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Introduction

Asthma is a disease characterized by episodic airflow
obstruction that is at least partially reversible, lung
inflammation, particularly in the airways’ hyper-respon-
siveness (AHR). Both the structure and function of the
airways are altered in asthma. Airway remodelling in
asthma induces not only structural changes but also
fundamental changes in the relationships between and
among various airway constituents [1].

Occupational asthma is the most commonly reported
occupational lung disease in many industrialized coun-
tries. Diisocyantes, highly reactive low molecular weight
compounds used in the production of polyurethanes, are
the most commonly identified cause of occupational
asthma, a disease that accounts for nearly 10% of all
adult-onset asthma [2].

The major diisocyanates currently in use are methy-
lene diphenyl diisocyanate (MDI), toluene diisocyanate
(TDI), hexamethylene diisocyanate (HDI) [3], which are

used in variety of industries including polyurethane foam
manufacturing, automobile body painting and repair and
plastics manufacturing. It is estimated that as many as
5% of workers exposed to diisocyanates develop asthma,
which may persist indefinitely even in the absence of con-
tinued exposure [4]. Clinically, diisocyanate asthma dis-
plays similar manifestations to allergic asthma induced
by high molecular weight allergens, suggesting common
pathogenic processes, although clinical studies have high-
lighted several important differences, such as a low
association with atopy, a low prevalence of specific
immunoglobulin E (IgE) antibodies [5], a mixed T helper
1/T helper 2 response and the presence of high numbers
of antigen-specific CD8 T cells [6].

Although the pathogenic mechanism of TDI-induced
asthma is far from clear, it is regarded that specific sensi-
tization to the compound involves binding of TDI to car-
rier molecules [7–9]. Specific IgE to isocyanate has been
reported to be of benefit in the diagnosis of occupational
asthma [10–12]. Particularly, IgG-1 was suggested to be
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Abstract

Toluene diisocyanate (TDI), a highly reactive industrial chemical, is one of the
leading causes of occupation-related asthma in industrialized countries. The
pathogenesis of TDI-induced asthma, however, remains not fully understood,
in part due to lack of appropriate animal models. Twenty five female BALB/c
mice (age: 8 weeks) were randomly divided into 5 groups: Ovabumin (OVA);
OVA peptide amino acid residues No. 323–339 (Pep); TDI; alum and physio-
logical saline. Mice were intraperitoneally injected with 25 lg OVA or pep
absorbed on 300 lg alum, 300 lg alum or saline on days 0, 7 and 14. For
the TDI group, mice were sensitized subcutaneously with 20 ll neat TDI on
day 0; 20 ll of TDI in olive oil (1:10) on days 7 and 14; on days 21–23.
Then each group was challenged intranasally with 20 ll of 1% OVA, 1%
Pep, 1% TDI, 10% alum and saline respectively. On day 28, mice were killed
under pentothal anesthesia. The results demonstrated that neutrophil-dominant
inflammation with a few eosinophil infiltration occurred in the peri-bronchial
and peri-vascular regions of the lungs. This was accompanied by hyperplasia/
hypertrophy of cells lining the airways and mucus production as shown by HE
staining. Positive immunohistochemical MBP staining in parenchyma was also
shown. Th2 cytokine IL-4 and IgE production were significant increased 5
days after last challenge while IFN-c level was below the detection limit. Con-
clusion: the clear elevation of IL-4 and IgE could allow to conclude a possible
Th2-like dominated allergic response in TDI-exposed BALB/c mouse model.
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closely associated to TDI exposure and in conjugated
form can be a useful marker for progress of TDI-asthma
[12–14]. Maestrelli et al. reported that increased levels of
Th2 cytokines were detected in the airways and bronchial
mucosa of TDI asthmatics [15]. However, some authors
observed Th1-like response characterized by an increase
in the number of neutrophils and the levels of IFN-c and
IL-8 [16–18].

Because the cellular mechanisms responsible for diis-
ocyanate-induced asthma and the determinants of expo-
sure are not fully defined, diagnosis and control have
been difficult. To help addressing these issues, we
developed a murine model of toluene diisocyanate
hypersensitivity, in which we used intraperitoneal injec-
tion for sensitization and intranasal administration to
challenge the airways.

Materials and methods

Experimental animals. Female BALB/c mice (approxi-
mately 20 g and 8 weeks old) were obtained from Vivar-
ium animal house, Haukeland University Hospital
(Bergen, Norway). They were kept in a conventional ani-
mal house with 12-h dark/light cycles. They received tap
water and pelleted pathogen-free food (Special Diet Servi-
ces, Witham, Essex, England) ad libitum. All experiment
procedures were approved by the local Ethical Committee
for Animal Experiment.

Chemicals. Toluene diisocyanate (2,4 to 2,6-isomers;
ratio, 80:20; lot S36694 311) was obtained from Merck-
Schuchardt, Hohenbrunn, Germany. Ovalbumin (elec-
trophoretic purity 99%, lot 81F-8230) was purchased
from Sigma Chemical Company, St Louis, MO, USA. An
Ovalbumin peptide amino acid residues No. 323–339
(Pep) was synthesized by semi-automatic peptide synthes-
izer (LKB Biochrom, Ltd, Cambridge, England) as des-
cribed before by Johnsen and Elsayed [19]. Imject� alum
(lot E164 107) was obtained from Pierce Biochnology
Inc., Rockford, IL, USA.

Sensitization protocol. Twenty-five mice were randomly
divided into five groups: (a) Ovalbumin (OVA); (b) OVA
323–339 (Pep) [19]; (c) toluene diisocyanate (TDI); (d)
alum control; and (e) saline control.

Animals were allowed to acclimatize for 1 week and
then were actively sensitized by intraperitoneal (i.p.)
injections of 25 lg of OVA absorbed on 300 lg of alum,
25 lg of Pep absorbed on 300 lg of alum and on days
0, 7 and 14. For the TDI-mice the sensitization was done
by subcutaneous injection with 20 ll of neat TDI on day
0, 20 ll of TDI in olive oil (1:10) on days 7 and 14.
From days 21 to 23, the mice were challenged intranasal-
ly with 20 ll of 1% OVA in saline, 1% Pep in saline
and 1% TDI dissolved in ethyl acetate:olive oil (1:4)
respectively. Alum and saline control groups were sensiti-
zed and then challenged in a similar manner as OVA

group. Five days after last challenge, the mice were killed
by right ventricular exsanguination under pentothal
anaesthesia (50 mg/kg body weight, i.p.).

Extraction of bronchoalveolar lavage fluid (BALF). Shortly
after exsanguination, the trachea was cannulated and the
lungs of the animals were then lavaged 3 times with aliqu-
ots of 0.5 ml sterile saline per mouse. The lavage fluid col-
lected was centrifuged at 400·g to remove cells and then
stored at )20 �C until it was analysed for cytokines and
IgE levels.

Quantification of IgE. Total IgE in sera and the BAL
fluid was quantified with a sandwich ELISA protocol pro-
vided by mouse IgE ELISA Quantitation Kit (Bethyl
Laboratories, Montgomery, TX, USA). Briefly, the plates
were coated with affinity-purified goat anti-mouse IgE
overnight at 4 �C and then blocked with 1% bovine
serum albumin (BSA) in phosphate buffer saline (PBS)
for 30 min at room temperature (RT). The threefold
diluted sera or undiluted BAL fluid samples and appro-
priate dilutions of a standard IgE preparation were added
into the wells, and the plates were incubated for 1 h at
RT. Sample blank wells received buffer instead of sera or
BAL fluid and were treated identically. The bound IgE
was detected with polyclonal goat anti-IgE antibodies
(incubation for 1 h at 37 �C), followed by horseradish
peroxidase (HRP)-conjugated goat anti-mouse antibodies.
The plates were developed by addition of tetram-
ethylbenzidine (TMB) and read in the ELISA plate reader
(Labsystem Multiskan Bichromatic, Helsinki, Finland) at
a wavelength (k) of 450 nm. The kit detection limit was
250–3.9 ng/ml.

Quantification of IL-4 and IFN-c. IL-4 and IFN-c in
sera and the BAL fluid were quantified by a sandwich
ELISA protocol (R&D Systems, Minneapolis, MN, USA).
Buffers and diluents used between steps in this assay were
provided by the same company. Briefly, 96-well plates
were coated overnight with the capture antibody at 4 �C
and then blocked for 1 h with 1% BSA in phosphate buf-
fer saline. Recombinant IL-4 or IFN-c standard (R&D
Systems), sera (threefold dilution for IL-4 and undiluted
for IFN-c) or undiluted BAL fluid were added, and the
plates were incubated for 2 h at RT. The bound cytokines
were detected with a HRP-linked polyclonal antibody,
with an incubation period of 2 h at RT. The plates were
developed by addition of TMB substrate, followed by an
incubation of 30 min in the dark before reading them at
450 nm. The calculations were done with a programme
belonged to the plate reader. The kit detection limits for
IL-4 and IFN-c were given by the manufacturer (250–
7.8 pg/ml and 600–9.4 pg/ml respectively).

Histology. After the lavage, the lungs and heart were
removed en bloc and inflated with a similar volume of
10% buffered formalin (600 ll) at a constant pressure and
then immediately soaked in the same solution for approxi-
mately 24 h, and thereafter embedded in paraffin [20].
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Lung tissue sections (4 lm) were stained with haematoxy-
lin and eosin (HE). Immunohistochemistry was performed
with rabbit polyclonal antibody against murine major
basic protein. Briefly, 4-lm lung tissue sections were
deparaffinized, followed by quenching of endogenous per-
oxidase activity, blocking with 1% normal goat serum
and sequentially incubated with rabbit anti-major basic
protein (MBP) (1:1000) and then incubated with biotinyl-
ated swine anti-rabbit immunoglobulin (DAKO, Glost-
rup, Denmark) diluted 1:500 in tris-buffered saline,
respectively, for 60 min at 25 �C. Sections were incubated
first with avidin–biotin–peroxidase complex (DAKO) and
then with diaminobenzidine for the development of a
coloured reaction product before being counterstained
with haematoxylin [21, 22]. Pictures were acquired with
LEICA DMLB light microscope (Leica Microsystems
GmbH, Wetzlar, Germany) and LEICA DC 300 camera,
thereafter imported into Adobe Photoshop 7 (Adobe Sys-
tems Incorporated, San Jose, CA, USA ).
Morphometric analysis. Bronchial measurements were made
at 250· magnification using LEICA Q500 MC Qwin
system (Leica Microsystems GmbH). Bronchia with a

diameter less than 250 lm that presented a smooth cir-
cular and oval profile were selected. As schematically
illustrated in Fig. 1., the measurements were made across
the shortest and longest axis of the elliptical profiles at
the location where the cell borders appeared sharp to
minimize the influence of tangential sectioning. Measure-
ments include the lumen diameter (B, b), the diameter of
the airway between the outermost layers of smooth mus-
cle (A, a), and the thickness of the bronchial wall from
the base of the columnar epithelium to the outer limit of
the adventitia (C, c). On a subset of airways (not sharing
an extensive length of their adventitia with arteries), axes
of the elliptical profiles were measured. Five mice from
each group were enrolled in this measurement. C+c was
expressed as the thickness of the airway wall for group
differences analysis. The differences between individual
groups were tested by an ANOVA statistical analysis for
multiple comparison.
Data analysis. Values are presented as mean ± SD. ANO-
VA statistical analyses were performed using alum and
saline as reference category, and post hoc tests with adjust-
ments for multiple testing by the approach of Dunnet’s
T3 where equal variances within groups are not assumed.
Overall values P < 0.05 were considered to be significant.
All tests were two-tailed. Data were analysed with SPSS
statistical software (SPSS Inc., Chicago, IL, USA).

Results

None of the animals exhibited noticeable distress or sig-
nificant tachypnea during the period of study, there was
no mortality.

Cytokine and total IgE levels in serum and BALF

Five days after last intranasal challenge, blood was col-
lected from control and exposed mice. The serum was
analysed for total IgE and cytokines, IL-4 and IFN-c
levels (Table 1). There was a statistically significant
increase in IL-4 level in the mice intraperitoneally sensi-
tized and thereafter intranasally challenged by TDI,
OVA and Pep, respectively, compared with saline or
alum controls.

Table 1 IgE and cytokines level in sera

(mean ± SD, n ¼ 5)

TDI OVA OVA 323–339

Reference

Alum Saline

IL-4 (pg/ml) 75.3 ± 41.9* 37.3 ± 21.4* 71.9 ± 42.0* 0

IL-4 (pg/ml) 75.3 ± 41.9* 37.3 ± 21.4* 71.9 ± 42.0* 0

IgE (ng/ml) 98.1 ± 16.0* 91.3 ± 9.2* 7.9 ± 7.1 7.3 ± 4.7

IgE (ng/ml) 98.1 ± 16.0* 91.3 ± 9.2* 7.9 ± 7.1 8.7 ± 7.3

IFN-c (pg/ml) UD UD UD UD UD

*ANOVA, compared with alum and saline control, P < 0.01. OVA, ovalbumin; UD, under detec-

tion limit.

A
B C

c

b

a

Epithelium

Smooth muscle

Figure 1 Schematic representation of variables for airway wall morpho-

metric analysis. A ¼ maximum external (transverse) diameter; a ¼
minimum external (transverse) diameter; B ¼ maximum lumen diam-

eter; b ¼ minimum lumen diameter; C ¼ airway wall thickness calcula-

ted from A and B; c ¼ airway wall thickness calculated from a and b.
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When compared with alum and saline controls,
13- and 11-fold increase of serum total IgE were, respect-
ively, found in TDI-treated mice while 12.5- and 10.5-
fold were found in OVA-treated animals. As for Pep
group, no increase of IgE was found when compared with
the control animals. Statistically no significant difference
was found between two control groups.

Non-detectable levels of IL-4 and IFN-c in BALF
were obtained under the experimental conditions used.

Histology

Histology of the lung tissue was performed 5 days after
final challenge; the saline- and alum-exposed mice dem-
onstrated normal lung morphology. In contrast, histolog-
ical sections of lung tissue from TDI-exposed mice
exhibited pulmonary inflammation, infiltrating neutroph-
ils accompanied by macrophages, lymphocytes and a few
eosinophils were mainly observed in the peri-bronchial
and peri-vascular regions of the lungs. The increased

neutrophils should be responsible for the cell recruit-
ment in lung. Comparatively the mice sensitized by OVA
demonstrated a typical eosinophil-dominant inflammation
as well as Pep-treated mice (eosinophils were visualized
by Congo red staining). Thickening of the bronchial wall
and increased mucus production were shown by HE
staining in TDI-, OVA- and Pep-exposed mice (Fig. 2).
For the 4-lm bronchial lung sections incubated with
anti-MBP, there were large number of neutrophils in the
parenchyma, and intense MBP staining of the apical sur-
faces of respiratory epithelial cells for the animals treated
by OVA, Pep and TDI. In contrast, fewer neutrophils
and eosinophils infiltration were observed in saline and
alum control animals, and even less MBP staining around
the airways (Fig. 3).

Airway wall alternations

On light microscopic examination, the walls of the
bronchia from the sensitized mice were thickened when

Figure 2 Photomicrograghs of lung tissue

sections from different animal groups. Five

days after last challenge, lung tissue from

treated groups and controls were sectioned

and haematoxylin/eosin staining was done. C:

saline control mice; alum: alum control mice;

OVA: mice immunized with OVA; Pep: mice

immunized with Pep; TDI: mice immunized

with TDI. Original magnification: 200·.
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compared with control mice. TDI-treated mice showed,
at least partly, a similar change in airway remodelling as
Pep-treated mice and OVA-treated animals (Fig. 4).

Discussion

Asthma is a chronic respiratory disease characterized by
the presence of reversible airway constriction and AHR
to various stimuli [23]. AHR is a cardinal feature of the
disease in which acute airway narrowing is easily elicited
by non-specific stimuli, such as exercise, cold air or inha-
lation airway irritants, such as histamine or metacholine
[24]. Underlying the clinical manifestations is a acute-
on-chronic inflammation of airway mucosa, with degran-
ulation of mast cells, recruitment of eosinophils and
neutrophils, as well as accumulation of activated
T lymphocytes and other chronic inflammatory cells [25].
Several studies of airway inflammation in non-occupa-
tional asthmatic subjects have reported heterogeneity of
cell counts. Wenzel et al. reported two pathophysiological
subtypes amongst severe asthmatics, i.e. the ones with
and without evidence of eosinophil infiltration in bron-
chial biopsy specimens [26, 27]. More recent studies

Figure 3 Presentation of major basic protein

(MBP) by immunohistochemistry staining in

the lung tissue of allergen-treated mice. C:

saline control animals; alum: alum control

animal; OVA: animals sensitized with OVA;

Pep: animals sensitized with Pep; TDI: ani-

mals sensitized with TDI. Mice were sacri-

ficed 5 days after challenge, and 4 lm lung

sections were incubated with anti-MBP. The

figure is representative of five animals each

group. MBP immunohistochemistry staining.

Original magnification: 200·.
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Figure 4 The thickening of the airway wall in allergen-treated mice.

Compared with saline and alum controls, TDI, OVA and Peptide OVA

323–339 sensitized mice demonstrated a significant increase in airway

wall thickness 28 days after combination of intraperitoneal injection

sensitization and intranasal challenge with different allergens. Compared

with alum and saline controls, P < 0.05.
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where airway inflammation has been assessed non-
invasively using induced sputum on diverse range of
patients have shown predominant neutrophilic airway
inflammation in some patients with severe asthma.
Whether these changes reflect the severity of the disease
or the effect of treatment was unclear [28, 29].

Although animal models are not always closely
reflective of human responses, it could certainly improve
our understandings of the cellular and molecular mech-
anism associated with TDI-induced allergic disorders
[30]. TDI is capable of inducing different types of
immune reactions, depending on T-cell polarization
toward the helper type 1 (Th1) or helper type 2 (Th2)
cells. Th1 cells promote cell-mediated immunity and are
defined by their secretion of cytokines, mainly IFN-c.
Th2 cells are recognized by the secretion of interleukins,
such as IL-4, IL-5 and IL-13, which support humoral
immune response. In experimental studies, the diver-
gence might be because of different animal experimenta-
tion conditions, e.g. sensitization way and dose applied
[31]. Up to now, concerning the mechanism for TDI
asthma, especially the Th1 or Th2 type responses, the
published results remain controversial [31]. BALB/c
mouse is frequently employed in studies of respiratory
allergy. In case of occupational asthma, this model has
commonly been used for studies for Th2 phenotype-
induced diseases.

Previous morphological examination of airway tissue
from patients who died of severe bronchial asthma has
revealed abnormalities in the airways, which was thought
to be, in part, irreversible [32]. These include goblet cell
hyperplasia, sub-epithelial fibrosis and smooth muscle
cell hyperplasia/hypertrophy. It is generally accepted that
tissue remodelling is a process of wound healing for the
maintenance of homeostasis after various injuries. These
processes normally contribute to the repair of injured tis-
sues, not only morphologically, but also functionally.
However, the results of chronic airway inflammation may
induce airway remodelling which may differ from wound
healing, leading to airway narrowing and flow limitation.
Th2 cells produce IL-4 which is closely related to the
promotion of IgE production. IL-4 is also well known as
a key cytokine in the development of T cells, especially
Th2 type [33].

The main objective of this study was to elucidate the
events involved in airway remodelling on the basis of a
newly established animal model at our laboratory.

We demonstrated that repetitive allergen and TDI
airway exposure induced marked increases in the
inflammatory leukocytes, especially eosinophils and neu-
trophils in lung tissue and IL-4 secretion. In contrast,
the IFN-c level was low and undetectable under the
experimental method used. Paralleling IL-4 production
and IgE synthesis significantly increased after exposure
both in TDI and OVA mice. In case of OVA 323–

339 sensitized mice, low IgE titer was found. OVA
323–339, known to be MHC Ia-binding peptide, did
not enhance IgE synthesis compared with the intact
molecule. Possible explanation for this lower IgE in
OVA 323–339 may be contributed to variable genetic
subsets of BALB/c mice MHC, affinity of the ligand or
carriers needed for a successful in vivo immune reaction
[19].

Respiratory responses to TDI as well as MDI [34]
only occur upon a previous contact with the same anti-
gens. As generally known, the frequency and the con-
centration of sensitization prior to challenge affects the
subsequent response to intranasal exposure to TDI in a
complicated pathway [35]. Moreover, strain differences
are known in the patterns of mRNA expression of
cytokines or receptors, for example, BALB/c mice tend
to exhibit higher IL-4 mRNA expression than C57BL/6
mice even when treated with Th1-predominant aller-
gens, such as dinitrochlorobenzene (DNCB) and trimel-
litic anhydride (TMA) [36, 37]. Conversely, C57BL/6
mice show higher IFN-c levels with the application of
DNCB than does the BALB/c strain, namely C57BL/6
mice and BALB/c mice are Th1 and Th2 predominant
respectively [38, 39].

These results reported are in line with previous reports:
BALB/c mice are more likely to present Th2 dominant
response, for which the underlying mechanisms are still
obscure; however, partly attributable to the BALB/c mouse
genetic control of IL-4 production [36]. In this study, we
have focused on the specific immune response of chemic-
ally induced hypersensitivity. Cell composition data from
BAL and airway function measurements, for new experi-
ments, will be reported separately. Additionally better
timing of autopsies and a revised approach for a semi-
quantitative grading for the histological sections on the
basis of arbitrary scores, are to be considered. Neverthe-
less, few additional controls would be necessary for further
validation of the model, e.g. non-sensitized and sensitized
but not challenged groups.

Although the present model may not demonstrate com-
plete features of TDI-induced occupational asthma, the
findings demonstrate that the development of airway
remodelling, including hyperplasia/hypertrophy of the cell
lining in the airways and the hyper-secretion of the mucus,
probably is the result of Th2-like IgE-dependent neutro-
phil-dominant inflammation. In TDI-exposed allergic
BALB/c mouse model, the observed neutrophil-dominant
reaction is different from Th2-dominated IgE-dependent
eosinophil inflammation which is commonly developed in
OVA-induced murine asthma models. TDI-induced
inflammation is composed of infiltrating neutrophils,
macrophages and lymphocytes, which is consistent with
the reports of TDI asthma in humans. Unlike humans,
however, eosinophils could be very minimal or even absent
[40, 41].
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Similarly, in workplaces, TDI-induced asthma may
result from a previous contact with TDI, some of which
might initiate allergic sensitization associated with type
2 cytokine production and high IgE levels [31].

Taken together, this study indicates that BALB/c
mouse as a Th2-like model of TDI-induced airway
allergy may, in several aspects, mimic occupational TDI
asthma in humans.

Acknowledgment

The authors thank Dr Jamie Lee (Mayo Clinic, Scottsdale,
AZ, USA) for the generous gift of mouse antibody recog-
nizing MBP. The technical assistance of Gerd Lillian
Hallseth and Randi Lavik Nygaard (Department of
Pathology), Gry Bernes (Vivarium) and Judit Eriksen
(Allergy Research Group) is appreciated. Also thanks to
Professor Erik Florvaag for reviewing the manuscript.

References

1 Pascual RM, Peters SP. Airway remodeling contributes to the pro-

gressive loss of lung function in asthma: an overview. J Allergy Clin
Immunol 2005;116:477–86; quiz 487.

2 Gautrin D, Newman-Taylor AJ, Nordman H, Malo JL. Controver-

sies in epidemiology of occupational asthma. Eur Respir J

2003;22:551–9.

3 Redlich CA, Wisnewski AV, Gordon T. Mouse models of diisocya-

nate asthma. Am J Respir Cell Mol Biol 2002;27:385–90.

4 Johnson VJ, Matheson JM, Luster MI. Animal models for diisocya-

nate asthma: answers for lingering questions. Curr Opin Allergy Clin
Immunol 2004;4:105–10.

5 Scheerens H, Buckley TL, Muis TL et al. Long-term topical

exposure to toluene diisocyanate in mice leads to antibody

production and in vivo airway hyperresponsiveness three hours

after intranasal challenge. Am J Respir Crit Care Med 1999;159:

1074–80.

6 Matheson JM, Johnson VJ, Luster MI. Immune mediators in a mu-

rine model for occupational asthma: studies with toluene diisocya-

nate. Toxicol Sci 2005;84:99–109.

7 Raulf-Heimsoth M, Baur X. Pathomechanisms and pathophysiology

of isocyanate-induced diseases – summary of present knowledge. Am
J Ind Med 1998;34:137–43.

8 Wisnewski AV, Redlich CA. Recent developments in diisocyanate

asthma. Curr Opin Allergy Clin Immunol 2001;1:169–75.

9 Valstar DL, Schijf MA, Nijkamp FP, Bloksma N, Henricks PA.

Glutathione-conjugated toluene diisocyanate causes airway inflam-

mation in sensitised mice. Arch Toxicol 2004;78:533–9.

10 Tee RD, Cullinan P, Welch J, Burge PS, Newman-Taylor AJ. Spe-

cific IgE to isocyanates: a useful diagnostic role in occupational

asthma. J Allergy Clin Immunol 1998;101:709–15.

11 Son M, Lee M, Kim YT, Youn JK, Park H. Heterogeneity of IgE

response to TDI–HSA conjugates by ELISA in toluene diisocyanate

(TDI)-induced occupational asthma (OA) patients. J Korean Med Sci

1998;13:147–52.

12 Park HS, Lee SK, Kim HY, Nahm DH, Kim SS. Specific immuno-

globulin E and immunoglobulin G antibodies to toluene diisocya-

nate-human serum albumin conjugate: useful markers for predicting

long-term prognosis in toluene diisocyanate-induced asthma. Clin

Exp Allergy 2002;32:551–5.

13 Nabe T, Yamauchi K, Shinjo Y et al. Delayed-type asthmatic response

induced by repeated intratracheal exposure to toluene-2,4-diisocya-

nate in guinea pigs. Int Arch Allergy Immunol 2005;137:115–24.
14 Johnson VJ, Yucesoy B, Luster MI. Prevention of IL-1 signaling

attenuates airway hyperresponsiveness and inflammation in a murine

model of toluene diisocyanate-induced asthma. J Allergy Clin Immu-
nol 2005;116:851–8.

15 Maestrelli P, Occari P, Turato G et al. Expression of interleukin

(IL)-4 and IL-5 proteins in asthma induced by toluene diisocyanate

(TDI). Clin Exp Allergy 1997;27:1292–8.
16 Fabbri LM, Boschetto P, Zocca E et al. Bronchoalveolar neutrophilia

during late asthmatic reactions induced by toluene diisocyanate. Am

Rev Respir Dis 1987;136:36–42.

17 Sastre J, Banks DE, Lopez M, Barkman HW, Salvaggio JE. Neutro-

phil chemotactic activity in toluene diisocyanate (TDI)-induced

asthma. J Allergy Clin Immunol 1990;85:567–72.

18 Lummus ZL, Alam R, Bernstein JA, Bernstein DI. Diisocyanate

antigen-enhanced production of monocyte chemoattractant protein-

1, IL-8, and tumor necrosis factor-alpha by peripheral mononuclear

cells of workers with occupational asthma. J Allergy Clin Immunol

1998;102:265–74.

19 Johnsen G, Elsayed S. Antigenic and allergenic determinants of

ovalbumin-III. MHC Ia-binding peptide (OA 323–339) interacts

with human and rabbit specific antibodies. Mol Immunol

1990;27:821–7.

20 Ray P, Tang W, Wang P et al. Regulated overexpression of inter-

leukin 11 in the lung. Use to dissociate development-dependent

and -independent phenotypes. J Clin Invest 1997;100:2501–11.

21 Borchers MT, Crosby J, Farmer S et al. Blockade of CD49d inhib-

its allergic airway pathologies independent of effects on leukocyte

recruitment. Am J Physiol Lung Cell Mol Physiol 2001;280:L813–

21.

22 Hao M, Comier S, Wang M, Lee JJ, Nel A. Diesel exhaust particles

exert acute effects on airway inflammation and function in murine

allergen provocation models. J Allergy Clin Immunol 2003;112:905–

14.

23 Bardana EJ. Occupational asthma and allergies. J Allerg Clin Immu-

nol 2003;111:S530–9.

24 Cullinan P, Newman Taylor A. Asthma: environmental and occupa-

tional factors. Br Med Bull 2003;68:227–42.
25 Temelkovski J, Hogan SP, Shepherd DP, Foster PS, Kumar RK.

An improved murine model of asthma: selective airway inflamma-

tion, epithelial lesions and increased methacholine responsiveness

following chronic exposure to aerosolised allergen. Thorax

1998;53:849–56.

26 Wenzel SE, Schwartz LB, Langmack EL et al. Evidence that severe

asthma can be divided pathologically into two inflammatory sub-

types with distinct physiologic and clinical characteristics. Am

J Respir Crit Care Med 1999;160:1001–8.

27 Anees W, Huggins V, Pavord ID, Robertson AS, Burge PS. Occu-

pational asthma due to low molecular weight agents: eosinophilic

and non-eosinophilic variants. Thorax 2002;57:231–6.

28 Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflam-

mation in persistent asthma: evidence of neutrophilic inflammation

and increased sputum interleukin-8. Chest 2001;119:1329–36.
29 Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ,

Pavord ID. Analysis of induced sputum in adults with asthma:

identification of subgroup with isolated sputum neutrophilia and

poor response to inhaled corticosteroids. Thorax 2002;57:875–9.

30 Tarlo SM. Occupational asthma: a valid model for adult asthma?

Curr Opin Allergy Clin Immunol 2003;3:91–4.

31 Ban M, Morel G, Langonne I, Huguet N, Pepin E, Binet S. TDI

can induce respiratory allergy with Th2-dominated response in

mice. Toxicology 2006;218:39–47.

L.-Z. Sun et al. Airway Inflammation and Remodelling in TDI-exposed BALB/c Mouse Model 7
..................................................................................................................................................................

� 2006 The Authors

Journal compilation � 2006 Blackwell Publishing Ltd. Scandinavian Journal of Immunology



32 Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked

goblet cell hyperplasia with mucus accumulation in the airways of

patients who died of severe acute asthma attack. Chest
1992;101:916–21.

33 Brown MA, Hural J. Functions of IL-4 and control of its expres-

sion. Crit Rev Immunol 1997;17:1–32.
34 Vogelmeier C, Baur X, Fruhmann G. Isocyanate-induced asthma:

results of inhalation tests with TDI, MDI and methacholine. Int

Arch Occup Environ Health 1991;63:9–13.

35 Vanoirbeek JA, Tarkowski M, Ceuppens JL, Verbeken EK, Nemery

B, Hoet PH. Respiratory response to toluene diisocyanate depends

on prior frequency and concentration of dermal sensitization in

mice. Toxicol Sci 2004;80:310–21.

36 Hayashi M, Higashi K, Kato H, Kaneko H. Assessment of preferen-

tial Th1 or Th2 induction by low-molecular-weight compounds

using a reverse transcription-polymerase chain reaction method:

comparison of two mouse strains, C57BL/6 and BALB/c. Toxicol

Appl Pharmacol 2001;177:38–45.

37 Sullivan S, Bergstresser PR, Streilein JW. Analysis of dose response

of trinitrochlorobenzene contact hypersensitivity induction in mice:

pretreatment with cyclophosphamide reveals an optimal sensitizing

dose. J Invest Dermatol 1990;94:711–6.

38 Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK.

Recombinant interleukin 12 cures mice infected with Leishmania

major. J Exp Med 1993;177:1505–9.

39 Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM.

Reciprocal expression of interferon gamma or interleukin 4 during

the resolution or progression of murine leishmaniasis. Evidence for

expansion of distinct helper T cell subsets. J Exp Med 1989;169:59–

72.

40 Matheson JM, Lange RW, Lemus R, Karol MH, Luster MI. Import-

ance of inflammatory and immune components in a mouse model of

airway reactivity to toluene diisocyanate (TDI). Clin Exp Allergy

2001;31:1067–76.

41 Mapp CE, Saetta M, Maestrelli P et al. Mechanisms and pathology

of occupational asthma. Eur Respir J 1994;7:544–54.

8 Airway Inflammation and Remodelling in TDI-exposed BALB/c Mouse Model L.-Z. Sun et al.
..................................................................................................................................................................

� 2006 The Authors

Journal compilation � 2006 Blackwell Publishing Ltd. Scandinavian Journal of Immunology




