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ABSTRACT 

The Hardangerfjord Shear Zone (HSZ) is a large scale, ductile low angle shear zone, with 

SW-NE trending and NW dipping direction in the Caledonian crust. This zone has been 

formed at about 408-402 Ma (Fossen, 1992, 2000). A set of brittle faults formed about ~367 

Ma (Schärer, 1980), northeast of the Hardangerfjord area, known as the Lærdal-Gjende Fault.  

Offshore, a set of brittle faults with NE-SW orientation, known as the Ling depression, may 

be linked to the HSZ in southwest. The North Sea area has protracted several rifting events 

following the Caledonian Orogenic collapse. The successive rifting events are believed 

responsible to the reactivation of the HSZ. 

By applying apatite fission track analysis, the possible reactivation of the HSZ was tried to be 

unrevealed, which could be reflected by an offset of Apatite Fission Track (AFT) ages 

between the two blocks. Five thermal history models were also developed to unravel the 

thermal histories of the rocks in the study area. 

The AFT ages show a significant difference between the two blocks whereas the samples 

were taken from the hanging wall of the HSZ have AFT ages range from 146.2 ± 9.3 Ma – 

227.4 ± 14.3 Ma, with a weighted mean age of 174 ± 12 Ma (Middle Jurassic). Meanwhile, 

from the footwall is obtained AFT ages range of 180 ± 8.4 -105.6 ± 7.9 Ma, and the weighted 

mean  is 145 ± 16 Ma  ( Late Jurassic – Early Cretaceous time). 

The thermal history models result that the two blocks was subjected to a reactivation at about 

250-180 Ma. This Permian cooling rate is rather slow about 1.5
0-

3
0
C/Ma. The second cooling 

event initiated at early Jurassic time, and only reactivated the footwall of the HSZ. It was 

documented in sample BG-62 which describes cooling rate of 6
0
C/Ma at 190-180 Ma and 

shows a steep gradient. Both the cooling events occurred coincided to the Permian and 

Jurassic rifting in the North Sea. The area then experienced the burial event at the Middle 

Jurassic-Middle Cretaceous coincided with a period of transgression at Middle-Late 

Cretaceous (Doré, 1992; Riis, 1996). It is predicted from the cooling rate that the cooling 

event in the area occurred due to tectonic and erosional process. 
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1. INTRODUCTION 

 

1.1 Introduction and Research Objective 

The Scandinavian North Atlantic passive margin includes not only the offshore and basin 

domains but also large portions of the onshore domains of the Scandinavian Caledonides. The 

passive margin is located between the continent-ocean boundary (COB) and the Innermost 

Boundary Fault system (IBF) (Fig. 1.1). The boundaries of the IBF are determined by 

geomorphic features (morphology, water/glacial divides, topographic crest), structural 

features (normal faults), uplift data, and geophysical data. Hence, the IBF are visually 

expressed by a set of linked normal west dipping crustal faults, which extends over a distance 

exceeding 2000 km from the North Sea, across the Caledonian mountain belt to the Barents 

Sea. The position of the IBF system is associated with the position of the rift flank (Mosar, 

2003). Rift flanks develop as a result of succession uplifts induced either thermally or 

mechanically along the IBF (Kooi and Cloetingh, 1992). 

 A state of stress may influence a development of the basins, especially intraplate stress. This 

stress could be compression stress which could produce relative uplift of the basin flank, 

subsidence at the basin centre, and seaward migration of the shoreline. Increasing the level of 

tensional stress however, induces widening of the basin, subsidence of the basin flank, and 

thus causes landward migration of the shoreline (Kooi and Cloetingh, 1992). Therefore, a 

rifting activity which involves crustal stretching by tensional stress either acceleration of 

subsidence would certainly give effects to the basin flank and shifting of the shoreline.  

The North Sea area has protracted several rifting events following the Caledonian Orogenic 

collapse. In the North Sea, rifting started in the Permian which related to the separation of 

Greenland and Norway (Torsvik et al. 2002).  Furthermore, the major rifting events occurred 

also in the Permian/Triassic, Late Jurassic/Early Cretaceous and Late Cretaceous/Early 

Tertiary (Brekke, 2000). Nevertheless, continental rifting cannot be solely regarded as a 

responsible factor for repeated faults reactivation and uplift. Another factor which triggers the 

faults reactivation may be derived by the latest phase of pre-drift extension (Redfield et al. 

2005). 
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The Hardangerfjord Shear Zone (HSZ) is a large scale, ductile low angle shear zone, with 

SW-NE trending and NW dipping direction in the Caledonian crust. This shear zone is also 

part of the IBF system (Mosar, 2003). As an element of the IBF system, the HSZ has been 

formed at about 408-402 Ma, when kinematics reversed from convergent to divergent motions 

(Fossen, 1992, 2000). Later or simultaneous sets of brittle faults formed, such as the Lærdal-

Gjende fault in the Lærdal-Gjende area, northeast of the Hardangerfjord area. This brittle fault 

zone dies out between Aurland and the Hardangerfjord.  Offshore, a set of brittle faults with 

NE-SW orientation, known as the Ling depression, may be linked to the HSZ in southwest. 

Both of these fault systems represent reactivation along the HSZ, with a total length of at least 

600 km. 

Fig.1.1: Map shows a 

simplified tectonic map 

of the Scandinavian 

North Atlantic passive 

margin. The map 

indicates the position of 

the innermost boundary 

fault system (IBF) and 

the present location of 

the Caledonian thrust 
front.  Only the main 

normal faults are 

outlined. Margin width is 

represented by six 

different cross lines.  

(Mosar, 2003) 
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The extensional deformation of the Scandinavian orogeny generated a rapid denudation of the 

orogen. Many of the detachment faults in western Norway exhume the lower crustal rocks to 

the surface. Meanwhile Devonian basins are formed in the upper plate (hanging wall) due to 

extensional deformation (Andersen, 1995). The Nordfjord-Sogn Detachment fault (NSDZ) is 

one example, which is located northward of the HSZ. Many of the Devonian basins developed 

on the hanging wall of the NSDZ, namely the Hornelen basin, Solund basin, Kvamshesten 

basin and Håsteinen basin.  

Several evidences along and adjacent of the HSZ prove a similar characteristic to those in the 

NSDZ. According to the gravity modeling (Hurich and Kristoffresen, 1988) displayed that the 

HSZ bounds a half-graben in the offshore which contain up to 10 km of the Caledonian 

allochthons. These allochthons consist of Devonian sediments, supported by boreholes drilled 

on the Utsira High, located north of the HSZ. It is therefore inferred that down-to-the-NW 

movements on the HSZ associated with the deposition of Devonian sediments in the hanging 

wall (Færseth et al, 1995). 

The reconstruction of the bedrock map of southern Norway displays a footwall uplift of the 

HSZ reaching 800-1000 m. The contour map also shows a similar trend parallel to the HSZ, 

in an area about 40-50 km to the SE of Hardangerfjord (Fossen and Hurich, 2005). Other 

evidence obtained from shallow drilling has revealed a thin Jurassic sequence in the mouth of 

the Hardangerfjord (Rokoengen and Sørensen, 1990). These evidences imply that the HSZ 

may have experienced reactivation in the Permo-Triassic, even though the main displacement 

is assigned to Devonian normal faulting (Færseth et al, 1995).  

In this study, we try to unravel the exhumation history in the south western part of the HSZ by 

means of a low temperature-thermochronological technique, apatite fission track analysis. 

With application of this method, it is also attempted to determine patterns and the timing of 

possible vertical movements along the HSZ.  This possible reactivation could be reflected by 

an offset of Apatite Fission Track (AFT) ages between tectonical blocks in this area in 

combination with structural data analysis, geological and topographical data. Another 

objective of this study is to unravel the thermal histories of the rocks in the study area, to 

obtain new insight into the exhumation and uplift history of the outer Hardangerfjord region. 
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1.2 The Study Area 

The research area is located in Sunnhordland, between north latitude 59° 24' 57.09"- 60° 13' 

46.28" and east longitude 5° 10' 39.43"-5° 49' 55.83" (Fig. 1.2). The total size of the study 

area is about 60 km x 96 km. The study area covers islands namely Bømlo, Sveio and Stord. 

Between the Bømlo and Stord in the north, and Sveio in the south, it is located the 

Bømlofjorden which stretches out from the mouth of the fjord in southwest toward inland 

along approximately 40 km. The Bømlofjorden in the northeast has a border with the 

Kvinnheradfjorden which extends 45 km inland. The well known Hardangerfjorden is located 

further inward and has a boundary with a small fjord the Eidfjorden. The morphology is 

rugged, with high mountains and deeply incised valleys and fjords with elevations are ranging 

from 150-300 m.a.s.l., up to 750 m.a.s.l. 
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1.3 Previous Low Thermochronology Studies in Southern Norway 

Several fission tracks thermochronological studies have been carried out in the Scandinavian 

region. These were focused locally on restricted small areas (e.g. Andriessen and Boss, 1986; 

Rohrman et al., 1994; Hansen et al., 1996; Redfield et al., 2005) or they are compiling data in 

Fig. 1.2:  Topographical map of the study area envelopes the main islands of Bømlo, Stord 

and Sveio. Inset is an index map of Norway with red box indicating the study area. 
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order to interpret regional data sets (e.g. Rohrman et al., 1995; Hendriks et al., 2007).  Most of 

the data sets are derived from apatite, and few of them obtained from zircon and sphene.  

The post-Caledonian uplift and denudation history of the Eidfjord crustal segment in the inner 

Hardangerfjord area was first observed by Andriessen and Boss (1986). Applying method was 

apatite, zircon fission track analysis as well as K-Ar and Rb-Sr dating of biotite. All of the 

samples were collected from Eidfjord granites and overthrust granitic gneisses. Dating using 

Rb-Sr yielded a mean age 390 Ma, which was coeval with the termination of the Caledonian 

metamorphism. The AFT ages yield ages between 166-110 Ma, and display a proportional 

function between increasing ages and the topographical altitude. Calculation using the ages of 

mineral pairs with different closure temperature results that the rapid uplift rate of 0.1 mm/a 

occurred at 80 Ma.  The uplift rate was slower, approximately 0.03 mm/a between 166-110 

Ma. All of the calculations are based on the assumption a geothermal gradient 30
0
C/km.   

In order to clarify the syn- and post-rift thermal evolution of the Oslo Rift, Rohrman et al. 

(1994) examined the area by applying fission track data of apatites, zircons, and sphenes. The 

zircons and sphenes within the rift record fission track ages of between 270–180 Ma. The 

period between 270-260 Ma is inferred as a result of large scale batholiths intrusions, or syn-

rift advective heating. The ages between 220-180 Ma are referred to as a post-rift heating 

induced by hydrothermal circulation. The data derived from apatite fission track data show a 

variation of the post-rift history from Triassic age (200-240 Ma) in the southeast areas and the 

Jurassic (~160 Ma) in the northwestern part. The results from inverse thermal history 

modelling using mean track length distributions, suggest that various denudation events 

occurred in the Triassic, Jurassic, and Neogene. The timing of the Triassic-Jurassic 

denudation is coeval with the migration of the rifting from the Oslo-Skagerrak area to the 

North Sea basin.  

Rohrman et al. (1995) sampled the areas of Hunnedalen, Gausta, Jotunheimen and Eidfjord in 

southern Norway. Those samples were obtained mostly from the Precambrian and Paleozoic 

basement. The AFT ages show two major phases of rapid exhumation. The first is the 

Mesozoic phase, which started in the Triassic (220 Ma) in the east and south of the study area, 

and drifted to the west at Jurrassic time (160 Ma). It is attested by thick continental clastic 

deposits in the Triassic-Jurrasic half grabens in the North Sea basins. The second event is the 

Neogene phase, which were concluded based on forward modeling of ―stacked‖ age-elevation 

plots and inversion of measured mean track length distributions. Their model suggests that 
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variations of the isochrones of the AFT ages are drawn from offshore in west Norway to 

Baltic shield delineate a domal type.  Evidences of the Neogene uplift are also corroborated 

by basinward dipping pre-Neogene strata and the infill of a 1-2 km thick Neogene sediment 

wedge. In addition, the last exhumation event is coincided with the Oligiocene and Pliocene 

plate reorganizations in the North Atlantic. 

A study about the Post-Sveconorwegian exhumation was undertaken by collecting samples in 

the monzonitic dyke rocks which intruded the Høvringsvatn Complex in southern Setesdal 

area (Hansen et al. 1996). The methods used in this study are apatite and titanite fission track 

analysis. The sphene fission track results vary between 590-790 Ma. These ages indicate that 

the temperature in the host rocks cooled below circa 250
0
-200

0
C after the Sveconorwegian 

Orogeny. The AFT ages show a long period of constant cooling since 250-300 Ma. It is then 

inferred that the cooling path may be attributed to the removal of overlying volcanic and 

sedimentary rocks forming a sub-Permian peneplain. 

The Møre-Trøndelag Fault Complex (MTFC) was re-evaluated by Redfield et al. (2005) by 

combining new structural data, elevation profiles from the DEM (Digital Elevation Model), 

drainage patterns and previous compilation of common-elevation AFT ages produced by 

Hendriks et al. (2004). Plotting of distribution AFT age data versus elevation along southern 

and mid Norway toward the Gulf of Bothnia indicates that the younger AFT ages reside near 

the topographic highs of the southern and northern Scandes. In this compilation AFT ages 

also reveal a distinctly asymmetric distribution of cooling on the western rift flank. Unlike 

Rohrman et al. (1995) who proposed a theory of domal uplift for the distribution of the AFT 

ages, Redfield et al. (2005) yet introduce a flexed, on its margin thinned but not-quite-broken 

lithospheric plate; a typical for young margin development. The reactivated faults would be 

uplifted in the core, neighboring a down-faulted retreating scarp.  Westward shifting of the 

drainage patterns also infers landward migration of the flanks result of the reactivation of the 

fault strands. The AFT data surrounding the MTFC reflect vertical offset rather than chemical 

differences, differential sedimentary burial or erosion. The biggest displacement can be found 

in the southwest areas, which also coincided with the very different AFT ages close by. 

While, the AFT age in the northeastward MTFC tend to be juxtaposed, indicating a smaller 

faults displacement. 

The scattered AFT ages delimits interpretation only on the local area. Therefore, Hendriks et 

al. (2007) tried to compile these data encompassing a range of the passive Norwegian Atlantic 
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margin in the west to the cratonic Archean province in northwestern Russia and Finland in the 

east. Plotting of the AFT ages versus the mean track length generates a typical boomerang 

pattern. The plotting demonstrates that the older ages with long MTLs (Mean Tracks Length) 

are originated from cratonic interior samples in Finnland.  Intermediate AFT ages have the 

lowest MTLs which are mean they have spent the longest time in the Partial Annealing Zone 

(PAZ) prior to cooling. The youngest ages with long MTLs derived from samples in the north 

Atlantic passive margin and southern Norway. The compilation of the AFT ages data also 

clearly represents vertical movements in the Mesozoic and Cenozoic along the Norwegian 

Atlantic margin, and those occurred at Paleozoic times in the cratonic interior. 

Several other studies and projects at the University of Bergen have been undertaken and now 

still progressing. Two master theses have been published by Johansen (2008) and Tørresen 

(2009), who investigated the exhumation history within and across the Bergen Arc. They 

proposed two possible exhumation scenarios. The first scenario is called a pinned divide 

landscape evolution which explains a differential rift flank uplift and exhumation in the late 

Jurassic. The second scenario involves uniform exhumation of the rift flank during the 

Permian and Triassic, followed by reactivation of pre-existing structures in Jurassic times.   

The newest master thesis by Magerholm (2010) was carried out across the Hardangerfjord, 

northeastward of the present study. The AFT ages presented in this thesis yield ages between 

162-186 Ma (Jurassic times). The relatively young AFT ages and the associated mean track 

length distributions imply a long residence time in post-Permian times. 

The geological setting of the present study will be discussed in the following chapter. The 

geological background of the area is discussed regionally at the beginning of the chapter, and 

more focus at the end of the chapter. The formation of the HSZ is during Devonian time; 

therefore the discussion is restricted about development of West Norway since the Caledonian 

Orogeny onward.  
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2. GEOLOGICAL SETTING 

 

 

2.1 Baltica during the Pre-Caledonian Orogeny 

The tectonic history of Baltica prior to the Caledonian Orogeny can be traced from the 

amalgamation of the Rodinia supercontinent which occurred from 900-750 Ma (Li et al., 

2008). By ca. 750-630 Ma, the supercontinent was fragmented and each of the continental 

blocks moved away and collided (Cawood et al., 2001). Baltica became isolated after the 

break-up of the Rodinia supercontinent and did not amalgamate during the formation of 

Gondwanaland. In the latest Vendian (650-540 Ma), the Iapetus Ocean opened and formed a 

junction between a rift (Laurentia-Gondwana), a right lateral fault between Laurentia and 

Baltica, and a trench (inverted Baltica/Gondwana) probably around this time (Torsvik and 

Cock, 2005).   

 

2.2 Caledonian Orogeny 

The term ‗Caledonian Orogeny‘ is restricted to the tectonic events within and on the borders 

of the Iapetus Ocean. The Caledonian Orogeny comprises several phases (McKerrow et al., 

2000) or it has been defined as four or five orogenic events by Roberts (2003).  The first is the 

Finnmarkian event which took place at around 505 Ma (Mørk et al. 1988). This event marked 

the collision between the Baltoscandian margin and a magmatic arc (Sturt and Roberts, 1991). 

The position of the magmatic arc was probably in the Ægir Sea between Baltica and Siberia 

(Hartz and Torsvik, 2002). The second one is the Trondheim event which was marked by 

ophiolite obduction upon epicontinental rocks of the Gula Complex (microcontinental 

fragment of Baltica) in the range of 480-475 Ma. In the early Arenig (488-478 Ma), Baltica 

had started to rotate anticlockwise away from Siberia (Torsvik et al., 1996). The third event, 

which took place about 470-450 Ma, is the Taconian. This event was marked by subduction 

and accretion, including eclogite generation along the continental margin of Laurentia. The 

fourth event was the Scandian which marked an oblique collision between Baltica and 

Laurentia at around 420-400 Ma (Fig. 2.1).  
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2.3 Norway in the Scandian Event 

The Scandian event involved a subduction of the Baltoscandian margin of Baltica beneath 

Laurentia. All the allochthons which include those affected by the earlier events (the 

Finnmarkian, the Trondheim and the Taconian) contribute to the Scandian event. Evidence 

from monazite geochronology collected from the Western Gneiss Region shows that both 

subduction and exhumation occurred within a short period of time, perhaps less than 10 Ma 

(Terry et al. 2000).  

The Scandian event was also marked by the closing of the Iapetus Ocean and the collision 

between Baltica and Laurentia. Evidence of the event in mainland Norway can be seen by a 

Fig. 2.1: Map shows geological reconstruction of Laurentia and Baltica (Laurussia) in the Middle 

Silurian or during the Scandian event. Baltica extended lengthways approximately from the equator to 
200S. The Iapetus Ocean had closed and the Rheic Ocean was starting to close (Cock and Torsvik, 

2005). 
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dominantly E vergent thrust with allochthons derived from the Baltoscandian platforms, the 

Iapetus terranes, and the Laurentian plate. Unlike in the mainland of Norway, the Caledonian 

Orogeny of Svalbard and the Barents Shelf was marked by splitting of the Caledonian 

bedrocks into four terranes generated by sinistral transtensional/transpressional regimes (Gee 

et al., 2008).  

The basement of the W-directed subducted Baltica descended under the weight of the 

overriding Caledonian allochthons (nappes) which reached a crustal thickness up to 100 km 

(Dobrzhinetskaya et al., 1995) and metamorphic conditions of 28 kbars at 750
0 

C in the 

Western Gneiss Region (see location in Fig. 2.2) (Griffin et al., 1985). This led to a deeper 

depression of the western margin with paleotemperature and pressure increasing toward the 

Norwegian coastal areas which is confirmed by the presence of high-pressure rocks such as 

eclogites, coesite and microdiamonds (Dobrzhinetskaya et al., 1995). Additionally, the 

Precambrian basement is gradually more reworked to the west.  

40
Ar/

39
Ar dating from the eclogites of the Lindås Nappe (see location in Fig. 2.2) 

demonstrates that the initial timing of cooling began early in the history of this orogen, ca. 

450 Ma, followed by the exhumation at about 430 Ma, which coincides with the emplacement 

of the Bergen Arcs (see location in Fig. 2.2) (Boundy et al., 1996). However, U-Pb and Sm- 

Nd ages dating from the eclogites of the Western Gneiss Region show a cluster around 415-

400 Ma (Kullerud et al., 1986) and about 425 Ma (Griffin and Brueckner, 1980, 1985). This 

implies that the Western Gneiss Region was subducted to extreme depth after the exhumation 

of the Lindås Nappe (see location in Fig. 2.2) and the emplacement of the Bergen Arcs 

(Boundy et al., 1996). 

The allochthons were generally stacked with the most far transported ones at the top. Gee et 

al. (1985) grouped the thrust sheets which rest on autochthonous crystalline basement into the 

lower, middle, upper and uppermost allochthons. The lower and middle allochthons represent 

the pre-collisional continental margin of Baltica. The upper allochthons mainly consist of 

sedimentary and igneous rocks derived from the Iapetus Ocean and island arc complexes. The 

uppermost allochthons are characterized by exotic elements having an affinity to the 

Laurentian margin.  

 

 Fig. 2.2: The geologic map of the present study and adjacent areas. BASZ = Bergen Arcs Shear Zone, BN= 

Bergsdalen Nappes, HSZ=Hardangerfjord Shear Zone, LN = Lindas Nappe, NSDZ = Nordfjord-Sogn 

Detachment Zone, ØC = Øygarden Complex, ØFC = Øygarden Fault Complex (Dunlap and Fossen , 1998) 
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2.4 Norway in the late-to post-Scandian Event 

The last and important event in the Caledonian Orogeny was the late-to post Scandian event 

which was initiated in the Devonian. 

In relation to the contractional tectonism of the Scandian Event, extensional deformation 

might have taken place during syncollisional as well as after the contractional tectonics. 

Evidence of the syncollisional extension can be seen as orogen-parallel Caledonian lineations 

in the Bergen Arcs which may reflect lateral extension at a deeper level (Fossen, 2000). 

However, the exact timing of the syncollisional deformation is not very well constrained, 

probably between ~415 Ma  and ~400 Ma (obtained through U-Pb and Sm-Nd dating of 

eclogites) which was accompanied with the initiation of a postorogenic extension (Dunlap and 

Fossen, 1998). 
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2.4.1 Devonian Extension 

After the emplacement of the large thrust sheets with displacement in the order of 50 to 100 

kilometers toward the foreland, the contractional tectonics ceased and an extensional regime 

became dominant. Three modes of post collisonal extension which were proposed by Fossen 

(1992); Fossen and Dunlap (1998); and Fossen (2000) have been widely accepted. The Mode 

I extension (Fig. 2.3a) commenced at ~400 Ma as backsliding of an earlier ESE foreland-

directed orogenic wedge shifted to WNW hinterland-directed kinematics along the basal 

décollement zone (Fossen 1992, 1993). The Caledonian décollement zone of the southern 

Norway consists of Late Precambrian to Early Paleozoic rocks (mostly phyllites and 

phyllonites) deposited on the Baltic Shield (basement). Fossen and Holst (1995) estimated 

about ~30 km of hinterland-directed translation of the orogenic wedge relative to the 

basement. 

After the extensional tectonics by the reactivation of the basal décollement zone (Mode I), the 

entire crust subsequently collapsed by development of W and NW dipping extensional shear 

zones (Mode II, Fig 2.3b).  The Hardangerfjord Shear Zone, Bergen Arc Shear Zones (BASZ) 

and Nordfjord-Sogn Detachment Zone (NSDZ) are major extensional shear zones formed at 

this stage (see locations in Fig. 2.2). It has been estimated that the lateral displacement of 

these shear zones is in the order of ~50 km based on the ~5 km thick mylonites found in the 

NSDZ (Fossen, 2000). The change of the transport direction of the orogenic wedge above the 

reactivated décollement zone is likely related to the exhumation of the décollement zone in 

the hinterland. The exhumation caused the original northwesterly dip of the décollement zone 

to decrease somewhat followed by rotation to a position that favored to top-to-the NW 

extensional reactivation.  

The results of 
40

Ar/
39

Ar thermochronology of muscovite from the NSDZ yield ages between 

415 and 416 Ma (Fossen and Dunlap, 1998).  It may indicate that cooling and extension had 

already been taken place in the hinterland concurrent with the general thrusting toward the 

foreland (this hypothesis has been explained by Kullerud et al., 1986). However, most of 

rocks ages about 402-394 Ma have also been reported from the area and are believed 

represent maximum ages for the late stage of Mode II extension. The closeness between the 

two groups of ages (the cooling and extension at 415-416 Ma and the estimation of 

subduction at the WGR of about 415-400 Ma) suggests a very rapid change from 

contractional to extensional regimes in Early Devonian times. This possible explanation is 
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also corroborated by the modelling of 
40

Ar/
39

Ar data from K-feldspars which indicate a rapid 

cooling through the brittle-ductile transition in the early Devonian, followed by a very slow 

cooling (Dunlap and Fossen, 1998). 

After the crustal collapse stage, the basement rocks crossed into the brittle domain which led 

to the formation of high angle brittle faults (Mode III, Fig. 2.3b). U/Pb dating from the 

basement fractures from west of Bergen yielded ages around 395 Ma, which indicate the time 

at which the rocks crossed the brittle-ductile transition (Pedersen et al., 1999). Kinematic fault 

analysis exhibits a consistent pattern of NW-SE extension and subvertical shortening (Fossen, 

2000). A different trend is found in the areas to the north of the Bergen Arc which shows a 

more E-W direction, probably related to slip partitioning along the Møre-Trøndelag Fault 

Zone to the north of the present study area (Krabbendam and Dewey, 1998). 

 

 

 

Fig. 2.3: The cartoon illustrates the three modes of post-collisional extensional tectonics in south 
Scandinavia proposed by Fossen (2000). (a) The transport direction of the previously ESE 

translated, foreland directed orogenic wedge changed to be a WNW due to backsliding along the 

basal décollement zone. (b) The crustal collapse stage was initiated by the development of W and 

NW dipping extensional shear zones (Mode II) and followed by the formation of brittle faults with 

NW-SE directed-extension (Mode III) (Fossen, 2000). 
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During the late to post orogenic extension of the Caledonian crust, the Devonian basins of 

western Norway formed in the hanging wall of the NSDZ (Osmundsen and Andersen, 2001). 

These Devonian basins include the Solund basin, the Hornelen basin (see locations in Fig. 

2.2), the Håsteinen basin and the Kvamshesten basin. The presence of  E-W folds parallel 

with extension direction of the basins is related to a releasing overstep of two major left 

lateral strike-slip faults, namely the Møre-Trøndelag Fault Zone (see location in Fig. 2.4) in 

Norway and the Highland boundary fault zone in Britain (Séranne et al., 1991). Chauvet and 

Séranne (1994) suggest that the folds formation were a result of buckling caused by 

compression perpendicular to the extension direction. From a regional perspective, this 

occurrence also indicates that the folds might be a product of a combination of the N-S 

Avalonia convergence and the palaeostress evolution during the unroofing process (Chauvet 

and Séranne, 1994). 

2.4.2 Middle Paleozoic Stability and Cooling event in the Permo-Carboniferous 

In the late Carboniferous-early Permian, Laurussia was positioned at subtropical latitudes, 

stretching from 30
0 

N to the equator. From early Carboniferous times, Laurussia became part 

of the Pangea supercontinent. During the late Carboniferous, the Barents Shelf was 

characterized by widespread deposition of shallow to deep water carbonates (Torsvik et al., 

2002).  

After a period of rapid cooling at the end of the Caledonian Orogeny, western Norway 

underwent a period of thermal stability between ~380-330 Ma or possibly between 380-300 

Ma (Dunlap and Fossen, 1998). The evidences supporting the tectonic quiescence are among 

others the dating of K-feldspar using 
40

Ar/
39

Ar (Dunlap and Fossen, 1998), the lack of 

evidence of metamorphism or deformation from field observations (Fossen, 1998), and the 

dating of fault rocks (Dunlap and Fossen (1998) and reference therein). A slightly different 

result was obtained by Eide et al. (1999) who also used 
40

Ar/
39

Ar thermochronology from 

extensional detachment zones in western Norway (the Western Gneiss Region and the 

Nordfjord-Sogn Detachment Zone). Eide et al. (1999) proposed three domain changes in the 

late Paleozoic cooling rates: (1) slow cooling at 0.4
0
-2.2

0
C/m.yr from ca. 380-360 Ma, (2) 

rapid cooling at ≥ 15
0
C/m.yr in 360-340 Ma, and (3) slow cooling at 0.4

0
-1.7

0
C/m.yr after 340 

Ma.  

By the Permo-Carboniferous (300-240 Ma), magmatic and tectonic activities occurred and 

resulted in the development of the Oslo Rift (Sundvoll et al., 1990). The rift consists of two 
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graben segments: the southern Vestfold segment and the northern Akershus segment. The rift 

ends to the south close to the Tornquist zone. The general direction of tensional stress that 

developed in the Oslo Rift was E-W (Ramberg and Larsen, 1978). Buer (1990a) suggested 

that the stress field changed from an initially WSW-ENE to a WNW-ESE direction of the 

tensional axis. This is manifested in the field by deviated orientation of the grabens and 

blocks in this region, as seen at the Vestfold Graben which has a E-W axis direction, at the 

Bamble block which has a NE-SW structural trend, and at the Østfold block and Hedemark-

Trysil region have a NNW-SSE trending axis direction (Ramberg et al., 1977). Russell and 

Smythe (1983) implied that the development of the grabens, blocks, and dikes within the Oslo 

Rift were related to oblique collision of plates in the Hercynian orogeny (collision of 

Laurussia and Gondwana to form Pangea) which was developing to the south. 

The rifting event in the Oslo region also affected western Norway. Both Dunlap and Fossen 

(1998) and Eide et al. (1999) agreed about the occurrence of cooling events in Permo-

Carboniferous times in this region, but different conclusions were drawn regarding its 

magnitude. Dunlap and Fossen (1998) suggested that cooling rates were in the range of 2
0
-

5
0
C/Ma during the period 300-250 Ma. According to their interpretation, the timing of the 

onset of cooling corresponded to the magmatic event (300-240 Ma) in the Oslo Graben 

(Sundvoll et al., 1990). They also concluded that the cooling rate increased in the Permo-

Carboniferous as a consequence of the rifting in southern Norway which generated a decrease 

of the base level and an increase in the rate of denudation. 

A similar result was obtained by Rohrman et al. (1994) who applied fission track analysis on 

apatites, zircons and sphenes during their study of the Oslo Rift region. They suggested that 

the age of 270-260 Ma could reflect an event of syn-rift advective heating produced by large-

scale batholith intrusions in the Oslo Rift region. 

 2.4.3 Norway in Permian-Triassic times 

By the late Permian, the supercontinent Pangea was centered on the equator. The Barents 

Shelf region was located around 35
0
N during this time, whilst the North Sea was positioned in 

the subtropics. In the late Permian, probably most of all the continental blocks had been 

amalgamated; hence Pangea was at its largest. However, several rifting events occurred 

within the supercontinent and continental re-organization was continually initiated (Torsvik et 

al., 2002). 
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Rifting activity commenced in the Arctic-North Atlantic from Permian times onwards. In the 

earliest Triassic, rifting propagated into the North Sea and mainly centered in the Horda 

Platform (Fig.2.4) (Torsvik et al. 2002). The exact timing of this rifting event is poorly 

constrained, however Færseth et al. (1976) assumed that it occurred during the mid-Permian 

(ca. 260 Ma) when a swarm of basaltic dikes formed along the coastal area of the 

Sunnhorland, Sotra and Sunnfjord region. The emplacement of dikes was likely a result of 

upwelling and partial melting of the asthenosphere under the Horda Platform (Fossen and 

Dunlap, 1999). This rifting event also created new graben systems such as the Viking Graben 

(Fig. 2.4), the Horn Graben and the West Norway Through (Færseth et al., 1976). 

Magmatism related with the rifting was studied by Færseth et al. (1976). They identified three 

episodes of alkaline dike intrusions derived from the Sunnhordland area using K-Ar dating on 

amphibole and whole rock samples. These episodes are 270 Ma; 220 Ma and 160 Ma 

respectively. Moreover, the paleomagnetic data from the dolerite dikes in Sunnfjord, western 

Norway also support the Permian extension event. Torsvik et al. (1997) produced a range of 

ages between 270-250 Ma from this area. 

Fossen and Dunlap (1999) revised the data from the previous publications (i.e. Færseth et al., 

1976; Løvlie and Mitchell, 1982; Torsvik et al., 1997) and produced new ages from K-Ar and 

40
 Ar/

39
Ar. From their work, they deduced that two pulses of magmatism occurred during the 

formation of the Permo-Triassic rifting based on K-Ar and 
40

Ar/
39

Ar thermochronology of the 

alkaline dikes in Sunnhordland. The first event took place in early Permian times (260-250 

Ma) and was followed by a second pulse represented by more extensive dike intrusions in the 

late Triassic (220 Ma). Additionally, thermal models using K-feldspar from the Sunnhordland 

area and the Jotun Nappe (see location in Fig. 2.2) by Dunlap and Fossen (1998) also revealed 

differential exhumation within the interval of 330-250 Ma. 

Based on seismic interpretation across the Horda Platform, Færseth et.al (1995) revealed a 3-5 

km throw of normal faults during the mid Permian-early Triassic. The master faults mostly 

have a typical N-S trend due to E-W extensional stress direction. The swarm of dikes in this 

area also has a similar N-S trending. Færseth et al. (1995) suggested that the N-S trend of 

Permo-Triassic faults was originated from rejuvenation of the pre-existing Precambrium N-S 

trending structures.  

The rifting event in the North Sea was also recorded in the coastal area of western Norway by 

the formation of the main Lærdal-Gjende Fault (Fig. 2.4) and the subsidiary Olestøl fault. By 
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applying paleomagnetic analysis of cataclasite rocks in the Lærdal-Gjende Fault and its 

subsidiary, it was concluded that the age of fault breccias formation is in the range of 260-250 

Ma (late Permian times) (Andersen et al., 1999).  

By using paleomagnetic analysis, Torsvik et al. (1992) reported that the Dalsfjord fault in 

Sunnfjord, western Norway, underwent reactivation by generating brittle low angle normal 

faults (dips ranges of 5
0
-15

0
). The faults evolved initially as ductile low angle normal faults in 

early Devonian times and were reactivated subsequently during the Permian (260-250 Ma) 

and Late Jurassic (150 Ma). 

 

 

Fig. 2.4: The figure shows geological map of the Scandinavian North Atlantic passive margin.  In the 

offshore, the different major tectonosedimentary events are indicated (modified from Blystad et al. 

(1995); Brekke et al. (1999); Gabrielsen et al. (1999), Mosar (2000); and Smethurst (2000)). The dip 

direction of the major normal faults in the offshore, such as in the Nyk High, the Utgard High, and the 

Gjallar Ridge are originated from interpretation  deep seismic surveys by Osmundesen et al. (2002). 

The faults are differentiated by different color according to dip direction: red for west dipping and black 

for east dipping. The onshore tectonostratigraphic map has been modified from the Scandinavian 

Caledonides tectonostratigraphic map by Gee et al. (1985). Offshore magnetic anomalies are referring 

to Skogseid et al. (2000). This figure was taken from Mosar  (2003). 
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2.4.4 Norway in Jurassic times 

By mid Jurassic, the supercontinent Pangea had started to break up. The two major global 

events that led to break up were sea floor spreading in the Central Atlantic and Gulf of 

Mexico and rifting of the southern elements of Pangea between Africa and the joint 

Antarctica-Australia-Madagascar-India landmasses (Torsvik et al., 2002). 

During about 170-160 Ma (mid Jurassic), a large volcanic centre developed at the triple 

junction between the Viking, Central Graben and Moray Firth Graben (see location in Fig. 

2.4). However, the dome had a short lifespan. In the early Late Jurassic the dome foundered 

and clastic supply to adjacent basins was reduced (Ziegler, 1992; Torsvik et al., 2002).   

Maximum rifting activities took place in the entire Arctic-North Atlantic rift system in the 

Jurassic-Cretaceous. The rifting event affected mainly the formation of the Viking, Central 

and Moray Firth Grabens.  Rapid increase of crustal stretching largely occurred in the Viking 

Graben which was represented by uplift of footwall blocks above the erosional base level. An 

accelerated crustal stretching caused rapid subsidence and about 1000 meter pelagic shales 

accumulated and filled the Viking Graben. Seismic interpretation indicates that the net crustal 

extension in the Viking Graben during Jurassic-Cretaceous times reached 19 km (Ziegler, 

1991). 

The Jurassic extension in the Viking Graben basically had a similar magnitude of stretching, 

(β) 1.4-1.5, as the Permo-Triassic extension. However, there is a difference in the distribution 

of stretching as well as the structural expression. The main Permo-Triassic extension 

generated N-S trending structures, whilst the Jurassic extension was represented by those of 

NNE-SSW direction (Fig. 2.5) (Færseth, 1996). 

In the Norwegian mainland, the youngest dikes in the Sunnhordland region yield a mean age 

of 164 Ma. This age corresponds to the volcanic activity in the North Sea (Færseth et al., 

1976). Furthermore, the AFT age data from southern Norway (Eidfjord, Jotunheimen) 

indicate a cooling event initiated at ~160 Ma, which was coincident with repeated rifting 

phases in the North Sea (Rohrman et al., 1995). The AFT ages and thermal model obtained 

from Jurassic sediments in the Horda Platfrom and Utsira High also imply that the areas 

experienced rapid cooling during the late Triassic-early Jurassic (Rohrman et al. 1996). 
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2.4.5 Norway in the Cretaceous 

On a global scale, Asian landmasses ultimately docked with Europe to form Laurasia in the 

early Cretaceous. At the same time, the Central Atlantic system initiated to propagate 

northwards and resulted in the opening of the Bay of Biscay. In the late Cretaceous, the 

Central Atlantic had connected with the South Atlantic. In this period, North America, 

Eurasia, and Greenland continuously drifted northwestward. 

The Cretaceous extension in NW Europe is characterized by NW-SE extension, which was 

rotated and originated from a NE-SW extension in the late Jurassic (Fig. 2.5) (Torsvik et al. 

2002).  In the Norway region, this extension phase is well documented in the Vøring Basin 

(see location in Fig. 2.4) (Doré et al., 1999). The onset of rifting in this basin occurred in the 

early Cenomanian-early Turonian, i.e early of Late Creatceous times (Bjørnseth et al., 1997; 

Brekke, 2000), and was marked by the formation of large scale normal faults on the eastern 

flank of the basin (Ren et al., 2003). 

At the Gjallar Ridge, the rifting also elevated northern margins of these pre-existing rifts (see 

location in Fig. 2.4). The southern culmination of this ridge was eroded deeply, whilst the 

northern high was capped by low angle normal faults. The rifting is interpreted as a series of 

extensional core complexes governed by heating from magmatic underplating related to the 

Iceland plume in Paleocene-Eocene times (Lundin and Doré, 1997; Doré et al., 1999). 

However, Brekke (2000) suggested that the relative uplift in the Gjallar Ridge was a response 

during the thermal cooling phase of the late Jurassic-early Cretaceous rifting. 

Ren et al. (2003) suggested that the rifting that occurred in Cretaceous times can be 

characterized by (1) formation of large scale normal faults during the early rift phase at about 

81-65 Ma and, (2) continued extension, regional uplift, intrusive igneous activity and erosion 

in the late rift phase at 65-55 Ma. The latter phase was also marked by a change from brittle to 

ductile extensional deformation. 
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2.4.6 Norway during the Cenozoic 

Sea floor spreading in the NE Atlantic between Greenland and Europe began at ca. 54 Ma. 

This rift episode led to the connection between the Atlantic and Arctic Oceans, and it also 

marked the break-up of the supercontinent Pangea (Torsvik et al., 2002). 

Rifting events in the Paleocene were significantly different to the ones that occurred in the 

Cretaceous. In contrast to the typical non-volcanic passive margin in the Cretaceous, the 

Paleocene rifting was a classic volcanic passive margin. The uplift event in this epoch was 

also signified by the presence of the Iceland plume, which in turn resulted in highly clastic 

incursions from the easterly continent into the Vøring and Møre Basins, and probably from 

marginal highs to the west (White and Lovell, 1997; Doré et al., 1999).  

Fig. 2.5: Map shows plate reconstruction in the late Jurassic and mid-Cretaceous (Doré et al., 

1999).  The figure indicates relative plate motion, contemporaneous rifts and tectonosedimentary 

events. The abbreviations are as follows:  HB = Hammerfest Basin, EG = East Greenland Rift,  

MTFZ = Møre-Trøndelag Fault Zone, VG = Viking Graben,  C = Central Graben,  GGF = Great 

Glen Fault,  NR = Northern Rockall Through,  P = Porcupine Basin, NCS = North Celtic Sea 
Basin, GB = Galicia Bank Basin, JB = Jeanne D‘Arc Basin, MB = Møre Basin, BJ = Bjørnøya 

Basin, T = Tromsø Basin, V = Vestfjorden Basin, R = Rockall Through, L = Labrador Sea,  O = 

Orphan Basin.  
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The existence of the plume is generally believed have been a result of migration of the plume-

generated mantle which melted into the thinned axis of incipient opening (Eldholm et al., 

1989). A likely product of this activity is the development of seamounts in the Rockall 

Trough (see location in Fig. 2.6), where basalts in this area have been dated using K-Ar 

resulted of 70-65 Ma (Late Cretaceous times) (Hitchen and Ritchie, 1993).   

A wide range of magmatism reached approximately 2200 km in diameter and hence generated 

the North Atlantic Igneous Province (NAIP). The NAIP is also characterized by underplating 

beneath the crust, sills, dikes, and tuffs extrusion. Saunders et al. (1997) constrained the time 

of magmatism between 62-54 Ma (early Paleocene-early Eocene times).  

Elevated asthenospheric temperatures and a high rate of Paleocene lithospheric extension 

governed the vast generation of melts in the area. However, the structural elements related to 

the Paleocene rifting are less significant in the Norwegian Sea. It has been suggested that the 

lack of extensional evidence is related to masking of basalt flows in this area (Torsvik et al., 

2002). 

The break-up phase in the Norwegian-Greenland Sea was recorded at about 55-52 Ma or 53 

Ma (Doré et al., 1999), yet the most intense volcanism only happened around 1-1.5 Ma after 

the break-up (Eldholm et al., 2002). This event was marked by regional volcanism which 

produced the Vøring Marginal High (see location in Fig. 2.5) (Ren et al., 2003). 

In the early Eocene, a new compressive regime became dominant. The compression was 

widely distributed along the Atlantic margin and generated plenty of inversion structures 

especially observed in the Faeroe-Rockall area and the Norwegian Sea. The general stress 

pattern has a NW-SE compression direction (Fig. 2.7) which is also consistent with the 

relative motion of Europe and Africa, and hence with the Alpine closured at the same time 

(Müller and Roest, 1992). Brekke and Riis (1987) inferred that the Norwegian inversion at 

approximately 35 Ma (upper Eocene) was attributed to the plate reorganization due to a 

change in relative plate motion between Greenland and NW Europe to an ESE direction. 

In the Norwegian Sea, the most common inversion features are elongate domes such as the 

Helland Hansen Arch (see location in Fig. 2.7), the Ormen Lange Dome which was deformed 

in the late Eocene-early Oligocene, and the Naglar Dome at northernmost which was 

deformed in early-middle Miocene times. These evidences suggest that the inversion system 

is younging northward (Doré et al., 1999). 
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A local renewed extension occurred in the North Atlantic margin during the Oligocene-

Miocene (Fig. 2.7). The extension culminated by the separation of the Jan Mayen 

microcontinent (see location in Fig. 2.7) and SE Greenland and the extinction of the Æegir 

Ridge at 25 Ma (Kuvaas and Kodaira, 1997). The extension was observed in the western of 

Barents Sea where the development of Knipovitch Ridge started at 35-20 Ma (Faleide et al., 

1993). Doré et al. (1999) identified that the extension propagated to the northern Vøring Basin 

by the presence of Oligocen-Miocene sills onlapping onto a Paleocene unconformity. 

Regionally, by about 20 Ma (early Miocene times), spreading between Greenland and North 

America had ceased. There was also a change of drifting direction of Eurasia, from a 

predominantly NW direction during late Cretaceous times to a NE direction during the early 

Miocene, which coincided with the plate directions of both Africa and India. During the 

middle Miocene, Mid Norway was located at around 65
0
N (Torsvik et al., 2002). 

 

 

 

 

 

 

Fig. 2.7: Plate reconstruction in the Paleocene until Miocene. The figure indicates relative plate 
motion, contemporaneous rifts and tectonosedimentary events. The abbreviations are as follows:  

SB = Sørvestnaget Basin, RB = Røst Basin, HG = Hel Graben, G = Gjallar Ridge, FS = Faereo-

Shetland Basin, HT = Hatton Through, VV = Vestbakken Volcanic Province, SFZ = Senja Fracture 

Zone, BL = Bivrost Lineament, JM = Jan Mayen, HH = Helland Hansen Arch, FD = Faeroes Dome 

This figure is modified from Doré et al. (1999).  
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The regional uplift is the most important event during Neogene times. The uplift was 

recognized almost at the whole Norwegian mainland by the uprising of Cretaceous and 

Cenozoic units and the truncation of units close to the Norwegian coast (Doré et al., 1999). 

Many workers agree that the uplift occurred in several phases during the Cenozoic, yet the 

greatest uplift and erosion was in the Plio-Pleistocene associated with glaciations and 

deglaciations in the last 2.5 Ma (Solheim et al., 1996). 

When uplift and erosion occurred in the Barents Shelf and the British Isles at about 2.7 Ma, 

the North Sea Basins underwent tectonic quiescence which was marked by sediment 

deposition derived mainly from the British Isles. During the Pliocene and Pleistocene, 

sediment thickness attained 500-1000 meters in the central North Sea (Ziegler, 1992). Up to 

1000 meters of surface uplift has been reported from the Norwegian mainland and 3000 

meters have been suggested for the Barents Shelf (Torsvik et al., 2002). This uplift occurred 

as an of isostatic response to lithospheric unloading. At present the Scandinavian landmasses 

continue to undergo post glacial uplift and erosion with a rate as much as 1-5 cm/yr (Torsvik 

et al., 2002).  
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Today Eurasia and Africa are moving northeastward at speeds of 2.3 and 3.0 cm/year 

respectively. Half-spreading velocities between Greenland and Eurasia have been established 

at approximately 1 cm/yr since the late Oligocene (30 Ma) until today, although the speed of 

individual plates has been slightly different (Torsvik et al., 2002). 

 

2.5 Geological Framework of the Present Study 

The Hardangerfjord Shear Zone (HSZ) is one of the most important structures in the south of 

Norway which influenced the development of the North Sea rift system. The total length of 

this shear zone is ~ 350 km and it can be traced from the mouth of Bømlafjord toward the 

northeast. It passes through Aurland, along the NE side of Jotunheimen, and along the NE 

margin of the Jotun Nappe (Fig. 2.2). In the Hardangerfjord, this shear zone is best exposed in 

the area to the northeast of the Bømlafjord (Fig. 2.8).  In the area between Aurland and 

Lærdal, the HSZ dies out and then re-appears as a more brittle fault system in the Folgefonna 

area, where it forms a segment of the Lærdal-Gjende Fault System. Thus, an area between 

Folgefonna and Aurland seems to link the two different faults systems (Fossen and Hurich, 

2005).  

 

 

The HSZ is characterized by several features: (1) the décollement zone (sheared phyllites) and 

the underlying basement exhibit ductile deformation, with NW dipping mylonitic fabrics and 

top-to–NW sense of shear, (2) the Jotun Nappe and the décollement zone were folded by 

predominantly plastic deformation.  The monoclinally syncline fold structure and the whole 

Caledonian nappe unit are only preserved in the hanging wall. The syncline folds are draped 

Fig. 2.8: Geological map of the Hardangerfjord area. The map shows the NE ductile extension of the HSZ 

which stretches out from the mouth of the Bømlofjord and re-appears as a brittle extension of the Lærdal-
Gjende Fault System in the area between Aurland and Lærdal (Fossen and Hurich, 2005). 
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in the hanging wall and relate to the formation of the normal fault, or a product of reactivation 

of the basement faults. Several folds in the hanging wall of the HSZ have subhorizontal axial 

surfaces and hinge lines parallel to the shear zone (Fossen and Hurich, 2005). 

Seismic reflection profiles which were taken from the area of the western Norwegian 

coastline indicate a presence of Devonian deposition in the hanging wall. The other evidence 

is derived from boreholes drilled on the southern Viking Graben, north of the HSZ, which 

exhibited more than 400 meter of Devonian deposits (Færseth et al., 1995).  The clastic 

sediment loading in the hanging wall is believed to have caused uplift in the footwall as 

described by Fossen and Hurich (2005). 

The ductile shearing can be identified in both the basement and the allochthonous units. In the 

basement of the HSZ, middle greenschist facies metamorphic conditions are predominant.  

Garnet and feldspar are commonly found as porphyroclasts and exhibit top-to-NW fabrics. 

The thickness of the shear zone in the basement has been estimated to 5-6 km, based on 

onshore mapping, core samples and map reconstruction of the distance between the hinge 

points of the monoclinal structure (Fossen and Hurich, 2005). 

In the allochthonous units, evidences of down-to-NW movement are prominently observed, 

such as microfolds, shear bands, S-C structures and asymmetric boudins. The average dip 

contact of the décollement zone and the basement of the HSZ are around 22
0
, yet slightly 

steeper in the mainland area (Fossen and Hurich, 2005). 

Fossen and Hurich (2005) suggested that the throw of the HSZ is about 5 km. this estimation 

was obtained from a reconstruction of geological profiles across the Hardangerfjord area. A 

similar result was obtained by Milnes et al. (1997) who proposed a throw of about 6-7 km in 

the Lærdal area. The estimation difference likely arises due to the depth measurement of the 

uppermost basement in the hanging wall. 

Regional observation shows that the HSZ has an average NE-SW trend with a dip direction 

towards the NW. This orientation corresponds to a NW-SE extension.  However, observations 

at smaller scale reveal an irregular pattern, where several segments have very different trends. 

This situation pronouncedly appears in the Varaldsøy area, where two NE trending segments 

are connected with a segment with NNW direction (Fig. 2.9). The fragmented pattern is 

probably a result of deformation in the mechanically heterogeneous basement and is 

influenced by a pre-existing Proterozoic shear zone in the footwall (Fossen and Hurich, 2005). 
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During the Caledonian Orogeny, the shear zone was activated after a period of northwestward 

transport (Mode I) (Fig. 2.3).  The shearing was initiated during the Mode I extension, which 

affected and activated the décollement.  During the Mode II extension, the décollement was 

inactive due to accumulated offset on the HSZ which also folded both the décollement and the 

overlying Caledonian nappes.   

Ductile shearing in the basement caused brittle faulting in the overlying nappes. The brittle 

deformation that formed northeast of the HSZ is known as the Lærdal-Gjende fault system, 

and its development may be considered at a late stage of the HSZ formation.  Rb/Sr dating 

from fractures in the Lærdal-Gjende fault system reveals an age of ~367 Ma (Schärer, 1980). 

It is then inferred that this fault system formed during Devonian times. However, evidences 

for major the brittle structures cannot be found along the HSZ since they die out between 

Aurland and the Hardangerfjord (Fossen and Hurich, 2005).  

In addition to faults and fractures with NE-SW trending structures, the N-S to NNW-SSE 

trend is pronounced in the hanging wall of the HSZ. The Permo-Triassic alkaline dike swarms 

intruded these faults but not the NE-SW trending faults. Therefore, it can be concluded that 

the faults post-date the main NE-SW structures and pre-date the alkaline dikes (Fossen and 

Hurich, 2005). Færseth et al. (1976) and Løvlie and Mitchell (1982) interpreted that the 

intrusion of dikes in the Sunnhordland and Sotra regions occurred around 280-260 Ma 

(Permian times) based on the K-Ar dating method. Fossen and Dunlap (1999) who applied 

Fig. 2.9: The relief map shows an abrupt change of the extensional HSZ direction in Varaldsøy. The HSZ 

is indicated by a red line. Allochthonous units located in the area north of the HSZ, are indicated by 

greenish color. Basement rocks south of the HSZ are shown by light brown color (Fossen and Hurich, 
2005) 
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40
Ar/

39
Ar dating on amphiboles from a similar area yielded ages around 220 Ma (Triassic). 

Another study from Færseth et al. (1976) also demonstrated a similar age of 220 Ma. Both the 

Permian and Triassic dike intrusions are correlated with rifting activities which were centered 

in the Horda Platform (Torsvik et al., 2002; Fossen and Dunlap, 1999).  

The regional map of the uppermost basement surface (Fig. 2.10) shows a dome-shaped 

geometry, which is attributed to a Tertiary uplift event (Rohrman et al., 1995). The basement 

surface has a general elevation of 1000 m above sea level southeast of the HSZ. However, the 

surface elevation changes considerably close to the shear zone of about 1600 m.  

Reconstruction of the profile across the HSZ shows footwall uplift of about 800-1000 m (Fig. 

2.10). The similar trend of these features is also observed in the area 40-50 km southeast of 

the HSZ which also has a parallel trend to the shear zone. In this area, closely spaced 

extensional shear zones and faults which are found are related to the HSZ. 

 

The reactivation of the HSZ will be identified using low temperature-thermochronological 

method, apatite fission track. The method will be discussed in the apatite fission track 

methodology chapter.  

 

 

Fig. 2.10: Regional map shows the 

uppermost basement of southern 

Norway. The sub-Cambrian basement 

surface reaches heights of more than 

1800 m a.s.l. in the area between the 

HSZ in northeast and the Oslo Graben in 

southeast. The profile below the map, 

displays the deviation from the general 

trend of the dome shape near the HSZ 

(Fossen and Hurich, 2005). 

 

 

 

 

FU = Footwall Uplift; HSZ = 

Hardangerfjord Shear Zone 
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3. APATITE FISSION TRACK METHODOLOGY 

 

3.1 General  

Every solids material, once it is penetrated by nuclear particles, will obtain linear trails of 

disrupted atom which also reflect damage on the atomic scale. Fission tracks are such damage 

feature. The emerged features are produced by spontaneous fission of the 
238

U (Gallagher et 

al., 1998). 

In general, fission track dating is similar to the other dating methods that rely on the same 

equation of radioactive decay, i.e. estimating abundance both of the parent and daughter 

isotope. In fission track analysis, it corresponds to the number of 
238

U atom and the number of 

spontaneous tracks per unit volume. In order to obtain the number of spontaneous track, we 

simply count the number of spontaneous fission tracks on a given surface of a mineral grain.  

Meanwhile, the abundance of 
238

U can be determined by irradiating the samples with low 

energy thermal neutron in order to induce fission 
235

U. By controlling the thermal neutron 

flux, we obtain the number of ‗induced tracks‘ which also signified the abundance of 
235

U. 

Since the ratio of the 
235

U/
238

U is constant, hence we are able to estimate the abundance of 

238
U (Gallagher et al., 1998). 

Fission tracks are metastabile features which mean that the tracks can fade or anneal. The 

annealing tracks can lead the tracks to shorten. Therefore, length track distribution is 

fundamental parameter in the fission track analysis. Several factors that influence annealing 

are temperature, time, pressure, chemical composition and ionizing radiation (Fleischer et al., 

1965b). However, temperature combined with time is the most contributing factor for the 

annealing. Therefore, tracks length distributions contain information of the thermal history of 

the analyzed samples (Gallagher et al., 1998).  

Recently, applications using fission track analysis have widely known to solve geological 

problem. This thermochronology method is rather exceptional than others, whereas the 

temperature dependence of fission tracks annealing provides information of the thermal 

history. Various geological problems can be unraveled by this method such as the thermal 

history of sedimentary basins, sedimentary provenance, structural evolution of orogens, 

continental margin development, and long-term denudation on continents (Gallagher et al. 

1998). 
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3.2 Apatite Properties 

Apatite commonly appears as anhedral or euhedral accessory mineral in igneous rocks, 

detrital grains in sedimentary rocks, and as primary mineral or porphyroblasts in metamorphic 

rocks. In the volume of total rocks, the amount of apatite is only 1% or less.  Apatite crystals 

commonly have small sized grains, about less than 300 𝜇m (Donelick et al., 2005). For this 

study, apatite which has a size larger than 100 𝜇m is preferable. 

Apatite is phosphorus-bearing mineral which has three anions of fluoride, chloride and 

hydroxide (F
-1

, Cl
-1

, and OH
-1

). The chemical formula for apatite is written 

Ca5(PO4)3[F,Cl,OH]. The three of anions substitute one another and forms various end 

members of different composition such as fluorapatite, chlorapatite, and hydroxyapatite. 

Though, additional chemical elements might be substituted by other anions, such as Mn, Sr, 

Fe, Na and rare earth-elements (Deer et al., 1969). U and Th commonly present in apatite 

because of their small ionic radius cation are incompatible to other silicate minerals. 

Therefore, apatite is good for analysis fission track and U-Th/He analysis. Usually, the 

concentration of natural uranium in apatite ranges from 1-200 ppm (Donelick et al., 2005). 

Apatite is a member of the 6/m hexagonal dipyramidal crystal class (Deer et al., 1969), yet 

another rare of chlor-apatite has monoclinic crystal system (Hughes et. al., 1989). The typical 

apatite crystal present in the igneous rocks is prismatic. Even though, it has no strong 

cleavage, apatite shows a weak plane perpendicular of the crystallographic c-axis (Donelick et 

al., 2005). 

Apatite has a density of 3.15-3.20 g/cm
3 

which is higher than the average density of the other 

rock forming minerals, which are around 2.90 g/cm
3
.  

In this study, apatite was used for analysis for several reasons: (1) its presence is ubiquitous in 

most of crustal rocks; (2) its physical properties; (3) its major and minor element chemistries; 

(4) its content of uranium and thorium; (5) its ability to retain fission tracks in the geological 

environment; (6) its ease for experimentalist to mimic the geological environment using 

laboratory analogues (Donelick et al., 2005). 
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3.3 Track Formation Process and Theory 

When a heavy nuclide was charged in a solid medium at a high velocity, it will interact with 

the constituents of the solid (atoms and electrons), which will cause gradual loss of its kinetic 

energy. The rate of total energy loss was considered to be critical in track formation which 

means that no tracks could be formed in the solid if the minimum of total energy loss is not 

fulfilled. However from later experiments (Fleischer et al., 1975), it was inferred that the total 

energy loss is not a factor of tracks existence, but the number of ions formed per unit distance 

along the pathway of the moving particles. 

At present, the track formation theory proposed by Fleischer and coworkers (Fleischer et al., 

1965a) had been widely accepted. Their theory is called ‗ion explosion spike‘ theory. 

According to the theory, the tracks formation can be divided by three stages (Fig. 3.1): 1) the 

heavy highly charged particles in the solid induces electronic interactions which produce a 

burst of ionization and a group of positive ions in the lattice; 2) the surrounding ions then 

expel each other into interstitial positions and finally it forms a series of vacancies; 3) by 

elastic relaxation, the local lattice then spread more widely. In the last stage, latent tracks are 

emerged and enable to be observed by electron microscope. 

In nature, spontaneous fission only occurs on very heavy nuclides of atomic number higher 

than 90 and atomic mass bigger than 230 which belong to the actinide series ( Th, Pa, U, Np, 

etc.).  However, only 
232

Th and both of U isotopes (
235

U and 
238

U) have measurable 

concentration in nature. From the three of the isotopes above, only 
238

U which has a 

significant abundance and shorter spontaneous half life (8.2 x 10
15 

years).  In nature, sufficient 

uranium can be found in apatite, zircon, titanite and natural glasses (Wagner and Van den 

Haute, 1992). 
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In the fission track method, the parent of 
238

U decays not only by spontaneous fission, but also 

by eight of α-emission (
4
He). This decay occurs 2 x 10

6
 times more frequently than the one 

from spontaneous fission (Tagami and O‘Sullivan, 2005). Therefore, the total decay for the 

238
U is the decay constant for α-emission and the one for spontaneous fission (see the age 

equation in subchapter 3.7).  

In order to make the method useful and robust, there must be an adequate concentration of 

238
U to produce a detectable amount of fission events. However, too high concentration of 

238
U can result in too much fission, which makes the tracks hard to distinguish. Commonly, an 

appropriate range of uranium concentration for common minerals used, such as apatite, 

sphene and zircon is about 1-1000 ppm (Gallagher et al., 1998). 

 

 

Figure 3.1 Cartoon illustrates formation and process 

charged particle tracks registered in a solid by the 

ion explosion spike model (Gallagher et al. 1998 

after Fleischer et al. 1965a) 

 Dark circles are traces of 238U which 

present in the crustal lattice. They are 

basically unstable. 

 

 

 Spontaneous fission of 238U produces two 

charged heavy particles which have mass 

number in the ranges 85-105 and the 

higher one in the range 130-150. The 

fission also releases energy about 200 
MeV. Those highly charged particles 

recoil due to Coulomb repulsion and 

interact with other atoms in the lattice 

caused by ionization. 

 

 The fission particles slow down since they 

capture electrons and the particles‘ energy 

decreases. The damage trail left due to 

charge of highly particles is called a 

fission track.   
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3.4 Track Exposure 

As it has been explain above that the latent tracks are only able to be observed by 

transmission electron microscopy (TEM) or atomic force microscopy (AFM). In order to 

reveal the damaged trails under a normal optical microscope, the track are getting etched. The 

etching technique is a destructive method which attacks and removes material along the track 

itself (Wagner and Van den Haute, 1992).  

Basically, the etching technique applies a suitable chemical reagent to immerse the mineral or 

glass. The reagent enables the tracks to become enlarged and hence visible under an optical 

microscope (Wagner and Van den Haute, 1992). 

It is noteworthy that the etchant is not capable to reveal the whole range of a fission fragment, 

which means that the etchable tracks are shorter than the latent tracks. Secondly, etching only 

enables to reveal a part of the latent tracks that cross a glass surface. The most important is 

that crystals behave very different than glass with respect to etching, depending upon their 

crystalographic orientation and also upon the orientation of the tracks. Therefore, tracks with 

different orientation and/or different crystallographic symmetry will be revealed at different 

rates of etching (Wagner and Van den Haute, 1992). 

The evolution of track density regarding to etching time can be divided into three phases: 1) 

an initial phase of zero density when the tracks are still under the limit of visibility; 2) phase 

of rapid increase of revelation of surface tracks (underetching phase); 3) the last phase is the 

overetching phase which is signified by much slower furrow. In this phase, the confined 

tracks (tracks located in the interior of the crystal) will be revealed. It however does not imply 

that prolonging etching time will increase the tracks density, because further deepening of the 

bottom of tracks is relatively slow, often absent and eventually it will be digested by removal 

of material at the surface. In addition, tracks will show flat-bottom when their end is reached 

and completely lost their channel-like parts. Tracks in this condition can hardly be recognized 

(Wagner and Van den Haute, 1992). 

The etching process is very critical for AFT analysis. Hence, an optimal degree of track 

etching has to be defined. Gleadow and Lovering (1977) suggest that an optimum etching can 

be reached until the beginning of the third phase but not very much further. 

The process of track exposure is also related to the chemical properties of the etchant and the 

mineral. For a given crystal surface, some reagents behave more anisotropically than others. 
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Additionally, a small change of concentration in the etchant may have an influence on the 

characteristic of the etched tracks. In fission track dating, etchants which can isotropically 

reveal the tracks are preferred (Wagner and Van den Haute, 1992). 

 

3.5 Fading and Annealing of Fission Tracks  

Tracks are metastabile, which have ability to shorten. Mostly, tracks shortening attributes 

from elevated temperatures. Here, track length is a parameter to measure the shortening. 

3.5.1 Fission Track Length 

Fission tracks derived both from glass and crystals are influenced by environmental 

conditions. This can be reflected in their size of tracks. In glass, the diameter of the tracks 

(pitch diameter) has been used as a source to understand these effects. Meanwhile, the crystals 

use track lengths as a parameter. The distribution of track length is measured from so called 

confined tracks which provide good tool to reveal thermal history information (Wagner and 

Van den Haute, 1992). 

Two types of tracks are considered for track length measurement. The first type are surface 

tracks (projected tracks) i.e. tracks which cut the mineral surface; the second type are so 

called confined tracks which are located in the interior of the crystals, but have been revealed 

by the etchant because they intersect cleavage planes at the crystal surface or through the 

surface tracks (Fig. 3.2). Confined tracks are also called as TINTs (Track In Tracks) or 

TINCLEs (Tracks IN CLEavage) (Bhandari et al., 1971). In fission track dating technique, 

confined tracks are used as a source of information. Commonly, only confined tracks which 

are parallel (or nearly horizontal ~15
0
) to the c-axis will be selected. The surface tracks which 

intersect directly the surface are too difficult to be measured, because in spite of the tracks 

have to be projected vertically, the amount of the truncated tracks are unknown (Gallagher et 

al., 1992). 
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A collected sampling bias cannot be avoided, because the probability of longer tracks 

intersect the cracks or cleavage planes is higher than the shorter ones. Therefore, the amount 

of shorter tracks is always underestimated compared to the amount of longer tracks. Thus, as 

the method is determined from counting the number of tracks, it will yield an older age. In 

order to retrieve the correct measurement, information from the surface tracks (i.e. projected 

length measurement) is needed. However, it is rarely used due to the complicated mathematic 

formula and impractical. To do so, in practice, ideally the length tracks distribution of 

confined tracks has to exhibit a shape which is close to a normal distribution with an average 

length about 16 µm and a standard deviation of 0.8-1 µm (Gleadow et al., 1986). 

3.5.2 Fission Track Annealing 

Fission tracks are influenced by several geological factors, namely time, temperature, shock 

wave pressures, intergranular solutions and ionizing radiation. From all the factors above, 

temperature is the most dominant parameter affecting stability of the tracks (Wagner and Van 

den Haute, 1992). Fleischer et al. (1964b; 1965b) and Maurette et al. (1964) investigated the 

effect of high temperature on tracks in mica, olivine, zircon and tektite which became shorten 

and discontinuous proportional with elevated temperature. This phenomenon is known as 

fading. The fading event is not only signified by reduction of the etchable length but also by 

Figure 3.2 Illustration of an etched mineral that exposes confined tracks. The tracks are revealed by 

etchant through cleavages i.e. Tracks-IN-CLEavage (TINCLEs) and host tracks or projected tracks i.e.  

Track-IN-Tracks (TINTs). (Tagami and O‘Sullivan, 2005 after Bhandari et al., 1971)  

 TINT 
TINCLE 
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etching rate and decreasing of the areal density of the tracks (Wagner and Van den Haute, 

1992). 

The track fading phenomenon actually breaks the most important prerequisite of a radiometric 

system, because the system is still open of the radiogenic daughter product. As a result, the 

reduction or loss of tracks tends to lower the apparent fission track ages. On the other hand, it 

is the advantage of this method to reveal the thermal history of the rocks (Wagner and Van 

den Haute, 1992).  

It has been explained above that many factors influence the tracks fading. Nevertheless, 

temperature plays the most important role influencing the tracks stability. The track fading 

due to temperature is known annealing. The term of annealing refers both to the time and 

temperature. The reduction of track lengths and their diameter during annealing is of 

important because it forms a basis of the temperature-time (T-t) path from fission track 

records.  

Etch pit diameters are used as a parameter to detect the degree of annealing in glasses. The 

grade of annealing in crystals are measured based upon the mean track length and the track 

density. In general the parameter of mean track length is used instead of the track density 

reduction, because the reduction of the mean track length has a direct consequence on the 

decreasing of the track density (Wagner and Van den Haute, 1992). 

The causes of the actual annealing process are not yet fully understood. Apart of high 

temperature depending, other factors that influence the annealing kinetic are the 

crystallographic orientation, the chemical composition of apatite grains, etching characteristic 

of the apatite (Carlson et al., 1999), and confining pressure (Wendt et al., 2002). Measurable 

parameters which correlated to the fission track annealing kinetic are referred to as kinetic 

annealing parameters. These parameters among others are: Dpar or parallel etch pit diameter, 

clorine content (Cl), hydroxyl content (OH), infra-red microspectroscopy (IR) which is a 

function of absorption Cl and F, and α-particle damage. From all those parameters, only two 

of them i.e. Dpar and Cl content are most commonly applied (Donelick et al., 2005). In the 

present study, Dpar was measured as a kinetic annealing parameter. 

Dpar is an arithmetic mean of the fission track etch figure diameter (Donelick et al., 2005). 

Diameter of the Dpar reaches maximum size when the etched track openings are oriented 

parallel to the crystallographic c-axis and it is measured between its two tips. There is broadly 
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misconception among thermochronological workers if the Dpar parameter is a proxy of Cl 

content. Although, it is correct that the Dpar is positively correlated to Cl and OH content and 

negatively correlated to F content (Donelick, 1993), but it has to be considered as an 

individual parameter which is independent to any chemical composition or other variables 

(Carlson et al., 1999).   

Observations of Dpar parameter from apatite grains shows conclusions as follow: (1) apatite 

grains having relatively low values of Dpar ( 1.75 µm
 
for apatite grains etched for 20 second 

in 5.5 M HNO3 at 21 °
 
C), will anneal rapidly. This is a typical of near-end member calcian 

fluorapatite (Carlson et al., 1999); (2) apatite grains having relatively high values of Dpar 

(>1.75
 
µm for apatite grains etched for 20 second in 5.5 M HNO3 at

 
21 ° C), commonly 

anneal more slowly (Carlson et al., 1999); (3) Failure of this Dpar parameter from the two 

characteristics above, commonly occurred for near-end-member hydroxyapatite grains that 

show high Dpar values but anneal faster. Unexpectedly, features of Dpar only works well on 

near-end member fluorapatite grains, even with substitutions of cation such as Mn, Fe, and 

possibly to rare earth elements and combination of hydroxide (Carlson et al., 1999); (4) the 

values of Dpar related directly to AFT and length data and need not to be converted to any 

values of Cl content (Donelick et al., 2005); (5) Due to the extremely fine scale measurement 

of the Dpar, so sample preparation must be handled with care especially when etching step was 

conducted. Incorrect procedure can result inconsistent data (Donelick et al., 2005; (6) Both of 

Dpar and track length data are important to constrain geological conditions in order to produce 

a correct inverse thermal history (Ketcham et al., 1999). 

The effect of the orientation of the tracks on annealing processes have been studied by 

Geguzin et al. (1968) who showed that tracks with shallow dip angles with respect to the 

cleavage plane are more resistant to anneal than those with steep angles. It is also significant 

in apatite that tracks parallel to the crystallographic c-axis are more resistant to anneal than 

those are perpendicular. As a consequence, when the annealing proceeds, the anisotropic 

annealing behavior is more pronounced (Green and Durrani, 1977; Donelick, 1991). 

The apatite composition Ca5(PO4)3(F, Cl, OH) consists of Cl
- 

(chlor), F
-
 (flour) and 

hydroxyapatite. The annealing is very depending on the Cl/F ratio (Gleadow and Duddy, 

1981; Green et al. 1985, 1986). It has been showed from electron microprobe that the tracks in 

apatite with high content of chlorine are more resistant to anneal than those with high content 

of fluor (Wagner and Van den Haute, 1992). 
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3.5.2 Partial Annealing Zone (PAZ) 

Annealing of fission tracks on minerals does not occur at a single temperature, yet it presents 

a wide temperature range. A variation of the annealing rate which is likely to occur due to the 

chemical composition has to be considered (Wagner and Van den Haute, 1992).   

The range of temperatures with respect to track stability is divided by three zones (Wagner, 

1972). Zone I, is called total annealing which occur at high temperatures. In this zone, no 

tracks form; hence the fission track age is zero. At medium temperature, the tracks are more 

stable with the degree of stability between 0 until 1. In this stage, which is known as the 

partial annealing zone (Zone II), the tracks are partially annealed. The partial annealing zone 

(PAZ) is of great importance whereas the fission track age starts accumulating at this moment. 

At low temperatures, the tracks are stable (1 degree of stability). Samples residing in this 

stage consist of unannealed tracks which formed and stay within this zone (Zone III) and 

tracks which have been partially annealed in Zone II. The zone is also called the stability zone 

(Zone III). All of the zones are illustrated below (Fig 3.3). 

 

 

 

In reality, the PAZ concept cannot be straightforward applied. The lowermost temperature of 

the PAZ is easy to determine whereas the tracks are completely extinct. However, the PAZ 

top is more difficult to be defined. In apatite for instance, tracks cannot reach a complete 

Fig. 3.3: In association with temperature, track stability is divided into three zones; instability 
zone (I), the partial annealing zone (II), and stability zone (III). The track stability vs. temperature 

function 𝜌/𝜌0(𝑇) theoretically look like curve a, yet it cannot be achieved in nature. Curve b is 

closer to reality (Wagner and van den Haute, 1992). 



40 
 

stability at surface temperature. Therefore, the PAZ top is defined as the gradient of stability 

reaches its maximum, namely 0.90-0.95. On the other hand, the rate of geological process also 

gives the annealing temperature differently. A fast process, such as volcanism which involved 

a rapid change of temperature, will need a higher temperature for tracks to be annealed 

(Wagner and Van den Haute, 1992). The temperature required to anneal is lower for 

geological processes such as cooling of crystalline basement, uplift and denudation (Gleadow 

and Lovering, 1978b). Besides of a wide annealed temperatures range (PAZ), a single 

temperature value is often applied for age interpretation. It is called the closure temperature.  

The experiment conducted on Durango apatite by Laslett et al. (1987), which was performed 

under a given temperature range and time interval resulted that the PAZ of apatite ranges from 

~60
0
 to ~110

0
C, with an uncertainty of about 10

0
C. 

 

3.6 Dating Procedures 

Up to now, several dating procedures had been applied in order to determine fission track 

ages. In general, two procedures have been proposed namely grain-population method and 

grain by grain method. The distinction of those procedures is based on the strategy applied for 

analyzing the induced tracks. The grain-by-grain method uses the same grains from the same 

sample which had been used for the analysis of spontaneous fission. In contrary, the 

population methods utilize different grains from the same sample for the analysis of induces 

fission tracks (Gleadow, 1981). Further distinction comes from techniques for induced track 

revelation (etching technique).  

In this master thesis, all samples have been analyzed using the grain-by-grain method which is 

called external detector method. This method is explained in more detail below. 

3.6.1 External Detector Method (EDM) 

Today the external detector method is the most widely used method for fission track analysis. 

In principal, the spontaneous fission tracks are obtained from internal polished surfaces of 

mineral grains which have been revealed by etching beforehand, whereas the induced fission 

tracks are recorded afterward on a thin sheet of mica. The mica is firmly attached onto the 

surface of the mineral grains. The pairs of grains-mica then are stacked between standard 

glass dosimeter and bombarded by slow thermal neutrons in a nuclear reactor. After 



41 
 

irradiation and cooling, the mica is detached and etched in HF 5 molar to reveal the induced 

tracks, which resulted from the decay of uranium within the mineral grains during irradiation. 

For detail steps can be seen in Fig. 3.4. 

By using this method great care has to be taken, particularly during etching. This is because 

spontaneous tracks and induced tracks are measured on a different material (mica detector vs. 

mineral grains). Hence, the etching procedure has to be in standard etching conditions 

(Tagami and O‘Sullivan, 2005). 

 

 

Fig. 3.4: The external detector method was 

proposed by Hurford & Carter (1991).  The 

apatite after been mounted then was polished 

until reaches its maximum width.  By etching 

process, the spontaneous tracks can be 

revealed. Then, muscovite mica is attached 

onto the apatite surface, and ready to be 

irradiated with low-energy thermal neutrons, 
which induces fission in 235U. The induced 

tracks have been registered on the mica 

surface, yet they are still invisible to be 

observed under an optical microscope. Hence, 

the mica slice is etched using HF. At the end, 

we can determine the uranium concentration 

and AFT ages by counting the number of 

spontaneous and induced tracks using the 

known ration between 235U and 238U.  
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3.7 Fundamental and Practical Fission Track Age Equation 

Principally, fission track analysis method is similar to other dating methods which are based 

on radioactive parent decay to a more stable daughter atom. The basic equation of the 

radioactive decay is: 

      
−𝑑𝑁p

𝑑𝑡
 =  𝜆 𝑁p, or 𝑁𝑝 =   𝑁𝑝 0

𝑒−𝜆𝑡  

𝑁p is a number of parent atoms remained at any time, and 𝜆 is called the decay constant.  

Integration of the equitation above, in order to obtain a number of parent atom at initial time 

(𝑁p)0 yields: 

          𝑁p 0
 = 𝑁p 𝑒𝜆𝑡 ,                                         (3.1) 

The number of daughter atoms 𝑁D, is the difference between the number of parent atoms at 

initial time with the one at present time, or  

                            𝑁𝐷 =  𝑁𝑝 0
− 𝑁𝑝                    

The equation above can be modified by substituting of  𝑁p 0
 from the equation (3.1) to be:

                           𝑁D  =  𝑁p 𝑒
𝜆𝑡 − 1  ,                                                                   (3.2) 

The equation (3.2) is actually the basic equation of the isotopic-dating methods including the 

fission track method. 

In the fission track method, the spontaneous tracks are measured instead of the daughter 

isotope products. It has been explained (sub-chapter 3.3) that the parent isotope of 
238

U not 

only decays by the spontaneous fission but also by α-emission. Therefore, the total decay 

constant  𝜆𝑑  is the decay constant for α emission  𝜆𝛼  added to the decay constant for 

spontaneous fission 𝜆𝑓  or it can be stated that 𝜆𝑑 = 𝜆𝛼 + 𝜆𝑓 . 

According to equation (3.2) the number of decays due to spontaneous fission is in fixed 

proportion of  𝜆𝑓/𝜆𝑑  to the total number of decays of the 
238

U. The number of fission tracks 

𝑁𝑠 accumulated (per unit of volume) is given by: 

                    𝑁𝑠 =
𝜆𝑓

𝜆𝑑
 𝑁  𝑒𝜆𝑑 𝑡 − 1 238                                                 3.3  
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Because the decay constant for spontaneous fission (≈ 8.5 × 10−17a−1) is far below the 

constant for 𝛼-decay (1.5× 10−10a−1), 𝜆𝑑  is stated equal to 𝜆𝛼 . So, in order to obtain t from 

equation (3.3), t  is: 

                    𝑡 = 1/𝜆𝛼  𝑙𝑛  𝜆𝛼  /𝜆𝑓  𝑁𝑠/ 𝑁238  + 1                          (3.4) 

In order to determine the quantity of 𝑁238 , the samples are then irradiated in a nuclear reactor 

with a known fluence of slow thermal neutrons  𝜙 . The fission tracks are induced by 
235

U, 

hence the number of 𝑁𝑖  will be given as: 

                     𝑁𝑖 = 𝑁𝜎𝜙,235                                                                  (3.5) 

where 𝜎 refers to the cross section of 
235

U for fission induced with thermal neutrons. The ratio 

of abundance 
235

U/
238

U or stated as (I) in nature is considered constant, except for some rare 

situation such as occurred at the Oklo mine in Africa (Wagner and Van den Haute, 1992). 

Hence, equation (3.5) can also be written: 

                           𝑁𝑖 = 𝑁𝜎𝜙𝐼238                                                                (3.6) 

By substituting equation (3.6) into equation (3.4), it yields: 

                                      𝑡 = 1/𝜆𝛼  𝑙𝑛  𝜆𝛼  /𝜆𝑓  𝑁𝑠/𝑁𝑖 𝐼𝜎𝜙 + 1                        (3.7) 

The equation 3.7 above is a fundamental age equation of the fission track method. From the 

equation, there are two variables which must be determined namely the ratio of density a 

spontaneous fission to induced fission and the number of the thermal neutron fluence. 

The numbers of 𝑁𝑖  and 𝑁𝑠 from equation (3.7) are numbers of tracks density per unit volume. 

In practical, both of 𝑁𝑖 and 𝑁𝑠 are measured under a microscope in two dimensions. 

Therefore, the densities of spontaneous and induced fission are formulated by taking into 

account the geometry factor (𝑔𝑠,𝑖), the average etchable range of a fission fragment track in 

the investigated area (𝑅𝑠,𝑖), the etching efficiency factor (𝜂𝑠,𝑖), the etch time factor (𝑓 𝑡 𝑠,𝑖), 

and the observation factor (𝑞𝑠,𝑖). The densities of observed spontaneous and induced fission 

 𝜌𝑠 , 𝜌𝑖  in planar dimension are formulated by: 

                                      𝜌𝑠 = 𝑔𝑠𝑁𝑠𝑅𝑠𝜂𝑠𝑓 𝑡 𝑠𝑞𝑠                                                 (3.8a) 

                𝜌𝑖 = 𝑔𝑖𝑁𝑖𝑅𝑖𝜂𝑖𝑓 𝑡 𝑖𝑞𝑖                                                     (3.8b)     
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The geometry factor (𝐺) is a ratio of the surface observed for counting the spontaneous and 

induced tracks. The factor depends upon the technique applied for revelation the induced 

tracks. In the present study, we applied the external detector method for which 𝐺 is 

determined equal by 0.5. The etchable range of spontaneous and induced tracks (𝑅𝑠,𝑖) has a 

similar value if the grain-by-grain methods are applied (Togliatti, 1965; Bhandari et al., 

1971). The values of 𝜂, 𝑓 𝑡  and 𝑞 depend upon the techniques are used for exposure and 

observation of spontaneous and induced fission tracks. These three of values are then 

determined by the 𝑄 factor which can be considered as a procedure factor. If the exposure 

technique of spontaneous and induced fission is similar and both types of fissions are counted 

under identical conditions of observation then 𝑄 is defined by 1 or is assumed ≈ 1 and then a 

calibration based on age standards such as the ζ (zeta)-method has been applied. The ζ method 

will be explained detail in sub-chapter below. The equation for 𝑄 and 𝐺 is: 

                            𝑄 = 𝜂𝑖𝑓 𝑡 𝑖𝑞𝑖/𝜂𝑠𝑓 𝑡 𝑠𝑞𝑠                                             (3.9) 

                 𝐺 = 𝑔𝑖/𝑔𝑠 

The equation (3.7) combined with both of equations (3.8a and b) and (3.9) finally yields the 

fission track age equation: 

       𝑡 = 1/𝜆𝑓 ln  𝜆𝛼 /𝜆𝑓  𝜌𝑠/𝜌𝑖 𝑄𝐺𝐼𝜎𝜙 + 1                    (3.10) 

The values of 𝜆𝛼  and 𝐼 published by the IUGS Sub commission on Geochronology (Steiger 

and Jäger, 1977) are widely accepted. The values for 𝜆𝛼  and 𝐼 are 1.55125 × 10−10𝑎−1and 

7.2527 × 10−3 respectively.  Several methods have been applied to determine a value for the 

𝜆𝑓  such as direct measurements with ionization chambers or rotating bubble chambers, 

radiochemical methods, accumulation of natural fission tracks in mica, and analysis of 

samples of  known age. The most exact value for 𝜆𝑓  is 8.46 × 10−17𝑎−1, which was obtained 

by means of a rotating bubble chamber (Galliker et al., 1970). The cross section of 
235

U 

neutron induced fission (𝜎) is defined as the ratio of the number of neutrons which produce 

the reaction per unit of time to the total flux of neutrons. Based on experiments, the value for 

𝜎 = 570.8 × 10−24𝑐𝑚−2is obtained which correspond to a velocity applied at 2200 m/sec. 

 

 



45 
 

3.8 Dating System and Calibration 

The fission track age equation above needs an exact determination of the fluence of thermal 

neutrons (𝜙). This system is known as the absolute approach. In practical, an accurate 

determination of the amount of 
235

U that underwent fission during sample irradiation is 

difficult to achieve. 

Other dating systems were developed in order to avoid the complexity of the determination of 

an exact value of the fluence neutrons (𝜙) and  𝜆𝑓 . These so called age standard approaches 

are based on comparative analyses of age standards. The most common dating system in 

fission track analysis is the ζ- method which it has been also used in this study. 

3.8.1 The ζ- (Zeta) method 

The ζ- method was introduced by Hurford and Green (1982, 1983) to overcome the doubt of 

accuracy of the neutrons fluence and the value of 𝜆𝑓  . Using the ζ- method, the unknown age 

samples can be determined from a comparative analysis of one or more age standards 

(Fleischer and Hart, 1972; Fleicher et al., 1975). The ζ-method is basically as follows: 

If 𝑍 is defined as  𝑄𝐼𝜎𝜙/𝜆𝑓 , therefore the age equation (3.10) can be written as: 

                           𝑡𝑢 = 1/𝜆𝛼 ln  𝜆𝛼  𝜌𝑠/𝜌𝑖 𝑢𝐺𝑍 + 1                               (3.11) 

 𝑍 has dimension of time. The value of 𝑍 is acquired from analysis of the samples of known 

age 𝑡𝑠  which have been irradiated together with samples of unknown age 𝑡𝑢with a similar 

value of 𝜙 and 𝑄. From the analysis of the samples with known age, the 𝑍 is defined: 

                         𝑍 =
 𝑒𝜆𝛼 𝑡𝑠−1 

𝜆𝛼  𝜌𝑠/𝜌 𝑖 𝑠𝐺
 

A value of ζ is determined by re-irradiation of the known age standards (𝑡𝑠) and accompanied 

by a glass monitor. The track density in the glass monitor  𝜌𝑑  is equal to the neutrons 

fluence or 𝜙 = 𝐵𝜌𝑑 . 𝐵 is a factor for the proportion of neutrons/track. The ζ can be written as: 

                ζ = 𝑍/𝜌𝑑  = 𝑄𝐼𝜎𝐵/𝜆𝑓 =
 𝑒 𝜆𝛼 𝑡𝑠−1 

𝜆𝛼  𝜌𝑠/𝜌 𝑖 𝑠𝐺𝜌𝑑
          (3.12) 

The age of the unknown age can then be defined from equation (3.11) as follows: 

                𝑡𝑢 = 1/𝜆𝛼 ln  𝜆𝛼  𝜌𝑠/𝜌𝑖 𝑢𝜌𝑑𝐺ζ + 1                          (3.13) 



46 
 

According to the definition of ζ above, the value of the ζ will vary due to the 𝑄 and 𝐵 factors. 

The 𝑄 factor reflects differences in track revelation and observation, whilst the 𝐵 factor is 

affected from track counting in the glass/mica (Wagner and Van den Haute, 1992). 

It has been explained above that the ζ method uses standard age samples. These standard 

samples have to meet requirements which had been formulated (Hurford and Green, 1981b) 

as follows: (1) the rocks had been geologically well documented; (2) the samples should be 

uniform in age which means that the rocks contain of crystals derived from one event only 

without any mixture from older rocks; (3) the age of the samples should be unequivocal from 

stratigraphy and other isotopic dating,  and display consistent results; (4) the fission track age 

should indicate the formation age and no correction due to spontaneous track annealing. 

 

3.9 Data Analysis and Statistics 

The process of radioactive decay occurred randomly. It means that their events within a given 

interval of time occur by chance alone. In statistical methods, a process such as measuring the 

activity of radionuclides which involves counting of events during an interval of time is 

solved by applying Poisson distribution. Poisson distribution is also applied for fission track 

analysis (Wagner and Van den Haute, 1992). 

The Poisson distribution is an asymmetric distribution which is determined by only one 

parameter, namely mean (µ). As the mean is larger than 5, the Poisson distribution 

progressively becomes a normal distribution whereas statistical behaviors for continuous 

normal distribution are also applied (Koch and Link, 1970). 

In grain-by-grain methods, the induced tracks are counted in the area that is exactly the 

imprint of the spontaneous track. Consequently each grain indicates its individual 
𝜌𝑠

𝜌𝑖
  ratio 

and its individual age (Galbraith and Laslett, 1985). In practice, at least 20 grains or more 

have to be counted in order to obtain a good statistical result. The total numbers of 

spontaneous 𝑁𝑠  and induced tracks  𝑁𝑖  in all 𝑛 grains are counted as 𝑁𝑠/𝑁𝑖  and are used as 

an estimation of  
𝜌𝑠

𝜌𝑖
 . Theoretically, there is no uranium variation in the grains which would 

affect the individual ratio of
  𝜌𝑠

𝜌𝑖
 . However, in apatite fission track analysis commonly 

occur that the ratio of 
  𝜌𝑠

𝜌𝑖
  vary in every single crystal of one sample. This condition will 
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lead to various AFT ages in one sample. Green et al. (1989) stated that a spread in ages is 

caused by different thermal annealing caused by a variety of chemical compositions. 

Galbraith (1981) developed a 𝜒2  (chi-square) test to measure the uranium variation. The 

formula with degrees of freedom = 𝑛 − 1 is as follows: 

  𝜒2 =  Σ𝑗   𝑁𝑠𝑗 − ℕ𝑠𝑗  
2

/ℕ𝑠𝑗 +  𝑁𝑖𝑗 − ℕ𝑖𝑗  
2
/ ℕ𝑖𝑗  , 

where  ℕ𝑠𝑗  and ℕ𝑖𝑗  are the expected counts of spontaneous and induced tracks in the 𝑗th 

grain.  ℕ𝑠𝑗 =  𝑁𝑠𝑁𝑗 /𝑁  and  ℕ𝑖𝑗 = 𝑁𝑖𝑁𝑗 /𝑁, with 𝑁 = 𝑁𝑠 + 𝑁𝑖  , which is the total number of 

spontaneous and induced tracks counted in all grains. 𝑁𝑗 = 𝑁𝑠𝑗 + 𝑁𝑖𝑗  is the number of 

spontaneous and induced tracks counted in the 𝑗th grain. If the chi-square probability (P𝜒2) is 

larger than 5%, the single grain is considered to represent a normal Poissonian distribution.  

Commonly, the fission track ages are reported as three ‗mean‘ age estimates i.e. the mean, 

pooled, and central ages. The pooled age is simply obtained from the sum of the spontaneous 

tracks divided by the sum of the induced ones. The pooled age is applied if several grains 

meet the requirements of P𝜒2 > 5%, hence the grains are assumed related to a given single 

age (Wagner and Van den Haute, 1992). However, if the distributions of count are 

inconsistent with purely Poissonian variation, hence the mean age is applied. The mean age is 

basically the arithmetic mean of the individual ratios of spontaneous to induced tracks. The 

most commonly used is the central age, which is the weighted mean of the log normal 

distribution of all single grain ages. All of these three age estimates can be applied if the 

variation in the count population is consistent with the Poisson distribution. Since the central 

age method is more robust to outlier data and non-Poissonian distribution, therefore the 

method is applied in the present study. The central age is formulated as follow: 

  𝑡𝑐 =
1

𝜆
log 1 + 0.5

𝜆𝜁 𝜌𝑑𝜂

 1−𝜂 
 , 

where 𝜌𝑑  is the density of tracks in the standard glasses, 𝜆 is the total decay of 

U = 1.55 × 10−10𝑎−1238 . 𝜂 is essentially obtained from several iterations of the weighted 

average of the spontaneous fission to the total fissions. In a simple way, the component of 

𝜂/(1 − 𝜂) is substituting 𝜌𝑠/𝜌𝑖  in the fission track age equation (Galbraith and Laslett, 1993). 
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3.9.1 Error in the Age Determination 

Generally, the precision of fission track age depends upon the precision of the track-density 

ratio of spontaneous to induced tracks R (= 𝜌𝑠/𝜌𝑖) and the determination of the neutron 

fluence (𝜙). Since we applied an age standard approach (𝜁-method), errors due to the neutron 

fluence determination are essentially referred to the error on the track density of the glass 

(𝜌𝑚 ) (Wagner and Van den Haute, 1992). 

The error on the track density ratio (𝑆𝑅/𝑅) when grain-by grain procedure is used and 

induced tracks are counted on separate mounts which do not contain etched spontaneous 

tracks is called non-substraction method. The formula is given as: 

  𝑆𝑅/𝑅 =   1/𝑁𝑖 + 1/𝑁𝑠 

The formula above includes 1𝜎 confidence interval, which means that there is a ≈ 68% 

probability that the true value falls within the range of error.   

The error commonly is quoted as a ± error for example 20 ± 2 Ma, whereas 𝑠𝑡/𝑡 is counted 

simply as 10%. Galbraith and Laslett (1985) suggested the lower and upper limits of the error 

bar are determined by 𝑡/(1 + 𝑠𝑡/t) and 𝑡(1 + 𝑠𝑡/t) respectively, due to log normally 

distributed of the neutron fluence  𝜙  and ratio of 𝜌𝑠/𝜌𝑖 .  

3.9.2 Age Component Analysis 

In the early of its development, several authors (i.e. Hurford et al. 1984, Yim et al. 1985, 

Kowallis et al. 1986) applied a graphical diagram to present the different component of AFT 

ages. The use of a graphical diagram has a disadvantage, i.e. tends to shift peaks and masks 

low-amplitude peaks (Brandon, 1992). To overcome the problem, Galbraith (1988) introduced 

the radial plot (Fig. 3.5) for assessing the distribution of single grain ages. On the radial plot, 

the x and y coordinates are formulated as: 

 𝑥𝑗  = 1/𝜎𝑗  

 𝑦𝑗  = (𝐴𝑗 −  𝐴𝑟)/𝜎𝑗 , 

where 𝜎𝑗  is the precision of the age estimate 𝐴𝑗 , and 𝐴𝑟  is a reference age (commonly the 

mean age of all grains). On the plot, the closer the data to the origin, the larger is the error.  A 
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line connecting a given data point to the origin has a slope (y/x) equivalent to the reference 

age. All of the data have similar normalized error (in Fig. 3.5 the error is 2𝜎). 

 

 

 

 

3.10 Samples Preparation 

As many 24 rock samples were taken for this study including structural measurements. 

Practically, we collected rocks with a minimum 2 kg weight per each sample for irradiation 

process. The rock samples were crushed at the site in a size of 2 cm. It was done to avoid 

contamination when using the jaw crusher. The next step of the samples preparation was: 

3.10.1 Crushing and Density Separation  

The 2 cm-rock fragments were crushed in the Pulverisette 13 disc mill (Fig. 3.6). The 

grinding process has to be done several times until the whole samples run through a sieve 

with mesh size of 315 𝜇m. The rock powder was then poured into the funnel of a Wilfley 800 

shaking table. In practical, only the heavy fraction which assumed contains apatite and zircon 

will be extracted further.   

3.10.2 Magnetic Mineral Separation 

Apatite is a non-magnetic mineral. The objective of magnetic mineral separation is to separate 

the non-magnetic mineral from the magnetic ones. In this study a Frantz magnetic separator 

has been used (Fig. 3.6). For the first-run, the machine was set up using a current of 0.3 A. 

Fig. 3.5: (a) A radial plot described by Galbraith (1988) shows several component ages distributed from the 
population. On the graphical diagram (b), the peak of 123 Ma is absent on the age distribution. It shows that 

the graphical diagram has limitation to represent all the component age. (Gallagher et al. 1998) 

(a) (b) 



50 
 

with a vertical and horizontal tilt of 15
0
. This process has to be repeated after the heavy liquid 

separation by using a current of 0.6 A. and 1.2 A. 

3.10.3 Heavy Liquid Separation  

In order to extarct apatite, heavy liquid separation had to be carried out. One of the liquids is 

called Lithium-based Tungstate (LST) is commonly used in order to get rid of the minerals 

with densities below of 2.82-2.85 g/cm
3
. By pouring the crushed samples into the LST, it is 

expected that the minerals with densities > 2.83 g/cm
3
, includes apatite

 
would be separated 

from the lighter ones and sink to the bottom (Fig. 3.6).  

The next heavy liquid separation step is uses DIM (Di-Iod Methane). The DIM itself has a 

density of 3.3 g/cm
3
, therefore apatite will float on DIM and the heavier minerals such as 

zircon will sink to the bottom. 

3.10.4 Sample Mounting, Polishing and Cutting 

In order to obtain apatite grains larger than 100 𝜇m, the fragments were then sieved. A mixing 

of Buehler epoxy and hardener with ratio of 5:1 was used to embed the grains. The apatite 

grains were spread onto the ring evenly, before the ring was filled up with the epoxy.    

After the mounts were solidified, grinding procedure could be started, firstly with 800 sika 

grinding powder, then with 1000 sika and at last with 1200 sika. The mounts were ground 

down to expose the maximum size of the internal mineral surfaces. 

In the next step, polishing is conducted by a Struers polishing machine. The embedded grains 

was firstly polished using 3 µm diamond paste, followed by 1 µm diamond paste, and the 

latest polishing step used 0.05 µm alumina powder. 

The polished mounts were then cut into ~3 mm thick and grinded into small squares of around 

1 cm
2
 to fit into the irradiation container. 
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3.10.5 Etching and Packing 

Each sample was etched for 20 seconds in 5 molar HNO3
3 at a room temperature. After the 

etching procedure, the whole samples were rinsed in running water over night in order to 

eliminate the effect of the remaining etchant. Each sample was then attached to a similar sized 

mica sheet with sticky tape. All samples were then packed in a specific order, including four 

dosimeter glasses IRMM-540 with 12.5 ppm U and two age standards of Durango and Fish 

Canyon. The samples were sent for irradiation to the Garching Forschungsreaktor FRM-II at 

the Technical University of Munich. 

3.10.6 Unpacking 

Due to the radioactivity of the samples after irradiation, they cannot be unpacked until they 

reached a safe level. After a secure radiation level was achieved, each pairs of samples were 

(a) (b) 

(c) (d) 

Fig. 3.6: (a) The Pulverisette 13 disc mill was used to crush the rocks; (b) The Wilfley 800 shaking table 

separates the samples by densities; (c) The Franz magnetic separator separates magnetic from non-

magnetic minerals; (d) A heavy liquid i.e. LST which has a density 2.85 g/cm3 was used to separate the 

apatite from the other minerals.  
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perforated with five holes. These pinholes are utilized as reference points when an alignment 

of the mounts under the microscope is done.  

After the radiation, the induced tracks on the micas are still invisible under an optical 

microscope. In order to make these induced tracks identifiable, etching must be carried out  

for about 20 minutes in 40% molar HF. After etching, each mount and its accompanying mica 

was attached onto a standard glass slide.  

The mica and the apatite mount have different thickness. Therefore, a small piece of a glass 

slide was placed under the mica to reach a similar elevation. A tiny copper grid with the letter 

‗A‘ was glued under the mica as a reference point for alignment (Fig. 3.7).  

 

 

 

3.11 Microscopy and Modelling 

For counting an Olympus BX51 optical microscope with a maximum 2000 times 

magnification with an automated stage was used (Fig. 3.8). For fission track analysis software 

namely FTstage 4.01a (© 2004-2005 Trevor A. Dumitru, ©2005 Jasper Canyon Research), 

TrackKey (version 4.2g 2006 by István Dunkl), and a modeling program namely HeFTy 

version 1.3c (© 2007 Richard A. Ketcham and Apatite to Zircon, Inc.) are used to calculating 

ζ values, determined unknown AFT ages and produce thermal history. 

Fig 3.7: Glass slide ready for fission track analysis. A good glass slide has to be labeled properly, and 

contain information of irradiation number, glass position, five pin holes, crosshair and the sample number.  
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3.11.1 Calculating the ζ Calibration Factor and AFT Ages  

For determining an unknown AFT age using age standard approach, first the ζ value must be 

determined. According to Hurford (1990a-b), a good ζ value requires a calculation of five pair 

of standard samples which were derived from five different irradiation cans. Commonly, two 

standard samples were placed in the middle of each irradiation can. In total, 10 standard 

samples consisting of five samples of Fish Canyon Tuff and another five samples from 

Durango were counted.  

The tracks density on the dosimeter glasses is related to the neutrons fluence and is 

represented as 𝜌𝑑  in equation 3.12. The magnitude of the neutrons fluence depends upon the 

position of the samples during the radiation (see Appendix I), the closer a sample is to the 

radiation source, the larger its track density. 𝜌𝑑  is derived from a linear regression line of 

several track numbers (𝑁𝑑) of each dosimeter glass in one can. The value of 𝑁𝑑  must be 

divided by 54.76 mm
2
 (wide of one grid area in the microscope used) to produce the track 

density  𝜌𝑑  . By plotting all of the  𝜌𝑑   values in a diagram, one will have a linear trend line 

and its equation (see example in Fig. 3.9 and Appendix II).  

Fig. 3.8: Setup used for AFT analysis. From the left to the right subsequently are: a set of computer, 

adaptor for the LED, two adaptors and switches for transmitted and reflected light (the buttons are 

positioned next to the joystick), a joystick, an optical microscope and a stage attached, a digitizing tablet 

and a cursor with a LED.  



54 
 

 

 

 

To obtain a ζ value and correct AFT ages, several factors must be noted when selecting grains 

is done. They are: 

 The grains counted must be orientated parallel to the crystallographic c-axis due to 

their isotropic behavior of etching. They are recognizable easily when observing the 

spontaneous tracks under reflected light because their tracks opening are parallel to 

each other. 

 The grain size should be bigger or equal to 25 counting grids. 

 Avoid choosing grains with big cracks or at least cracks smaller than 1 counting grid. 

 The surface of grains should be clean and clear.  

 Most important is that only ‗true‘ tracks are counted; counting of any tracks produced 

by dislocations which appear similar to the real tracks must be avoided to count. The 

track-like defects are rather difficult to identify because they have a similar track 

opening when they are observed under reflected light. One of their prominent features 

is that they are commonly present in rows or columns with similar track direction and 

magnitude. Recognizing real tracks is critical; otherwise wrong AFT ages will be 

produced. 

 Counting tracks both on the standard samples and unknown samples always involve 

movement of the stage between the spontaneous tracks on the grains and induced ones 

y = -9516,01161x + 2059745,46587
R² = 0,93452
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Fig 3.9: The diagram shows a plot of the number tracks on the dosimeter glasses (𝑁𝑑  values) in order to 

obtain linear equation of the track density   𝜌𝑑    function. Example was taken from irradiation NOB 003. 

Glass position  

Nd 
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on the mica. Therefore, a proper alignment must be done thoroughly in order to have a 

correct U content of analyzed grains. 

 Avoid selecting grain contain strong zoning and other mineral inclusions particularly 

those having a very high uranium concentrations. The zoning represents different 

uranium concentration in one grain. Counting tracks in zoning areas tends to produce 

an incorrect number of both spontaneous and induced tracks, especially if the 

alignment has not been done properly.   

 There is no optimal total number of grains and depends on several factors such as the 

degree of separation between modal ages and the relative proportions of grains in each 

population. Hurford et al (1984) suggested counting 50-100 grains, although Kowallis 

et al (1986) recommended 5-10 grains are adequate.  In this present study, minimum 

20 good grains have to be counted in order to have more precise AFT ages.  

 Counting tracks in standard samples and the samples were done under 1250 

magnification.  

The number of spontaneous and induced tracks is defined as  𝑁𝑠 and 𝑁𝑖  respectively. A value 

of  𝜌𝑑   for the analyzed sample is obtained from substituting the 𝑥 variable of the linear 

regression equation with the sample position in the can (Fig. 3.9). Practically, a ζ value can be 

produced easily using the TrackKey software (Fig. 3.10), by inputting 𝑁𝑠 , 𝑁𝑖 , 𝑁𝑑 , and 𝜌𝑑  ; 

otherwise one can put all the values into the equation 3.12 manually. The AFT age standard 

applied is 31.4 ± 0.5 Ma (McDowell and Keizer, 1977) and 27.9 ± 0.5 Ma (Hurford and 

Hammerschmidt, 1985) for Durango and Fish Canyon Tuff respectively. It is noteworthy that 

the values of 𝑁𝑠 and 𝑁𝑖  are still in two dimension. Therefore, in order to get a density of 

spontaneous and induced tracks (𝜌𝑠 and 𝜌𝑖) in three dimensions, one first has to apply 

equation 3.8a and 3.8b. Once all of the ζ values have been produced from 10 standard 

samples, a weighted mean of ζ value can be obtained using the statistic program (ZetaMean 

software by Mark Brandon, 2001).  

Procedure for having AFT age from unknown samples is almost similar to the one as we 

calculate the standard samples. A small difference is that a weighted mean ζ value is added 

other than 𝑁𝑠 , 𝑁𝑖 , 𝑁𝑑 , and  𝜌𝑑  (RhoD in the software).  
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3.11.2 Track Length Measurement and Dpar 

Track lengths were only measured from confined tracks which are parallel to the 

crystallographic c-axis. Confined tracks are tracks located in the interior of the grains but are 

exposed by etchant because they intersect cracks or cleavage planes at the surface (TINCLEs) 

or other surface tracks (TINTs). The TINCLEs are considered less accurate because the gap 

between fractures tends to lengthen their true length.   

In practical work, the track lengths were measured using an optical microscope with 2000 

times magnification. The rule of thumbs is to find as many as possible of confined tracks in 

samples by looking at their uranium concentrations. Commonly, concentration higher than 20 

ppm produce more confined tracks. Confined tracks are identified easily as they are entirely 

located below and parallel to the surface. In general, their appearances are more or less 

simultaneously in focus along the total length under reflected light.  

Selecting grains in which the track length is measured, is less strict than the selection process 

when counting the AFT age. The grains can be chosen regardless if they contain dislocations, 

the surfaces are not clear, or the grain width is smaller than 25 grids. However, several 

conditions should be noted as length measurement proceeds. They are: 

Fig. 3.10: Screen displays Zeta 

calculation menu of the TrackKey 

software (version 4.2g by István 

Dunkl). By inputting the 𝑁𝑠 , 𝑁𝑖 , 
𝑁𝑑 , 𝑁𝑠/𝑁𝑖, 𝜌𝑑  and select one of 
the standard age that we are 

counting, one of the zeta value can 

be produced. 
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 The grains must be parallel to the c-axis crystallographic projection or within 

the range ~15
0
 of horizontal to the surface. 

 The etching and annealing behavior is anisotropic with respect to the 

crystallographic axes. In case for apatite, the annealing is slow but the etching 

process is fast for tracks parallel to the c-axis crystallographic (Gallagher et 

al., 1998). Therefore, we measure the angle of the track before length 

measurements were carried on. 

 The tracks measured must not have contact with fractures or the rims of the 

grain.  

 Gallagher et al (1998) suggest to measure 50-150 track length in one sample. 

In present study, 100 measurements have been made. 

 

The track length data are usually presented in terms of the mean standard deviation and length 

distribution at 1-µm intervals. An average length produced from each sample is called the 

mean track length (MTL).  

The kinetic annealing parameter Dpar was also measured together with the track length 

measurements. A minimum of three measurements for Dpar were carried out adjacent of the 

confined track for which a length was measured. In addition, the Dpar was measured for each 

grain that has been selected for counting fission track ages.   

3.11.3 Thermal History Modeling  

To develop a time-temperature history, inverse thermal modeling was developed using HeFTy 

software. HeFTy is a computer program that performs both of forward and inverse modeling 

for low-thermocronological data including apatite fission track, U-Th/He and vitrinite 

reflectance (Ehlers et al., 2005). 

The parameters that are used for developing time-temperature histories are the AFT ages, the 

kinetic annealing parameter (in this case Dpar), and the length track measurements. Before 

running the model, a boundary condition must be set up which considers both temperature and 

time (age when an event occurred in the vicinity of the study area) (Ketcham, 2005). 

In this present study, four constraints have been used. These time constrains were obtained 

from other studies which applied geochronological methods in this area. The first constraint is 

a cooling event of the southern Norwegian crust. It was studied by Dunlap and Fossen (1998) 
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who used 
40

Ar/
39

Ar dating on K-feldspar. The analysis indicated that cooling rates occurred in 

the range of 2
0
-5

0
C/Ma during the period of 300-250 Ma. During this time interval, the K-

Feldspar resided sustainably at temperatures range of 250
0
-300

0
C. The exhumation event 

during this period was interpreted as a result of the rifting event in the Oslo region which 

effected lowering of the base level and an increase of the erosion rate. These data was also 

advocated by Eide et al. (1999) who applied 
40

Ar/
39

Ar dating on the Western Gneiss Region 

and the Nordfjord-Sogn Detachment Zone. Even though, their data is slightly different in the 

cooling magnitude, yet the time constraint is almost similar. In this case, the time between 

320-240 Ma was proposed to explain the age differences. The second time constraint was 

taken from a succession of alkaline dike intrusions in the Bergen-Sunnhordland area. The 

dikes had been dated by several authors. Færseth et al. (1976) used the K-Ar dating of 

amphiboles from 15 dikes in Sunnhordland. The results yielded three episodes of intrusions 

during Permian-Jurassic time i.e. 281, 226, and 168 Ma. Løvlie and Mitchell (1982) who 

dated dikes located in Sotra, north of Sunnhordland obtain ages of 250-270 Ma. They 

predicted that the dikes were emplaced at ambient temperatures of 150
0
-500

0
C, assuming that 

the geothermal gradient was about 30
0
C/km. Torsvik et al. (1997) who applied paleomagnetic 

analysis on several dolerite dikes in the Sunnfjord area also yield age between 250-270 Ma. 

Here, the range of 250-280 Ma and 150
0
C-500

0
C were selected as a second time and 

temperature constraint respectively. The third constraint is based on the newly discover of 

Jurassic sediments in the subsea road tunnel across Vatlestraumen close to Bergen. The 

sediment is part of the Bjorøy Formation. Based on the vitrinite analysis performed on coal 

fragments, it indicated that the sediments have been overburden less than one kilometer and 

had temperature less than 50
0
C. From the pollen and spore assemblages referred that the 

formation was deposited during the Oxfordian, 160-155 Ma (Fossen et al. 1997).  The fourth 

constraint is the AFT age of the sample and the temperature range of 110
0
C until surface 

temperature. 

In the present study, a Monte Carlo approach was applied to generate and evaluate a large 

number of time-temperature paths. More paths passing through a certain way are more likely 

close to the correct path (Ketcham, 2005). At the end of the modeling process, there are three 

color contours in the time-temperature window, whereas the green contours represent all the 

possible paths, the pink contours indicate the good paths, and a black contour is the best fit 

which represent the best scenario of our hypothesis (Fig. 3.11).  
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Compilation of AFT analysis, the Zeta value, and the inverse thermal modeling will be 

resumed in the following result chapter. Structural analysis is also explained included fracture 

and fault analysis.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.11: The print screen of HeFTy program simulates sample BG-144. The model has been set 

up to reach 100 good paths (pink contours) and one best fitting path will be chosen (black line). 
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4. RESULTS 

 

 

In this chapter, both structure geology and AFT results are described. Analysis of structure 

geology includes fracture, fault, and foliation analysis.  Results of AFT analysis are illustrated 

in tables, figures, profiles, and diagrams in order to delineate data trend of the area.     

 

4.1 Field Structural Data and Analysis 

During field work, 24 samples collecting and structural data were recorded. Collected field 

data consists of rock descriptions, orientation of foliations, trend and dip of fractures, faults, 

trend and plunge of striations, lineation and spacing of fractures (see Appendix III for more 

details). Only lithologies which are considered contain enough apatite were sampled, e.g.  

augen gneiss, granite, granodiorite, and diorite (Fig. 4.1). Detail rock descriptions and thin 

sections observations are found in the Appendix IV.  

 

 

 

 

Fig. 1.1: Pictures show field outcrops; (a) outcrop of  augen gneiss  (sample BG-38) is rich in  biotite and cm -

dm feldspar, (b) outcrop of porphyritic granite (BG-63) shows a large size of K-feldspar (up to 4 cm long) in a  
medium-coarse grained quartz, feldspar and biotite matrix, (c) outcrop of light grey granite located at Førre, 

(d) Outcrop of well foliated gneiss is situated at Vindafjord (sample BG-118).    

(a) (b) 

(c) (d) 
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The study area has been investigated with respect to lineaments by Karpuz (1990) who 

produced a lineament map based on LANDSAT images (Fig. 4.2.). The lineaments in fact 

represent fracture zones which developed under semi-brittle and brittle deformation 

conditions (Valle et al. 2002). 

 

 

 

Fig. 4.2: The combined map shows the 

paleo stress pattern (Valle et al., 2002), and 

the lineament interpretation from Karpuz  

et al. (1991). The lineaments are signified 

L1-L4. 
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4.1.1 Fracture Analysis 

From 18 localities, about 98 data fractures have been measured and plotted. The fractures 

mainly occur as a set of joints and shear fractures. The two types of fractures are hardly 

distinguished in the field because of lack of ornamentation on the fractures. Commonly the 

shear fractures can be recognized by presence of slickenlines. However, none of the fractures 

appear with the presence of slickenlines. The joints typically present as conjugates, with X 

intersection geometries. This geometry is mostly found in the field. 

 

The majority (68) of the total fractures (98) show dominantly a range of N-S, NE-SW and 

NW-SE strike direction (Fig.4.3a and b). The remaining fractures (30) display trend of E-W 

direction (Fig. 4.4). Most of the fractures exhibit steeply dipping and only minor show dip 

less than 30
0
. 

 

  

 

 

 

One fact about joints is that they represent the response of regional stress. Here, if we assume 

that most of the fractures formed by pure of mode I opening without any resolved shear stress 

(Davis and Reynolds, 1996), hence the poles of the joints will give the direction of the longest 

horizontal strain axis, which in this case is parallel to the least principal stress axis (σ3) 

(Anderson, 1951). Fig 4.3b indicates that the longest strain axis has a range of NE-SW, E-W, 

and ENE-WSW direction. The NE-SW longest strain axis is interpreted have formed in Pre-

Figure 4.3 Plot of 68 fractures use stereoplot (equal area). The plot denotes that the main trend fracture is N-

S, NW-SE and NE-SW direction (left). The poles of fracture are illustrated on the right which represents the 

longest strain axis.      

(a) 
(b) 
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Triassic or late Devonian time. Both the E-W and ENE-WSW longest strain axis developed in 

the Permo-Triassic (see Fig. 4.2, Valle et al., 2002). 

 

Several previous studies on the alkaline dykes (e.g. Furnes et al, 1982a; Torsvik et al. 1997; 

Løvlie and Mitchell, 1982; Færseth et al. 1976; Fossen and Dunlap, 1999) in these areas 

(Sunnfjord, Sotra and Sunnhordland) indicate that the dyke ages mostly range from 220-270 

Ma. Only one dyke in Sunnhordland was reported having a young age of 164 Ma (Færseth et 

al. 1976). Even though, a cross cutting relationship between the joints and the dykes are 

hardly observed in the sample localities, it can be inferred from more detailed study (Valle et 

al. 2000) that the joints have an older age than the dykes, and hence have a minimum age of 

the Pre-Triassic. Færseth et al. (1995) stated that the rifting event in the North Sea, which 

occurred during the Mid-Permian, gives evidence of E-W extensional stress direction. It is 

most likely that the joints in the area reflect the rifting event during that time.  

 

About 30 fracture measurements show deviation from the major of N-S trend direction.  Most 

of these fractures have an E-W strike (Fig. 4.4). These fractures are evenly distributed in the 

study area. The presence of these minor fractures was rarely discussed in scientific journals. 

Three hypotheses could be proposed; the first is probably, they are a set of younger joints, 

which are called release joints formed near the surface during uplift and erosion. Commonly 

release joints form as mode I tension perpendicular to the former direction of tectonic joints 

(Davis and Reynolds, 1996), thus in this case perpendicular to the strike range of N-S. The 

second hypothesis is they formed as a response of a local stress. As we see in a bigger scale 

the segment fault of the Hardangerfjord Shear Zone, the Bjørnafjord Fault and the Bergen Arc 

Shear Zone consist of various fault directions. The last hypothesis is that they can be 

conjugate features of the NE-SW and NW-SE fractures. It is a common pattern found in the X 

intersection joint type which formed acute angles at their intersection.  
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4.1.2 Fault Analysis 

Likewise the fractures, the faults in the study area also display a similar trend compared to 

those of the fractures. Unfortunately, the stratigraphic markers are unclear in the field to 

decide the relative movement on the fault surface. By referring to Valle et al. (2002) and the 

geological map of the area published by the NGU, reported that normal movement dominates, 

either by dip slip or oblique slip.  

 

The trends are varied (Fig. 4.5), with a majority of the faults (9 measurements) oriented NE-

SW and NW-SE direction with most of  striae indicating down to SE oblique and only one 

rake shows dip slip movement  (rake in the range of 6
0
-66

0
). The remaining fault data are 

distributed as follows: (a) faults show SW strike direction (3 measurements) but striation data 

are unavailable, (b) most of fault oriented E - W direction (4 measurements) indicate down to 

the W oblique slip and one rake exhibits dip slip movement (rake in the range of 32
0
-55

0
).  

 

Fig. 4.4: Plot of 30 fractures exhibits 

main trend of E-W direction.  

Figure 4.5: Plot of fault planes and 

striations data set. The fault planes are 

indicated by great circles, while the 
points are the trend and plunge of the 

striations.   
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The main trend of the Hardangerfjord Shear Zone is NE-SW striking faults with low slope 

less than 30
0
. However, those faults are slightly not prominent in the area. This might be due 

to limited data collection. By analyzed 161 striations, Valle et al. (2002) concluded that the 

NE-SW striking faults are the major faults consistent with the main trend of the HSZ. 

 

Except of the E-W striking fault, all of the faults correspond to the lineament (Fig. 4.1) and 

paleostress observations in the study area. Interestingly, the E-W faults only occur in the 

block where the curved segment of the Bjørnafjord Fault is located. Hence, it is speculated 

that the Bjørnafjord Fault exerted influence to the direction of the local faults in the adjacent 

area.  

4.1.3 Foliation Analysis 

About 16 foliations have been measured. The major data exhibit a NE-SW trend with dip 

oriented to NW and minor data show a NNW-SSE direction with dip to the W and E (Fig. 

4.6). These directions entirely correspond and represent the emplacement of the thrust sheet 

toward the ESE (foreland) and shifted to WNW hinterland directed along the basal 

décollement zone. The backsliding event commenced at about 400 Ma (Fossen 1992, 1993). 

 

 

 

4.2 Result of AFT 

As many as 24 samples have been analyzed, including fission track counting, track length 

measurements of 5 samples, and Dpar measurement for the entire samples. All these 

parameters were integrated in the HeFTy program to model five inverse thermal history 

models.  

 

Figure 4.6: Plot of foliation exhibits mostly 

NE-SW direction with dip oriented to NW. 
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4.2.1 Apatite Description 

Generally, the whole samples display fair-good apatite quality. Several particular features on 

the apatite, however could lead to possible errors in the counting. Typical features are; bad 

grain surface, wide cracks, zoning whereas uranium is concentrated in clusters, thus the tracks 

are distributed unevenly on the grain, dislocations, and very low or very high uranium content 

(Fig. 4.7). 

  
 

 

 

 

 

 

4.2.2 Zeta Calibration Factor 

The personal Zeta factor was calculated from ten standard samples. The Zeta value itself is 

counted as a weighted mean of individual Zeta values of all standard samples (Tab 4.1). Using 

the ZetaMean program by Brandon (2001), the weighted mean is determined and yield the 

Zeta value of 241.97 ± 8.76 with 1σ error. Here, the independent standard ages used in the 

Fig. 4.7: Several defect features commonly occur on apatite. These defects lead to possible errors in the 

counting. They are; (a) very dense fission track due to very high uranium content, (b) zoning in response of 

difference uranium concentration, (c) low uranium concentration results rare fission tracks, (d) dislocation 
features (marked by arrow). 

(a) (b) 

(c) (d) 
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TrackKey are: Durango = 31.4 ± 0.5 Ma (McDowell and Keizer, 1977) and Fish Canyon Tuff 

= 27.9 ± 0.5 Ma (Hurford and Hammerschmidt, 1985).  

 

Irrad. Sample No. Of ρs (Ns) ρi (Ni) ρd (Nd)  P () U  Zeta 

No   No. Grains (x 105)   (x 105)   (x 105)     (ppm)   

NOB 002 FC-02 16 2.25 81 11.76 423 17.39 9622 72.5 9.71 167.89 ± 20.66 

NOB 002 Dur-01 19 1.63 117 11.47 823 17.50 9622 97.3 9.45 253.11 ± 25.46 

NOB 003 FC 18 1.94 70 15.44 557 18.60 10250 78.33 12.13 239.25 ± 30.75  

NOB 003 Dur 21 1.57 129 10.37 852 18.79 10250 45.23 7.95 221.29 ± 21.31 

NOB 006 FC-01 3 1.77 13 14.72 108 20.44 5584 82.49 10.22 227.27 ± 66.91 

NOB 006 Dur 18 1.70 155 20.35 1861 20.41 5584 23.81 14.11 370.35 ± 31.91 

NOB 008 FC-01 17 1.92 89 15.16 704 18.95 7919 96.68 11.53 233.44 ±26.72 

NOB 008 Dur-01 14 1.36 66 11.51 558 18.81 7919 77.73 8.70 283.01 ± 37.25 

NOB 011 FC 20 2.27 163 18.04 1294 16.90 7012 12.22 15.08 262.73 ±22.56 

NOB 011 Dur 14 1.42 54 10.72 408 16.86 7012 69.95 9.22 282.12 ±41.24 

                   

                                               
Weighted 

Mean Zeta  241.97 ± 8.76 

 

 

 

 

 

 

4.2.3 AFT Data and Inverse Thermal Modelling 

The AFT data is presented in Tab 4.2.Single grain ages and radial plots are presented in the 

Appendix V. Based on the sample location distribution, three blocks were defined namely the 

south block, the middle block and the north block (Fig. 4.8). The south block is divided from 

the middle block by the Hardangerfjord Shear Zone, thus the south block is being a footwall 

of the zone and the middle block is its hanging wall. The middle block is also being a hanging 

wall of the normal Bjørnafjord Fault which extends around the Stord and Tysnesøya. The 

north block is located in the hanging wall of the Bergen Arc Shear Zone (BASZ) and is minor 

exposed in the study area.  

 

4.2.3.1 Footwall of the Hardangerfjord Shear Zone 

The AFT ages in the footwall of the HSZ range between 180 ± 8.4 and 105.6 ± 7.9 Ma, thus 

all AFT ages range from middle Jurassic times until the lower Cretaceous (Fig. 4.8). 

However, only a few samples are in the range of middle Jurassic times. Calculation of the 

average AFT age is 145 ± 16 Ma (see Appendix VI) which is within the range of Late Jurassic 

– Early Cretaceous time. 13 samples were taken from this block. All samples display errors 

less than 10%, hence overlap errors can be avoided. The largest error is on sample BG-120 

Tab 4.1: All of the standard samples were analyzed using the external detector method, with a geometry factor 

G=0.5, Ns and Ni are numbers of spontaneous and induced tracks respectively, ρs and ρi are the density of 

spontaneous and induced tracks per cm2, Nd is the amount of induced tracks on the mica, and ρd  is  the density of 

induced tracks on mica per cm2, P (χ) is the chi square value indicating uranium variation in each sample. 
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which has the lowest U concentration. Unfortunately, two samples exhibit P(χ
2
) less than 5 %, 

which means the samples have more than one population. Since the central age is used, the 

error due to a bimodal population can be handled. The U concentration shows a wide range 

between 4-70 ppm. All samples were analyzed, even though only 10 grains were found in 

sample BG-62, which has ~70 ppm U. The Mean Track Lengths (MTL) are slightly varied 

between 11.15 ± 0.20 - 12.79 ± 0.16 μm and the standard deviation ranges from 1.58- 1.84 

μm. The values for Dpar are between 1.11-1.66 μm, and the mean Dpar is 1.32 μm.  

 

Inverse thermal history modeling of this block was carried out for samples BG-144, BG-38 

and BG-62 (Fig. 4.9). Both samples BG-144 and BG-62 have many long tracks, which are 

also reflected in the T-t paths. The models display rapid cooling or short residence within the 

PAZ, thus the tracks had not much time to anneal. The rapid cooling of sample BG-144 has 

initiated around 220 Ma (Triassic), and indicates a fast cooling rate until 190 Ma. If it is 

assumed that the temperature of the PAZ is between 120
0
C-60

0
C, the cooling rate is predicted 

to be ~ 2
0
C/Ma within 30 Ma. Fast and slow cooling events which occurred below and upper 

the PAZ are not considered, because the AFT method is only sensitive within the temperature 

range of the PAZ. 

 

The inverse thermal history model for BG-62 also shows a rapid cooling within the PAZ. The 

cooling event commenced at 190-180 Ma. The short time of the sample resided in the PAZ 

implies that the cooling rate is faster than that of BG-144, which is predicted to be ~ 6
0
C/Ma. 

Mostly long tracks dominate, reflecting a relatively short period in the PAZ. After very rapid 

cooling, the sample entered the PAZ during the Upper Jurassic until Middle Cretaceous time.     

 

The T-t path for sample BG-38 is shallower than those others two. The cooling event began at 

250 Ma and terminated within the PAZ at 210 Ma (Triassic). Therefore, the cooling rate is 

rather slow ~ 1.5
0
C/Ma. In the period from Middle Jurassic until the Late Cretaceous, both the 

sample BG-38 and BG-62 were over buried and stayed in the PAZ. The distribution of short 

MTLs which range from 11.15 ± 0.20 μm, also reflects its cooling rate. On the contrary, the 

value for Dpar is somewhat bigger about 1.66 μm, compared to the others samples which show 

Dpar values of ~1.3 μm, and a MTL about 12 μm.  
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Fig. 4.8: Simplified 
geological map of the 

present study. Sample 

locations and their 

AFT ages are 

annotated (modified 

from the NGU 

geological map). 
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Sample Rock Type Elevation Irradiation No. of (Ns) ρs (Ni) ρi (Nd) ρd Central Age P (χ
2
) MTL ± 1σ SD No. of Dpar No. of U Error (%) on 

  (m.a.s.l) No. grains  (x 10
5
 cm

-2
)  (x 10

5
 cm

-2
)  (x 10

5
 cm

-2
)   (µm)  tracks  Dpar (ppm) Central Age 

Footwall of HSZ                   

BG-143 Gneiss 85 NOB-013 17 606 17.237 1004 28.558 10870 19.981 144.1 ± 10.7 4.13 NA NA NA 1.22 100 21.7 7,43 

BG-144 Granodiorite 190 NOB-013 18 724 23.401 931 30.091 10870 19.354 179.9 ± 12 11.17 12.79 ± 0.16 1.58 100 1.36 287 23.7 6,67 

BG-37 Tonalite 20 NOB-003 18 1636 39.623 2071 50.159 10250 17.457 165.3 ± 8.5 53.87 NA NA NA 1.45 95 40.2 5,14 

BG-38 Augengneiss 10 NOB-003 21 2745 50.380 3158 57.960 10250 17.362 180 ± 8.4 34.43 11.15 ± 0.20 1.99 100 1.66 174 47.3 4,67 

BG-61 Tonaltic gneiss 255 NOB-013 20 991 20.041 1570 31.750 10870 19.615 148.1 ± 8.2 93.17 NA NA NA 1.35 95 23.4 5,54 

BG-62 Granite 455 NOB-013 10 921 57.013 1386 85.798 10870 19.667 156.3 ± 9.7 6.34 12.17 ± 0.18 1.84 100 1.30 234 69.6 6,21 

BG-63 Porphyritic gneiss 35 NOB-013 19 526 10.441 759 15.066 10870 19.824 164.5 ± 13.9 2.77 NA NA NA 1.11 71 10.6 8,45 

BG-66 Granodioritic gneiss 30 NOB-013 20 504 10.918 1112 24.089 10870 19.458 105.6 ± 7.9 8.35 NA NA NA 1.18 85 18.3 7,48 

BG-91 Granite 45 NOB-013 16 1541 39.916 2117 54.836 10870 20.138 175.1± 8.9 41.66 NA NA NA 1.21 70 37.3 5,08 

BG-117 Granodiorite 5 NOB-013 18 477 12.321 779 20.121 10870 19.406 142.2 ± 9.8 99.72 NA NA NA 1.33 115 14.5 6,89 

BG-118 Gneiss 55 NOB-013 20 526 9.567 779 14.169 10870 19.563 156.4 ± 11.8 14.58 NA NA NA 1.23 100 11.1 7,54 

BG-119 Tonalite 80 NOB-013 18 861 20.634 1306 31.299 10870 19.720 155.4 ± 9 61.84 NA NA NA 1.38 91 24.2 5,79 

BG-120 Gneiss 20 NOB-013 20 194 2.676 371 5.117 10870 19.772 123.9 ± 11.9 97.33 NA NA NA 1.17 93 3.8 9,60 

Hangingwall of  HSZ                   

BG-31 Granite 15 NOB-003 22 579 7.068 675 8.240 10250 17.743 181.6 ± 12.3 87.18 NA NA NA 1.33 69 7.1 6,77 

JN-01 NA 5 NOB-003 20 682 8.248 798 9.651 10250 17.933 183.5 ± 12.3 41.03 NA NA NA NA NA 7.4 6,70 

JN-02 NA 40 NOB-003 21 641 7.244 687 7.763 10250 18.314 203.5 ± 13.5 92.13 NA NA NA 1.17 70 6.2 6,63 

JN-03 NA 37 NOB-003 20 618 8.422 814 11.093 10250 18.218 165.2 ± 10.8 90.02 NA NA NA 1.20 100 8,7 6,54 

JN-05 NA 10 NOB-003 20 680 8.197 826 9.956 10250 17.838 175.3 ± 11.2 68.58 NA NA NA 1.23 80 9.1 6,39 

JN-06 NA 40 NOB-003 15 850 17.966 1018 21.516 10250 18.028 179.7 ± 10.8 42.35 9.32 ± 0.47 2.28 23 1.32 70 16.6 6,01 

JN-07 NA 5 NOB-003 22 859 10.744 828 10.357 10250 18.409 227.4 ± 14.3 50.46 NA NA NA 1.15 95 7.8 6,29 

BG-137 Diorite 10 NOB-013 20 1071 14.203 1804 23.924 10870 20.712 146.2 ± 9.3 1.27 NA NA NA 1.32 90 17.2 6,36 

BG-138 Diorite 10 NOB-013 20 710 10.145 1009 14.418 10870 20.660 173 ± 12 7.39 NA NA NA 1.46 115 11.2 6,94 

BG-139 Granodiorite 25 NOB-013 20 1397 20.009 1852 26.526 10870 20.608 185 ± 9.9 24.24 12.82 ± 0.15 1.51 100 1.33 275 20.3 5,35 

Hangingwall of  BASZ                   

BG-140 Granite 60 NOB-013 19 1266 22.018 1709 29.723 10870 20.556 181.6 ± 9.6 89.37 NA NA NA 1.27 95 20.7 5,29 

Tab. 4.2: Data of AFT ages following Hurford (1990 a, b) zeta approach. Abbreviations are ρs : spontaneous  track density, ρi : induced track density, Ns and Ni are the 

counted numbers of spontaneous and induced tracks respectively, ρd and Nd are density and counted fission tracks on irradiated IRMM-540R glasses with 15 ppm U, P(χ2) is 
the chi-squared probability of a single grain‘s age distribution, MTL : Mean Track Length, SD: standard deviation of the MTL, Dpar is the mean etch pit diameter, U is the 
Uranium concentration.  
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Sample BG-144 

         

Sample BG-062 

        

Sample BG-38 

       

Fig. 4.9: Results of inverse thermal modeling from sample BG-144, BG-062 and BG-38. The 

thermal history model was modeled using HeFTy (Ketcham, 2005a). The black curve indicates the 

best fit path; the purple curves are the 100 good paths, whereas the green curves are all the 

acceptable paths. Range of the PAZ is signified in blue color; and the T-t constrains are marked by 

boxes; GOF is abbreviation of Goodness Of Fit. 

Model: 178 Ma 

Measure : 178±17Ma 

GOF: 0.98 

Model : 13.05±1.24μm 

Measure:12.65±1.28μm 

GOF: 0.73 

 

Model: 13.65±1.15μm 

Measure: 13.51±1.17μm 

GOF: 1 

 

Model: 157 Ma 
Measure: 156±18Ma 

GOF: 0.92 

Model: 179 Ma 
Measure: 180 ± 23Ma 

GOF: 1 

Model: 13.97±0.89μm 

Measure: 13.79±0.93μm 

GOF: 0.95 
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4.2.3.2 Hanging wall of the Hardangerfjord Shear Zone 

In total 10 samples were taken from the hanging wall of the HSZ.  They have AFT ages 

ranging from 146.2 ± 9.3 Ma – 227.4 ± 14.3 Ma, yet most of the ages are in the range of 180 

Ma (Middle Jurassic) with a weighted mean age of 174 ± 12 Ma (Middle Jurassic) (see 

Appendix VII). The age errors in this block is less than 7%, and contains only one sample 

which exhibits a P(χ
2
) less than 5 %.  The U concentration is between 6-21 ppm. It seems that 

this range of U concentration is ideal to produce smaller error of age calculations. 

Additionally, the probability to count 20 good grains can easily be achieved.  Two samples 

which were considered for modeling have a high U concentration i.e. JN-06 and BG-139. 

However, only 23 track length measurements could be taken from JN-06. In general, the 

values of Dpar are between 1.15-1.46 μm and the mean Dpar is 1.28, a slightly smaller value 

than the samples from the footwall of the HSZ. The Mean Track Lengths (MTL) of JN-06 is 

9.32 ± 0.47 μm and the Dpar is 1.32 μm, while the MTL of BG-139 is 12.82 ± 0.15 μm and the 

Dpar is 1.33 μm. Likewise in the BG-38, an inconsistency also occurs in the value of Dpar and 

the MTL on sample JN-06. This contradiction will be discussed in the following chapter.  

 

The inverse thermal history model for JN-06 is rather unreliable (Fig. 4.10). Besides the low 

number of MTLs, the thermal history model simulates and over estimates the MTLs in such a 

way (green line), that the long tracks dominate. It can be seen in the model that a very steep 

T-t path occurs within a short period during Permian time; while the real value of the MTLs is 

lower and short-moderate tracks dominate. The sample entered the PAZ after this period of 

rapid cooling, and it was initiated in the Middle Jurassic and ceased in the Tertiary.     

 

A moderately rapid cooling phase for BG-139 started at about 210 Ma (the Triassic) and 

ceased around 190 Ma (Middle Jurassic). The cooling rate for this period is predicted 3
0
C/Ma 

(Fig. 4.9). 

 

4.2.3.3 Hanging wall of the Bergen Arc Shear Zone 

Unfortunately, this block is only represented by one sample which is BG-140. Therefore, no 

thermal history modeling was performed. The AFT age is 181.6 ± 9.6 Ma (Middle Jurassic) 

and Dpar is 1.27 μm.  
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(a) JN-06  

  

(b) BG-139  

  
   

 

 

 

4.2.4 AFT Diagrams  

Several diagrams were constructed to see the trends and relationships between the parameters, 

such as a profile across the area vs. AFT age, elevation vs. AFT age, mean Dpar vs. AFT age, 

MTL vs. AFT age, and MTL vs. Dpar. 

 

 

 

Fig. 4.10: Results of inverse thermal history modeling sample JN-06 and BG-139. The thermal history was 

modeled using HeFTy (Ketcham, 2005a). The black curve indicates the best fit path; the purple curves are the 

100 good paths, whereas the green curves are all the acceptable paths. Range of PAZ is signified in blue color; 

and the T-t constrains are marked by boxes; GOF is abbreviation of Goodness Of Fit. 

 

Model:186 Ma 
Measure: 185 ± 20Ma 

GOF: 0.99 

Model: 14.11±0.97μm 

Measure:13.92±1.02μm 

GOF: 0.96 

 

Model: 177 Ma 
Measure: 180 ± 22Ma 

GOF: 0.83 

Model: 12.54±1.36μm 

Measure:11.73±1.01μm 

GOF: 0.67 
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4.2.4.1 AFT Age Variation along the Profile  

The diagram demonstrates AFT age variations vs. distances along profile (Fig. 4.11). Major 

fault and shear zones are also illustrated in order to give a visual description of the AFT age 

variation between the two blocks. The sample locations which cross through the profile are 

directly plotted, while other samples located outer the profile have been projected. The line 

profile can be seen on the geological map.  

 

The diagram below shows a distinct AFT age population between the two blocks of the fault. 

The age‘s population in the footwall HSZ (red lines with dots) is noticeably lower than those 

on the hanging wall (blue lines).  

 

 

 

4.2.4.2 AFT Age vs. Elevation  

Plotting of the AFT ages, either from the hanging wall of the HSZ or those from the footwall 

against elevation indicates that there is no correlation between those two parameters.  Most of 

the AFT ages from the hanging wall were sampled at relatively low elevations (50 meter.). 

Therefore, a correlation is hardly observed. Plotting of AFT ages from the footwall shows a 

scatter pattern, whereas low-elevation (less than 100 meter) is associated with both young and 

old AFT ages, and moderate ages can be found at high elevation (Fig. 4.12).  

 

Footwall the HSZ

Hanging wall the HSZ

Hanging wall the
BASZ

HSZ = Hardangerfjord
Shear Zone

BF    = Bjørnafjord Fault
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Fig. 4.11: Diagram shows distribution of AFT ages against distance along the cross section (Fig. 4.8). 
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4.2.4.3 AFT Age vs. Mean Dpar 

Plotting of the AFT ages against the mean etch pit diameter Dpar indicates a cluster of AFT 

ages in the ranges of 150-175 Ma have a Dpar around 1.2-1.5 μm. In general, a good 

correlation is hardly observed in this diagram. An interesting feature is, whereas two oldest 

ages of hanging wall HSZ have Dpar value 1.15 μm, and on the contrary the two youngest ages 

of the footwall have a similar Dpar value (Fig. 4.13). 

  

 

 

Fig. 4.12: Plotting AFT ages (Ma) against elevation (m.a.s.l). There is no correlation between these 

two parameters.  

Fig. 4.13: Plotting of the AFT ages (Ma) vs. mean etch pit diameter Dpar does not indicate any correlation. 
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4.2.4.4 AFT Age vs. MTL 

Plotting of MTL data from the footwall against the AFT age does not show any linear 

correlation (Fig. 4.14). Both of the similar AFT ages have different MTL values. MTLs 

originate from the hanging wall can hint that the older AFT age has longer MTLs and 

conversely, the shorter MTL belong to the younger age. Since only two samples were 

measured from this block, the hypothesis is rather weak.  

 

 

4.2.4.5 MTL vs. Mean Dpar 

There is no significant correlation observed which describes the relationship between MTL 

against Dpar value from the footwall. Plotting of those data from the hanging wall HSZ 

implies that samples with longer MTLs also have a higher mean Dpar value and vice versa 

(Fig. 4.15). Unfortunately, only two measurements were provided, thus the argument is rather 

weak. 

 
Fig. 4.15: Plotting MTL against mean Dpar of the hanging wall shows a weak correlation due to 

limited data.   

Fig. 4.14: Plotting of MTL against AFT ages generally does not exhibit strong correlation. 
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5. DISCUSSION AND INTERPRETATION 

 

In this chapter, AFT ages including track length measurements, Dpar, and the Zeta calibration 

are discussed. Also the five modeled inverse thermal history models will be discussed and 

compared to those of previous studies in the proximity of the present study (e.g. Magerholm, 

2010; Tørresen, 2009; Johansen, 2008; Rohrman et al., 1995). At the end of this chapter, a 

possible exhumation history along the HSZ is proposed, based on the obtained AFT ages and 

the inverse thermal history models. 

5.1 Interpretation of the AFT data 

5.1.1 AFT Ages 

A minimum of 20 grains were selected to achieve good age measurements (Donelick et al. 

2005). Most of samples 20 apatite grains could be counted, except for sample BG-62 which 

was only 10 grains counted due to a very high uranium concentration (close to 70 ppm).  

Therefore, the tracks are remarkably dense and hardly countable. 

With 20 grains selected, and an assumption that 5 fossil tracks are encountered in each grain, 

hence the total number of spontaneous tracks will be 100. Roughly, the relative acceptable 

error generated on the pooled fission track would be approximately 1/(100) = 10% (Donelick 

et al. 2005). This formula is unreliable because the acceptable error becomes smaller if the 

spontaneous tracks counted getting larger. Here, an error bar applied by Galbraith and Laslett 

(1985) shows a better constraint (see subchapter 3.9.1). The error is calculated from the 

central ages and also contains an error produced by the zeta value. From Tab. 4.2, all samples 

yield errors less than 10% that mean all errors are within the acceptable range. 

The largest age error (9.6%) occurs in sample BG-120. This high error is most likely due to a 

very low uranium concentration (3.8 ppm). As already known, low uranium samples present a 

problem because of low induced track densities. In low uranium samples, an exact match 

between the areas counted in the grains and the mica is often hard to achieve. An adjustment 

by eye is difficult and subjective because the outline of the induced tracks on the mica does 

not reflect the shape of the analyzed grain.        

In overall the errors do not show any systematic pattern. In many cases, the error becomes 

larger as the central age gets older. Other error sources probably originated from samples 
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containing high uranium concentration. Surprisingly those are not present in these samples. 

Even though, it was expected that samples with high U concentration will produce larger 

errors, because both the induced and spontaneous tracks were partly counted using reflected 

light to make counting process possible.    

The ρd component also does not contribute significantly to the error of AFT ages. As shown in 

the Appendix VIII, plots of four ρd values from NOB 013 show less linear correlation with a 

linear regression of 0.36. However, those ρd values do not indicate any trend in the total 

fission ages error (Tab. 4.2). 

The P (χ
2
) test was carried out to measure uranium variations in the samples. A value of P (χ

2
) 

larger than 5% means that the grains are assumed to be a single age. Here, all the AFT ages 

were calculated using the central age method and the radial plot; hence the age dispersions 

can be weighted (see Appendix V). 

5.1.2 Zeta Calibration 

The weighted Zeta value used in this study is 241.97 ± 8.76 with 1σ error. The error is critical 

because this component of the Zeta will be utilized to calculate the AFT age (see subchapter 

3.8.1). Therefore a large error in the Zeta leads to produce larger errors in the AFT ages. 

Ideally, the Zeta value gives contribution of 5-10% of the total error in the age‘s calculation. 

For accuracy reason, three unknown samples were examined using this Zeta. These unknown 

samples have been investigated beforehand by other co-workers for comparison. Otherwise, 

standard samples can also be used. 

5.1.3 Mean Track Length and Dpar 

Track length measurements were carried out for five samples; three samples from the footwall 

of the HSZ (BG-144, BG-37, and BG-62) and two samples from its hanging wall (BG-139 

and JN-06). The samples were chosen due to their elevated uranium concentration. The 

minimum U concentration is about 20 ppm in order to achieve ~100 track lengths 

measurements. All of the samples meet this requirement except JN-06. For this sample, only 

23 track lengths could be measured. 

For length measurements, a source of potential bias derives from the decisions made by the 

analyst. The decision which track feature meets the criteria, and where the LED is being 

placed at both ends of the track are the most influencing factors.  
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The distribution of confined track lengths compared to the standard deviation of the MTLs 

can reveal the state of the thermal history. The majority of the crystalline basement rocks 

demonstrate a broad range of MTLs between 14 and 11.5 μm. The basement data shows that 

as MTLs decrease, the standard deviation increases (Gleadow et al. 1986). The diagram below 

(Fig. 5.1) agrees with this assumption, except one of the MTLs wich is below 11.5 μm has 

possibly a more complex thermal history.   

 

 

Measurements of etch pit diameters were carried out both the parallel (Dpar) and perpendicular 

to the c-axis (Dper). However, the values of Dper are ignored because of imprecise 

measurements reasons. It is unlikely to obtain an accurate measurement of Dper using an 

optical microscope with the magnification which was used in this study.  

The values for Dpar are dominated by low values in the range of 1.11-1.66 μm. Carlson et al. 

(1999) affirmed that Dpar value less than 1.75 μm anneals rapidly, which is also typical for 

the near-end-members calcian-fluorapatites. The fluorapatite member has been known to be 

less resistant to anneal than Cl-apatite (Gleadow & Duddy, 1981). 

Fission track annealing kinetics can be measured by several parameters; one of them is Dpar. 

By measuring Dpar, other parameters can be predicted, because Dpar is positively correlated 

with Cl wt% and OH wt% and negatively correlated with F wt% in apatite (Donelick, 1993; 

1995 and Burtner et al. 1994). Experiments by Carlson et al. (1999) and Donelick et al. (2005) 

give evidence that a Dpar value less than 1.75 μm has Cl content almost 0 wt%.  According to 
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Fig. 5.1: The diagram shows a good correlation between the standard deviation against the mean track 
length (MTL). Increasing values of MTL are accompanied by decreases the standard deviation.    
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Ketcham et al. (1999) the fission tracks with Dpar = 1.5 μm, Cl = 0 wt%, experience a total 

loss of tracks at around 100-110
0
C in the geological environment. Hence, it can be inferred 

that these samples approximately have the properties of low Cl and OH, high F content, 

annealing rapidly and probably typical for calcian fluorapatites.  

5.1.4 Comparison of AFT Ages vs. Elevation 

Studies that correlate AFT ages collected on high relief mountain belts have been investigated 

by Wagner & Reimer (1972), Wagner et al. (1977). Their studies showed that there is a 

positive correlation between those two parameters. In practice, the positive correspondence is 

not always evident, as in this present study. It is expected that the older AFT ages derive from 

high elevations and the young AFT ages from the low level. However, both the young and 

older fission track ages come from low elevation, whilst some of the moderate AFT ages are 

from high elevations (Fig. 4.12). One of the reasons may be because the difference of 

elevations are not significant, as most of the samples are located in the range of 5-85 m.a.s.l., 

and only few are below 455 meter.  

No correlation between AFT ages vs. elevation can occurred due to several factors.  It is 

defined as follows: 

 Commonly the fission age over high elevation about 1000-2000 meter has been 

interpreted as the result of high rates of erosion. However, cooling can be occurred 

devoid erosion process but rather by tectonic which is called tectonic denudation. A 

study case from shear zone and detachment faults shows this variation (Galagher et 

al., 1998). 

 Gradient geothermal is influenced by topographic relief. As already known that the 

gradient is higher under a valley than under mountain peaks. Even though magnitude 

of the effect decreases with increasing depth, but it is still significant in the low-

thermochronological method, in which generates overestimate the true rate of erosion 

(Mancktelow & Grasemann, 1997). 

 A vertical profile of samples cannot directly give a correlation of elevation-AFT ages 

if the areas have been rotated after cooling (Galagher et al., 1998) 

 A positive correlation between AFT age and sample elevation can be found if erosion 

on the surface is responsible for denudation (Fitzgerald et l., 1995). 

 A study case in western USA reveals a poor correlation between apatite age and 

elevation. This probably occurred because topographic forms in response to isostasy, 
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which is controlled by the position, amount and timing of removal of crust at depth 

along the extensional fault (shear zone or detachment) and not by erosional process 

(Block and Royden, 1990). 

5.1.5 Comparison of AFT ages and annealing kinetic parameters 

Plotting of MTL data against AFT ages (Fig. 4.14) does not display any correspondence. 

Theoretically, by referring the fission track age equation, there is implicit an assumption of a 

proportional relationship between the true mean length of fission tracks and their track density 

in an isotropic medium (Laslett et al., 1984). Consequently, short tracks will be followed by 

decreasing track densities, and thereby young fission ages. However, the MTL data seems to 

be plotted randomly, except a very weak positive correlation is present from the hanging wall 

of the HSZ but still bears uncertainties due to limited data. A number of factors can be 

explained as follow:  

 An experiment was carried out by Gleadow and Duddy (1981) concluded that the 

average length of confined tracks is reduced by about 15% before there is any 

reduction in the fission track age. In a simple way, the reduction trend does not 

show a 1:1 relationship. A succession experiment also give a similar result 

(Laslett et al., 1984; Green, 1988) concluded that the proportionality of track 

length reduction and tracks density only prevails on an isotropic medium. 

Anisotropic processes are visible in fading stages, whereas tracks parallel to c-axis 

are most resistant to shorten; tracks perpendicular to c-axis are least resistant to 

annealing.  

 The anisotropy of apatite is controlled by the structure and chemistry of the 

apatite crystal, thereby reflects different annealing rates. A study from Barbarand 

et al. (2003) revealed how compositional variation influence apatite crystal 

structures and fission track annealing. High Cl content leads to the more resistant 

tracks to shorten, thus the long MTL dominates. For samples with very low Cl 

values, substitution of LREE (i.e. Ce and La) is responsible for different FT 

annealing responses. Commonly increasing LREE results to least resistant tracks 

to anneal, thus most of the tracks are short. 

 A failure of a positive correlation between the AFT ages and the MTL occurred 

because the track length is determined rather by the thermal history than the 

fission track ages. This occurs remarkably in multiple cooling histories, whereas 
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the pre-existing tracks will be shortened in significant time. If cooling histories 

are more complex thus also produce more complex length distributions (Gleadow 

et al., 1986). This situation is further explained in the subchapter 5.2. 

 

The etch pit diameter can also assess the annealing rate. The MTL is actually a mirror of the 

etch pit diameter. Therefore, an increase in the etch pit size will be reflected in the increases 

of the MTL (Barbarand et al., 2003). A kinetic parameter of Cl content can be resolved by 

values of the etch pit size. It has been mentioned (subchapter 5.1.3), that small sizes of Dpar 

reflect low values of Cl.  

Since the diagram of AFT ages against MTL fails to show a positive correlation, and that Dpar 

shares a kinetic parameter with the MTL, as a consequence the Dpar displays no correlation 

with the AFT ages. 

 

5.2 Evaluation of the Inverse Thermal History Model 

With respect to inverse thermal history modeling, the relation of fission track ages to the 

closure temperature is sensible when no significant annealing occurred after closure 

temperature time was reached. It means that in a bimodal distribution of MTL, a fission track 

age does not reflect the timing of the closure temperature. It can be obviously seen in sample 

JN-06. This sample experienced a rapid cooling during 280-260 Ma, and subsequently entered 

the PAZ about 90-30 Ma. Meanwhile, the fission track age is calculated and modeled at 177-

180 Ma, which is beyond the closure temperature range of 120
0
C when the fission tracks start 

counting (Fig. 5.2). Therefore, information from the track length measurements is important 

to understand the cooling history.   
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The inverse thermal history model of JN-06 is also rather unreliable due to limited length 

measurements. It can be seen on the GOF of the T-t path which is 0.83 and the one of the 

MTL which is only 0.67. A bimodal pattern of the MTL does not appear from the 

measurements, but it is very significant from the model (green curve) which indicates two 

patterns of PAZ occurred. This pattern is called the partial overprinting model. In this 

situation, all the tracks which formed in the first PAZ will be shortened simultaneously. 

Tracks accumulated at relatively low temperature after the later stage will be longer than the 

previous one, resulting two peaks of track length distribution (Gleadow et al., 1985). This 

pattern is classified as mixed ages by Wagner (1972). A bimodal distribution in some cases 

will be formed depend on how long the tracks are subjected of annealing in the latter stage. If 

the pre-existing tracks are not annealed sufficiently (i.e. short time), the two component track 

lengths will merge to form a unimodal type but rather broad with moderately short tracks 

dominating and lesser frequencies of long tracks (Gleadow et al., 1985). This pattern is 

distinctly illustrated in BG-62 and BG-38 (Fig. 5.3). A broadness of track length distribution 

and its frequency depends on how long a sample stays in the PAZ. The sample BG-38 stayed 

longer in the PAZ than BG-62; thereby the length distribution is wider and has a lesser 

frequency of long tracks.  

Fig. 5.2: Sample JN-06 experienced rapid cooling in the Permian and resided in the PAZ for second times 

during the Cretaceous-Tertiary. The AFT age of 177-180 Ma (annotated) is located beyond the PAZ. 

177 Ma 
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Both sample BG-139 and BG-144 were subjected of one rapid cooling stage. The track length 

distribution is characterized as unimodal and narrow with long tracks predominate. 

Theoretically, a fission track age will be recorded once the samples are within the PAZ range. 

However, this concept is valid only if the sample cooled linearly through the PAZ, or cooled 

so rapidly without significant amount of time in the PAZ (Gleadow et al., 1985). In both the 

samples BG-139 and BG-144, the ages are beyond the timing when the samples resided in the 

PAZ (Fig. 5.4). This occurred due to non-linearly cooling when the samples are through the 

PAZ. Additionally, sources of uncertainty among others are the determination of the PAZ, the 

uncertainty in the initial track length and the poor quality of length measurements (Ketcham, 

2005). Therefore, the inverse thermal history model should not be considered as an absolute 

approach but rather as an estimation of the hypothesis.  

Denudation in terms of its causal is classified by two; surface process that is erosion and by 

tectonic events whereas the crust is thinned by extension (Johnson et al., 1997). It is possible 

to distinguish a responsible factor of the denudation by means of fission track analysis. If 

surface process is only factor responsible for the denudation, then a progressive decrease of 

the AFT age is comparable as denudation proceeds towards the PAZ. A surface-cause 

denudation is also characterized by a gentle gradient cooling history (Johnson et al., 1997). In 

contrary, denudation caused by tectonics is distinguished by a lack correlation between AFT 

ages against elevations. 

Fig. 5.3: Track length distributions for sample BG-62 and BG-38 show unimodal type but broader with 

short track lengths rather dominate. 

BG-62 BG-38 
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Typical for tectonic denudation is also indicated by a very steep gradient of the cooling 

history experienced by many footwall rocks (Johnson et al., 1997). A very rapid cooling 

mainly occurs subsequently due to volcanic activity or hydrothermal activity (Duddy et al., 

1998), dyke emplacement, faulting or meteorite impact (Miller & Wagner, 1979). 

Most of samples display a moderate-steep gradient of cooling history and a negative 

correlation between the AFT age and altitude. It is predicted that tectonic force might be a 

main cause of the denudation. The moderate gradient of cooling history is probably a result of 

tectonic and erosion denudation which act together.  

The samples of BG-062 and BG-38 (Fig. 5.5) resided in the second PAZ at the Middle-

Jurassic-Middle Cretaceous, while sample JN-06 (Fig. 5.2) stayed in the PAZ at the Late 

Cretaceous-Tertiary time. This event is interpreted as a burial event coeval to the period of 

transgression and deposition of sediment clastics and carbonates from the offshore at Middle-

Late Cretaceous (Doré, 1992; Riis, 1996). In addition, this hypothesis was also supported by 

Fossen et al. (1997) who had evidence of recrystallization of fractures and microbreccias in 

the gneiss adjacent the Bjorøy Formation. It means that the formation has been located at 

about 5 km depth during the latest Jurassic (Fossen et al., 1997). However, sample BG-144 

and BG-139 do not show a transgression and burial event. Both samples only exhibit rapid 

cooling in the Triassic (Fig. 5.4). It is surprising, because the cooling history is expected 

shows at least a similar pattern, since the locations are nearby. It might be because the thermal 

history model is sensitive to the input of various kinetic parameters. Meanwhile, the kinetic 

186 Ma 
179 Ma 

Fig. 5.4: Both sample BG-139 (a) and BG-144 (b) show plotting the AFT ages beyond the PAZ, which presumably 

due to several factors; the cooling rate is rather slow thus the samples stayed longer in the PAZ, oversimplified of 

the PAZ values, uncertainty in the initial track length.   

(a) (b) 
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parameters depend on the chemical properties such as chlorine content which influence 

annealing rate. Therefore, applying value of the PAZ (120
0
-60

0
C) to all samples is 

oversimplified.  

 

 

 

5.3 Movement of Faults 

The Hardangerfjord Shear Zone is a NW-SE trending ductile structure which runs parallel to 

the Caledonian orogenic belt. The zone has been reactivated since it formed at about 408-402 

Ma (Fossen & Dunlap, 1999). Since its development, the HSZ progressively deformed more 

brittle, which indicated that the zone was exhumed toward the upper crust. The brittle Lærdal-

Gjende fault system was subsequently formed and overprinted the ductile HSZ in the Lærdal 

area, northeastward the present study. Dating using Rb/Sr revealed the event occurred at ~367 

Ma (Scharer, 1980). A subsequent development is the formation of N-S to NNW-SSE 

trending faults which occurred in the Permian (Fossen & Hurich, 2005; (Færseth et al., 1995). 

The Jurassic extension was represented by NNE-SSW trending faults (Færseth, 1996). By 

applying apatite fission track analysis, it is expected that the fault reactivation in the upper 

crust could be detected. 

The weighted mean of AFT ages from the footwall of HSZ is 145 ± 16 Ma (see Appendix VI) 

which is within the range of Late Jurassic – Early Cretaceous time. This average AFT age 

indicates that the footwall of HSZ was reactivated during these times. According to Færseth 

(1996) the Jurassic rifting event was expressed by NNE-SSW trending faults. Plotting the 

Fig. 5.5: Both the sample BG-062 (a) and BG-38 (b) resided in the second PAZ after experienced a rapid 

cooling. This event is interpreted as a burial event coeval to the period of transgression and deposition of 

sediment clastics (Doré, 1992; Riis, 1996). 

(a)  (b) 
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fault planes (Fig. 5.6) from the footwall rather displays pronounce of the NE-SW trending of 

the HSZ. Other trend directions are N-S and NW-SE which probably reflect Permo-Triassic 

rifting. The various trend patterns of joint planes are present; though the apparent extension 

trend of ESE-WNW can be identified and reflect both the Permo-Triassic and the Jurassic 

rifting event (Fig. 5.6).    

The hanging wall of the HSZ also acted as the hanging wall of the Bjørnafjord Fault. 

Considering the apatite abundances, most of the data and samples collection was obtained 

from the hanging wall of this fault, not directly from the hanging wall of the HSZ.   

The Bjørnafjord Fault formed during the Devonian and is likely of one generation with the 

HSZ. Up to now, this fault gets little attention in the literature, thus no information can be 

referred except from the geological map (published by NGU). The fault has the mean AFT 

age of 174 ± 12 Ma, which means that the fault was reactivated during Middle Jurassic time. 

Fossen (1992, 1993) documented microfolds, shear bands, asymmetric boudins which indicate 

down-to-NW movement of the Caledonian allochthon. This movement is recorded in the 

study area only from foliation data which was collected from both the hanging and the 

footwall.  

The subsequent movements documented are E-W, NW-SE, and a minor NNW-SSE trending 

direction. The Bjørnafjord Fault runs around Stord and Tysnesøya and is terminated in 

Austevol. Hence, the fault shows a curving shape. The E-W, NW-SE fault direction was 

likely affected by the regional trend of the Bjørnafjord Fault. However, the time constraint of 

these faults is unknown, but probably formed after the Devonian. The NNW-SSE fault 

direction could be produced either by rifting in the Permo-Triassic or be exerted by the main 

fault of the Bjørnafjord Fault.  

Plotting of joint planes from the hanging wall does not show a significant trend. The high 

frequencies of the joint poles are scattered, yet the NW-SE and NNE-SSW extension direction 

can be resolved (Fig.5.6). The NW-SE extension orientation might be formed at Pre-Triassic 

or Devonian time (Valle et al., 2002; Fig.4.2). Hypothesis about the NNE-SSW extension has 

been discussed in 4.1.1. The ESE-NNW Jurassic and Permo-Triassic extension direction is 

however not prominent in the hanging wall. In summary, the Jurassic reactivation is not 

preserved in term of fault data and that the paleostress (fracture analysis) of the study area is 

in accordance to what resulted by Valle et al. (2002). 
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5.4 Comparison to Previous Studies 

Rohrman et al. (1995) collected and analyzed samples from the Eidfjord, Jotunheimen, 

Hunnedalen, and Gausta in southern Norway. The cooling events are divided by two distinct 

periods; the pre-and the post-Cretaceous cooling. Most of the samples were subjected to Pre-

Cretaceous cooling, precisely Triassic-Jurassic cooling with a rate of ~2-2.5
0
C/Ma. This 

cooling event was initiated at ~225 Ma coincided with the progradation of major deltas from 

the Norwegian mainland (Doré, 1991; Steel, 1993) and a major phase of rifting in the North 

Sea (Ziegler, 1990). Rohrman et al. (1995) interpreted that the Triassic-Jurassic cooling is 

erosional combined with tectonic rift flank uplift. This hypothesis is corroborated by 

accumulating of coarse clastics deposition in the Fennoscandian offshore during these times. 

The post Cretaceous cooling event is in fact not pronounce, whereas only one sample (JOT 

17) displayed slow cooling during Paleogene-Neogene time. A correlation of similar AFT 

ages forms AFT isochrons. The distribution of the AFT isochrons and the plotted AFT ages in 

cross sections display a domelike shape (Fig. 5.7).    

Fig. 5.6: (Previous page). Samples location and AFT ages are plotted onto profiles. The structural 

measurement of joints and faults are also indicated in equal stereographic projection. Profile A-B is area 

in the hanging wall of the HSZ, profile B-C is crossed the HSZ and BF, profile D-C is area in the 

footwall of the HSZ.  
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Analysis carried out by Rohrman et al. (1995) exhibits slightly similarities in the timing of 

rapid cooling to the one of the present study, namely the late Permian-Jurassic (250-180 Ma). 

However the Paleogene-Neogene slow cooling event is not present, instead of the Cretaceous 

event. The range of AFT ages in the present study (200-150 Ma) is comparable to the AFT 

isochron shown by Rohrman et al. (1995) (red box in the Fig. 5.7). In additional, analysis of 

thermal history modeling from the Sotra area yields cooling events that occurred since the 

Permian until the Jurassic (Johansen, 2008). A similar cooling time at the Permian-Jurassic 

time results from the Hardangerfjord Shear Zone, northeastward of the present study 

(Magerholm, 2010). A different cooling history of Øygarden and Masfjorden area (north of 

Sotra) yields cooling ages at the Devonian until the Jurassic (Tørresen, 2009). 

Rohrman et al. (1995) estimated as much as 1.3-3.5 km of overburden that was removed 

during the Triassic-Jurassic. Tørresen (2009) calculated the exhumation rate of the Øygarden 

and Masfjorden area is ~9 m/Ma. If it is assumed as in Rohrman et al. (1995) that the 

geothermal gradient during Triassic-Jurassic was 35
0
C/km, then a similar value of overburden 

can be produced namely 1.7-3.5 km and an exhumation rate during 250-180 Ma is 27-13 

m/Ma. These numbers are approximations and depend on the values of geothermal gradient.  

Fig. 5.7: The AFT ages plotted onto a topographic map. Fission track samples are labeled 

according to age (Rohrman et al., 1995). The red box indicates the present study area. 
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Distributions of AFT ages from the HSZ, northeastward to the present study area shown by 

Magerholm (2010) can be compared to observe a trend of fission track ages away from the 

offshore (Fig. 5.8). The AFT ages presented by Magerholm (2010) are fairly good except two 

data exhibit significant errors; thereby they were excluded from analysis and discussion (Fig. 

5.8). The footwall of the HSZ in the present study yields a weighted mean of AFT ages of 145 

± 16 Ma (subchapter 4.2.3.1). Meanwhile, the weighted mean of AFT ages from Magerholm‘s 

area is 156 ± 14 Ma (see Appendix IX). This mean value is calculated from 8 AFT ages in the 

footwall, regardless one sample of TM-15 which displays too large error.  

The trend of older AFT ages toward inland is interesting.  A similar trend of increase the AFT 

ages inland is also observed from the hanging wall. The weighted mean of the hanging wall in 

the present study is 174 ± 12 Ma.  By calculating a weighted mean of three AFT data from 

Magerholm (2010) and excluding two of them yield of 183 ± 34 Ma (see Appendix X). The 

two ages were omitted due to a large error, and the others display very young ages probably 

due to heat transfer from fluids circulating within the fault zone (Malusa et al., 2009).  

The differential distributions of the AFT ages can be explained as follows: (1) the rift centre 

located closer to the present study, thereby away from the coastline, the rift flank is less 

exhumed than the one close to offshore; (2) differential rate of erosion could also lead to the 

varying AFT ages; (3) differential movement or tilting of the HSZ blocks. However, since the 

Magerholm‘s area also displays negative correlation of elevation against AFT ages, it is 

implied that the first and third hypothesis is more likely. Færseth (1996) identified that there 

is a difference in the distribution of stretching and structural expression in the Viking Graben 

during Jurassic times. This is probably responsible to the tilting of the HSZ blocks, as it seen 

in the distribution of AFT which tends to decrease inland.  
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5.5 Proposed Exhumation History of the HSZ 

The causes of uplift flanks or shoulders of rifts are due to thermal processes or other sources 

of buoyancy in the subsurface. The mechanisms of rift flank uplift are: (1) lateral conduction 

of heat from the region of extended lithosphere to the flanks; (2) heat transferred from beneath 

the rifts to the flanks by small scale convection; (3) magmatic thickening (underplating) of the 

rift flank crust due to partial melting in the underlying mantle (Weissel and Karner, 1989, and 

references therein). Asymmetric geometry of the rift flanks is built by normal faults which 

form along deeply penetrating detachment faults.  

The successive events of rifting in the Norwegian Sea influence and effect the rift flanks 

which are constructed by series of normal faults and shear zones. The HSZ extends SW-NE 

from the Norwegian Sea to the rift shoulder of the Norwegian passive margin. The 

development of the HSZ and other faults in the rift flank are associated with the state of stress 

Fig. 5.8: The AFT ages are plotted onto a topographic map of the Hardangerfjord area. The red line 

annotated is a Hardangerfjord Shear Zone (Magerholm, 2010). 
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in the basins, thus ultimately induces uplift or subsidence to the rift flank (Kooi and 

Cloetingh, 1992).  

The HSZ formed after the reactivation of the Caledonian basal detachment zone (Mode I).  

The crustal collapsed by development of W and NW dipping extensional shear zones (Mode 

II) in which major extensional shear zones namely the HSZ, the Bergen Arc Shear Zone 

(BASZ), and Nordfjord-Sogn Detachment Zone (NSDZ) formed (Fossen, 2000). The late 

stage of Mode II has been reported occurred at about 415-416 Ma, based on 
40

Ar/
39

Ar 

thermochronology of muscovite from the NSDZ (Dunlap and Fossen, 1998). Færseth et al. 

(1995) suggested that the allochthonous on the footwall probably has been removed and filled 

the hanging wall basins since Devonian times. The loading of this deposit on the hanging wall 

ultimately led to increase the footwall uplift. At that time, the Precambrian basement has been 

peneplained during the late Proterozoic and covered by latest Proterozoic to Ordovician 

sediments, which are found as psammitic units in the lowest nappes (Bockelie and Nystuen, 

1985) (Fig. 5.9a). 

The brittle deformation that formed northeast of the HSZ at the later stage of the HSZ 

formation is known as the Lærdal-Gjende fault system. This fault system formed ~367 Ma, in 

the Devonian, based upon Rb/Sr dating (Schärer, 1980). However, the evidence for brittle 

structures cannot be found along the HSZ. 

In terms of the development of the HSZ, the period after forming the Lærdal-Gjende Fault 

(LGF) system until Carboniferous time is unknown. Based on the thermal history models, 

both of the footwall (sample BG-144 and BG-38) (Fig. 5.4b and Fig. 5.5b) and hanging wall 

(BG-139) (Fig. 5.4a) of HSZ have initiated to exhume since the late Permian, approximately 

in the ranges of 250-180 Ma. The cooling rates are varied between 1.5
0-

3
0
C/Ma. This cooling 

rate is slightly low and the cooling gradient is rather gentle. Therefore, it is predicted that the 

cooling took place in response to erosion. Even though plotting of elevation against the AFT 

ages does not show a linear correlation, it can be argued that all of the samples were collected 

in low altitudes less than 50 meter, hence the relationship is masked. Exhumation in this 

period caused reactivation of the HSZ and the LGF system. The evidence from paleomagnetic 

analysis exhibits reactivation of the LGF occurred in the range of 260-250 Ma (Andersen et 

al, 1999). 

The erosion process during the Permo-Triassic might be completely removed all of burial on 

top of the footwall of HSZ and only a part of nappes on the hanging wall have been removed. 
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Based on the present AFT data, it is interpreted that the erosion process was still active during 

the Permo Triassic (Fig. 5.9b). A part segment of nappes on top of the hanging wall was 

eroded but the nappes below are still preserved. The interesting feature is that the AFT ages 

increase inland both in the hanging and the footwall. The AFT patterns likely are related to 

the presence of brittle LGF structures. This brittle structure dies out between Aurland and the 

Hardangerfjord (Fossen and Hurich, 2005) and appears in the Lærdal area. It might be that the 

brittle structure in the southwest has been eroded before Permo-Triassic time meanwhile this 

structure is still preserved further inland. This hypothesis is still speculative and needs further 

investigation. 

The cooling event in the footwall is not uniform, only some samples show Permian AFT ages 

and most of them exhibit Jurassic fission ages. Another scenario is that the footwall probably 

did not exhume within the Permo-Triassic, and that the minor Permo-Triassic AFT ages are 

only variations due to different chemical properties in the analyzed apatite grains. 

The Permo-Triassic cooling event coincided when rifting propagated into the North Sea and 

mainly centered in the Horda Platform (Torsvik et al., 2002).  The exact timing of this rifting 

event is poorly constrained, however Færseth et al. (1976) assumed that it occurred during the 

mid-Permian (ca. 260 Ma) when a swarm of basaltic dikes formed along the coastal area of 

the Sunnhorland, Sotra and Sunnfjord region. Fossen and Dunlap (1999) deduced that two 

pulses of magmatism occurred during the formation of the Permo-Triassic rifting based on K-

Ar and 
40

Ar/
39

Ar thermochronology of the alkaline dikes in Sunnhordland. The first event 

took place in early Permian times (260-250 Ma) and was followed by a second pulse 

represented by more extensive dike intrusions in the late Triassic (220 Ma). 

The Permian cooling on both blocks of the HSZ was subsequently followed by Jurassic rapid 

cooling only in the footwall of the HSZ (Fig. 5.9c). It was documented in sample BG-62 (Fig. 

5.5a) which describes cooling rate of 6
0
C/Ma at 190-180 Ma (the early Jurassic). Even 

though, the Jurassic cooling is only represented by one sample of the thermal history models, 

it is expected that other samples will show similar Jurassic or younger cooling due to low 

average AFT ages. The cooling rate of 6
0
C/Ma is quite rapid and shows a steep gradient. The 

rapid cooling is typical for tectonic denudation. In addition the samples exhibit a negative 

correlation of elevation vs. AFT ages in which the altitude is varied up to 450 m. It is implied 

that the erosion process was minor and tectonic denudation was predominant.   
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This Jurassic rifting corresponds to the rifting activity which occurred in the entire Arctic-

North Atlantic and affected mainly the formation of the Viking, Central and Moray Firth 

Grabens (Ziegler, 1991).  In the Norwegian mainland, the youngest dikes in the Sunnhordland 

region yield a mean age of 164 Ma. This age corresponds to the volcanic activity in the North 

Sea (Færseth et al., 1976). This rifting event led to reactivation of the LGF system in the 

range of late Jurassic-Cretaceous times, based on paleomagnetic analysis (Andersen et al., 

1999).  

The later event was a burial event which took place at the Middle Jurassic-Middle Cretaceous, 

and coincided with the period of transgression and deposition of sediment clastics and 

carbonates at Middle-Late Cretaceous (Doré, 1992; Riis, 1996). This hypothesis was 

corroborated by Fossen et al. (1997) who suggested burial event during the late Jurassic. 

Fig. 5.9: Scematic illustration of the exhumation of the HSZ and adjacent area. See text for further 

explanation 

(a) 

(b) 

(c) 

(d) 
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Thermal history models of sample BG-62 and BG-38 also show burial events occurred during 

180-100 Ma (Middle Juarssic-Early Cretaceous) (Fig. 5.9d).   

In summary, cooling events in the HSZ and adjacent areas during the late Permian-Jurassic 

occurred in response to erosional events combined with tectonic rift flank uplift. This 

conclusion is similar to what was reported by Rohrman et al. (1995). The entire conclusion of 

this master thesis is summarized in the following chapter.    
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6. CONCLUSION 

 

Analysis AFT ages and tectonics of the Hardangerfjord Shear Zone can be summarized as 

follow: 

 Plotting the AFT ages against elevations does not show any correlation. This is caused 

by several factors: (a) because the differences of elevations are not significant, (b) 

cooling in the present study occurred rather by tectonic which is called tectonic 

denudation, (c) A vertical profile of samples cannot directly give a correlation of 

elevation-AFT ages if the areas have been rotated after cooling. 

 Comparison the AFT ages against the annealing kinetic parameters (MTL and Dpar) 

also does not signify positive correlation. Several factors are considered: (a) a decrease 

in the AFT age is not accompanied by a decrease in the MTL. A 1:1 correlation of 

those parameters only occurs in isotropic medium. It can be implied that the analyzed 

apatite are anisotropic, (b) anisotropic feature of apatite is controlled by the structure 

and the chemistry, which reflects different annealing rates, (c) a multiple cooling 

histories result a more complex track length distributions. 

 Samples were taken from the hanging wall of the HSZ have AFT ages range from 

146.2 ± 9.3 Ma – 227.4 ± 14.3 Ma, with a weighted mean age of 174 ± 12 Ma (Middle 

Jurassic). Meanwhile, from the footwall is obtained AFT ages range of 180 ± 8.4 -

105.6 ± 7.9 Ma, and the weighted mean  is 145 ± 16 Ma  ( Late Jurassic – Early 

Cretaceous time). 

 The thermal histories have been modeled from 5 samples; 3 samples from the footwall 

and 2 samples from the hanging wall. The first cooling event reactivated the two 

blocks of the HSZ at about 250-180 Ma. The Permian cooling rate is rather slow about 

1.5
0-

3
0
C/Ma. It is predicted that the cooling took place in response to erosion. 

 The second cooling event initiated at early Jurassic time, and only reactivated the 

footwall of the HSZ. It was documented in sample BG-62 which describes cooling 

rate of 6
0
C/Ma at 190-180 Ma and shows a steep gradient. The rapid cooling is typical 

for dominating tectonic denudation than the erosion process.   

 At the Middle Jurassic-Middle Cretaceous, the areas experienced the burial event, as is 

shown in the thermal history models of sample BG-62 and BG-38. This event is 

coincided with a period of transgression and deposition of sediment clastics and 
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carbonates at Middle-Late Cretaceous (Doré, 1992; Riis, 1996) and supported by 

Fossen et al. (1997) who suggested burial event during the late Jurassic.  

 In summary, cooling events in the HSZ and adjacent areas during the late Permian-

Jurassic occurred due to erosional processes combined with tectonic rift flank uplift. 

 The Permian and Jurassic rifting activities might be responsible to the reactivation of 

the faults in the rift flank notably along the HSZ and most likely affects the LGF. 
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APPENDIX 

 

Glass poss. Sample  RhoD  Glass poss. Sample RhoD  

of NOB-013 Number   of NOB-003 Number   

1 IRMM 3-2 2086925 1 IRMM 1/2 2050229,454 

2 BG-087 2081699 2 JN-16 2040713,443 

3 BG-086 2076474 3 JN-15 2031197,431 

4 BG-137 2071248 4 JN-14 2021681,419 

5 BG-138 2066022 5 JN-13 2012165,408 

6 BG-139 2060797 6 JN-12 2002649,396 

7 BG-140 2055571 7 JN-19 1993133,385 

8 BG-069 2050346 8 JN-20 1983617,373 

9 BG-068 2045120 9 BG-02 1974101,361 

10 BG-122 2039894 10 BG-01 1964585,35 

11 BG-121 2034669 11 BG-22 1955069,338 

12 BG-142 2029443 12 BG-23 1945553,327 

13 BG-067 2024218 13 JN-21 1936037,315 

14 IRMM 3-1 2018992 14 IRMM 2/2 1926521,303 

15 BG-091 2013766 15 JN-23 1917005,292 

16 BG-092 2008541 16 JN-22 1907489,28 

17 BG-093 2003315 17 BG-32 1897973,269 

18 BG-143 1998090 18 BG-33 1888457,257 

19 Dur 1992864 19 Dur 1878941,245 

20 FCT 1987638 20 Lim 1869425,234 

21 BG-063 1982413 21 FC 1859909,222 

22 BG-120 1977187 22 BG-34 1850393,21 

23 BG-119 1971962 23 JN-07 1840877,199 

24 BG-062 1966736 24 JN-02 1831361,187 

25 BG-061 1961510 25 JN-03 1821845,176 

26 BG-118 1956285 26 IRMM 3/2 1812329,164 

27 IRMM 3-4 1951059 27 JN-06 1802813,152 

28 BG-066 1945834 28 JN-01 1793297,141 

29 BG-117 1940608 29 JN-05 1783781,129 

30 BG-144 1935382 30 BG-31 1774265,118 

31 BG-145 1930157 31 BG-43 1764749,106 

32 BG-165 1924931 32 BG-35 1755233,094 

33 BG-162 1919706 33 BG-37 1745717,083 

34 BG-161 1914480 34 BG-38 1736201,071 

35 BG-160 1909254 35 BG-39 1726685,06 

36 BG-159 1904029 36 BG-40 1717169,048 

37 BG-158 1898803 37 BG-41 1707653,036 

38 BG-164 1893578 38 IRMM 4/2 1698137,025 

39 BG-163 1888352 
   40 IRMM 3-3 1883126 
    

APPENDIX I:  SAMPLES POSITION AND RHOD 
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 UTM position (32N) Elevation Municipality Locality Outcrop Lithology Structural measurements 

  East North           Dip 
dir. 

Dip Type Comment 

BG-031 293869 6637381 15 Fitjar Western Stord, road from 
Petarteigen to Skardet (sign 
to Dåfjorden), ca. 140 m 
northwest of the driveway to 
the school and ca. 30 m 
south of a driveway to 
private houses 

Roadcut, 
ca. 7 m 
high x 60 m 
wide, rel. 
fresh 

Medium-grained, light 
green granitoid; grey, 
smokey qz, white to 
green fsp, dark green 
?, black bt; pyrite on 
joints (or faults?); 
many joints have a 
white or pink alteration 
zone 

112 59 Fault  

        82 70 Fault  

        128 29 Joint Dominant joint direction, dm-
spacing 

        139 29 Joint Dominant joint direction, dm-
spacing 

        133 35 Joint Dominant joint direction, dm-
spacing 

        119 30 Joint Dominant joint direction, dm-
spacing 

        135 32 Joint Dominant joint direction, dm-
spacing 

        299 53 Joint Secondary joint direction, m- to 
10s of m-spacing 

        173 54 Joint Secondary joint direction, m- to 
10s of m-spacing 

        58 80 Joint Secondary joint direction, m- to 
10s of m-spacing 

        242 62 Joint Secondary joint direction, m- to 
10s of m-spacing 

BG-037 292307 6612195 20 Sveio Buavåg, road no. 541 from 
Buavåg to Haugesund, ca. 

100 m southwest of the road 
to Sveio 

Roadcut, 
ca. 4 m 

high x 50 m 
wide, fresh 

Grey, medium- to 
coarse-grained tonalite 

(?); qz, fsp, bt; foliation 
varies between none 
at all and moderate; 
some sheared layers, 
locally with qz-veins, 
more or less parallel to 
the foliation; xenoliths 
of dark grey, fine-
grained gneiss, dm- to 
m-size; some qz-fsp+/-
bt pegmatie veins 

293 44 Foliation  

        262 36 Foliation  

        290 52 Foliation  

APPENDIX III:  FIELD DESCRIPTIONS 
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BG-038 288527 6604327 10 Sveio Road to Ryvarden 

Lighthouse, ca. 200 m from 
the turning area ("snuplass") 
at the end of the public road 

Roadcut, 

ca. 6 m 
high x 40 m 
wide; rather 
overgrown 
with lichen 
and slightly 
weathered 
at the 

surface 

Coarse-grained 

augengneiss; bt-rich 
with large (several cm 
diametre) augen of fsp 
(and sometimes qz?); 
cm- to dm thick qz-rich 
layers and some finer 
grained sheared layers 

336 49 Foliation  

        337 39 Foliation  

        335 40 Foliation  

BG-061 310685 6605786 255 Vindafjord Langåsdalen (between 
Skjold and Vikebygd), in the 
brook, ca. 700 m east of the 
eastern end of 

Langåsdalsvatnet 

Outcrops in 
small 
brook, 
stongly 

weathered 
and 
overgrown 
by lichen 

Greenish-grey, fine- to 
medium-grained 
tonalitic gneiss; bt, 
hbl(?), plg, +qz?; 

strongly foliated; veins 
and cavities filled with 
qz 

94 89 Foliation  

        85 84 Foliation  

         79 87 Foliation  

        173 80 Joint  

        6 76 Joint  

        5 81 Joint  

BG-062 309407 6605091 455 Vindafjord Vassnuten (between Skjold 
and Vikebygd), close to top, 
ca. 50 m southwest of small 
tarn  

Outcrops 
on 
mountain 
top, 
strongly 
weathered 
and 
overgrown 
by lichen 

Medium- to coarse-
grained granite; qz, 
fsp, bt; generally 
unfoliated, but locally 
foliated zones of 
several dm width; 
many qz-fsp-ms 
pegmatite dykes 

103 56 Joint Dominant joint direction 

        107 58 Joint Dominant joint direction 

        91 72 Joint Dominant joint direction 

        358 67 Joint Secondary joint direction 
BG-063 305611 6605304 35 Vindafjord Road from Skjold/Isvik to 

Vikebygd, between turnoffs 
to Trovåg and 
Bjørndal/Langåsdalen, at 
turnoff to 
Kriken/Tongaflæ/Svensbøøy 

Roadcut, 
ca. 2 m 
high x 10 m 
wide, fresh 

Porphyritic granite, 
light grey to light pink, 
white when weathered; 
Kfsp up to 4 cm long in 
medium- to coarse-
grained matrix of qz, 
fsp, bt, +ms(?); bt-rich 
patches and schlieren; 
10 cm wide pegmatite 
dyke (qz, pink fsp, bt, 
+ms?); locally swirly 
patterns of flow-

aligned Kfsp 
phenocrysts 

9 35 Joint Dominant joint direction?, dm- to 
m-spacing 
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        17 36 Joint Dominant joint direction?, dm- to 

m-spacing 

        18 32 Joint Dominant joint direction?, dm- to 
m-spacing 

        267 65 Joint Secondary joint direction?, dm- to 
m-spacing 

        251 77 Joint Secondary joint direction?, dm- to 
m-spacing 

        154 44 Joint Secondary joint direction?, dm- to 
m-spacing 

        4 80 Joint Secondary joint direction?, dm- to 
m-spacing 

BG-066 318746 6613628 30 Vindafjord Road no. 543 from 
Ølsvågen to Innbjoa, south 

of Ulvanes, opposite small 
forest (with house in the 
middle) east of the road 

Roadcut, 
ca. 1.5 m 

high x 10 m 
wide, rel. 
fresh 

Grey granodioritic (?) 
gneiss; qz, fsp, bt; fsp 

augen of up to 2 cm 
size in medium-
grained matrix; well 
foliated 

325 11 Foliation  

        171 82 Joint  

        183 83 Joint  

        189 77 Joint  

BG-091 295360 6592744 45 Tysvær Førre, road to "Førre 
Hageby" and "Førre 
Terrasse", turnoff of new 
road to new apartment 
blocks, ca. 80 m southeast 
of the southeastern end of 
the tunnel on road no. E134 

Roadcut, 3-
7 m high x 
>100 m 
wide, fresh 

At sample location: 
light grey to brownish-
grey granite; medium- 
to coarse-grained; qz, 
fsp, bt; unfoliated to 
poorly foliated. Higher 
up along the road: 

migmatitic gneisses; 
pegmatite dykes (qz, 
pink fsp, bt, ms) 

34 89 Joint dm-spacing 

        241 84 Joint dm-spacing 

        248 80 Joint dm-spacing 

        247 83 Joint dm-spacing 

        268 80 Joint dm-spacing 

        271 85 Joint dm-spacing 

        269 83 Joint dm-spacing 

        279 86 Joint dm-spacing 

BG-117 319287 6614902 5 Vindafjord Road from Ølen to 
Dreganes, ca. 1 km south of 
the end of the road, 

opposite some boat/holiday 
houses 

Small 
roadside 
quarry, ca. 

10 m high x 
40 m wide, 
fresh 

Dark grey gneiss, 
granodioritic-tonalitic?; 
fsp, hbl, bt, +qz?; 

medium-grained with 
larger (1-10 mm) fsp; 
mostly poorly foliated 
but some areas are 
well foliated; layers 
and schlieren of 
coarse-grained qz; 
complexely folded 

318 70 Foliation  

        74 76 Joint m- to several m-spacing 
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BG-118 313356 6606004 55 Vindafjord Road to Blikrabygda, ca. 

200 m southeast of turnoff 
from road no. E134 and ca. 
70 m east of the road to 
Blikrabygda along new 
gravel road to new building 
site 

Freshly 

bulldozed 
outcrop, ca. 
12 m wide x 
1 m high 

Grey, well foliated, 

medium-grained 
gneiss; qz, fsp, bt, 
hbl?; bt locally oxidised 
to brownish or metallic 
colours; qz-fsp layers 
(mm to cm thick) and 
augen-shaped 
aggregates 

254 82 Foliation  

        331 89 Joint Several m-spacing 
        324 75 Joint Several m-spacing 

BG-119 308169 6601575 80 Vindafjord Road no. E134, ca. 1.4 km 
(along the road) east-
northeast of Skjold church, 
opposite bus stop 

Roadcut, 
ca. 100 m 
wide x max. 
4 m high, 
fresh 

Grey tonalitic(?) 
gneiss, very 
homogenous, medium- 
to coarse-grained; 
poorly foliated; qz, fsp, 
bt, hbl? 

63 74 Foliation  

        313 69 Fault  

        311 70 Fault  

        312 70 Fault  

        65 66 Joint  

        83 66 Joint  

        82 49 Joint  

        199 76 Joint  

        192 80 Joint  

BG-120 306591 6600792 20 Vindafjord Road along the coast from 
Isvik to Skjoldavik, small 
quarry above the road, ca. 

90 m northeast of the 
garbage/recycling station, 
ca. 200 east of where the 
road crosses road no. E134 

Small 
quarry, ca. 
100 m long 

x max. 6 m 
high, fresh 

Grey gneiss, 
homogenous, poorly 
foliated, medium- to 

coarse-grained; qz, 
fsp, bt, +greenish ?; 
fine-grained, darker 
xenoliths, rounded or 
smeared out to 
schlieren; qz-fesp 
pegmatite veins and 
dykes; locally shear 
bands; outside the 
quarry interlayered 
with amphibolite 

5 88 Joint m- to several m-spacing 

        189 85 Joint m- to several m-spacing 
        71 58 Joint m- to several m-spacing 
        265 90 Joint m- to several m-spacing 
        238 90 Joint m- to several m-spacing 

        274 75 Pegmatite dyke  
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BG-137 283116 6672615 10 Austevoll Kvaløy, along road no. 156, 

ca. 60 m SE of the bridge to 
Stora Kalsøy (Bakkasund) 
and ca. 250 m NW of the 
bridge to Nautøy, due N of a 
house 

Roadcut, 

60 m wide x 
max. 5 m 
high, fresh 

Grey, locally greenish, 

medium- to coarse-
grained quartz-diorite 
(?); qz, fsp, bt, 
greenish ?; very 
weakly foliated; locally 
larger (up to 3 cm) 
idiomorph fsp 
phenocrysts; fsp-qz 

pegmatite veins 
mosltly cm-wide but up 
to 30 cm 

61 55 Fault  

        120 36 Striations on fault plane  
        259 88 Joint m-spacing 

        143 89 Joint m-spacing 

        108 65 Joint m-spacing 

        82 90 Joint m-spacing 

        104 36 Joint m-spacing 

        237 59 Joint m-spacing 

        239 17 Joint m-spacing 

        87 57 Joint m-spacing 

        192 71 Joint m-spacing 

        18 85 Joint m-spacing 

        280 40 Joint m-spacing 

BG-138 284953 6672004 10 Austevoll Hundvåkøy, along road 
no.153, ca. 125 m NW of 
turnoff to Barmen bay and 
quay, SW of the only house 
in the area 

Roadcut, 
ca. 30 m 
wide x 4 m 
high, fresh 

Grey to greenish, 
medium- to coarse-
grained quartz-diorite 
(?); qz, fsp, bt, 
greenish ?, titanite; 

some pink qz-fsp 
pegmatite veins, 1-10 
cm wide; locally very 
weak foliation; some 
finer grained shear 
bands 

171 60 Fault m-spacing 

        237 40 Striations on fault plane  

        202 16 Fault m-spacing 

        141 6 Striations on fault plane  

        244 85 Fault m-spacing 

        159 1 Striations on fault plane  

        1 87 Fault m-spacing 

        268 54 Striations on fault plane  

        108 73 Joint m-spacing 

        224 49 Joint m-spacing 

        81 84 Joint m-spacing 

        204 58 Joint m-spacing 
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BG-139 289539 6668624 25 Austevoll Northern Huftarøy, along 

road no. 546, ca. 150 m SE 
of the dam to Indreholmen, 
opposite the entrance to the 
new parking/viewing area 

Roadcut, 

>100 m 
wide x max. 
12 m high, 
fresh 

Dark grey granodiorite 

(?); grain size variable 
from fine to coarse but 
mostly medium-
grained; fsp, bt, hbl (?), 
qz?; content of mafic 
minerals varies 
somewhat; network of 
many thin (mm-cm) 

and a few thicker (cm-
dm) qz-fsp pegmatite 
and qz veins; locally 
weakly foliated; many 
undulating shear 
planes/faults with 
greenish-brown coatin 

192 58 Fault  

        248 37 Striations on fault plane  

        175 36 Fault  

        198 18 Fault  

        45 89 Joint  

        50 78 Joint  

        47 74 Joint  

        281 25 Joint  

        281 36 Joint  

        251 21 Joint  

        347 35 Joint  

BG-140 293941 6681341 60 Bergen Korsneset, along 
Korsnesvegen, S of trail to 
Rishavn, ca. 30 m N of 
small parking bay 

Roadcut, 
ca. 60 m 
wide x max. 
4 m high, 
rel. fresh 

Coarse-grained pink-
brownish granite; qz, 
fsp, bt, locally gt; 
undeformed; rare small 
grey, fine-grained 
xenoliths 

97 58 Fault  

        15 30 Striations on fault plane  

        186 70 Fault  

        259 31 Striations on fault plane  

        54 75 Fault  

        90 59 Fault  

        208 40 Joint several dm- to several m-spacing 

        202 76 Joint several dm- to several m-spacing 
        194 61 Joint several dm- to several m-spacing 
        47 48 Joint several dm- to several m-spacing 

        248 84 Joint several dm- to several m-spacing 

        128 59 Joint several dm- to several m-spacing 
        159 81 Joint several dm- to several m-spacing 

        231 66 Joint several dm- to several m-spacing 
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BG-143 303142 6597965 85 Vindafjord Road no. E134 between 

Våg and Isvik/Skjold, ca. 80 
m SSW of the turnoff to 
Liavik swimming beach and 
Dancer Holding AS, outcrop 
along the small parallel road 
E of E134, approximately 
between the bus stop and 
the tunnel under E134 

Roadcut, 

ca. 100 m 
wide x 7 m 
high, fresh 

Dark grey gneiss, 

mostly fine-grained but 
with larger ms (up to 1 
cm); moderately 
foliated; qz-fsp 
pegmatite veins of 
variable thickness (cm-
dm-1m); outcrop 
locally strongly 

fractured; rusty brown 
staining common on 
fracture planes 

1 41 Foliation  

        329 32 Lineation  

        131 76 Joint Dominant joint direction, m-
spacing 

        126 79 Joint Dominant joint direction, m-

spacing 
        160 80 Joint Dominant joint direction, m-

spacing 

        64 86 Joint Secondary joint direction, several 
m-spacing 

        60 87 Joint Secondary joint direction, several 
m-spacing 

        253 74 Joint Secondary joint direction, several 
m-spacing 

BG-144 324568 6613977 190 Etne Road no. E134 between 
Ølen and Etne, ca. 120 m 
NNE of "kommunegrense" 
Vindafjord/Etne, small 
quarry W of road 

Small 
quarry, ca. 
30 m wide x 
max. 10 m 
high, fresh 

Grey gneiss; thinly 
banded with qz-rich 
layers and mica-rich 
layers; moderately to 
well foliated; qz, fsp, 

bt, hbl?, ms; micas are 
corroded, bt is 
brownish; grainsize 
mostly fine to medium 
but some qz-layers are 
coarse to very coarse; 
locally fsp augen 
texture 

308 15 Foliation  

        93 74 Fault  

        137 52 Striations on fault plane  

        94 71 Joint m- to several m-spacing 
        115 76 Joint m- to several m-spacing 
        189 72 Joint m- to several m-spacing 

        189 81 Joint m- to several m-spacing 
        181 78 Joint m- to several m-spacing 
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APPENDIX IV: THIN SECTIONS 

  

 

  

 

Thin section of augen gneiss consists mainly of anhedral quartz, muscovite with high 

interference colors (XP) and low relief in (PP), minor biotite (high relief in PP, brown in 

XP). Plagioclase in the lower right corner shows twinning; meanwhile the upper one has 

been altered to micaceous materials. 

Thin section of gneiss composes domiantely of anhedral quartz, minor muscovite (high 

interference color at XP), rare biotite and hornblende. Plagioclase shows twinning in the 

center lower part and has been altered at the upper part. 
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APPENDIX V: RADIAL PLOTS 
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APPENDIX VI: 

THE WEIGHTED MEAN OF AFT AGE FOR THE FOOTWALL OF THE HSZ  

APPENDIX  VII: 

THE WEIGHTED MEAN OF AFT AGE FOR THE HANGING WALL OF THE HSZ  

 

 

APPENDIX VIII: CALCULATION RHOD FOR NOB-013  
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Wtd by data-pt errs only, 0 of 8 rej.
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APPENDIX IX: THE WEIGHTED MEAN OF AFT AGE FOR THE FOOTWALL OF THE 
HSZ (MAGERHOLM’S AREA) 

 

 

APPENDIX X: THE WEIGHTED MEAN OF AFT AGE FOR THE HANGING WALL OF 
THE HSZ (MAGERHOLM’S AREA) 

 

 


