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Abstract Accurate geological modelling of features
such as faults, fractures or erosion requires grids that
are flexible with respect to geometry. Such grids gener-
ally contain polyhedral cells and complex grid-cell con-
nectivities. The grid representation for polyhedral grids
in turn affects the efficient implementation of numeri-
cal methods for subsurface flow simulations. It is well
known that conventional two-point flux-approximation
methods are only consistent for K-orthogonal grids and
will, therefore, not converge in the general case. In
recent years, there has been significant research into
consistent and convergent methods, including mixed,
multipoint and mimetic discretisation methods. Like-
wise, the so-called multiscale methods based upon hi-
erarchically coarsened grids have received a lot of
attention. The paper does not propose novel mathe-
matical methods but instead presents an open-source
MATLAB® toolkit that can be used as an efficient test
platform for (new) discretisation and solution methods
in reservoir simulation. The aim of the toolkit is to
support reproducible research and simplify the devel-
opment, verification and validation and testing and
comparison of new discretisation and solution methods
on general unstructured grids, including in particular
corner point and 2.5D PEBI grids. The toolkit consists
of a set of data structures and routines for creating,
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manipulating and visualising petrophysical data, fluid
models and (unstructured) grids, including support for
industry standard input formats, as well as routines
for computing single and multiphase (incompressible)
flow. We review key features of the toolkit and discuss a
generic mimetic formulation that includes many known
discretisation methods, including both the standard
two-point method as well as consistent and convergent
multipoint and mimetic methods. Apart from the core
routines and data structures, the toolkit contains add-
on modules that implement more advanced solvers and
functionality. Herein, we show examples of multiscale
methods and adjoint methods for use in optimisation of
rates and placement of wells.

Keywords Mimetic schemes - MPFA methods -
Consistent discretisations - Unstructured grids -
Open-source implementation - Multiscale methods -
Rate optimisation

1 Introduction

Reliable computer modelling of subsurface flow is
much needed to overcome important challenges such as
sustainable use and management of the earth’s ground-
water systems, geological storage of CO, to mitigate
the anthropological increases in the carbon content of
the atmosphere and optimal utilisation of hydrocarbon
reservoirs. Indeed, the need for tools that help us un-
derstand flow processes in the subsurface is probably
greater than ever, and increasing. More than 50 years
of prior research in this area has led to some degree of
agreement in terms of how subsurface flow processes
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can be modelled adequately with numerical simulation
technology.

To describe the subsurface flow processes mathe-
matically, two types of models are needed. First, one
needs a mathematical model that describes how fluids
flow in a porous medium. These models are typically
given as a set of partial differential equations describ-
ing the mass conservation of fluid phases, accompa-
nied by a suitable set of constitutive relations. Second,
one needs a geological model that describes the given
porous rock formation (the reservoir). The geological
model is realised as a grid populated with petrophysical
or hydrological properties that are used as input to
the flow model and together they make up the reser-
voir simulation model. The geological model must also
describe the geometry of the reservoir rock and in
particular model geological horizons and major faults.
This requires grids that are flexible with respect to
geometry (and topology). Stratigraphic grids have been
popular for many years and are the current industry
standard. These grids are formed by extruding areal
grids defined along geological surfaces to form volu-
metric descriptions. However, more complex methods
based on unstructured grids are gaining in popularity
as a means to modelling complex fault systems, hori-
zontal and multilateral wells etc. In either case, grids
representing realistic reservoirs generally contain poly-
hedral cells and complex grid-cell connectivities. The
grid representation for polyhedral grids in turn affects
the efficient implementation of numerical methods for
subsurface flow simulations.

The industry standard for discretising flow equations
is the two-point flux-approximation method, which for
a 2D Cartesian grid corresponds to a standard five-
point scheme for the elliptic Poisson equation. Al-
though widely used, this method is convergent only if
each grid cell K-orthogonal. For hexahedral grids, this
means that each cell is a parallelepiped and 7;iK;7 = 0
in all grid cells i (here, K is the permeability tensor
in cell i and n;; and 7y denote normal vectors into
two neighbouring cells). Ensuring K-orthogonality is
difficult when representing particular geological fea-
tures like sloping faults, horizontal wells etc. Hence,
there has in recent years been significant research into
mixed [8], multipoint [5] and mimetic [9] discretisa-
tion methods that are all consistent and convergent on
rougher grids. Herein, we will focus on low-order, cell-
centred methods that do not require specific reference
elements and, thus, can be applied to grids with general
polygonal and polyhedral cells.

Another major research challenge is the gap between
simulation capabilities and the level of detail available
in current geological models. Despite an astonishing
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increase in computer power, and intensive research
on computation techniques, commercial reservoir sim-
ulators can seldom run simulations directly on highly
resolved geological grid models that may contain from
one to a hundred million cells. Instead, coarse-grid
models with grid-blocks that are typically ten to a
thousand times larger are built using some kind of
upscaling of the geophysical parameters [13, 16]. How
one should perform this upscaling is not trivial. In fact,
upscaling has been, and probably still is, one of the
most active research areas in the oil industry. Lately,
however, so-called multiscale methods [15, 17, 18] have
received a lot of attention. In these methods, coars-
ening and upscaling needed to reduce the number of
degrees of freedom to a level that is sufficient to resolve
flow physics and satisfy requirements on computational
costs is done implicitly by the simulation method.

A major goal of the activities in our research group is
to develop efficient simulation methodologies based on
accurate and robust discretisation methods; in particu-
lar, we have focused on developing multiscale methods.
To this end, we need a toolbox for rapid prototyp-
ing of new ideas that enables us to easily test the
new implementations on a wide range of models, from
small and highly idealised grid models to large models
with industry standard complexity. When developing
new computational methodologies, flexibility and low
development time is more important than high code
efficiency, which will typically only be fully achieved
after the experimental programming is completed and
ideas have been thoroughly tested. For a number of
years, we have therefore divided our code development
in two parts: For prototyping and testing of new ideas,
we have used MATLAB, whereas solvers aimed at high
computational performance have been developed in a
compiled language (i.e. using FORTRAN, C or generic
programming in C++).

This has resulted in a comprehensive set of routines
and data structures for reading, representing, process-
ing and visualising unstructured grids, with particular
emphasis on the corner-point format used within the
petroleum industry and hierarchical grids used in mul-
tiscale methods. To enable other researchers to benefit
from our efforts, these routines have been gathered in
the MartLaB Reservoir Simulation Toolbox (MRST),
which is released under the GNU General Public Li-
cense (GPL). The first releases are geared towards
single- and two-phase flow and contain a set of mimetic
and multiscale flow solvers and a few simple transport
solvers capable of handling general unstructured, poly-
hedral grids.

The main purpose of this paper is to present MRST
and demonstrate its flexibility and efficiency with re-
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spect to different grid formats, and in particular hierar-
chical grids used in multiscale methods. Secondly, we
present a class of mimetic methods that incorporates
several well-known discretisation methods as special
cases on simple grids while at the same time providing
consistent discretisation on grids that are not K-
orthogonal. Finally, we discuss how generic implemen-
tations of various popular methods for pressure and
transport ease the study and development of advanced
techniques such as multiscale methods, flow-based grid-
ding and applications such as optimal control or well
placement.

2 The MATLAB reservoir simulation toolbox

The toolbox has the following functionality for rapid
prototyping of solvers for flow and transport:

Grids a common data structure and interface for all
types of grids (unstructured representation); no grid
generator but grid-factory routines for rectilinear grids,
triangular and tetrahedral grids, 2D Voronoi grids,
extrusion of areal grids to 2.5D volumetric grids etc;
tutorial examples and a few realistic data sets

Input and output routines for reading and processing
industry standard input files for grids, petrophysical
parameters, fluid models, wells, boundary conditions,
simulation setup etc.

Parameters a data structure for petrophysical parame-
ters (and a few, very simplified geostatistical routines);
common interface to fluid models (Version 2011a sup-
ports incompressible fluid models, but in-house de-
velopment version also has support for compressible
black-oil fluids, which will likely be released in future
versions of MRST); routines for setting and manipulat-
ing boundary conditions, sources/sinks, well models etc.

Units  MRST works in strict SI units but supports
conversion to/from other unit systems like field-units
etc. Unless reading from an industry standard input
format, the user is responsible for explicit conversion
and consistency of units.!

Reservoir state  data structure for pressure, fluxes, sat-
urations etc.

Postprocessing visualisation routines for scalar cell
and face data etc.

LAll examples considered herein are computed using SI units,
but other units may be used when reporting parameters and
solutions.

Solvers the toolbox contains several flow and trans-
port solvers which may be readily combined using an
operator splitting framework. In particular, we pro-
vide an implementation of the multiscale mixed finite-
element method [4], working on unstructured, polyhe-
dral grids

Linear algebra MRST relies on MATLAB’s built-in lin-
ear solvers but these can easily be replaced by spe-
cialised solvers using standard MATLAB conventions for
doing so.

We will now go into more details about some of
the components outlined above. All code excerpts and
explicit statements of syntax refer to release 2011a of
MRST. Complete scripts and the data necessary to run
most of the examples in the paper can be downloaded
from the MRST webpage [26]. The interested reader
should also review the tutorials included in the current
release.

2.1 Grids

A key requirement for MRST is that it should support
a large variety of grid types. To avoid having a large
number of different and potentially incompatible grid
representations, all grids in MRST are assumed to con-
sist of a set of non-overlapping polyhedral cells, where
each cell can have a varying number of planar faces that
match the faces of the cell’s neighbours. Grids with non-
matching faces, e.g. corner point and other extruded
grids are, therefore, converted into matching grids by
splitting non-matching faces into a set of matching
(sub)faces. All grids are stored in a general format in
which we explicitly represent cells, faces and vertices
and the connections between cells and faces. Hence,
we have sacrificed some of the efficiency attainable by
exploiting special structures in a particular grid type for
the sake of generality and flexibility.

The grid structure in MRST contains three fields—
cells, faces and nodes—that specify individual
properties for each individual cell/face/vertex in the
grid. The nodes structure is simple, it contains the
number of nodes N, and an N, x d array of physical
nodal coordinates in R?. The cel1ls structure contains
the number of cells N, an array cells. faces giving
the global faces connected to a given cell and an indi-
rection map into cells. faces that gives the number
of faces per cell. The cells.faces array has ny x 2
elements defined so that if cells.faces (i,1)==7,
then global face cells.faces (i, 2) is connected to
global cell number j. To conserve memory, only the
last column is stored, whereas the first column can be
derived from a run-length encoding of the indirection
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cells.faces =

Fig. 1 Illustration of the cell and faces fields of the grid
structure: cell numbers are marked by circles, node numbers
by squares and face numbers have no marker. A zero value in

map. The cells structure may optionally contain an
array cells.indexMap that maps internal cell in-
dexes to external cell indexes, which is useful e.g. if
the model contains inactive cells.2 Likewise, the faces
structure contains the number of global faces, an array
faces.nodes of vertices connected to each face, an
indirection map and an array neighbors giving neigh-
bouring information (face i is shared by global cells
neighbors (i, 1) and neighbors (i, 2)). In addi-
tion, the grid may contain a label t ype which records
the grid construction history. Finally, grids supporting
an underlying logical Cartesian structure also include
the field cartDims. The grid structure is illustrated in
Fig. 1 for a triangular grid with eight cells.

MRST contains several grid-factory routines for cre-
ating structured grids, including regular Cartesian, rec-
tilinear and curvilinear grids, as well as unstructured
grids, including Delaunay triangulations and Voronoi
grids, and 3D grids created by extrusion of 2D shapes.
Most important, however, is the support for the indus-
try standard corner-point grids given by the ECLIPSE
input deck. In Fig. 2, we show four examples of grids
and the commands necessary to create and display
them. The rectilinear grid is generated by the grid-
factory routine tensorGrid, which takes one vector
of grid nodes per spatial dimension as input and creates
the corresponding tensor-product mesh. To generate
the 2.5D PEBI grid, we start with an unstructured point

’Inactive cells are specified in industry standard input for-
mat using special keywords (e.g. ACTNUM in the widely
used ECLIPSE standard). Alternatively, inactive cells in clist
can be explicitly removed through a call to removeCells
(G, clist).
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faces.nodes = faces.neighbors =

10 1 1 0 2
8 1 2 2 3
7 2 1 3 5
1 2 3 5 0
2 3 1 6 2
5 3 4 0 6
3 4 1 1 3
7 4 7 4 1
2 5 2 6 4
8 5 3 1 8

12 6 2 8 5
9 6 6 4 7
3 7 3 7 8
4 7 4 0 7

11 8 3
9 8 5
6 9 3
5 9 6

13 10 4

14 10 5

face.neighbors means that the faces lie at an outer boundary
and hence only has one neighbour

set (seamount .mat) and use triangleGrid to gen-
erate a Delauny grid, from which a 2D Voronoi grid is
generated using pebi. Then this areal grid is extruded
to a 3D model consisting of five layers using the routine
makeLayeredGrid. In the third plot, we have used
the routine simpleGrdecl to generate an example of
an ECLIPSE input stream and then processGRDECL
to process the input stream and generate a corner-point
grid. The lower-right plot shows a realistic reservoir
model where we have used readGRDECL to read the
grid section of an ECLIPSE input deck; the routine
reads the file and creates an input stream on the same
format as simpleGrdecl.

As we will see below, specific discretisation schemes
may require other properties not supported by our
basic grid class: cell volumes, cell centroids, face
areas, face normals and face centroids. Although
these properties can be computed from the geometry
(and topology) on the fly, it is often useful to pre-
compute and include them explicitly in the grid struc-
ture G. This is done by calling the generic routine
G=computeGeometry (G).

2.2 Petrophysical parameters

All flow and transport solvers in MRST assume that the
rock parameters are represented as fields in a struc-
ture. Our naming convention is that this structure is
called rock, but this is not a requirement. The fields
for porosity and permeability, however, must be called
poro and perm, respectively. Whereas petrophysical
parameters are often supplied for all cells (active and
inactive) in a model, the rock and grid structures in
MRST only represent the active cells. The porosity field
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dx =1-0.5%cos((—1:0.1:1)*pi);

x = —1.1540. l*cumsum(dx);

G = tensorGrid ( x, sqrt(0:0.05:1));
plotGrid(G);

load seamount % Matlab standard dataset
g =pebi (triangleGrid ([x(:) y (1)]));

G = makeLayeredGrid (g, 5);

plotGrid (G), view(—40, 60),

G = processGRDECL(...
simpleGrdecl ([20, 10, 5],0.12));
plotGrid (G, 'FaceAlpha',0. 8);
plotFaces (G, find (G.faces.tag >0), ...
'"FaceColor','red" );
view (40,40), axis of £

grdecl = readGRDECL ('SAIGUP.GRDECL');
G = processGRDECL (grdecl);
plotGrid (G,'EdgeAlpha’,0.1);
view(—80,50), axis tight off

Fig. 2 Examples of grids and the MRST statements necessary to
create them. The upper-left plot shows a standard tensor-product
Cartesian grid. In the upper-right plot, we show a 2.5D PEBI
grid extruded from the unstructured point set in the data file

rock.poro is, therefore, a vector with one value for
each active cell in the corresponding grid model. For
models with inactive cells, the field cells. indexMap
in the grid structure contains the indices of the active
cells sorted in ascending order. If p contains poros-
ity values for all cells, this porosity distribution is as-
signed to the rock structure by the call rock .poro =
p(G.cells.indexMap).

The permeability field rock.perm can either con-
tain a single column for an isotropic permeability, two
or three columns for a diagonal permeability (in two
and three spatial dimensions, respectively) or three or

seamount .mat that is distributed with MaTLAB. The lower-left
plot shows an example of a corner-point grid with a single sloping
fault and wavy top- and bottom surfaces. The lower-right plot
shows one of the grid models supplied together with MRST

six columns for a symmetric, full-tensor permeability
(in two and three spatial dimensions, respectively). In
the latter case, cell number i has the permeability tensor

KGO K6 N
Kl_[Kz(i) Ksa)] Ki=

Ki(i)) K@) Ks(i)
K>(i) Ki(i) Ks(@) |,
K3() Ks(i) Ke()

where K;(i) is the entry in column j and row i of
rock.perm. Full-tensor, non-symmetric permeabili-
ties are currently not supported in MRST. In addition
to porosity and permeability, MRST supports a field
called ntg that represents the net-to-gross ratio and
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consists of either a scalar or a single column with one
value per active cell.

Given the difficulty of measuring rock properties,
it is common to use geostatistical methods to make
realisations of porosity and permeability. MRST con-
tains two very simplified methods for generating geo-
statistical realisations. As a simple approximation to
a Gaussian field, we generate a field of independent,
normally distributed variables and convolve it with a
Gaussian kernel. This method is used in two different
routines, gaussianField and logNormLayers that
are illustrated in the following examples.

Example 1 (Random petrophysical variables) First, we
generate the porosity ¢ as a Gaussian field taking val-

ues in the interval [0.2, 0.4]. To get a crude approxima-
tion to the permeability—porosity relationship, we start
with the Carman—Kozeny relation

__ ¥
BT

and assume that our medium is made up of uniform
spherical grains of diameter d, = 10 um, for which the
specific surface area is A, = 6/d,. Assuming further
that 7 = 0.81 gives us an explicit formula for calculating
the isotropic permeability K from the porosity ¢. Then,
petrophysical parameters can be generated as follows
(the resulting porosity field is shown in the left plot of
Fig. 3):

G = cartGrid([50 20]);

rock.poro = p;

p = gaussianField(G.cartDims, [0.2 0.4],[11 3],2.5); p = p(2);

rock.perm=p." 3. % (1le — 5)°2./(0.81 x 72 x (1 — p). "2);

Next, we will use the same Gaussian field methodology
to generate layered realisations, for which the perme-
ability in each geological layer is independent of the
other layers and log-normally distributed. Each layer
can be represented by several grid layers in the vertical

direction. Here, we generate a stratigraphic grid with
wavy geological faces and a single fault and specify four
geological layers with mean values of 100 mD, 400 mD,
50mD and 350mD from top to bottom (stratigraphic
grids are numbered from the top and downward)

G = processGRDECL(simpleGrdecl([50 30 10], 0.12));
K = logNormLayers(G.cartDims,[100 400 50 350], ‘indices’,[1 257 11]);

The layers are represented with one, three, two and
four grid layers, respectively, in the vertical direction.
The resulting permeability is shown in the right plot of
Fig. 3.

Using smoothed Gaussian fields to generate ran-
dom petrophysical variables is, of course, a gross sim-
plification of geostatistics. For more realistic distrib-
utions of petrophysical parameters, the reader should
consider using e.g. GSLIB [12] or commercial software
for geological modelling.

2.3 Discretisation of flow equations

To keep technical details at a minimum, we will in the
following consider a simplified set of single-phase flow
equations,

V.-i=gq, i = —KvVp, in Q c R 1)
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Here, v denotes the Darcy velocity, p pressure
and K permeability. All external boundaries 92 are
equipped with either prescribed pressure (Dirichlet) or
prescribed flux (Neumann) boundary conditions. Let u;
be the vector of outward fluxes of the faces of Q; and let
pi denote the pressure at the cell centre and x; the face
pressures. Discretisation methods used for reservoir
simulation are constructed to be locally conservative
and exact for linear solutions. Such schemes can be
written in a form that relates these three quantities
through a matrix 7 of one-sided transmissibilities,
w=Tiepi—n), e=(,....D". 2
Examples include the two-point flux-approximation
method [7], the lowest-order-mixed finite-element
methods [8], multipoint flux-approximation schemes [5,
6, 14] and recently developed mimetic finite-difference
methods [9]. Two-point discretisations give diagonal
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Fig. 3 Two examples of MRST’s simplified geostatistics. The left
plot shows a 50 x 20 porosity field generated as a Gaussian field
with a larger filter size in the x-direction than in the y-direction.

transmissibility matrices and are not convergent for
general grids. Mixed, multipoint and mimetic methods
are consistent and convergent on non-orthogonal grids
but lead to full matrices T;. Such schemes will be dis-
cussed in more detail in Section 3; for now we only as-
sume that there exists a consistent scheme of the form 2
that is convergent for fully unstructured, polyhedral
grids.

In the following, we only consider schemes that may
be written in hybridised mixed form, although MRST
also supports mixed forms. Note that this restriction,
which excludes some multipoint schemes, is only im-
posed to ease the presentation and give a uniform
formulation of a large class of schemes. The underlying
principles may be applied to any reasonable scheme.
By augmenting Eq. 2 with flux and pressure conti-
nuity across cell faces, we obtain the following linear
system [8]

B C D u 0
c" o0 o||-pl=1q]. 3)
D" 0 o T 0

Here, the first row in the block-matrix equation corre-
sponds to Darcy’s law in the form 2 for all grid cells,
the second row corresponds to mass conservation for
all cells, whereas the third row expresses continuity of
fluxes for all cell faces. Thus, # denotes the outward
face fluxes ordered cell-wise (fluxes over interior faces
and faults appear twice with opposite signs), p denotes
the cell pressures and x the face pressures. The ma-
trices B and C are block diagonal with each block
corresponding to a cell. For the two matrices, the ith
blocks are given as T ! and e;, respectively. Similarly,
each column of D corresponds to a unique face and has

%
)

N
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N

\

S X
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N
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i
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N
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0
N
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The right plot shows a stratigraphic grid with a single fault
and four geological layers, each with a log-normal permeability
distribution

one (for boundary faces) or two (for interior faces) unit
entries corresponding to the index(s) of the face in the
cell-wise ordering.

The hybrid system (Eq. 3) can be solved using a
Schur-complement method and MATLAB’s standard lin-
ear solvers or third-party linear system solver software
such as AGMG [29]. A block-wise Gaussian elimina-
tion for Eq. 3 yields a positive-definite system (the
Schur complement) for the face pressures,

(D'B'D—-F'L"'F)r = F'L™'q, 4)

where F = C'B™'D and L = C" B~'C. Given the face
pressures, the cell pressures and fluxes can be recon-
structed by back substitution, i.e. solving

Lp=gq+ Fr, Bu=Cp— Dx.

Here, the matrix L is by construction diagonal and
computing fluxes is therefore an inexpensive operation.
It is also worth noting that we only need B! in the
solution procedure above. Many schemes—including
the mimetic method, the MPFA-O method and the
standard two-point scheme—yield algebraic approxi-
mations for the B~' matrix. Thus, Eq. 3 encompasses
a family of discretisation schemes whose properties are
determined by the choice of B, which we will discuss in
more detail in Section 3.1.

2.4 Putting it all together
In this section, we will go through a very simple ex-

ample to give an overview of how to set up and use a
discretisation as introduced in the previous section to
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solve the single-phase pressure equation

K
V.i=gq, E:—;[Ver,osz]. )

First, we construct a Cartesian grid of size n, x n, x
n, cells, where each cell has dimension 1 x 1 x I m
and set an isotropic and homogeneous permeability of
100mD, a fluid viscosity of 1cP and a fluid density of
1,014 kg/m?:

nx =20;ny =20;nz =10;
G = computeGeometry(cartGrid([nx, ny,nz]));

gravity reset on

rock.perm = repmat (100 *milli * darcy,[G.cells.num, 1]);
fluid = initSingleFluid(‘mu’, 1 * centi *poise, ‘rho’,1014 xkilogram/meter”3);

The simplest way to model inflow or outflow from
the reservoir is to use a fluid source/sink. Here, we
specify a source with flux rate of 1 m?day in each grid
cell.

¢ = (nx/2*ny+nx/2:nx*ny:nxsxnyxnz).;
src = addSource([], ¢, ones(size(c)) ./day());

Flow solvers in MRST automatically assume no-flow
conditions on all outer (and inner) boundaries; other
types of boundary conditions need to be specified ex-
plicitly. To draw fluid out of the domain, we impose

a Dirichlet boundary condition of p = 10bar at the
global left-hand side of the model.

bc =pside([],G, ‘LEFT’, 10 * barsa());

Here, the first argument has been left empty because
this is the first boundary condition we prescribe. The
left plot in Fig. 4 shows the placement of boundary con-
ditions and sources in the computational domain. Next,
we construct the system components for the hybrid
mimetic system (Eq. 3), with a mimetic discretisation,
based on input grid and rock properties.

S = computeMimeticIP(G, rock, ‘Verbose’, true);

Rather than storing B, we store its inverse B~'. Sim-
ilarly, the C and D blocks are not represented in the S
structure; they can easily be formed explicitly whenever
needed, or their action can easily be computed.

Finally, we compute the solution to the flow equation.
To this end, we must first create a state object that will
be used to hold the solution and then pass this objects
and the parameters to the incompressible flow solver.

rSol = initResSol(G, 0);

rSol = solvelIncompFlow(rSol, G, S, fluid, ‘src’, src, ‘bc’,bc);
p = convertTo(rSol.pressure(l:G.cells.num), barsa() );

Having computed the solution, we convert the result
back to the unit bars. The right plot in Fig. 4 shows
the corresponding pressure distribution, where we can
clearly see the effects of boundary conditions, source
term and gravity.

The same basic steps can be repeated on (almost)
any type of grid; the only difference is placing the
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source terms and how to set the boundary conditions,
which will typically be more complicated on a fully un-
structured grid. We will come back with more examples
later in the paper, but then we will not explicitly state
all details of the corresponding MRST scripts. Before
giving more examples, however, we will introduce the
multiscale flow solver implemented in MRST.
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Fig. 4 Example of a simple
flow driven by a column of
source cells and a Dirichlet
boundary condition. The left
plot shows the model setup
and the right plot the
corresponding pressure
solution

2.5 Two-phase flow

Two-phase incompressible flow of a wetting and non-
wetting fluid can be described by the following system
of equations [10] (or see the derivation in [1]):

Vii=gq, U=-K[AVp+ upu+rnpn)gVz], (6)

850, ,
¢% + V- (fu w3+ Anlon = pu)gKVZ]) = 0. (7)

Here, p, denotes the density, A, the mobility and f, =
Aq /X the fractional flow of phase «, where A = A, + X,
is the total mobility. The industry standard approach is
to use implicit discretisations and solve Eqs. 6-7 as a
fully coupled system. In MRST, on the other hand, our
goal has been to obtain maximum flexibility in com-
bining different types of solvers. Hence, the toolbox
assumes a sequential solution strategy: First, Eq. 6 is
solved with fixed saturation values to provide pressure
and fluxes, and then the fluxes are used to evolve the
saturations according to Eq. 7. If necessary, the two
steps can be iterated until convergence in a suitable norm.

All flow solvers in MRST are fully applicable to
the two-phase flow (Eq. 6). MRST supports two basic
saturation solvers that both use a single-point upwind
discretisation (i.e. the single-point upstream-mobility
scheme for unidirectional flow). Dropping subscripts
to denote phases and assuming no gravity, they can be
written in the form

At
s = s+~ (max(gi, 0) + £(s7") min(g;. 0))
oilcil

A
_ qb,-lc[,'l (Z [f(s:”) max (vjj, 0)
j

+ £(7) min(vy, 0)]), (8)
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Here, s; is the average saturation in grid cell ¢;, v;
denotes the flux over the face between cells i and j.
For m = n, the scheme is explicit, whereas for m =
n+ 1, we obtain an implicit scheme that is solved by
a Newton—-Raphson method. For systems with gravity
forces, MRST uses standard upstream-mobility weigh-
ing; that is, the upwind direction is determined indepen-
dently for each phase using the phase velocities v,.

The observant reader may have noticed that the
capillary pressure is missing in our two-phase model.
In Eq. 6, capillary effects can be included by defining
the pressure as the global pressure, p = p, — p., where
the so-called complementary pressure [10] is defined
through the relation Vp. = f,,V(p, — pw).

So far, the paper has given a quick overview of
the basic functionality and solvers in MRST Release
2011a. In the next section, we will go into more de-
tails about consistent and convergent discretisations
on unstructured polyhedral grids, before we end the
paper with an overview of how the resulting solvers
can be applied to more advanced examples, includ-
ing solvers and functionality that are not yet released
publicly.

3 Mimetic discretisation methods

In this section, we will discuss the mimetic method in
more detail. We start by discussing the inner product,
which can be used to design the properties of the
method. Then we give a short discussion of Peaceman-
type well models for the method.

The mimetic method (see [9]) is defined in terms of a
local inner product M or equivalently an inverse inner
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product (or transmissibility matrix) T, which gives the
cell-based discretisation of Darcy’s law
e=(,...,17,

Mu =ep;, —m, u=T(ep, — n).

)

Here, & is the pressure at the face centroids and p the
cell pressure or equivalently the pressure at the cell cen-
troid as illustrated in Fig. 5. Mimetic methods are con-
structed so that they are exact for linear pressure fields
and give a symmetric positive-definite matrix M. In
addition, the methods use discrete pressure and fluxes
associated with cell and face centroids, respectively,
and consequently resemble finite-difference methods.

A linear pressure field can be written in the form
p = X -a+ b for a constant vector d and scalar b, giving
a Darcy velocity equal ¥ = —Ka. Let n, denote the
area-weighted normal vector to face number k and i
be the vector pointing from the cell centroid to the
corresponding face centroid, as seen in Fig. 5. Then the
flux and pressure drop are given by

Uy = —ﬁkKﬁ, pi—Tmj= E,‘k . Zi (10)

Inserting this into Eq. 9, we see that the matrices M and
T must satisfy the following consistency conditions

MNK=C, NK=TC, (11)

where each row clT of the matrix C corresponds to Cy,
and each row n] of N corresponds to 7y, see [9] for the
discrete flux case.

Fig. 5 The quantities used to define the mimetic inner product
or equivalently the transmissibility in a single polyhedral cell: p;
cell pressure, 7y face pressure, iix normal of face, Ay area of face
and ¢ vector from cell centroid to face centroid
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From the local discretisation on each cell, the global
stiffness matrix B in Eq. 3 is assembled as a block
diagonal matrix in which each block is the inner prod-
uct of the corresponding cell. For two-phase flow, the
inner product is multiplied by the inverse total mobility
for each cell. As we have seen, the system 3 can be
reduced to a linear system that only involves the face
pressures 7, using a transformation that requires the
computation of B~!, which is a block matrix that can
be assembled from the inverse inner product 7. In
the following, we describe a few inner products (and
inverse inner products) while emphasising aspects of
implementation and discuss specific properties of the
different discretisations. The implementation can be
found in computeMimeticIP.min MRST [26].

3.1 Inner products

In the original method [9], inner products of discrete
velocities are considered. In reservoir simulation how-
ever, it is more common to consider the face fluxes
as unknowns. Accordingly, we will henceforth consider
inner products of fluxes rather than velocities. We note
here that the relation between the two is trivial, as an
inner product of velocities becomes an inner product
for fluxes by pre- and post-multiplying by the inverse
area of the corresponding faces. Let A be the diagonal
matrix with a;; the face area of the ith face. Then the
flux inner product My, is related to the velocity inner
product M, through

My = A" "My A™". (12)

Henceforth, we will only consider inner products for
fluxes.

To yield a consistent discretisation of Eq. 1, an inner
product matrix M or an inverse inner product T must
result in a discretisation that is exact for linear pres-
sures, i.e. fulfils Eq. 11. To derive a family of valid so-
lutions, we first observe the following key geometrical

property (see [9])
C'N = diag(|)). (13)

which relates C and N as follows on general polyhe-
dral cells. Multiplying the first equation of Eq. 11 by
K'C'N , we derive the relation

1
MN=—CK 'C'N,
[€2;]

from which it follows that the family of valid solutions
has the form

1
M = @CKCT + M,, (14)
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in which M, is a matrix defined such that M is symmet-
ric positive definite and M, N = 0. Any symmetric and
positive definite inner product fulfilling these require-
ments can be represented in the compact form

M= ﬁCK*‘CT + 0xSu 0%, (15)
12

where Qﬁ is an orthonormal basis for the null space
of NT, and S, is any symmetric, positive-definite ma-
trix. In the code and the following examples, however,
we will instead use a null space projection Py = I —
o0 NT, where Q) is a basis for the space spanned by
the columns of N. Similarly, the inverse inner products
take the form

T = ﬁmNT + QLS OL, (16)
L

where QF is an orthonormal basis for the nullspace

of C" and Pt=1—- Q-Q." is the corresponding

nullspace projection.

The matrices M and T in Egs. 15 and 16 are evi-
dently symmetric so only an argument for the positive
definiteness is in order. Writing M in Eq. 15 as M =
M, + M,, positive semi-definiteness of M; and M,
imply that M is positive semi-definite. Let z be an arbi-
trary non-zero vector which we split (uniquely) as z =
Nz + 7 where N'z =0. If 7 =0; we have z' Mz =
zZ'NTM Nz > 0 since C" N has full rank. If 7/ # 0, we
have 2’ Mz=2"M,z+ z’TMzz’ >0 since 2'M,z>0
and 7" M,z > 0. An analogous argument holds for the
matrix 7.

We will now outline a few specific and valid choices
that are implemented in the basic flow solvers of
MRST. We start by considering the one-dimensional
case with the cell [—1, 1] for which N=C =1, —1]"
and Qy = Q¢ = %[1, 11". Hence,

Irf 171 171
M:_[_ ]_[1,—1]+§[1]SM[1,1],

2 1| K
T—1 lKl 1 11Sll 17
5[] ko3| ]son a7

The structure of the inner product should be invariant
under scaling of K and, thus, we can write the inner
product as a one-parameter family of the form

w20
)

In the following, we will use this one-dimensional ex-
pression together with transformation properties of the

inner product to look at the correspondence between
mimetic, TPFA and Raviart-Thomas methods.

Two-point type methods The TPFA method is the
gold standard for practical reservoir simulation despite
its theoretical shortcomings. Since the TPFA discreti-
sation requires a diagonal tensor, it is easily seen from
Eq. 11 that this is only possible in the case when the
vectors Krn; and ¢; are parallel, i.e. the grid is K-
orthogonal. In any case (K-orthogonality or not), we
define the diagonal TPFA transmissibility tensor T by

T; = ii; - K&;/|6i. (19)

This defines the unique TPFA method for K-
orthogonal grids.> The extension to non-orthogonal
grids is not unique, and the TPFA method does not
give a consistent discretisation in this case. Because of
its simplicity, the TPFA method is strictly monotone if
T;; > 0, which implies that the fluxes form a directed
acyclic graph, a property that can be used to accelerate
the solution of the transport equations considerably, as
discussed in [28].

‘When written in its standard form, the TPFA method
is cell-centred and thus less computationally costly than
face-centred methods that arise from a consistent hy-
brid mimetic formulation. However, since the method
is not consistent, it will in many cases be necessary
to investigate the grid-orientation effects of the TPFA
method before using it for realistic simulations. We
therefore present a mimetic-type discretisation that
coincides with the TPFA method in its region of va-
lidity, while at the same time giving a valid mimetic
inner product for all types of grids and permeability
tensors. This minimises the need for investigating other
effects of the TPFA method, such as errors introduced
by corners and well modelling. An advantage of this
method compared with using, e.g. an MPFA method
is that the implementation is simpler for general un-
structured grids. We refer to the corresponding method
as IP_QTPFA. To derive the method, we consider a
cuboid cell and insert Eq. 10 into Eq. 9 defined for a
single face to obtain

Tiigi 4= I7l,KL-l)

Next, we set @ = #i; and use the property that ¢; - 7 =
%|Q,~| for cuboid cells to derive an expression for 7y,

3 As written, this does not always yield a positive value for the
two-point transmissibility. To ensure positive transmissibilities it
is normal to define the face centroids as the arithmetic mean of
the associated corner-point nodes and the cell centroids as the
arithmetic mean of the top and bottom surface centroids. For
most reservoir grids this gives a positive transmissibility.
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which can be written in matrix form and equated with
Eq. 14

2 1
— diag(NKN") = —

Trpr =
[€2;] [€2]

NKN'" +T,. (20)

Here, T, should be invariant under Pé. Moreover,
one can easily show that P&N = 0 for parallelepipeds
(see Fig. 6), which means that we can define the gener-
alised TPFA inner product as

. 1
o
M=T".

T [NKNT+2 P¢ diag NKNT) P,

eay

Equation 1 is invariant when space and permeability
are transformed as

X+ S¥and K — STKS, (22)

respectively. We emphasise that the inner product
Eq. 21 evidently is invariant under the transformations
Eq. 22, but will only be diagonal for K-orthogonal grids.
In the one-dimensional case, Eq. 21 simplifies to

T = [lg 2} (23)

which is the TPFA expression for this case. The
same result is obtained by setting t =2 in the one-
dimensional expression Eq. 18. Since the mimetic and
the TPFA method do not couple dimensions for orthog-
onal grids with diagonal tensor, this derivation is also
valid for rectangular cuboids.

Raviart-Thomas (RT0) The following inner product is
equivalent to the mixed Raviart-Thomas inner product

Fig. 6 Creation of nullspace
of C for a parallelepiped. The
left plot shows the vectors ¢;
and 7; (the latter scaled by a
factor 0.3)

for grids that are orthogonal and has the same principal
axes as the permeability tensor
1 Q; _
M = mCKCT + %P;[diag(NKNT)] ‘Pl (24)
i
This can be verified by a direct calculation for the one-
dimensional case, which reduces to

1 2/3-1/3
M‘E[—m 2/3] @)

which coincides with Eq. 18 for t = 6. The fact that
this inner product does not couple different directions
for orthogonal grids and diagonal tensors implies that
Eq. 24 is also equal to the lowest-order Raviart—
Thomas (RT0) method on (rectangular) cuboids. We
refer to this inner product as ‘IP_QRT’. The corre-
sponding quasi-inverse, which is the exact inverse for
orthogonal grids, reads

1

T:
1€2i]

[NKNT +6 Pk diag(NKNT)Pé]. (26)
This inner product will also, by the transformation
property, be equal to the Raviart-Thomas formulation
for all cases that can be transformed to the above case
by an affine transformation of the form Eq. 22. Using
a mimetic inner product which is simpler to calculate
and equal to the mixed RTO inner product for all grid
cells is not possible because of the need to integrate
the nonlinear function introduced by the determinant
of the Jacobian of the mapping from the grid cell to the
unit cell where the RTO basis functions are defined.

Local-flux mimetic MPFA In addition to the above
methods, which are all based on the assumption of a
positive-definite inner product and exactness for lin-
ear flow, the MPFA method can be formulated as a
mimetic method. This was first done by [21, 24] and is
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called the local-flux mimetic formulation of the MPFA
method. In this case, all faces of a cell are such that
each corner is associated with d unique faces, where
d is the dimension. The inner product of the local-flux
mimetic method gives exact result for linear flow and is
block diagonal with respect to the faces corresponding
to each corner of the cell, but it is not symmetric. The
block-diagonal property makes it possible to reduce
the system into a cell-centred discretisation for the cell
pressures. This naturally leads to a method for calculat-
ing the MPFA transmissibilities. The crucial point is to
have the corner geometry in the grid structure and han-
dle the problems with corners which do not have three
unique half faces associated. Currently, the MPFA-O
method is formulated in such a way [21] and work has
been done for the MPFA-L method, but in this case the
inner product will vary over the different corners. Our
implementation of MPFA is based upon a combination

of MATLAB and C and is therefore available as an add-
on module to MRST.

Parametric family We notice that the (inverse) inner
products IP_QTPFA in Eq. 21 and IP_QRT in Eq. 26
differ only by a constant in front of the regularisation
part (the second term). Both methods belong to a
family whose inverse inner product can be written in
the form

_ 1
TSl
M=T", (27)

T [NKNT +1 P:diag( NKNT) P]

in which ¢ is a parameter that can be varied contin-
uously from zero to infinity. In MRST, this family of
inner products is called ‘IP_QFAMILY’ and the para-
meter ¢ is supplied in a separate option

S = computeMimeticIP(G, rock, ‘Verbose’, true,

‘InnerProduct’, ‘ipgfamily’, ‘gparam’, t);

IP_SIMPLE For historical reasons, the default inner
product used in MRST reads

0= orth(A~'N)
kit AR o om st )
M_|Qi|CK C +6tr(K)A I-00NHA

with the approximate inverse

0 = orth(AC)

1 r 6 T (29)
T = m[NKN + - wK)AU - Q0 )A].

This inner product was used in [4] inspired by [9] and
was chosen to resemble the mixed Raviart-Thomas
inner product (they are equal for scalar permeability
on orthogonal grids, which can be verified by inspec-
tion. Since this inner product is based on velocities, it
involves pre- and post-multiplication of (inverse) face
areas, and it might not be obvious that it fits into
the formulations Egs. 15-16. However, after a small
computation one is convinced that the second part of
Eq. 15 is invariant under multiplication by Py so its
eigenspace corresponding to the non-zero eigenvalues
must be equal to the nullspace of N'. A similar argu-
ment holds for the inverse inner product.

Example 2 (Grid-orientation ef fects and monotonicity)
It is well known that two-point approximations are con-
vergent only in the special case of K-orthogonal grids.
Mimetic and multipoint schemes, on the other hand, are
constructed to be consistent and convergent for rough
grids and full-tensor permeabilities, but may suffer
from pressure oscillations for full-tensor permeabilities
and large anisotropy ratios and/or high aspect ratio
grids. In this example, we use one of the example grids
supplied with MRST to illustrate these two observa-
tions. The routine twister normalises all coordinates
in a rectilinear grid to the interval [0, 1], then perturbs
all interior points by adding 0.03 sin(7tx) sin(37t(y —
1/2)) to the x-coordinates and subtracting the same
value from the y-coordinate before transforming back
to the original domain. This creates a non-orthogonal,
but smoothly varying, logically Cartesian grid.

To investigate grid-orientation effects, we impose
a permeability tensor with anisotropy ratio 1 : 1, 000
aligned with the x-axis and compute the flow resulting
from a prescribed horizontal pressure drop and no-flow
conditions on the top and bottom boundaries. Figure 7
shows pressure computed on a 100 x 100 grid by the
TPFA method, the mimetic method with inner product
IP_SIMPLE, and the local-flux mimetic version of the
MPFA-O method. To visualise the corresponding ve-
locity field, we also show streamlines traced by MRST’s
implementation of Pollock’s method. Whereas the
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mimetic MPFA
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Fig. 7 Grid-orientation effects for a homogeneous domain with
Dirichlet boundary conditions (/eft,right) and no-flow conditions
(top, bottom) computed with three different pressure solvers in
MRST. The permeability field is homogeneous with anisotropy

mimetic and MPFA-O schemes produce the expected
result, the pressure and velocity solutions computed by
TPFA show significant grid-orientation effects and are
obviously wrong.

In Fig. 8, we have repeated the experiment with
the tensor rotated by 71/6 on a grid with 11 x 11 cells.
Again, we see that the solution computed by the TPFA
scheme is wrong. In this case, the pressures computed
with the mimetic and the MPFA-O schemes appear to
be correct and have no discernible oscillations. How-
ever, the streamline distributions clearly show that the
resulting velocity fields are highly oscillatory, in partic-
ular for the mimetic method with the IP_SIMPLE inner
product.

To compare the effect of using an approximate in-
verse in the inner-product matrices, we have computed
the velocity field for the mimetic methods resulting
from inner products Egs. 29, 24 and 21. From the
streamline plots shown in Fig. 9, it is evident that
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ratio 1 : 1, 000 aligned with the grid. The upper row shows stream-
lines visualising the velocity field, whereas the bottom row shows
the pressure field

both IP_SIMPLE and IP_QRT yield more oscillatory
velocity fields than the IP_QTPF method.

Example 3 (Analytical solution) In this example, we
use a classical analytical solution based on complex
analysis to verify the numerical solutions obtained by
MRST. A standard method to construct analytical so-
lutions to the Laplacian equation in 2D is to write
the unknown as the real or imaginary part of an com-
plex analytic function f(z). We choose the function
f@=(z+ %zz) and set our analytical solution to be
Pa(x,y) =Z f(x+iy) = y + xy. As our computational
domain, we choose a 2D triangular grid generated from
the seamount .mat data set (see e.g. the upper-left
plot in Fig. 2) and its dual Voronoi grid, both centred at
the origin. By prescribing p,(x, y) along the boundary,
we obtain a Dirichlet problem with known solution.

To compute numerical approximations to p,(x, y),
we use the MPFA-O scheme and the mimetic method
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TPFA mimetic
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40
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Fig. 8 Monotonicity effects demonstrated with the same setup as in Fig. 7, but with the anisotropy ratio 1 : 1, 000 making an angle /6
with the grid directions

with inner product ‘IP_SIMPLE’. Figure 10 shows the = exact same result because all mimetic methods with
approximate solutions and the discrepancy from the  a symmetric inner product are identical for cell and
analytical solution at the cell centres for both grids.  face pressures on triangular grids. On the Voronoi grid,
For the triangular grid, the two methods produce the = the mimetic method is slightly more accurate than the

SIMPLE QTPFA

&

Fig. 9 Lack of monotonicity visualised by tracing streamlines for the velocity fields computed by three mimetic pressure solvers in
MRST for the same setup as in Fig. 8
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second and third rows show the error in solutions computed by

Fig. 10 The upper row shows the pressure for a Dirichlet prob-
the mimetic and MPFA-O method, respectively

lem with analytical solution p,(x, y) =y + xy computed by a
mimetic method on a PEBI grid and on a triangular grid. The
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Fig. 11 Analytical and numerical solutions for the flattened top
layer of a real-field model. The upper row compares pressure
solutions (plotted in units ’bar’) for layer one, whereas the two
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lower rows show the cell-wise discrepancies between the analyti-
cal and the numerical solutions for layers one and ten
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MPFA-O method and both methods have lower errors
than on the triangular grid.

Example 4 (Real-field model) In this example, we con-
sider two synthetic models derived from the 3D sim-
ulation model of a reservoir from offshore Norway.
The original model is given as a 46 x 112 x 22 logically
Cartesian corner-point grid with 44,915 active cells. To
assess grid-orientation effects introduced by different
inner products, we consider two single layers (layer
one and ten from the top of the model), which we
flatten and modify so that the thickness is constant and
all pillars in the corner-point description are vertical.
Well positions are assigned by keeping one perforation
for each of the original wells. Let (x;, y;),i=1,...,n
denote the resulting well positions and g; the well rates.
If we model each well as a logarithmic singularity along
a vertical line at (x;, y;), the corresponding analytical
solution to Eq. 1 in an infinite domain with constant
permeability K is given by

px,y.z) = g ln<\/ (x—x)>+ (y — J’i)2>- (30)

—~ 2n K
i=1

To generate a representative analytical solution, we
set K =500 mD and prescribe Eq. 30 along the outer
lateral boundary of each model. In Fig. 11, we compare
this analytical solution with numerical solution com-
puted by the TPFA method and the mimetic IP_QRT
method for the first layer. Whereas the mimetic so-
lution shows good correspondence with the analyti-
cal solution, the TPFA solution exhibits large grid-
orientation effects, which are particularly evident be-
tween wells one and four and in the region below well
two. With the consistent mimetic scheme, the error is
localised around the wells, whereas it is up to 10% and
distributed all over the reservoir for the TPFA method.
(The full 3D model has a much rougher geometry that
contains pinch-outs, sloping faults and eroded layers,
which all will contributed to larger grid-orientation
effects for inconsistent methods). In a real simulation,
a good well model e.g. as discussed in the next section)
can correct for errors in the vicinity of the well, but not
global errors as in the inconsistent TPFA method.

In Table 1, we report the maximum relative error
in pressure for various members of the inner-product
family introduced above applied to the grid extracted
from the tenth layer. For layer ten, the minimum error
occurs around ¢ = 3, which is a method somewhere
between the quasi-two-point and the quasi-Raviart—
Thomas methods. For both grids, the minimal error is
smaller than for both the IP_QRT and the MPFA-O
method.
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Table 1 Error as a function of inner product in Eq. 27 for the
real-field models

Inner product (1) 0.5 1 2 3 4
Layer one 0.0752  0.0394 0.0161 0.0097  0.0080
Layer ten 0.0695 0.0326 0.0119 0.0095 0.0104
Inner product (1) 5 6 7 10 100
Layer one 0.0078 0.0096 0.0118 0.0112 0.0179
Layer ten 0.0114 0.0127 0.0137 0.0152 0.0189

The error is defined as the maximum discrepancy in cell pressure
scaled by the total span in analytic pressure values outside the
well cells. The corresponding errors for the IP_QRT, MPFA-O
and TPFA methods are 0.0096, 0.0158 and 0.0560 for layer one
and 0.0127, 0.0123 and 0.053 for layer ten

Using the full model, we have also verified (or val-
idated) our implementations against the leading com-
mercial simulator for incompressible, two-phase flow.

3.2 Finite-difference stencils

To complete the discussion of the previously presented
mimetic finite-difference methods, we demonstrate a
few of the resulting finite-difference stencils that relate
the interface pressure values in Eq. 4. In particular, we
discretise the pressure Eq. 1 with permeability K = [/
on a two-dimensional, equidistant grid, Ax = Ay =1
using inner products already implemented in MRST.
Figure 12 shows the results. We notice in particular
that the ‘IP_SIMPLE’ inner product of Eq. 29 and the
‘IP_QFAMILY’ inner product of Eq. 27 with parame-
ter ¢t = 6 produce stencils that have both positive and
negative off-diagonal coupling terms. Moreover, setting
t = 4 produces a stencil that resembles the classical five-
point discretisation scheme of the Laplace operator on
a rotated grid. Finally, for ¢ € (2,4), all off-diagonal
coupling terms are negative. The case of t = 2 is identi-
cal to the inner product given by ‘IP_ TPFA’ and ‘IP_
QTPFA'’. For general grids and permeability, the inner
product given by Eq. 27 only includes ‘IP_ QRT’ and
‘IP_ QTPFA’ since these inner products are the only
ones that are invariant under the affine transformations
in Eq. 22.

3.3 Well modelling

Wells in reservoirs typically have small diameters com-
pared with the size of the simulation cells, and it
is therefore common to employ a well index (pro-
ductivity index) WI to relate the local flow rate ¢
to the difference between the well pressure p, and
numerically computed pressure pg in the perforated
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Fig. 12 Finite-difference ® °® ® ®
stencils for interface —3/2 —3/2 -1 —1
pressures when Ax = Ay =1
andK =1 ®1/2 ®5 1/2¢ 0 ®4 0e
—3/2 —3/2 -1 -1
(a) IP_SIMPLE, IP_QFAMILY (¢ = 6) (b) IP_.QFAMILY (t = 4)
—3/4 —3/4 —1/2 —1/2
o —1/4 ®7/2 —1/4 ¢ o —1/2 ®3 —1/2 ¢
—3/4 —3/4 -1/2 -1/2
(¢c) IP.QFAMILY (¢t = 3) (d) IP_TPF, IP_.QFAMILY (¢ = 2)

grid cell as follows

—q = GSp)WI(pE — pw). (31)

Commonly used is Peaceman’s well index [30], which
for a vertical well in a Cartesian cell with dimensions
Ax x Ay x Az is given as

2mtkAz

For isotropic media, k is given by K = kIl and
ro = 0.14(Ax* + AY))?2, (33)

where ry is the effective well-cell radius and can be
interpreted as the radius at which the actual pressure
equals the numerically computed pressure. The validity
of the Peaceman well index decreases rapidly with in-
creasing near-well heterogeneity and grid skewness. It
is also important to note that the Peaceman well index
is developed for the TPFA method and is not valid
for other methods (such as MFE method with exact
integration or mimetic methods in general) because
different numerical methods in general give different
well-cell pressures. We will now give a short description
of how to extend Peaceman’s results to other methods
than TPFA; for a more extensive study of well models,
we refer to [23].

Assuming steady-state, single-phase, horizontal flow
in a homogeneous and isotropic reservoir with radial
flow near the well, there exists an analytical flow model
near the well given by

qu r
(= . 34
2k Az n(rw>+pw (34)

pr) =

We refer to [27, pages 150-153|muskat for a derivation
of this expression. Peaceman used the five-spot pattern

problem to derive both numerical and analytical ex-
pressions for ry based on the relation above. However,
the equivalent radius can also be calculated by simulat-
ing an infinite reservoir with one well and radial flow,
and we employ this method to calculate new equivalent
radii for mimetic methods.

The radial flow simulation is done by forcing ap-
propriate flux boundary conditions. Consider a sec-
tion of the reservoir containing a well as displayed in
Fig. 13 where we prescribe F; = g8;/2m as flux bound-
ary conditions on a face i. When the resulting system
is solved for pressure and flow, we use the analytical

Fig. 13 Section of infinite reservoir with well and radial flow
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Table 2 The constant 1 2 4 S 16 1 64
rco(gﬁ gl)fgrgi fﬁf$ ;1; ?angrr IP_QFAMILY(t=1) 00495 00546  0.0655  0.0756 00823 00862  0.0883
products as a function of the ~ 1P_TPF 0.1404 01404  0.1404  0.1404 01404  0.1404  0.1404
aspect ratio f of the well cell  IP_QFAMILY(t=3) 02015  0.1959  0.I857  0.1777  0.1729  0.1703  0.1690
IP_QFAMILY(t=4) 02423 02328 02153 02019 01939  0.1896  0.1874
IP_QFAMILY(t=5) 02712 02588 02363 02189 02087 02032  0.2003
IP_SIMPLE 02926 02782 02518 02316 02197 02133 02100

pressure relation Eq. 34 with r, = rg so that p,, = pg,
and set r = r, to be the distance from the well cell to
the centroid of a boundary cell,

qu Tp
I (—) .
2k Az t o tPE

pry) = (35)
We then substitute p(rp) by pp, the numerically com-
puted pressure in the boundary cell (at r;), and solve
Eq. 35 for ry,

qu )

36
2nkAz(pg — pp) (36)

ro=Tp exp(
If we assume that the equivalent radius for mimetic
methods is on the same form as for TPFA shown in
Eq. 33, then r, will depend on the actual inner prod-
uct and on the grid aspect ratio of the well cell, 8 =
Ax/Ay,i.e.

ro(IP, B) = C(IP, B)(AX2 + Ay?)?. (37)

Thus, if we know ry we can easily compute C(IP, ),
which is given in Table 2 as a function of 8 for the
IP_TPF and IP_SIMPLE inner products and selected
members of the IP_QFAMILY(t) inner-product family
Eq. 27.

4 Multiscale pressure solvers

A main purpose of MRST is to provide an efficient
toolkit for the development and testing of new ideas. In
this section, we present examples in which the solvers
described in the previous sections are applied as a
building block to develop multiscale pressure solvers.
Given the importance of grid geometry on the qual-
ity of numerical computations, it is crucial to have
flexible tools that allow testing new algorithms on many
different types of polyhedral grids of varying complex-
ity in 3D. Through the discussion of multiscale solvers,
we hope to give the reader a taste of the utility of the
toolbox.

Multiscale flow solvers [15, 17] can be seen as nu-
merical methods that take a fine-scale model as input
but solve for a reduced set of unknowns defined on a
coarse grid to produce a solution that has both coarse-

@ Springer

scale and fine-scale resolution. A key characteristic of
multiscale methods is the incorporation of fine-scale
information into a set of coarse-scale equations in a
way that is consistent with the local property of the
differential operator. Generally, a multiscale method
uses two operators: a compression (or restriction) op-
erator that takes information from the fine scale to
the coarse scale, and a reconstruction (or prolongation)
operator that takes information from the coarse scale to
the fine scale. In particular, the compression operator
reduces the system of discretised flow equations on a
fine grid to a system with significantly fewer unknowns
defined on a coarse grid. Similarly, the reconstruction
operator constructs an approximate fine-scale solution
from the solution computed on the coarse scale. The
reconstruction operators are typically computed nu-
merically by solving a localised flow problem as in an
upscaling method.

Different multiscale flow solvers are distinguished by
how they define their degrees of freedom and the com-
pression and reconstruction operators. In the multiscale
finite-volume method [18, 32], the coarse-scale degrees
of freedom are associated with pressure values at the
vertices of the coarse grid. The reconstruction operator
is associated with pressure values and is defined by
solving flow problems on a dual coarse grid. (In addi-
tion, the method needs to solve a local flow problem
on the primal coarse grid to recover conservative fine-
scale fluxes). In the multiscale mixed finite-element
(MsMFE) method [4, 11], the coarse-scale degrees of
freedom are associated with faces in the coarse grid
(coarse-grid fluxes) and the reconstruction operator is
associated with the fluxes and is defined by solving flow
problems on a primal coarse grid. In the following, we
will present the MsMFE method in more detail. To this
end, we will use a finite-element formulation, but the
resulting discrete method will have all the characteris-
tics of a (mass-conservative) finite-volume method.

The multiscale method implemented in MRST is
based on a hierarchical two-level grid in which the
blocks €2; in the coarse simulation grid consist of a
connected set of cells from the underlying fine grid,
on which the full heterogeneity is represented. In its
simplest form, the approximation space consists of a
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constant approximation of the pressure inside each
coarse block and a set of velocity basis functions asso-
ciated with each interface between two coarse blocks.
Consider two neighbouring blocks ; and 2}, and let
Q;; be a neighbourhood containing €2; and 2;. The basis
functions 1/7,7 are constructed by solving

wi(x), ifx e Qi,
Vij=—KVp, V- -¥i=1-wjx), ifxeQ; (38)
0, otherwise,

in Q,'/' with 1;,'/' -n=0on BQ,] If Qij ;é Qi U Qj, we say
that the basis function is computed using overlap or
oversampling. The purpose of the weighting function
w;(x) is to distribute the divergence of the velocity, V -
v, over the block and produce a flow with unit flux over
the interface 9$2; N 92; and the function is, therefore,
normalised such that its integral over ; equals one.
Alternatively, the method can be formulated on a single
grid block ; by specifying a flux distribution (with
unit average) on one face and no-flow condition on the
other faces, see [2] for more details. In either case, the
multiscale basis functions—represented as vectors W;;
of fluxes—are then collected as columns in a matrix
W, which will be our reconstruction operator for fine-
scale fluxes. To define the compression operator, we
introduce two prolongation operators Z and J from
blocks to cells and from coarse interfaces to fine faces,
respectively. The operator Z is defined such that el-
ement ij equals one if block number j contains cell
number i and zero otherwise; J is defined analogously.

The transposed of these operators will thus correspond
to the sum of over all fine cells of a coarse block and
all fine-cell faces that are part of the faces of the coarse
blocks. Applying these compression operators and W'
to the fine-scale system, we obtain the following global
coarse-scale system

v'BY v'CcZ v'Dg u¢ 0
I"c'w 0 0 -pl=1T"q|. (39
J DV 0 0 e 0

Once Eq. 39 is solved, the fine-scale fluxes can be ob-
tained immediately as v = Wu‘. The basic steps of the
multiscale algorithm are summarised in Fig. 14. More
details about how to include wells in a appropriate way
is given in [31].

Having introduced the multiscale method, we should
explain how to use it. To this end, we consider a simple
example.

Example 5 (Log-normal-layered permeability) In this
example, we will revisit the setup from the previous
section. However, we neglect gravity and instead of
assuming a homogeneous permeability, we increase the
number of cells in the vertical direction to 20, impose
a log-normal, layered permeability as shown in Fig. 3
and use the layering from the permeability to determine
the extent of the coarse blocks; a large number of
numerical experiments have shown that the MsMFE
method gives best resolution when the coarse blocks
follow geological layers [4]. In MRST, this amounts to:

plotCellData(G, mod(p, 2));
outlineCoarseGrid(G, p, ‘LineWidth’, 3);

[K, L] = logNormLayers([nx, ny,nz],[200 45 350 25 150 300], *sigma’, 1);

p = processPartition(G, partitionLayers(G, [Nx, Ny], L));

The permeability and the coarse grid are shown in
Fig. 15. Having partitioned the grid, the next step is to

build the grid structure for the coarse grid and generate
and solve the coarse-grid system.

CG = generateCoarseGrid(G, p);

CS = generateCoarseSystem(G, rock, S, CG, ones([G.cells.num, 1]), ‘bc’,bc, ‘src’, src);
xMs = solveIncompFlowMS(initResSol(G, 0.0), G, CG, p, S,CS, fluid, ‘src’, src, ‘bc’,bc);

@ Springer
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Fig. 14 Key steps of the multiscale method: (7) blocks in the
coarse grid are defined as connected collections of cells from the
fine grid; (2) a local flow problem is defined for all pairs of blocks
sharing a common face; (3) the local flow problems are solved

The multiscale pressure solution is compared with
the corresponding fine-scale solution in Fig. 15. The
solutions appear to be quite close in the visual norm.

For single-phase problems, a multiscale flow solver
without any form of parallelism will have a computa-
tional cost that is comparable to that of a fine-scale
flow solver equipped with an efficient linear routine,

Fig. 15 Comparison of the
MsMFE and fine-scale
mimetic flow solvers for the
setup from Fig. 4. The rop
plots show the layered
permeability field and the
corresponding partitioning
into coarse blocks. The lower
plots show the fine-scale
pressure solution (left) and
the multiscale solution (right)

Permeability

Fine—scale pressure

e
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20
20
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and the solutions are collected as basis functions (reconstruction
operators); and (4) the global coarse-system (Eq. 39) is assembled
and solved, then a fine-scale solution can be reconstructed

i.e. MATLAB’s built-in solvers for small problems and
e.g. the AGMG solver [29] for large problems. The
advantage of a multiscale solver comes first when con-
sidering multiphase flow problems, where the key to
computational efficiency is reuse of previous compu-
tations. For a multiphase system, the basis functions
will become time dependent when K is replaced by
AK in Eq. 38, but this time dependence is weak for

Coarse partition
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400
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Multiscale pressure 105
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an incompressible system, and the basis functions can,
therefore, be computed initially and updated infre-
quently throughout a simulation. Solving the coarse-
scale problem 39 is usually inexpensive compared with
solving the corresponding fine-scale system or comput-
ing basis functions. In the current release of MRST,
gravity is only resolved on the coarse scale. However,
gravity effects can easily be included also on the fine
scale by using special correction functions.

Next, we present a short example that demonstrates
the applicability of the MsMFE method on unstruc-
tured grids in 3D. Although several of our papers have
argued that the method can easily be formulated on
fully unstructured grids in 3D, the following is the
first example demonstrating the actual capability on
grids that do not have an underlying logically Cartesian
structure.

Example 6 (Prismatic and 2.5D PEBI grids) The
MsMFE method was previously demonstrated on
Cartesian and logically Cartesian (corner point) grids,
see [3, 4, 20]. However, the method is equally feasible
on general, unstructured grids provided there exists a
suitable partitioning of the underlying (fine-scale) grid.
Figure 16 shows the solution of the single-phase flow

Fig. 16 Multiscale
discretisation of a flow
problem with linear pressure
drop on a prismatic and a
PEBI grid

PEBI coarse grid

problem 1 with isotropic, homogeneous K on a compu-
tational domain 2 that has been discretised using both
prismatic and PEBI cells. These cells are subsequently
partitioned into a coarse grid by means of the well-
known software package METIS [19]. For simplicity,
the areal PEBI grid was created as the Voronoi diagram
of the triangular grid used to extrude the prismatic grid
and hence the fault is more irregular on the PEBI grid.
Despite the irregular block boundaries, the multiscale
method is able to accurately capture the linear pressure
drop from the west to the east boundaries on both grids.

The public version of MRST currently supports
single-phase and two-phase flow. Our in-house ver-
sion of MRST has compressible black-oil fluid models
implemented, along with several flow and transport
solvers. In the last example, we will demonstrate the use
of one of our experimental multiscale flow solvers to
simulate compressible flow on a geological model with
industry standard complexity.

Example 7 (Primary production from a gas reservoir)
In this example, we will briefly discuss the use of the
MsMFE method to compute primary production from a
gas reservoir. As our geological model, we will use one

100

100

Multiscale pressure solution
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Fig. 17 Primary production
from a gas reservoir
computed by the MsMFE
method

Permeability

of the shallow-marine realisations from the SAIGUP
study [25]. One approach for simulating compressible
black-oil models with the MsMFE method, is to use a
mixed residual formulation

B C\|upy+ "™ B 0
[CT P} Pus+ 0| [PP”+ Vu“]
Here, elliptic multiscale basis functions computed from
Eq. 38 using a weight function w;(x) that scales like
the porosity act as predictors. Compressibility effects
are accounted for by a parabolic correction that is
computed using a standard (non)overlapping Schwarz

domain-decomposition method. The method then iter-
ates on the multiscale solution and the corrections until

Fig. 18 Accumulated net
present value for the three
production strategies

Permeability
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560 ; : ! !

: : : —e— Reference
S5\ T [ERREEAEE =

——51072

——5107*

550

545

540

535
100 200 400 600 800 1000

the fine-scale residual is below a prescribed tolerance.
The geological model consists of 40 x 120 x 20 cells
(see Fig. 17) and is assumed to be initially filled with an
ideal gas at 200 bar pressure. The reservoir is produced
by a single producer, operating at a constant bottom-
hole pressure of 150 bar. Figure 17 compares the fine-
scale reference solution with multiscale solutions for
different tolerances; as our measure, we have used the
rate in the well perforation. Except for the coarsest
tolerance, 5- 1072, the multiscale solution appears to
overlap with the fine-scale reference solution.

Many reservoir management challenges can be cast
as mathematical optimisation problems. Examples in-

Accumulated NPV
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clude data assimilation where a misfit function is to be
minimised and finding optimal well controls to max-
imise some economic performance measure. A popular
approach to obtaining objective function gradients is
the use of adjoint equations. The adjoint system of
equations is the transpose of the linearised forward
system, and accordingly has similar complexity as the
forward simulation. Our in-house version of MRST
includes an adjoint code for a sequential forward sim-
ulation using the mimetic discretisation for the pres-
sure equation and an implicit version of the scheme
(Eq. 7) for saturation. In addition, an adjoint code for
the multiscale method combined with the flow-based
coarsening approach is included, see [22].

Example 8 (Optimising net present value (NPV)) In
this example, we consider a synthetic model with two
horizontal injectors and one multilateral producer, see
Fig. 18. We attempt to maximise a simple NPV func-
tion; the oil revenue is $100 per barrel and our costs are
realised through water injection and production, each
$10 per barrel. This means that when the water cut in
the producer exceeds ~ 0.82, we are no longer making
money. We compare three production strategies:

1. The producer operates at constant BHP until the
water cut reaches 0.82, and the well is shut.

2. We assume that each producer well segment is
equipped with an inflow control device (ICD). The
producer operates at constant BHP and whenever
the water cut in a segment exceeds 0.82, the corre-
sponding ICD shuts. The process is continued until
all ICDs are shut.

3. We use the adjoint code to find optimal segment
rates corresponding to a local maximum of the
NPV-function.

The initial simulation input is constant and equal rate
for the two injectors and constant BHP for the pro-
ducer. The initial simulation time is set to 500 days
which is equivalent to 1.25 PVI. In Fig. 18, we show the
accumulated NPV for the three production scenarios.
We observe that for production scenario 1, the well is
shut down after about 225 days with an achieved NPV
of $ 72.8 million. Scenario 2 is equal to scenario 1 until
the first ICD is shut, and the improvement obtained by
being able to shut down individual segments of the well
is evident. All ICDs are shut after about 375 days, and
the obtained NPV is $ 79.9 million. Finally, in scenario
3, water cut is not taken into account, only maximising
the NPV. The obtained NPV is § 92.6 million.

5 Outlook

Replicability is a fundamental scientific principle that is
currently receiving increasing attention among compu-
tational scientists. The level of sophistication and com-
plexity in new computational methods makes it difficult
for researchers to implement methods published by
others and replicate their results.

We believe that releasing the MRST under the GNU
GPL is an important step for our group towards sup-
porting the idea of reproducible science, thereby al-
lowing others to more easily benefit from our efforts.
In this paper, we have given an overview of MRST
and discussed in detail a family of consistent methods
that are convergent on fully unstructured, polyhedral
grids. We have also demonstrated the compressible
black-oil and adjoint multiscale features that currently
exists only in our in-house, development version of
the package. Although we are not yet there, we are
aiming towards a state where our publications on new
computational methodologies can be accompanied by
open-access software that can be used by others to
verify our computational results.
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