = zo,i− zw,i, and δi+1 = zo,i+1− zw,i+1 being the width of the two-phase
zone at two di�erent time. This simpli�es to

(mi)φ =
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]

− ∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
.

(7.2.29)

Hence we can at once establish, independent of the width of the two-phase
zone.

Sφ > 0. (7.2.30)

For the non-linearity when h is in the direction of φ we use (7.1.44), and let
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k(x; c) = 1

(mi)φφ =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
3

×
{
µo + (µw − µo) zo,i+1 +

(
λ−1 − µw

)
δi+1

}2
− 2k−1(c)∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
2

×
{
µo + (µw − µo) zo,i+1 +

(
λ−1 − µw

)
δi+1

}
− 2k−1(c)∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
3

×
{
µo + (µw − µo) zo,i +

(
λ−1 − µw

)
δi
}2

+
2k−1(c)∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
2

×
{
µo + (µw − µo) zo,i +

(
λ−1 − µw

)
δi
}
.

(7.2.31)

Cancellation of terms gives

(mi)φφ =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
× (1− 1)

− 2k−1(c)∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
× (1− 1) .

(7.2.32)

We see that

(mi)φφ = 0. (7.2.33)

This result is identical to the result obtained for piston displacement. We
conclude by using (4.1.2) that

κφ = 0. (7.2.34)

Now if h is in direction of ψjl we see that k(x;h) 6= 1, and hence the integral
values is di�erent. Remembering that the properties of the Haar-basis wavelet
gives

ˆ 1

0

k(x;h) dx = 0. (7.2.35)
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We still use (7.1.43) to get the �rst derivative in direction of ψjl , hence we get

(mi)ψj
l

=
∆xp(ti+1)k

−1(c)

[µo + (µw − µo)zo,i+1 + (λ−1 − µw)fi+1]
2

×

{
(µo − µw)

ˆ 1

zo,i+1

k(x;h) dx+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k(x;h) dx

}

− ∆xp(ti)k
−1(c)

[µo + (µw − µo)zo,i + (λ−1 − µw)fi]
2

×

{
(µo − µw)

ˆ 1

zo,i

k(x;h) dx+
(
λ−1 − µw

) ˆ zo,i

zw,i

k(x;h) dx

}
.

(7.2.36)
To determine how this expression depends on the scale value j, we must analyze
the integrals ˆ 1

zo,i+1

k(x;h) dx, (7.2.37)

ˆ 1

zo,i

k(x;h) dx, (7.2.38)

ˆ zo,i+1

zw,i+1

k(x;h) dx, (7.2.39)

ˆ zo,i

zw,i

k(x;h) dx. (7.2.40)

We recognize integral (7.2.37), and integral (7.2.38) from our analysis of piston
displacement. It is clear that these two integrals produces the same values
for non-piston displacement, as for piston displacement. The e�ect of the two-
phase zone are found in integral (7.2.39) and integral (7.2.40). This is explicitly
shown as the integration limits of the two integrals depend on the shape and
size of the two-phase zone.

Instead of analyzing the sensitivity directly we derive an equation for (mi)ψj
l ψ

j
l
.

This is done because we suspect that some of the integrals in this expression
might also depend on the shape and size of the two-phase zone. To avoid
saying thing twice, we derive all the equations before we start our analysis.
Remembering that for h in direction of ψjl we have

ˆ 1

0

k(x;h) dx = 0. (7.2.41)
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This gives us

(mi)ψψ =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) fi+1]
3

×

{
(µo − µw)

ˆ 1

zo,i+1

k(x;h) dx+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k(x;h) dx

}2

− 2k−1(c)∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) fi+1]
2

×

{
(µo − µw)

ˆ 1

zo,i+1

k2(x;h) dx+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k2(x;h) dx

}

− 2k−1(c)∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) fi]
3

×

{
(µo − µw)

ˆ 1

zo,i

k(x;h) dx+
(
λ−1 − µw

) ˆ zo,i

zw,i

k(x;h) dx

}2

+
2k−1(c)∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) fi]
2

×

{
(µo − µw)

ˆ 1

zo,i

k2(x;h) dx+
(
λ−1 − µw

) ˆ zo,i

zw,i

k2(x;h) dx

}
.

(7.2.42)
We recognize integral (7.2.37) and integral (7.2.38) which has already been
analyzed. We also recognize integral (7.2.39) and integral (7.2.40) which will
be analyzed soon. The remaining integrals areˆ 1

zo,i+1

k2(x;h) dx (7.2.43)

ˆ zo,i+1

zw,i+1

k2(x;h) dx (7.2.44)

ˆ 1

zo,i

k2(x;h) dx (7.2.45)

ˆ zo,i

zw,i

k2(x;h) dx (7.2.46)

These have all squared integrands, and is thus never zero. This means that
regardless of how we analyze the integral (7.2.39) and integral (7.2.40) , we get

(mi)ψj
l ψ

j
l
6= 0 ∀j. (7.2.47)

The di�erence between piston displacement and non-piston displacement is
now governed by how the integralˆ zo,i+1

zw,i+1

k(x;h) dx, (7.2.48)
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and ˆ zo,i

zw,i

k(x;h) dx, (7.2.49)

will behave as h is in direction of ψjl and the scale index j varies. To analyze
the integrals we observe that the limits of integration, and hence the value of
the integral depend on the shape and size of the two-phase zone. We therefore
divide our analysis of these two integrals into three di�erent cases.

1. Width of the two-phase zone is narrower than the distance the �uid fronts
moves between two measurements.

2. Width of the two-phase zone is exactly the distance the �uid fronts moves
between two measurements.

3. Width of the two-phase zone is greater than the distance the �uid front
moves between two measurements.

These cases are illustrated in �gure 7.2.2.

7.2.2.1 Case 1

We assume that the width of the two-phase zone is smaller than the distance
the two-phase zone moves between two observations. For simplicity we let

zo,i+1 − zw,i+1 = zo,i − zw,i =
(zo,i+1 − zo,i)

2
.

We observe that integral (7.2.48) and (7.2.49) �rst becomes zero as j > L.
This is because the width of the two-phase zone is less then the width between
to measurement point. To ensure that the integral is zero we need to integrate
over a basis element with narrower support than ψLl has. This is illustrated
in �gure 7.2.2 Case I. We chose to make our measurements in such a way
that the oil front zo was aligned with the points xi. As a result of this the
integral (7.2.37) and (7.2.38) behave as for ordered measurements in piston
displacement. We do not calculate the exact vector norm, but using (4.1.1),
and keeping the results obtained for integral (7.2.37) and (7.2.38) in mind we
get

Sψj
l

=


> 0, 0 ≤ j < L,

> 0, j = L,

0, j > L.

(7.2.50)

and by (4.1.2)

κψj
l

=


> 0, 0 ≤ j < L,

> 0, j = L,

∞, j > L.

(7.2.51)
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Figure 7.2.2: Elements of Haar basis, and water saturation for three di�erent
cases.
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7.2.2.2 Case 2

We assume that the width of the two-phase zone is exactly the distance the
two-phase zone moves between two observations. That is

zo,i+1 − zw,i+1 = zo,i − zw,i = zo,i+1 − zo,i.

This is illustrated in �gure 7.2.2 Case II. Now we see that integral (7.2.39) and
(7.2.40) becomes zero for the same scale index as the integrals (7.2.37), and
(7.2.38). This is because the width of the two phase zone in this case is just
as wide as the support of basis element ψLl . We still do not calculate the exact
vector norm, but by (4.1.1) we get

Sψj
l

=

{
> 0 0 ≤ j < L

0 j ≥ L
(7.2.52)

and by (4.1.2)

κψj
l

=

{
> 0 0 ≤ j < L

∞ j ≥ L.
(7.2.53)

7.2.2.3 Case 3

We now assume that the width of our two-phase zone is larger than the dis-
tance the �uid fronts move between two observations. We assumed that our
measurements were taken in such a way that zo,i was perfectly aligned with the
points xi. Because of these assumptions we observe that the two-phase zone
cannot have constant width since the maximum possible width would be the
distance between the injection point x0 and the �rst measurement point x1.
This case was analyzed under Case 2.

When the two-phase zone is not constant, we might have a situation like the
one illustrated for Case III in �gure 7.2.2. We see that zw,i is not aligned
with the measurement point, and hence not aligned with the support of the
basis functions in scale j = L. This situation is somewhat similar to the one
analyzed for non-ordered measurement points in section 7.2.1.2 since the left
limit of integration is non-ordered and the right is �xed. The result is therefore
similar. We stress that the values of integral (7.2.37) and (7.2.38) is not a�ected
by this since they depend on the position of zo which is still positioned in an
ordered fashion. As for case 1 and case 2 we do not calculate the exact vector
norm, but by (4.1.1)

Sψj
l

=


> 0, 0 ≤ j < L,

> 0, L ≤ j < K

0, j ≥ K.

, (7.2.54)
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for a universal K, that ensures the alignment of zw,i with the start of basis
element ψKl . Using the expression for (mi)ψψ and (4.1.2)

κψj
l

=


> 0, 0 ≤ j < L,

> 0, L ≤ j < K,

∞, j ≥ K.

(7.2.55)

7.3 Summary and Conclusions

In this chapter we have investigated the SNS structure of two-phase �ow during
water �ooding of a petroleum reservoir. This was done by following the general
approach presented in section 4.2. We realized that the �ooding could happen
in two di�erent ways which needed to be analyzed separately.

• The surface separating intruding water and displaced oil had zero thick-
ness.

• There exists a zone containing both water and oil separating the intruding
water from the displaced oil.

For both cases we assumed that we had i = 0, 1, 2, . . . 2L observations. And
that the �uid fronts position was related to equidistantly spaced points xi.

We �rst comment the results from the �rst scenario, that is, when the surface
separating water and oil had zero thickness. In the analysis we looked at
ordered and non-ordered measurement points.
For the ordered measurements we were able to estimate the sensitivity S
given in (7.2.7) and (7.2.8) , we were also able to estimate the non-linearity κ
given in (7.2.18) and (7.2.19). From this we observed that there is a change
from positive values of sensitivities to zero values. There is a corresponding
change from �nite, to in�nite values of the non-linearity. The change happens
when the scale index j of the basis element ψjl becomes equal or higher than
the measurement index L. When this happens the support of basis elements
with that scale index is equal to distance between the measurement points, and
the integration values equals zero.
For non-ordered measurement the estimates of sensitivity S are given in
(7.2.23) and (7.2.24). Estimates of κ are given by (7.2.26) and (7.2.27). For
this case the sensitivity goes to zero, and the non-linearity goes to in�nity at a
scale index K > L . This is due to the ordered placement of the basis elements,
and the non-ordered placement of measurements. We need to go to a higher
scale index in order to ensure that the integration limits is at the intersection
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between two basis elements. Even though we need to have scale index K in
order to ensure that the sensitivity is zero, we would expect the vector norm
in direction of basis elements with scale index between L, and K to have small
values. This is because the limits of integration almost match the intersection
between basis elements. In this case we do not expect a sudden drop from
positive to zero values for the sensitivity, but a more gradual transition towards
zero.

In the second scenario, that is when there existed a two-phase zone between
the intruding water and the displaced oil. Our equations were somewhat dif-
ferent. This called for a separate analysis of the problem. An expression for
(mi)h and (mi)hhwas found. The analysis was based on letting h take values
corresponding to di�erent Haar-basis elements. During this we found that the
shape and size of the two-phase zone was important for the results in direc-
tion of the non-constant Haar basis elements. For the constant basis estimates
for sensitivity was given by (7.2.30) and estimates for κ by (7.2.34). For the
non-constant basis elements we divided the analysis into three parts.

• The two-phase zone is narrower than the distance the two-phase zone
moves between two measurements.

• The two-phase zone is exactly as wide as the distance it moves between
two measurements.

• The two-phase zone is wider than the distance it moves between two
measurements.

For the �rst case, sensitivity estimates were given by (7.2.50), and estimates
for κ were given by (7.2.51). From this we see that when the two-phase zone
is narrow, the sensitivity does not become zero at the scale index L. Instead
we have to go to a scale index j > L before the value becomes zero. How
high of a scale index we need depends on the width of the two-phase zone. A
narrow two-phase zone needs a higher scale index in order to guarantee that
the sensitivity S becomes zero.

For the second case, sensitivity estimates were given by (7.2.52), and estimates
for κ were given by (7.2.53). We see that this is the same structure as for
piston displacement with ordered measurements. This is because such a wide
two-phase zone will more easily be covered by the support of a basis-element
at scale index L.

For the third case, estimates for sensitivity were given by (7.2.54), and esti-
mates for κ were given by (7.2.55). This situation lead to a result similar to
the one for non-ordered measurement points with zero two-phase zone. This
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means that we need to go to a scale index K > L to ensure that the sensitivity
is zero.

In order to relate this to a real world scenario we must think about which of the
di�erent cases that are most realistic. In a real world petroleum reservoir we
always have a two-phase zone separating the injected water and the displaced
oil. Compared to the distance between wells the two phase zone will most likely
be small. Assuming that measurements are taken with some time-interval we
see that the case with a narrow two-phase zone will be most realistic for this
case. We assume that we have no information about the position of the two-
phase zone. It is therefore unlikely that we are able to align the front with
any equidistantly spaced point xi. Even though it has not been analyzed, it is
obvious that our results from the analysis of non-ordered measurement points
for piston displacement will carry over to this case. Based on this we do expect
a SNS relationship for a real world case, but we do not expect to observe a
speci�c scale index where the sensitivity drops to zero, and non-linearity rises
to in�nity. We instead expect the sensitivity to gradually decrease, and the
non-linearity to gradually increase as the scale index rises. Hence indicating
the existence of a SNS relationship for estimation of permeability from mea-
surements of �ow.
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Chapter 8

Non-Constant Permeability

In chapter 6 and 7 we investigated the interrelation between sensitivity, non-
linearity, and scale for the inverse problem of identifying the permeability in
a petroleum reservoir from observations of �uid production rates. This was
done by analyzing the equation for �uid �ow. We assumed that the �ow was
constant in the spatial direction, incompressible, and with constant viscosity
µ. We also assumed that we only had �ow in one spatial dimension, and that
the permeability �eld k(x; c) was constant for the whole reservoir.

For any real petroleum reservoirs the permeability is never constant in the
whole �eld. In this chapter we investigate some of the e�ects a non-constant
permeability �eld might have on the interrelation between sensitivity and scale.
We will not look into the e�ects on non-linearity. This is because of the way
we de�ne sensitivity Sh, non-linearity κh along a unit vector h in parameter
space

Sh = ‖(m)h‖ , (8.0.1)

κh =
‖(m)hh‖
‖(m)h‖

2 . (8.0.2)

Since we are interested in �nding out when Sh goes to zero, we can see that
this coincides with the non-linearity going to in�nity as long as (m)hh is �nite.
The results from the analysis in chapter 6 and 7 suggest that the non-linearity
is �nite. Taking this into account, we only investigate the non-constant per-
meability �elds e�ect on the sensitivity.

69
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8.1 E�ects of non-constant permeability

In the analysis of water-�ooding a 1-D petroleum reservoir, and we found ex-
pressions for the sensitivities. We looked at how the sensitivity values changed
with scale. This was done for di�erent �ooding scenarios that lead to di�erent
expressions for the sensitivities. For all these expressions k(x; c) was included
as a factor in many of the terms. This can be seen in equations (6.1.13) for
one phase �ow, and in equations (A.1.23) and (A.1.63) for the two-phase �ow.

For chapter 6 and chapter 7 we assumed constant permeability k(x; c) = k(c)
, we hence put k(c) outside the all integrals. The value of sensitivity was
determined by integrals over k(x;h) and by letting h be in direction of di�erent
Haar wavelets we could investigate the SNS structure. To gain understanding
of the e�ects of a non-constant permeability �eld we need to investigate the
integrals that were simpli�ed by the assumption k(x; c) = k(c).

From equations (6.1.13) , (A.1.23), and (A.1.63) we �nd three integrals we
want to investigate further:

• I1 =
´ 1

0
k(x; c)−2 · k(x;h) dx

• I2 =
´ 1
xi
k(x; c)−2 · k(x;h) dx

• I3 =
´ xo,i
xw,i

k(x; c)−2 · k(x;h) dx

We observe that the integrand in these three expressions are the same. The
only di�erence is the limits of integration.

8.1.1 Representation of k(x; c) and k(x;h)

In section 6.2 and 7.2 we used the Haar-basis to represent k(x;h). We would
therefore like to analyze how a non-constant k(x; c) a�ect a general Haar-
basis element. One of the reasons for choosing the Haar basis was the belief
that permeability can be expressed as piecewise constant functions. In the
following we would like to keep the analysis as simples as possible, without
losing important features. In order to keep things simple we only look at
the in�uence k(x; c) has on a single general basis element. The best way of
obtaining information about the e�ect is to calculate the integrals I1, I2, and I3.
This calculation will be performed by a numerical scheme. To avoid problems
with the numerical method we would like to work with a continuous integrand.
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To obtain this while we avoid losing the important oscillatory features we will
approximate one Haar basis element by the continuous function.

k(x;h) = sin(2πx), x ∈ [0, 1]. (8.1.1)

We have illustrated the similarity of the Haar basis and sin(2πx) in �gure
8.1.1.

Figure 8.1.1: sin(x) as approximation of one Haar basis element

We also want to represent k(x; c) in a �exible and continuous way. For a
real petroleum reservoir the permeability varies through the whole �eld. This
variation can have many di�erent frequencies and amplitudes, and it is not
certain that any basis element has the same phase as the permeability. To
represent k(x; c) in such a �exible way we let:

k(x; c) = a+ b sin(2π(cx+ d)). (8.1.2)

When we adjust a we can tune the mean magnitude of the permeability �eld.
By adjusting b,c, and d we vary the amplitude, frequency and phase of the
permeability �eld. Since a real permeability �eld is never zero we introduce
the following condition on the parameters a and b in k(x; c)

a > b. (8.1.3)

With these representations of k(x; c) and k(x;h) the integrand becomes

k(x; c)−2 · k(x;h) = [a+ b sin(2π(cx+ d))]−2 · sin(2πx). (8.1.4)
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8.1.2 Analysis of the integrand

In chapter 7 we saw that the scale dependence in the expressions for sensitivity
was in the integrals I1,I2, and I3. We saw that the scale had big impact on
the sensitivity value. When the integration limits matched the support of the
basis element the integral value became zero. This was done under the before-
mentioned assumption that the permeability was constant. To analyze the
e�ects of a non-constant permeability �eld we must analyze if the numerical
value of the integral is still zero when integrating over the whole support of
k(x;h) with our new integrand (8.1.4). All three integrals have the same
integrand, we thus want to investigate some of the integrands properties before
we start to calculate the integrals. First we see how the di�erent representations
look like, in �gure 8.1.2 we have plotted k(x;h) , k(x; c)−2 , and k(x; c)−2 ·
k(x;h) with a = 2, b = 1.5, c = 2, and d = 0.

0.2 0.4 0.6 0.8 1

(a) k(x;h)

0.2 0.4 0.6 0.8 1

(b) k(x; c)−2

0.2 0.4 0.6 0.8 1

(c) k(x; c)−2 · k(x;h)

Figure 8.1.2: Approximations of the functions

In �gure 8.1.2 we illustrate the two factors of the integrand, and the total
integrand for some example values of a, b, c and d. This is an example to
illustrate the e�ect from a non-constant permeability �eld on integral I1. The
important feature to point out is the negative spike we observe for the integrand
illustrated in �gure 8.1.2c. Integrating from 0 to 1, the value of that integral
would di�er from zero because of this negative spike. The reason for the spike is
clear when we know that k(x;h) in �gure 8.1.2a is multiplied with the k(x; c)−2

in �gure 8.1.2b. This simple illustration shows an integral that was zero for
constant permeability will not become zero in this example. This motivates
us to try more cases. To get some more information about the spike in the
integrand we analyze the maximum value of it. Choosing a point x = x′ such
that k(x′;h) is a min or max point. We then adjust c and d in such a manner
that k(x′; c)−2 is a maxima. Since max/min of the sin function is ±1 we get

k(x′;h)

[k(x; c)]2
=

±1

[a− b]2
(8.1.5)
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We observe that if a ≈ b the spike has a high value which lead to a high value
for the integral, and probably the largest e�ect on the SNS structure. This is
what we see in �g 8.1.2 where a = 2 and b = 1.5. If a � b the point will still
be a maximum point for k(x; c)−2 · k(x;h) but the e�ect will not be as big.

To relate this to a real petroleum reservoir we need to look at what the param-
eters a, b, c, and d represents. k(x; c) is the representation of the permeability
�eld for the reservoir, the parameter a gives information about the mean per-
meability value. The parameter b gives information about the amplitude of
the permeability variation. A case with a ≈ b can be translated to a strongly
heterogeneous reservoir, while a case with a� b can be translated to a weakly
heterogeneous reservoir. The parameter c is the frequency of k(x; c), i.e. how
fast the permeability �eld changes. When c = 0 the permeability �eld does
not change at all, thus we have a constant permeability �eld. By letting the
value of c vary, we gain insight into how di�erent permeability �elds a�ect the
SNS relationship. The parameter d is the phase shift of k(x; c), that is, the
displacement of k(x; c) relative to k(x;h) (which has zero phase shift). In a
real permeability �eld we assume that the �eld might be displaced relative to
the basis element k(x;h). For that reason we test di�erent values of d.

8.2 Numerical analysis of integrals

Now we look at the three integrals presented in section 8.1. We have seen that
the integrand depends on the values of a, b, c and d. We assume that the e�ect
of a non-constant permeability �eld is largest for a reservoir with a ≈ b. To
test this we devise one test with a ≈ b, and one with a � b. For each of this
we calculate the values of the integral for di�erent values of c and d. We then
plot the value of the integrals as a function of c to analyze where the e�ects of
a non-constant k(x; c) is largest. We let c ∈ [0, 10], and d ∈ [0, 0.9].

The integrals are calculated using the matlab function quadgk. This is the
adoptive Gauss-Kronrod quadrature method. This method is the most e�cient
for high accuracies and oscillatory integrands. For more on this method, we
refer the reader to [43].

Since we expect to see bigger e�ect from cases with a ≈ b, then from a� b we
let d go from 0 to 0.9 with increments of 0.1 for the reservoir with a ≈ b. For
the reservoir with a � b we let d go from 0 to 0.75 with increments of 0.25.
For each subsection we comment on general features of each integral, and the
e�ect a non-constant permeability �eld has on the SNS structure will then be
thoroughly discussed in the summary and conclusion section.
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Table 8.1: Parameters for test T1 and T2.

T1 T2

a 2 10
b 1.5 1

Range c [0, 10] [0, 10]
Steps c 0.01 0.01
Range d [0, 0.9] [0, 0.75]
Steps d 0.1 0.25

8.2.1 Analysis of I1

The �rst integral we analyze is

I1 =

ˆ 1

0

[a+ b sin(2π(cx+ d))]−2 · sin(2πx) dx.

We denote the value of this integral αI1 , and plot the di�erent values of αI1
as a function of the reservoirs frequency c. We present this plot for all the
di�erent values of d. In order to test the di�erence between a strongly and a
weakly heterogeneous reservoir we conceive two tests. The �rst called T1 has
a ≈ b, the second called T2 has a � b. The parameters for the two tests are
summarized in table 8.1.

The results of test T1 and T2 are shown in �gure 8.2.1 and 8.2.2. We now
comment on some features that can highlight the e�ect a non-constant per-
meability �eld has on the SNS structure. For both tests we observe that the
integral value αI1 is 0 when the reservoir frequency c is 0. That is, when we
have constant permeability, the integral over one basis element equals zero.
This result is not surprising when we look at the basis element, but this is
the same result obtained in chapter 6 and 7. Hence it builds con�dence in the
method we apply.

From the graphs we see that both types of reservoirs act similar to di�erent
permeability frequencies. The di�erence we observe is the value of the integrals.
From �gure 8.2.1, we observe that for T1 maxαI1 ≈ 0.9. While we see in �gure
8.2.2 that for T2 maxαI1 ≈ 1 · 10−3.

From �gure 8.2.1 and �gure 8.2.2 we observe that the greatest deviations from
zero is found in the frequency area 0.5 < c < 2.5. The exact position depends
on the phase d. We note that this is around the frequency of k(x;h) which is
c = 2. When c > 2.5 we observe some small oscillatory deviation from zero,
but the amplitude are much smaller. Even though the placement of these local
tops depend on the value of d, the general trend is that of dampened oscillation.
For the frequencies c < 0.5 the value goes rapidly to zero for all the di�erent
values of d.
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Figure 8.2.1: Test T1 , value for constant permeability shown by stippled line



76 Non-Constant Permeability

1 2 3 4 5 6 7 8 9 10

−10

−5

0

5
x 10

−4

c

αI2

(a) d=0

1 2 3 4 5 6 7 8 9 10

−10

−5

0

5

x 10
−4

c

αI2

(b) d=0.25

1 2 3 4 5 6 7 8 9 10

−5

0

5

10

x 10
−4

c

αI2

(c) d=0.5

1 2 3 4 5 6 7 8 9 10

−5

0

5

10

x 10
−4

c

αI2

(d) d=0.75

Figure 8.2.2: Test T2, value for constant permeability shown by stippled line

8.2.2 Analysis of I2

We now analyze the e�ect on the integral

I2 =

ˆ 1

xi

[a+ b sin(2π(cx+ d))]−2 · sin(2πx) dx.

For this integral there is a dependence on the left limit of integration xi, in
addition to the dependence on k(x; c) . To analyze the e�ect of non-constant
permeability combined with non-constant limits of integration, we try several
di�erent values for the position xi, and for each of these we calculate the value
of I2 for all values of the frequency c. To keep the presentation of results brief
we have chosen to present results for a single value of the phase shift d. We
chose the value that gave the biggest deviation from zero for integral I1. We
conducted experiments for several di�erent values of d, and the results were
similar.

In order to test both the e�ect of a ≈ b and a � b we construct two tests
T3 and T4. The parameters for these test are summarized in table 8.2. We
have plotted the values of the integral αI2 as a function of the permeability
frequency c. The results are presented in �gure 8.2.3 and �gure 8.2.4.

Figure 8.2.3a is o� course the same as �gure 8.2.1e since the limits of integra-
tions are the same. As xi goes from 0 to 0.9 we observe that for low frequencies
the integral behave similar to integral I1, for higher frequencies the behavior is
somewhat di�erent. For xi between 0 and 0.5 the behavior for large frequencies
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Table 8.2: Parameters for test T3 and T4

T3 T4

a 2 10
b 1.5 1
d 0.4 0

Range c [0, 10] [0, 10]
Step c 0.01 0.01

Range xi [0, 0.9] [0, 0.75]
Step xi 0.1 0.25

are of the same nature as for I1, that is they behave as dampened oscillations.
The di�erence is that the value deviate from the value obtained for constant
permeabilities. For xi from 0.6 to 0.9 we see higher oscillations for the high
frequencies, but the trend is still that low values of c creates the biggest devi-
ations from zero. The same pattern is observed for the case when a� b. But
as for I1 the values we get are a lot smaller when a� b.

8.2.3 Analysis of I3

The last integral we consider is

I3 =

ˆ xo,i

xw,i

[a+ b sin(2π(cx+ d))]−2 · sin(2πx) dx.

This integral appears as a consequence of the two-phase zone that comes be-
tween the injected water and the displaced oil. The size of the two-phase zone
can vary and we will thus test di�erent sizes of the two-phase zone as well
as di�erent frequencies of the permeability �eld. We now the width of the
two-phase zone

xo − xw = h, h ∈ [0, 1]. (8.2.1)

We device two tests, one with a ≈ b and one with a � b. For both tests we
only present one value for d but in our work we tested several, and the results
were similar. The parameters for the two tests are shown in table 8.3.

It is not only the size of h that is important, it is also the position of the two-
phase zone. In the analytical results we saw that a narrow two-phase altered
the SNS structure, based on this we assume that the dependence on position is
highest for small values of h. To test several positions we move the two-phase
zone with equidistant steps

steps =
h

5
.
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Figure 8.2.3: Test T3, value for constant permeability shown by the stippled
line
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Figure 8.2.4: Test T4, value for constant permeability shown by the stippled
line

Table 8.3: Parameters for test T5 and T6

T5 T6

a 2 10
b 1.5 1
d 0 0

Range c [0, 10] [0, 10]
Step c 0.01 0.01
h 1/2, 1/4, 1/8, 1/16, 1/32 1/2, 1/4, 1/8, 1/16, 1/32

After calculating the integral values αI5 and αI6 for the range of frequencies
c, and for di�erent positions of the two-phase zone we pick the one that has
the highest mean deviation from zero. This is chosen as to get a worst case
scenario. The results for the two tests are shown in �gure 8.2.5, and �gure
8.2.6.

In �gure 8.2.5 we see the measurements from the �ve di�erent two-phase zones.
In �gure 8.2.5a, we see that the structure is relatively similar to the one ob-
served in �gure 8.2.1a, the most obvious di�erence is that for high values of c
the integral deviates from the constant permeability value. As the two-phase
zone becomes narrow this similarity disappears. When the two-phase zones
is narrower, we observe that the oscillations with larger values of c is of ap-
proximately the same amplitude as for low values of c. For h = 1/16, and
h = 1/32 there is hardly any di�erence between the amplitude of oscillation
for low and high values of frequency c. But it is worth noting that the value
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Figure 8.2.5: Test T5, value for constant permeability shown by the stippled
line
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Figure 8.2.6: Test T6, value for constant permeability shown by the stippled
line

of the amplitude is much lower for narrow two-phase zones, then for wide.

Results for the case where a � b are shown in �gure 8.2.6 we observe similar
characteristics as the case for a ≈ b. The di�erence is, as it was for I1 and I2,
the values of the integral αI3 are much smaller. We can also observe that we
observe evenly sized oscillations already at h = 1/16.

8.3 Numerical error

From �gures 8.2.1, 8.2.2, 8.2.3, 8.2.4, 8.2.5, and �gure 8.2.6 we see that the
values of αI1 , αI2 , αI3 , αI4 ,αI5 and αI6 is often very small. Therefore we need to
investigate to which precision the quadrature method calculates the integrals.
Fortunately the matlab function quadgk can output an approximate bound on
the absolute error |Q− I| where Q is the approximated integral, and I is the
exact value of the integral.
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Figure 8.3.1: Error bounds for tests

In the investigation of integral I1 we tried for many di�erent values of d. In
integral I2 we had di�erent values of xi. And in integral I3 we had di�erent
values of h combined with di�erent positions of the two-phase zone. In all the
experiments, we calculated the error. We will not present all these results.

For integral I1 and I2 we picked the con�guration of d and xi that produced
the highest mean error. The results from test T1 and T2 are shown in �gure
8.3.1a, and �gure 8.3.1b. The results from test T3 and T4 are shown in �gure
8.3.1c, and �gure 8.3.1d.

For integral I3 we have already made a choice with regard to the results we
want to present. To present the worst case scenario, we saw that h = 1/32
produced the lowest values of αI5 , here a high error in the quadrature has
the biggest e�ect. That is why we calculated the error for all positions of the
two-phase front in the case with h = 1/32. And we present the position that
produced the highest mean error. The error results from test T5 and T6 are
shown in �gure 8.3.1e, and �gure 8.3.1f.

When we compare �gures 8.2.1, 8.2.2, 8.2.3, 8.2.4, 8.2.5, and �gure 8.2.6 to
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�gure 8.3.1 we observe that the error in no way dominates the results.

8.4 Summary and conclusions

In chapter 6 and 7 we calculated the sensitivity in direction of di�erent Haar-
basis elements. This allowed us to calculate how the sensitivity and non-
linearity values changed with the scale of the basis elements. This was done
under assumption that the permeability was constant. This assumption is
never valid for real world petroleum reservoirs, thus we needed to analyze the
e�ects of a non-constant permeability �eld. To keep the analysis brief we
chose to only analyze the e�ect on sensitivity. Chapter 6 and 7 told us that
the sensitivity expression depended on scale through the three integrals; I1,
I2, and I3. These integrals was simpli�ed with the assumption of constant
permeability. To analyze the e�ect of a non-constant permeability �eld we
evaluate the non-simpli�ed integrals by a numerical quadrature scheme from
matlab.

In Chapter 6 and 7 we saw that the sensitivity gradually decreased to zero as
the scale went from coarse to �ne. In the case of the constant basis element
all the integrals produced a non-zero value, but when we looked at oscillating
basis elements the integral I1 was instantly zero. As we reduces the scale the
integrals I2, and I3 became equal to integral I1 and hence zero. This was for the
case with constant permeability. We now analyze what e�ect a non-constant
permeability �eld will have on this SNS structure.

The biggest impact of a non-constant permeability �eld is that the integral I1
will have a large deviation from zero when the frequency of the permeability
�eld equals the frequency of the basis element. The e�ect on integrals I2
and I3 is also most prominent for frequencies equal to the frequency of the
basis element, but for these cases we also see deviations for higher values of c,
although the e�ect were not as high. For a real world petroleum reservoir we
have little information about the frequency. A fairly general statement would
be that a real case permeability �eld has both high frequency elements, and
low frequency elements. For elements with high frequencies relative to the
basis elements the e�ect on integration values are minor. We might observe
some deviations from a constant case for integral I2 and I3, but no in�uence on
integral I1. Elements with low frequencies relative to the basis elements could
expect to see some e�ects on the SNS structure. In this case we would have to
go to a �ner scale, and hence increase the frequency of the basis elements to
ensure that the sensitivity value is zero.

The objective of this chapter was to investigate whether a non-constant per-
meability �eld alter the SNS structure. We can conclude by observing that
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the SNS structure is a�ected, but not altered in any substantial way by a non-
constant permeability �eld. We see that depending on the frequency of the
permeability �eld we must expect to �nd a more uneven decrease in sensitivity
values. We can see lower or higher values than expected from the sensitivity,
and we might have to go to a �ner scale before the sensitivity is zero.



Chapter 9

Numerical sensitivity by Eclipse

So far in this thesis we have established the existence of a SNS relationship
between estimating permeability from measurements of �ow for a simpli�ed
case. We made several assumptions but the most grave simpli�cation was that
the permeability �eld was constant. The e�ects of this simpli�cation was in-
vestigated in chapter 8, we concluded that a non-constant permeability �eld
would not alter the SNS structure but perhaps make it more uneven. In chap-
ter 8 we only investigated the possible e�ects on sensitivity, assuming that we
would see something similar for the non-linearity. We did not calculate the full
expression for the sensitivity. In this chapter we apply the commercially avail-
able reservoir simulator Eclipse [21]. The advantages of using a full reservoir
simulator are many. Most important is that we can obtain values for the sensi-
tivity without making simpli�cations. The other aspect is that a full reservoir
simulator applies the full �uid �ow equations, including important elements
like conservation of mass and energy.
Another important issue is that we can compare the values we obtained in our
somewhat simpli�ed case with the values the reservoir simulator outputs. We
are also able to test if our conclusions regarding a non-constant permeability
�eld holds.

9.1 Introduction

Eclipse generates sensitivity calculations if requested, by the gradient option.
For a in-depth description of how Eclipse calculates the derivatives we refer the
reader to [21]. For a more general introduction to how computation of gradients
in reservoir simulators occurred we refer the reader to [4]. We only analyze the
sensitivity values, this is because the non-linearity can not be obtained in a
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similar fashion from Eclipse. Our analytical experience tells us that the non-
linearity will have a similar dependence on scale as the sensitivity. We now
give a short overview into how Eclipse generates the sensitivity measurements,
and how we can utilize these for our analysis.

The gradient option computes gradients of the solution, e.g. oil production
rates, with respect to various property parameters that are prede�ned by the
user. This can be, e.g. the X-direction permeability multipliers. When we
spescify which parameters the gradients should be calculated for, we must also
de�ne which sub-region the cell belongs to. In this way Eclipse computes the
gradients of the solution with respect to the gradient parameters within each
user-de�ned sub-region possessing active cells. This means that it is possible
to make Eclipse calculate gradients for a �ne scale as we want, down to to size
of individual grid cells. In the analytical work one of the simpli�cations made
was that we only considered a 1-D case. This simpli�cation is done in this
chapter as well. By letting the reservoir consist of 160 grid cells placed on a
line the �uids are forced to only �ow in one direction.

In the analytical work we parametrized the permeability by the Haar-basis.
Eclipse calculates the sensitivity using a local basis. That means that we need
to perform a basis-transformation in order to compare sensitivity values. The
values Eclipse provides can be written as ∂m/∂α where m is the solution ,e.g.
oil production rate, and α is the parameter using the local basis. We want
to compare this value against ∂m/∂β where β is the parameters using the
Haar-basis. When we assume that parameters in the local basis, α, can be
transformed to the Haar-basis, β(α), by a transformation matrix A

β(α) = Aα.

For a simple case using two parameters this then gives

β1 = a11α1 + a12α2,

β2 = a21α1 + a22α2,

we then see that

∂m

∂α1

=
∂m

∂β1

∂β1
∂α1

+
∂m

∂β2

∂β2
∂α1

,

∂m

∂α2

=
∂m

∂β1

∂β1
∂α2

+
∂m

∂β2

∂β2
∂α2

,

which gives
∂m

∂α1

= a11
∂m

∂β1
+ a21

∂m

∂β2
∂m

∂α2

= a12
∂m

∂β1
+ a22

∂m

∂β2

 = AT
∂m

∂β
.
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In order to get the value of the derivative in the Haar-basis we write

∂m

∂β
= (AT )−1

∂m

∂α
. (9.1.1)

But since the Haar-basis elements are orthonormal we get

A = (AT )−1, (9.1.2)

and
∂m

∂β
= A

∂m

∂α
, (9.1.3)

this means that in order to get the derivative of the Haar-basis elements we
need to multiply the derivative of the local-basis elements with the transform-
matix A.

9.2 Transformation

We now look at how to perform the transformation from gradients calculated
with local basis-functions to gradients calculated from Haar basis-functions.
From (9.1.3) we see that we do not need to think about the derivatives. We
only need to �nd the transformation matrix to go from a local basis to the
Haar basis. The transformation matrix presented here is based on [46].

One way to construct the Haar functions is to de�ne a family of N Haar
functions hk(x), (k = 0, 1, 2, . . . , N − 1) that are de�ned on the interval 0 ≤
x ≤ 1. We then let a speci�c function hk(x) depend on the parameters p and
q.

k = 2p + q − 1.

For any value of k ≥ 0, p, and q are uniquely determined so that 2p is the
largest power of 2 contained in k, and q − 1 is the remainder. In this fashion
we can write tables of the corresponding values of di�erent indexes N . When
N = 8 we get the values for p, q, and k. Shown in table 9.1. We then de�ne
the Haar function in the following way.

• k = 0 , the Haar function is a constant.

h0(x) =
1√
N
. (9.2.1)

• k > 0 , the Haar function is de�ned in the following way

hk(x) =
1√
N


2p/2 (q−1)/2p ≤ x ≤ (q−0.5)/2p,

−2p/2 (q−0.5)/2p ≤ x ≤ q/2p ,

0 otherwise.

(9.2.2)
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Table 9.1: values of p, q, and k. for N = 8

k 0 1 2 3 4 5 6 7
p 0 0 1 1 2 2 2 2
q 0 1 1 2 1 2 3 4

Using these de�nitions, we can create a N by N matrix for the discrete Haar-
transform. For N = 8 this matrix becomes

H8 =
1√
8



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2
√

2 −
√

2 −
√

2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2
2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2


(9.2.3)

The matrix H8 can then be used as the transform matrix A in (9.1.3). By some
simple matrix calculations we can see that H8 is orthonormal. H8 thus ful�lls
the demands for the transformation matrix A and will transform 8 discrete
values of the local basis to corresponding values in the Haar-basis.

9.3 The numerical experiments

In this section we give an overview of how we conduct the numerical experi-
ments. As mentioned we would like to test how the sensitivity change along
di�erent Haar-basis elements when we have a constant and a non-constant
permeability �eld. To accomplish this we need to construct tests that account
for the di�erent �ow structures that were analyzed in chapter 7, while also
highlighting the e�ect of di�erent non-constant permeability �elds analyzed in
chapter 8.

In the analytical study conducted in chapter 7 we divided the analysis in two
parts. First we looked at a �ow pattern where the injected water displaced the
oil like a piston. After this we analyzed the case when there was an two-phase
zone separating water and oil. We would of course like to test both these
scenarios by using the Eclipse simulator. This can not be achived, because
Eclipse uses a numerical scheme to do the �ow calculation there is always some
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Figure 9.3.1: Narrow two-phase zone

numerical error. So even when we specify the �uid properties in such a way
that we would expect a piston displacement we do not achieve a pure piston
displacement.

The test we construct does not include a piston displacement, but we try to
make the two-phase zone as narrow as possible in order to make the e�ects
of the two-phase zone small. The �uid front can be seen in �gure 9.3.1. In
chapter 8 we analyzed the e�ects of a non-constant permeability �eld. From
this we learned that the frequency of the permeability �eld has an e�ect on
the sensitivity value. A strongly heterogeneous reservoir will a�ect the sen-
sitivity in higher degree than a weakly heterogeneous reservoir. To test this
we construct eight di�erent permeability �elds with four di�erent frequencies.
We then let four represent weakly heterogeneous reservoirs, and four represent
strongly heterogeneous reservoirs. Since the front is not a piston-front, we need
to de�ne when the front moves past. In the following we say that the front
passes when the oil saturation So = 0.9. We then chose the measurement times
by looking at the �uid front in FloViz, a visualization program that is part of
the Eclipse package[21]. This means that the measurement points are only
placed in an approximately ordered fashion, and this needs to be taken into
account when we analyze the results.

With this numerical setup we will in addition test some of the analytical results
from [33] . As mentioned in chapter 1 the analysis in [33] was based on mea-
surements of pressure, but numerical experiments were never conducted. In
the Eclipse simulator it is the user who de�ne which solution values to be used
in the sensitivity calculations. It is therefore natural that we use the work�ow
described here to also investigate the results made in [33].
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Table 9.2: Di�erent viscosity's

Narrow two-phase zone
µo 0.5
µw 1
pc,ow 0

9.4 Sensitivity of �ow measurements

The �rst thing we look at is the sensitivity with regards to �ow measurements.
We specify Eclipse to output

∂ WOPRi

∂ permXj

(9.4.1)

where i = 0, 1... is the di�erent time steps, j = 1, ... is the di�erent sub-regions,
and WOPR is the well oil production rate. In the previous analysis we used
the di�erence in �uid �ow data as our data, we thus introduce the following
expression for ∂m/∂β

∂ mi

∂ permXj

=
∂ WOPRi+1

∂ permXj

− ∂ WOPRi

∂ permXj

. (9.4.2)

Where i = 0, 1, ..., T is the timesteps and j = 1, ...., 2L is the sub-regions.
For each of the timesteps T we transform the 2L sized vector containing the
sensitivity data on the local basis by

∂mi

∂β
= H2L

∂mi

∂α
(9.4.3)

The resulting vector contains (m(c)i)φ on the �rst row, (m(c)i)ψ0 on the second
row, (m(c)i)ψ1

1
on the third row and so on. Doing this for all the timesteps we

produce T of these vectors. Combining these vectors into a 2L times T matrix.
Looking at the equation (4.1.1) we get the measurement for the sensitivity by
simply taking the norm of each row in this matrix. Thus producing the sensi-
tivity in the direction of each Haar basis element. Since we want to compare
the numerical values to the analytical, we study the sensitivity as the scale
becomes smaller. With the Haar basis we have a number of basis elements
that are on the same scale, but translated relative to each other. For instance
ψ2
1 and ψ2

2. We have sensitivity measurement for each of these elements, but
as we are most interested in the value as the scale changes we select the basis

element that produces the highest value, that is, max
l

∥∥∥(m)ψj
l

∥∥∥.
In the following experiments we let T = 4, and we divide the reservoir into 32
sub-regions. We are then able to get measures of the sensitivity down to ψ4

l ,
l = 1, . . . , 16, and it means that we need to use H32 to do the transformation.
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Table 9.3: Permeability values for weakly heterogeneous reservoir

I II III IV
K1(mD) 3843.5

4337.5
4544.6

4212.5

K2(mD) 4831.5
K3(mD) 4584.4

4751.7
K4(mD) 4919.0
K5(mD) 4311.5

3691.5
4237.3

K6(mD) 3071.4
K7(mD) 4698.3

4783.1
K8(mD) 4868.0
K9(mD) 4357.5

4436.5
4285.9

K10(mD) 4515.5
K11(mD) 4486.3

4135.4
K12(mD) 3784.5
K13(mD) 4311.0

3826.7
3782.3

K14(mD) 3342.4
K15(mD) 4412.1

3737.9
K16(mD) 3063.7

9.4.1 Weakly heterogeneous reservoir

We �rst conduct experiments for a weakly heterogeneous reservoirs with dif-
ferent frequencies. This is done by creating four di�erent reservoirs with 16,8,4
and 1 permeability values. The �rst 16 values was created by using the matlab
function rand which gives random numbers between 0 and 1. The two next was
made by taking the mean of adjacent cells, and the last by taking the mean of
the whole reservoir. Since we want values that do not vary to much the 16 �rst
values was created in the following way 3000 + 2000 · rand. These permeability
values are found in table 9.3. The sensitivities was calculated, and transformed
using the Haar-basis transform. In table 9.4 we have given the maximum value

for each of the scale elements, that is max
l

∥∥∥(m)ψj
l

∥∥∥ for j = 0, 1, 2, 3, 4. This is

given for each of the di�erent reservoirs.

Before we analyze the results we would like to make some preliminary thoughts
about what results we can expect. In this numerical reservoir we do not have
a perfect piston displacement, and we do not have perfectly ordered measure-
ments. But we have tried to make the two-phase zone as narrow as possible,
and we have tried to take the measurements in an ordered way. This means
that we would expect results that resemble the results from the analysis of
a narrow two-phase zone. In the case of a constant permeability �eld, with
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Table 9.4: Sensitivity values for weakly heterogeneous reservoir, �ow measure-
ments

I II III IV
max ‖mφ‖ 3824.7 3976.6 3652.2 3660.8
max ‖mψ0‖ 619.2 636.3 574.1 707.5
max ‖mψ1‖ 243.4 252.5 251.6 352.4
max ‖mψ2‖ 387.2 372.7 96.1 87.9
max ‖mψ3‖ 274.7 48.6 45.0 50.4
max ‖mψ4‖ 60.7 56.4 49.9 55.2

i = 0, 1, 2, . . . , 2L measurements, our analysis told us to expect a drop in sen-
sitivity, Sψj

l
, when j = L. But we could not expect the sensitivity to become

zero before j = K, where K was some scale index larger then L. With this in
mind and remembering that we have T = 4 = 22 measurements, we expect a
drop in the value from Sψ1 to Sψ2 , and we can not expect the value to become
zero, but continue to decrease.
We can also make some preliminary thoughts about the e�ect of a non-constant
permeability �eld. The analysis in chapter 8 told us that a non-constant per-
meability �eld would e�ect the results when the frequency of the permeability
�eld equaled the frequency of the basis element. For basis elements ψ0 and
ψ1
l we do not expect the integrals to become zero because T = 4. But we

could expect an e�ect for Sψ2 , Sψ3 , and Sψ4 if the permeability has a frequency
that matches that of ψ2

l ,ψ
3
l , and ψ4

l . Since the measurements are not made
in an ordered fashion we do not expect the sensitivity values to become zero
for any of the experiments. We instead hope that the mentioned e�ects are so
dominating that they can be observed.

We �rst look at the case with a constant permeability �eld, that is, reservoir
IV in our results. We observe that there is a drop in sensitivity values between
max ‖mψ1‖ and max ‖mψ2‖, but the value is not zero for max ‖mψ1‖ or the
�ner basis elements. This result is exactly what was expected.

Reservoir III has four di�erent permeability zones. The basis element with
corresponding frequency is ψ1. Our preliminary thought say that there will
be no e�ect for this case. From table 9.4 we see that this is in fact what we
observe.

Reservoir II has eight di�erent permeability zones. Following the same ar-
gument we expect to see an impact in direction of ψ2. From table 9.4 we
observe that for reservoir II, max ‖mψ2‖ is signi�cantly larger than the cor-
responding max ‖mψ2‖ for reservoir III, and IV . This can be contributed to
the non-constant permeability �eld.



9.4 Sensitivity of �ow measurements 93

Table 9.5: Permeability values for strongly heterogeneous reservoir

I II III IV
K1(mD) 6.35

26.01
22.13

29.28

K2(mD) 45.67
K3(mD) 31.62

18.25
K4(mD) 4.88
K5(mD) 13.92

20.63
34.35

K6(mD) 27.39
K7(mD) 47.88

48.06
K8(mD) 48.24
K9(mD) 7.88

28.21
32.13

K10(mD) 48.53
K11(mD) 47.86

36.06
K12(mD) 24.27
K13(mD) 40.01

23.55
28.50

K14(mD) 7.09
K15(mD) 21.09

33.44
K16(mD) 45.79

For reservoir I, we have sixteen di�erent permeability zones. We would here
expect to see a impact in direction of ψ3,which is quite clear when looking at
table 9.4. Here we also observe a large value in direction of ψ2, which is not
expected form our preliminary toughts. One explanation could be the narrow
two-phase zone. When we analysed the e�ects of a non-constant permeability
�eld the only place where we could observe a high e�ect for high frequencys
was in the case of a narrow two-phase zone. Formax ‖mψ2‖ the frequency of
the permeability is twice as high as the frequency of the basis element.

9.4.2 Strongly heterogeneous reservoir

For the strongly heterogeneous reservoir we created the four di�erent perme-
ability �elds in the same manner as in the weakly heterogeneous reservoir. But
since we wanted a larger degree of variation we created the �rst 16 values by
50 · rand. The permeability values for the four di�erent reservoirs are found in
table 9.5. We calculated the sensitivity in the same manner as for the weakly
heterogeneous reservoir, and the results of this is given in table 9.6.

For a strongly heterogenous reservoir we expect to see similar behaviour of the
sensitivity values as for the weakly heterogenous. We comment on these results
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Table 9.6: Sensitivity values for strongly heterogeneous reservoir, �ow mea-
surements

I II III IV
max ‖mφ‖ 21.583 58.778 12.036 50.456
max ‖mψ0‖ 6.6529 16.209 4.2223 9.6729
max ‖mψ1‖ 9.8616 10.956 4.1132 4.8072
max ‖mψ2‖ 3.8969 12.949 0.41674 1.2052
max ‖mψ3‖ 12.002 0.78709 0.90677 0.72383
max ‖mψ4‖ 1.1918 0.88508 1.26 0.93081

in similar fashion as for the weakly heterogeneous reservoir. With the results
from chapter 8 in mind, we would expect to see an even higher e�ect from the
non-constant permeability �eld for this case.

We start by looking at reservoir IV . As expected we see a clear drop in value
for max ‖mψ1‖ and max ‖mψ2‖. As for the weakly heterogeneous reservoir we
observe that the sensitivity value does not drop to zero.

For reservoir III we obseve the same behavior as for reservoir IV . This is
exactly like the weakly heterogeneous reservoir.

Reservoir II has eight di�erent permeability regions, and we hence expect to
see larger value for max ‖mψ2‖. From table 9.6 we observe that this is the case
for this reservoir.

Reservoir I has sexteen di�erent permeability zones, and as for the weakly
heterogeneous reservoir we see the e�ect on max ‖mψ3‖. For this case we also
see a higher value for max ‖mψ2‖ than we would expect. We contribute this
e�ect to the narrow two-phase zone as for weakly heterogeneous reservoir.

The results from chapter 8 told us to expect a bigger e�ect from the strongly
heterogenous reservoir, then from the weakly heterogenous reservoir. This
e�ect is hard to observe from the values in table 9.4 and 9.6. As we will see
this e�ect is also present for sensitivity of pressure measurements, they will
hence be analyzed together later in this chapter.

9.5 Sensitivity of pressure measurements

In [33] the interrelation between sensitivity, non-linearity and scale associated
with the inverse problem of permeability identi�cation from �uid pressure ob-
servations was investigated. In this work the SNS relationship was proved to
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exist, but there was not done any numerical experiments. In this section we
calculate the sensitivity for some numerical experiments. We conduct the same
experiments as for the case with �ow measurements. The sensitivities in [33]
was calculated using the Haar-basis, so the procedure to transform from local
basis to Haar basis is the same. The di�erence is the expression for mi.

In [33]
mi(c) = P (ti+1; c)− P (ti; c), (9.5.1)

where
P (t; c) = p(1, t; c)− p(0, t; c). (9.5.2)

Since Eclipse gives
∂ (WBP )i
∂ (permX)j

, (9.5.3)

where i = 0, . . . is the di�erent time steps, j = 1, . . . is the di�erent regions,
and WBP is the 1-point pressure average as de�ned in [21]. To represent the
correct mi we denote WBP (I) as the pressure measurements at the injector,
and WBP (P ) as the pressure measurements at the producer, corresponding
to p(0, t; c) and p(1, t; c). We then write

∂ mi

∂ permXj

=

(
∂ WBP (P )

∂ permX
− ∂ WBP (I)

∂ permX

)i+1

j

−
(
∂ WBP (P )

∂ permX
− ∂ WBP (I)

∂ permX

)i
j

.

(9.5.4)

Using this expression we get the same matrix type as for the case with �ow
measurements. After transformation we get the sensitivities for the data in
direction of each of the basis elements of the Haar basis.

In [33] the case with non-constant permeability was analyzed for the case of
one-phase �ow. The conclusions suggested that a non-constant permeability
�eld would result in a gradual decrease in sensitivity. Not the abrupt scale
dependent drop we see for constant permeability. These conclusions were based
on analysis of the integral

ˆ 1

0

k−2(x; c)k(x;h) dx. (9.5.5)

This integral appears in the equations for �ow as well, and the e�ects of a non-
constant permeability �eld was investigated in chapter 8. In [33] there was no
discussion about what e�ects di�erent non-constant permeability �eld would
have on the result. It is therefore of interest to see if the results obtained in
chapter 8 is also valid for the case with pressure measurements.

For the following tests we use the same eight reservoirs that where described
in table 9.3, and table 9.5. That is four reservoirs with weakly heterogeneity
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Table 9.7: Weakly heterogeneous reservoir, press measurements

I II III IV
max ‖mφ‖ 12.0276 12.8946 11.6904 12.5854
max ‖mψ0‖ 2.7393 2.7595 2.6941 2.8410
max ‖mψ1‖ 3.5140 3.5281 3.5246 3.6771
max ‖mψ2‖ 1.2837 1.2567 0.4440 0.4182
max ‖mψ3‖ 0.8380 0.4985 0.4957 0.5406
max ‖mψ4‖ 0.6586 0.6926 0.6954 0.7581

and di�erent frequencies, and four reservoirs with strongly heterogeneity and
di�erent frequencies.

Since we can not get a piston like displacement we let the viscosity have the
same values as for the �ow measurements, and let the capillary pressure still
be zero. In this way the two-phase zone is as narrow as possible. We have
found the measurement points by looking at the front in FloViz, and we have
said that the front is the point where So = 0.9. For the same reasons as earlier,
it is reasonable to assume that this approach does not give exactly equidistant
measurement points. In [33] the cases of non-ordered measurement points, and
non-piston displacement where analyzed. Both lead to a more gradual decrease
in sensitivity.

9.5.1 Weakly heterogeneous reservoir

In table 9.7 we see the sensitivity measurements, in direction of di�erent basis-
function elements. As for the case with the �ow measurements, we are inter-
ested in what happens as the scale of basis-elements decreases. We therefore
take the maximum value of all the basis-elements that are on the same scale.

For reservoir IV and reservoir III we expect to see a signi�cant drop in the
values when from direction ψ1 to direction ψ2. We observe that this is the
case, and the values for reservoir IV , and reservoir III are almost similar as
we expected.

For reservoir II we observe the e�ects of a non-constant permeability �eld can
be seen in direction of ψ2. The e�ect is not as prominent as we saw in the case
of �ow measurements, but it is clear that the sensitivity values in direction of
ψ2 is higher for reservoir II then for reservoir III, and IV .

In reservoir I we would expect a deviation to occur in direction of ψ3. From
table 9.7 we do observe a higher value then for reservoir II − IV . But the
di�erence is not as clear as we saw in the case with �ow measurements.
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Table 9.8: Strongly heterogeneous reservoir, press measurements

I II III IV
max ‖mφ‖ 0.1297 0.2177 0.1991 0.2105
max ‖mψ0‖ 0.0335 0.0557 0.0503 0.0462
max ‖mψ1‖ 0.0546 0.0630 0.0713 0.0610
max ‖mψ2‖ 0.0262 0.0481 0.0060 0.0063
max ‖mψ3‖ 0.0654 0.0094 0.0086 0.0082
max ‖mψ4‖ 0.0164 0.0150 0.0133 0.0122

9.5.2 Strongly heterogeneous reservoir

The sensitivity values for the case with strongly heterogeneous reservoirs are
shown in table 9.8.

Reservoir III and IV has, as expected, similar values for this case as well.
For reservoir II we expect the value in direction of ψ2 to be higher than for
reservoir III and IV . We observe that this is the case. In reservoir I the same
pattern is recognized, but in direction of ψ3. This is what was expected and
we see that in direction of ψ4 the value are of the same magnitude as for the
other reservoirs.

9.6 Comparison of sensitivity data

When we look at the equation for the �rst order directional derivative in pa-
rameter space for two-phase �ow, (7.1.43), we see that there are many factors
that scale the result. In [33] the following expression was presented for the �rst
order directional derivative in parameter space for two-phase �ow

mi(c) =uk−2(c)

{
(µw − µo)

ˆ zo,i+1

zo,i

k(x;h) dx

+
(
λ−1 − µw

)(ˆ zo,i+1

zw,i+1

k(x;h) dx−
ˆ zo,i

zw,i

k(x;h) dx

)}
.

(9.6.1)

We see that we also here have many factors that scale the result. Because of
this it does not provide much information to just compare the di�erent data-
types, and it is hard to observe the di�erent e�ect of weakly and strongly
heterogenous reservoirs. It may also be di�cult to observe how the sensitivity
values decrease with scale. We now introduce a method for analyzing the data
that eliminates some of these e�ects.
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Table 9.9: Comparison of data

I II III IV
Weakly heterogeneous, �ow 6.4867 10.1851 23.4445 24.3964
Strongly heterogeneous, �ow 2.2291 5.8780 7.8852 22.7062
Weakly heterogeneous, press 6.5752 7.8365 10.9529 11.1267
Strongly heterogeneous, press 2.0167 4.6400 11.4946 11.8989

In order to highlight the di�erence between the case with constant, and non-
constant permeability more clearly we compare the di�erent data. Since we
chose T = 4 = 22 for all the test, our analytical work, and that of [33] suggest
that there should be a considerable drop in value for max ‖mψ2‖,max ‖mψ3‖ ,
and max ‖mψ3‖.

One way to investigate this is to look at the fraction

max ‖mφ‖+
∑i=1

i=0 max
∥∥mψi

∥∥∑i=4
i=2 max

∥∥mψi

∥∥ . (9.6.2)

When the fraction is big the sensitivity values in direction of φ,ψ0, and ψ1 are
larger that sensitivity in direction ψ2, ψ3, and ψ4. This is in line with what
we expect for constant permeability �elds. Similarly when the fraction goes
toward unity, the sensitivity values in direction ψ2, ψ3, and ψ4 are not small.
This is what we would expect for the cases with non-constant permeability. We
have calculated the fraction for the di�erent cases, the results are displayed in
table 9.9.

From table 9.9 we observe that the fraction is largest for the case with constant
permeability. We also observe almost similar values for the slowly varying
�eld. We also observe that the fraction becomes smaller as we get permeability
�elds with a higher frequency, and the smallest value is for the fastest varying
permeability �eld.

In chapter 8 we concluded that the sensitivity values would be mostly a�ected
in strongly heterogeneous reservoirs. From table 9.9 we can see that both
for �ow and pressure measurements, the fraction is closer to unity for strongly
heterogeneous reservoirs. This means that sensitivity values in direction ψ2, ψ3,
and ψ4 are more dominant for strongly than weakly heterogeneous reservoirs.

From table 9.9 it is easy to see that both pressure, and �ow data act similar to
a non-constant permeability �eld. That is the sensitivity data in direction of
ψ2,and ψ3 is a�ected by non-constant permeability �elds that vary with similar
frequency as the basis functions.



Chapter 10

SNS for 2-D two-phase �ow

So far we have only considered 1-D cases. This simpli�cation was important so
that we could perform a rigorous analysis of the SNS structure. Unfortunately
the approach taken in the 1-D case is not easily extended to 2-D. In this chapter
we investigate to which degree the results obtained for 1-D �ow can be extended
to 2-D �ow.

In [33] the SNS structure for 2-D, two-phase �ow with sparsely distributed
times series of pressure data was discussed. Estimations performed in [24] gave
indications that there was a SNS relationship for 2-D estimation of permeabil-
ity, based on pressure measurements. The analytical base for this was discussed
in [33] by use of streamlines. By sacri�cing some rigor, the approach devel-
oped for the 1-D setting was adopted to the 2-D case. By this approach, it was
indicated that there was small sensitivity values and large non-linearity associ-
ated with �ne scale perturbations, and large sensitivity and small non-linearity
associated with coarse scale perturbations along each streamline.

We do not adopt this method. Instead we simulate some di�erent 2-D �ooding
experiments with the Eclipse simulator. We then transform the calculated
sensitivities by performing a 2-D Haar transform. This gives us information
about the sensitivities for the di�erent scales. We also perform this test with
pressure measurement, and then test the SNS relationship that was indicated
in [33].

10.1 Multidimensional wavelet bases

In this section we give a short introduction to multidimensional wavelet bases.
Most of the theory presented here is adopted from [15]. For simplicity we only
consider the two-dimensional case.

99
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There exists two ways of constructing an orthonormal basis for L2(R2). The
trivial way is to start from an orthonormal wavelet basis for L2(R)

ψj,k(x) = 2−j/2ψ(2−jx− k), (10.1.1)

we then take the tensor product of two of the one-dimensional bases:

Ψj1,k1;j2,k2(x1, x2) = ψj1,k1(x1)ψj2,k2(x2). (10.1.2)

The resulting functions is wavelets, and {Ψj1,k1;j2,k2 ; j1, j2, k1, k2 ∈ Z} is an or-
thonormal basis for L2(R2). In this basis the two variables x1 and x2 are dilated
separately.

The other way to construct a multidimensional wavelet basis results in a or-
thonormal wavelet basis in which the dilation's control both variables simul-
taneously. The way to construct this is to consider the tensor product of two
one-dimensional multiresolution analysis rather than the corresponding wavelet
bases. More precisely, we de�ne spaces Vj, j ∈ Z by

V0 = V0 ⊕ V0 = Span {F (x, y) = f(x)g(y); f, g ∈ V0}, (10.1.3)

F ∈ Vj ⇔ F (2j·, 2j·) ∈ V0. (10.1.4)

Similar to the one-dimensional case the Vj form a multiresolution ladder in
L2(R2) satisfying

· · ·V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 · · · , (10.1.5)⋂
j∈Z

Vj = {0} ,
⋃
j∈Z

Vj = L2(R2). (10.1.6)

Remembering that φ(·−n), n ∈ Z, constitute an orthonormal basis for V0, the
product functions

Φ0;n1,n2(x, y) = φ(x− n1)φ(y − n2), n1, n2 ∈ Z, (10.1.7)

also constitute an orthonormal basis for V0. Similar to before we use this to
construct a basis for Vj. This is written as

Φj;n1,n2(x, y) = φj,n1(x)φj,n2(y), (10.1.8)

Φj;n1,n2(x, y) = φj,n1(x)φj,n2(y)

= 2−jΦ(2−jx− n1, 2
−jy − n2), n1, n2 ∈ Z,

(10.1.9)

Still following the one-dimensional case, we de�ne for each j ∈ Z the comple-
ment space Wj to be the orthonormal complement in Vj−1 of Vj. We then
have

Vj−1 =Vj−1 ⊕ Vj−1 = (Vj ⊕Wj)⊕ (Vj ⊕Wj)

=Vj ⊕ Vj ⊕ [(Wj ⊕ Vj)⊕ (Vj ⊕Wj)⊕ (Wj ⊕Wj)]

=Vj ⊕Wj.

(10.1.10)
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c0

d1,v d1,d

d1,h

d2,v d2,d

d2,hc2

−→

original image decomposition into two layers

Figure 10.1.1: Schematic visualization of the two-dimensional wavelet trans-
form. Adopted from [15]

We see that Wj consist of three pieces with orthonormal bases given by
ψj,n1(x)φj,n2(y) for Wj ⊕ Vj, φj,n1(x)ψj,n2(y) for Vj ⊕Wj, and ψj,n1(x)ψj,n2(y)
for Wj ⊕Wj. This leads us to de�ne three wavelets,

Ψh(x, y) =φ(x)ψ(y)

Ψv(x, y) =ψ(x)φ(y)

Ψd(x, y) =ψ(x)ψ(y)

(10.1.11)

where h,v, and d stand for "horizontal", "vertical", and "diagonal", respec-
tively. We can then de�ne{

Ψλ
j;n1,n2

;n1, n2 ∈ Z, λ = h, v, or d
}

(10.1.12)

as an orthonormal basis for Wj, and{
Ψλ
j;n; j ∈ Z,n ∈ Z2, λ = h, v, or d

}
(10.1.13)

is an orthonormal basis for
⊕
j∈Z

Wj = L2(R2).

A multidimensional wavelet basis can be used to analyze two-dimensional im-
ages. For this we use a two-dimensional basis, corresponding to an image.
Using a method called sub-band �ltering (for more on this see e.g. [15, 42, 12])
we can express a image by the two-dimensional wavelet basis. This is done by
operating on the rows, and columns in a image. Now the original image c0, con-
sisting of an N×N array, is divided into four arrays consisting of (N/2)×(N/2)
elements. This is illustrated in �gure 10.1.1. The array d1,v gives information
about the vertical edges of the original image, d1,h gives the horizontal edges,
and d1,d gives the diagonal edges. In �gure 10.1.1 c1 has been decomposed fur-
ther, and one can of course decompose c2 even further if more multiresolution
layers are wanted.
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10.2 2-D Haar basis transform

As for the 1-D case we want to utilize the numerical sensitivity values given
by the reservoir simulator Eclipse. Unfortunately we face the same problem
for the 2-D as in the 1-D case. Eclipse calculates the sensitivities by a local
basis, which are not suited for scale analysis. We now adopt the method used
for images. Since we have a 2-D reservoir the sensitivity values for each user
de�ned zone corresponds to one element in the sensitivity matrix. This matrix
can be transformed to a multidimensional basis in the same manner as an
image.

In order to perform this transformation we look at the 2-D Haar basis trans-
form. This transform decomposes the signal into two components, one called
the average and the other called the di�erence. If we have a signal of length
N , i.e. f = (f1, f2, . . . , fN) we �nd the averages a1 = (a1, a2, . . . , aN/2) by

an =
f2n−1 + f2n√

2
, n = 1, 2, 3, . . . , N/2, (10.2.1)

and the di�erence d1 =
(
d1, d2, . . . , dN/2

)
by

dn =
f2n−1 − f2n√

2
n = 1, 2, 3, . . . , N/2. (10.2.2)

To see how this works on an matrix we consider a simple example. We apply
the 2-D Haar transform to the following matrix, with N = 4.

A =


6 2 3 5
7 7 2 1
2 4 6 9
5 8 7 0

 . (10.2.3)

We �rst calculate the averages, an, and the di�erences, dn, of the rows of A,
for n = 1, 2. We write the averages on the left side and the di�erences on the
right side of the stippled line.

√
2


8 8

... 4 −2

14 3
... 0 1

6 15
... −2 −3

13 7
... −3 7

 (10.2.4)

Next we calculate the averages, an, and the di�erences, dn, to the columns
for of the resultant matrix for n = 1, 2. Now the averages is on top and the
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di�erence below the horizontal stippled line.

1

2



22 11
... 4 −1

19 22
... −5 4

· · · · · · ... · · · · · ·
−6 5

... 4 −3

−7 8
... 1 −10


=



11 5.5
... 2 −0.5

9.5 11
... −2.5 2

· · · · · · ... · · · · · ·
−3 2.5

... 2 −1.5

−3.5 4
... 0.5 −5


. (10.2.5)

We see that the transformed matrix is divided into four part. This corresponds
to the four parts illustrated in �gure 10.1.1. The sub-matix c1 resulted from
taking the averages of the rows, and then of the columns. It is clear that it
contains information about the global properties of the analyzed image. The
sub-matrix d1,v was calculated by �rst taking the average of the rows and then
the di�erence of the columns. This means that horizontal lines is emphasized
in this matrix. The sub-matrix d1,h resulted from the di�erence of the rows,
and average of the columns. This matrix thus contains information about the
vertical lines of the original image. The last sub-matrix d1,d was calculated
by taking the di�erence of the rows, and then the di�erence of the columns.
This is why d1,d gives information about diagonal details. Values from the next
multiresolution level is easily obtained by performing the 2-D Haar transform
to the c1 matrix.

10.3 Numerical experiments

In chapter 9 we used the Eclipse simulator to analyze the sensitivity of the
two-phase problem. This was done by letting Eclipse calculate the sensitivity
values for the parameter in each user de�ned region, and then transform these
values by the 1-D Haar transform. For the 2-D experiments we have a similar
work �ow. We let Eclipse calculate the sensitivity values for the parameter in
each region, then we transform the value by using the 2-D Haar basis. In this
way we can analyze the sensitivity values at di�erent scales. Similar to the
1-D case we do not investigate the non-linearity of the problem. We start by
introducing the numerical experiments, then we look at results from �ow data,
to the end we look at results from pressure data.

In the numerical experiments we use a 32 × 32 grid block square reservoir,
with an injection well in the north-west corner, and a production well in the
south-east corner. We divide the reservoir into 1024 parameter regions. The
reservoir is illustrated in �gure 10.3.1. In chapter 8 we observed di�erences in
the SNS structure for a constant, and a non-constant permeability �eld. Under
the suspicion that some of the 1-D properties carries over to 2-D we want to
test three di�erent types of reservoirs
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Figure 10.3.1: Permeability �eld for homogeneous reservoir in X-direction, Y-
direction is equal.

1. homogeneous reservoir,

2. heterogeneous reservoir,

3. reservoir with channel structures.

The properties of these reservoirs are summarized in table 10.1.

The work �ow are equal for all three reservoirs, and can be summarized in the
following way. First we run the simulation, and choose four times where we
want to collect our data. Then we �nd the sensitivity for all the 1024 regions
by

∂ mi

∂ permXj

=
∂ WOPRi+1

∂ permXj

− ∂ WOPRi

∂ permXj

. (10.3.1)

with i = 0, 1, 2, 3 and j = 1, 2, . . . , 1024 (210) This vector is then reshaped into
four 32 × 32, (25 × 25), matrices using the matlab function Reshape. This
gives us C0

i , for i = 0, 1, 2, 3. These four matrices are then transformed by the
2-D Haar transform. For a grid cell in Eclipse the permeablility is de�ned in
the X, Z, and Y direction corresponding to well known cartesian coordinates.
Since we consider 2-D �ow, the Z direction is discarded. We have chosen to
analyse the X-direction permeability multiplier. The experiments were tested
for Y-direction permeability multipliers as well, and the results were similar.
Hence we only present results from the X-direction.

When the original 2-D sensitivity matrix is transformed we obtain four new
matrices, C1

i , D
1,v
i , D1,h

i , and D1,d
i (c.f. �gure 10.1.1). These can be writen as

C1
i =

25−1∑
k=1

25−1∑
p=1

cik,p. (10.3.2)
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Figure 10.3.2: Permeability �eld of heterogeneous reservoir, Y-direction. X-
direction is similar.

Figure 10.3.3: Permeability �eld of reservoir with channel structure. X-
direction shown, Y-direction is similar.
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Table 10.1: Reservoir properties

Homogenous Heterogenous Channel Structured

Perm-X 100 md 100 + 1000 · rand High perm areas: 500 + 1000 · rand
Low perm areas: 50 + 100 · rand

Perm-Y 100 md 100 + 1000 · rand High perm areas: 500 + 1000 · rand
Low perm areas: 50 + 100 · rand

Porosity 0.3 0.3 0.3

µw 1 1 1

µo 0.5 0.5 0.5

Pc 0 0 0

D1,v
i =

25−1∑
k=1

25−1∑
p=1

dv,ik,p. (10.3.3)

D1,h
i =

25−1∑
k=1

25−1∑
p=1

dh,ik,p. (10.3.4)

D1,d
i =

25−1∑
k=1

25−1∑
p=1

dd,ik,p. (10.3.5)

Where the time-index subscript in has been places as a super-script in order to
make space for the matrix indexes. The C1

i matrices are then transformed to
obtain the second level 2-D Haar transform (c.f. �gure 10.1.1). We can write
the general l level 2-D Haar transform in the following way:

C l
i =

25−l∑
k=1

25−l∑
p=1

cik,p. (10.3.6)

Dl,v
i =

25−l∑
k=1

25−l∑
p=1

dv,ik,p. (10.3.7)

Dl,h
i =

25−l∑
k=1

25−l∑
p=1

dh,ik,p. (10.3.8)

Dl,d
i =

25−l∑
k=1

25−l∑
p=1

dd,ik,p. (10.3.9)
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From this we see that on the �th level, the matrices reduces to a scalar value.
Remembering that we have i = 0, 1, 2, 3 it is clear that we produce many
matrices. By looking at 4.1.1 we want to �nd a matrices over the normed
element. This is obtained by using the L2 norm om the di�erent elements for
di�erent times. We now illustrate how this is done for the C l matrix. The
procedure is identical for the other three matrices. Denoting C l as the matrix
over the norms we have:

C l =
25−l∑
k=1

25−l∑
p=1

√{(
c0k,p
)2

+
(
c1k,p
)2

+
(
c2k,p
)2

+
(
c3k.p
)2}

. (10.3.10)

We have now reduced the problem to representing C l,Dl,v,Dl,h, and Dl,d for
l = 1, 2, 3, 4, 5. Hence 20 matrices. Idealy we would like to keep in line with
the 1-D example, and present the maximum element of each matrix, but by
looking at the actual matrices we observe that one or two elements are always
much larger than the others, hence the maximum value would not present a
good measure for how the general sensitivity depend on the scale. Thus we
present the mean value of the matrices. Note that l = 1 represents the �nest
scale, and l = 5 the coarsest.

meanC l, for l = 1, 2, 3, 4, 5. (10.3.11)

meanDl,v, for l = 1, 2, 3, 4, 5. (10.3.12)

meanDl,h, for l = 1, 2, 3, 4, 5. (10.3.13)

meanDl,d, for l = 1, 2, 3, 4, 5. (10.3.14)

To keep the discussion simple, and highlighting information about the general
structure of the SNS relationship we analyze and discuss all results in the end
of this chapter. We now calculate the sensitivity values for the following four
cases:

• Homogeneous reservoir, the permeability �eld in X-direction are shown
in �gure 10.3.1 , Y-direction is similar. Mean values of transformations
are seen in table 10.2.

• Heterogeneous reservoir, the permeability �eld in Y-direction are shown
in �gure 10.3.2 , X-direction is similar. Mean values of transformations
are seen in table 10.3.

• Reservoir with channel structures, the permeability �eld in X-direction
are shown in �gure 10.3.3, Y-direction is similar. Mean values of trans-
formations are seen in table 10.4.

• Reservoir with channel structures, and contradiagonal well placement.
Mean values of transformations are seen in �gure 10.5.
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Table 10.2: Sensitivity values for homogeneous reservoir, �ow measurements

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 15.1993 4.0893 5.8757 15.9503
l = 4 8.4007 5.4727 4.9671 7.9550
l = 3 4.9367 2.8927 2.3002 2.2786
l = 2 2.6301 1.1039 0.7138 0.5559
l = 1 1.3466 0.3748 0.2311 0.1055

Table 10.3: Sensitivity values for heterogeneous reservoir, �ow measurements

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 11.9311 5.2219 6.1297 12.8773
l = 4 7.3475 5.5677 5.0517 6.6283
l = 3 4.5239 2.8505 2.6264 2.1429
l = 2 2.5630 1.0565 0.7449 0.5442
l = 1 1.3278 0.5338 0.4603 0.3564

Table 10.4: Sensitivity values for reservoir with channel structures, �ow mea-
surements

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 12.0490 4.8904 6.0251 13.3732
l = 4 7.5204 3.3200 3.2648 6.6419
l = 3 4.4827 1.5756 1.2269 2.5725
l = 2 2.5100 0.7692 0.7692 0.8969
l = 1 1.3545 0.3790 0.3455 0.1695

Table 10.5: Sensitivity values for reservoir with �ow across channel structures,
�ow measurements

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 9.3635 3.0349 3.4921 10.7412
l = 4 5.5819 3.9408 3.4638 5.2129
l = 3 3.1338 1.9264 1.3134 1.5206
l = 2 1.6258 0.8009 0.5726 0.4849
l = 1 0.8308 0.3081 0.1819 0.1151
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Table 10.6: Sensitivity values for homogeneous reservoir, pressure measure-
ments

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 0.0434 0.0276 0.0271 0.0370
l = 4 0.0270 0.0220 0.0190 0.0199
l = 3 0.0148 0.0103 0.0084 0.0077
l = 2 0.0082 0.0043 0.0034 0.0029
l = 1 0.0044 0.0020 0.0011 0.0008

10.4 Pressure measurements

We are also interested in investigating how the sensitivity behave when we
look at pressure measurements. We use the same type of reservoir as for �ow
measurements, that is, a 32 × 32 cell square reservoir, and select four times
where the measurements are made. Eclipse gives sensitivities for each of the
used de�ned regions. The sensitivities for di�erence in pressure drop at di�erent
times are then calculated in the following way

∂ mi

∂ permXj

=

(
∂ WBP (P )

∂ permX
− ∂ WBP (I)

∂ permX

)i+1

j

−
(
∂ WBP (P )

∂ permX
− ∂ WBP (I)

∂ permX

)i
j

(10.4.1)

Where WBP (P ) is the pressure at the producer, and WBP (I) is the pressure
at the injector. We choose four di�erent times i, and reshape the 1024 length
vector of sensitivity values into a 32 × 32 matix corresponding to the original
reservoir matrix. This matrix is then transformed into the Haar basis by the
2-D Haar basis transform, the results from this transformation is presented
in the exact same manner as for the �ow measurements. We calculated the
sensitivity values for the following three cases:

• Homogeneous reservoir, with permeability �eld as in �gure 10.3.1. Re-
sults are shown in table 10.6.

• Heterogeneous reservoir, with permeability �eld as in �gure 10.3.2 . Re-
sults are shown in table 10.7.

• Reservoir with channel structures, with permeability �eld as in �gure
10.3.3. Results are shown in table 10.8.
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Table 10.7: Sensitivity values for heterogeneous reservoir,pressure measure-
ments

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 0.0593 0.0843 0.0734 0.0676
l = 4 0.0554 0.0481 0.0396 0.0444
l = 3 0.0373 0.0267 0.0292 0.0234
l = 2 0.0260 0.0121 0.0079 0.0059
l = 1 0.0139 0.0058 0.0050 0.0040

Table 10.8: Sensitivity values for reservoir with channel structures, pressure
measurements

mean
(
C l
)

mean
(
Dl,v

)
mean

(
Dl,h

)
mean

(
Dl,d

)
l = 5 0.1167 0.0762 0.0763 0.0972
l = 4 0.0701 0.0408 0.0277 0.0468
l = 3 0.0401 0.0163 0.0166 0.0207
l = 2 0.0232 0.0077 0.0071 0.0084
l = 1 0.0123 0.0037 0.0031 0.0013

10.5 Summary and conclusions

In this chapter we have looked at the sensitivity values for di�erent types of
permeability �elds, and with respect to di�erent data-types. We have trans-
formed these sensitivity values by using the 2-D Haar transform. This enabled
us to analyze how the value of the sensitivity changed according to scale. The
properties of the 2-D Haar transform enabled us also to analyze if there was
a di�erence in the SNS structure when we looked at the mean, horizontal,
vertical or diagonal changes.

When we look at the results presented in tables 10.2-10.8 it is clear that the sen-
sitivity goes to zero as the scale goes to 1 for all the reservoir types, considering
all the di�erent directions, at di�erent times, and using di�erent data-types.
This is a promising result as to the existence of an SNS structure for 2-D
two-phase �uid �ow. In the 1-D analysis we concluded that a heterogeneous
reservoir would not have as clear SNS structure as a homogeneous reservoir.
Comparing the values in table 10.2 and table 10.3, we see that it is hard to
draw the same conclusions for this case. The mean sensitivity value gradu-
ally decreases and is of approximately the same size for both heterogeneous
and homogeneous cases. For the 1-D case we saw that the frequency of the
non-constant permeability �eld was important. We have only investigated one
frequency so we should try di�erent frequencies before drawing any �nal con-
clusions.
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For a 2-D case, we could investigate if the SNS structure would be a�ected by
a permeability �eld with some strong features. We therefore chose to analyze
a reservoir with channel structures. From table 10.4 we see that the sensitivity
decrease as the scale go to 1.This indicated that there exists a SNS relationship
for this case. We also investigated what happened when the �ow was perpen-
dicular to the strong permeability features. The results are seen in table 10.5.
The sensitivity values goes to zero for this case as well. The sensitivity values
are somewhat lower for the coarsest scale, but the general trend is similar as
for the three other reservoirs.

When we look at pressure measurements we observe the same features as for
�ow measurements. In general the sensitivity values is smaller for pressure
measurements, but there is a clear trend that the sensitivity go towards zero
as the scale goes to 1. There is higher sensitivity values associated with the
heterogeneous reservoir compared to the homogeneous. This di�erence is so
small though, that we must say that these results does not indicate any di�er-
ence between the homogeneous and heterogeneous reservoir. As we mentioned
for the �ow measurements, there might be a dependence on the frequency of
the reservoir, and we can therefore not conclude that there is no di�erence
between homogeneous and heterogeneous reservoirs. We have only looked at
�ow parallel to the strong features of the permeability �eld for the reservoir
with channel structures, but the results are similar as for �ow measurements.
We see that the sensitivity values goes to zero as the scale goes to 1. This in-
dicates that there also exists SNS structure for reservoirs with strong features,
and �ow parallel to these.
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Chapter 11

Final summary and conclusions

The inverse problem of estimating permeability in a porous media from data
observed at the wells is inherently complex. One promising way of solving
this problem is through multiscale estimation techniques. We start out with a
coarse representation of the permeability and gradually make the representa-
tion �ner. These techniques will only work if there exist a relationship between
sensitivity, non-linearity and scale for a given data type and a given parameter
that we want to estimate. In [33] it was shown that this relationship does exist
for estimation of permeability from time series of pressure data. Motivated by
this we have shown that the same relationship does exist between permeability
and time series of �ow data.

The approach to this problem is to �nd expressions for the directional deriva-
tives of the data-vector along di�erent directions in parameter space. By let-
ting the directions correspond to a multiscale basis, we were able to analyze
the directional derivatives in directions corresponding to coarse or �ne scale
perturbations.

In chapter 6 and chapter 7 we used this approach to study the SNS structure
for one-dimensional, one- and two-phase �ow. We made some simpli�cations
in order to perform the analysis. The most critical of these simpli�cations
was that we assumed a constant permeability �eld. With this assumption we
showed the existence of a SNS relationship for estimation of permeability from
measurements of the �uid �ow. This was analyzed for several di�erent �ooding
scenarios, each reaching the same conclusions.

The assumption that the permeability value in a porous media is constant is
never valid in any real world applications. In chapter 8 the validity of the
results in chapter 6 and 7 was tested. This was done by highlighting the e�ect
of a non-constant permeability �eld on the governing terms for the sensitivity
expressions derived in chapter 6 and 7. The results from this analysis suggested

113
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that if we have a non-constant permeability �eld, the SNS structure would still
be present, but not as predictable as it was for a constant permeability �eld.
One important case we saw here was that the SNS structure depended on the
frequency of the permeability �eld, and the greatest deviation was observed
for permeability �elds with a frequency equal to the frequency of the basis
element. This e�ect was most prominent in strongly heterogeneous reservoirs.

The results from chapter 8 only suggested that the SNS structure would not
be a�ected by a non-constant permeability �eld. We did not calculate the
complete equations for the sensitivity values. To this end we chose to utilize
the reservoir simulator Eclipse. With Eclipse we obtained numerically calcu-
lated sensitivity values for each user de�ned region in a one-dimensional grid.
These sensitivities were expressed using a local basis, and hence not suited for
multiscale analysis. We therefore transformed the values by a one-dimensional
Haar basis transform. In this way we could perform an numerical experiment
to test the di�erent results obtained in chapter 7 and 8. The results from the
numerical experiments were promising with regard to existence of SNS. The
structure of sensitivity that was proposed in chapter 7 were con�rmed by the
numerical study. The e�ects of a non-constant permeability �eld that were
predicted in chapter 8 was also observed in the numerical experiments. The
theoretical predictions from [33] could also be tested by numerical experiments.
This test showed a clear SNS structure. The value of these experiments was
to con�rm the results obtained by an analytical study of the equations that
govern �uid �ow in a porous media.

For 2-D �ow we were not able to perform any analytical analysis. In chapter 10
we performed a numerical analysis for a two-dimensional reservoir. The sensi-
tivity values outputted by Eclipse was then transformed by a two-dimensional
Haar basis transform. This enabled us to analyze if the SNS relationship carried
over to two-dimensional �ow. The results obtained showed that SNS relation-
ship does also exist for a two-dimensional case. In [33] there was only done some
discussions of a speculative nature regarding SNS for two-dimensional cases.
By using the Eclipse simulator we were able to try experiments with pressure
data as well. Results were similar to the ones for �ow measurements, hence we
gain more con�dence in our belief that SNS carries over from one-dimension
to two-dimensions.

The question posed at the start of this thesis was if there existed a relationship
between sensitivity, non-linearity and scale associated with the estimation of
permeability from time series measurements of �ow data. By making some as-
sumptions we were able to analyze the analytical equations governing the �uid
�ow in a porous media. This lead us to prove the existence of a SNS relation-
ship. The next question was if this somewhat simpli�ed case could be extended
to a more realistic scenario. To this end we analyzed the governing terms in
the sensitivity expression to see the e�ect of the most grave simpli�cation, and
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�nally we tested by numerical experiments conducted by the reservoir simu-
lator Eclipse, both for one- and two-dimensions. The results were conclusive,
there is substantial evidence to con�rm the existence of a SNS relationship
associated with the estimation of permeability from time series measurements
of �ow data, both for one- and two-dimensional cases.

11.1 Future work

Future work related to this thesis would be to investigate di�erent types of
non-constant permeability �elds for the 2-D case, and di�erent �ow patterns.
By doing this analysis we might gain more information about things that could
alter our SNS relationship.

To analyze how sensitivity and non-linearity depends on scale, can also be
valuable for other parameters than the permeability. We can investigate how
the porosity depends on di�erent data-types. This would involve some other
equations, and could lead to an interesting analysis of the scale dependence.
An analysis of the sensitivity and non-linearity based on other data-types could
also be of interest. This could be related to the problem of estimating �uid
saturation from seismic data. For this case we have a dense grid of data points,
but with long intervals between the accusation times.
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Appendix A

Derivation of directional

derivatives

In this appendix we present the complete calculations of directional derivatives
in parameter space.

A.1 Two-phase

A.1.1 Piston displacement

Given

mi(c) =
∆xp(ti+1)

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti+1)

k−1(x; c) dx

− ∆xp(ti)

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti)

k−1(x; c) dx
.

(A.1.1)

we have

f(c) = q (K1 (I1(g(?, c)), I2(g(?, c))) , K2 (I1(g(?, c)), I3(g(?, c)))) (A.1.2)

where ? indicates that the variable dependence is lost through integration. We
have

q =
∆xp(ti+1)

K1

− ∆xp(ti)

K2

(A.1.3)

K1 = I1 + I2 (A.1.4)
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K2 = I1 + I3 (A.1.5)

I1 = µw

ˆ 1

0

g(x; c) dx (A.1.6)

I2 = (µo − µw)

ˆ 1

z(ti+1)

g(x; c) dx (A.1.7)

I3 = (µo − µw)

ˆ 1

z(ti)

g(x; c) dx (A.1.8)

g(x; c) = r(k(x; c)) (A.1.9)

r(k) = k−1 (A.1.10)

F(f ; ti) = f (A.1.11)

This gives the following expression for f ′(c):

f ′(c) =
∂q

∂K1

{
∂K1

∂I1

∂I1
∂g

+
∂K1

∂I2

∂I2
∂g

}
− ∂q

∂K2

{
∂K2

∂I1

∂I1
∂g

+
∂K2

∂I3

∂I3
∂g

} (A.1.12)

using the de�nitions this gives

∂q

∂K1

= −∆xp(ti+1)

K2
1

(A.1.13)

∂K1

∂I1
= 1 (A.1.14)

∂I1
∂g

= −µw
ˆ 1

0

k−2(x; c) dx (A.1.15)

∂K1

∂I2
= 1 (A.1.16)

∂I2
∂g

= −(µo − µw)

ˆ 1

z(ti+1)

k−2(x; c) dx (A.1.17)

∂q

∂K2

= −∆xp(ti)

K2
2

(A.1.18)

∂K2

∂I1
= 1 (A.1.19)

∂K2

∂I3
= 1 (A.1.20)

∂I3
∂g

= −(µo − µw)

ˆ 1

z(ti)

k−2(x; c) dx (A.1.21)
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Now since

(mi)h = F(f ′(k(x; c))k(x;h)), (A.1.22)

we get

(mi)h =
∆xp(ti+1)[

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1

z(ti+1)
k−1(x; c) dx

]2
×
{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx+ (µw − µo)
ˆ 1

z(ti+1)

k−2(x; c)k(x;h) dx

}
− ∆xp(ti)[

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti)

k−1(x; c) dx
]2

×
{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx+ (µw − µo)
ˆ 1

z(ti)

k−2(x; c)k(x;h) dx

}
(A.1.23)

which can be further simpli�ed by letting k(x; c) = k(c). This leads to

(mi)h =

(
∆xp(ti+1)

[µo + (µw − µo)z(ti+1)]
2

×
{
µw

ˆ 1

0

k(x;h) dx+ (µw − µo)
ˆ 1

z(ti+1)

k(x;h) dx

}
− ∆xp(ti)

[µo + (µw − µo)z(ti)]
2

×
{
µw

ˆ 1

0

k(x;h) dx+ (µw − µo)
ˆ 1

z(ti)

k(x;h) dx

})
.

(A.1.24)

For the second derivative in parameter space we have

(mi)hh = F(f ′′(k(x; c))k2(x;h); ζi). (A.1.25)

We need an expression for

f ′′(k(x; c)) (A.1.26)

since we can write

f ′(c) =
∂q

∂K1

{
∂I1
∂g

+
∂I2
∂g

}
− ∂q

∂K2

{
∂I1
∂g

+
∂I3
∂g

} (A.1.27)
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we then have

f ′′(c) =
∂2q

∂K2
1

{
∂I1
∂g

+
∂I2
∂g

}2

+
∂q

∂K1

{
∂2I1
∂g2

+
∂2I2
∂g2

}
− ∂2q

∂K2
2

{
∂I1
∂g

+
∂I3
∂g

}2

− ∂q

∂K2

{
∂2I1
∂g2

+
∂2I3
∂g2

}
(A.1.28)

with

∂2q

∂K2
1

= 2
∆xp(ti+1)

K3
1

(A.1.29)

∂2I1
∂g2

= 2µw

ˆ 1

0

k−3(x; c) dx (A.1.30)

∂2I2
∂g2

= 2 (µo − µw)

ˆ 1

z(ti+1)

k−3(x; c) dx (A.1.31)

∂2q

∂K2
2

= 2
∆xp(ti)

K3
2

(A.1.32)

∂2I3
∂g2

= 2 (µo − µw)

ˆ 1

z(ti)

k−3(x; c) dx. (A.1.33)
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This gives

(mi)hh =
2∆xp(ti+1)[

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti+1)

k−1(x; c) dx
]3

×
{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx

+ (µo − µw)

ˆ 1

z(ti+1)

k−2(x; c)k(x;h) dx

}2

− 2∆xp(ti+1)[
µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti+1)

k−1(x; c) dx
]2

×
{
µw

ˆ 1

0

k−3(x; c)k2(x;h) dx

+ (µo − µw)

ˆ 1

z(ti+1)

k−3(x; c)k2(x;h) dx

}
−2

∆xp(ti)[
µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti)

k−1(x; c) dx
]3

×
{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx

+ (µo − µw)

ˆ 1

z(ti)

k−2(x; c)k(x;h) dx

}2

+
2∆xp(ti)[

µw
´ 1
0
k−1(x; c) dx+ (µo − µw)

´ 1
z(ti)

k−1(x; c) dx
]2

×
{
µw

ˆ 1

0

k−3(x; c)k2(x;h) dx

+ (µo − µw)

ˆ 1

z(ti)

k−3(x; c)k2(x;h) dx

}

(A.1.34)

By setting k(x; c) = k(x) we get this expression for the second derivative in
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parameter space

(mi)hh =
2k−1(c)∆xp(ti+1)

[µo + (µw − µo)z(ti+1)]
3

×
{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

z(ti+1)

k(x;h) dx

}2

− 2k−1(c)∆xp(ti+1)

[µ0 + (µw − µo)z(ti+1)]
2

×
{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

z(ti+1)

k2(x;h) dx

}
− 2k−1(c)∆xp(ti)

[µo + (µw − µo)z(ti)]
3

×
{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

z(ti)

k(x;h) dx

}2

+
2k−1(c)∆xp(ti)

[µ0 + (µw − µo)z(ti)]
2

×
{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

z(ti)

k2(x;h) dx

}

(A.1.35)

A.1.2 Non-piston displacement

In the case of non-piston displacement, the equation for mi(c) is di�erent than
for piston displacement. So given

mi(c) =
∆xp(ti+1)

I1 + I2 + I3
− ∆xp(ti)

I1 + I4 + I5
, (A.1.36)

we have

f(c) = q (K1 (I1(g(?, c)), I2(g(?, c)), I3(g(?, c))) ,

K2 (I1(g(?, c)), I4(g(?, c)), I5(g(?, c))))
(A.1.37)

q =
∆xp(ti+1)

K1

− ∆xp(ti)

K2

(A.1.38)

K1 = I1 + I2 + I3 (A.1.39)

K2 = I1 + I4 + I5 (A.1.40)

I1 = µw

ˆ 1

0

g(x; c) dx (A.1.41)

I2 = (µo − µw)

ˆ 1

zo,i+1

g(x; c) dx (A.1.42)
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I3 =

ˆ zo,i+1

zw,i+1

(
λ−1(S(x, t))− µw

)
g(x; c) dx (A.1.43)

I4 = (µo − µw)

ˆ 1

zo,1

g(x; c) dx (A.1.44)

I5 =

ˆ zo,i

zw,i

(
λ−1(S(x, t))− µw

)
g(x; c) dx (A.1.45)

g(x; c) = r(k(x; c)) (A.1.46)

r(k) = k−1 (A.1.47)

F(f ; ti) = f. (A.1.48)

We then �nd an expression for f ′(c):

f ′(c) =
∂q

∂K1

{
∂K1

∂I1

∂I1
∂g

+
∂K1

∂I2

∂I2
∂g

+
∂K1

∂I3

∂I3
∂g

}
− ∂q

∂K2

{
∂K2

∂I1

∂I1
∂g

+
∂K2

∂I4

∂I4
∂g

+
∂K2

∂I5

∂I5
∂g

}
.

(A.1.49)

With the de�nitions above we get:

∂q

∂K1

= −∆xp(ti+1)

K2
1

(A.1.50)

∂K1

∂I1
= 1 (A.1.51)

∂I1
∂g

= −µw
ˆ 1

0

k−2(x; c) dx (A.1.52)

∂K1

∂I2
= 1 (A.1.53)

∂I2
∂g

= − (µo − µw)

ˆ 1

zo,i+1

k−2(x; c) dx (A.1.54)

∂K1

∂I3
= 1 (A.1.55)

∂I3
∂g

= −
ˆ zo,i+1

zw,i+1

(
λ−1(S(x, t))− µw

)
k−2(x; c) dx (A.1.56)

∂q

∂K2

= −∆xp(ti)

K2
2

(A.1.57)

∂K2

∂I1
= 1 (A.1.58)

∂K2

∂I4
= 1 (A.1.59)
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∂I4
∂g

= − (µo − µw)

ˆ 1

zo,i

k−2(x; c) dx (A.1.60)

∂K2

∂I5
= 1 (A.1.61)

∂I5
∂g

= −
ˆ zo,i

zw,i

(
λ−1(S(x, t))− µw

)
k−2(x; c) dx (A.1.62)

This leads to the following equation for (mi)h:

(mi)h =
∆xp(ti+1)

[I1 + I2 + I3]
2

×

{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k−2(x; c)k(x;h) dx

+

ˆ zo,i+1

zw,i+1

(
λ−1(S(x, t))− µw

)
k−2(x; c)k(x;h) dx

}

− ∆xp(ti)

[I1 + I4 + I5]
2

×

{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k−2(x; c)k(x;h) dx

+

ˆ zo,i

zw,i

(
λ−1(S(x, t))− µw

)
k−2(x; c)k(x;h) dx

}
(A.1.63)

Inside the two-phase zone we assume that the saturation decreases monotoni-
cally, and we also assume that the mobility varies slowly with the saturation.
If these two assumptions holds, we replace λ−1(S(x, t)) with an average value
λ−1, that does not vary with time. If we in addition assume that k(x; c) is
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constant in space we get:

(mi)h =
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) δi+1]
2

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k(x;h) dx

}

− ∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) δi]
2

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i

zw,i

k(x;h) dx

}

(A.1.64)

where δi+1 = zo,i+1 − zw,i+1, and δi = zo,i − zw,i.

For the second derivative in parameter space we still want to �nd the expression

(mi)hh = F(f ′′(k(x; c))k2(x;h); ζi). (A.1.65)

This means that we need to �nd f ′′(k(x; c)), using the same approach as for
piston displacement. We observe that f ′(k(x; c)) can be written as

f ′(c) =
∂q

∂K1

{
∂I1
∂g

+
∂I2
∂g

+
∂I3
∂g

}
− ∂q

∂K2

{
∂I1
∂g

+
∂I4
∂g

+
∂I5
∂g

}
.

(A.1.66)

This gives the following expression for f ′′(c)

f ′′(c) =
∂2q

∂K2
1

{
∂I1
∂g

+
∂I2
∂g

+
∂I3
∂g

}2

+
∂q

∂K1

{
∂2I1
∂g2

+
∂2I2
∂g2

+
∂2I3
∂g2

}
− ∂2q

∂K2
2

{
∂I1
∂g

+
∂I4
∂g

+
∂I5
∂g

}2

− ∂q

∂K2

{
∂2I1
∂g2

+
∂2I4
∂g2

+
∂2I5
∂g2

}
.

(A.1.67)

With
∂2q

∂K2
1

=
2∆xp(ti+1)

K3
1

, (A.1.68)
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∂2I1
∂g2

= 2µw

ˆ 1

0

k−3 (x; c) dx, (A.1.69)

∂2I2
∂g2

= 2 (µo − µw)

ˆ 1

zo,i+1

k−3(x; c) dx, (A.1.70)

∂2I3
∂g2

= 2

ˆ zo,i+1

zw,i+1

(
λ−1 (S (x, t))− µw

)
k−3(x; c) dx, (A.1.71)

∂2q

∂K2
2

= −2
∆xp(ti)

K3
2

, (A.1.72)

∂2I4
∂g2

= 2 (µo − µw)

ˆ 1

zo,i

k−3(x; c) dx, (A.1.73)

∂2I5
∂g2

= 2

ˆ zo,i

zw,i

(
λ−1 (S (x, t))− µw

)
k−3(x; c) dx. (A.1.74)



A.1 Two-phase 127

We can now write

(mi)hh =2
∆xp(ti+1)

[I1 + I2 + I3]
3

×

{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k−2(x; c)k(x;h) dx

+

ˆ zo,i+1

zw,i+1

(
λ−1(S(x, t))− µw

)
k−2(x; c)k(x;h) dx

}2

− ∆xp(ti+1)

[I1 + I2 + I3]
2

×

{
2µw

ˆ 1

0

k−3(x; c)k2(x;h) dx+ 2 (µo − µw)

ˆ 1

zo,i+1

k−3(x; c)k2(x;h) dx

+ 2

ˆ zo,i+1

zw,i+1

(
λ−1(S(x, t))− µw

)
k−3(x; c)k2(x;h) dx

}

+− 2
∆xp(ti)

[I1 + I4 + I5]
3

×

{
µw

ˆ 1

0

k−2(x; c)k(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k−2(x; c)k(x;h) dx

+

ˆ zo,i

zw,i

(
λ−1(S(x, t))− µw

)
k−2(x; c)k(x;h) dx

}2

+
∆xp(ti)

[I1 + I4 + I5]
2

×

{
2µw

ˆ 1

0

k−3(x; c)k2(x;h) dx+ 2 (µo − µw)

ˆ 1

zo,i

k−3(x; c)k2(x;h) dx

+ 2

ˆ zo,i

zw,i

(
λ−1(S(x, t))− µw

)
k−3(x; c)k2(x;h) dx

}
.
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Using the same assumptions as for (mi)h we get the following:

(mi)hh =2k−1(c)
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) fi+1]
3

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i+1

zw,i+1

k(x;h) dx

}2

−2k−1(c)
∆xp(ti+1)

[µo + (µw − µo) zo,i+1 + (λ−1 − µw) fi+1]
2

×

{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

zo,i+1

k2(x;h) dx

+
(
λ−1 − µw

)ˆ zo,i+1

zw,i+1

k2(x;h) dx

}

−2k−1(c)
∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) fi]
3

×

{
µw

ˆ 1

0

k(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i

zw,i

k(x;h) dx

}2

+2k−1(c)
∆xp(ti)

[µo + (µw − µo) zo,i + (λ−1 − µw) fi]
2

×

{
µw

ˆ 1

0

k2(x;h) dx+ (µo − µw)

ˆ 1

zo,i

k2(x;h) dx

+
(
λ−1 − µw

) ˆ zo,i

zw,i

k2(x;h) dx

}
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