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Improved quantitative calibration of rock
physics models

Bernardo Moyano?, Erling Hugo Jensen?, Tor Arne Johansen1z2.

ABSTRACT

In reservoir characterization, rock-physics models provide the link between seismic
observables (density, compressional and shear wavespeeds) and reservoir parameters such
as porosity, lithology and fluid saturation. However, the accuracy of these predictions is
rarely explored. In fact, the validation of a model representing a dataset is often limited to
the analysis of a cross-plot of two arbitrary magnitudes. The objective of this paper is to
improve the calibration procedure through a quantitative assessment of the reservoir
property predictions using various rock-physics models. The analysis is based on an inverse
rock-physics modelling that organizes the rock-physics transforms into constraint data so
that the seismic variables are direct functions of the reservoir parameters. It is revealed
that the predictions of reservoir quality can assist in the diagnosis of the rock
microstructure itself, such as the location of clay particles in clay-rich sediments. In
addition, we found that a quantitative analysis is the only way to evaluate accurately the
performance of various models when studying heterogeneous datasets.

INTRODUCTION

Selecting and calibrating the most suitable rock-physics model for a given dataset is
an exercise with a non-unique solution. Rock-physics models capture one or a select few
factors that influence the elastic properties of the rocks. In addition, these models typically
are calibrated to a limited set of physical data (e.g. compressional (P) velocity data). One
group of models based on contact theory (Mindlin 1949) treats rocks as a collection of
grains and estimates their stiffnesses from the contact stress between two spheres of equal
size. On the other hand, inclusion models (Berryman 1980) treat the rock as an elastic solid
with cavities and accounts for the effects of shapes of multiple pores on elasticity. In
practice, general guidelines and additional observations help to constrain the model space
to a relatively small number of plausible options. For example, contact models have been
used successfully to study the pressure dependence of velocity of unconsolidated sediments
(Dvorkin & Nur 1996). Inclusion models are often preferable when analyzing well-
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consolidated rocks (Sheng 1990; Berge et al. 1993). However, after selecting a modelling
strategy, we are frequently left with several possible models that seem to represent
experimental data equally well.

In reservoir characterization, the ultimate goal of a rock-physics model is to assist in
the inversion of seismic data for porosity, lithology and pore fluid (PLF). These models
define the transforms between seismic observables and reservoir parameters. Selecting a
specific model implicitly defines the dominant parameters that control these relationships
and determines the accuracy of the predictions. Therefore, a crucial step is to calibrate and
to compare the predictions quantitatively when more than one model appears equivalently
valid for a given area.

Various models are used to account for the dependence of elastic properties on
different physical conditions. Pressure dependence has been captured by models based on
contact theory (Mindlin 1949; Digby 1981; Walton 1987). The stiffness effect due to cement
located at the grain contacts is often calculated using contact cement theory (Dvorkin & Nur
1996), whereas pore microstructure effects can be modelled by inclusion models (Kuster &
Toksoz 1974; Berryman 1980). Self-consistent approximations (O’Connell & Budiansky
1974; Hornby et al. 1994; Berryman 1995) and differential effective medium (DEM) models
(Berryman 1992) have been developed specifically to extend inclusion models to handle
higher concentrations of inclusions. Shales, due to their complex lithology and reduced pore
sizes have been idealized through inclusion models, (Hornby et al. 1994; Jakobsen et al.
2003; Johansen et al. 2004a; Draege et al. 2006). The equations of Gassmann (1951)
simulate the low-frequency effects of different pore fluids on seismic velocities. Avseth et al.
(2010) provide an overview of theoretical, empirical, heuristic and hybrid strategies to
model diagenetic and depositional trends in unconsolidated high-porosity sediments. Thus,
ambiguities can arise when we apply various models to estimate simultaneously reservoir
properties such as lithology, porosity and saturation. Little work has been done to evaluate
systematically PLF parameters obtained using different models. For a given dataset, the
selection of a rock-physics model is uncertain, in terms of providing the most suitable
relationship between the seismic and PLF parameters. The goal of this paper is to present a
way to select and calibrate the most suitable rock-physics model for a given dataset and
reduce the non-uniqueness of the reservoir characterization problem. We do this by
quantifying the accuracy of different rock-physics models in the prediction of reservoir
parameters when calibrated to experimental data. We use an approach (Johansen et al.
2004b) that organizes the rock-physics transforms into constraint data where the seismic
variables (e.g., velocity and density) are direct functions of the selected PLF parameters. We
start with a review of this strategy, and then we demonstrate the calibration procedure in
two cases using real data. In case 1 we use the procedure to illustrate the shortcoming of
the traditional cross-plot type of calibration. We do this by comparing the reservoir
property predictions made with a model for dispersed clay (Dvorkin & Gutierrez 2001)
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versus a model for structural clay (Avseth et al. 2005) on a set of laboratory measurements
of clay-sand composites (Yin 1992). In case 2 we explore the accuracy of various rock-
physics predictions of reservoir properties considering a more extensive dataset (Han et al.
1986). Subsequently, we select the most suitable models and then perturb individual
parameters to optimize the final predictions.

INVERSE ROCK PHYSICS MODELLING

A common practice in rock-physics analysis is to use cross plots to study trends and
property dependencies. For example, Figure 1a shows the predicted bulk modulus versus
porosity trends for a particular fluid saturation and different lithologies using a rock
physics model. In the strategy of Johansen et al. (2004b) such modelled dependencies are
resampled into a scalar field of the reservoir properties. Figure 1b illustrates the
resampling of two bulk moduli values into a lithology versus porosity cross plot. Repeating
this for the other moduli values and various fluid saturations gives us the 3D cube in Figure
2. The resampled bulk modulus can be thought as a scalar field K. In this case, K= K(¢, C, S),
where ¢ C and S denote the porosity, clay and fluid volume fractions, respectively for a
particular rock physics model. From K(¢ C,S), we calculate a numerical relationship
between ¢ C and S which corresponds to a specific bulk modulus value. For the 3D cube this
typically produces a surface that we denote an iso-surface because all points on this surface
correspond to the same modulus.
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Figure 1 Resampling of a rock-physics model from velocity-porosity to lithology-porosity space. C; are model
results for various clay contents.
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Estimating reservoir properties

An iso-surface can be used to study predicted reservoir property dependencies for a
particular seismic parameter value and a given rock physics model. Any combination of ¢ C
and S corresponding to a point on such a surface is a possible solution for the particular
seismic parameter value. Typically, we have data of more than one seismic parameter (com-
pressional and shear wavespeeds, Vp and Vs, and bulk density p), and by combining their
individual iso-surfaces we constrain the possible PLF solutions. A combination of two
seismic observables (e.g. V, and p) will normally lead to one or more curving lines in the
PLF domain. Furthermore, a combination of three observables leads to one or more point
solutions because we are dealing with a non-linear problem (see Figure 3). Another
possible outcome of the inversion is that no intersection is found, i.e.,, no combination of
reservoir properties is consistent with the set of observables. This means that the selected
rock physics model fails to reproduce the data and other possible model candidates should
be tested.

When working with real data, it is difficult to find a rock physics model that is able to
predict the correct reservoir properties for every data point unless uncertainty is included.
In case one, we include a few perturbed values of the input data in addition to the observed
data and perform the inverse modelling. In the second case, we handle the uncertainty by
using a so-called proximity based implementation of the inversion strategy. Here, the iso-
surfaces are made up of densely sampled points. Intersections are identified when the
points on one surface are within a maximum distance J from points on another surface.
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Figure 2 Bulk modulus constraint cube in the porosity, Figure 3 Three observations (Vp, Vs and density iso-
lithology, fluid space (PLF). The vertical axis is water surfaces) intersecting in the PLF space. Solutions exist
saturation. The lithology axis varies from pure quartz at the two indicated points.

(zero) to pure clay (one).
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This maximum distance represents an
absolute tolerance interval for the model-
led ¢, C and S. A sensitivity analysis of the
applied models to the uncertainties in the
measured rock properties can be made to
derive a suitable tolerance interval for a
given dataset. These point solutions are

Saturation

expanded to spherical point clouds with a
radius &2. An example of the inversion in
Figure 3 using the proximity based imple-

Lithology o0 Porosity

mentation and a J=0.02, is shown in

Figure 4. Figure 4 Three observations (Vp, Vs and density) inter-

secting in the PLF space. Uncertainty is implicitly handled
by the proximity based implementation of the inverse
modelling, providing a cloud of solutions as opposed to
points as in Figure 3.

The calibration procedure

In the quantitative calibration of rock-physics models we compare predicted reservoir
properties, i.e. axis readings at the intersecting points, to measurements of these properties
from laboratory or well-log data. Through this analysis in the PLF space, we evaluate how
accurate a model predicts reservoir properties from seismic data. In addition, we compare
the predictions of reservoir properties from different models and discard those models that
provide less accurate predictions. During the calibration process we can also maximize the
tolerance in the intersections and quickly test the performance of several models, discard
the less effective ones, and continue with the most promising ones. As the number of
models is reduced to three or four, the uncertainty in the observations can be constrained
to perform a more rigorous analysis. Finally, when the most suitable model has been
identified, the same methodology can be repeated for various values of model parameters
(aspect ratio, pressure, etc.) to optimize the calibration and improve prediction results. We
applied this methodology to quantify the calibration of various rock-physics models to two
datasets of clay-rich sandstones.

CASE 1: EVALUATING CLAY DISTRIBUTION IN CLAY-SAND
COMPOSITES

We applied the methodology to a laboratory dataset of clay-sand composites prepared
by Yin (1992). The samples consist of mixtures of pure kaolinite and Ottawa sand with a
grain size ratio of 1/20, providing an ideal binary mixture. For low quantities of clay, the
small clay particles likely occupy part of the pore space of the larger sand particles (a pore-
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filling clay). This spatial distribution has a minimal effect on the structure of the composite.
The dataset for 50 MPa of effective pressure is shown in Figure 5 where a reduction in
porosity and increase in velocity are observed for increasing clay content. An overturned V-
shape trend produced by the transition between sand and shale has been noted in the
literature as an indicator of dispersed clay topology (Marion et al. 1992). In the context of
rock-physics modelling, we denote shale as a fine-grained rock (clay-sized and silt-sized) in
which clay minerals are the load-bearing phase. We calibrated a model for dispersed clay,
and a model that is suitable for both structural and laminated clay to the dataset.

The model for dispersed clay (Dvorkin & Gutierrez 2001) is a velocity-porosity
relationship that uses the Hashin-Shtrikman (HS) lower bound (Hashin & Shtrikman 1963)
as a mixing law between two end members. The high-porosity end member is clean sand
whose velocity is computed by contact theory (Mindlin 1949). The low-porosity end
member represents the same sand with its pore space completely filled by clay. The
porosity at this point is not zero because clay particles have intrinsic porosity. This is
sometimes referred to as sand at critical clay content (Yin 1992). Dvorkin & Gutierrez
(2001) computed this intermediate member by adding silt particles (quartz) to a pure shale
also using the HS lower bound. The model consists of two domains. In the first domain, clay
is the load-bearing phase (sandy-shale), whereas in the second domain, the sand pack is
load bearing (shaley-sand), as in Figure 6.

In our modelling we focused on the shaley-sand section in which clay particles fill the
pore space of the clean sand without significantly affecting its stiffness. Therefore, the
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Figure 5 P-wave velocity versus porosity trend of
clay-sand composites at constant pressure pre-

6 Dispersed clay model (Dvorkin-Gutierrez)

pared by Yin (1992). Dashed arrows indicate
increasing clay content. The V-shaped trend of
increasing clay content, producing an increase of
velocity (and a decrease in porosity) until clay
content equals sand porosity, has been attributed
to a pore filling clay topology.

Figure
calibrated to Yin’s data. Note porosity is modelled well, but
velocity is in general over-estimated. The model predicts that
clay mineral becomes load-bearing (porosity minimum and
velocity maximum) at about 30 % clay content.
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properties of the mixture can be computed from the lower HS bounds of the clean sand and
the sand at critical clay content. The elastic moduli of a shaley-sand with increasing clay
content (C) are expressed as:

KMD( — |: 1- C/¢n + C/¢n :| _ﬁ (1)
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1-C/g,, = C/g,
7 :{ /9, 4 /9, } z .
U +Z, U +Z
_ M [ 9K, 84, .,
sS85 6 KSS + 2#;5 9

where, K and g _are computed from the sandy-shale model at critical clay content. Kss, pss

and ¢, are the effective moduli and porosity of the clean sandstone.

In contrast, the constant clay model assumes the clay particles are located in the frame
of the rock, reducing its overall stiffness. The model uses contact theory and the HS lower
bound to model sands with a constant clay-quartz ratio in the velocity-porosity space
(Avseth et al. 2005). This is suitable for sands with both structural and laminated clay. As
Yin’s dataset is composed of synthetic clay-sand aggregates we do not expect any
laminations to be present and we refer to this as the model for structural clay. It is
analogous to the unconsolidated sand model (Dvorkin & Nur 1996) but with a reduced
critical porosity because a clay rich sand has lower critical porosity than a clean sand. The
mineral point is computed by Hill's (1952) average of quartz and clay mineral moduli.

Conventional calibration

A conventional calibration consists of a qualitative fit of modelled curves for a given
cross-plot domain. We calibrated both models to the dataset in the velocity-porosity space
(Figure 7). The dispersed clay model matches well the clean sand and pure clay end
members, but it misses the intermediate values of clay content. The structural clay model
reproduces the variability of the P-wave velocity data, but its accuracy is difficult to
evaluate. Note that the shear velocity data show no sensitivity to clay content.

In Figure 6, the dispersed clay model reproduces the decrease of porosity for
increasing clay content shown by the data, and predicts a change in the load-bearing phase,
from grain to matrix supported, for a clay volume of approximately 32%. Both models can
be used to explain the data and to infer the internal organization of the clay particles in the
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samples. However, we cannot determine which model explains the data better, nor, from
these results, can we quantify how successfully either model represents the data.

Quantitative analysis in the PLF space

For the quantitative analysis, we used seven samples each with clay content <30%.
When considering the intersections between three iso-surfaces for density, P- and S-wave
velocities, we obtained a solution for only the pure sand sample, which constitutes a
calibration point. This is due to the anomalous behaviour of shear velocities that none of the
models could satisfactorily describe (Figure 7). Therefore, we continued using only P-wave
velocity and density, ignoring S-wave velocity measurements. A comparison of the results
can be seen in Figure 8, where the structural clay model produced solutions for the seven
samples, good estimates of the porosity and less accurate estimates for lithology. On the
contrary, the dispersed model found solutions for only four samples; three accurate in
porosity and two in lithology.

If we include +/- 5 percent uncertainty in the P-wave velocity, the inverse modelling
provides more solutions (see Figure 9). In this case the dispersed-clay model improves its
performance and produces solutions for all seven samples with varying accuracy. The
structural clay model also provides an increased number of solutions and shows a robust
set of porosity and lithology predictions. A quantitative comparison of the modelling is
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Figure 8 Quantitative calibration of dispersed clay (left) and structural clay (right) models. Vertical axis is
sample number, empty circles are lab measurements and filled circles model predictions. Only 7 samples with
clay content below 0.3 were used. Of the two models, the structural clay model produced more solutions.

Sample number

Dispersed Clay Structural Clay
@ © G0000000000meccssessssss e @ 00000000em s -
& 7 @] [ 7 ﬁ 7 O [t
G000 00000000000ceeeenn
hel 6 o) st o
[ty 3 5 me—
3 5 I 2
e}
€
3 o Slmmmmmiccie 24 0P
@
=3
® 31 (B ossesessen s §3 5
2 Qo 2 4
Q. Peseer- 1 $
02 04 0 02 04 06 08 1 0 02 04 0 02 04 06 08 1
Porosity Lithology Porosity Lithology

Figure 9 Quantitative calibration of the dispersed clay model (left) and structural clay model (right), using 5%
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shown in Figure 10, with the percentage of correct predictions along the vertical axis, and
various tolerance ranges between observed and modelled porosities and lithologies
(+/-0.01, 0.02, 0.03, 0.04, 0.05) along the horizontal axis. Figure 10 shows that the two
models predict similarly well the lithology, whereas the porosity is more precisely
estimated by the dispersed clay model. However, Figures 8 and 9 show that the dispersed
clay model is more sensitive to the uncertainty of the P-wave velocity.

CASE 2: VALIDATING ROCK-PHYSICS MODELS FOR CLAY-RICH
SANDSTONES

In this case we assessed the calibration of various models to a larger dataset based on
80 sandstone samples with wide ranges of porosity, age and clay content (Han et al. 1986).
We started by exploring three models. One is a granular model based on contact theory
combined with HS bounds and the other two are inclusion models.

The first model is referred to as the modified Hashin-Shtrikman upper bound (MHS)
and uses Hertz-Mindlin (Mindlin 1949) theory to compute a clean, high-porosity sand and
an HS upper bound to estimate lower porosities towards the mineral point. This model has
been used to describe a mixture of sediment deposited at critical porosity with some
additional mineral. It mimics the steep diagenetic trend of clean sands in the velocity-
porosity space (Avseth et al. 2005). For clay-rich data, it connects a lower critical porosity
member with softer effective mineral moduli. We used quartz mineral properties, K; = 37
GPa, pq = 44 GPa for bulk and shear moduli, and clay properties computed for this dataset
K. = 25 GPa and uc = 9 GPa (Han et al. 1986). Effective pressure was 40 MPa, nine contact
points per grain on average (coordination number), and we assumed critical porosity to
decrease linearly between 0.4 for clean sand and 0.2 when clay content is 1.

Then, we applied the model of Xu & White (1995) for clay-sand mixtures, which
divides the pore space into sand related pores (stiff) and clay related pores (compliant),
assigning different aspect ratios to them. For implementation we used a non-interaction
approximation (Hudson & Knopoff 1989; Hornby et al. 1994) to compute the effective
compliance tensor $* from those of the host rock S° and the pore space as:

N
§=8"-Y,(s'C" -1) K", (4)

K" =[c°(t+6"(c -c))". (5)

In equations 4 and 5, S$* is the effective compliance tensor; S% the compliance tensor of
the isotropic host rock; v, is the volume concentration of the nth phase; and I is the identity
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tensor. The factor G" is a fourth-rank tensor that depends on the stiffness tensor of the host
rock (C%) and the shape/orientation of the nth inclusion type that characterizes the elastic
effect of individual inclusions. The excess compliance due to the pore space includes
contributions of sand related pores (asiff) and clay related pores (asoft). Aspect ratios of
astiff = 0.1 for sand and asore = 0.05 for clay related pores were initially applied. The effective
stiffness tensor is then obtained by inverting the effective compliance tensor. The effect of
the fluid is computed using Gassmann’s (1951) equations. Increasing clay content means
increasing number of compliant pores and results in a softening of the effective properties
of the rock.

The third model used differential effective medium (DEM) theory (Berryman 1992) to
introduce empty isolated pores with a constant aspect ratio (a = 0.25) into a mineral host
medium. This requires solving a coupled system of ordinary differential equations:

(1—y)diy[z<*<y)]= (k, -k )P(y) ©)

(1—y)diymy)]=(yz —i () @

where K* and p* are the effective bulk and shear moduli, K*(0) = K1 and p*(0) = p1 are the
effective elastic moduli at initial conditions (initial host material), K2, 2 and y denote the
moduli and concentration of the added inclusions. The terms P* and Q* are geometrical
factors associated with the inclusion material. The fluid effect was again introduced using
Gassmann'’s equations (Gassmann 1951).

All three models provided a satisfactory calibration in the velocity-porosity space for
P- and S-velocities (Figure 11), but a quantitative analysis is required to evaluate and
compare their successes further.

QUANTITATIVE ANALYSIS IN PLF SPACE

The quantitative analysis in the PLF space for the three models is summarized in
Figure 12. All three models show similar porosity predictions, but lithology estimations by
the DEM consistently under-performs. Hence, we discarded the DEM model and focused the
quantitative analysis on the other two models (MHS and XW). A comparison between their
results from the intersections of Vp, Vs and density iso-surfaces is shown in Figure 13. The
empty circles represent (laboratory) measurements, and the filled circles are our modelling
results. There is more than one prediction for each sample (vertical axis). Furthermore, for
every porosity prediction, a corresponding lithology prediction exists, indicated in the
figure by the size of the filled circles. The radius of the filled circles increases with
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decreasing clay content. An inspection of Figures 12 and 13 shows that both model
predictions are similar in number and accuracy, with a slight advantage for the MHS model.
Therefore, we performed a sensitivity analysis on one key parameter for each of the models.
We tested coordination numbers between 8 and 10 for the MHS model and various
combinations of aspect ratios in the XW model. The MHS model shows stable results in
terms of coordination number (C), but slightly favouring C = 8 over the other (Figure 14).
To analyze the XW model we used five different models (1 to 5) with aspect ratios of sand
and clay pores (0sand , Qclay ) as follows: M1 = (0.1, 0.035); M2 = (0.1, 0.06); M3 = (0.12,
0.035); M4 = (0.12, 0.05); M5 = (0.12, 0.06): see Figure 15. Porosity predictions of the XW
model were highly dependent on the aspect ratios of sand and clay pores, whereas lithology
estimations were less sensitive. This analysis demonstrated that the lithology results were
improved when using aspect ratios of sand = 0.12 and a@cay = 0.035 (model 3). However,
better porosity estimations were achieved with slightly stiffer clay pores (models 4 (acay =
0.05) and 5 (aclay = 0.06) in Figure 15).

MHS Clay volume DEM
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DISCUSSION

The comparison between two models in the PLF space requires a conventional
calibration of the models in a cross-plot domain, such as velocity-porosity space. This initial
calibration step, however, can influence the first quantitative results in the PLF space. This
ambiguity can be assessed by performing a (quantitative) sensitivity analysis (in the PLF
space) for key parameters of each model (e.g., aspect ratios, pressure, and effective mineral
properties), and selecting the combination of parameters that provides the higher number
of solutions for the dataset under examination. After the optimal parameters have been
found, further comparison with other models can be made.

The dataset used in the first case has been referenced in the literature to illustrate the
effect of pore-filling clay on porosity and velocities of clay-sand mixtures. Its bimodal grain-
size distribution and grain size ratio (1/20) suggest an ideal condition for a dispersed-clay
microstructure. However, the predictions for the dispersed clay model were very sensitive
to the uncertainty of the data. Overall, the structural-clay model produced a more robust set
of predictions for both lithology and porosity. This can be explained from Figure 6. Where
clay exceeds 10 % by volume, the dispersed model over-predicts P-velocity because
structural clay becomes important in reducing the stiffness of the samples. This suggests
that the effect of clay on the elasticity is predominantly inter-granular or structural, except
for those with clay volumes below 10 % at which both dispersed and structural clay have
similar impacts. This is likely related to the sample preparation procedures, and it is not a
general condition of clay-rich sandstones. The quantitative analysis revealed this condition
even though it was not evident from the conventional calibration process.

In the second case we used the quantitative calibration approach to select or discard
the most suitable rock-physics models to reproduce a dataset. We compared the overall
results of three models (MHS, XW and DEM) and were quickly able to discard the least
accurate model (DEM). Through a sensitivity analysis of the remaining models, we explored
the potential for optimizing the calibration in order to identify the model that provides the
most stable and robust predictions. However, in cases with high uncertainty, where wide
ranges of porosities and lithologies are expected, the model producing a wider range of
results would be preferred. The dataset used in case 2 (Han’s data) contains samples from
various origins (quarries, well cores) with a wide range of porosities and clay contents,
from clean tight sands to high porosity clay-rich sandstones. Therefore, dividing the dataset
into more homogeneous subsets, for example in terms of origin, degree of consolidation,
porosity or clay content, can improve the calibration and would allow inference of rock
microstructure details from the model’s success.

In both examples porosity predictions were more accurate than lithology predictions.
Most observations of natural rocks indicate that elastic properties are more sensitive to
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porosity than to lithology variations. Hence, higher correlations exist between velocity and
porosity than between velocity and clay content. Variations of elastic moduli are more
pronounced along porosity than lithology axes, which in turn produce less accurate
predictions of lithology than porosity.

Our investigation in the PLF space included solutions with high water saturation
(>90%) to simplify the analysis. In real cases, however, uncertainty in fluid saturation could
lead to less accurate porosity and lithology predictions.

In order to compare the predictions of the different rock-physics models, in our
examples we used only ultrasonic laboratory data, a procedure which provides maximum
control of the lithology, porosity and saturation. But in a reservoir characterization context
where predictions are evaluated in the scale of the field, a similar methodology could be
used, calibrating the rock-physics models to log data up-scaled to seismic frequencies.

CONCLUSIONS

We applied an inverse modelling strategy that assesses the ability of a rock-physics
model to predict porosity, lithology and saturation (PLF parameters) from seismic
parameters. By analyzing the performance of the models in the PLF domain, we were able
to select the model that provided the most robust estimations of reservoir properties.
Additionally, in the first case we also diagnosed the dominant factor that affected elasticity
of the samples.

We also illustrated how this quantitative approach can be used in a workflow to find a
model for a large and heterogeneous dataset, considering a wide range of options, quickly
discarding the less effective models and focusing on the most promising ones. Then, by
testing several model parameters, we assessed the sensitivity of the selected models in
terms of predictions of reservoir properties. This suggests that calibrating a rock-physics
model only by best fitting in a cross plot domain, to relate inverted seismic data and
reservoir parameters, can lead to inaccurate predictions of porosity and lithology.
Analyzing the models in the PLF domain has the advantage of evaluating up to three seismic
observables simultaneously and can point to inconsistencies in the model predictions
between bulk and shear moduli. In conclusion, this is an integrated and robust approach to
the inversion problem of finding the most appropriate rock physics model to explain
measured data.
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