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Abstract Cell density and fatty acid (FA) content of
Pavlova lutheri and Chaetoceros muelleri were analysed
in a continuous algal production system (250-L bags) with
reduced diameter. The cell density and FA content and
composition in the algal production system were deter-
mined in replicate bags over a period of 5 weeks. The
results showed that the cell density and essential FAs
increased during the experiment for both species. After
5 weeks the mean cell numbers had increased to 6.0±0.3×106

cells mL−1 in the P. lutheri bags and 6.0±0.4×106

cells mL−1 in the C. muelleri bags. The content of total
FAs increased significantly (p<0.05) in all of the bags during
the experiment. At the end of the experiment the mean total
FA content were 2.7±0.3 pg cell−1 in the P. lutheri bags and
1.8±0.1 pg cell−1 in the C. muelleri bags. Maximum total FA
content registered was 3.0 pg cell−1 in one of the P. lutheri
bags. The content of the essential FAs (ARA, EPA, DHA)
increased over time in both of the species. At the end of the
experiment the content of EPA (0.6±0.1 pg cell−1) and DHA
(0.3±0.0 pg cell−1) were highest in the P. lutheri bags, while
ARA (0.1±0.0 pg cell−1) was highest in C. muelleri. EPA
and DHA constituted 22% and 11%, respectively, of total FA
content in P. lutheri, while ARA constituted 6% of total FA

content in C. muelleri. The results from this experiment
indicate that flagellates such as P. lutheri perform better in
narrow bags with improved light conditions, while diatoms
like C. muelleri perform better in wider bags under light
limitation. Implications for bivalve hatcheries are discussed.
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Introduction

Larvae and juveniles produced in bivalve hatcheries are
dependent on live feed such as algae (Dhert and Sorgeloos
1994). Live feed is often produced on site in separate
installations and this can be both laborious and costly, in
addition to not being optimised with respect to the species
produced.

Large scale continuous bag cultures are well-used
production systems (www.seacaps.com) in many commer-
cial bivalve hatcheries (e.g. Magnesen et al. 2006,
Jacobsen et al. 2010). The quality of the live feed is an
important factor for rearing success of the larvae and
juveniles produced. A major advantage of this system is
the possibility to grow several species in separate bags
coupled together and its relatively easy maintenance.

The cylindrical plastic bags, which can be up to 500 L,
are either illuminated with natural or artificial light under
controlled temperature conditions. However, a disadvantage
of this system is low cell densities because of light
limitation due to a large diameter of the bags (D≤50 cm).
Photosynthetic active light only penetrate about 3 cm into a
dense culture (Richmond 2004). This results in high
efficiency photosynthesis per se in the photic volume only
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whereas the rest of the bag effectively will not participate in
the production. Other algal production systems with lesser
diameter have been developed where algae are circulated in
tubes in a fence (e.g. BioFence, http://home.bt-webworld.
com/cellpharm/products.htm), in a flat plate (e.g. Hu and
Richmond 1996) or in a spiral/helical shaped pipe system
(e.g. Acién Fernández et al. 2003, Briassoulis et al. 2010)
using natural or artificial light. These systems are, however,
less suited for growing algae in cold water areas due to
indoor production and because they are difficult to scale up
in volume to meet the hatcheries requirements for live feed
(e.g. Janssen et al. 2003).

The fatty acid (FA) composition is highly dynamic and
responds significantly to variation in light intensity (e.g.
Thompson et al. 1990; Brown et al. 1993). Other studies
have also demonstrated that changes in culture media
(Ben-Amotz et al. 1985), temperature (James et al. 1989,
Thompson et al. 1992, Zhu et al. 1997), pH (Guckert and
Cooksey 1990), stage of harvest and different culture
techniques (e.g. Emdadi and Berland 1989; Hodgson et al.
1991; Dunstan et al. 1993; Brown et al. 1997; Pernet et al.
2003) have an impact on FA content and composition.

In a large scale continuous bag production system
(500 L, D=50 cm) used by many hatcheries, the algal cell
density in the bags are low when artificial light is used (e.g.
1.8–2.2×106 cells mL−1, Jacobsen et al. 2010) due to light
limitation. In this experiment we wanted to investigate the
dependence of cell density and content of essential FAs on
the volume of this culture system. Effects of size of culture
systems on cell density and FAs have been investigated in
other types of systems (e.g. Acién Fernández et al. 1998,
Acién Fernández et al. 2000, Zou et al. 2000), but to our
knowledge, never in this type of bag system before.

The purpose of the present investigation was therefore to
see if better light conditions by reduction of the diameter of
the culture bags from 50 cm to 25 cm increased cell density
and FA content of the two species Pavlova lutheri and
Chaetoceros muelleri used as live feed in bivalve hatcheries.
The cell density and FAs in the algal production system were
analysed between replicate bags over a period of 5 weeks.
Implications for bivalve hatcheries are discussed.

Materials and methods

The microalgal cultures were grown and operated at the
Norwegian scallop hatchery Scalpro AS, located at Rong,
outside Bergen, Norway.

Stock cultures of P. lutheri (CCAP 931/1) and C.
muelleri (CCAP 1010/3) were obtained from the Culture
Collection of Algae and Protozoa (CCAP, UK). The stock
cultures (30 mL) were grown and maintained under
continuous white fluorescent light (Osram L 58W/965

Biolux) at 100 μmol photons m−2 s−1, at 15±1°C and in
Conway medium (Laing 1991). Starter cultures (2 L) were
inoculated with axenic stock cultures (10×106 cells mL−1).
The starter cultures were then grown in Conway medium
at 20±1°C, in continuous white fluorescent light at
110 μmol photons m−2 s−1 and with bubbling of CO2-
enriched air (0.5% of the volume of air). The starter cultures
(20–30×106 cells mL−1) were then used to inoculate the
250-L continuous bag cultures (D=25 cm and H=240 cm).
About 10% of the bag volume was continuously harvested
per day at late logarithmic growth phase. The bag cultures
were grown under the same conditions as the starter cultures,
enriched with CO2, but with higher light intensities
(220 μmol photons m−2 s−1, Osram L 58W/965 Biolux).
The bags were illuminated by light panel evenly distributed
along the sides of the bags. Three replicate bags were set up
for each species. pH was monitored and kept as stable as
possible and varied between 8.4 and 8.7.

Sampling

Samples for determination of microalgal cell numbers and
FA content and composition were collected three times (T1,
T2 and T3) from three bags for each species over a period
of 5 weeks on 8 June, 22 June and 6 July (2009) at the
scallop hatchery Scalpro AS. The bags were started at the
same time and were therefore of the same age. The
sampling of the bags started when the cultures were 1 week
old (8 June). The bags were operated as continuous cultures
and were harvested at late logarithmic phase. pH was
monitored daily with a digital pH meter.

Cell numbers were determined by counting live cells in a
Bürker counting chamber. A minimum of 400 cells were
counted each time giving a counting error of ±10%
(Andersen and Throndsen 2003).

Samples for FA analyses (250 mL from each bag) were
immediately brought to the laboratory at the University of
Bergen after sampling for further processing.

FA analysis

The algal FAs were converted to FA methyl esters (FAMEs)
by direct methanolysis, as described in Meier et al (2006).
After gentle stirring to ensure homogeneous suspension in
the flasks, five replicate subsamples were poured into
15 mL thick-walled glass tubes with teflon-lined screw caps
containing 8.3 μg of the internal standard FA 19:0. The
internal standard had been added in advance to the tubes in
a chloroform solution of accurately known concentration,
whereupon the solvent had been evaporated. Samples were
concentrated by centrifugation at 4,500 rpm for 15 min.
The supernatant was gently sucked off and the remaining
water was evaporated under a stream of N2 gas.
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For C. muelleri the algal material was not completely
precipitated by the centrifugation, so replicates of 50 mL
each in T1 and 25 mL in T2 and T3 of the algal suspension
were filtered by suction through a paper filter, 2 cm
diameter, which had been thoroughly rinsed with chloro-
form and methanol. The filter paper with the algal material
was transferred to 15 mL thick-walled glass tubes for
further treatment as the other samples.

One half millilitre anhydrous methanol, containing
hydrogen chloride at a concentration of 2 mol L−1 was
added; the tubes were sealed with Teflon-lined screw caps
and subjected to methanolysis for 2 h at 90°C. After
cooling, approximately half of the methanol was evaporated
with gas and replaced by 0.5-mL distilled water. The water/
methanol phase containing the FAME was extracted twice
with 1-mL hexane by thorough shaking followed by
centrifugation and withdrawal of the hexane phase by a
Pasteur pipette. The concentration of the FAME in the
combined extracts was adjusted by addition of hexane to
obtain an approximately similar response of 50–100 area
units for 16:0 for all samples.

One microlitre of the hexane extracts was injected
splitless and chromatographed on a 25 m × 0.25 mm
fused-silica column with polyethyleneglycol (CP-WAX 52
CB Chrompack) with 0.2 μm thickness as stationary
phase and helium at 20 psi as mobile phase, giving a
flow rate of 1 mL/min at the start of the run. The
column was mounted in a Hewlett-Packard 5892 Series
II gas chromatograph equipped with a Hewlett-Packard
7673 autosampler and a flame-ionisation detector. Injec-
tor and detector temperatures were 260°C and 330°C,
respectively. The oven temperature was 90°C at injec-
tion and this temperature was maintained for 4 min
before being raised to 165°C at 30°C min−1, thereafter
being raised to 225°C at 3°C min−1 and maintained
there for 10.5 min. A standard solution (GLC-68D from
Nu-Check-Prep, USA) containing 20 FAMEs was chro-
matographed after every eight sample. The detector signal
was digitalised and sent to the lab-data system Chrome-
leon. Peaks were identified by means of the standard
mixture, previous experience of relative retention times of
FAME and mass spectrometry. The peak areas of 31
selected FAMEs between 14:0 and 22:6n3 were integrated
and corrected by response factors. These empirical
response factors, relative to 18:0, were calculated for the
20 FAMEs, present in known amounts in the standard
mixture. The response factors for each of the five FAMEs,
for which we had no standards, were estimated by
comparison with the standard FAME with the closest
retention time that resembled each of those most closely
in terms of chain length and number of double bonds.
These corrected areas were then used to calculate FA
content and for multivariate analysis.

Statistical methods

The relative content of each of the 31 FAs in the samples
was calculated as percentage of the total. To detect possible
differences in the FA composition among the different
species and bags the data were subjected to multivariate
principal component analysis using the software package
Sirius 7.0 (Kvalheim and Karstang 1987). The relative
values of the 14 most abundant FAs were log-transformed
in order to level out the quantitative differences among the
FAs. The samples were positioned in a 14-dimensional
space, one dimension of each FA, and principal components
(PCs) were then placed as vectors through the centroid of
the samples in such a way that the first PC fell in the
direction of the largest spread of the samples, and the
second PC, orthogonal to the first, in the direction of the
second largest spread of the samples. The samples were
projected onto the plane made of these two coordinates.
The systematic variation among the samples embedded in
the original 14 variables, FAs, was thus displayed in two
dimensions.

An one-way ANOVA (Statistica 8) was performed to
detect significant difference (p<0.05) between replicate
bags.

Results

The microalgal production were operated as continuous
cultures (250-L bags and D=25 cm) and harvested at late
logarithmic growth phase. Gradual increases in cell
numbers were observed from T1, T2 and to T3 (Table 1).
At the first sampling point (T1) the mean cell numbers were
4.1±1.2 and 2.0±0.8×106 cells mL−1 in the P. lutheri and
C. muelleri bags, respectively. After 6 weeks (T3) the mean
cell numbers had increased to 6.0±0.3×106 cells mL−1 in
the P. lutheri bags and 6.0±0.4×106 cells mL−1 in the C.
muelleri bags (Table 1).

At T1 the mean total FA content were 1.4±0.8 pg cell−1

in the P. lutheri bags and 0.4±0.3 pg cell−1 in the C.
muelleri bags (Table 1). The content of total FAs increased
significantly (p<0.05) in all of the bags during the
experiment. At the end of the experiment (T3) the mean
total FA content were 2.7±0.3 pg cell−1 in the P. lutheri
bags and 1.8±0.1 pg cell−1 in the C. muelleri bags (Table 1).
Maximum total FA content registered was 2.98 pg cell−1 in
one of the P. lutheri bags (T3, Table 1).

The content of the essential FAs (arachidonic acid
(ARA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA)) increased over time in both of the species
(Tables 1 and 2). The content of EPA and DHA (pg cell−1)
were highest in the P. lutheri bags, while ARA (pg cell−1)
was highest in C. muelleri (Tables 1 and 2). At the end of
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the experiment (T3), EPA and DHA constituted 22% and
11% of the total FA content in P. lutheri, while ARA
constituted 6% of the total FA content in C. muelleri.

The sum of saturated FA (SFA), monounsaturated FA
(MUFA) and polyunsaturated FA (PUFA) changed between
species over time (Fig. 1). The content of SFAs was in
general higher in the C. muelleri bags than in the P. lutheri
bags (Fig. 1; Tables 3, 4 and 5 in the Electronic
supplementary material). SFA (%) increased over time in
the C. muelleri bags from a mean initial content of 35.9±
0.3% to a mean content of 44.4±0.8% on the last sampling
date. An increase in the level of SFA was also observed in
the P. lutheri bags (Fig. 1; Tables 3, 4 and 5 in the Electronic
supplementary material), corresponding to a mean increase
from 30.4±0.1% to 35.1±1.1%. The dominating SFAs in
both species were 14:0 and 16:0. Particularly 14:0 increased
over time in the C. muelleri bags (Tables 3, 4 and 5 in the
Electronic supplementary material).

The content of MUFAs was slightly higher in the C.
muelleri bags than in the P. lutheri bags (Fig. 1) at T1 and
T2. A significant (p<0.05) decrease in MUFAs was,
however, registered on T3 in the C. muelleri bags
(Fig. 1). It was particularly16:1n7 that dominated in both
species, while 17:1n9 decreased significantly over time in
the C. muelleri bags (Tables 3, 4 and 5 in the Electronic
supplementary material).

The content of PUFAs (% of total FA) was higher in the
P. lutheri bags compared with the C. muelleri bags (Fig. 1;
Tables 3, 4 and 5 in the Electronic supplementary material).
A significant (p<0.05) decrease in proportion was, however,
detected in the P. lutheri bags over time, while an increase
was observed in the C. muelleri bags. The dominating PUFAs
in both species were 18:4n3, EPA and DHA, while ARAwas
in addition amongst the dominating PUFAs in C. muelleri. In
C. muelleri it was particularly ARA (1% to 3%) and DHA
(3% to 6%) that increased over time, while the C18 PUFAs
decreased from 13% to 8% in the P. lutheri bags.

The PC analysis (Figs. 2 and 3) detected variation
between the replicate bags of the different species over
time. The P. lutheri bags showed relatively much smaller
variation between the bags and over time than C. muelleri
(Figs. 2 and 3). To obtain a display of the much smaller
variation for P. lutheri, a new PC analysis was performed
on the P. lutheri samples exclusively (Fig. 3). The two first
principal components (PC1 and PC2) described 79% of the
total variation between the samples in this case. The
variation between the bags was smaller than for C. muelleri,
and the development over time was much more similar for
the three replicate bags. On the first sampling date (T1)
only two FAs (22:0, 22:6n3) differed significantly (p<0.05;
Table 3 in the Electronic supplementary material) between
the replicates, whilst three FAs differed significantly (p<
0.05) at T2 and T3 (Tables 4 and 5 in the ElectronicT
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supplementary material). This shows that nearly all of the
FAs were stable between the replicates over time in the
P. lutheri bags.

The C. muelleri bags showed large variation between the
replicates and over time (Fig 2). From T1 to T2 the bags did
not develop in the same direction. The development from T2
to T3 was the largest. The bags developed more or less in the
same direction, but they were not similar. The two first
principal components (PC1 and PC2) described 75% of the
total variation between the samples. At T1 16 FAs differed
significantly between the replicates (Table 3 in the Electronic
supplementary material), while 12 and 14 FAs differed

significantly between the replicates at T2 and T3, respectively
(Tables 4 and 5 in the Electronic supplementary material).
Different FAs caused the development over time for the two
species, e.g. 18:3n3 increased over time for C. muelleri while
this FA decreased from T1 to T3 for P. lutheri. For i-17:0 the
opposite was the case: decrease over time for C. muelleri and
increase for P. lutheri (Fig. 3). The essential PUFAs (ARA,
EPA and DHA) were stable between the replicates over time
in the P. lutheri bags. In the C. muelleri bags (Tables 3, 4 and
5 in the Electronic supplementary material) the variations
were larger between the replicates and over time, and only
DHA was stable over time (T1 and T2).

Table 2 Mean values ± STD of fatty acid content (n=3, pg cell−1) of
ARA, EPA, n-6 DPA and DHA at start and end in Pavlova lutheri and
Chaetoceros muelleri bags from this experiment (250-L bags)

compared with results from a similar experiment in 500-L bags
(Jacobsen et al. 2010)

P. lutheri C. muelleri

250 L 500 L 250 L 500 L

Start End Start End Start End Start End

ARA 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.05±0.03 0.03±0.03 0.09±0.02

EPA 0.31±0.09 0.62±0.12 0.18±0.02 0.34±0.08 0.13±0.05 0.18±0.10 0.22±0.05 0.40±0.09

n-6 DPA 0.00±0.00 0.00±0.00 0.01±0.00 0.02±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

DHA 0.13±0.04 0.26±0.02 0.08±0.01 0.12±0.03 0.02±0.01 0.10±0.07 0.01±0.01 0.03±0.00
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Fig. 1 Mean proportions (% of
total fatty acid) of saturated
(SFA), monounsaturated
(MUFA) and polyunsaturated
fatty acids (PUFA) of Pavlova
lutheri and Chaetoceros
muelleri at T1 (8 June), T2 (22
June) and T3 (6 July). Error
bars indicate STD, a indicate
significant increase (p<0.05)
and b indicate significant
decrease (p<0.05)
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Fig. 2 Principal component (PC) analysis plot. For Pavlova lutheri,
all replicates from the three bags from the first sampling are located
within the oval marked T1, all replicates from the three bags from the
second sampling are located within the oval marked T2, and replicates
from the three bags from the third sampling are located within the oval
marked T3. For Chaetoceros muelleri the replicates from each bag at
each sampling are located within the circles marked with 1, 2 and 3
for each of the bags. The circles with lightest shading are from the first

sampling, circles from the second sampling are darker and those from
the third sampling have the darkest shading. The position of the fatty
acids in the plot indicates their importance for the spread of the
samples: the closer the samples are located to a fatty acid the more
they contain of this fatty acid relative to the other samples. The
percentage of the total variation among the samples which is described
by the two PCs is shown
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Fig. 3 Principal component
(PC) analysis plot of the
Pavlova lutheri samples. The
replicates from each bag at each
sampling are located in and
around the circles marked with
1, 2 and 3 for each of the bags.
The circles with lightest shading
are from the first sampling,
circles from the second
sampling are darker and those
from the third sampling have the
darkest shading. The position of
the fatty acids in the plot
indicates their importance for
the spread of the samples: the
closer the samples are located to
a fatty acid the more they
contain of this fatty acid relative
to the other samples. The
percentage of the total variation
among the samples which is
described by the two PCs is
shown
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Discussion

The total fatty acid content (pg cell−1) increased significantly
(p<0.05) in all of the P. lutheri and C. muelleri bags over
time. In the P. lutheri bags the total FA content was almost
twice as high as Jacobsen et al. (2010) reported from the
similar system with wider bags. Although the total FA content
increased in the C. muelleri bags during the experiment, it
was lower than contents reported by Jacobsen et al. (2010)
with wider bags, but higher than Pernet et al. (2003) reported
from 170 L semi-continuous cultures (D=50 cm).

An increase of the content of the essential PUFAs
(pg cell−1) from start to the end of the experiment was also
observed. The content of the essential PUFAs was nearly
doubled in the all of the bags. n-6 DPA (22:5n-6), which
was almost absent in the present cultures, was found in both
P. lutheri and C. muelleri when grown in wider bags under
light limitation (Jacobsen et al. 2010).

When comparing this growth system constituting of
narrow bags (250-L, D=25 cm) with the similar system
with wider bags (500-L, D=50 cm, Jacobsen et al. 2010), P.
lutheri contained more of the essential PUFAs in the narrow
bags, while C. muelleri contained more in the wider bags.
In the narrow P. lutheri bags (this experiment) the content
of EPA and DHAwere almost twice as high as in the wider
bags (Jacobsen et al. 2010). The content of EPA and n-6
DPA in C. muelleri were higher in the wider bags, almost
equal content of ARA between narrow and wider bags,
while DHA was highest in the narrow bags.

Thompson et al. (1990) investigated the influence of
irradiance on the FA composition of eight species com-
monly used in aquaculture including P. lutheri and C.
muelleri. They found that EPA and DHA increased with
decreasing light intensities for C. muelleri, but decreased
for P. lutheri. In this experiment we found that the content
of the essential FAs increased in C. muelleri and P. lutheri,
except for n-6 DPA. Both EPA and DHA increased in P.
lutheri when light availability was increased compared with
wider bags (Jacobsen et al. 2010). The content of ARA and
EPA in C. muelleri was, respectively, equal to or higher in
the wider bags with light limitation (Jacobsen et al. 2010).

The proportions (% of total FA) of SFA, MUFA and
PUFA in this experiment were similar to those found in the
wider bags (Jacobsen et al. 2010). An increase of SFAs and
MUFAs were observed in the P. lutheri bags, while SFAs
and PUFAs increased in the C. muelleri bags.

Relatively high proportions of 14:0, 16:0, 16:1n7 in
addition to n-6 PUFAs such as 18:2n6, 18:3n6 and ARA
were recorded in the C. muelleri bags, typical for diatoms
in general (Volkman et al. 1989). The n-6 PUFAs such as
ARA and n-6 DPA are considered as important FAs for
scallop larvae and may have an impact on the rearing
success (Parrish et al. 1998, Milke et al. 2004, 2006, 2008).

Milke et al. (2008) showed that n-6 DPA was particularly
important in early life stages of Placopecten magellanicus.
Our results showed that the content of ARA was stable or
increasing in all of the species and bags over time. The FA
n-6 DPA was not detected in any of the species in the
narrow bags, which received more light than the wider bags
(see also further below in discussion), but were present in a
similar experiment with wider bags and probable light
limitation (Jacobsen et al. 2010). This might indicate that
light limitation increase content of this FA, as shown by e.g.
Cheng-Wu et al. (2002).

The PC analysis detected variation between the bags and
species over time (Fig. 2). PC1 represented 43% of the total
variation between the samples. The second largest variation,
32%, occurred along PC2, and is independent of the variation
along PC1. The variation between bags over time was larger
for C. muelleri than for P. lutheri. This was the opposite of
what was found in the wider bags (Jacobsen et al. 2010).
Different FAs contributed to the variation observed between
the C. muelleri bags in this experiment. In the beginning of
the experiment the content of 17:1n9, ai-17:0 and 16:1n7 was
high, while the content of 18:2n6, 18:1n9, 18:4n3 and 18:3n3
increased towards the end of the experiment.

In this experiment temperature, culture media and pH
were kept stable and were not limiting. The light conditions
were, however, improved by reducing the bag diameter to
25 cm, compared with the traditional set up with wider bags
(Jacobsen et al. 2010). The surface area to volume
relationship for light penetration was improved. With the
assumptions that photosynthetic active light penetrate 3 cm
into the culture (Richmond 2004) and the height and
diameter are 240 and 25 cm, respectively, the light limited
internal zone of the bags was 76% of the total area of the
bags. With the same assumption the light limited internal
zone of the wider bags (D=50 cm; Jacobsen et al. 2010)
was 88% of the total area. By reducing the diameter of the
bags from 50% to 25 cm the culture received 12% more
light compared with the wider bags. This increased light
availability resulted in increased cell density and FA
content. The cell density was almost tripled when compared
with the wider bags (Jacobsen et al. 2010).

In conclusion, the results from this experiment indicate
that flagellates such as P. lutheri perform better in narrow
bags with improved light conditions, while diatoms like C.
muelleri perform better in wider bags under light limitation.
In the P. lutheri bags the cell numbers increased and the
content of the essential FAs increased as EPA and DHA
were doubled. In C. muelleri cell numbers also increased
and the content of DHA increased, but not as much as in
wider bags (Jacobsen et al. 2010).

The results indicate that bivalve hatcheries should
consider to grow different species in different bag sizes
and light conditions depending on light preferences. A

J Appl Phycol



production design with a mixture of both narrow and wide
bags would be optimal in respect to essential FA production
when both diatoms and flagellates are present.
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