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Abstract Benign external hydrocephalus in infants, char-
acterized by macrocephaly and typical neuroimaging
findings, is considered as a self-limiting condition and
is therefore rarely treated. This review concerns all
aspects of this condition: etiology, neuroimaging, symp-
toms and clinical findings, treatment, and outcome, with
emphasis on management. The review is based on a
systematic search in the Pubmed and Web of Science
databases. The search covered various forms of hydro-
cephalus, extracerebral fluid, and macrocephaly. Studies
reporting small children with idiopathic external hydro-
cephalus were included, mostly focusing on the studies
reporting a long-term outcome. A total of 147 studies are
included, the majority however with a limited methodo-
logical quality. Several theories regarding pathophysiology

and various symptoms, signs, and clinical findings
underscore the heterogeneity of the condition. Neuro-
imaging is important in the differentiation between
external hydrocephalus and similar conditions. A tran-
sient delay of psychomotor development is commonly
seen during childhood. A long-term outcome is scarcely
reported, and the results are varying. Although most
children with external hydrocephalus seem to do well
both initially and in the long term, a substantial number
of patients show temporary or permanent psychomotor
delay. To verify that this truly is a benign condition, we
suggest that future research on external hydrocephalus
should focus on the long-term effects of surgical
treatment as opposed to conservative management.

Keywords Communicating hydrocephalus . Outcome
studies .Macrocephaly . Subarachnoid space .

Intracranial pressure

Introduction

Hydrocephalus is a relatively common neuropediatric
condition, with an incidence of about 0.9 per 1,000 births
[106, 170]. It is defined as the abnormal accumulation of
cerebrospinal fluid (CSF) within the ventricles and/or
subarachnoid spaces, leading to an increase in intracranial
pressure (ICP) [77]. Raimondi defined it as an increase in
CSF volume [140].

The subtype “external hydrocephalus” is usually defined
as a rapid increase in head circumference, combined with
enlarged subarachnoid spaces as seen on neuroimaging—
especially overlying the frontal lobes—and normal or only
moderately enlarged ventricles [4, 91, 105, 118, 140, 143].
It occurs mainly during infancy, and the subarachnoid space
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enlargement gradually decreases and disappears over the
next years [91, 110, 118].

Many other terms have been used for the same or
similar conditions, for instance, “subdural hygroma” [30],
“subdural effusion” [92], “benign subdural collections”
[142], “extraventricular obstructive hydrocephalus” [132],
“idiopathic/benign hydrocephalus” [4, 118], “primitive
megalencephaly” [95], “enlargement of the subarachnoid
spaces” [115], or even “chronic subdural hematoma” [93].
As some of these names clearly are used for totally
different conditions, they will not be a part of this review.

The many terms probably reflect the different views on
etiology and outcome (see the following text discussions)
and the often difficult neuroimaging differentiation between
these conditions. Even more, the anatomical substrate,
whether this is subdural fluid or CSF in the subarachnoid
space, has been subject to disagreement [3, 21].

The word “benign” is often used together with “external
hydrocephalus,” reflecting the common view that this is a
self-limiting condition occurring during infancy, resolving
spontaneously during childhood [6, 20, 77, 125, 129, 163].
Hence, most patients are probably not treated.

The aim of this study is to provide a complete review of
the literature, focusing on all aspects of external hydro-
cephalus: etiology, neuroimaging, symptoms, treatment,
and outcome.

Materials and methods

As mentioned above, many different terms have been used
concerning benign external hydrocephalus or similar con-
ditions. In order to obtain all relevant information, we
therefore included these terms in our search. However,
when reviewing the literature, we used this definition of
benign external hydrocephalus: an idiopathic condition in
infants characterized by a large or rapidly increasing head
circumference and radiologically confirmed enlarged frontal
subarachnoid spaces.

In the beginning of the era of computed tomography
(CT), the differentiation between subdural and subarach-
noid fluid collections was difficult, not to say impossible.
This fact may of course confound our review, which is why
some of the earliest articles have been excluded where there
is doubt about the origin of the radiologically detected
fluid.

Review of the literature

The following review is based on a systematic search in
the PubMed and Web of Science databases. The terms
used in the search were “hydrocephalus” combined with
any of the following words: external, benign, extraven-

tricular, extracerebral, or idiopathic. Other search terms
were: “idiopathic/familial megalencephaly,” “idiopathic/
familial macrocephaly,” “subdural effusion,” “benign
subdural collections,” “subdural hygroma,” “extraventricular
obstructive hydrocephalus,” “subdural/extracerebral/
extraaxial/subarachnoid/pericerebral fluid collections,”
and “benign communicating hydrocephalus.”

The review includes all original articles written in
English or in other languages with an informative
English abstract that report cases or larger groups of
children with benign external hydrocephalus as defined
above. Cases with a known cause of hydrocephalus or
with accompanying conditions possibly affecting a long-
term neurodevelopmental outcome, such as prematurity,
are excluded.

Results

A total of 1,871 articles were identified by the search
(March 3, 2010). Of these, only 147 studies and case
reports dealt with this condition and were therefore
included. These articles are discussed separately under “What
is benign external hydrocephalus?”, “Neuroimaging”, etc. in
the following subsections. Hence, 1,724 articles were
excluded as they dealt with non-idiopathic conditions or
with adult patients or only mentioned the search words but
did not contribute any new information.

What is benign external hydrocephalus?

Definition

Before the CT era, the condition was hardly seen. However,
Dandy defined external hydrocephalus as increased ICP
combined with dilated subarachnoid spaces in infants, but
he questioned whether it existed as a primary condition or
instead was a subtype of internal hydrocephalus [44, 46].

Today, external hydrocephalus is commonly defined as a
large or rapidly growing head circumference in infants
combined with enlarged subarachnoid spaces and no or
only moderate ventricular enlargement as seen on neuro-
imaging (see below) [4, 70, 132, 143, 147]. Kumar added the
absence of “clinicoradiological features of raised intracranial
pressure,” e.g., ventriculomegaly without periventricular
lucency, and non-tense fontanels as criteria [91].

Epidemiology

No studies seem to report the incidence or prevalence of
external hydrocephalus in the normal population nor did we
find figures for the relative amount of hydrocephalic
children diagnosed with this subtype of hydrocephalus. It

418 Neurosurg Rev (2011) 34:417–432



seems that most studies are too small and selective to yield
information about the incidence or prevalence of external
hydrocephalus.

While idiopathic external hydrocephalus seems to be the
most common cause of macrocephaly in infants [4, 74],
many patients have a history of prematurity [2, 4]. A review
of incidental findings in a tertiary pediatric neurology
center showed that 0.6% of the children were found to have
external hydrocephalus [73].

It seems that about two thirds of children with external
hydrocephalus are boys [3, 33, 34, 78, 121–123, 126, 130,
132, 142, 147, 149], which is about the same gender
distribution as in hydrocephalus [106, 170].

Etiology

In most reported cases, there is no obvious cause of the
external hydrocephalus, and it is therefore classified as
idiopathic. However, it has been reported after numerous
situations and conditions such as prematurity and
intraventricular hemorrhage [78, 87, 101, 115, 160],
meningitis [77, 87], metabolic disorders [17], steroid
therapy [66], chemotherapy [54], neurosurgery [80], and
trauma [77, 87].

A complicating fact is that intraventricular and subarach-
noid hemorrhages in premature infants often occur without
symptoms [29], thus making it difficult to know if
idiopathic hydrocephalus really is idiopathic or simply
caused by such silent, clinical events [68].

External and communicating hydrocephalus is described
in children with raised venous pressure [87], e.g., following
various thoracic/cardiac conditions [49, 86, 112, 145].

Heredity

Some patients with external hydrocephalus seem to have
a familial form as one or more close relatives are
macrocephalic.

Most studies report that around 40% of children with
external hydrocephalus have at least one close relative with
a large head (usually defined as a head circumference above
the 95th to 98th percentile) [3, 6, 34, 122, 124, 128, 167];
however, this coherence was found to be as high as 80–90%
in two reports [4, 152].

Case reports of twins and triplets also suggest some
heredity [32, 42, 85, 165].

An autosomal dominant mode of transmission has been
assumed [4, 11, 39, 47], although a multifactorial model of
inheritance is the most recent proposal [9]. The dominant
inheritance might be due to a single gene exhibiting a major
effect as part of a multifactorial phenomenon in some
families [166], probably during a limited time of suscepti-
bility in fetal development [134]. Maytal et al. suggested

that the primary phenotype merely was the delayed
maturation of the arachnoid villi [110].

External hydrocephalus in infants seems to be closely
linked to “familial macrocephaly/megalencephaly” in the
literature. This term is commonly defined as children born
with head circumferences in the upper normal range, which
increase beyond the 98th percentile during the first year of life
[102]. A number of underlying causes were described [11].

Pathophysiology

There are probably mechanisms common for both ordinary
hydrocephalus and external hydrocephalus, but here we will
focus on the latter. As most reported cases of external
hydrocephalus seem to be idiopathic, various theories
regarding the underlying pathophysiology have been
presented.

The most common theory suggests that external hydro-
cephalus is caused by immature arachnoid villi not able to
absorb the CSF that is produced continuously [14]. The
accumulated CSF then expands the ventricles and the
subarachnoid space inside the compliant and growing skull
of an infant, thus avoiding a marked increase in intracranial
pressure [87]. The arachnoid villi mature at about 18 months
of age, ending the CSF accumulation and thus the widening
of the subarachnoid space. Why the arachnoid villi do not
mature remains unknown, but some heredity has been
described (see above).

Other theories have been suggested, such as an
arachnoid membrane tear creating a one-way valve [45],
CSF becoming “loculated” [157], or subdural fluid
obstructing CSF reabsorption [142].

Some believe that external hydrocephalus is only a
step towards internal hydrocephalus in children with
communicating hydrocephalus, i.e., if the arachnoid villi
cannot absorb the CSF, it will first accumulate in the
nearby subarachnoid space, thereafter gradually involving
the ventricular system [123, 143]. The term arrested
hydrocephalus is associated with this theory; some suggest
that there may be a difference between the delayed
maturation of arachnoid villi leading to a regression of the
pericerebral dilatation and agenesis of the villi corresponding
to cases requiring a shunt [36, 64].

Some have even suggested that the skull is growing
faster than the brain for some time, giving a transient
subarachnoid CSF accumulation [124, 134].

The understandings of CSF dynamics all in all seem
incomplete and up to this time a subject of debate [38, 71].

Cerebrospinal fluid outflow

External hydrocephalus is commonly classified as a
communicating hydrocephalus [14, 132]. A recent review
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summarizes the current knowledge on the physiology of
CSF outflow [84]. In brief, three pathways are recognized:
the arachnoid granulations, the lymphatic capillaries, and
the transependymal passage.

The arachnoid granulations (or villi) become visible
between 6 and 18 months of age, developing gradually in
terms of size and number over the next years [96, 162]. The
lymphatic pathway is thought to be CSF flowing in the
subarachnoid space enclosed by perineural sheaths of cranial
and spinal nerves, escaping into lymphatic capillaries mainly
in the nasopharyngeal area [84]. Animal studies have shown
that 10–50% of CSF is drained by lymphatics [23, 24]. The
transependymal passage of CSF probably occurs only when
the intracranial pressure exceeds a limit [61, 97].

External hydrocephalus in the fetus

Neuroimaging of fetuses gives additional information about
the development of the subarachnoid spaces and external
hydrocephalus.

It has been found that human fetuses who were
diagnosed with external hydrocephalus as infants had
prominent subarachnoid spaces with a posterior fluid
distribution prenatally [63]. This is thought to reflect the
development of the subarachnoid space, which is seen as a
cavitation of the primitive meninges spreading from the
ventral to the dorsal portion of the neural tube.

The same authors reported that 19% of human fetuses that
had mild ventriculomegaly and prominent subarachnoid
spaces developed an external hydrocephalus after birth [62].

External hydrocephalus as a risk factor

Several studies have shown an increased risk of subdural
hematomas in children with external hydrocephalus after
minimal or no known head trauma [12, 67, 78, 83, 95, 113,
117, 129, 136, 141].

Association with other conditions

External hydrocephalus may coexist with a series of
conditions, such as some types of craniosynostoses [35,
125, 151], achondroplasia [55, 127], Sotos syndrome [100,
110, 127], and glutaric aciduria type 1 [107, 108, 127, 133].
A case of external hydrocephalus in a microcephalic infant
has also been reported [1]. The hydrocephalus in craniosy-
nostosis and achondroplasia is supposedly caused by a rigid
venous outflow obstruction [148].

Clinical symptoms and signs

The large or enlarging head appear indistinguishable from
those seen in other hydrocephalus cases [3, 4, 14, 32, 33,

68, 78, 115, 118, 123, 132, 134, 141, 143, 160, 167]. A
relatively common sign is a tense anterior fontanel [6, 14,
75, 123, 124, 143, 144, 147, 165]. Other early symptoms
and signs have also been reported occasionally: dilated
scalp veins [65, 143, 147], frontal bossing (an unusually
prominent forehead) [95], irritability [33, 53, 91, 124, 144,
165], hypotonia [12, 36, 42, 65, 75, 130, 139, 152],
vomiting [78, 91, 124, 144], gross motor delay [12, 34, 42,
53, 65, 75, 115, 118, 121, 123, 124, 128, 139, 147, 152,
167], ataxia [91, 144, 147], poor head control [91, 121,
122], seizures [3, 68, 75, 78, 124, 144, 147], fever [75, 78],
and mental retardation [87]. We have not found any articles
reporting sunset gaze.

Head circumference

Infants with external hydrocephalus usually show a rapid
increase in head circumference (Fig. 1) [4, 12, 14, 132,
143], which appears to be the most common symptom in all
children developing hydrocephalus during their first year of
life [170]. Most of the increase in head circumference
occurs around the age of 6 months [4, 130, 147]. It seems
that the head circumference usually stabilizes before the age
of 18 months [2, 33]. Measurements afterwards typically lie
above but parallel to the upper (95th to 98th) percentile
[2, 6, 14, 22, 115, 121, 147]. The amount of children
ending up with macrocephaly varies considerably from
11% to 87% on long-term follow-up [3, 34, 60, 118].

The natural history of untreated external hydrocephalus

Short-term outcome—transient delay of development

A developmental delay is commonly seen during some time
of infancy [4, 22, 95, 118, 122, 123].

Muenchberger et al. reported that out of their 15 patients,
who were followed until adulthood, two had transient
motor delay and two had speech delay at a mean 27 months
of age [118]. Alvarez et al. found that about half of the 32
children were delayed in motor or language develop-
ment at 5 months of age, but by 15–18 months of age
all but one were found to be normal [4]. Nickel and
Gallenstein reported seven out of nine infants with
delayed gross motor development during the first year of
life, with four of them described as normal after 2–3 years
of age [122].

Similar results are found in several surveys, reporting
delayed gross motor development and to a lesser extent
delayed language development that decrease and disappear
within 1–4 years [2, 13, 22, 91, 95, 123, 128, 152].

In two studies, hypotonia was reported during the first
year of life, but with normal findings on later examinations
[132, 160].
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Lorch et al. performed a survey on macrocephalic
survivors of neonatal intensive care [103]. The children
with benign extraaxial fluid were compared with those
without; it was found that the presence of extraaxial fluid
was associated with an increased risk of developmental
delay and cerebral palsy (followed up to 24 months of age).

Long-term outcome

We have found a total of 37 articles that report outcome
after some time [3, 4, 6, 13, 14, 22, 32, 33, 40, 42, 60, 74,
75, 78, 85, 87, 91, 95, 115, 116, 118, 121–124, 128, 132,
142–144, 147, 152, 153, 156, 159, 165, 167]. Scientific
strength however is low; only one article [95] was
considered as level 3 (Levels of Evidence, http://www.
cebm.net/). The studies report in general normal physical
and neurological findings. Some conclude that all children
are normal on last follow-up [6, 14, 22, 32, 33, 40, 42, 74,
85, 91, 115, 142, 144, 152, 156, 159, 165], while the
remaining articles describe developmental delay among
some of their patients [3, 4, 13, 60, 75, 78, 87, 95, 116, 118,
121–124, 128, 132, 143, 147, 153, 167].

The bulk of long-term affected children show failure to
reach developmental milestones [87, 116, 124, 143, 147,
167], especially in gross motor function [13, 75, 78, 121,
122, 128, 132]. Speech or language delays are also quite
common [3, 13, 78, 122], while mental retardation seems
relatively rare [95]. The symptoms related to increased
intracranial pressure, which often can be seen initially, all
appear to be absent at follow-up.

Only two studies have followed the children up to school
age: Muenchberger at al. did a long-term follow-up of nine
patients with external hydrocephalus (plus six who would
not do the psychological tests) [118]. At final follow-up
(mean 19 years), all nine were considered as neurologically
normal and the neuropsychological assessment showed an

intellectual ability within the normal range. Nevertheless,
reduced performance was noted in several of the patients on
two tests associated with attention, and the two patients
who had speech delay at the age of 2 years performed at
below-average levels in most psychological tests at long-
term follow-up. Furthermore, as many as ten of the 15
patients reported specific learning problems in reading and
mathematics or had been diagnosed with a psychiatric
disease. Eight of the children had to repeat grades or go to
special classes. One of these eight children also had been
diagnosed with a psychiatric disease and so had another
two children without specific learning problems.

Laubscher et al. investigated 22 megalencephalic
children with “dilated pericerebral subarachnoid spaces”
[95]. Twelve of them were developmentally delayed (type
of delay and age not specified). Eleven of 12 children who
had reached school age at the time that the study ended
had a normal school outcome. The children were com-
pared with 22 children with normal pericerebral subarach-
noid space, looking at psychomotor development and
school outcome, with findings not significantly different
between the groups.

Several studies have followed children with external
hydrocephalus for 2–5 years [13, 14, 34, 60, 78, 87, 122,
123, 147, 152]. About 17% of the 196 children included in
these publications were described as having an abnormal
psychomotor development at last follow-up.

Neuropsychological testing

While most studies seem to base their evaluation of
outcome on clinical and neurological examination, some
use standardized neuropsychological tests as well: the
Denver Developmental Screening test [4, 121, 124], the
Milani Comparetti (gross motor assessment study) [121],
the Denver II screening test and Peabody Picture–

Fig. 1 This Norwegian head
circumference registration sheet
[90] shows the head growth of
an infant boy admitted because
of increasing head circumfer-
ence. Hodeomkrets=head
circumference, which is shown
(in cm) along the Y axis. The X
axis shows the age in months.
The head circumference gradu-
ally increased after birth, with a
rapid growth around the age of
3 months. Thereafter, it
stabilized above, but parallel to,
the upper percentile. The boy
had an apparently normal
psychomotor development
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Vocabulary test [3], the developmental scales of Brunet
and Lezine [22], and the Revised Gesell Developmental
Schedules and the Movement Assessment of Infants [122].
Below we review articles using standardized neuropsy-
chological tests, some analyzing short-term outcome and
some analyzing long-term ones.

Studying ten infants with external hydrocephalus,
Neveling and Truex used the Denver Developmental
Screening Test focusing on four areas: personal–social,
fine motor–adaptive, language, and gross motor skills
[121]. All of the areas concerned were above or equal to
the Denver 50th percentile, indicating normality, except
for the gross motor skills. They therefore continued with
the Milani Comparetti Screening Test, which found that
the infants were lacking in crawling and sitting skills and
displayed an abnormal developmental pattern (e.g., walking
prior to belly crawling). The authors assumed that the
abnormal developmental progression was caused by the
increased head size.

The Denver Developmental Screening Test was used
at least once in all 36 patients reported by Alvarez et
al. [4]. As mentioned above, a transient developmental
delay was seen in many of the children. Fourteen were
found to be delayed in gross motor development and five
were found to have delayed language development, with
only one remaining globally delayed at last follow-up
(30 months of age).

Nogueira and Zaglul also used the Denver Develop-
mental Screening Test [124]. They reported that 14 out of
58 children showed “abnormal development” at follow-up,
without further specification.

Alper et al. found two out of 13 children with fine motor
delay using the Denver II screening test [3]. Performing
Peabody Picture–Vocabulary testing for seven children
older than 2.5 years, they found two with expressive
language delay.

Bosnjak et al. reported nine patients with external
hydrocephalus, all assessed developmentally by a psychol-
ogist using the developmental scale of Brunet and Lezine
[22]. Six of the nine had abnormal neurodevelopmental
findings at presentation: four of these however had
normalized at follow-up and the other two were not
available for follow-up. Further details about development
were not described.

Nickel and Gallenstein reported nine patients investigated
with the Revised Gesell Developmental Schedules and
the Movement Assessment of Infants [122]. Seven of
them showed gross motor delay during the first year of
life, while only one remained delayed at last follow-up.
Three children had speech/language delay at last follow-up.

Furthermore, Muenchberger et al. utilized several neu-
ropsychological tests suitable for adults in their thorough
survey (described above) [118].

Neuroimaging

Normal range of the subarachnoid space

As no consensus exists, the definition of a normal subarach-
noid space width varies in the literature: in infants (below
1 year of age) the upper limits of normal craniocortical width
range from 4 to 10 mm [56, 59, 94, 99, 138] and in neonates
from 3.3 to 5 mm [58, 111, 120]. The defined upper limit of
the normal interhemispheric fissure width ranges from 6 to
8.5 mm, while the similar spectrum for sinocortical width is
2 to 10 mm [56, 59, 69, 94, 99, 131]. Sinocortical width is
defined as the distance from the lateral wall of the superior
sagittal sinus to the surface of the cerebral cortex [56, 99].

Lam et al. found that the width of the normal
subarachnoid spaces increased from birth up to about
7 months of age, after which a gradual decline was
observed [94]. Other studies confirm this decrease in fluid
volume, as the normal subarachnoid spaces are smaller
between 1 and 2 years of age [59] and essentially absent
after this age [89]. There seems to be no significant
difference in size between the genders [58, 94, 120].

The studies concerning external hydrocephalus use
different standards; hence, the limits of inclusion differ
among the surveys. Less accurate, subjective grading in, e.g.,
normal, mild, and moderate subarachnoid space enlargement
has also been used [33].

Neuroimaging characteristics of external hydrocephalus

The neuroimaging characteristics of external hydrocephalus
are frontal subarachnoid spaces that are enlarged beyond the
upper limit together with normal to moderately enlarged
ventricles (Fig. 2). A concurrent finding is often a wide
interhemisferic fissure and sometimes enlarged third ventricle
and basal cisterns [14, 42, 83, 91, 110, 115, 121, 139, 161].

Among the surveys reporting the size of the ventricular
system, from none to all patients with external hydrocephalus
showed some degree of ventricular dilatation [3, 6, 14, 33, 34,
60, 91, 95, 110, 114, 118, 139, 142]. These reports, however,
do not give exact measurements. Prassopoulos et al. found
that the degree of dilatation of the lateral ventricles was
roughly proportional to the width of the frontal subarachnoid
space [139]. Maytal et al. observed that the first area that
appeared to enlarge was the frontal interhemispheric fissure,
followed by the subarachnoid space over the frontal and
frontoparietal convexities. Enlarged basal cisterns and ven-
tricular dilation, when it occurred, was a late finding [110].

Neuroimaging differentiation

External hydrocephalus must be differentiated from con-
ditions such as subdural fluid collections and cerebral
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atrophy. The latter differs from external hydrocephalus in
the global widening of cerebral sulci (not only in the frontal
region and interhemisferic fissure); neither is cerebral
atrophy associated with an increasing head circumference
[110].

Modern neuroimaging techniques are used to distin-
guish external hydrocephalus from a subdural fluid
collection (e.g., chronic subdural hematoma) [8, 27,
167], e.g., looking for the “cortical vein sign” on magnetic
resonance imaging (MRI) [93] or cranial (Doppler)
ultrasound [37, 164]. The cortical vein sign is defined as
the visualization of cortical veins within fluid collections
at the cerebral convexities. A positive sign suggests that
the fluid collection is caused by an enlarged subarachnoid
space and not a subdural collection which would compress
the subarachnoid space and the veins traversing it.

The immediate influx of a contrast medium from CSF
into a fluid collection suggests external hydrocephalus,
whereas no influx indicates a subdural effusion [135]. Ment
et al. observed that the enlargement of the basal cisterns
often were seen in external hydrocephalus but not in
subdural hematomas [115]. Finally, when using MRI,
differentiation can be made based on the intensity of the
fluid relative to CSF [8].

Studies of CSF flow

Neuroimaging investigation of CSF flow can be done by
injecting an isotope or a contrast medium intrathecally
(cisternography), which has been done in several studies of
external hydrocephalus. Such studies usually report signs of
slow flow/stasis or no flow at all over the cerebral
convexities [6, 28, 36, 83, 122, 124, 142, 147]. Ventricular

reflux is also reported [121]. On the other hand, Modic
et al. reported three patients whose radionuclide cisternograms
were all normal [116].

Neuroimaging outcome

The frontal subarachnoid enlargement in external hydro-
cephalus seems to decrease and disappear spontaneously
within 2–3 years of age in most patients [34, 75, 91, 105,
110, 118, 123, 125, 128, 130, 144, 152, 167]. However,
three surveys found that most of their patients had
essentially static CT appearances beyond 2 years of
follow-up [60, 87, 124].

The longest follow-up was described by Muenchberger
at al. who found that all of the nine patients investigated
(mean 19 years old) appeared normal on MRI [118].
Nishimura et al. support this finding; none of their patients
had a recurrence of subarachnoid fluid once it resolved
[123].

Other investigations

Fluid characteristics

Some of the studies dealing with external hydrocephalus
report the composition of the subarachnoid fluid.
Findings vary considerably from normal CSF [4, 60,
91, 121, 124, 144, 167] to xanthochromic fluid with
protein concentrations up to 12 g/L [28, 36]. However,
some studies report difficulty in extracting any fluid at all
[14, 115, 121, 124].

In a case report describing two patients with external
hydrocephalus, Chazal et al. found a considerably higher
protein concentration in the CSF withdrawn from over the
cerebral convexities than in ventricular and lumbar CSF
[36]. The authors suggest that this difference is related to a
“stagnation” of CSF over the convexities.

Intracranial pressure measurements

There is no consensus as to what is a normal ICP in young
children, but values of more than 15 mmHg are usually
considered raised [51, 57]. Few studies have reported ICP
measurements in children with external hydrocephalus, and
we found only three studies with a total of 11 patients
reporting exact pressures [36, 147, 165]. They show normal
to slightly increased ICP, ranging from 6 to 16 mmHg.

Lumbar or ventricular infusion tests are sometimes used
in the evaluation of hydrocephalic children [31, 48].
Resistance to CSF outflow (Rout) is calculated and believed
to express the CSF absorption capacity. However, inves-
tigations in children with hydrocephalus have not been able
to find a correlation neither between Rout and the

Fig. 2 MRI of the boy in Fig. 1 at 6.5 months of age The frontal
subarachnoid space is enlarged, and there is slight ventriculomegaly.
Vessels can be seen traversing the subarachnoid space
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continuously monitored ICP [50] nor between Rout and the
need for shunting [119].

ICP wave investigations have shown that mean wave
amplitude may be a better predictor than mean ICP when
considering shunting or not [52].

Electroencephalography

Seizures have been reported in several studies of children
with external hydrocephalus (see above). However, only
a few have reported electroencephalography findings,
which often proved abnormal [36, 124, 144, 147]. The
abnormality has most often been described as a non-
specific slowing.

Treatment

Studies that compare the treatment and non-treatment of
external hydrocephalus do not exist. Most children seem to
be managed conservatively, which usually means observa-
tion only. The reported treatment options were shunting,
other CSF diverting procedures, or medical therapy.

Shunting

The following studies report patients with external hydro-
cephalus that underwent shunting procedures [36, 78, 118,
123, 143, 161, 165, 167]. Ventriculoperitoneal or subdur-
operitoneal shunts seem favored. Symptoms and signs of
increased ICP are the most common causes leading to
shunting, while no studies reported delayed development as
a treatment indication alone. In general, it is difficult to find
a common indication for surgery in the studies that are
included. Information about outcome is referred below
when this is mentioned in the studies.

Robertson and Gomez treated two out of six patients
with shunts (one lumboperitoneal and one ventriculo-
peritoneal) because of excessive head growth, ventricu-
lar dilatation, and other signs of increased intracranial
pressure [143]. One of them was followed for 7 years and
developed normally.

Hellbusch reported three out of 39 patients requiring
shunt [78]. The first received a subduroperitoneal shunt
because of macrocrania and the development of subdural
hematoma/hygroma. The second also had macrocrania,
along with some vomiting, and underwent an insertion of
a subduroperitoneal shunt. The third received a ventriculo-
peritoneal shunt because of enlarged ventricles together
with a large head.

Chazal et al. described shunting in both of their patients
[36]. One was referred with a large head, bulging anterior
fontanel, and hypotonia. She received a ventriculoatrial
shunt and had rapid clinical improvement. The other

underwent a shunting procedure because of a large,
growing head and the persistence of psychomotor retarda-
tion; the development normalized afterwards.

Wachi and Sato described a pair of identical twins
who developed external hydrocephalus during the first
few months of life [165]. Irritability and bulging of the
anterior fontanel developed; they therefore underwent
shunt surgery at 9 months of age with satisfying findings
6 months later.

Nishimura et al. reported three out of 20 patients who
were in need of surgery because of subdural hematomas
complicating the subarachnoid fluid collections [123]. Burr
hole and irrigation were performed in two and one
underwent subduroperitoneal shunt insertion.

Ten out of the 14 patients reported by Tsubokawa et al.
had macrocephaly and bulging fontanels [161]. All ten
underwent surgery with temporary subduroperitoneal shunt
insertion. At 4–6 months after surgery, neuroimaging
normalization was seen, although the ventricle enlargement
seemed to retract slower. Seven of the ten children operated
had a developmental quotient (DQ) of more than 100 at
follow-up, indicating normal development, while two of the
four non-operated patients had a DQ of less than 39.

Other studies report shunting of some of the patients
without further information regarding indications, outcome,
etc. [118, 167].

Other CSF diverting procedures—external drainage

Eidlitz-Markus et al. reported a case of a 6-month-old girl
with external hydrocephalus and developmental delay [53].
She was treated for 48 h with temporary bilateral drainage
of the frontal subarachnoid spaces via burr holes, draining
300 ml of CSF. The head circumference and psychomotor
development normalized within a few months and remained
so at the last follow-up at 2 years of age. CT showed a
modest reduction in the size of the CSF spaces 2 months
after surgery. Similarly, Stroobandt et al. suggested treat-
ment with external drainage for 1 week, thereafter inserting
a shunt if the effusion had not “dried up” by this time [158].
Treatment of posttraumatic external hydrocephalus with
temporary spinal drainage is described in adults [7].

Andersson et al. performed exploratory craniotomy in
seven of their nine patients [6]. They reported widened
and deep subarachnoid spaces. Three patients needed a
ventriculoperitoneal shunt in order to control postoperative
CSF leakage.

Medical therapy

Several studies describe temporary acetazolamide treatment
lasting for 1–2 months, resulting in a gradual reduction of
excessive head growth [14, 91, 137]. Furthermore, Roshan
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et al. used acetazolamide combined with mannitol in four
patients who presented with vomiting, irritability, and a
bulging fontanel [144]. The patients responded well.

Acetazolamide and furosemide have been recommended
for mild hydrocephalus of the newborn and in infants [98,
154], but based on large, randomized trials it is not
recommended for the treatment of posthemorrhagic ven-
tricular dilatation in infancy [82, 88].

Discussion

What is benign external hydrocephalus?

External hydrocephalus is defined as a rapid increase in
head circumference in an infant combined with enlarged
frontal subarachnoid spaces as seen on CT, MRI, or
cranial ultrasound and with normal or slightly enlarged
ventricles.

The underlying mechanism for the formation of external
hydrocephalus is poorly understood, although several
theories exist. The familial macrocephaly associated with
some of the cases indicates that heredity may play a role.
CSF flow studies have shown reduced flow over the
cerebral convexities; an impairment of CSF absorption
through the arachnoid villi therefore seems intuitive. In
normal children, it has been shown that the arachnoid
villi are not fully mature at birth but that they gradually
become so during infancy. This lack of maturation in
combination with the pronounced increase in CSF
production during the first year of life [169] may be the
underlying mechanism and may also explain why the head
starts to grow at around 6 months of age in most cases.
This may not be a problem in most children, as their
draining capacity through the villi or other draining
pathways is balanced against the CSF production. In
children with external hydrocephalus, on the other hand,
there may be a misbalance because of either delayed
maturation or excessive CSF production.

The pronounced increase in CSF production during
the first year of life may also explain why external
hydrocephalus rarely is described in newborns. The
finding that CSF production in boys is greater than in girls
may also partly explain the unequal gender distribution.

The delayed maturation theory does not contradict the
belief that external hydrocephalus may be an arrested form
of internal communicating hydrocephalus. The finding by
Maytal et al. about the order in which the CSF-containing
compartments dilate supports this view [110]. Mechanisms
believed to cause ordinary hydrocephalus may therefore
play a role in the formation of external hydrocephalus, e.g.,
altered venous sinus pressures [15] or restriction of arterial
pulsation [71].

In sum, the etiology of external hydrocephalus is most
likely multifactorial and, if so, the condition may develop in
several ways.

Clinical presentation

By our definition, increased head circumference is found in
all patients with external hydrocephalus. In most cases, the
head circumference increases disproportionally only during
the first year of life, an observation that may support the
delayed maturation theory as discussed above. However, as
the cranial sutures close between 1 and 2 years of age, it is
difficult to exclude a persistently increased ICP. Many
children end up with large heads, i.e., they to not normalize,
signifying a continued growth stimulus beyond infant age.

Many patients are found to have a delay in gross motor
development, although only a few surveys have tested the
children using valid neuropsychological test batteries.
Reports of children with hypotonia, seizures, vomiting,
etc. also indicate that the brain may be under marked strain
during one phase of the condition.

The natural history of untreated external hydrocephalus

It seems evident that external hydrocephalus in some cases
is associated with delayed psychomotor development. The
important questions are whether this delayed development
is caused by an increased ICP and whether this increased
pressure can interfere with the individual's acquisition of
motor, cognitive, emotional, and social skills in the critical
phases of the brain's development, thus hampering the
future motor and mental functions of the affected child.

The transient delay of development seen up to 4 years of
age supports the idea that the lack of increase in head
circumference seen in the older children merely is caused
by the closing of sutures rather than the actual reduction of
a slightly increased ICP.

The majority of patients are described as physically,
neurologically, and developmentally normal on follow-up.
However, this may only be because the outcome has been
evaluated by the relatively coarse methods used in the
majority of the studies. Most studies did not use valid
developmental tests; subtle psychomotor impairments may
therefore have passed as normal. This assumption is
supported by the fact that a considerable amount of patients
show some forms of developmental delay, including the
two studies where children were followed up to school age
[95, 118]. Unfortunately, no studies were designed to show
if the patients who ended up with a developmental delay
could have been revealed at an earlier stage.

The studies show remarkably varying results for long-
term outcome. This makes it hard to conclude and may
reflect the heterogeneity that probably exists. Taking the

Neurosurg Rev (2011) 34:417–432 425



presenting symptoms and additional findings into consid-
eration, together with the motor delay seen in some patients
for some time, the statement that this is a benign condition
seems questionable.

As discussed above: could the temporary and mild
“insult” at a critical age lead to a permanent damage?
Animal studies have shown that the development of the
young brain occurs step-wise, i.e., specific functions
develop within a limited time span, a “critical period”
when the brain is ready to learn that developmental task
[10, 18, 81]. Deprivation of stimuli during this critical time
may cause deficits, although the process is not entirely
irreversible [72]. It is reasonable to assume, however, that
the learning after the closure of this “time window” is much
more difficult than when the neural network of the
developing brain is still susceptible to new impulses.

Theoretically, the pressure exerted on the brain tissue by
the excess CSF in the subarachnoid space during infancy
may be high enough to provide imperfect conditions during
a critical time of development, thereby giving rise to
permanent, irreversible learning difficulties and other
problems. The strict sequence of regional perfusion as
discussed under “Neuroimaging” could perhaps be seen as
the vascular basis for these critical periods.

Hanlo et al. showed in a study of hydrocephalic
infants that raised ICP is related to developmental
outcome through the process of myelination as seen
on MRI [76]. Moreover, most children with severely
delayed preoperative myelination showed at least a partial
recovery following CSF diversion. The importance of
myelination is supported by an animal study finding that
white matter blood flow seems vulnerable in hydrocephalic
kittens [43].

Neuroimaging

It is difficult to define the limit between a normal and an
enlarged subarachnoid space as the definitions used vary as
does the subarachnoid space with age. However, a
craniocortical width above 10 mm appears to be an absolute
sign of pathology. The degree of ventricular dilatation is
usually described as “minimal” or “moderate” without more
specific measures: this probably explains the variation in
incidence of patients with this finding.

Neuroimaging differentiation between external hydro-
cephalus and subdural hygroma/effusion certainly became
easier after the introduction of MRI, and the tools presented
are useful. With the addition of CT cisternography, and
ultrasound in the youngest, a correct diagnosis should be
achieved in most patients. Subdural effusion could be
defined as a collection of protein-rich fluid of greater
density than the CSF [79], hence making the differentiation
easier both radiologically and biochemically.

Cortical hypoperfusion is seen in some infants and
should be further investigated. Studies of adult normal
pressure hydrocephalus (NPH) patients have found the
hypoperfusion to be more dominant in the frontal areas and
that it seems to improve after shunt surgery [109, 150]. A
survey in normal children showed that the distribution of
regional cortical blood flow followed a strict sequence in
time, matching the behavioral evolution occurring during
infancy [146]. Frontal activity, for instance, remained
scarcely recognizable until the second month, after which
it rose to present an adult-like pattern at the beginning of
the second year. Furthermore, observations using positron
emission tomography scan indicate that metabolic deterio-
ration occurs in the cortex surrounding the lateral ventricles
in infants with hydrocephalus [155]. Such features and
techniques may dominate the future neuroimaging analysis
of this and related conditions.

Surgical treatment and clinical outcome

Since external hydrocephalus can be anatomically con-
sidered a communicating hydrocephalus, insertion of a
ventriculoperitoneal shunt should be the appropriate
surgical method [16]. Shunting in itself carries some risk
[19, 38, 104], and whether this will equalize the possible
benefits of treating external hydrocephalus remains uncertain.

To our knowledge, no systematic studies that compare
the effect of surgical treatment and conservative manage-
ment in external hydrocephalus have been performed.
Furthermore, only a few report on the effect of surgical
treatment with information about the long-term effects. It
seems as if the cases described in the literature were treated
because of the presence of obvious signs of increased ICP,
not because of fear of the potentially long-term negative
effects on psychomotor development. The prevailing view
emerging from the existing literature seems to be that
external hydrocephalus in its most common form is a
benign, self-limiting condition that should be handled
conservatively [4, 6, 91, 122]. By “most common” we
mean macrocephalic children without other symptoms and
with the typical neuroimaging features. Given the results
discussed under “The natural history of untreated external
hydrocephalus”, we question this belief.

In cases where external hydrocephalus is combined with
subdural fluid collection, treatment alternatives such as
subduroperitoneal shunting, needle aspiration, or burr hole
evacuation should be considered.

Only a few studies have reported the outcome after the
surgical treatment of external hydrocephalus. As presented
under “Results”, they mainly reported good outcomes of
shunting. However, the value is limited as the studies are
not easy to compare and the cases are highly selected.
Some studies report medical therapy as an effective
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treatment, but only short-term improvement on symptoms
of increased ICP is published.

A detailed analysis of ICP pressure waves seems to yield
useful additional information regarding which patients
should be treated or not [52].

Associated conditions

The risk of developing subdural hematoma after minimal or
no head injury is reportedly increased in children with
external hydrocephalus. The proposed cause is stretching of
the bridging veins traversing the enlarged subarachnoid
space [5, 83, 141].

A relatively new, most interesting theory is whether there
might be a connection between external hydrocephalus in
childhood and the development of idiopathic NPH in the
elderly. Bradley et al. found that patients with NPH have
significantly larger intracranial volumes than control sub-
jects as studied on MRI [26]. The authors suggested that
these patients may have had external hydrocephalus as
children and that they had remained asymptomatic until
their later years, when a proposed deep white matter
ischemia would occur and yield symptoms [25]. Wilson
and Williams had the same finding as Bradley et al. and
reported that about 20% of NPH patients had head circum-
ferences above the 90th percentile, suggesting that external
hydrocephalus may be responsible for some, but not all,
patients with NPH [168]. A link between external hydro-
cephalus and NPH may be the recently described syndrome
of hydrocephalus in young and middle-aged adults that
appear asymptomatic or with a series of only slight and
subtle symptoms which improve after shunt surgery [41].

Such a possible connection between external hydro-
cephalus and NPH gives new perspectives to the question
of early surgical treatment in these children.

Benign external hydrocephalus—what to do?

Considering the few studies that have dealt with the effect
of treatment of external hydrocephalus, it is obvious that
more knowledge is needed. For now, the apparent diversity
in results and opinions probably reflects a similar variety in
clinical courses and patients, this again reflecting the
different etiologies and partial inheritance often seen as
well as the differences in what is regarded as “normal.” We
think that a good way to answer some of these questions is
to carry out a larger population-based (retrospective) study,
comparing treated (shunted) and untreated children with
external hydrocephalus and focusing on developmental
outcome on long-term follow-up, including the use of
standardized neuropsychological tests. By doing this, it
may be possible to reveal subtypes/subgroups of patients
with different outcome prognoses, hence in need of

different initial managements. Surgical indication could,
for instance, be determined by the initial radiological
presentation (width of subarachnoid space, diffusion-
weighted MRI), by a thorough neuropsychological investiga-
tion, or maybe by a combination of all signs and tests
available (ICP, CSF flow, etc.).

Conclusion

In this literature survey, we have found a relatively large
number of untreated external hydrocephalus patients with
temporary or permanent affection of mental functions. We
therefore question the validity of the traditional view that this
is a benign condition that does not need treatment. The level of
evidence in most of the studies that are included in this survey
is very low; there is in fact no evidence at level 2 or above
when it comes to treatment. No studies that can rule out the
possibility of a long-term negative effect of an increased ICP
on psychomotor development were found; on the contrary,
several studies indicate that external hydrocephalus may be
harmful, at least in some children. Future research should
focus on this, comparing the outcome of surgical treatment
and conservative management of external hydrocephalus.
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Comments

Hartmut Collmann, Würzburg, Germany
This is a diligently compiled review on a fairly common yet still

obscure condition of infancy known under a variety of terms such as
“benign macrocephaly,” “benign subarachnoid enlargement,” or
“external hydrocephalus”. It is characterized by transient acceleration
of head growth, some signs of mild intracranial hypertension, and,
morphologically, distinct enlargement of the subarachnoid space, often
combined with mild ventricular dilation. In their comprehensive
review of the available literature, the authors address all major aspects
of this condition, i.e., considerations concerning etiology, pathogen-
esis, clinical and radiological diagnosis, and prognosis. As to the
pathogenic factors, a disproportion between a rapidly increasing CSF
secretion rate and delayed maturation of the arachnoid villi is the most
commonly held theory. Little attention has been paid as yet to the
venous system, and one is wondering if there is any relationship to the
pseudotumor cerebri. While the authors underline the transient nature
of the abnormal head growth and CSF accumulation, they challenge
its completely benign character as a substantial proportion of patients

appear to exhibit persistently retarded psychomotor skills. Conse-
quently, they suggest a larger population-based study comparing the
outcome of treated and untreated children.

Dieter Hellwig, Hannover, Germany
Benign or “idiopathic” external hydrocephalus is a rare entity in

childhood and mostly resolves in the first 2 years after birth. It is
characterized by an increased head circumference and neuroimaging
shows a subarachnoidal fluid collection over the frontal hemispheres.
In most cases, this pathology is asymptomatic and resolves without
treatment; however, it is not clear if in some cases it can cause delay in
mental, motor, and speech development.

In their review, Zahl et al. included a total of 147 studies. They
described several theories about the etiology of benign external
hydrocephalus, which seems to be still unclear. They emphasize that
the main clinical sign is the rapid increase of head circumference and a
tense anterior fontanelle. The final diagnosis is established by CCT or
MRI.

The crucial question is if there is a need for treatment either with
drugs like acetazolamide or by surgery using shunting procedures.

In accordance with the authors, who stress that there are no
controlled studies about the long-term outcome of children with
benign external hydrocephalus, I would like to recommend treating
this form of communicating hydrocephalus by the insertion of a CSF
shunt to prevent psycho-motor defects. In conclusion, there is still a
lack in understanding the pathophysiology of this kind of hydroceph-
alus and controlled trials to evaluate the short- and long-term
outcomes are urgently needed.
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