Chapter 2: The chalk depositional system in the Central Graben — concepts of regional

geology, sedimentology and stratigraphy

17



18



1. Introduction

Before the science of geology was established, the chalk was already noted by the Romans for the
prosperity that grapevines reached on chalk soil during their conquering campaign across Europe
throughout the 1st century BC. Chalk acts as a sponge, storing excess water for dry periods and with
the ability to store heat. In the seventeen century, such properties were also noted by the celebrated
wine maker and monk, Pierre Perignon — or Dom Perignon — the “father of champagne”, making
the fortune of the French Champagne and Chablis wine yards. Romans commonly referred to chalk
as Creta, from which the name of the stratigraphic system Cretaceous is derived. The white colour
of chalk is possibly the source for the Latin name of England A/bion (Latin al/ba = white) after the
Roman Empire first set foot on English soil at the White Cliffs of Dover (Ewans, 2002).

The Cretaceous is a special and complex period in the Earth’s history characterized by episodes of
rapid climatic change, abrupt oceanic anoxic events and significant variations in the carbon cycle, as
well as intensification of volcanic activity with development of large igneous provinces (Weissert et
al., 1998; Jenkyns, 1994; Wissler ef al., 2003; Bodin et al., 2006; Jarvis et al., 2006). In large parts
of NW Europe, the sedimentary succession deposited during the Late Cretaceous—Early Paleocene
(100—61 Ma) largely consists of thick and conspicuous intervals of white chalk sediments. Deposition
of chalk during these 40 million years of Earth’s history followed a significant rise in sea-level at the
beginning of the Late Cretaceous (Hancock, 1975; Hancock & Kauffman, 1979). This transgression
was probably one the most important during the Phanerozoic and has been commonly attributed to
rapid ocean crust formation and an increase in the volume of oceanic ridges (Orth et al., 1993; Kerr,

1998) caused by intensification of mantle magma upwelling to the Earth’s surface (Larson, 1991).

A second peculiarity of the Late Cretaceous is the equally warm climatic conditions over the continents
associated with higher tropical and polar temperatures and lower latitudinal temperature gradients
than present day (Wilson & Norris, 2001; Wilson et al., 2002). The warmer climate was one of the
consequences of the volcanic release into the atmosphere of large quantities of greenhouse gases
such as CO, and CH,. It is possible that warm climate conditions were also reinforced by the higher
content of atmospheric water vapour in response to the higher temperatures (Huber et al., 2002).
The increase in the volume of oceanic ridges, the prolonged periods of ice-free conditions at the
poles as well as increased sea-surface temperatures, led to a significant sea-level rise with inundation
of the continental shelves and establishment of epeiric seas in regions previously dominated by
shallow marine or paralic environments. Consequently, the shelf break front observed today at the
inshore-open ocean boundary did not exist during the Upper Cretaceous and oligotrophic surface
water conditions, previously confined to the open oceans, were now established in the newly formed

epicontinental seas.

The high sea-level in connection with the warm, but arid, climate and the low topographic relief of
the peneplaned NW European land masses reduced the influx of erosional detritus into the oceans.
The ensuing clarity of the surface waters and their warm temperature, associated with oligotrophic

nutrient levels and normal salinity, were optimal conditions for the flourishing of the coccolithophorid
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algae. The widespread sedimentation of the calcareous skeletal remains of these algae, the coccoliths,
formed thick layers of calcitic chalk ooze on the sea floor (Hékansson et al., 1974; Hancock, 1975).

At the end of the Cretaceous, several marine and terrestrial biota disappeared, including dinosaurs,
ammonites, inoceramid and rudist bivalves and many nanno- and microfossil groups (Smit, 1990;
Keller, 1989, 2001). This large-scale extinction has been attributed to a meteorite impact (Alvarez et
al., 1980; Smit & Hertogen, 1980), based on the increased level of cosmogenic Ir and the presence of
spherulitic glass ejecta in the K-T sequences in NE Mexico, Texas and at the Chicxulub impact crater.
However, in recent years researchers have disputed this thesis and confirmed that the Chicxulub
impact predates the K-T boundary by ~300 kyr, suggesting that the concomitant effects of volcanism,
meteorite bolide impacts, and extreme climate variations before and throughout the K-T boundary

were the main cause of the mass extinction at the end of the Cretaceous (Keller, 2008).

In the Central Graben area, sedimentation of chalk continued throughout the Danian, although the end-
Cretaceous extinction resulted in the collapse of Cretaceous phytoplankton systems and replacement
of the Maastrichtian coccolithophorid by different assemblages (Kennedy, 1987a). At the end of the
Danian, following the compressive pulses of the Alpine orogenesis, the landmasses surrounding
the chalk epeiric sea were gradually uplifted with subsequent increase in terrigenous detrital influx
into the oceans. This led to deposition of siliciclastic successions over broad areas, terminating the
proliferation of coccolithophorid algae and the associated sedimentation of chalk (Ziegler, 1990). In
the North Sea, the total thickness of the Chalk Group may exceed 2000 m (Fig. 1), while in the study
area within the Norwegian Central Graben it reaches a maximum thickness greater than 1500 m.
Present-day burial depth is variable, but may reach more than 3000 m in the centre of the basin (Fig.
2) (Ziegler, 1990).

Sedimentation of chalk primarily occurred through pelagic settlement of coccolithophorid tests in
marine conditions (Hakansson et al., 1974; Hancock, 1975). In the North Sea, deposition of chalk
was accompanied by rise of ridges, domes and anticlines due to halokinetic movements and tectonic
inversion of the pre-Cretaceous extensional faults (Cartwright, 1989). Seismic activity increased the
instability of sediments and triggered downslope mass movements of previously deposited chalks
through slides, slumps, debris flows and turbidity currents (Watts ef al., 1980; Hatton, 1986; Kennedy,
1987a, b; Van der Molen et al., 2005). The physiography of the chalk sea floor was intensively
sculpted by bottom currents that were periodically intensified during the Late Cretaceous. Bottom
currents created important topographic features and thickness variations through formation of
channels, ridges, moats and drifts (Lykke-Andersen & Surlyk, 2004; Esmerode et al., 2007, 2008;
Surlyk & Lykke-Andersen, 2007; Surlyk ez al., 2008; Esmerode & Surlyk, 2009).

Geological interest in chalk has increased since the 19" century, but it was the discoveries of the Kraka

and Ekofisk hydrocarbon fields in the North Sea during the 1960s that drove the focus of geologists

towards this sedimentary rock. In the following years, chalk sediments proved to be prolific reservoirs

in a series of oilfields. These included the Eldfisk, Tor, Albuskjell, Hod, Valhall, Tommeliten, West

Ekofisk and Edda fields in the southern Norwegian offshore sector, the Gorm, Dan, Tyra and Skjold

fields in the Danish sector and the Joanne and Banff fields in the UK sector, while the Hanze Field is
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the only hydrocarbon accumulation in chalk so far discovered in the Dutch sector (Fig. 3) (Megson,
1992; Oakman & Partington, 1998; Bramwell et al., 1999; Megson & Hardman, 2001; Hofmann,
2002; Surlyk et al., 2003).

Among the chalk hydrocarbon fields in the North Sea, those present in the Norwegian sector show
the highest porosity and permeability with allochthonous facies forming the main reservoir intervals.
In the Norwegian offshore sector, proven reserves originally in place were estimated to be around
2300 x 10° Sm? of oil and 550 x 10° Sm? of gas (www.npd.no). In the Danish fields, rhythmically
bedded pelagic chalks also form hydrocarbon reservoirs (Scholle et al., 1998; Damholt & Surlyk,
2004), although these show lower porosity and permeability compared to coeval successions in the

Norwegian sector.

2. Geological setting

The study area is located within the Central Graben, an intracratonic basin that represents the southern
branch of the North Sea triple rift system. The other NE and NW branches of this rift are the Viking
Graben and the Moray Firth Basin, respectively. The Central Graben extends from the northern
termination of the Dutch Central Graben to the western end of Rinkobing-Fyn High in Danish waters.
It then continues toward the northwest entering into the UK sector of the North Sea where it intersects
the southern part of the Viking Graben (Fig. 3).

In Norwegian waters, the Central Graben occurs along listric normal faults directed NNW-SSE which
are locally cut by transverse faults with W—E to WSW-ENE directions. Most of the graben is made
up of intra-basinal lows and highs (Fig. 4) and its present-day structural configuration is the result of
several tectonic phases that can be dated back to the Palacozoic (Fig. 5) (Ziegler, 1990; Gowers et al.,
1993; Knott et al., 1993).

Prolonged extension occurred during the Permian—Triassic with coeval sedimentation of thick
successions of Zechstein salt. During the Triassic, tectonic extension continued mainly with a
regional WNW-ESE direction, while the Middle Jurassic was characterized by pre-rift doming,
which developed into the Mid-Cimmerian Unconformity. This doming represents the early stages of
an important extensional phase that culminated during the Late Jurassic. These rifting phases caused
uplift and tilting of fault blocks on the rift shoulders favouring erosion by shallow marine processes
during the Early Cretaceous. As a result, the regional Base Cretaceous Unconformity developed over
the entire area of the Central Graben (Gowers ef al., 1993). Opening of the Atlantic Ocean during the
Early Cretaceous changed completely the regional stress regime causing the cessation of the rifting.
The horizontal stress became compressive mostly with an E-W direction. This compression resulted
in local shortening and inversion of the Triassic—Jurassic faults, with transpressive movements along
the NNW-SSE oriented faults.

Throughout the Late Cretaceous and Palacogene, the Central Graben underwent post-rift thermal

subsidence periodically punctuated by NNE-SSW compressional tectonic pulses with variable
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intensity. During deposition of the Chalk Group, four tectonic phases of increased intensity occurred
(Vejbaek & Andersen, 2002):

(1) Latest Santonian (Sub- Hercynian tectonic phase);
(2) Mid Campanian (Sub- Hercynian tectonic phase);
(3) Late Maastrichtian (Sub- Hercynian tectonic phase);
(4) Late Paleocene (Laramide tectonic phase).

Inversion of major basement faults generated anticlinal fold structures such as the Lindesnes Ridge
(Fig.4) (Cartwright, 1989; Farmer & Barkved, 1999). The ductility and intrusive behaviour of the
Zechstein salt along major basement faults enhanced the inversion movements, but also created a
wide array of halokinetic structures such as diapirs, domes, salt walls and salt withdrawal basins
(Knott ef al., 1993; Oakman & Partington, 1998). During progressive uplift, the crestal areas of the
inversion zones and halokinetic structures were subject to gravitational collapse with formation of
local horsts and grabens (Farmer & Barkved, 1999).

The thermal subsidence of the North Sea Basin associated with the eustatic sea-level rise led to the
progressive overstepping of its margins and, by the beginning of the Early Cretaceous, the sea-level
exceeded the present-day levels by ~100-300 m (Fig. 6) (Haq ef al., 1987; Ziegler, 1990). During
this period, inundation of the land masses allowed the widespread occurrence of oligotrophic oceanic

conditions with consequent deposition of chalk (Fig. 7) (Ziegler, 1990).

Climate throughout the Cretaceous is generally considered to have been warm with lower tropical
to polar temperature gradients than at present-day. Estimated tropical sea-surface temperatures
varied between 32° and 34° C, while in polar regions temperatures of 10° to 18° C are thought to
have occurred (Hay et al., 2008). Significant climatic variations have been inferred during the late
Cretaceous with the Cenomanian—Campanian being the warmest, which coincided with the peak of
the sea-level transgression. Sea water temperatures declined strongly during the Maastrichtian (Huber

et al., 2002), which was also characterized by marked temperature fluctuations (Li & Keller, 1999).

Global palacoenvironmental changes during the Cretaceous accompanied the sea-level transgression,
leading to widespread oceanic anoxic events (OAEs; e.g. Valanginian, Hauterivian, Barremian—
Aptian, Aptian/Albian, Albian—Cenomanian, Cenomanian—Turonian, and Coniacian). The the sea-
level transgression is commonly attributed to rapid sea floor spreading and an increase in the volumes
of mid-oceanic ridges (Schlanger et al., 1981; Larson, 1991; Wignall, 2001).

The concomitant release of volcanic CO, led to more intensive terrestrial weathering and nutrient
input into the oceans, as well as lowering of the atmospheric oxygen. These factors, associated
with increased water-column stratification, led to eutrophication of ocean surface waters and an
increased flux of organic matter to the seafloor. Bacterial decomposition of organic matter depleted
the dissolved oxygen, causing anoxic environments and sedimentation of black shale (Schlanger et
al., 1987; Wignall, 1994).
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3. Stratigraphy

The first formal lithostratigraphic nomenclature for the central and northern North Sea was published
by Deegan & Scull (1977). The Cretaceous and Tertiary stratigraphy for the Norwegian North Sea was
later revised by Isaksen & Tonstad (1989). Lieberkind ez al. (1982) published an informal nomenclature
for the Chalk in the Danish Central Graben in 1982. The JCR Chalk Monograph compiled by Andersen
(1995) summarizes the North Sea chalk lithostratigraphy. The stratigraphic nomenclature for chalk
formations in the Central Graben used in this study follows the approach of Bailey ef al. (1999) as
summarized in Figure 8. These authors reviewed the North Sea chalk lithostratigraphy and integrated
internal and informal chalk subdivisions used by the operating companies. This subdivision comprises
the Hidra, Blodesk, Narve, Thud, Magne, Tor and Ekofisk formations.

4. Chalk constituents

The chalk primarily consists of the minute skeletal remains of coccolithophorid algae. These calcareous
nannofossils are composed of individual calcareous plates (coccoliths) that form clay to silt-sized
spherical bodies called coccospheres (Fig. 9). Complete coccospheres are sporadically present within
the chalk but the majority are broken up into single coccolith plates or laths (Hékansson ef al., 1974;
Hancock, 1975; Scholle, 1977).

The size of the coccosphere and its components give to the chalk a final mudstone to wackestone
micro-texture and coarser textures, such as packstone and grainstone, are restricted to sporadic and thin
intervals. Secondary calcareous components in the North Sea chalks are calcispheres, foraminifers,
macrofossil mollusc debris, bryozoan, brachiopos debris and ostracods, while the non-carbonate
biogenic fraction commonly consists of radiolarians, diatoms and sponge spicules (Kennedy, 1985).
The low-Mg content of the calcite that forms the coccoliths makes the chalk less prone to diagenetic

changes compared to carbonate of mixed aragonitic and high-Mg composition (cf. Scholle, 1977).

Chalk also contains other secondary components, for example, the non-biogenic terrigenous fraction
is largely represented by clay minerals and detrital quartz and although clay content is generally low,
in certain intervals this material may reach up to 20% wt of the bulk sediment (Lindgreen et al., 2002).
It is generally believed that clay material in the chalk was transported as erosional detritus by wind

or by river plumes, although volcanic ash may also have contributed (Fabricius, 2007; Lindgreen et
al., 2008).

The chalk also contains a siliceous fraction in the form of flint, which was derived from the siliceous
tests and skeletons from radiolarians, diatoms and sponge spicules (Hakansson et al., 1974; Kennedy,
1985). Flint is composed of cryptocrystalline quartz and it is the result of dissolution, reprecipitation
and subsequent diagenetic transformation of the initial biogenic opal-A silica. Besides flint and
detrital grains within clay-rich intervals, quartz is present as euhedral particles or particle clusters
of nanometre size dispersed in the chalk matrix (Lindgreen et al., 2010; Madsen, 2010). This kind
of quartz occurs within apparently homogenous chalk intervals similar to other non-silicified chalk

beds. In addition, pyrite and sulphate minerals may be also present in concretions as the result of
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microbial action (Fabricicus, 2007). Other minor components present in the chalk as a product of

burial diagenesis are zeolites, barite, celestite and feldspar (Fabricius & Borre, 2007).

5. Chalk sedimentology and depositional model

The primary depositional mechanism of the chalk was from pelagic rain of coccoliths in a marine
setting at depths up to few hundred metres. Due to their minute size, coccoliths would not reach the
sea floor by settlement alone. It is therefore more probable that the pelagic rain (Fig. 10A) consisted
of faecal pellets that originated from plankton feeder organisms or algae mucose filaments bounding
planktonic pellets known as “marine snow” (Hancock, 1975; Honjo & Roman, 1978; Scholle, 1983;
Steinmetz, 1994; Damholt & Surlyk, 2004). This pelagic rain deposited on the sea floor a highly
water-saturated calcareous ooze with porosity ranging from 70% to 80% (Scolle, 1977) which is

analogous to modern deep-sea nanoplankton ooze.

After deposition, the calcareous ooze was subject to progressive compaction and bioturbation
by the action of benthic organisms. The slow rate of sedimentation of chalk facilitates intensive
bioturbation, enhancing dewatering and early compaction (Surlyk ez al., 2003). As a result, most of
the autochthonous North Sea chalks are bioturbated and only remnants of the primary sedimentary
structures are visible (Ekdale & Bromley, 1983; Kennedy, 1980). In chalk sediments, a wide range
of trace fossils can be observed. These include shallow obliterated tiers passing downward to tiers
characterized by Planolites, Thalassinoides, Taenidium, Zoophycos and Chondrites (Fig. 11) (Ekdale
& Bromley, 1983, 1991).

Chalk sediments may show evidence of primary bedding at a decimetre to metre scale, usually visible
as variation in oil staining, grey tone or alternation of more bioturbated to laminated beds. The bedding
can result from numerous mechanisms, for instance primary pelagic lamination possibly emphasized
by sea floor diagenesis, variation in the influx of silicates, current winnowing of unconsolidated chalk
or alternating bioturbation and pelagic sedimentation punctuated by intermittent deposition of distal
low density turbidity currents (Kennedy, 1987a, b; Scholle et al., 1998; Damholt & Surlyk, 2004;
Fabricius, 2007).

Cyclic deposits of marl-limestone couplets referred to as periodites frequently occur within pelagic
chalk successions (Kennedy, 1987a, b). Within these rhythmical successions, clay-rich intervals
usually show well-developed planar parallel laminations while the limestones are highly bioturbated,
though remnants of primary laminations can be present. In chalk succession, other cyclicity typically
occur as variations in the degree of cementation (nodular chalk and hardgrounds), colour changes,
variations in the carbon and oxygen isotopic ratios, flint bedding distribution and variations of
petrophysical properties, e.g. gamma ray, porosity and magnetic susceptibility (Hancock, 1975;
R.O.C.C. Group, 1986; Hart, 1987; Ditchfield & Marshall, 1989; Gale, 1989; Zijlstra, 1994, 1995;
Niebuhr & Prokoph, 1997; Molenaar & Zijlstra, 1997; Scholle ef al. 1998; Gale et al., 1999; Stage
1999, 2001a, b; Niebuhr et al., 2001; Damholt & Surlyk, 2004). Periodites and other cyclicity present

in chalk are interpreted to result from variations in the calcareous nannoplankton productivity, changes
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in the terrigenous input or variations in the redox conditions at sea-floor as well as modification of
the carbonate dissolution rates. These factors may be linked to several causes, for instance sea-level
fluctuations, changes in organic productivity, ocean currents and upwelling or climatic fluctuation
ascribed as Milankovitch cycles (Barron et al., 1985; R.O.C.C. Group, 1986; Gale, 1989; Scholle,
1998; Damholt & Surlyk, 2004).

The pelagic rain of coccoliths accumulated thick piles of sediment on the sea-floor. The calcium
carbonate (CaCO3) particles making up the thixotropic chalk ooze would have had no unbalanced
electric charges or platy interlock, hence little or no cohesion existed. In submarine environments,
small inclinations around 1-2 degrees are sufficient for gravity-flows to occur (Lewis, 1971) and even
mild vibrations or ground motions of the substrate would result in remobilization and downslope
movement of the incohesive chalk material. Triggering mechanisms of such movements could be
earthquakes, storms or rapid release of clathrates from the sediment column (Kennedy, 1985, 1987a,
b; Bramwell et al., 1999).

In the Central Graben, while coccoliths were being deposited ubiquitously, tectonic seismicity
increased sediment instability over the inversion areas, leading to gravity-driven resedimentation
and emplacement of allochthonous material into the basins (Fig. 10B). Kennedy (1987a) concluded
that this was the main cause of the great thickness of the Chalk Group over the basinal areas (2000
m) compared to the flanks (200 m) of the Central Graben. Numerous types of mass-flow deposit can
be observed in chalk from cores, well-logs and seismic data (Fig. 10A) (Perch-Nielsen et al., 1979;
Kennedy, 1985, 1987a, b; Watts et al., 1980; Hatton, 1986; Bramwell ez al., 1999; Skirius et al., 1999;
Van der Molen et al., 2005).

Based on the degree of deformation, which reflects the initial state of consolidation and distance from
source area, gravity-flow deposits can be categorized from proximal to distal: (1) slides and creeps,
formed by rotated and slightly deformed blocks with parallel dips; (2) slumps, consisting of plastically
deformed chalks; (3) debris flows, usually comprising chalk clasts floating in a homogeneous matrix;
(4) mudflows, which are usually characterized by massive and homogeneous deposits and are
considered as debris flow where all the clasts have been deposited or disrupted during movement;
(5) turbidites, comprising planar-to cross-laminated packstone often showing normal grading. The
majority of the redeposited chalks are not burrowed with the exception of thin gravity-flows or the
uppermost interval of the resedimented unit which was in contact with the sea-floor. An extensive
description of the different depositional facies in the chalk can be found in Kennedy (1985, 1987a,
b), Bromley & Ekdale (1987), Crabtree et al. (1996), Bramwell et al. (1999) and Ragen et al. (1999).

Bottom currents played a significant role in the deposition of the chalk, as recently described from
the offshore chalk successions in the North Sea and in the Danish Basin (Lykke-Andersen & Surlyk,
2004; Esmerode et al., 2007, 2008; Surlyk & Lykke-Andersen, 2007; Surlyk ef al., 2008; Esmerode &
Surlyk, 2009). These currents created a series of important erosional and depositional features on the
chalk sea floor which have been described as moats, drifts and channels (Fig. 10B). Mass movements
were also triggered by alongslope current erosion, which decreased the stability of the sediments on
the slope favouring failures and mass movements (Esmerode et al., 2008). Channel features in chalk
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successions have also been described from onshore France (Quine & Bosence, 1991) and in the
offshore sectors of the UK (Evans & Hopson, 2000; Evans et al., 2003), Denmark (Back et al., 2011)
and the Netherlands (Van der Molen, 2004). These channels have been otherwise interpreted to result
from submarine erosion by tidal or oceanic currents during lowstand periods (Quine & Bosence,
1991) induced by tectonic uplift (Evans & Hopson, 2000; Evans et al., 2003) or to represent conduits
for submarine gravity-flows (Back et al., 2011).

6. Diagenesis

Chalk diagenesis in general is well documented by several studies that have addressed the depositional
and post-depositional history of this sediment. These include Mapstone (1975), Scholle (1977),
Clayton (1984), Taylor & Lapre (1987), Herrington et al. (1991), Maliva & Dickson (1992), Brasher
& Vagle (1996), Scholle et al. (1998), Lindgreen et al. (2002, 2008, 2010), Fabricius (2007), Fabricius
& Borre (2007) Fabricius et al. (2007, 2008), Madsen (2010), Madsen & Stemmerick (2010).

Intense current action or intervals of low coccolithophore productivity are likely to reduce the net
sedimentation rate of coccoliths, enhancing early sea floor cementation. Figure 12 summarizes the
progressive stages of hardground formation according to Kennedy & Garrison (1975). Reduced
rate or breaks in sedimentation led to the formation of an initial omission surface characterized by
intensive Thalassinoides tiers. Afterwards, nodular chalks develop between the burrows as a product
of cementation. Eventually, the nodules may aggregate forming a cemented bed and, if followed by
erosion, the nodules may be reworked to form an intraformational conglomerate. If erosion does not
occur and sedimentation restart, Thalassinoides burrows may be filled with the newly deposited chalk
(Surlyk et al., 2003).

Hardgrounds represent extensive periods of reduced deposition and sea floor exposure characterized by
lithification and bioerosional processes. This allows long-term water circulation in the sediments with
consequent precipitation of calcite cement in the pore spaces. Hardgrounds are also characterized by
cement filling of pre-existing Thalassinoides burrows, coating of the sediment surface by phosphatic
and glauconitic mineralizations, Entobia borings and an irregular upper surface due to submarine
erosion (Bromley, 1975, Kennedy & Garrison, 1975, Lasseur et al., 2009).

Early diagenesis, through de-watering and compaction, takes place from the time of deposition until
pore water in the sediment ceases to be exchanged with seawater, which commonly occurs at about
1 kilometre of burial where porosity is ~40% (Taylor & Lapre, 1987). The presence of clay minerals
strongly influences the reservoir quality of chalk sediments. A high clay content prevents contact
between grains and development of intergranular cement during early diagenesis. This decreases the
degree of sediment consolidation, resulting in greater mechanical and chemical compaction during
subsequent burial (Surlyk ef al., 2003).

A second diagenetic effect relates to the complex area of silica dissolution and reprecipitation in
the form of flint nodules. Flint is composed of cryptocrystalline quartz and represents the results of

relatively early diagenetic phenomena that occur at the redox boundary within the first tens of metres
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in the sediment column (Clayton, 1984; Madsen & Stemmerick, 2010). Dissolution of biogenic opal-A
silica and subsequent reprecipitation of flint is the main mechanism of flint development in chalk. The
source of biogenic silica has been commonly attributed to the remnants of radiolarian, diatoms and
sponge spicules. Some silica is preferentially precipitated in burrows, notably Thalassinoides, while

other replaces very fine-grained chalk.

Below 1000 m of burial, the effects of chemical compaction and pressure solution become the
predominant porosity and permeability reducing processes. Pressure solution strongly affects the
reservoir properties, leading to a rapid decline in porosity from 30-50% to about 20-30% at burial
depths of 1000—2000 m. The main diagenetic features produced during this stage are pressure solution
parallel laminations (Ekdale & Bromley, 1988) and lenticular chalk consisting of small lenses of pure
chalk enveloped by clay-rich solution seams (Garrison & Kennedy, 1977). At deeper burial, solution
seams change to stylolites, which become the predominant expression of pressure solution (Fig. 13).
This occurs in high porosity chalk, as well in chalk with porosity less than 25% (Scholle, 1977).
Stylolites generally have an amplitude of few millimetres with the insoluble residue at the stylolite

dentate surface formed by various clay minerals, pyrite and dolomite (Dons et al., 1995).

Original porosity of chalk ooze is estimated at ~70-80%, however porosity values up to 50% in chalks
at burial depths greater than 3000 m were considered unusual. Early dewatering of the coccolith ooze
followed by mechanical and chemical compaction during progressive burial normally would have
reduced the original porosity to less than 15% (Scholle, 1977; D’Heur, 1984). Preservation of high
porosities at more than 3000 m of burial results from several factors (Fig. 14): (1) creation of a rigid
grain-to-grain framework due to early cementation (Mapstone, 1975); (2) overpressure due to rapid
subsidence (Scholle, 1977); and (3) early hydrocarbon charging which inhibit or even stop chemical
compaction (Scholle, 1977; D’Heur, 1984).
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Danian. (after Ziegler, 1990). Palaeogeographic maps of NW Europe in the upper row were produced by Ron
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Fig. 7. NW European palaeogeography (A) Aptian—Albian; (B) Cenomanian-Turonian; and (C) Coniacian—
Blakey, Colorado Plateau Geosystems.
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Fig.8. Lithostratigraphic subdivisions of the Chalk Group in the offshore sector of Norway, Denmark and UK.

micrographs at x10000 of rock chip surface from the Ekofisk Formation in the Ekofisk Field.
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Fig.10. (A) Overview of the depositional processes and resulting facies types (after Kennedy, 1987). (B) Depositional
model of chalk in the Central Graben (modified from Taylor & Lapré, 1987; Surlyk & Lykke-Andersen 2007).
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Sea bed Tiers

Shafts, three sizes of
# Planolites, large
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Dark Zoophycos
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Fig.11. Trace fossil tiering in Maastrichtian chalk. The diagram illustrates the types of trace fossil found at and
beneath the palaeo-sea bed in Maastrichtian chalk. Although this example is derived from onshore outcrop in
Denmark, analogous features are observed offshore (from Surlyk et al., 2003).
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Fig. 12. Diagram illustrating the progressive development of nodular chalk and hardgrounds (from Surlyk ez al.,
2003).
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Fig. 13. (a) Schematic diagram of lenticular chalk illustrating the terminology used. (b) Early diagenesis of
soft chalk may lead to the formation of nodular chalk while late-burial diagenesis form lenticular chalk with
solution seams. During late-burial diagenesis of nodular chalk, solution seams concentrate in uncemented areas in
between the nodules. Reworking of nodular chalk may produce intraformational conglomerate that under burial
diagenesis develop solutions seams separating the intraclasts but not the nodules. Pressure solutions occur where
the intraclasts are in contact (from Surlyk ez al., 2003).
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Fig. 14. Diagenetic pathways of Norwegian Central Graben chalk during progressive burial. Differences in
porosity between pelagic and redeposited chalk by gravity flows is accentuated during mechanical compaction.
Chemical compaction below 1 km of burial varies depending on the timing of overpressure and hydrocarbon
charging (after Brasher & Vagle, 1996).
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