
Theory Comput Syst
DOI 10.1007/s00224-011-9366-z

Structure of Polynomial-Time Approximation

Erik Jan van Leeuwen · Jan van Leeuwen

© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Approximation schemes are commonly classified as being either a poly-
nomial-time approximation scheme (ptas) or a fully polynomial-time approxima-
tion scheme (fptas). To properly differentiate between approximation schemes for
concrete problems, several subclasses have been identified: (optimum-)asymptotic
schemes (ptas∞, fptas∞), efficient schemes (eptas), and size-asymptotic schemes.
We explore the structure of these subclasses, their mutual relationships, and their
connection to the classic approximation classes. We prove that several of the classes
are in fact equivalent. Furthermore, we prove the equivalence of eptas to so-called
convergent polynomial-time approximation schemes. The results are used to refine
the hierarchy of polynomial-time approximation schemes considerably and demon-
strate the central position of eptas among approximation schemes.

We also present two ways to bridge the hardness gap between asymptotic approx-
imation schemes and classic approximation schemes. First, using notions from fixed-
parameter complexity theory, we provide new characterizations of when problems
have a ptas or fptas. Simultaneously, we prove that a large class of problems (includ-
ing all MAX-SNP-complete problems) cannot have an optimum-asymptotic approx-
imation scheme unless P = NP, thus strengthening results of Arora et al. (J. ACM
45(3):501–555, 1998). Secondly, we distinguish a new property exhibited by many
optimization problems: pumpability. With this notion, we considerably generalize
several problem-specific approaches to improve the effectiveness of approximation
schemes with asymptotic behavior.

Part of this research has been funded by the Dutch BSIK/BRICKS project.

E.J. van Leeuwen
Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
e-mail: e.j.van.leeuwen@ii.uib.no

J. van Leeuwen (�)
Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC
Utrecht, The Netherlands
e-mail: j.vanleeuwen@cs.uu.nl

mailto:e.j.van.leeuwen@ii.uib.no
mailto:j.vanleeuwen@cs.uu.nl

Theory Comput Syst

Keywords Efficient computation · NP-optimization problems · Polynomial-time
approximation schemes · EPTAS · Asymptotic polynomial-time approximation
schemes · Approximation-preserving reductions · Structure of complexity classes

1 Introduction

In the theory and practice of hard NP-optimization problems, approximation schemes
are widely used for efficiently finding solutions to within any specified relative error ε

from the optimum. Paz and Moran [36] classified these schemes into polynomial-time
approximation schemes (ptas) and fully polynomial-time approximation schemes
(fptas). However, the theory of approximation algorithms has led to several other
useful classes of schemes, including optimum-asymptotic (ptas∞, fptas∞), efficient
(eptas), and size-asymptotic (ptasω, fptasω) approximation schemes. It is the goal of
this paper to expose the surprising connections between these seemingly unrelated
notions and to study their deeper structural properties.

The foremost conclusion that follows from the results of this paper is that efficient
polynomial-time approximation schemes (eptas) hold a central position in the land-
scape of polynomial-time approximation schemes. An eptas has a running time of
the form f (1/ε) ·nO(1), where n denotes the instance size and f is some computable
function. The class of optimization problems admitting an eptas is called EPTAS. We
show that EPTAS is closely related to the classes of problems admitting ‘asymptotic’
approximation schemes, where the relative error ε is attained only asymptotically,
i.e. for instances of large size or with a large optimum. Optimum-asymptotic ap-
proximation schemes are well known, for instance from the study of approximation
algorithms for bin packing problems (see e.g. [11, 12, 27]).

Concretely, we prove that all commonly distinguished classes of problems with
an asymptotic polynomial-time approximation scheme are a superclass of EPTAS.
Two of these classes, FPTASω and FIPTASω, both corresponding to size-asymptotic
schemes, even coincide with the class EPTAS (see Sect. 3). This settles one of the
main questions that motivated this paper: recent research [40–42] had shown that
natural problems having an fptasω exist, but their position in the hierarchy of approx-
imable problems was hitherto unclear.

Moreover, we distinguish the notion of convergent polynomial-time approxima-
tion schemes, in which the approximation ratio improves by some function of the
instance size as the instance size grows. We show that the corresponding class of op-
timization problems is equivalent to EPTAS as well (see Sect. 4). This strengthens the
assertion that EPTAS is central in the landscape of problems admitting polynomial-
time approximation schemes and deepens the understanding of this class.

We also consider the characteristics of asymptotic approximation schemes. In gen-
eral, fully polynomial-time approximation schemes have a running time depending
(polynomially) on both the instance size and 1/ε. If the running time depends only
on the instance size, a scheme is called a fully input-polynomial-time approximation
scheme (fiptas). We show that if a problem admits an asymptotic fptas (a fptas∞ or
a fptasω), then this problem admits an asymptotic fiptas of the same kind (a fiptas∞
or a fiptasω respectively). Hence the corresponding classes coincide, demonstrating

Theory Comput Syst

Fig. 1 The arrows represent the
‘is contained in’-relation. The
existence of any inclusion
relation not in the above graph
or the collapse of one of the
arrows implies that either
P = NP or FPT = W[1]

an important property of the notions of size- and optimum-asymptotic approximation
schemes.

Figure 1 shows the hierarchy of problem classes that follows from this paper.
A proper definition of all classes in the figure is given in the next sections.

In the second part of the paper, we discuss several ways to overcome the hardness
gap between asymptotic approximation schemes and classic approximation schemes.
Section 6 employs ideas from fixed-parameter complexity theory. The results of this
section lead to a new characterization of problems having a ptas or fptas by means of
fixed-parameter tractability and optimum-asymptotic approximation schemes. This
characterization is subsequently used to prove that a large number of problems cannot
have an optimum-asymptotic polynomial-time approximation scheme (ptas∞) unless
P = NP. This includes all MAX-SNP-complete problems. From Fig. 1, we can see
that this strengthens a result from Arora et al. [1], who only proved that such problems
cannot have a ptas.

Additionally, we study reductions that preserve approximability by optimum-
asymptotic approximation schemes. We show that several results on the nonexistence
of optimum-asymptotic polynomial-time approximation schemes in the literature im-
plicitly use such a reduction and thus follow from the general approach presented
here. Furthermore, we prove that Minimum Bin Packing cannot have such a reduc-
tion from Maximum Satisfiability unless P = NP. This augments results by Crescenzi
et al. [13], who showed that no approximation-preserving reduction exists in this case
unless the polynomial hierarchy collapses.

Finally, we propose the notion of pumpability in Sect. 7. Problems having asymp-
totic polynomial-time approximation schemes can sometimes be ‘pumped’ to a form
that admits a ptas, eptas, or even an fptas if the optimization problem under con-
sideration is pumpable. This is useful for completing Fig. 1, but also for improving
the effectiveness of asymptotic approximation schemes. Furthermore, we provide in-
sight into which problems are pumpable and show for instance that all problems in
MAX-SNP are pumpable.

Theory Comput Syst

2 Preliminaries

To make formal statements about equivalences among classes of approximation
schemes, we have to be precise about the machine model we use, the type of problems
that are considered, and the definitions of the studied classes. Throughout the paper,
we assume the basic random access machine model with logarithmic costs and repre-
sentations in bits, which implies that within cost (time) t , the machine can output at
most t bits. This machine model is polynomially equivalent to the classic Turing ma-
chine and thus defines the classic complexity classes up to polynomial time factors.
Furthermore, all numbers are assumed to be rationals, unless otherwise specified.

Using this model, we study optimization problems following the definitions as can
be found for instance in Ausiello et al. [2].

Definition 2.1 An optimization problem P is characterized by four properties:

• a set of instances (bitstrings) IP ;
• a function SP that maps instances of P to (nonempty) sets of feasible solutions

(bitstrings) for these instances;
• an objective function mP that gives for each pair (x, y) consisting of instance x ∈

IP and solution y ∈ SP (x) a positive integer mP (x, y), the objective value;
• a goal goalP ∈ {min,max} depending on whether P is a minimization or a maxi-

mization problem.

We denote by S∗
P (x) ⊆ SP (x) the set of optimal solutions for an instance x ∈ IP ,

i.e. S∗
P (x) consists of all y∗ ∈ SP (x) for which

mP (x, y∗) = goalP {mP (x, y) | y ∈ SP (x)}.
The objective function value attained by the optimal solutions for an instance x is
denoted m∗

P (x).

Definition 2.2 An optimization problem P is in the class NPO if

• the set of instances IP can be recognized in polynomial time;
• there is a (monotone nondecreasing) polynomial qP such that |y| ≤ qP (|x|) for

any instance x ∈ IP and any feasible solution y ∈ SP (x);
• for any instance x ∈ IP and any y with |y| ≤ qP (|x|), one can decide in polynomial

time whether y ∈ SP (x);
• there is a (monotone nondecreasing) polynomial rP such that the objective function

mP is computable in rP (|x|, |y|) time for any x ∈ IP and y ∈ SP (x).

Note that for any problem P ∈ NPO and any n ∈ N the maximum objective value
of instances of size n, i.e. max{mP (x, y) | x ∈ IP , |x| = n,y ∈ SP (x)}, is bounded
by 2rP (n,qP (n)), as the objective function value of any x ∈ IP and y ∈ SP (x) can be
represented by at most rP (|x|, |y|) ≤ rP (|x|, qP (|x|)) bits. Let MP (n) = 2rP (n,qP (n)).

Lemma 2.3 For any NPO-problem P , for any x ∈ IP , and for any n ∈ N, if m∗
P (x) >

MP (n), then |x| > n.

Theory Comput Syst

Table 1 Problem classes and
the distinguishing properties of
the approximation algorithms
admitted by problems in a
particular class

Problem class Running time Approx. ratio

APX Polynomial in |x| c

PTAS Polynomial in |x| (for every fixed ε) (1 + ε)

FPTAS Polynomial in |x| and 1/ε (1 + ε)

FIPTAS Polynomial in |x| (1 + ε)

PO Polynomial in |x| 1

All problems considered below will be in NPO and all considered classes will be
subclasses of NPO. From now on, we drop the subscript P if P is clear from the
context.

If one equates NPO to NP, then PO is the equivalent of P. PO is the class of prob-
lems in NPO for which an optimal solution y∗ ∈ S∗(x) can be computed in time
polynomial in |x| for any x ∈ I . Paz and Moran [36] proved that P = NP implies
PO = NPO and vice versa. Because it is not expected that all problems in NPO also
fall in PO, several classes have been defined that contain NPO-problems for which
an approximate solution can be found in polynomial time. Approximation algorithms
are classified by two properties: their running time and their approximation ratio.

Definition 2.4 [2, 21] For an optimization problem P ∈ NPO, any x ∈ IP , and any
y ∈ S(x), the approximation ratio achieved by y for x is

R(x, y) = max

{
m(x,y)

m∗(x)
,

m∗(x)

m(x, y)

}
.

We say that y is within (a factor) r of m∗(x) if R(x, y) ≤ r . The approximation ratio
of an algorithm A is defined as

RA = max{R(x, A(x)) | x ∈ IP }.
Any textbook on approximation algorithms covers at least the classes of Table 1.

The table should be interpreted as follows: PTAS, for instance, is the class of op-
timization problems P in NPO having a ptas, i.e. having an algorithm A such that
for any instance x ∈ IP and any ε > 0, A(x, ε) runs in time polynomial in |x| for
every fixed ε and the solution output by A(x, ε) has approximation ratio (1 + ε). We
use lower-case letters for a scheme name and upper-case letters for the name of the
corresponding class (i.e. ptas and PTAS).

The class FIPTAS (Fully Input-Polynomial-Time Approximation Scheme) in Ta-
ble 1 is a new class. Clearly, FIPTAS = PO (use ε = 1/M(|x|)), but the reason for
defining this class will become apparent later.

A relatively new class of increasing interest is EPTAS [3, 7].

Definition 2.5 Algorithm A is an efficient polynomial-time approximation scheme
(eptas) for problem P ∈ NPO if there is a computable function f : Q≥1 → N such
that for any x ∈ IP and any ε > 0, A(x, ε) runs in time f (1/ε) times a fixed poly-
nomial in |x| and the solution output by A(x, ε) has approximation ratio (1 + ε). An
NPO-problem is in the class EPTAS if and only if it has an eptas.

Theory Comput Syst

The popularity of eptas is not only due to the separate dependence on 1/ε and
instance size in the running time, but also to the beautiful relation to the widely re-
searched class FPT: any problem admitting an eptas is also in FPT in its standard
parameterization [3, 7]. An interesting exploration of the type of problems that ad-
mits an eptas may be found in Cai et al. [5].

It is well-known that PO ⊆ FPTAS ⊆ EPTAS ⊆ PTAS ⊆ APX ⊆ NPO. In most
cases, the inclusion is strict (unless P = NP), except that EPTAS ⊂ PTAS unless
FPT = W[1] [3, 7]. The question whether FPT = W[1] is an open problem in fixed-
parameter complexity theory akin to the question whether P = NP in classic com-
plexity theory (see e.g. Downey and Fellows [17]).

3 Asymptotic Approximation Schemes

Informally, an approximation scheme is asymptotic if it gives a (1+ε)-approximation
under a condition that is asymptotically true. We study two types of asymptotic ap-
proximation schemes. We first consider approximation schemes where the size of the
instance needs to be large enough. The other type is treated in Sect. 5.

Definition 3.1 An approximation scheme A for P ∈ NPO is size-asymptotic if there
is a computable function a : Q≥1 → N (the threshold function) such that for any ε > 0
and any x ∈ IP , it returns a y ∈ S(x) and if |x| ≥ a(1/ε), then y is within (1 + ε) of
m∗(x).

This definition leads to the following classes of size-asymptotic approximation
schemes.

Problem class Running time Approx. ratio

PTASω Polynomial in |x| (for every fixed ε) (1 + ε) if |x| ≥ a(1/ε)

FPTASω Polynomial in |x| and 1/ε (1 + ε) if |x| ≥ a(1/ε)

FIPTASω Polynomial in |x| (1 + ε) if |x| ≥ a(1/ε)

Example 3.2 Maximum Independent Set has a fiptasω on bounded-ply disk graphs
[41, 42]. Disk graphs are intersection graphs of disks in the plane, i.e. given a set of
disks, each vertex of the graph corresponds to a disk and there is an edge between two
vertices if the corresponding disks intersect. A set of disks has ply γ if γ is the small-
est integer such that any point of the plane is overlapped by at most γ disks. One can
find in O(|x|10 log4 |x|) time an independent set of an instance x of this problem. If an
odd integer k can be chosen such that max{5,4(1 + ε)/ε} ≤ k ≤ c1 log |x|/ log(c2γ)

(where c1, c2 are fixed constants), then this independent set will be within (1 + ε) of
the optimum. If γ = γ (|x|) = O(|x|o(1)), such an integer exists if |x| ≥ a(1/ε) for
some function a.

We start with some easy observations about the size-asymptotic classes.

Theory Comput Syst

Proposition 3.3 The following relations hold:

• FIPTASω ⊆ FPTASω ⊆ PTASω and
• FIPTAS ⊆ FIPTASω,FPTAS ⊆ FPTASω,PTAS ⊆ PTASω.

The relations given by this proposition are straightforward and one might expect
that the inclusions are strict under some hardness condition. However, this turns out
not to be true for all of them. We can prove some very interesting equivalences and
tie these new classes to existing approximation classes, in particular to EPTAS.

Theorem 3.4 EPTAS = FPTASω = FIPTASω.

Proof We first show that EPTAS ⊆ FIPTASω. Let P ∈ EPTAS and let A be an eptas
for P with running time at most p(|x|) · f (1/ε) for some computable function f

and polynomial p. Construct a fiptasω for P as follows. Given an arbitrary instance
x ∈ IP and an arbitrary ε > 0, run A(x, ε) for p(|x|) · |x| time steps. If A(x, ε)

finishes, return the solution given by A(x, ε). Otherwise, return A(x,1/2). This al-
gorithm clearly runs in time polynomial in |x| and always returns a feasible solution.
Furthermore if |x| ≥ f (1/ε), A(x, ε) always finishes and returns a feasible solution
with approximation ratio (1 + ε). Hence we constructed a fiptasω for P with a = f .

We next prove that FPTASω ⊆ EPTAS. Let P ∈ FPTASω and let A be an fptasω

for P with threshold function a. Construct an eptas as follows. Given an arbitrary in-
stance x ∈ IP and an arbitrary ε > 0, compute a(1/ε). By assumption, a(1/ε) is com-
putable. The amount of time it takes to compute a(1/ε) is some computable function
depending on 1/ε. If |x| ≥ a(1/ε), simply compute and return A(x, ε) in time poly-
nomial in |x| and 1/ε. If |x| < a(1/ε), proceed as follows. As FPTASω ⊆ NPO, any
feasible solution for x has size at most q(|x|) for some fixed polynomial q . Further-
more, given any y with |y| ≤ q(|x|), one can determine in polynomial time whether
y ∈ SP (x). The objective value of a feasible solution can also be computed in polyno-
mial time. Hence by employing exhaustive search, one can find a y∗ ∈ S∗

P (x) in time
poly(|x|) ·2q(|x|) · rP (|x|, q(|x|)) = 2q(a(1/ε)) ·poly(a(1/ε)). The result is an eptas for
P with appropriately defined function f .

As FIPTASω ⊆ FPTASω, we have EPTAS ⊆ FIPTASω ⊆ FPTASω ⊆ EPTAS, and
hence the classes must be equal. �

The exponential increase in running time in the reduction from an fptasω to an
eptas might be reduced by using an exact or fixed-parameter algorithm specific to the
problem. As we show in Sect. 7, one can avoid such an increase altogether for many
problems.

The equivalence of F(I)PTASω and EPTAS allows an indirect proof of the exis-
tence of an eptas for a problem, where a direct proof seems more difficult.

Example 3.5 Maximum Independent Set on disk graphs of bounded ply has a fiptasω

(Example 3.2) and thus, as a consequence of Theorem 3.4, an eptas.

We now show that PTASω and PTAS are in fact equivalent as well.

Theory Comput Syst

Theorem 3.6 PTAS = PTASω .

Proof By Proposition 3.3 it suffices to prove that PTASω ⊆ PTAS. Let P ∈ PTASω

and let A be a ptasω for P . For an arbitrary instance x ∈ IP and an arbitrary ε > 0,
compute a(1/ε). If |x| ≥ a(1/ε), compute and return A(x, ε). Otherwise, apply the
same exhaustive search technique as in the proof of Theorem 3.4. The result is a ptas
for P . �

4 Convergent Approximation Schemes

Size-asymptotic approximation schemes have a threshold function, depending on
1/ε, such that a good approximate solution is guaranteed if the size of the instance is
larger than the threshold. It seems then that the quality of the computed solution can
be arbitrarily bad for small instances, while from a certain instance size onward, the
quality suddenly becomes very good. Practical examples of size-asymptotic approx-
imation schemes show however that the approximation ratio can improve steadily as
the instance size increases and eventually converges (to 1).

Surprisingly, this also holds in general. In this section, we define and study these
convergent approximation schemes more precisely. The main result is that a problem
has a fptasω if and only if it also has a convergent approximation scheme.

In the following, we use F ∗ to denote the family of all monotone nondecreasing
computable functions f : N → Q≥1 with lim infn→∞ f (n) = ∞. Let P denote the
family of those functions in F ∗ that are bounded by a (monotone) polynomial.

Definition 4.1 Let f ∈ F ∗. An approximation scheme A for P ∈ NPO is said to be
ε-convergent w.r.t. f if for any ε > 0 and any x ∈ IP , A(x, ε) returns a y ∈ S(x)

within (1 + ε/f (|x|)) of m∗(x).

This definition gives rise to schemes ptas[f], fptas[f], and fiptas[f] and the
classes PTAS[f], FPTAS[f], and FIPTAS[f] in the natural way. We also define a
special subclass for the case when ε = 1.

Definition 4.2 Let f ∈ F ∗. Algorithm A is a convergent polynomial-time approx-
imation scheme w.r.t. f (denoted as pconv[f]) if for any x ∈ I , A(x) runs in time
polynomial in |x| and returns a y ∈ S(x) within (1 + 1/f (|x|)) of m∗(x). The corre-
sponding class is PCONV[f].

Example 4.3 Chiba et al. [10] give a pconv[O(
√

log log |x|)] for Maximum Inde-
pendent Set on planar graphs. This follows from a general O(|x| log |x|) algorithm
giving a 1 + 1/O(

√
log log |x|)-approximation for several hereditary problems on

planar graphs. Demaine et al. [16] give a pconv[log |x|]1 for Maximum Independent
Set on single-crossing-minor-free graphs (a generalization of planar graphs).

1Formally, this should be �log |x|�. Throughout the paper we ignore these technicalities to improve legi-
bility.

Theory Comput Syst

Definition 4.4 For any family of functions F ⊆ F ∗, let PCONV[F] = ⋃
f ∈F PCONV[f].

We similarly define PTAS[F], FPTAS[F], and FIPTAS[F].

We first state some straightforward relations.

Proposition 4.5 The following relations hold:

• FIPTAS[F ∗] = PO, FPTAS[F ∗] ⊆ FPTAS, PTAS[F ∗] ⊆ PTAS,
• for any f ∈ F ∗, FIPTAS[f] ⊆ FPTAS[f] ⊆ PTAS[f] ⊆ PCONV[f], and
• for any f,f ′ ∈ F ∗ with f (n) ≤ f ′(n) for any n ∈ N, FIPTAS[f ′] ⊆ FIPTAS[f],

FPTAS[f ′] ⊆ FPTAS[f], PTAS[f ′] ⊆ PTAS[f], and PCONV[f ′] ⊆ PCONV[f].

Looking closely at the papers cited in Example 4.3, one can observe that the algo-
rithms they describe are actually a pconv[f] (for certain f) as well as an eptas. This
is not a coincidence!

Lemma 4.6 If P ∈ FPTASω , then P ∈ PCONV[f] for some f ∈ P .

Proof Let P ∈ FPTASω and let A be an fptasω for P delivering a (1 + ε)-approxi-
mate solution if |x| ≥ a(1/ε) for some computable function a. We use A to construct
a pconv[f] for a suitably chosen function f .

Fix a monotone, polynomially-bounded function p(n) (for instance p(n) = n).
Because a is computable, we can compute

c1 := 0, c2 := a(2), c3 := a(3), c4 := a(4), . . .

Compute the values of this series (starting at c1, then c2, c3, . . .) for at most p(n)

time steps total. Let f (n) be the highest index k that satisfies n ≥ ck among the fully
computed values ck . Because c1 = 0, this function is properly defined. Furthermore,
f is a monotone, computable function with lim infn→∞ f (n) = ∞ and f (n) ≤ p(n).

Observe that because FPTASω ⊆ PTAS, P must have a 2-approximation algorithm
B running in time polynomial in the size of the input. Now consider the following
algorithm A′(x) for instances x ∈ IP : if f (|x|) = 1, return B(x), otherwise return
A(x, ε) with ε = 1/f (|x|). We claim that A′(x) is a pconv[f] for P with f as defined
above.

Let y be the solution output by A′(x) for some x ∈ IP . Clearly, y ∈ S(x). If
f (|x|) = 1, A′(x) trivially returns a (1 + 1/f (|x|))-approximation. If f (|x|) > 1,
then because |x| ≥ cf (|x|) = a(f (|x|)), y is a (1 + 1/f (|x|))-approximate solution.
Furthermore, the running time is

O(poly(1/ε) · poly(|x|)) = O(poly(f (|x|)) · poly(|x|))
= O(poly(p(|x|)) · poly(|x|)) = O(poly(|x|)).

Note that f (|x|) is also computable in polynomial time. Hence we achieve a
(1 + 1/f (|x|))-approximation in time polynomial in |x| and we thus have that P ∈
PCONV[f]. �

Theory Comput Syst

The lemma implies that FPTASω ⊆ PCONV[F ∗]. By Theorem 3.4, this in turn
implies that EPTAS ⊆ PCONV[F ∗]. We can give a direct proof of this consequence,
which has the additional advantage that the function of 1/ε in the running time of the
eptas is only needed for the analysis and not for the algorithmic part of the reduction.

Lemma 4.7 If P ∈ EPTAS, then P ∈ PCONV[f] for some f ∈ P .

Proof Let A be an eptas for P , which runs in time g(1/ε) · p(|x|) for any x ∈ IP

and any ε > 0 for some function g and polynomial p. We assume that g and p are
computable and that p is known (g is not necessarily known). Now run y1 = A(x,1)

to completion and y2 = A(x,1/2), . . . , y|x|+1 = A(x,1/(|x| + 1)) for at most |x| ·
p(|x|) time steps each, and return goalP {yk} over all k for which A finished within the
allotted time. This algorithm clearly always outputs a feasible solution in polynomial
time. We claim that it yields a (1 + 1/f (|x|))-approximation for a suitably chosen
monotone computable function f with lim infn→∞ f (n) = ∞.

We construct the function f as a piecewise constant function on a sequence of
intervals [n1, n2), [n2, n3), Define n1 = 0 and for any i ≥ 2,

ni = max{ni−1 + 1, g(i)}.
Define

f (n) = i if n ∈ [ni, ni+1) for some i ≥ 1.

Clearly, ni ≥ ni−1 +1 and ni is finite for any i. Hence f is a monotone nondecreasing
function with lim infn→∞ f (n) = ∞ and f (n) ≤ n + 1 for any n ∈ N. Hence f ∈ P .
Furthermore, f (n) is computable, as we only need to compute ni for a finite number
(at most n) values of i and g is computable.

If f (|x|) = 1 then, since A(x,1) runs to completion, the algorithm delivers at least
a (1 + 1/f (|x|))-approximation. If f (|x|) is equal to i for some i ≥ 2, then by the
construction of f and ni , |x| ≥ ni ≥ g(i) and i ≤ |x| + 1. Hence certainly A(x,1/i)

runs to completion within the time limit set for it and the algorithm returns at least
a (1 + 1/i)-approximation of the optimum. But then the algorithm returns at least a
(1 + 1/f (|x|))-approximation of the optimum. �

We now prove the converse relation.

Lemma 4.8 If P ∈ PCONV[F ∗], then P ∈ FIPTASω.

Proof Let P ∈ PCONV[f] and let A be a pconv[f] for P with f ∈ F ∗. We claim
that running A yields a fiptasω for P with threshold function

a(1/ε) :=
{

0 if 1/ε ≤ f (0)

max{n ∈ N | 1/ε > f (n)} otherwise.

Note that a is indeed properly defined, as f is monotone and lim infn→∞ f (n) = ∞.
Clearly, a is a computable function and algorithm A(x) runs in time polynomial in

|x| for any x ∈ IP and any ε > 0. Furthermore, if |x| ≥ a(1/ε), then ε ≥ 1/f (|x|) by

Theory Comput Syst

the definition of a. Hence (1 + 1/f (|x|)) ≤ (1 + ε) and thus A(x) returns a (1 + ε)-
approximate solution. �

Note that the function a in the proof of Lemma 4.8 is essentially the inverse of f

(it is not precisely the inverse, as f might not be invertible). Similarly, the function f

constructed in the proof of Lemma 4.7 is the ‘inverse’ of g.
Using Theorem 3.4 and Lemmas 4.7 and 4.8, we obtain the following key theorem.

Theorem 4.9 EPTAS = FPTASω = FIPTASω = PCONV[F ∗].

To state this theorem informally: for polynomial-time approximation schemes,
having a single factor depending (only) on 1/ε in the running time is equivalent to
having such a function as a threshold for yielding an (1 + ε)-approximation, which
in turn is equivalent to having the attained approximation ratio improving to 1 as the
instance size increases.

4.1 Detailed Relations for Specific Functions

If we have specific knowledge of the function f that appears in the approximation
ratio of a convergent approximation scheme, we can prove some more detailed re-
lations. First we consider the family of classes where this function is bounded by a
polynomial.

Theorem 4.10 FPTAS = FPTAS[f] for any f ∈ P .

Proof By Proposition 4.5, it suffices to show that FPTAS ⊆ FPTAS[f] for any
f ∈ P . Let P ∈ FPTAS and let A be an fptas for P . Let f be upper bounded by
the (monotone) polynomial p, i.e. f (n) ≤ p(n) for all n > 0. Consider an x ∈ IP

and an ε > 0. Compute p(|x|) and run A(x, ε/p(|x|)). This algorithm runs in time
polynomial in |x| and 1/ε and returns a (1+ε/p(|x|)) ≤ (1+ε/f (|x|))-approximate
solution. Hence P ∈ FPTAS[f]. �

Corollary 4.11 FPTAS[P] = ⋃
f ∈P FPTAS[f] = ⋂

f ∈P FPTAS[f].

A problem P ∈ NPO is polynomially-bounded if there is a polynomial p : N → N

such that m(x,y) ≤ p(|x|) for all x ∈ IP and y ∈ SP (x) [2, 20].

Lemma 4.12 Let P be an NP-hard, polynomially-bounded optimization prob-
lem and p the corresponding bounding (monotone) polynomial plus 1. Then P /∈
PCONV[p], unless P = NP.

Proof Assume that P is a minimization problem (the case when P is a maximization
problem is similar). Suppose that P ∈ PCONV[p]. Then there exists an algorithm A
such that for any instance x of P , A(x) runs in time polynomial in |x| and delivers a
feasible solution y with approximation ratio 1 + 1/p(|x|). But then

m(x,y) ≤ (1 + 1/p(|x|)) · m∗(x) < m∗(x) + 1.

Theory Comput Syst

But this is only possible if m(x,y) = m∗(x). This means that we found an optimal
solution in polynomial time. This is impossible unless P = NP. �

Using this lemma and the easy fact that FPTAS ⊆ PCONV[f] for any f ∈ P , we
can show the following corollary, which is well known and easy [20].

Corollary 4.13 No NP-hard, polynomially-bounded optimization problem admits an
fptas, unless P = NP.

Proof Let P be an NP-hard, polynomially-bounded optimization problem and p the
corresponding bounding polynomial plus 1. Then P �∈ PCONV[p] and thus P �∈
FPTAS, unless P = NP. �

For functions in the approximation ratio of convergent schemes that are not poly-
nomial, we can also prove some interesting relations. As noted before, the function f

constructed in the proof of Lemma 4.7 is the ‘inverse’ of the function g in the running
time of the eptas. This leads to the following general result.

Theorem 4.14 If g is an invertible function, then a problem that has an eptas with
running time g(1/ε) · |x|O(1) also has a pconv[g−1(|x|)].

For instance, if g(1/ε) = 221/ε
, then the problem has a pconv[log log |x|]. The

statement of this theorem is not ‘if and only if’, because Lemma 4.8 only gives a
fiptasω. Transforming it to an eptas using Theorem 3.4 increases the running time
exponentially in g.

For some functions, one can even improve on Theorem 4.14.

Theorem 4.15 For any polynomial p of degree s, a problem that has an eptas with
running time bounded by 2p(1/ε) · |x|O(1) also has a ptas[log1/s |x|].

It seems unlikely that an equivalence as in Theorem 4.15 will also hold if g is
doubly-exponential.

5 Optimum-Asymptotic Approximation Schemes

Approximation schemes that give a (1 + ε)-approximation if the optimum is large
enough are quite common. They are particularly well known for Minimum Bin Pack-
ing (see e.g. [11, 12, 27]), but similar schemes exist for other problems, e.g. for Min-
imum Degree Spanning Tree [19] and Chromatic Index [43]. There are also sev-
eral ways to define what constitutes an optimum-asymptotic approximation scheme
[2, 12, 21, 26]. We prove that these definitions are actually equivalent. More inter-
estingly, we revisit the relation of optimum-asymptotic approximation schemes to
nonasymptotic approximation schemes and show that EPTAS is a subclass of the
optimum-asymptotic classes. Finally, we investigate the relations between various
types of optimum-asymptotic approximation schemes.

Theory Comput Syst

We first define optimum-asymptotic approximation schemes. The definition we
use is both in line with previous definitions of optimum-asymptotic approximation
schemes (see e.g. [21]) and with the definition of size-asymptotic approximation
schemes (see Definition 3.1).

Definition 5.1 An approximation scheme A for P ∈ NPO is optimum-asymptotic if
there is a computable function b : Q≥1 → N (the threshold function) and an associ-
ated constant εb with the property that b(1/ε) ≤ 1 for each ε ≥ εb , such that for any
ε > 0 and any x ∈ IP , it returns a y ∈ S(x) and if m∗(x) ≥ b(1/ε), then y is within
(1 + ε) of m∗(x).

This leads to the definition of ptas∞, fptas∞, and fiptas∞ schemes and to classes
PTAS∞, FPTAS∞, and FIPTAS∞, all defined as expected.

Example 5.2 Karmarkar and Karp [27] give a fiptas∞ for Minimum Bin Packing. For
an instance x, the returned solution has objective value at most m∗(x) + log2 m∗(x)

and is found in Õ(|x|8) time, where the Õ hides certain polylogarithmic terms.

Note that optimum-asymptotic schemes are defined analogously to size-asymptotic
schemes, except for the extra requirement on b(1/ε). This technicality seems to be
indispensable when trying to prove that optimum-asymptotic approximation scheme
classes are a subclass of APX and behave as the known asymptotic approximation
classes. In particular, it facilitates the following crucial property.

Lemma 5.3 Let A be a ptas∞ for a problem P and let εb be the constant associated
with A’s threshold function b. Then P has a polynomial-time (1+εb)-approximation
algorithm.

This follows immediately from the fact that m∗(x) ≥ 1 ≥ b(1/εb) for any x ∈ IP .

Corollary 5.4 PTAS∞ ⊆ APX.

It follows from Queyranne [38] that this inclusion is strict unless P = NP (see also
Theorem 7.7).

5.1 Equivalence of Definitions

Lemma 5.3 can be used to prove that the definition of optimum-asymptotic approx-
imation schemes yields classes that are polynomially equivalent to the asymptotic
approximation classes defined in the literature [2, 12] .

Definition 5.5 Algorithm A is an asymptotic polynomial-time approximation scheme
(aptas) for P if for any ε > 0 there is a computable constant cε such that for any
x ∈ IP , A(x, ε) runs in time polynomial in |x| for every fixed ε and the solution y

output by A(x, ε) is feasible and within (1 + ε) + cε/m∗(x) of m∗(x). A problem is
in the class APTAS if and only if it has an aptas.

Theory Comput Syst

One similarly defines afptas and afiptas and corresponding classes AFPTAS and
AFIPTAS in the natural way. These classes are sometimes also referred to as PTAAS,
FPTAAS, and FIPTAAS, for (Fully-)(Input-)Polynomial-Time Asymptotic Approxi-
mation Scheme [12]. The class APTAS has also been called ASY-PTAS [44].

Example 5.6 Coffman and Lueker [12] present an AFPTAS (or FPTAAS) for Exten-
sible Bin Packing with cε = O(1/ε log 1/ε).

Theorem 5.7 APTAS = PTAS∞, AFPTAS = FPTAS∞, and AFIPTAS = FIPTAS∞.

Proof Consider a problem P ∈ APTAS and an aptas A for P . It is well known (and
easily proved) that APTAS ⊆ APX [2], so let B be a polynomial-time c-approxi-
mation algorithm for P for some constant c > 1. We claim that for any x ∈ IP and
any ε > 0, the solution attaining goalP {m(x, A(x, ε/2)),m(x, B(x))} is a ptas∞ with
threshold function

b(1/ε) =
{

1 if ε ≥ c − 1

cε/2 · 2/ε otherwise

and associated constant εb := c − 1.
The function b is obviously computable, since cε is computable. As A and B run

in time polynomial in |x| for any instance x ∈ IP and every fixed ε > 0, it remains
to show that the returned solution is a (1 + ε)-approximate solution on instances
x ∈ IP if m∗(x) ≥ b(1/ε). If ε ≥ εb , then B(x) ensures a feasible solution within c

and thus within (1 + ε) of m∗(x). For ε < εb, a feasible solution is returned and if
m∗(x) ≥ cε/2 · 2/ε, then (1 + ε/2) + cε/2/m∗(x) ≤ (1 + ε), assuring that A(x, ε/2)

delivers a (1 + ε)-approximation. This implies that P ∈ PTAS∞.
Next we consider a problem P ∈ PTAS∞ and a ptas∞ A for P with threshold

function b and associated constant εb. By Lemma 5.3, P also has a polynomial-time
(1+εb)-approximation algorithm B. For any instance x ∈ IP and any ε > 0, we claim
that the algorithm returning the solution attaining goalP {m(x, A(x, ε)),m(x, B(x))}
is an aptas with cε = εb · b(1/ε). If m∗(x) ≥ b(1/ε), then A(x, ε) guarantees a
(1 + ε)-approximate solution. If m∗(x) ≤ b(1/ε), then B(x) guarantees a (1 + εb)-
approximate solution. Note that

1 + εb ≤ (1 + ε) + εb · b(1/ε)/m∗(x) = (1 + ε) + cε/m∗(x).

Hence P ∈ APTAS.
Similar proofs can be used to show that AFPTAS = FPTAS∞ and AFIPTAS =

FIPTAS∞. �

Because of these equivalences, all complexity results proved below for PTAS∞,
FPTAS∞, and FIPTAS∞ also hold for the classes APTAS, AFPTAS, and AFIPTAS
respectively.

We can also make an interesting observation about the class of problems that can
be approximated within a constant absolute error.

Theory Comput Syst

Definition 5.8 A problem P can be approximated within a constant absolute error
if there exists an algorithm A and constant c ≥ 0 such that for any x ∈ IP , A(x)

runs in time polynomial in |x| and the solution y output by A is feasible and satisfies
|m(x,y) − m∗(x)| ≤ c.

Example 5.9 Fürer and Raghavachari [19] give a polynomial-time algorithm that ap-
proximates Minimum Degree Spanning Tree within constant absolute error 1.

We now prove that all problems admitting an algorithm with constant absolute er-
ror must have a fiptas∞ with a threshold function that is bounded by a linear function,
and vice versa.

Theorem 5.10 A problem P can be approximated in polynomial time within a con-
stant absolute error if and only if it has a fiptas∞ with a threshold function b that is
bounded by a linear function.

Proof Suppose that P can be approximated within a constant absolute error c ≥ 0.
Hence it has a (c + 1)-approximation algorithm. It then follows from the proof of
Theorem 5.7 that P has a fiptas∞ with b(1/ε) = 2c/ε and associated constant εb = c.

For the converse, let A be a fiptas∞ for P with a threshold function b that is
bounded by a linear function. Without loss of generality, we may assume that

b(1/ε) =
{

1 if ε ≥ εb

c/ε otherwise

for constants εb ≥ 0 and c ≥ 1. Then we can also assume that εb = c − 1 by ad-
justing εb or c. By Lemma 5.3, P has a polynomial-time (1 + εb)-approximation
algorithm B. For any instance x ∈ IP , compute y′ = B(x) in polynomial time and let
s := m(x,y′).

Consider the case in which goalP = min. Then m∗(x) ≤ s ≤ c · m∗(x). Choose
ε = c2/s and compute y = A(x, ε) in polynomial time. Note that

m∗(x) ≥ s

c
= c

c2/s

and thus m∗(x) ≥ b(1/ε). Hence y is within a factor (1 + ε) of m∗(x). But then

m(x,y) ≤ (1 + c2/s) · m∗(x) = m∗(x) + c2 · m∗(x)

s
≤ m∗(x) + c2.

We thus have an algorithm that approximates P within a constant absolute error of c2.
For the case in which goalP = max the proof is similar. Then s ≤ m∗(x) ≤ c · s.

Choose ε = c/s and compute y = A(x, ε) in polynomial time. Note that

m∗(x) ≥ s = c

c/s

Theory Comput Syst

and thus m∗(x) ≥ b(1/ε). Hence y is within a factor (1 + ε) of m∗(x). But then

m∗(x) ≤ (1 + c/s) · m(x,y) = m(x,y) + c · m(x,y)

s
≤ m(x,y) + c · m(x,y)

m∗(x)/c

≤ m(x,y) + c2.

This gives an algorithm that approximates P again within a constant absolute error
of c2. �

5.2 Equivalence and Containment of Optimum-Asymptotic Classes

Consider now the following natural relations.

Proposition 5.11 The following relations hold:

• FIPTAS∞ ⊆ FPTAS∞ ⊆ PTAS∞ and
• FIPTAS ⊆ FIPTAS∞, FPTAS ⊆ FPTAS∞, PTAS ⊆ PTAS∞.

One might hope or expect that for optimum-asymptotic approximation classes
analogous relations hold as for size-asymptotic classes. We show that this is only
partially true. First, we investigate the relation between PTAS∞ and PTAS. We know
from Theorem 3.6 that PTASω = PTAS, but for optimum-asymptotic problems the
equivalent result does not hold (unless P = NP). Actually, we prove a stronger result.

Theorem 5.12 FIPTAS∞ �⊆ PTAS, unless P = NP.

Proof The minimum degree spanning tree problem admits a fiptas∞ (see Exam-
ple 5.9), but cannot have a ptas unless P = NP [21]. Hence FIPTAS∞ �⊆ PTAS. �

As described in Sects. 6 and 7 however, for many problems the existence of a
(f(i))ptas∞ does imply the existence of a ptas (or better).

Interestingly, there is a close relation between FPTAS∞ and FIPTAS∞. In fact,
we can prove that the classes are equal.

Theorem 5.13 FPTAS∞ = FIPTAS∞.

Proof By Proposition 5.11, it suffices to show that FPTAS∞ ⊆ FIPTAS∞. Let P ∈
FPTAS∞ and let A be an fptas∞ for P , such that for some computable function b

and for any ε > 0 and any x ∈ IP , A(x, ε) runs in at most γ · (1/ε)s · |x|t time (for
constants γ, s, t > 0) and yields a (1 + ε)-approximate solution if m∗(x) ≥ b(1/ε).
Because FPTAS∞ ⊆ APX, P has a polynomial-time c-approximation algorithm B
for some constant c > 1.

Consider an arbitrary instance x ∈ IP and let ε > 0 be given. Run A(x, ε) for
at most γ · |x|2t time steps. If it finished and thus returned a solution y, return the
solution attaining goalP {m(x,y),m(x, B(x))}. Otherwise, just return B(x). We claim

Theory Comput Syst

that this algorithm combined with threshold function b′ defined as

b′(1/ε) =
{

1 if ε ≥ c − 1;
max{b(1/ε),1 + MP ((1/ε)s/t)} otherwise,

and associated constant εb′ := c − 1 is a fiptas∞ for P .
Clearly, b′ is a computable function, the running time of the new algorithm is

bounded by a polynomial in |x|, and the algorithm returns a feasible solution. Assume
that m∗(x) ≥ b′(1/ε). If ε ≥ εb, then B(x) returns a feasible solution within c and
thus within (1 + ε) of m∗(x). Suppose that ε < εb . Since m∗(x) ≥ b′(1/ε) ≥ b(1/ε),
A(x, ε) delivers a (1 + ε)-approximation if it runs to completion. So it remains to
show that this is indeed the case, i.e. that γ · (1/ε)s · |x|t ≤ γ · |x|2t . But this fol-
lows from the fact that m∗(x) ≥ b′(1/ε) > MP ((1/ε)s/t) and thus |x| ≥ (1/ε)s/t by
Lemma 2.3, or (1/ε)s ≤ |x|t . �

A similar idea can be used to tie EPTAS to the optimum-asymptotic approximation
classes.

Theorem 5.14 FIPTASω ⊆ FIPTAS∞.

Proof Let P ∈ FIPTASω and let A be a fiptasω for P , such that A delivers a (1 + ε)-
approximation on instances x ∈ IP if |x| ≥ a(1/ε). As FIPTASω ⊆ APX, P also has
a polynomial-time c-approximation algorithm B for some constant c > 1. Let x ∈ IP

and some ε > 0 be given. We claim that the algorithm returning the solution attaining
goalP {m(x, A(x, ε)),m(x, B(x))} combined with threshold function b defined as

b(1/ε) =
{

1 if ε ≥ c − 1;
1 + MP (a(1/ε)) otherwise,

and εb := c − 1 is a fiptas∞ for P .
Clearly, the function b is computable, because a and MP are computable. As A

and B run in time polynomial in |x| for any instance x ∈ IP , it remains to show
that the returned solution is a (1 + ε)-approximate solution on instances x ∈ IP if
m∗(x) ≥ b(1/ε). If ε ≥ εb, then B(x) ensures a feasible solution within c and thus
within (1 + ε) of m∗(x). For ε < εb, a feasible solution is returned and if m∗(x) ≥
b(1/ε) > MP (a(1/ε)), then |x| ≥ a(1/ε) by Lemma 2.3, assuring that A delivers a
(1 + ε)-approximation. �

Note that one can similarly prove that PTASω ⊆ PTAS∞ and FPTASω ⊆
FPTAS∞. However, we can also derive this from Proposition 5.11 and Theorem 3.6,
respectively from Theorems 5.13, 5.14, and 3.4. Together with Theorem 5.12, this
yields the following corollary.

Corollary 5.15 EPTAS ⊆ FIPTAS∞. The containment is strict, unless P = NP.

This implies that the hierarchy of optimum-asymptotic approximation classes
starts not only above FPTAS, but even above EPTAS (see Fig. 1). It is an intriguing

Theory Comput Syst

question whether this corollary can be strengthened to PTAS ⊆ FPTAS∞, or whether
PTAS �⊆ FPTAS∞. We answer this question in Sect. 7 (Theorem 7.9).

6 Optimum-Asymptotic Schemes and Classic Classes

Asymptotic approximation schemes clearly play an important part in the hierarchy
of approximation schemes. In the previous sections, we established inclusion and
equivalence relations among the classes of problems admitting such schemes and
more classic classes such as PTAS, EPTAS, and FPTAS. All inclusion relations are
strict under some hardness condition. In some cases however, the hardness gap can
be bridged. The next two sections build several of these bridges.

In this section, we give a new characterization of classic classes by means of
optimum-asymptotic approximation schemes and concepts from fixed-parameter
tractability. In this way, we can also prove that large classes of problems do not
possess optimum-asymptotic schemes. Section 7 deals with asymptotic schemes in
another way, in the sense that we try to increase the size or optimum of a problem
instance to get around the threshold function of asymptotic schemes.

6.1 New Characterizations of Classic Classes

When we view optimum-asymptotic approximation schemes from the perspective of
the theory of fixed-parameter tractability, we can obtain new characterizations of the
classic classes of approximation schemes defined in Table 1. We first define some no-
tions from fixed-parameter tractability, as found for instance in Downey and Fellows
[17] and Flum and Grohe [18].

Definition 6.1 In the standard parameterization (or decision variant) of a prob-
lem P , one is asked, given x ∈ IP and a positive integer k, to decide whether
m∗(x) ≥ k if goalP = max or m∗(x) ≤ k if goalP = min.

Definition 6.2 [36] A problem P is simple if its standard parameterization can be
decided in time polynomial in |x| for every instance x ∈ IP and every fixed k. It is
p-simple if its standard parameterization can be decided in time polynomial in |x| and
k for every x ∈ IP and every k.

Proposition 6.3 The standard parameterization of a problem P belongs to the class
XP if and only if P is simple. It belongs to the class PFPT (Polynomial FPT) if and
only if P is p-simple.

A precise definition of the classes PFPT and XP may be found in [8, 17, 18].
Here we only need an understanding of the restriction of these classes to standard
parameterizations of optimization problems.

Definition 6.4 [4, 6] An algorithm A decides the standard parameterization of a
problem P with witness if A decides the standard parameterization of P and if it
decides YES, it also returns a y ∈ S(x) such that m(x,y) ≥ k if goalP = max or
m(x,y) ≤ k if goalP = min.

Theory Comput Syst

Using this definition, we can consider problems that are (p-)simple with witness
and define classes XPw and PFPTw as expected. As in Proposition 6.3, this means
that a problem belongs to XPw if and only if it is simple with witness, and in PFPTw

if and only if it is p-simple with witness.
We now give a new characterization of the classes PTAS and FPTAS.

Theorem 6.5 A problem is

• in PTAS if and only if it has a ptas∞ and its standard parameterization is in XPw .
• in FPTAS if and only if it has an fptas∞ with a polynomially-bounded threshold

function and its standard parameterization is in PFPTw .

Proof Consider a problem P and suppose that P ∈ PTAS. Then P is in PTAS∞ by
Proposition 5.11. It follows from a proof of Paz and Moran [36] that the standard
parameterization of P is simple with witness (run the ptas with ε = 1/(k + 1)), and
thus in XPw .

For the converse, suppose that P is in PTAS∞ and in XPw . Let A be a ptas∞
for P with computable threshold function b and let B be an algorithm that decides
the standard parameterization of P with witness in time polynomial in |x| for every
fixed k. Assume w.l.o.g. that goalP = min. The case when goalP = max is similar.

Given an instance x ∈ IP and some ε > 0, compute b(1/ε). For each integer k ∈
[1, . . . , b(1/ε)], call B(x, k). If any of these calls returns a YES-answer, then m∗(x)

equals the smallest value of k for which B(x, k) gives a YES-answer. The witness
solution y ∈ S(x) returned by B in this case has m(x,y) = m∗(x) and thus trivially is
a (1 + ε)-approximation. If no call returns a YES-answer, then m∗(x) ≥ b(1/ε) and
A(x, ε) returns a (1 + ε)-approximation to m∗(x). In either case, we get a (1 + ε)-
approximation.

The running time of this scheme is polynomial in |x| for every fixed ε > 0. For
a fixed value of ε, b(1/ε) can be computed in constant time. Furthermore, b(1/ε)

itself is a constant and hence B is called a constant number of times. Each call takes
polynomial time. If none of these calls returns a YES-answer, we run A(x, ε), which
also takes polynomial time.

The proof of the characterization of FPTAS is similar. Since the threshold function
is polynomially bounded, we may assume it is a polynomial. Since a polynomial can
be evaluated in polynomial time, the theorem follows. �

The characterizations seem different from those given by Paz and Moran [36] and
Chen et al. [8].

Example 6.6 Jansen and Zhang [25] prove that the standard parameterization of Max-
imum Rectangle Packing (maximizing the number of given rectangles that can be
packed in a given rectangle) is in XPw . Then an fptas∞ for this problem is given,
implying by Theorem 6.5 that it is in PTAS.

Example 6.7 Minimum Bin Packing is in FIPTAS∞ (see Example 5.2), but has no
ptas unless P = NP [21]. Hence its standard parameterization is not in XPw unless
P = NP.

Theory Comput Syst

A similar characterization can be given for the class EPTAS. Let EPTAS∞ de-
note the class of problems admitting an eptas∞, i.e. a ptas∞ with running time
poly(|x|) · f (1/ε) for some computable function f . Call a problem e-simple if its
standard parameterization can be decided in time poly(|x|) · f (k) for some com-
putable function f . The standard parameterization of a problem belongs to FPT if
and only if it is e-simple. Using Definition 6.4, we can define (similar to XPw and
PFPTw) the class FPTw .

Theorem 6.8 A problem is in EPTAS if and only if it has an eptas∞ and its standard
parameterization is in FPTw .

The proof is similar to the proof of Theorem 6.5.

6.2 Existence of Optimum-Asymptotic Approximation Schemes

Theorem 6.5 has interesting consequences. In particular, it gives the tools to improve
on a theorem of Arora et al. [1]. They showed that MAX-3SAT has no ptas, unless
P = NP. As a consequence, no MAX-SNP-complete problem can have a ptas, unless
P = NP. We prove that this extends to ptas∞.

Definition 6.9 [35] An NPO-problem P is in MAX-NP if it can be expressed as

max
S

|{ā | ∃b̄ ψ(ā, b̄,G,S)}|,

where G is an instance of P described as a finite structure, S ranges over all admis-
sible structures, ā and b̄ are tuples of variables, and ψ is a quantifier-free boolean
formula. Problem P is in MAX-SNP if it can be expressed as

max
S

|{ā | ψ(ā,G,S)}|,

with G, S, ψ , and ā as before.

Kolaitis and Thakur [29] proved that MAX-SNP ⊂ MAX-NP, as Maximum Satis-
fiability is in MAX-NP, but not in MAX-SNP.

We first need the following theorem, a weaker form of which was proved by Cai
and Chen [4].

Theorem 6.10 If P is in MAX-NP, then its standard parameterization is in FPTw .

Proof Suppose that we are given an instance of P , described as a finite structure G,
and a positive integer k. Because P is in MAX-NP, its instances can be expressed as

max
S

|{ā | ∃b̄ ψ(ā, b̄,G,S)}|.

Since this expression is fixed irrespective of the instance, Papadimitriou and Yan-
nakakis [35] showed that for a particular instance one only needs to consider a poly-
nomial number of different values ā. Also, for every fixed value of ā, it again suffices

Theory Comput Syst

to consider only a polynomial number of different values b̄. Finally, for any fixed
values of ā and b̄, let φā,b̄(S) = ψ(ā, b̄,G,S) be the resulting boolean formula after
substituting ā, b̄, and G. It consists of a constant number, say at most c, of variables
of the form Q(d̄), where Q is any predicate of S.

For every ā, let B(ā) denote the set of values b̄ such that φā,b̄(S) is satisfiable for
some structure S. Let A denote the set of values ā for which B(ā) �= ∅. Then we can
express P as:

max
S

∣∣∣∣
{
ā ∈ A | φā(S) :=

∨
b̄∈B(ā)

φā,b̄(S)

}∣∣∣∣.

Furthermore, let n = |A| and l = maxā∈A |B(ā)|. As both n and l are polynomial in
the size of the input, l ≤ nO(1).

Suppose that k ≤ n/2c. Papadimitriou and Yannakakis [35] proved that by fixing a
particular b̄(ā) ∈ B(ā) for each ā ∈ A, one can find in polynomial time a structure S

satisfying at least n/2c clauses φā,b̄(ā)(S). Hence if k ≤ n/2c, the answer is trivially
YES. Moreover, a witness to this can be found in polynomial time.

So suppose that k > n/2c. Then we enumerate all assignments of variables of the
form Q(d̄) that occur (i.e. all relevant structures S) to verify whether the maximum
number of satisfiable φā(S) is at least k. There are at most n clauses φā(S) which can
be satisfied. For each such clause, if it is to be satisfied, there are at most l clauses
φā,b̄(S), from which we should choose one that must be satisfied. As each such clause
φā,b̄(S) consists of at most c variables of the form Q(d̄), where Q is any predicate
in S, we can enumerate all relevant structures S in O(n · (l + 1)n · 2cn) time. Since
n < 2ck and l ≤ nO(1), this is O(kO(k)) time. Therefore we can check in O(kO(k))

time whether the instance of P has answer YES and, if so, return a witness structure
S for this. �

Observe that for problems in MAX-SNP we can apply a similar proof as above,
but with l = 1. Then the running time of the given algorithm improves to O(k ·2O(k))

plus a polynomial in the input size. Kratsch [31] recently showed that problems in
MAX-NP admit a polynomial kernel, strengthening the above result.

Combining Theorem 6.10 with Theorems 6.5 and 6.8, we obtain the following
result.

Theorem 6.11 If a problem P is in MAX-NP and PTAS∞ (EPTAS∞), it is in PTAS
(EPTAS).

In the given form, the theorem gives a way to construct a ptas (eptas) for a problem
in MAX-NP if the problem has a ptas∞ (eptas∞). Phrased differently however, it
gives a powerful tool to prove that for some problems a ptas∞ (eptas∞) cannot exist.

Corollary 6.12 If a problem P in MAX-NP cannot have a ptas (eptas) under some
hardness condition, then it cannot have a ptas∞ (eptas∞) under the same hardness
condition.

Theory Comput Syst

This already proves the nonexistence of a ptas∞ for many problems, for in-
stance for Maximum Satisfiability. However, a more general statement is possible.
Arora et al. [1] showed that no MAX-SNP-complete problem can have a ptas, unless
P = NP. We now strengthen this result as follows.

Theorem 6.13 If a problem P is MAX-SNP-complete (under the L-reduction), then
it cannot have a ptas∞, unless P = NP.

This implies for instance that problems such as MAX-3SAT, Maximum Indepen-
dent Set on bounded degree graphs, and Maximum Cut do not have a ptas∞, unless
P = NP. In fact, using the result of Arora et al., one can even prove that for each
MAX-SNP-complete problem P there is a fixed constant c > 1 such that P cannot
be approximated (optimum-)asymptotically within c, unless P = NP.

It should be noted here that similar results can be proved for a syntactically defined
class of minimization problems, called MIN F+�1 [30], which includes Minimum
Vertex Cover and many vertex-deletion and edge-deletion problems in graphs such
as Minimum Feedback Arc Set. Cai and Chen [4] proved that the standard parame-
terizations of all problems in this class are in FPTw . Hence we obtain the following
theorem.

Theorem 6.14 If a problem P is in MIN F+�1 and in PTAS∞, then it is in PTAS.

Similar to Corollary 6.12, one can use this theorem to prove negative results. For
instance, Theorem 6.14 implies that Minimum Vertex Cover, which cannot have a
ptas unless P = NP [1, 35], also cannot have a ptas∞ unless P = NP.

6.3 Approximation-Preserving Reductions

Due to results by Khanna et al. [28], we know that no APX-complete problem can
have a ptas unless P = NP. Phrased differently, if for a problem P in APX there
exists an approximation-preserving reduction from Maximum Satisfiability (or a
specific bounded case of it) to P , then P cannot have a ptas unless P = NP. We
prove that a similar statement can be made about ptas∞ by using a different type of
approximation-preserving reduction.

The result of Khanna et al. holds under the PTAS-reduction, defined by Crescenzi
and Trevisan [15].

Definition 6.15 There is a PTAS-reduction from a problem P to a problem P ′ if
there exist computable functions t1, t2, and c : Q

+ → Q
+ such that for any x ∈ IP

and any ε > 0,

1. t1(x, ε) ∈ IP ′ and t1(x, ε) is computable in time polynomial in |x| for any fixed
value of ε;

2. for any y ∈ SP ′(t1(x, ε)), t2(x, y, ε) ∈ SP (x) and t2(x, y, ε) is computable in time
polynomial in |x| and |y| for any fixed value of ε;

3. for any y ∈ SP ′(t1(x, ε)), if y is within 1 + c(ε) of m∗
P ′(t1(x, ε)), then t2(x, y, ε)

is within 1 + ε of m∗
P (x).

Theory Comput Syst

Several well-known reductions are a special case of PTAS-reductions, such as P-
reductions [34], L-reductions [35], E-reductions [28], and AP-reductions [13]. The
most important property of all these reductions is that they preserve membership of
PTAS.

Lemma 6.16 [15] If there is a PTAS-reduction from P to P ′ and P ′ has a ptas, then
P also has a ptas.

Proof Let A′ be a ptas for P ′ and (t1, t2, c) a PTAS-reduction from P to P ′. It can be
easily seen that given x ∈ IP and some ε > 0, computing t2(x, A′(t1(x, ε), c(ε)), ε)

yields a ptas for P . �

Most PTAS-reductions given in the literature actually also preserve membership
of PTAS∞. This is due to the following property.

Lemma 6.17 Suppose there is a PTAS-reduction (t1, t2, c) from P to P ′ and a mono-
tone computable function f : N → N with lim infn→∞ f (n) = ∞ such that for any
ε > 0 and any x ∈ IP , m∗

P ′(t1(x, ε)) ≥ f (m∗
P (x)). Then if P ′ has a ptas∞, P also

has a ptas∞.

Proof Suppose that P ′ has a ptas∞ A′ such that any instance x′ ∈ IP ′ can be
approximated within (1 + ε) if m∗(x′) ≥ b′(1/ε) for some computable func-
tion b′. Let x ∈ IP and some ε > 0 be given. We claim that computing A(x, ε) =
t2(x, A′(t1(x, ε), c(ε)), ε) yields a ptas∞ for P with some suitably chosen threshold
function b.

It follows from the proof of Lemma 6.16 that A(x, ε) always returns a feasible
solution y and that y is within (1+ ε) of m∗

P (x) if m∗
P ′(t1(x, ε)) ≥ b′(1/c(ε)). Hence

to prove that A is a ptas∞ we need a computable function b such that m∗
P (x) ≥ b(1/ε)

implies that m∗
P ′(t1(x, ε)) ≥ b′(1/c(ε)). Choosing

b(1/ε) = min{n | f (n) ≥ b′(1/c(ε))},
which is a computable function, we get

m∗
P (x) ≥ b(1/ε) ⇒ f (m∗

P (x)) ≥ f (b(1/ε)) ⇒ m∗
P ′(t1(x, ε)) ≥ b′(1/c(ε)),

proving the lemma. �

The lemma proves the usefulness of the following notion.

Definition 6.18 There is a PTAS∞-reduction from a problem P to a problem P ′
if there is a PTAS-reduction (t1, t2, c) from P to P ′ and a monotone computable
function f : N → N with lim infn→∞ f (n) = ∞ such that for any ε > 0 and any
x ∈ IP , m∗

P ′(t1(x, ε)) ≥ f (m∗
P (x)).

Observe that the PTAS∞-reduction is transitive. Moreover, by Lemma 6.17,
PTAS∞-reductions preserve membership of PTAS∞.

Theory Comput Syst

Some reductions appearing in the literature are a special case of PTAS∞-reduc-
tions, such as asymptotic continuous reductions [39] and (polynomial time) ratio-
preserving reductions [36]. However, they are rather restrictive and not many have
been shown to exist. Here we will rely on Lemma 6.17 instead.

A first question we need to answer with respect to PTAS∞-reductions is whether
there exist any (natural) problems that are APX-complete under the PTAS∞-reduc-
tion. Such a problem indeed exists. Let Maximum Bounded Weighted Satisfiability
be the variant of Maximum Satisfiability in which each variable xi has weight wi

such that W ≤ ∑
i wi ≤ 2W for some given weight W .

Theorem 6.19 Maximum Bounded Weighted Satisfiability (MBWS) is APX-complete
under the PTAS∞-reduction.

Proof Crescenzi and Panconesi [14] proved that MBWS is APX-complete under the
P-reduction. Upon closer inspection and using Definition 6.18, it can be seen that the
given reductions are also PTAS∞-reductions. �

Using this theorem, we can in fact prove that there is a problem in MAX-SNP that
is APX-complete under the PTAS∞-reduction.

Theorem 6.20 Maximum 3-Satisfiability is APX-complete under the PTAS∞-reduc-
tion.

Proof Crescenzi and Trevisan [15] presented a PTAS-reduction from MBWS to a
polynomially-bounded variant of it, Maximum Polynomially-Bounded Weighted Sat-
isfiability. Khanna et al. [28] showed that any polynomially-bounded problem in APX
has an E-reduction to Maximum 3-Satisfiability. Upon closer inspection of these re-
ductions, one can see that they are in fact PTAS∞-reductions. �

Observe that any problem that is APX-complete under the PTAS∞-reduction can-
not have a ptas∞, unless P = NP.

Lemma 6.21 If a problem P is APX-complete under the PTAS∞-reduction, then it
cannot have a ptas∞, unless P = NP.

Proof We established in Theorem 6.13 that no MAX-SNP-complete problem can
have a ptas∞ unless P = NP. In particular, Maximum 3-Satisfiability, which is
APX-complete, has no ptas∞. Let P be an APX-complete problem under the
PTAS∞-reduction. If P had a ptas∞, then by the APX-completeness of P , Maximum
3-Satisfiability also has a ptas∞. This is a contradiction, unless P = NP. �

It is interesting to note that several reductions proving that no ptas∞ can exist for a
certain problem, actually use a PTAS∞-reduction implicitly. For example, a result of
Woeginger [44] showing that Minimum 2-Dimensional Vector Packing cannot have a
ptas∞ unless P = NP can be explained this way. In Minimum 2-Dimensional Vector
Packing, we want to partition a given set of vectors in [0,1] × [0,1] into a minimum

Theory Comput Syst

number of subsets, such that in every subset the sum of all vectors is at most 1 in
every coordinate.

Theorem 6.22 Minimum 2-D Vector Packing is APX-complete under the PTAS∞-
reduction. Hence it cannot have a ptas∞ unless P = NP.

Proof Consider the following problems. In Maximum 3-Dimensional Matching, we
are given three sets X, Y , and Z, each of size q , and a set T ⊆ X × Y × Z of
triples, and we are asked to find the maximum number of triples that do not agree
on any coordinate. In Maximum Bounded 3-Dimensional Matching, we addition-
ally impose that each element occurs in at least one, but at most three triples.
Kann [26] gives an L-reduction to Maximum Bounded 3-D Matching from Maximum
3-Satisfiability-B, which itself has an L-reduction from Maximum 3-Satisfiability
[35]. Both L-reductions are actually also PTAS∞-reductions.

The construction of Woeginger [44] reduces instances x of Maximum Bounded 3-
Dimensional Matching to instances x′ of Minimum 2-Dimensional Vector Packing.
From the construction, x has a solution of value at least k if and only if x′ has a
solution of value at most q + � 1

3 (|T | − k)�. This leads to a PTAS∞-reduction as
follows. For any ε > 0, for any y′ ∈ S(x′) with m(x′, y′) ≤ (1 + ε) · m∗(x′), and for
y = t2(x

′, y′, ε),

q + 1

3
(|T | − m(x,y)) = m(x′, y′) ≤ (1 + ε) ·

(
q +

⌈
1

3
(|T | − m∗(x))

⌉)
.

Then

m(x,y) ≥ m∗(x) − 3ε ·
(

q +
⌈

1

3
(|T | − m∗(x))

⌉)
≥ (1 − O(ε)) · m∗(x),

since q/7 ≤ m∗(x) ≤ 3q from the definition of Maximum Bounded 3-Dimensional
Matching. Moreover, m∗(x′) ≥ q , and thus m∗(x′) ≥ m∗(x)/3. This yields the de-
sired PTAS∞-reduction. �

We can also be interested in the existence of PTAS∞-reductions. Crescenzi
et al. [13] showed that Minimum Bin Packing is not APX-complete under the AP-
reduction (and thus also under the PTAS-reduction), unless the polynomial hierarchy
collapses. Furthermore, they remark that this result “does not seem to be obtainable”
under the condition that P = NP. The reason for this is that Crescenzi et al. show
that if NP = co-NP, then there is an AP-reduction from Maximum Satisfiability to
Minimum Bin Packing. Thus NP = co-NP would imply that P = NP, which is highly
unlikely. If however we consider PTAS∞-reductions, then the result of Crescenzi
et al. can be obtained under the condition that P = NP.

Theorem 6.23 Minimum Bin Packing is not APX-complete under the PTAS∞-
reduction, unless P = NP.

Proof Recall that Minimum Bin Packing has a ptas∞ (see Example 5.2). Hence if
Minimum Bin Packing were APX-complete under the PTAS∞-reduction, then this
would contradict Lemma 6.21, unless P = NP. �

Theory Comput Syst

In particular, the theorem implies that no PTAS∞-reduction can exist from Maxi-
mum Satisfiability to Minimum Bin Packing, unless P = NP. It should be noted here
that the AP-reduction given by Crescenzi et al. under the condition that NP = co-NP
is not a PTAS∞-reduction, since it has m∗(t1(x, ε)) = O(1) for any instance x of
Maximum Satisfiability and any ε > 0. Therefore Theorem 6.23 does not contradict,
but augments the results of Crescenzi et al. [13]. Furthermore, it can be easily seen
that Theorem 6.23 extends to several other problems, including Minimum Degree
Spanning Tree and Chromatic Index.

7 Pumpable Problems

Looking back at the previous sections, one can notice that in the equivalence proofs
we do not always get the equivalence we hope for. For instance, one expects an
fptasω with a(1/ε) = 21/ε to be equivalent to an eptas with f (1/ε) = 21/ε . How-
ever, this does not seem to hold in general, as the proof of Theorem 3.4 only gives
f (1/ε) = 2poly(a(1/ε)). Hence we are interested in properties of problems for which
the equivalences are nice. Similarly, we want to know if for certain types of problems
the hierarchy developed in the previous sections collapses. A promising property of
problems seems to be pumpability.

Definition 7.1 An optimization problem P is k-pumpable if there exist functions g1
and g2 such that for any instance x ∈ IP

• g1(x) ∈ IP and SP (g1(x)) �= ∅ if SP (x) �= ∅;
• for every r ≥ 1 and for every y ∈ SP (g1(x)) within a factor r of m∗(g1(x)),

g2(y) ∈ SP (x) and g2(y) is within r of m∗(x);
• g1 and g2 are computable in time polynomial in |x| and logk;
• some pumpability condition holds.

Note that in the logarithmic cost model we use, it makes sense that the running
times of g1 and g2 depend polynomially on logk.

We distinguish two pumpability conditions, one related to the size of g1(x) and
one related to the optimal objective value of g1(x).

Definition 7.2 An optimization problem P is k-size-pumpable if P is k-pumpable
with the condition that |g1(x)| ≥ |x| + k. An optimization problem P is k-opt-
pumpable if P is k-pumpable with the condition that m∗(g1(x)) ≥ m∗(x) + k.

It appears that many problems possess either one of these properties or even both,
as can be seen in the following example.

Example 7.3 Minimum Vertex Cover is 1-size-pumpable, because one can take for
g1 the function that makes two disjoint copies of an instance. The desired property
of the translation back follows by the pigeonhole principle. Using the same idea,
Minimum Vertex Cover is also 1-opt-pumpable. Minimum Makespan Scheduling is
k-opt-pumpable for any k by multiplying all job lengths by k + 1. Using a similar
idea it is also 1-size-pumpable.

Theory Comput Syst

Observe that problems that are k-size-pumpable for arbitrary values of k cannot
exist. Otherwise one could take k = 2poly(|x|) and thus add an exponential number of
bits to an instance x of P in time polynomial in |x|.

We consider the question which problems are pumpable in more detail in Sect. 7.3.
First, we show how the property of being pumpable helps to prove some new equiva-
lences among the classes we defined previously. In the following, when we talk about
a size- or opt-pumpable problem, we assume that the functions g1 and g2 are known.

7.1 Optimum-Asymptotic Schemes and Pumpability

It follows from Theorem 5.12 that PTAS ⊂ PTAS∞, unless P = NP. For 1-opt-
pumpable problems however, the two classes are equivalent.

Lemma 7.4 Let P be 1-opt-pumpable and in PTAS∞. Then P ∈ PTAS.

Proof Assume we have a ptas∞ A for P with computable threshold function b.
Given x ∈ IP and some ε > 0, compute b(1/ε), which takes constant time for any
fixed ε. Then pump x b(1/ε) times to get an instance x′. Note that the size of the out-
put of g1 is polynomial in the size of the input. Hence pumping b(1/ε) times means
that x′ has size at most |x|O(1)b(1/ε)

and thus the pumping steps can be done in time
polynomial in |x| for every fixed ε.

As x has been pumped b(1/ε) times, m∗(x′) ≥ b(1/ε) + m∗(x) ≥ b(1/ε). Hence
we can compute y′ = A(x′, ε) and by the definition of ptas∞, y′ is within 1 + ε of
m∗(x′). Furthermore, y′ can be computed in time polynomial in |x| for every fixed ε,
as |x′| is polynomial in |x| for every fixed ε. Iteratively applying g2 to y′, we get a
solution y for x within 1 + ε of m∗(x). As we need to apply g2 only b(1/ε) times,
this again takes time polynomial in |x| for every fixed ε. �

There are several ways in which one could use this lemma. First of all, it provides
a condition under which problems are not 1-opt-pumpable.

Theorem 7.5 Any problem that is in PTAS∞ but not in PTAS (unless P = NP), is not
1-opt-pumpable (unless P = NP).

This is an immediate consequence of Lemma 7.4. There are several examples of
problems that fit the theorem.

Corollary 7.6 Minimum Bin Packing, Chromatic Index, and Minimum Degree Span-
ning Tree are not 1-opt-pumpable, unless P = NP.

Secondly, Lemma 7.4 shows that some problems cannot have a ptas∞. Consider
for instance the variation of Minimum Bin Packing with precedence constraints. (The
precedence constraints state that for certain items i and j , item i has to appear in a bin
with a lower number than item j .) It cannot have a ptas, as Minimum Bin Packing
itself cannot have a ptas unless P = NP [20]. Queyranne [38] already proved the
following result. But as Minimum Bin Packing with Precedence is 1-opt-pumpable

Theory Comput Syst

(make two copies of the instance and by using precedence constraints ensure that
items of the first instance have to come before items of the second), it now follows as
a corollary of Lemma 7.4.

Theorem 7.7 Minimum Bin Packing with Precedence has no ptas∞, unless P = NP.

Actually, Queyranne applied a similar form of pumping to the problem in order to
obtain his result.

We now consider the effect of pumpability on problems in FPTAS∞.

Lemma 7.8 Let P be 1-opt-pumpable and in FPTAS∞ and let c > 0 be a constant.
If |g1(x)| ≤ c · |x| for any x ∈ IP , then P ∈ EPTAS.

Proof Following the proof of Lemma 7.4, the condition on g1 now implies that after
pumping b(1/ε) times we obtain an instance of size O(cb(1/ε) · |x|). Then the con-
struction of Lemma 7.4 actually takes time bounded by a polynomial in |x| times
some (computable) function of 1/ε. �

Using this lemma, one can prove interesting results about the relation of FPTAS∞
to PTAS∞ and PTAS.

Theorem 7.9 PTAS �⊆ FPTAS∞, unless FPT = W[1].

Proof Let P denote the minimum dominating set problem in unit disk graphs.
Hunt et al. [24] showed that P ∈ PTAS. Suppose that P ∈ FPTAS∞. Because P

is easily 1-opt-pumpable with a linear size output (let g1 just take two disjoint copies
of the graph of the instance), it has an EPTAS by Lemma 7.8. But then P is in
FPT (with respect to its standard parameterization) by results of Bazgan [3] and Ce-
sati and Trevisan [7]. However, as P is W[1]-hard [32], this is not possible, unless
FPT = W[1]. �

This leads to the following corollary, which we could not derive yet in Sect. 5.

Corollary 7.10 PTAS∞ �= FPTAS∞, unless FPT = W[1].

Although Lemma 7.8 gives a way to go from an fptas∞ to an eptas, it only holds
if the output of g1 has linear size. If that is not the case, the following lemma can be
useful.

Lemma 7.11 Let P be k-opt-pumpable for any k and in FPTAS∞. Then P ∈ EPTAS.

Proof In this case it suffices to pump once with k = b(1/ε) to make the construction
of Lemma 7.4 work. �

If additionally b(1/ε) is bounded by 2poly(1/ε), then P ∈ FPTAS, as both g1 and
g2 can be computed in time polynomial in |x| and logk = logb(1/ε) = poly(1/ε).
This last observation has interesting consequences.

Theory Comput Syst

Example 7.12 Extensible Bin Packing (where bin size is part of the input) and Min-
imum Makespan Scheduling are strongly NP-hard, polynomially-bounded problems
and thus have no fptas unless P = NP (see Corollary 4.13). However, both problems
are k-opt-pumpable for any k (multiply all numbers of the instance by k). Hence by
Lemma 7.11 they cannot have a fptas∞ where b(1/ε) is bounded by 2poly(1/ε), unless
P = NP.

For these two problems, the above facts were already known by results of Coffman
and Lueker [12] and (in a weaker form) of Hochbaum and Schmoys [22], but here
they are just a consequence of the general statement in Lemma 7.11. Moreover, the
result of Hochbaum and Schmoys for Minimum Makespan Scheduling is strength-
ened by it.

7.2 Size-Asymptotic and Convergent Schemes and Pumpability

For size-asymptotic problems, the situation is slightly different. Recall that PTASω

and PTAS are equivalent for all problems, not just for pumpable problems (Theo-
rem 3.6). The classes FPTASω and EPTAS are also equivalent (Theorem 3.4), but
turning an fptasω with threshold function a into an eptas currently increases the time
complexity by at least a factor 2poly(a(1/ε)). This is rather unfortunate. If a problem is
1-size-pumpable however, this exponential increase is not necessary.

Lemma 7.13 Let P be 1-size-pumpable and in FPTASω with computable threshold
function a. Then P ∈ EPTAS with running time polynomial in |x|, 1/ε, a(1/ε), and
the time needed to compute a(1/ε).

Proof Assume that P has an fptasω A with threshold function a. Given some x ∈ IP

and ε > 0, compute a(1/ε). Pump x the smallest number of times needed to get an
instance x′ with |x′| ≥ a(1/ε). Note that x′ has size at most polynomial in a(1/ε)

and |x|. Hence computing y′ = A(x′, ε) takes time polynomial in 1/ε, a(1/ε), and
|x|. Repeatedly applying g2 to y′ also takes time polynomial in a(1/ε) and |x| and
yields a solution to x within (1 + ε) of m∗(x). �

If a(1/ε) is computable in time polynomial in 1/ε and a(1/ε), then the exponen-
tial increase is avoided. In particular, if the threshold function a of the fptasω is a
polynomial, then P ∈ FPTAS.

We can also show that for 1-size-pumpable problems the classes PCONV[f] and
PTAS[f] coincide for many functions f , such as the logarithm.

Lemma 7.14 Let f ∈ F ∗ be such that f (n · m) ≥ f (n) + f (m). If P ∈ PCONV[f]
is 1-size-pumpable, then P ∈ PTAS[f].

Proof Suppose that P ∈ PCONV[f] and let A be a pconv[f] for P . Consider an
arbitrary x ∈ IP and some (fixed) ε > 0. Let α ≥ 1 be some integer to be chosen later.
Pump x the smallest number of times needed to get an instance x′ with |x′| ≥ |x|α
and run A(x′). This yields a (1 + 1/f (|x′|))-approximation. We claim that α can be

Theory Comput Syst

chosen such that 1 + 1/f (|x′|) ≤ 1 + ε/f (|x|) and that we thus have bootstrapped A
to a ptas[f]. The claim holds if

1

f (|x′|) ≤ 1

f (|x|α)
≤ ε

f (|x|) .

The first inequality is true by the monotonicity of f and the definition of x′. For the
second inequality, note that since f (n · m) ≥ f (n) + f (m),

1

f (|x|α)
≤ 1

α · f (|x|) .

As ε is fixed, we can choose any α ≥ 1/ε to ensure that 1/f (|x|α) ≤ ε/f (|x|). �

In Example 4.3, we noted that Maximum Independent Set on single-crossing-
minor-free graphs has a pconv[log |x|]. By the above lemma, we conclude that it
also has a ptas[log |x|].

Pumpability also leads to several negative results.

Lemma 7.15 Let P be an NP-hard, polynomially-bounded optimization problem
with p the corresponding bounding polynomial plus 1. If P is 1-size-pumpable, then
for any constant α > 0, P /∈ PCONV[p(|x|)α], unless P = NP.

Proof We may assume that p is a monotone polynomial. Suppose by way of contra-
diction that P ∈ PCONV[p(|x|α)]. Then there exists an algorithm A such that for
any instance x of P , A(x) runs in time polynomial in |x| and delivers a solution with
approximation ratio 1 + 1/p(|x|)α . Consider an arbitrary x ∈ IP . Pump x the small-
est number of times (say k times) needed to get an instance x′ with |x′| ≥ p(|x|)1/α .
As k is bounded by a polynomial, pumping takes polynomial time. Let y′ = A(x′)
and let y ∈ SP (x) be the resulting solution after iteratively applying g2 to y′ for k

times. Observe that if P is a minimization problem, then

m(x′, y′) ≤ (1 + 1/p(|x′|)α) · m∗(x′) ≤ (1 + 1/p(|x|1/α)α) · m∗(x′)

≤ (1 + 1/p(|x|)) · m∗(x′)

and thus

m(x,y) ≤ (1 + 1/p(|x|)) · m∗(x).

If P is a maximization problem, we similarly obtain that m∗(x) ≤ (1 + 1/p(|x|)) ·
m(x,y). This means that we found a pconv[p], which is not possible by Lemma 4.12,
unless P = NP. �

This lemma allows a simple subdivision of the PCONV-hierarchy.

Lemma 7.16 PCONV[|x|α] ⊂ PCONV[log |x|] for any (fixed) α > 0, unless P =
NP.

Theory Comput Syst

Proof Maximum Independent Set on single-crossing-minor-free graphs is in
PCONV[log |x|] (see Example 4.3), but is also polynomially-bounded and 1-size-
pumpable. �

This result can be strengthened significantly though. Huang [23] showed that Min-
imum Vertex Cover on planar graphs cannot have an eptas with f (1/ε) = 2o(

√
1/ε),

unless FPT = W[1]. Marx [33] proved that even an eptas with f (1/ε) = 2O((1/ε)1−δ)

for some δ > 0 cannot exist, unless n-variable 3-SAT can be solved in 2o(n) time.

Lemma 7.17 PCONV[log2 |x|] ⊂ PCONV[log |x|], unless FPT = W[1].
PCONV[log1/(1−δ) |x|] ⊂ PCONV[log |x|] for any δ > 0, unless n-variable 3-SAT
can be solved in 2o(n) time.

7.3 Which Problems Are Pumpable?

We already showed that several problems are pumpable (e.g. Minimum Vertex Cover
and Minimum Makespan Scheduling). In Theorem 7.5, we proved that several other
problems (such as Minimum Bin Packing) are not 1-opt-pumpable, and it seems
unlikely that they are 1-size-pumpable. In fact, many problems seem both 1-size-
pumpable and 1-opt-pumpable, or both not. We give some evidence why this might
not be a coincidence. At the moment, we do not know of any problem which provably
possesses only one of the properties and not both.

To prove the pumpability of several classes of problems, we consider problems that
are m∗-opt-pumpable. Essentially, this means that we can pump to (at least) double
the objective value of the optimum. For any problem P and any x ∈ IP , note that
because m∗(x) ≤ MP (|x|), logm∗(x) ≤ logMP (|x|) ≤ poly(|x|). Hence for any m∗-
opt-pumpable problem the functions g1 and g2 are computable in time polynomial
in |x|.

Lemma 7.18 Let P be m∗-opt-pumpable. Then P is 1-size-pumpable.

Proof Given an instance x ∈ IP , repeatedly opt-pump x to an instance x′ until
|x′| > |x|. We claim it takes at most time polynomial in |x| until such an x′ is
found. As a first step, we prove that we only need to pump a polynomial amount
of times. By Lemma 2.3, if m∗(x′) > MP (|x|) = 2rP (|x|,qP (|x|)), then |x′| > |x|. As
m∗-opt-pumping (at least) doubles the objective value of the optimum, pumping
1 + rP (|x|, qP (|x|)) times gives an x′ with |x′| > |x|. Second, note that before any
pumping step, the size of the instance is at most |x|. Hence any pumping step costs
only time polynomial in |x|. Therefore all needed pumping steps can be done in time
polynomial in |x| and thus P is 1-size-pumpable. �

Many graph optimization problems, such as Minimum Vertex Cover and Maxi-
mum Independent Set, are m∗-opt-pumpable and thus 1-size-pumpable. But when is
a problem m∗-opt-pumpable?

Consider the following property of optimization problems.

Theory Comput Syst

Definition 7.19 [28] A problem P is additive if there exists an operator + and
a polynomial-time computable function f such that + maps any pair of instances
x1, x2 ∈ IP to an instance x1 + x2 ∈ IP such that m∗(x1 + x2) = m∗(x1) + m∗(x2)

and f maps a (feasible) solution y to x1 + x2 to a pair of (feasible) solutions y1, y2
to x1 and x2 respectively such that m(x1 + x2, y) = m(x1, y1) + m(x2, y2).

This notion is similar to the notion of paddable optimization problems [9, 37].
From the definitions of additive and pumpable and Lemma 7.18, one can easily

prove the following theorem.

Theorem 7.20 Any additive problem is m∗-opt-pumpable and hence 1-opt-pumpable
and 1-size-pumpable.

Khanna et al. [28] remark that many problems are additive, such as Maximum
Clique, Chromatic Number, Minimum Set Cover, and all problems in the class MAX-
SNP.

Corollary 7.21 Any problem in MAX-SNP is both 1-opt-pumpable and 1-size-
pumpable.

However, there also problems that are not (easily seen to be) additive, but that are
m∗-opt-pumpable, such as Maximum Knapsack and Longest Path.

When we combine Lemma 7.4 with Corollary 7.21, we obtain the following
weaker version of Theorem 6.11: If a problem P is in MAX-SNP and in PTAS∞,
then P is in PTAS. In this way, most results from Sect. 6.2 also follow by using
pumpability.

8 Conclusion and Open Problems

In this paper, we defined several new types of approximation schemes and uncovered
many interesting new relationships between classes of problems that can be approxi-
mated using these schemes and existing approximation classes. In particular, we have
shown that EPTAS is a central class in the landscape of approximation classes. We
also mapped the entire hierarchy of these classes, shown in Fig. 1.

There are several intriguing questions left. The notion of pumpability, introduced
in Sect. 7, gives a possibility for bridging the gap between optimum-asymptotic
schemes and nonasymptotic schemes. But we have very few properties to check
whether a problem is pumpable. Can size- or opt-pumpable problems be character-
ized? Another interesting question is whether every opt-pumpable problem is also
size-pumpable and vice versa. We gave some evidence in Lemma 7.18 why one di-
rection might be true, but it goes too far to conjecture that it holds both ways.

Convergent approximation schemes also pose new challenges. For the class
PCONV[F ∗], we know that it is equivalent to EPTAS. However, the general classes
PTAS[F ∗] and FPTAS[F ∗] remain mysterious. We know some problems in EPTAS
also lie in PTAS[logn] (using Theorem 4.15) and that FPTAS = FPTAS[P] (Theo-
rem 4.10), but beyond this it seems hard to make conjectures about these classes.

Theory Comput Syst

Acknowledgements The authors would like to thank Lex Schrijver for several helpful suggestions.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of
approximation problems. J. ACM 45(3), 501–555 (1998)

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complex-
ity and Approximation—Combinatorial Optimization Problems and Their Approximation Properties.
Springer, Berlin (1999)

3. Bazgan, C.: Schémas d’approximation et complexité paramétrée, Rapport de stage de DEA
d’Informatique, Université Paris-Sud, Orsay (1995)

4. Cai, L., Chen, J.: On fixed-parameter complexity and approximability of NP optimization problems.
J. Comput. Syst. Sci. 54(3), 465–474 (1997)

5. Cai, L., Fellows, M., Juedes, D., Rosamond, F.: The complexity of polynomial-time approximation.
Theory Comput. Syst. 41(3), 459–477 (2007)

6. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst.
Sci. 67(4), 789–807 (2003)

7. Cesati, M., Trevisan, L.: On the efficiency of polynomial time approximation schemes. Inf. Process.
Lett. 64(4), 165–171 (1997)

8. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Polynomial time approximation schemes and parameterized
complexity. Discrete Appl. Math. 155(2), 180–193 (2007)

9. Chen, Z.-Z., Toda, S.: On the complexity of computing optimal solutions. Int. J. Found. Comput. Sci.
2(3), 207–220 (1991)

10. Chiba, N., Nishizeki, T., Saito, N.: Applications of the Lipton and Tarjan’s planar separator theorem.
J. Inf. Process. 4(4), 203–207 (1981)

11. Coffman, E.G. Jr., Garey, M.G., Johnson, D.S.: Approximation algorithms for bin packing: a sur-
vey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS
Publishing Company, Boston (1997)

12. Coffman, E.G. Jr., Lueker, G.S.: Approximation algorithms for extensible bin packing. J. Sched. 9(1),
63–69 (2006)

13. Crescenzi, P., Kann, V., Silvestre, R., Trevisan, L.: Structure in approximation classes. SIAM J. Com-
put. 28(5), 1759–1782 (1999)

14. Crescenzi, P., Panconesi, A.: Completeness in approximation classes. Inf. Comput. 93(2), 241–262
(1991)

15. Crescenzi, P., Trevisan, L.: On approximation scheme preserving reducibility and its applications.
Theory Comput. Syst. 33(1), 1–16 (2000)

16. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algorithms
for classes of graphs excluding single-crossing graphs as minors. J. Comput. Syst. Sci. 69(2), 166–195
(2004)

17. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
19. Fürer, M., Raghavachari, B.: Approximating the minimum-degree steiner tree to within one of opti-

mal. J. Algorithms 17(3), 409–423 (1994)
20. Garey, M.R., Johnson, D.S.: ‘Strong’ NP-completeness results: motivation, examples, and implica-

tions. J. ACM 25(3), 499–508 (1976)
21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Com-

pleteness. Freeman, San Francisco (1979)
22. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: the-

oretical and practical results. J. ACM 34(1), 144–162 (1987)
23. Huang, X.: Parameterized complexity and polynomial-time approximation schemes, Ph.D. Thesis,

Texas A&M University (2004)

Theory Comput Syst

24. Hunt, D.B. III, Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-
approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms
26(2), 238–274 (1998)

25. Jansen, K., Zhang, G.: Maximizing the number of packed rectangles. In: Hagerup, T., Katajainen, J.
(eds.) Algorithm Theory—SWAT 2004, Proc. 9th Scandinavian Workshop. Lecture Notes in Com-
puter Science, vol. 3111, pp. 362–371. Springer, Berlin (2004)

26. Kann, V.: On the approximability of NP-complete optimization problems, Dissertation, Department
of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden
(1992)

27. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin packing
problem. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 312–320, IEEE Comput. Soc., Los Alamitos (1982)

28. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.V.: On syntactic versus computational views of
approximability. SIAM J. Comput. 28(1), 164–191 (1998)

29. Kolaitis, P.G., Thakur, M.N.: Logical definability of NP optimization problems. Inf. Comput. 115(2),
321–353 (1994)

30. Kolaitis, P.G., Thakur, M.N.: Approximation properties of NP minimization classes. J. Comput. Syst.
Sci. 50(3), 391–411 (1995)

31. Kratsch, S.: Polynomial kernelizations for MIN F+�1 and MAX NP. In: Albers, S., Marion, J.-Y.
(eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009),
Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Germany, pp. 601–612 (2009)

32. Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Bod-
laender, H.L., Langston, M.A. (eds.) Parameterized and Exact Computation—IWPEC 2006, Proceed-
ings of the Second International Workshop. Lecture Notes in Computer Science, vol. 4169, pp. 154–
165. Springer, Berlin (2006)

33. Marx, D.: On the optimality of planar and geometric approximation schemes. In: Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 338–348, IEEE
Comput. Soc., Los Alamitos (2007)

34. Orponen, P., Mannila, H.: On approximation preserving reductions: complete problems and robust
measures, Technical Report C-1987-28, Department of Computer Science, University of Helsinki
(1987)

35. Papadimitriou, C., Yannakakis, M.: Optimization, approximation and complexity classes. J. Comput.
Syst. Sci. 43(3), 425–440 (1991)

36. Paz, A., Moran, S.: Non deterministic polynomial optimization problems and their approximations.
Theor. Comput. Sci. 15(3), 251–277 (1981)

37. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4(2), 133–157 (1994)
38. Queyranne, M.: Bounds for assembly line balancing heuristics. Oper. Res. 33(6), 1353–1359 (1985)
39. Simon, H.U.: On approximate solutions for combinatorial optimization problems. SIAM J. Discrete

Math. 3(2), 294–310 (1990)
40. van Leeuwen, E.J.: Approximation algorithms for unit disk graphs. In: Kratsch, D. (ed.) Graph-

Theoretic Concepts in Computer Science—WG 2005, Proceedings of the 31st International Work-
shop. Lecture Notes in Computer Science, vol. 3787, pp. 351–361. Springer, Berlin (2005)

41. van Leeuwen, E.J.: Better approximation schemes for disk graphs. In: Arge, L., Freivalds, R. (eds.)
Algorithm Theory—SWAT 2006, Proceedings of the 10th Scandinavian Workshop. Lecture Notes in
Computer Science, vol. 4059, pp. 316–327. Springer, Berlin (2006)

42. van Leeuwen, E.J.: Optimization and approximation on systems of geometric objects, Ph.D. Thesis,
University of Amsterdam (2009)

43. Vizing, V.G.: Ob otsenke khromaticheskogo klassa p-grafa (Russian: On an estimate of the chromatic
class of a p-graph). Diskretn. Anal. 3, 25–30 (1964)

44. Woeginger, G.: There is no asymptotic PTAS for two-dimensional vector packing. Inf. Process. Lett.
64(6), 293–297 (1997)

	Structure of Polynomial-Time Approximation
	Abstract
	Introduction
	Preliminaries
	Asymptotic Approximation Schemes
	Convergent Approximation Schemes
	Detailed Relations for Specific Functions

	Optimum-Asymptotic Approximation Schemes
	Equivalence of Definitions
	Equivalence and Containment of Optimum-Asymptotic Classes

	Optimum-Asymptotic Schemes and Classic Classes
	New Characterizations of Classic Classes
	Existence of Optimum-Asymptotic Approximation Schemes
	Approximation-Preserving Reductions

	Pumpable Problems
	Optimum-Asymptotic Schemes and Pumpability
	Size-Asymptotic and Convergent Schemes and Pumpability
	Which Problems Are Pumpable?

	Conclusion and Open Problems
	Acknowledgements
	Open Access
	References

