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Abstract
Pipeline transportation of natural gas is largely affected by restrictions regarding
gas quality imposed by the market and the actual quality of the gas produced at
sources. From the sources, gas flow streams of unequal compositions are mixed
in intermediate tanks (pools) and blended again in terminal points. At the pools
and the terminals, the quality of the mixture is given as volume-weighted average
of the qualities of each mixed gas flow stream. The optimization problem of
allocating flow in pipeline transportation networks at minimum cost is referred
to as the pooling problem. Such problem is frequently encountered not only in gas
transportation planning, but also in the process industries such as petrochemicals.

The pooling problem is a well-studied global optimization problem, which is
formulated as a nonconvex (bilinear) problem, and consequently the problem can
possibly have many local optima. Despite the strong NP-hardness of the prob-
lem, which is proved formally in this thesis, much progress in solving small to
moderate size instances to global optimality has recently been made by use of
strong formulations. However, the literature offers few approaches to approxi-
mation algorithms and other inexact methods dedicated for large-scale instances.
The main contribution of this thesis is the development of strong formulations
and efficient solution methods for the pooling problem. In this thesis, we develop
a new formulation that proves to be stronger than other formulations based on
proportion variables for the standard pooling problem. For the generalized case,
we proposes a multi-commodity flow formulation, and prove its strength over
formulations from the literature.

Regarding the solution methods, the thesis proposes three solution approaches
to tackle the problem. In the first methodology, we discuss solving a simplified
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Abstract

version of the standard pooling problem using a solution strategy that based
on a sequence of semidefinite programming relaxations. The second approach is
based on discretization method in which the pooling problem is approximated
by a mixed-integer programming problem. Finally, we give a greedy construc-
tion method especially designed to find good feasible solutions for large-scale
instances.

March 2012 – Bergen, Norway,
Mohammed Alfaki
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Chapter 1

Introduction

Mathematical programming, or optimization, models and techniques have
been extensively used to optimize the entire supply chain in the petroleum

industry since the mid of the last century. The downstream part of the petroleum
industry, which is concerned with turning crude petroleum into finished usable
products that are delivered to consumers, is more concerned with mathemati-
cal programming than other parts of the industry. In the downstream part, the
decision makers examine every possibility to make good decisions regarding a
complex system composed of several operations. The operations include: crude
purchasing, processing the crude into a variety of products, and transporting the
products to the consumers. The primary goal of this business is to minimize
the operational costs and maximize the profit, while satisfying customers needs.
High economic value and operability benefits, associated with integrating math-
ematical programming software in the petroleum industry, are the driving forces
for theoretical and commercial development of the field.

1.1 Background

Natural gas, which is a subcategory of petroleum, is one of the most widely used
energy sources in the world. Its usage has been increasing in recent years. This
is due to the facts that it is an efficient fossil fuel, with low cost and relatively
low pollutant emissions to the environment. Geologists and chemists agree that
petroleum was formed when the remains of organisms that accumulated in the
past are compressed under the earth at very high pressure for millions of years.
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Section 1.1. Background

Since petroleum derivatives are depleted faster than its formation, natural gas is
generally considered a nonrenewable source of energy.

Natural gas is extracted from deep rock reservoirs in the Earth’s crust, where it
exists under high pressure, either alone or associated with heavier hydrocarbons
and water. It is produced from the reservoir in the same manner as the crude
oil. In general, the gas associated with heavier hydrocarbons and water is found
in rock reservoirs at depths ranging between 1000 and 6000 meters, while deeper
rock reservoirs produce mainly dry gas. Natural gas is mainly produced from
three types of reservoirs:

1. Crude oil reservoir wells, where the gas is produced as a by-product and it
is referred to as associated gas.

2. Dry gas wells, which typically do not contain any hydrocarbon liquids. The
produced gas is called non-associated gas.

3. Condensate wells, in which the extracted gas is also non-associated, but
contains hydrocarbon liquids. This type of gas is referred to as unconven-
tional gas or wet gas.

As a consequence of natural gas market developments and the advances in pro-
duction technology, the natural gas industry has begun to explore for more chal-
lenging condensate reservoirs, which have a high percentage of impurities. Exam-
ples of such condensate reservoirs are tight gas which exists in low permeability1

rock formations, shale, coalbed methane, natural gas hydrates and deep gas. For
more detailed treatments of natural gas geological formation and characteristic,
the reader is referred to the survey by Mokhatab et al. (2006).

Due to the distinct characteristics of each well, all natural gas produced is
not of the same quality. Even gas produced from a particular well may over-
time vary in component percentages. Raw natural gas is mainly composed of
methane (CH4) with varying amounts of heavier gaseous hydrocarbons (e.g.
ethane (C2H6), propane (C3H8), butane (C4H10)), acid gases (e.g. carbon dioxide
(CO2), hydrogen sulfide (H2S)), other gases (e.g. nitrogen (N2), helium (He)),
liquid hydrocarbons, water vapor, mercury, and radioactive gas. Generally, nat-
ural gas is classified into two main categories: If the natural gas contains small

1Permeability is the measure of the ability of a material to transmit fluids.
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Chapter 1. Introduction

amounts of H2S and CO2 it is commonly referred to as sweet gas, and other-
wise it is called sour gas. Table 1.1 shows typical chemical components in mole
percentages in natural gas extracted from three different sources (Wardzinski et
al., 2004). In addition to the chemical components, the gas is also described by
its physical properties such as the heating value, which is the amount of energy
in mega joule (MJ) per cubic meter, and the Wobbe index2, which is used to
compare the combustion energy output.

Table 1.1: Example of natural gas composition in mole percent.
Composition Associated Non-associated Unconventional
Carbon-Dioxide 0.63 – –
Nitrogen 3.73 1.25 0.53
Hydrogen-Sulfide 0.57 – –
Methane 64.48 91.01 94.87
Ethane 11.98 4.88 2.89
Propane 8.75 1.69 0.92
Iso-Butane 0.93 0.14 0.31
n-Butane 2.91 0.52 0.22
iso-Pentane 0.54 0.09 0.09
n-Pentane 0.80 0.18 0.06
Hexanes 0.37 0.13 0.05
Heptanes-plus 0.31 0.11 0.06

Since natural gas is available with relatively affordable prices and low pollutant
emissions, it is used as a source of energy as well as raw material in manufacturing.
It has been used for heating space and water, air conditioning and cooking,
especially in seasonal months. At the industrial level, it is used for example
in power generation, hydrogen production, vehicles, and fertilizers. In addition,
natural gas is an important raw material in manufacturing of fabrics, glass, and
other products. Figure 1.1 shows the natural gas global demand by sector.

In order for the consumers to use the natural gas safely and efficiently in their
equipment, it must be within specified quality (we simply refer to the relative
content of a component or a physical property as quality) range. Otherwise,
serious problems may occur, such as the flame lifting when the Wobbe index
is not in its correct range. Table 1.2 shows examples of natural quality ranges

2The Wobble index is measured in Btu (British thermal unit of energy), 1 Btu≈ 1055 joules.
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13%
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Figure 1.1: Global natural gas demand. The figure is based on data from (Sim-
mons et al., 2006).

in North America and Europe3. The quality standards can vary greatly from
country to country, and even from consumer to consumer in the same country.

Table 1.2: Typical examples of quality requirements demanded by the markets
in North America and Europe (Hubbard, 2009). The table is divided into two
groups of rows: composition and physical property requirements.
Quality North America Europe

CO2 concentration 1–3 mol% 2–3 mol%
N2 2–3 mol%∗ 2–3 mol%∗

Total inerts 3–5 mol%∗ NA
H2S 0.25–1.0 grain/100 scf 5–7 mg/Nm3

Total S 0.5–20 grain/100 scf 120–150 mg/Nm3

Mercaptans 0.25–1.0 grain/100 scf∗ 6–15 mg/Nm3

Oxygen 10–2000 ppm (mol) 1000–5000 ppm (mol)

Water dew-point 4–7 lbm H2O/MMscf of gas -10 to -12◦C at 7000 kPa
Hydrocarbon dew-point 14–40◦F at specified P 0 to -5◦C at P < 7000 kPa
Heating value 950–1200 Btu/scf 40–46 MJ/Nm3

Wobbe index NA 51–56 MJ/Nm3

NA = not applicable
∗ = often not specified

31 grain = 64.79891 milligrams (mg), scf ≡ standard cubic feet, Nm3 ≡ normal cubic meter,
ppm ≡ parts-per-million, the pound-mass (lbm) is a unit of mass, 1 MMscf = 106 scf, kPa
≡ kilo-pascals is a unit for pressure (P).
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Chapter 1. Introduction

As soon as the gas is extracted from the wellheads, it goes through a number
of processing operations to remove undesired impurities such as water, liquid
hydrocarbons and sulfur. Removing impurities through processing operations is
an important step in the natural gas journey to the end consumer. Processing
operations can be divided into two major processes: separation and blending. In
the separation process, natural gas is converted into intermediate products known
as pipeline-quality dry gas, where the compositions of the product are given in
fixed proportions of the original ones. In this process, natural gas can go through
up to four processing facilities depending upon the level of impurities present in
the gas. These processing facilities apply chemical and physical technologies. The
main purpose of the separation process is to purify the natural gas to facilitate its
transportation through the pipelines or the ship vessels. For more information
about the separation process the reader is directed to (Guo and Ghalambor,
2005).

Blending is the physical mixture of different flow gas streams, which takes place
in the so-called pools (tanks, vessels or through injection), where the quality of
this mixture is given as volume-weighted average of the qualities of each mixed
gas flow stream. In the blending operation, as opposed to the separation process,
the quality of the final product depends on both the volume and the quality of the
entering natural gas stream. In comparison to the separation process, blending
is cheaper, and therefore it can be used to reduce the level of impurities prior to
the separation process. If the natural gas is sweet, it can be transported directly
to the end consumers, but it may still require further blending to match the
consumer quality requirements.

Transporting the natural gas from the production sources to the consumers
is a complex process on a transportation network of large number of pipelines
and processing units. In this process, a blend of gases from different sources
is formed in order to meet the end consumers’ requirements, while taking into
account the network configuration and its capacity. Optimization models are
used to efficiently and effectively to allocate natural gas flow in this pipeline
transportation network. Optimal flow allocations require that the constraints
imposed by the system are modeled at an appropriate level of detail, and that
corresponding solution procedures are available.
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Section 1.2. Optimization – in brief

1.2 Optimization – in brief

This section briefly introduces some mathematical optimization concepts that are
useful in this thesis. For a comprehensive treatment of this subject, the interested
reader is referred to Boyd and Vandenberghe (2004) for convex optimization,
Nocedal and Wright (2000) and Floudas (2000) or Hendrix and G.-Tóth (2010)
for nonconvex optimization, and Wolsey (1998) for integer optimization.

The origin of optimization can be traced back to the work of Euler and La-
grange in the calculus of variations. In the 1940s, the invention of linear program-
ming by Kantorovich (1940) and Dantzig (1949), and the subsequent theoreti-
cal and practical developments have further shaped the field. An optimization
problem is to find the best solution for minimizing (or maximizing) an objective
function subject to inequality and/or equality constraints. Suppose that x ∈ Rn

is a vector of n variables, and fi : Rn 7→ R, where i = 0, 1, 2, . . . ,m, are the objec-
tive (i = 0) and the constraint functions (i ≥ 1), respectively. The optimization
problem can be written as:

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0, i ∈ I,
fi(x) = 0, i ∈ E ,

 (1.1)

where the sets I and E consist of indices for inequality and equality constraints,
respectively. If the sets I and E are empty, the optimization problem (1.1) is
called an unconstrained optimization problem, otherwise the problem is referred
to as a constrained optimization problem. Since the variables x are assumed to
take real values in (1.1), the problem is called a continuous optimization problem.
However, in many modeling situations, the variables make sense only if they take
discrete values, e.g. x ∈ S ⊆ Zn instead of x ∈ Rn in (1.1), in which we refer to
the problem as an integer optimization problem. When some, but not all, of the
variables are restricted to be integers the problem is known as a mixed integer
programming problem.

The feasible region Ω of the problem (1.1) is defined as the set of all vectors sat-
isfying the constraints. That is, Ω = {x ∈ Rn : fi(x) ≤ 0, i ∈ I; fi(x) = 0, i ∈ E}.
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We refer to a vector x∗ as a local optimum, if it has the smaller objective function
value among all vectors in a neighborhood of x∗. A local optimum is called a
global optimum, if it has the smallest objective function value among all local
optima. Global optimal solutions are important in many practical applications.
Nonetheless, the task of finding them is challenging in many problems.

Optimization problems can be classified depending on the form of the objective
and constraint functions. An important concept is the notion of convexity, which
is a property that makes the optimization problem efficiently solvable in both
theory and practice.

Before going further, let us informally explain what we mean by efficiently
solvable and hard problems. In the computational complexity theory, we say
that a problem is efficiently (polynomially) solvable, if there exists an algorithm
which computes its exact solution in a number of arithmetic operations that
is bounded above by a polynomial in the instance size, for any instance of the
problem. The algorithm is said to have polynomial running time, or to be a
polynomial time algorithm in short. Here, the instance size of a problem is the
number of bits needed to represent the instance on the computer.

Given the optimization problem (1.1), an associated decision problem is, for a
given number z ∈ R, to answer ‘yes’ or ‘no’ to the question: Is there an x ∈ Ω such
that f0(x) ≤ z?4 The class NP (non-deterministic polynomial time) contains
decision problems where a given ‘yes’-answer can be verified in polynomial time.
The class of all polynomially solvable decision problems in NP is referred to
as P. The decision problem π1 ∈ NP is polynomially reducible to π2 ∈ NP,
if we can convert any instance of π1 to an instance of π2 in polynomial time.
A decision problem π1 ∈ NP is NP-complete, if all π ∈ NP are polynomially
reducible to π1. In other words, if a polynomial time algorithm for any NP-
complete problem exists, then all problems in NP can be solved in polynomial
time. No NP-complete problem is currently known to have a polynomial solution
algorithm, and a big question in computer science that remains unsolved is the
P versus NP question, i.e. is P = NP or P 6= NP? Resolution to the question,
either way, will have important theoretical and computational consequences. An

4By solving the decision problem a number of times and using the bisection on the objective
function value, we can find the optimal solution to the original optimization problem.
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optimization problem for which its decision problem is NP-complete, is referred
to as an NP-hard problem.

Definition 1.1. A set S ⊆ Rn is convex if the entire line segment between any
two points of S lies in S. That is, for all x, y ∈ S we have αx+ (1− α)y ∈ S for
all α ∈ [0, 1].

The notion of convexity also applies to functions. We say that a function f is
convex if and only if the set of points above the graph of f is convex. That is,
for any x, y ∈ S (S is convex) we have,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀ α ∈ [0, 1].

A function f is said to be concave if −f is convex. A class of optimization
problems in which the objective function and the feasible region are convex is
referred to as convex optimization problems. One important property of this
class is that any local optimum is also a global optimum, which means that it
is sufficient to apply any local optimization algorithm in order to compute the
global optimum. An advantage of recognizing a problem as a convex optimization
problem, is that the problem can be solved in polynomial time, for example using
interior-point methods. This means that the convex optimization problems are
in P. One of the most widely used subclasses of convex optimization problems
is known as the linear programming problem, in which all the constraints and
the objective function are linear. That is, in problem (1.1), the objective and
constraint functions satisfy

fi(αx+ βy) = αfi(x) + βfi(y),

for all x, y ∈ Rn and for all α, β ∈ R. Several effective methods for solving the
linear programming problem are used in many practical applications. Among
these is the simplex method developed by Dantzig (1949), and the interior-point
method introduced by Karmarkar (1984), which later has been extended by Nes-
terov and Nemirovskii (1994) for solving general convex optimization problems.

The class of problems where the objective function or the feasible region is
not necessarily convex is referred to as nonconvex optimization problems. As
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opposed to convex problems, nonconvex problems may have several local optima
with unequal objective function values, and there is no polynomial time algo-
rithm (unless P = NP) to find a global optimum in general. Computation and
characterization of global optima are the subjects of global optimization.

Global optimization has traditionally attracted far less attention than local op-
timization and solution methods for convex problems. Over the last few decades,
however, research in the field has emerged, and several textbooks devoted to the
subject have been published. Noteworthy among these are (Horst et al., 2000),
(Floudas, 2000) and (Hendrix and G.-Tóth, 2010).

Global optimization approaches are typically based upon relaxation problems
of the original nonconvex problem to provide lower bounds on the optimal ob-
jective function value. The relaxation problem is a modification of the objective
function and/or the feasible region giving a new problem that is easier to solve,
and it is formally defined as follows:

Definition 1.2. A problem min
x∈Ω̃

f̃0(x) is a relaxation of the problem min
x∈Ω

f0(x)

if: (i) Ω ⊆ Ω̃, and (ii) f̃0(x) ≤ f0(x), for all x ∈ Ω.

Different types of relaxation techniques are used to compute lower bounds for
the nonconvex problems, for example convex relaxations and Lagrangian relax-
ations. One way to construct convex relaxations of problems with some non-
convex constraint function f can be based on the convex and concave envelopes
of the function f . Let S be a convex set, and let L(f, S) be the set of convex
functions g : Rn 7→ R that everywhere in S lie below f , i.e. for all x ∈ S we have
g(x) ≤ f(x). Then the convex envelope of f is formally defined as follows:

Definition 1.3. The convex envelope of a function f : Rn 7→ R on a convex set
S is defined as a function vexSf : Rn 7→ R such that for all x ∈ S

vexSf(x) = sup
g
{g(x) : g ∈ L(f, S)} .

Hence, vexSf(x) is the pointwise supremum of L(f, S). The concave envelope
of f is defined as cavSf(x) = −vex(−f)S(x), which thus becomes the smallest
concave function which throughout S lies above f .
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1.3 Problem statement

In this work, we consider an abstraction of natural gas transportation networks
consisting of supply nodes, intermediate nodes and terminal nodes, as well as
links representing pipelines used to transport the gas between two nodes. The
gas enters the transportation network at the supply nodes and flows through
the intermediate nodes, and finally, it leaves the network through the terminal
nodes. In this network, blending operations occur in the intermediate and ter-
minal nodes.

1.3.1 The standard pooling problem

Because of the blending operations and the quality constraints at the terminals,
the problem of allocating gas flow to the network is equivalent to a problem
frequently occurring in planning oil refinery operations. Haverly (1978) defined
the pooling problem in terms of the instance depicted in Figure 1.2. A problem
instance of the pooling problem is characterized by a network with, at the re-
ception side, source streams with different qualities that can enter the network.
Flow from the sources is fed into a limited number of available storage tanks
(pools), where the entering flow is mixed to form intermediate blends with new
qualities. The pool contents are subsequently used to form final blends at the
terminals, where specific quality requirements to the blend are imposed by the
market. Due to the blending operations, the optimization model for this prob-
lem involves nonconvex constraints, and consequently the pooling problem can
possibly have many local optima.

In the Haverly example, we have three types of oils (the source nodes) de-
noted s1, s2 and s3 with different concentrations of sulfur contents (for simplic-
ity, assume that sulfur is the only quality parameter) given as 3%, 1% and 2%,
respectively. The oils s1 and s2 are blended in an intermediate node (pool) de-
noted p1, whereas the oil in s3 is transported directly to two consumers (terminal
nodes) denoted t1 and t2. The output of the pool p1 is transported to the same
terminals. Consumers t1 and t2 will only buy the oil if it contains no more than
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3% S,
Cost: 6

1% S,
Cost: 16

2% S,
Cost: 10

s1

s2

s3

p1

t1

t2

Max 2.5% S,
Price: 9,
Demand: 100

Max 1.5% S,
Price: 15,
Demand: 200

Figure 1.2: Haverly’s pooling problem instance.

2.5% and 1.5% of sulfur, respectively. The oil price at the sources, the consumer
demand, and sale prices are given in Figure 1.2.

The objective function is to minimize the total cost, while satisfying the con-
sumers quality standard and demand. Dealing with the general instantiations of
the pooling problem is the subject of this thesis. Its translation to transportation
networks for natural gas is quite direct: Wells and processing units correspond
to the sources, junction points are represented by pools, and reception units are
modeled as terminals. Although our motivation is the natural gas industry, we
will study the pooling problem and its extensions independently of their partic-
ular applications.

1.3.2 The blending problem

A special case of the problem under study occurs when the intermediate nodes are
not needed, in other words, the flow streams are directly blended at the terminal
nodes, leading to a problem known as the blending problem. This problem can
be modeled as a linear program and can hence be solved fast. An example of this
problem is shown in Figure 1.3(a), which is a modification of Haverly’s instance
illustrated in Figure 1.2, where the pool p1 is removed.
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s1

s2

s3

t1

t2

s1

s2

s3

p1

p2

t1

t2

(a) Blending (b) Generalized
Figure 1.3: Examples of the blending problem, and the generalized pooling
problem.

1.3.3 The generalized pooling problem

In the literature, when referring to the pooling problem, it is frequently assumed
that the only connections allowed in the network are the connections from sources
to pools, from sources to terminals, and from pools to terminals. We refer to this
as the standard pooling problem in this thesis. An example is given in Figure
1.2. Audet et al. (2004) introduced the generalized pooling problem, where con-
nections between pools are allowed as well. Figure 1.3(b) shows an example
constructed by modification of Haverly’s instance depicted above.

Driven by increased consumption of energy in the world, coupled with the
introduction of unconventional gas in the transportation network, pipeline trans-
portation of natural gas has become a complex system. These conditions have
posed several challenges that require more accurate optimization models and
more efficient solution methods for the pooling problem. Although a number of
optimization models and solution approaches have been applied to the pooling
problem, solving large-scale instances in reasonable time with acceptable accu-
racy is still challenging. This thesis contributes to both modeling and algorithmic
methods in order to approach this problem.
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1.4 Structure of the thesis

This thesis is divided into two parts. Part I provides motivations, overview of the
field, related works, and a summary of the scientific contributions. In Part II, the
five publications documenting the results of the thesis are provided in separate
attachments in their published form, with the exception of their style which is
changed to suite this thesis format.

Part I is further composed of five chapters, including this introductory chapter,
and the remaining chapters are organized as follows: In Chapter 2 and 3, we give,
along with the thesis contributions, a literature review of model formulations and
solution methods for pooling problems, respectively. In Chapter 4, summaries of
the included papers are given. Finally, Chapter 5 gives some concluding remarks
and proposes possible future research directions.
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Chapter 2

Model formulations for pooling problems

The pooling problem is an important optimization problem that has been
extensively studied mainly because of its industrial applications. In addi-

tion to the applications in the transportation of natural gas and in oil refining
discussed in the previous chapter, it is frequently encountered in waste-water
treatment and general petrochemicals industries. The research on pooling prob-
lems focuses on two directions: The first is developing mathematical formulations
that exhibit favorable properties, and the second is designing efficient solution
methods (see Chapter 3).

This chapter reviews the different formulations to our problem and its ex-
tensions. They are categorized into models for the standard and the generalized
pooling problems, which in their turn can also be classified as quality and propor-
tion based models. All of these have bilinear constraints. In a global optimization
context, pooling problems are often approached by branch-and-bound algorithms
(studied in more details in Section 3.2.1), which rely mainly on the construction of
linear relaxations. Building stronger/tighter formulations to provide strong lower
bounds on the optimal solution are crucial to the convergence of the algorithms.

2.1 Introduction

The minimum-cost flow problem with node capacities is defined on a directed
graph G = (N,A) where N is the set of nodes and A is the set of arcs, where each
node i ∈ N has a known capacity bi, and each arc (i, j) ∈ A has a unit cost cij .
For any node i ∈ N , let N+

i = {j ∈ N : (i, j) ∈ A} and N−i = {j ∈ N : (j, i) ∈ A}
denote the set of out- and in-neighbors of i, respectively. We assume that G has
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non-empty sets S, T ⊆ N of sources and terminals, respectively, where N−s = ∅,
∀ s ∈ S and N+

t = ∅, ∀ t ∈ T . The optimization problem is to determine the
minimum-cost plan for sending flow through the network to satisfy supply and
demand requirements. The arc flows must be nonnegative and respect the node
capacities, and they must satisfy conservation of flow at the intermediate nodes.
The minimum-cost flow problem is a transportation model that allocates single
commodity flow in the network, in other words, the flow entering the network
at different sources has the same quality. As already known, there are efficient
algorithms to solve this problem which can be modeled as a linear programming
problem.

In natural gas transportation networks, the gas flow is coming from several
sources that have different qualities, which means that we have multi-commodity
flow in the network. Consequently, the minimum-cost flow model in this situation
needs to be extended to handle this kind of flow. The pooling problem can be
viewed as an extension of the minimum-cost flow problem where the quality of
the flow depends on the sources from which it originates. At each source, the
quality is known, whereas in all other nodes, the quality of the flow blends linearly
(see Definition 2.1). In addition to the minimum-cost flow problem parameters,
let K be the set of all quality attributes. With each i ∈ S ∪ T , we define a real
constant qki for each k ∈ K. If s ∈ S, qks is referred to as the quality parameter
of attribute k at that source, and if t ∈ T , qkt is referred to as the quality bound
of attribute k at terminal t. We refer to all nodes in I = N \ (S ∪ T ) as pools.

Definition 2.1 (Linear blending). The quality at node i ∈ I ∪ T is defined as
a weighted average of the qualities at entering arcs, where the corresponding arc
flows constitute the weights. The quality at any arc (i, j) ∈ A is defined as the
quality at node i.

Definition 2.2. The pooling problem is to assign flow values to all arcs (i, j) ∈ A
such that, in addition to the constraints of the minimum-cost flow problem,
the quality bounds at the terminals are respected while the total flow cost is
minimized.

In the literature, when referring to the pooling problem, it is frequently as-
sumed that all maximal paths in G have exactly one source and one terminal,
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and at most one pool. We refer to this as the standard pooling problem, which
means that G is a tripartite graph, i.e. A ⊆ (S × I) ∪ (I × T ) ∪ (S × T ). The
optimization problem arising when no longer assuming the tripartite network
structure is referred to (Audet et al., 2004; Misener and Floudas, 2009) as the
generalized pooling problem.

Different variants of optimization models (or formulations) for the pooling
problem and its extensions exist in the literature. Generally, one can divide these
formulations into two main categories. The first one consists of flow and quality
variables, whereas the other uses flow proportions instead of quality variables.
In the next sections, we discuss these formulations and their extensions in more
details.

2.2 Formulations for the standard pooling problem

2.2.1 The quality formulation

The most straightforward formulation is achieved by spelling out the definition
given in Section 2.1, which in the literature is commonly referred to as the P-
formulation. Define fij as the flow along the arc (i, j) ∈ A, and wki (k ∈ K) as
the quality of the flow leaving node i ∈ S ∪ I (if i ∈ S let wki = qki ). Then the
P-formulation can be written as:

[P] min
f,w

∑
(i,j)∈A

cijfij , (2.1)

s.t.
∑
j∈N+

i

fij ≤ bi, i ∈ N \ T, (2.2)

∑
j∈N−

t

fjt ≤ bt, t ∈ T, (2.3)

∑
j∈N−

i

fji −
∑
j∈N+

i

fij = 0, i ∈ I, (2.4)

∑
j∈N−

i

wkj fji −
∑
j∈N+

i

wki fij = 0, i ∈ I, k ∈ K, (2.5)
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∑
j∈N−

t

wkj fjt − qkt
∑
j∈N−

t

fjt ≤ 0, t ∈ T, k ∈ K, (2.6)

fij ≥ 0, (i, j) ∈ A. (2.7)

Constraints (2.2)–(2.3) and (2.4) express the flow capacity bound at all nodes
and the flow conservation around pool nodes, respectively. Constraint (2.5) is the
result of direct application of Definition 2.1 to all pool nodes, whereas constraint
(2.6) follows by the application of the same definition to terminal t ∈ T , and the
quality bound constraint, wkt ≤ qkt for all k ∈ K, from the problem definition.
The number of bilinear terms in the P-formulation is proportional to the number
of quality attributes. The P-formulation is originally derived for the standard
pooling problem. Nevertheless, it can easily be generalized to handle more general
pooling networks than the formulation (2.1)–(2.7) does.

Haverly (1978) is the first to use the P-formulation to model the pooling
problem, and from that time, many researchers have used it. Among them are
Lasdon et al. (1979), Floudas and Aggarwal (1990), Foulds et al. (1992) and
Fieldhouse (1993). A practical application of the P-formulation has been shown
by Baker and Lasdon (1985) and Amos et al. (1997), who use this formulation
at Exxon refineries and New Zealand Refining company, respectively.

2.2.2 Proportion formulations

An alternative formulation relies on variables that represent proportions (frac-
tions) of flow instead of explicit quality variables. However, these types of for-
mulation are applicable only for the standard pooling problem. We can use
two types of proportion variables, source or terminal proportions, to replace the
quality variables. The idea of using proportion variables was first suggested by
Ben-Tal et al. (1994) who derived a formulation that relies on source proportion
variables, and they referred to it as the Q-formulation. Recently, by building on
the same idea, we gave two new formulations based on terminal proportions (see
Paper A).
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2.2.2.1 Formulations with source proportions

Define the proportion variables ysi (s ∈ S, i ∈ I) as the fraction of the flow
through pool i that originates from source s. That is, if the flow through i is
non-zero, we have ysi = fsi/

∑
t∈N+

i
fit. We keep variable fij as the flow along the

arc (i, j) ∈ A as in Section 2.2.1. We observe that, due to the introduction of the
new variables, the flow along arc (s, i), where s ∈ S and i ∈ I, can be represented
by
∑
t∈N+

i
ysi fit. Using this observation in constraint (2.5), the quality variables

can be expressed as wki =
∑
s∈N−

i
qks y

s
i for all i ∈ I, k ∈ K. Combining these

observations and the proportion variables with the flow variables, we arrive at
the Q-formulation written as:

[Q] min
f,y

∑
i∈I

∑
s∈N−

i

csiy
s
i

∑
t∈N+

i

fit +
∑
t∈T

∑
j∈N−

t

cjtfjt

s.t.
∑

i∈I∩N+
s

ysi
∑
t∈N+

i

fit +
∑

t∈T∩N+
s

fst ≤ bs, s ∈ S,

∑
t∈N+

i

fit ≤ bi, i ∈ I, (2.8)

∑
j∈N−

t

fjt ≤ bt, t ∈ T,

∑
s∈S∩N−

t

qks fst +
∑

i∈I∩N−
t

∑
s∈N−

i

qks y
s
i fit ≤ qkt

∑
j∈N−

t

fjt, t ∈ T, k ∈ K,

∑
s∈N−

i

ysi = 1, i ∈ I, (2.9)

fjt ≥ 0, t ∈ T, j ∈ N−t ,

0 ≤ ysi ≤ 1, i ∈ I, s ∈ N−i .

The number of nonlinear variables in the Q-formulation is independent of
the number of quality attributes, making this formulation more practical as the
number of quality attributes increases. Tawarmalani and Sahinidis (2002) ex-
tended the Q-formulation by applying the reformulation-linearization technique
(see Section 3.2.1) to constraints (2.8) and (2.9). That is, multiplying (2.9) by
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fit yields (2.10), similarly, (2.11) is obtained by multiplying (2.8) by ysi . The new
formulation is referred to as the PQ-formulation. The new constraints,

fit −
∑
s∈N−

i

ysi fit = 0, i ∈ I, t ∈ N+
i , (2.10)

∑
t∈N+

i

ysi fit − biysi ≤ 0, i ∈ I, s ∈ N−i , (2.11)

were already derived by Quesada and Grossmann (1995). Tawarmalani and
Sahinidis (2002) proved that the linear programming relaxation (constructed by
the McCormick envelopes, see Section 3.2.1) of the PQ-formulation dominates
the linear programming relaxation of both the P- and the Q-formulation.

2.2.2.2 Formulations with terminal proportions

The PQ-formulation has proportion variables corresponding to sources, and flow
variables on arcs entering terminals. Symmetric to the PQ-formulation, we sug-
gest in Paper A (Alfaki and Haugland, 2012b) a formulation with proportion
variables corresponding to terminals, and flow variables on arcs leaving sources.

Define for all pools i ∈ I, yti as the proportion of the flow at i destined for
terminal t ∈ T . That is, we let yti = fit/

∑
s∈S fsi when the latter sum is positive.

Hence, the new formulation, referred to as the TP-formulation, is given as follows:

[TP] min
f,y

∑
s∈S

∑
j∈N+

s

csjfsj +
∑
i∈I

∑
t∈N+

i

city
t
i

∑
s∈N−

i

fsi

s.t.
∑
j∈N+

s

fsj ≤ bs, s ∈ S,

∑
s∈N−

i

fsi ≤ bi, i ∈ I,

∑
s∈S∩N−

t

fst +
∑

i∈I∩N−
t

∑
s∈N−

i

fsiy
t
i ≤ bt, t ∈ T,

∑
s∈S∩N−

t

qks fst +
∑

i∈I∩N−
t

∑
s∈N−

i

qks fsiy
t
i ≤ qkt

∑
j∈N−

t

fjt, t ∈ T, k ∈ K,

∑
t∈N+

i

yti = 1, i ∈ I,
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∑
t∈N+

i

fsiy
t
i − fsi = 0, s ∈ N−i , i ∈ I, (2.12)

∑
s∈N−

i

fsiy
t
i − biysi ≤ 0, i ∈ I, s ∈ N−i , (2.13)

fsj ≥ 0, s ∈ S, j ∈ N+
s ,

0 ≤ yti ≤ 1, i ∈ I, t ∈ N+
i .

The interpretation of the constraints is analogous to the PQ-formulation. Con-
straints (2.12) and (2.13) are redundant. Following the pattern of the PQ-
formulation, they are included to strengthen the relaxation. A comparison to
the PQ-formulation showed that the formulations do not in general have equal
strength, but none dominates the other (see Paper A).

In Paper A (Alfaki and Haugland, 2012b), we develop a new proportion for-
mulation by combining both source and terminal proportions in one model. It
follows from the definition of ysi and yti that ysi fit and ytifsi both can be inter-
preted as the flow along the unique path connecting source s ∈ S, pool i ∈ I and
terminal t ∈ T . Given this observation, the STP-formulation can be derived by
combining the variables and the constraints from both models.

In the same paper, it has been shown that the linear relaxation of the STP-
formulation is at least as tight as the relaxations of both the PQ-, and the TP-
formulations. The experiments presented in the paper showed that the STP-
formulation in some instances is tighter than both its competitors (see Paper A
for complete details).

2.3 Formulations for the generalized pooling problem

2.3.1 A hybrid formulation

Audet et al. (2004) applied their branch-and-cut algorithm to both the P- and
Q-formulation and found that the Q-formulation is the more favorable in their
algorithm. They also observed that the Q-formulation is not applicable to net-
works where flow streams leaving one pool may be blended in some pools further
downstream in the network. Therefore, the Q-formulation in such networks is no
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longer a bilinear model. In fact, the model will contain terms that are products
of two proportion variables. In order to avoid terms where proportion variables
are squared, Audet et al. (2004) introduced such variables exclusively for pools
that only have sources as in-neighbors, and quality variables for the remaining
pools. Denote the former subset of pools I1. For each pool which in the sense
defined above is close to the sources, the hybrid model thus makes use of a pro-
portion variable ysi for each neighboring source s (as defined in Section 2.2.2.1).
For other pools, a quality variable wki for each attribute k ∈ K (as defined in
Section 2.2.1) is used. The hybrid formulation denoted [HYB] can be written as:

[HYB] min
f,y,w

∑
i∈N

∑
j∈N+

i \I1

cijfij +
∑
s∈S

∑
i∈N+

s ∩I1

∑
j∈N+

i

csiy
s
i fij , (2.14)

s.t.
∑

j∈N+
s \I1

fsj +
∑

i∈N+
s ∩I1

∑
j∈N+

i

ysi fij ≤ bs, s ∈ S, (2.15)

∑
i∈N−

t

fit ≤ bt, t ∈ T, (2.16)

∑
j∈N+

i

fij ≤ bi, i ∈ I, (2.17)

∑
j∈N+

i

fij −
∑
j∈N−

i

fji = 0, i ∈ I \ I1, (2.18)

∑
j∈N−

i ∩I1

∑
s∈N−

j

qks y
s
jfji +

∑
j∈N−

i ∩(I\I1)

wkj fji

−
∑
j∈N+

i

wki fij = 0, i ∈ I \ I1, k ∈ K, (2.19)

∑
j∈N−

t ∩I1

∑
s∈N−

j

qks y
s
jfjt +

∑
j∈N−

t ∩(I\I1)

wkj fjt

−qkt
∑
j∈N−

t

fjt ≤ 0, t ∈ T, k ∈ K, (2.20)

∑
s∈N−

i

ysi = 1, i ∈ I1, (2.21)

fij ≥ 0, (i, j) ∈ A, j /∈ I1, (2.22)

0 ≤ ysi ≤ 1, (s, i) ∈ A, i ∈ I1. (2.23)
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In Paper B (Alfaki and Haugland, 2012a), we have found a flaw in the original
hybrid formulation given by Audet et al. (2004). The authors gave this formula-
tion only in terms of an example of the generalized pooling problem. Therefore,
(2.14)–(2.23) is not only a correction but also a generalization of their formula-
tion.

2.3.2 A multi-commodity flow formulation

In order to extend the PQ-formulation to the generalized pooling problem, we
suggest in Paper B (Alfaki and Haugland, 2012a) a multi-commodity flow for-
mulation. We associate a flow commodity with each source s ∈ S, where at most
bs units of the commodity can enter the network. The commodity can leave
the network at any t ∈ T . At all other nodes, the commodity neither enters nor
leaves the network. Now, the variable fij defines the total flow of all commodities
along arc (i, j) ∈ A. For each i ∈ N , let Si be the set of sources from which there
exists a path to i in G (let Ss = {s} ∀ s ∈ S). Relative to the total flow leaving
node i ∈ S ∪ I, let the variable ysi (this is a generalization of the proportion
variable introduced in Section 2.2.2.1) denote the proportion of commodity s.
Define ysi = 0 if s /∈ Si and yss = 1 for all s ∈ S. Therefore, the quantity ysi fij
defines the flow of commodity s (meaning the commodity associated with source
s, we simply refer to s as a commodity whenever convenient) along the arc (i, j).
Based on this multi-commodity flow idea, we have the following formulation:

[MCF] min
f,y,x

∑
(i,j)∈A

cijfij

s.t.
∑
j∈N+

i

fij ≤ bi, i ∈ N \ T,

∑
j∈N−

t

fjt ≤ bt, t ∈ T,

∑
j∈N−

i

ysjfji −
∑
j∈N+

i

ysi fij = 0, i ∈ I, s ∈ Si, (2.24)

∑
j∈N−

t

∑
s∈Sj

(
qks − qkt

)
ysjfjt ≤ 0, t ∈ T, k ∈ K, (2.25)
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∑
s∈Si

ysi = 1, i ∈ I,

∑
s∈Si

ysi fij − fij = 0, (i, j) ∈ A, i ∈ I, (2.26)

∑
j∈N+

i

ysi fij − ysi bi ≤ 0, i ∈ I, s ∈ Si, (2.27)

fij ≥ 0, (i, j) ∈ A,

0 ≤ ysi ≤ 1, i ∈ I, s ∈ Si.

Constraints (2.25) express the quality bound at the terminals, and the constraints
(2.24) impose the flow proportions ysi on all arcs with start node i. Analogous to
(2.10)–(2.11), constraints (2.26)–(2.27) are redundant, but are added for the same
reason as (2.10)–(2.11) were added to the PQ-formulation. The linear relaxation
of the MCF-formulation dominates the corresponding linear relaxations of the
HYB-formulation and the generalized version of the P-formulation. In Paper
B (Alfaki and Haugland, 2012a), we present computational experiments with
this formulation and the P- and the HYB-formulation applied to 40 instances of
the generalized pooling problem. Experiments demonstrate that the suggested
formulation enables faster computation of the global optimum.

2.4 Formulations for extensions

Meyer and Floudas (2006) and Misener and Floudas (2010) introduced an ex-
tension of the pooling problem where the network topology is treated as decision
variables: There is a fixed charge for opening the arcs and activating the treat-
ment plants. Therefore, binary variables are needed and the model becomes a
mixed integer nonlinear program (MINLP). Such a problem has applications to
the design of wastewater treatment networks (Takama et al., 1980). The authors
use the P-formulation, since the flow of water may undergo reduction of con-
tamination through several stages of treatment plants. In general, the model
for the wastewater treatment problem defers from the pooling problem in two as-
pects: First, there is a fixed cost for opening arcs and installing treatment plants.
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Second, each treatment plant has a removal ratio, which represents the removal
technologies on this plant, for each contamination (quality) parameter.

Consider the parameters defined in Section 2.1. Let the set of sources represent
the effluent streams which usually come form industrial plants. The pools no
longer play the role of storage tanks or mixers only, in addition they may be used
to reduce the contaminant levels in the wastewater streams. For each treatment
plant i ∈ I, define the constant rki as the removal ratio of quality (contaminant)
k ∈ K. The terminals represent the exit side into which the treated wastewater
flows. Define cii as the unit cost of the flow going through treatment plant i ∈ I.
For each arc (i, j) ∈ A define dij as the fixed cost for opening this arc and dii as
the fixed cost of using the treatment plant i ∈ I. Define the binary variable zij
indicating whether arc (i, j) ∈ A is used, and zii as binary variable for using plant
i ∈ I. The formulation for the wastewater treatment problem given in (Meyer
and Floudas, 2006) can be written as:

min
∑
i∈I

 ∑
j∈N+

i

ciifij + diizii

+
∑

(i,j)∈A

(cijfij + dijzij), (2.28)

s.t.
∑
j∈N+

s

fsj ≤ bs, s ∈ S,

∑
j∈N+

i

fij ≤ bizii, i ∈ I,

∑
j∈N−

t

fjt ≤ bt, t ∈ T,

∑
j∈N+

i

fij −
∑
j∈N−

i

fji = 0, i ∈ I,

(
1− rki

) ∑
j∈N−

i

wkj fji −
∑
j∈N+

i

wki fij = 0, i ∈ I, k ∈ K, (2.29)

∑
j∈N−

t

wkj fjt − qkt
∑
j∈N−

t

fjt ≤ 0, t ∈ T, k ∈ K,

wki ≤
(
1− rki

)
max
s∈S

qks , i ∈ I, k ∈ K, (2.30)

zij , zii ∈ {0, 1}, i ∈ I, j ∈ N+
i ,

fij ≥ 0, (i, j) ∈ A.
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The objective (2.28) is minimization of the total fixed and variable cost associated
with use of the pipelines and installation of the treatment plants. We observe
that each quality k ∈ K of the flow leaving treatment plant i ∈ I will be reduced
by rki percent, and hence the quality balance constraint (2.29) follows. Constraint
(2.30) has been added to strengthen the formulation.

Another interesting extension of the standard pooling problem was proposed
by Misener and Floudas (2010). The purpose of their model is to maximize the
profit of blending reformulated gasoline, subject to environmental standards that
involve complex emission constraints.

In an oil and gas production planning context, sometimes the decision makers
must take into account newly discovered and developed oil and gas fields, and
consider these in the pipeline transportation system. However, knowledge of
different quality levels and capacities of the wells is needed in advance. To handle
such situations, Armagan (2009) and Li et al. (2011b) proposed the stochastic
pooling problem, which is an extension of the pooling problem accounting for
uncertain parameters present in the planning model. Examples of such uncertain
parameters are the quality parameters in the raw gas, the capacity bounds of
production sources, and the demands at the consumers side. Li et al. (2011a)
presented a stochastic MINLP formulation for this generalization of the pooling
problem, where the uncertainty in the parameters is given by a limited number
of scenarios.
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Solution methods

Many solution techniques have been suggested for the pooling problem.
They merely vary in how they deal with the bilinear terms that appear

in tracking of the regulated qualities. We have divided the solution methods
proposed in the literature into inexact and exact solution approaches.

3.1 Inexact/heuristic techniques

Heuristic algorithms are targeting large problem instances to find good solu-
tions at reasonable computational cost without guaranteeing global optimality.
Usually, these solutions are found by iteratively trying to improve a candidate
solution with regard to a given measure.

3.1.1 Improvement heuristics

One of the earliest heuristic algorithm proposed to solve the pooling problem is
the iterative method proposed by Haverly (1978). This method starts by estimat-
ing and fixing the pool qualities, and then the resulting linear programming is
solved. The new qualities are calculated using the flow values from the solution
of the linear program (LP). If the new and the old qualities coincide the method
stops, otherwise it constructs a new LP using the new qualities and repeats these
steps until it converges.

The solution returned by the iterative method depends on the initial guess
of the values of the quality variables. Moreover, as pointed out in (Haverly,
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1979, 1980), this method may not provide a feasible solution, and if it does, the
solution it provides is not always the global optimum. Main (1993) observed that
the iterative method is unstable in large instances. Practical implementations of
the iterative method have been discussed by White and Trierwiler (1980) who
used the distributive recursion, which is an improved version of Haverly’s iterative
method, at SoCal1, where they managed to model and solve practical instances.
As shown by Lasdon and Joffe (1990), the distributive recursion in some sense is
more closely related to the successive linear-programming technique, a method
that will be discussed in Section 3.1.3.

A more general heuristic for the iterative method has been suggested by Audet
et al. (2004), and is referred to as the alternate heuristic (ALT). This heuristic
is a two step algorithm that, starting from a feasible point, the first step freezes
one set of the variables appearing in the bilinear terms, and solves the resulting
for the remaining variables in the model. For example in the P-formulation (see
Section 2.2.1), it fixes wki (i ∈ I, k ∈ K), and solves for fij for all (i, j) ∈ A.
In the second step, the flow variables on arcs leaving the pools are fixed to the
values given by the solution to the LP solved in the first step. The resulting LP
is then solved for the quality variables and the flow variables on arcs leaving the
sources. These two steps are repeated until a fixed point is reached.

The ALT heuristic hence alternates between two linear programs, each of
which corresponds to fixing one set of variables occurring in bilinear terms. This
contrasts the method of Haverly (1978), which corresponds to fixing the flow on
all arcs in the second step.

All heuristic algorithms discussed so far are improvement heuristics, which,
based on the fact that freezing one set of the variables that participate in the bi-
linear terms, results in a linear program (LP). Audet et al. (2004) also suggested
a variable neighborhood search (VNS) heuristic, where the local search proce-
dure is provided by the ALT heuristic. VNS initially defines a set of pre-selected
neighborhood structures by modifying the feasible extreme points of the LP re-
sulting from ALT. Starting with one neighborhood, this method moves from the
current solution by finding a new solution using local search, where the starting
point is drawn randomly within a neighborhood of the current solution. If the

1Standard oil Company of California (SoCal) is the old name of Chevron U.S.A. Corporation.
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new solution does improve the current solution, it becomes the new current solu-
tion. Otherwise, it selects the next neighborhood and proceeds with the current
solution. The algorithm repeats this until the maximum number of iterations is
reached.

3.1.2 A construction heuristic

In Paper E (Alfaki and Haugland, 2011b), we propose a construction heuristic
for the pooling problem. The heuristic considers a sequence of subgraphs, each
of which contains a single terminal, and an associated bilinear program for opti-
mizing the flow to the terminal. The optimal solution to each subproblem serves
as a feasible augmentation of the total flow accumulated so far. Experimental
results on 20 large-scale standard pooling problem instances indicate that, in
large instances, our heuristic algorithm outperforms multi-start local optimiza-
tion techniques provided by commercially available software. Our heuristic can
also easily be extended to tackle generalized pooling problem instances.

3.1.3 Successive linear programming

Successive linear programming (SLP) has traditionally been used to solve the
pooling problem in the petrochemical industries. This technique is also referred
to as the method of approximate programming (MAP) by Griffith and Stewart
(1961) of Shell oil company, who originally proposed and tested the approach on
petroleum refinery optimization. Perhaps the major reasons for this popularity
are its ability to employ available linear programming codes and solve large in-
stances (Baker and Lasdon, 1985). The method starts with an initial guess of
the variable values, approximates the bilinear terms using the Taylor’s first order
expansion at the initial guess, and then solves the resulting LP. The procedure
is repeated with the LP solution as the new base of the Taylor expansion, until
convergence to a fix point is obtained. Lasdon et al. (1979) applied SLP and
the generalized reduced gradient algorithms to the pooling problem, where they
showed some advantages over the iterative method of Haverly. Some improve-
ments of the SLP are reported by Palacios-Gomez et al. (1982), Zhang et al.
(1985), Baker and Lasdon (1985) and Sarker and Gunn (1997).

31



Section 3.1. Inexact/heuristic techniques

Many successful applications of the SLP technique in the leading oil and gas
companies were reported in the literature. Among these is the work of Simon
and Azma (1983) at Exxon, where the authors documented Exxon experience
with the SLP technique implemented in the system PLATOFORM. Later, Baker
and Lasdon (1985) described Exxon’s attempt to unify the treatment of nonlin-
ear functions appearing in their mathematical programming system, which was
accomplished by the introduction of nonnegative deviation variables in the SLP
linearized subproblem.

3.1.4 Benders decomposition

Benders (1962) has proposed a well-known and popular decomposition method
for solving nonlinear optimization problems, where the variables are partitioned
into complicating and non-complicating variables. The partition is made such
that fixing the complicating variables reduces the problem to a linear program
in the remaining variables, parametrized by the value of the complicating ones.

Based on Geoffrion’s generalization of Benders decomposition (Geoffrion,
1972), Floudas and Aggarwal (1990) proposed a method that searches for a
global solution to the pooling problem. Following the variable partition of
Benders, the original problem can be partitioned into a subproblem where the
complicating variables are fixed, and a master problem in the complicating vari-
ables. The method iterates between the subproblem and the master problem to
identify an optimal solution. Despite the satisfactory behavior in some instances,
this method could not guarantee convergence to a global solution.

3.1.5 Discretization approaches

To approximate the bilinear constraints, Tomasgard et al. (2007) and Rømo et
al. (2009) discretized the quality variables which resulted in a mixed integer
programming problem (MILP). A similar approach is used in (Faria and Baga-
jewicz, 2008) for the wastewater treatment problem, and replaced the bilinear
constraints by “big M” constraints. Pushing in the same direction, Pham et al.
(2009) and Pham (2007) eliminated the bilinear terms by discretizing the quality
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variables. Consequently, the pooling problem is approximated by a mixed-integer
programming problem.

In Paper D (Alfaki and Haugland, 2011a), we propose a method that linearizes
the bilinear terms by discretizing the domain of the proportion variables into a
fixed number of points. The resulting model serves as an approximation to the
pooling problem. This approach is a generalization of the discretization approach
proposed by Pham et al. (2009). Computational experiments on a set of large-
scale generalized pooling problem instances show that this approach outperforms
traditional solution methods where continuous models are used, even when a
very coarse discretization is applied. With a fine discretization, however, the
discretization approach implies a large computational effort.

3.2 Exact solution techniques

3.2.1 Branch-and-bound algorithms

Most exact global optimization methods are based on a branch-and-bound frame-
work. In general, the branch-and-bound algorithm starts by partitioning the
feasible region of the problem into two or more sub-regions (branching process),
and constructs a relaxation for each sub-region. This yields a lower bound on
the global minimum cost, possibly also an upper bound (bounding process). The
branching process is then applied recursively, and defines a search tree in which
the nodes represents the sub-regions. Nodes in the resulting search tree are
pruned when its lower bounds exceed the best upper bound found so far. The
algorithm halts when the tree is empty or the best lower and upper bounds are
sufficiently close.

3.2.1.1 Primal-dual decomposition methods

In an effort to improve the method described in Section 3.1.4, Visweswaran and
Floudas (1990) suggested the first global optimization algorithm based on a de-
composition technique and branch-and-bound. The problem is decomposed into
primal and dual subproblems to provide upper and lower bounds on the global
solution. Gradient information of the Lagrange function is used to partition the
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current domain into sub-domains, and the procedure is repeated until it con-
verges to the global solution. Some improvements of this method are observed
in e.g. (Visweswaran and Floudas, 1993) and (Androukakis et al., 1996).

3.2.1.2 Linear relaxation based algorithms

Linear relaxations of problems involving some bilinear function f(x, y) = xy,
where (x, y) ∈ D, are obtained by the convex and concave envelopes (see Section
1.2) of f , denoted vexDf(x, y) and cavDf(x, y), respectively. It can be shown
(see Al-Khayyal and Falk, 1983; McCormick, 1976) that the convex and concave
envelopes of f on the rectangle D = [x, x]× [y, y] are given by, respectively,

vexDf(x, y) = max
{
yx+ xy − xy, yx+ xy − xy

}
, (3.1)

cavDf(x, y) = min
{
yx+ xy − xy, yx+ xy − xy

}
. (3.2)

Linear relaxations of the pooling problem formulations given in Section 2.2
are obtained by replacing all occurrences of the bilinear terms by new variables,
and by bounding each new variable between its corresponding envelopes. A
branch-and-bound algorithm based on such relaxations, where in each iteration
the rectangle is divided into four sub-rectangles, was first applied to the pooling
problem by Foulds et al. (1992). Audet et al. (2004) suggested a branch-and-cut
algorithm, which is an improvement of the above branch-and-bound technique.

The reformulation-linearization technique (RLT) (Sherali and Alameddine,
1992) is a methodology for constructing tight linear relaxations of a noncon-
vex problem. The second step, linearization, was already discussed above. The
first step, reformulation, is to add new valid constraints obtained by multiplying
two original constraints.

It is interesting to note that one can arrive to the McCormick’s convex and
concave envelopes (3.1)–(3.2) by applying the RLT to the bound constraints of x
and y. For example, multiplying (x− x) ≥ 0 and (y − y) ≥ 0 yields the constraint
xy ≤ yx+ xy − xy, which is one of the constraints suggested by (3.2).

Quesada and Grossmann (1995) applied the RLT to obtain a relaxation which
is used within a spatial branch and bound algorithm that uses a nonlinear solver
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to provide upper bounds. The result in several instances showed that a few
branch-and-bound nodes were needed to verify the global solutions.

Sahinidis and Tawarmalani (2005) applied their branch-and-reduce algorithm,
which uses the McCormick’s relaxation as lower-bounding and local and random
search as upper-bounding techniques. In addition, it uses various range reduction
techniques. This algorithm is implemented in the generic global optimization
code, BARON (Sahinidis, 1996), by use of the PQ-formulation. When applying
their code to standard instances from the literature, they were able to reduce the
running time and the size of the search tree significantly.

Liberti and Pantelides (2006) proposed an improved relaxation technique re-
ferred to as the reduced reformulation linearization technique (RRLT), and in-
corporated it in a spatial branch-and-bound algorithm. The authors also sug-
gested an algorithm that automatically constructs this relaxation for large and
sparse NLPs such as the pooling problem. They applied their algorithm to com-
mon pooling instances where the results showed that tight linear relaxations and
hence faster convergence are provided.

Piecewise-linear relaxations have been proposed by Wicaksono and Karimi
(2008) and Gounaris et al. (2009), who utilize piecewise linearization schemes by
partitioning the original domain of the variables involved in the bilinear terms into
smaller sub-domains. Applying the McCormick relaxation for each of the result-
ing sub-domains, and using binary variables to select the optimal sub-domain,
resulted in an efficient relaxation that can be used in the branch-and-bound
framework to accelerate convergence.

3.2.1.3 Lagrangian relaxation based algorithms

The Lagrangian relaxation is a useful technique when the problem’s constraints
can be decomposed into “difficult” and “easy” ones. The difficult constraints are
relaxed by adding them to the objective with weight (Lagrange multipliers), and
thereby the solution provides a lower bound on the global solution of the original
problem. In the pooling problem, the difficult constraints are the bilinear ones.
As shown in Chapter 2, these constraints arise from quality balances around
pools and the quality bounds at terminals.
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Ben-Tal et al. (1994) studied the Lagrangian relaxation of their Q-formulation
(see Section 2.2.2.1 for details). The associated Lagrangian dual, which gives
a lower bound on the minimum cost, is solved by analyzing the simplex{
y ∈ RS×I :

∑
s∈N−

i
ysi = 1

}
. This relaxation is integrated in a branch-and-

bound algorithm that divides the simplex into smaller ones. Upper bounds on
the global minimum cost are found by local search.

Adhya et al. (1999) introduced a Lagrangian relaxation by dualizing all the
constraints in the P-formulation except for the variable bounds. The solution
of the resulting Lagrangian subproblem is approximated by solving a sequence
of MILPs. They also proved that the Lagrangian relaxation provides tighter
lower bounds than standard linear relaxation does in the case of more than one
quality parameter. A similar Lagrangian relaxation was suggested by Almutairi
and Elhedhli (2009).

3.2.2 Semidefinite programming relaxations

In Paper C (Frimannslund et al., 2010), we suggest a technique based on a series
of semidefinite programs (or linear matrix inequality (LMI) relaxations) to solve
the pooling problem. LMI relaxations are used to turn general (nonconvex)
optimization problems, where the objective and the constraints are polynomials,
into a sequence of convex positive semidefinite programs (Lasserre, 2001a,b).

The general idea of this technique is as follows. Consider the optimization
problem,

f∗ = min
x∈Rn

{f0(x) : x ∈ Ω} , (3.3)

and assume for simplicity that Ω is compact and f0 is continuous. Then the prob-
lem (3.3) can be turned into a convex problem by minimizing over the set, B(Ω),
of all Borel probability measures µ supported on Ω. The resulting optimization
problem,

µ∗ = min
µ∈B(Ω)

∫
f0(x)dµ,

has the same global optimum value as the original problem. However, finding
the probability distribution µ∗ on the support Ω is done by characterizing its
moment sequences, which is an infinite-dimensional convex optimization problem
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known as the moment problem (Lasserre, 2010). Instead of solving an infinite-
dimensional problem, a truncated moment sequences are determined, which can
be cast as an LMI relaxation. By increasing the order of the moment sequences,
a tighter relaxation is obtained.

By applying the above technique to the pooling problem with a single quality
parameter, Frimannslund et al. (2010) show that if the feasible set has a nonempty
interior, then we have a finite sequence of LMI relaxations with increasing order
that converges to the global optimum. For a fixed relaxation order, this technique
thus provides tight lower bounds for the global minimum cost. Based on the
experiments, we show that for low order relaxations, the lower bound provided
by this technique matches the true global optimum in several small instances.

3.3 Summary

A review of the literature on solution techniques proposed to solve the pooling
problem is given in this chapter. These techniques are classified as improvement
heuristics, successive linear programming, decomposition techniques and branch-
and-bound algorithms. Global optimization algorithms are quite effective for
instances of small to moderate size. In larger instances, however, global opti-
mizers fail to converge in reasonable time, while existing local optimizers depend
largely on good initial guesses.
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Chapter 4

Summary of papers

In this chapter, we give an overview of the five papers constituting the thesis.
Two of the papers are focused on modeling (see Section 4.1), while the topic

of the others is solution methods (see Section 4.2). With the exception of Paper
E, each paper was presented in at least one international conference. Papers A
and C are direct extensions of conference papers (not included).

4.1 Strong formulations

4.1.1 The standard pooling problem (Paper A)

Paper A, entitled “Strong formulations for the pooling problem” and authored
by Mohammed Alfaki and Dag Haugland, is published in the Journal of Global
optimization, doi: 10.1007/s10898-012-9875-6. A short version of the paper is
presented at Toulouse Global Optimization Workshop (TOGO 2010) in Toulouse,
France, and published in the same conference proceedings (Alfaki and Haugland,
2010). The paper was also presented at the 4th Nordic Optimization Symposium,
2010, in Århus, Denmark.

In this paper, we develop new formulations for the standard pooling problem
based on terminal proportion variables (see Section 2.2.2.2). In the strongest
model, we combine source and terminal proportion variables. This formulation
is proved to be stronger than other formulations based uniquely on source pro-
portions or quality variables. A new branching strategy that performs well with
the strongest formulation is presented.
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Main contributions:

• We give a formal proof of the strong NP-hardness1 of the pooling problem
by constructing a polynomial reduction from the maximum independent
vertex set problem (MIVS)2. We also prove that the strong NP-hardness
persists in two interesting special cases: (i) If the networks have only one
pool, (ii) If we consider maximizing the total flow instead of minimizing
the total cost.

• We extend the idea of proportion variables in the PQ-formulation (see
Section 2.2.2.1), and give two new formulations. The first is the TP-
formulation (see Section 2.2.2.2), which contrasts the PQ-formulation in
that it uses terminal proportions instead of source proportions. This for-
mulation is comparable to the PQ-formulation in terms of strength. The
second new formulation is the STP-formulation (see Section 2.2.2.2), which
combines source and terminal proportions, and proves to have stronger
linear relaxation than both the PQ-, and TP-formulations.

• The strength of the STP-formulation is tested on a set of well-studied pool-
ing problem instances from the literature, and on large randomly generated
instances. Computational experiments have confirmed the strength of the
STP-formulation. In most of the instances, the STP-formulation turned
out to yield stronger lower bounds than the competing formulations.

• We develop a special branching rule suitable for the STP-formulation, which
is incorporated in a branch-and-bound algorithm. Computational experi-
ments with an implementation of the algorithm indicate that this branching
rule helps to improve the lower bound on the global optimum.

4.1.2 The generalized pooling problem (Paper B)

Paper B, entitled “A multi-commodity flow formulation for the generalized pool-
ing problem” and authored by Mohammed Alfaki and Dag Haugland, is published
in Journal of Global optimization, doi: 10.1007/s10898-012-9890-7. A prelimi-

1A problem is a strongly NP-hard if it remains NP-hard even when all of its parameters are
bounded by a polynomial in the input size.

2The MIVS problem is to find a largest possible subset of the vertices in a graph, such that
all pairs of vertices in the subset are non-neighbors.
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nary version was presented at the 3rd Nordic Optimization Symposium, 2009, in
Stockholm, Sweden.

In this paper, we develop a multi-commodity flow formulation for the gener-
alized pooling problem (see Section 2.3.2). This formulation is a generalization
of a well-established formulation for the standard problem, and we demonstrate
that it is stronger than alternative, popular formulations from the literature.

Main contributions:

• We develop a multi-commodity flow formulation for the generalized pooling
problem. When applied to the standard pooling problem, this formulation
coincides with PQ-formulation.

• We prove that our new formulation is stronger than both the P-formulation
(see Section 2.2.1) and the HYB-formulation (see Section 2.3.1).

• The paper also presents computational experiments of 40 instances with
up to 35 nodes and 12 quality attributes confirming that the suggested
formulation performs better. They confirm that the suggested formulation
enables faster computation of (strong bounds on) the global optimum.

4.2 New solution methods

4.2.1 LMI relaxations (Paper C)

A short version of Paper C, which is entitled “Solving the pooling problem with
LMI relaxations” and authored by Lennart Frimannslund, Mohamed El Ghami,
Mohammed Alfaki, and Dag Haugland, is presented at Toulouse Global Opti-
mization Workshop (TOGO 2010) in Toulouse, France, and published in the
conference proceedings (Frimannslund et al., 2010) (reviewed). In the thesis, we
include the complete version of the paper.

In this paper, we suggest a solution framework based on a sequence of LMI
relaxations (see Section 3.2.2) to solve standard pooling problems with a single
quality parameter. We have considered both the maximum flow and the minimum
cost versions of the problem. Based on our experiments, we show that standard
pooling instances with a single quality parameter can be solved at low LMI
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relaxation orders. However, solving such relaxation implies a large computational
effort, which for large instances makes the method impractical to use.

Main contributions:

• We suggest a technique that provides tight lower bounds for the global ob-
jective function value, which, under certain conditions, converges monoton-
ically to the global optimum. The method applies to the standard pooling
problem with a single quality parameter.

• The experiments show that, in several small instances, the maximum flow
and minimum cost versions of the problem can be solved at LMI relaxation
order 2 and 3, respectively.

4.2.2 A discretization approach (Paper D)

Paper D, entitled “Comparison of discrete and continuous models for the pooling
problem” and authored by Mohammed Alfaki and Dag Haugland, is presented
at the 11th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS’11), 2011, in Saarbrücken, Germany. The
paper is reviewed and published in the conference proceedings.

In this paper, we generalize the discretization approach proposed in (Pham
et al., 2009) to the generalized pooling problem. This method approximates the
problem by discretizing the proportion variables into a given number of points,
and consequently, the resulting model is a mixed-integer programming problem
(see Section 3.1.5). Through numerical experiments on large scale instances, we
compare our discrete formulation with a continuous formulation. The purpose of
this is to investigate whether discrete models are more suitable for finding good
solutions when the global optimum is out of reach. By lower bounding techniques,
we also aim to estimate the error introduced by discretizing the solution space.

Main contributions:

• We propose a method that linearizes the bilinear terms at the cost of intro-
ducing binary variables. The resulting model serves as an approximation
to the generalized pooling problem.
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• Computational experiments on a set of large-scale instances show that this
approach is superior to approaches that use continuous variables, even when
a very coarse discretization is applied.

4.2.3 A construction heuristic method (Paper E)

Paper E, entitled “Computing feasible solutions to the pooling problem” and
authored by Mohammed Alfaki and Dag Haugland, is submitted to Annals of
Operations Research (the first review is currently in progress).

In this paper, we give a construction heuristic for the standard pooling prob-
lem. It constructs a sequence of subgraphs, each of which contains a single ter-
minal, and associated bilinear programs for optimizing the flow to the terminal.
The optimal solution to each bilinear program serves as a feasible augmentation
of the total flow accumulated so far. The suggested method is designed to give
good feasible solutions, particularly in large instances, and does not guarantee
to find the optimal solution. In order to keep the work focused, we confine the
study to the standard version of the problem, but it is straightforward to extend
the proposed method to the generalized version.

Main contributions:

• We develop a greedy construction heuristic method for the pooling problem
(see Section 3.1.2).

• Experimental results on 20 large-scale instances indicate that, in large in-
stances, our heuristic algorithm outperforms multi-start local optimization
techniques provided by commercially available software.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In the last several decades, many inexact and exact solution methods to ap-
proach the pooling problem have been suggested in the literature. Although

inexact solution methods are intended for large problem instances, most of these
are under the influence of starting points, and hence can easily be trapped at
weak solutions. On the other hand, most exact solution methods are based on
branch-and-bound algorithms requiring strong relaxations in order to converge
fast. The thesis has contributed to both modeling and algorithmic aspects by
developing strong formulations and efficient solution methods for the pooling
problem.

By constructing a polynomial reduction from the MIVS problem, we have
proved formally that the pooling problem is strongly NP-hard. We have also
showed that the problem remains strongly NP-hard when there is only one pool
and no direct arcs from sources to terminals. Concerning the development of
strong formulation for the standard pooling problem, we have derived new formu-
lations based on terminal proportion variables. In the strongest model, referred to
as the STP-formulation, we have combined source and terminal proportion vari-
ables. This formulation is proved to be stronger than competing formulations
from the literature. Along with this model, we have suggested a new branch-
ing strategy that exploits the redundancy in the STP-formulation. The strength
of the formulation and effectiveness of the branching strategy are demonstrated
experimentally.
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For the generalized pooling problem, we have proposed a multi-commodity
flow formulation. The proposed model is an extension of the PQ-formulation for
the standard version of the problem. We have proved that our multi-commodity
flow formulation has stronger relaxation than state-of-the-art formulations from
the literature. Experiments also confirm that ours performs better.

Three solution methods have been suggested in the thesis. A procedure based
on a sequence of LMI relaxations has been proposed to solve the pooling problem
with a single quality parameter. The experiments indicate that small instances
of this problem can be solved with LMI relaxation of order 2 or 3. However,
solving such relaxations implies a large computational effort.

We have also developed a mixed integer programming model, serving as an
approximation to the pooling problem, by discretizing the proportion variables.
Hence, bilinear constraints are transformed into linear ones, at the computational
cost represented by the introduction of binary variables. Computational experi-
ments on a set of large-scale instances show that a discrete model is superior to
its continuous ancestor.

In the last approach, we have developed a construction heuristic for the pool-
ing problem. It considers a sequence of subgraphs, each of which contains a single
terminal, and an associated bilinear program for optimizing the flow to the ter-
minal. The optimal solution serves as a feasible augmentation of the total flow
accumulated so far. Experimental results indicate that, in large instances, our
heuristic algorithm outperforms multi-start local optimization techniques pro-
vided by commercially available software.

5.2 Future work

Regarding the method developed in Paper D, a topic for future research is to
develop an adaptive discretization rule. Computations can be saved if the number
of discretization points can be kept small, while gradually focusing the search on
solution sets of decreasing size. This can also be integrated in a branch-and-
bound algorithm to provide tighter upper bounds on the global optimum.

In Paper E, instead of iterating the construction heuristic on the set of ter-
minals, we will investigate a similar heuristic that considers the set of sources.
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Extending the idea for other extensions of the pooling problem is also a possible
direction for future work.

In the models for pipeline transportation of natural gas, we have extended
the traditional flow models by adding constraints that track the flow quality
throughout the system. Additional type of constraints that seem to be of partic-
ular importance when allocating flow in natural gas transportation networks is
the interrelation between pipeline flow and pressure. That is, the inlet pressure
of a pipeline is a function of upstream flow, and the outlet pressure is given by
the inlet pressure and the pipeline flow. Increasing the flow implies a reduction
of the outlet pressure, which in its turn reduces the flow capacity of downstream
links. Inlet and outlet pressure variables must be introduced for each pipeline,
and the pipeline flow must be modeled as a (nonlinear) function of these. In the
ideal case, this is accomplished by use of e.g. the Weymouth equation (Osiadacz,
1987), which states that the square of the flow is proportional to the difference
of the squares of inlet and outlet pressures. That takes the following form:

f2
ij = Wij

(
p2
i − p2

j

)
, (i, j) ∈ A.

where fij is the flow through pipeline (i, j) ∈ A, Wij is a constant which depends
on pipeline physical properties, and pi is the pressure at node i ∈ N . Under cer-
tain conditions, such relations can be formulated in terms of convex constraints.
However, when inhomogeneous flow streams are pooled, this is no longer realistic,
and the capacity constraints become nonconvex.

When two or more pipelines meet at a junction node (pool), flow streams of
unequal pressure are leveled to the smallest pressure value. In order to model
this, a binary variable is required for each valve that can be either open or
closed. Consequently, an otherwise continuous flow model is transferred into
a discrete model, and thereby becomes much more difficult to solve. In fact,
taking the above mentioned constraints into account, the pipeline transportation
model of natural gas becomes a mixed integer nonlinear program (MINLP). In
the suggested future work, we will investigate how the flow problems mentioned
above can be formulated and solved. We will in particular study how solution
approaches based on models with proportion variables can be applied.
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