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1
Introduction

1.1 Advent of mHealth

The usage of mobile phones, PDAs and other mobile communication devices in the context

of health is an emerging part of eHealth. In 2010 the American National Institutes of

Health de�ned mHealth as �the delivery of healthcare services via mobile communication

devices� [10], and while the idea of using mobile devices to provide healthcare related services

is a very convenient prospect in industrialized countries, it is having a much more profound

impact on the healthcare situation in low-income countries.

A report by the United Nations Foundation and Vodafone Foundation [30] suggests that

close to half the population in low-income countries own or have access to mobile phones.

Healthcare in these nations can be scarce or di�cult to access due to restraints such as limited

resources, �nances and healthcare workforce, or parts of the population living in remote

locations. High mobile phone penetration makes mHealth a viable option for providing

better healthcare through mHealth systems.

Leveraging mHealth systems makes it possible to cost-e�ectively provide things like:

� General education and awareness through, for instance, SMS.

� Communicating with and training of healthcare workers, even in remote locations.

� Tracking of disease outbreaks or epidemics.

� Diagnosing and assisting in treating patients remotely when traveling to a hospital is

10



1.2. Mobile Data Collection

not an option.

In this thesis we are mainly focused on a speci�c aspect of mHealth, namely remote data

collection. However, the work presented could prove useful for other areas as well.

Using mobile devices, healthcare workers can gather important data about the condition

and trends of a country's health status not only in central areas where people have access

to medical facilities, but also in remote locations. This information can then be submitted

quickly to policymakers and healthcare providers, enabling them to make well informed

decisions and better spend the available resources in the best possible manner.

1.2 Mobile Data Collection

As we have brie�y discussed, mobile data collection is the process of gathering data using

a mobile device such as a mobile phone or PDA. Since the data collected can be medical

records or patient forms, it can be of a highly private or sensitive nature. These concerns

are often neglected when it comes to mHealth systems. Private data is stored on the device

in a non secure way, and even though most of these systems support HTTPS to secure

transmissions, it is not always the case that it is used. We will have a closer look at mobile

data collection in the next chapter.

1.3 mHealth Security Group

The mHealth Security Group at the Department of Informatics in collaboration with openX-

data at the Centre for International Health, both at the University of Bergen, are developing

a protocol for securing both data at rest on a mobile device, and data being transmitted over

insecure networks. The work in this thesis is based on and part of a further development

of the protocol and the systems surrounding it. The original protocol paper can be found

at [34]. In the next chapter we will look closer at the protocol and its purpose.

1.4 Motivation, Objectives and Challenges

mHealth is making way for easily available and low cost improvements in health care systems,

especially in low-income countries where this is needed the most. However, many systems

in this �eld fail to systematically address the security and privacy concerns while handling

private or personal information such as medical records.

Building on the existing work done by the mHealth Security Group, it is desirable to make

an easy to use API that can be incorporated into existing mHealth systems to provide some

acceptable level of security.

11



Chapter 1. Introduction

Objectives The overall objective in the thesis is to extend the current prototype into a

comprehensive API that can be further developed and tested through �eld and usability

studies, ultimately allowing for the easy creation secure Java ME applications conforming

to some security requirements.

We can split this task into a number of sub-objectives:

� Redesign the prototype/proof of concept implementation into a more usable API de-

sign.

� Integrate the API into the existing openXdata client.

� Evaluate the API design based on performance and the integration with openXdata.

1.5 Chapter outline

Chapter 2: Security Issues in Mobile Data Collection Systems This chapter will give

an overview of the constraints and issues around which the protocol is designed. We

will also give a short overview of the protocol itself.

Chapter 3: Record Store and Serialization Performance In this chapter we bench-

mark the record store and serialization on the device, the results are used in chapter

four.

Chapter 4: Implementing secureXdata In this chapter we will go through the require-

ments on which the API is based and describe the resulting API while discussing why

it was designed in this way, and highlight any issues that might need to be addressed

in future re�nement of the API.

Chapter 5: Implementation Evaluation This chapter discusses the integration with

the openXdata client. The API is evaluated in terms of how easy it is to use and

integrate, and how well it performs on an actual mobile device.

Chapter 6: Experiences In this chapter the candidate evaluates the tools used through-

out the work on the thesis and shares general experiences and some guidelines/pitfalls

related to working with Java ME and other technologies.

Chapter 7: Conclusion and Future Work In this chapter we conclude the work that

has been done and present a more in depth explanation/discussion of aspects of the

API that needs further work.

Appendix A This appendix contains additional results from benchmarks performed as

part of chapter three.
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2
Security Issues in Mobile Data Collection

Systems

2.1 Mobile Data Collection and Security

As mentioned in the introduction, mobile data collection systems (hereafter referred to as

MDCS) are often used to collect medical data as a part of mHealth systems. There is more

than one way to perform such data collection. For instance, automated sensors can be placed

in the �eld and periodically transmit collected data, but in this thesis we are interested in

MDCS where data is collected through forms �lled out by people, such as healthcare workers.

These MDCS usually consist of mobile clients in the �eld and a centralized server that the

clients communicate with. Using a form designer, generally not on a mobile device, a set of

relevant questions is put together to comprise a form. The form is then stored on the server

and can be retrieved by the appropriate collector in the �eld. Once a form has been �lled

out by a healthcare worker or other data collector, it is uploaded to the server and either

analyzed or stored for later use.

2.1.1 Security Concerns

MDCS used in mHealth can clearly handle and contain highly sensitive or private data, and

as such some security concerns arise. In the paper [38] based on [34], the mHealth Security
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Group from the University in Bergen discusses these security concerns and evaluates how

they are handled in some of the existing MDCS. It is noteworthy that the paper contains

some changes in the protocol since the original [34] was published and parts of the API

design discussed in the paper is based on the work described in this thesis.

2.1.2 Con�dentiality and Availability

Collected data, both at rest on the device and being transmitted to the server, needs to be

properly protected from unauthorized disclosure.

In most cases the devices are communicating using some mobile network and/or through

the Internet. As such, it is possible for a third party to intercept the transmission. All the

MDCS discussed in [38] support HTTPS for server communication, but as we will see later

in this chapter this is not always feasible.

The same applies to the data stored on the device. Unlike a computer in a locked room,

a mobile device can easily be accessed by a third party, be it intentionally (by an attacker

stealing the device) or by chance (the phone is dropped/lost). Without proper con�dentiality

measures in place, the data will be available for anyone to read or tamper with if they should

get physical access to the device.

If con�dentiality is ensured on storage, then this raises another issue, availability. Should

a data collector lose his or her password, the data secured on the device needs to still be

recoverable. And furthermore, resetting the password or user account on one device, should

be completely independent from any other devices the user might be registered on.

2.1.3 Authentication and Authorization

Regarding authentication there are two aspects to consider. The �rst is local authentication

on the mobile device. As we will get back to later in this chapter, the device may be shared

among multiple users and as such there should be some authentication in place to make sure

that the application can trust the user. Be it to protect from a third party trying to gain

access to the application or a registered user trying to access another users data.

Secondly, authentication on the server is needed as well. It should only be possible for a

legitimate user in the system to send and retrieve data or forms to and from the server.

In short: users should be authenticated on the server as well as on the device. By using

HTTPS, the client can authenticate the server through its certi�cate. However, if HTTPS

is not used, the server should be authenticated in some other manner so that the client can

verify/trust that it it is talking to the genuine server.

Authorization becomes a concern when there are multiple users sharing a single device. Even

though they may have di�erent credentials for authentication, unless authorization is taken

into account they will have access to each others data on the device. As discussed in [38],
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2.2. OpenXData

some of the MDCS investigated will allow users to access each others data due to lack of

access control. Furthermore, as long as a someone has physical access to the device and the

data stored on it is not properly encrypted, a third party tool can be used to extract the

data from the device regardless of both access control and local authentication.

2.2 OpenXData

The work that this thesis is based on ( [34], [36] and [38]) originated from a collaboration

with openXdata [12]. OpenXdata is a open-source MDCS which has been primarily used in

health related projects in low-income countries. OpenXdata follows the previously described

concept of downloading forms from a server and �lling them out on mobile devices, and

is being used in a number of projects in low-income countries such as Pakistan [26] and

Uganda [25]. A preliminary assessment of the system showed that security concerns were

not systematically addressed and what's worse, this was not isolated to openXdata. A more

in depth discussion regarding this can be found in [38].

2.2.1 Security Analysis Overview

Since we will be using openXdata as our reference system in this thesis, we will have a look

at some of the security issues found within the openXdata system.

When work on the thesis started, the openXdata client provided local and server authenti-

cation: once a user tried to log in, a check was performed to see if the user credentials were

stored hashed in a record store locally on the device. If this was not the case, the credentials

would be submitted to the server as plain-text. If the user credentials were authenticated on

the server, the database containing all user names, salts and salted hashed passwords would

be sent to the device and stored in the record store. The initial local authentication would

then be done on the newly acquired user database. If a match was found, then the user

would be logged in. By downloading the entire user database, local authentication would

be available to all registered users once the initial user had been authenticated.

Currently, the situation has improved slightly by the fact that they no longer download and

store the entire database of users on the device. Only the data for the user trying to log in

is downloaded and stored.

Regarding communication, the openXdata client, as mentioned, supports HTTPS, but, as we

will discuss, this is not always applicable. The data stored on the device is not secured in any

way. It is not encrypted and as such, even without being authorized, the persistent data can

be dumped to a computer and read. OpenXdata also lacks authorization on the device. Any

user that is authenticated has access to all the data stored, regardless of who created/saved

the data. Valid user credentials are however required with every server request.
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2.3 Practical Constraints and Requirements

We have brie�y looked at some of the requirements and issues with current MDCS. Many

of the projects using this form of MDCS are deployed in low-income countries, and as such

it is not as straightforward to apply security as it could be in other parts of the world. In

this section we will give a summary of what constraints exist and what impact this might

have on security. For a more in depth discussion on the subject the reader is encouraged to

read [38].

2.3.1 Budget

A major issue with trying to secure MDCS stem from the fact that most of them have very

restrictive budgets. Without money to provide powerful devices such as smartphones, it can

prove di�cult to achieve good security without adding considerable overhead for cryptogra-

phy. Securing the data could also add additional costs through for instance increased tra�c

due communication overhead.

Because of the budget limitations, we focus on low-end Java enabled devices, sometimes

referred to as feature phones [60]. These devices are relatively cheap compared to smart-

phones.

2.3.2 Remote Working Locations and Phone Sharing

Some of the projects using MDCS are working in remote locations and in countries where

the mobile communication infrastructure might not be fully developed. As a result, there

may not be network coverage in certain areas or villages where the data collectors work.

Having to travel many kilometers to get a network connection might be something that is

done every couple of days instead of daily, and as such data could reside on the device for

long periods of time. This means that o�ine authentication needs to be available in order to

log in without a server connection, and any data stored on the device needs to be secured.

It can not be assumed that one collector has a single phone for his or her use, and as

such phones might be shared. This means that in addition to user authentication, data

authorization is needed as well. Otherwise, all the users of a single device will have access

to the other users' data.

2.3.3 Ease of Usage of The API

Even with a system such as our API that is made to cover all the requirements and limitations

discussed so far, if it is hard to use or requires the MDCS to undergo large changes in order

to be secured, few people would use it. As such, any system addressing security for MDCS
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needs to be easy to use and implement into existing systems for the developers, but also

easy to use for the end users.

2.4 Common Mobile Security Solutions

There exist some commonly used protocols and solutions that are used for securing infor-

mation and communication systems. However due to the discussed constraints, these might

not be applicable in the context of MDCS in low-income countries.

2.4.1 HTTPS and Certi�cates

The Hyper Text Transfer Protocol Secure is designed to allow secure HTTP communication

using SSL/TSL [41]. There are two issues with HTTPS that makes it less than ideal for

MDCS, the �rst being certi�cates. Certi�cates are the means by which the client can trust

the server it connects to or vice-versa. However, this trust comes at a price. Depending on

what certi�cate authority one use, the price of a single certi�cate can vary from being free

to many thousand dollars a year.

If the MDCS is o�ered as a service, as is the case with Mobenzi [11], the service provider

(Mobenzi) has to pay the certi�cates and the cost is distributed across all of their customers.

Making this a more viable solution. However, for projects which run their own servers this

would most likely be too expensive to be a practical solution. A second problem with certi�-

cates is that the list of certi�cate authorities a mobile device will accept, is not standardized

and is controlled by the manufacturers. Not all devices trust the same certi�cate authorities,

meaning that more than one certi�cate might have to be purchased.

The second issue with HTTPS is establishing the secure connecting with the server, also

known as the handshake. The devices used in the intended MDCS are most likely of a

low-end character and as such would spend a lot of time processing the di�erent cryp-

tographic operations involved in the initial stages of the communication. The handshake

consists of a number of requests and responses, which further worsens the situation since

many areas where these systems are used have unstable or limited network coverage/con-

nectivity. HTTPS was intended for a di�erent scenario: establishing a secure and trusted

connection with a unknown server on the Internet. With MDCS however, in many cases

the server should be known to the client and therefore the handshaking step can simpli�ed,

thus reducing the load on the device and increasing the tolerance for connectivity issues.

2.4.2 Other Platforms

Other more powerful advanced platforms (smartphones) like Android [2], BlackBerry [4] or

iOS [3] have native support for securing data stored and also run on higher grade hardware
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and will therefore not have as much of an issue with HTTPS handshakes and other crypto-

graphic operations being slow. HTTPS would still su�er from connectivity issues though.

However, smartphones are most likely not viable alternatives due to budget restrictions.

2.5 Quick Protocol Overview

The protocol itself is designed to be platform and application independent and will provide

a secure layer on top of an existing application layer. An implementation of the protocol

would generally take the form of an API providing some secure services: secure storage

for securing data at rest on a device, secure transmission and user management including

registration and authentication with password recovery. The aim is to be able to provide

a �good-enough� level of security based on the requirements and restraints of any given

application or project. The intended area of use is mainly securing MDCS in low-budget

settings.

The protocol is considered a part of the public domain and is still being developed. While

the working requirements and overall goal have stayed unchanged, the inner workings of the

protocol have evolved since the original paper was published. The evolution and current

state can be better understood by going through the papers describing the protocol. In

chronological order:

� Adding Security to Mobile Data Collection [34] This paper introduces the issue

of lacking security in mHealth systems and outlines some working assumptions based

on experience from openXdata. The protocol is presented and discussed.

� Securing Mobile Data Collection [35] In this paper an API designed on the

proposed protocol in [34] is described. This API is the basis for the work in this thesis.

More implementation speci�c details regarding the protocol and some preliminary

performance tests are also discussed.

� Challenges in Implementing End-to-End Secure Protocol for Java ME-

Based Mobile Data Collection in Low-Budget Settings [36] This paper dis-

cusses some of the the challenges faced when making an API implementation of the

discussed protocol. Some of the solutions proposed here are based on the work pre-

sented in this document.

� End-to-End Secure Protocol for Mobile Data Collection Systems in Low-

Budget Settings [37] This paper discusses the working assumptions under which

the protocol is intended to work and presents an improved version of the protocol on

a high abstraction level.

� On the Security of Mobile Data Collection Systems in Low-Budget Settings

[38] In this paper a security review of a number of MDCS is presented and available

security solutions are discussed. A further evolved version of the protocol is also

introduced, without any implementation details.
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The candidate started working on the project shortly after �Securing Mobile Data Collection�

[35], was written and has since been a part of the protocol development as well as designing

the API.

2.6 Technologies and Devices

In the next chapter we will look the development of the API implementation of the protocol

based on [34]. In the implementation the following technologies have been used:

Java ME [52] Java ME is the platform used for developing the API and applications that

will run on the device.

Eclipse [32] Eclipse is the IDE that will be used for development and the writing of this

document.

Sun Java Wireless Toolkit 2.5 [55] WTK 2.5 is one of the Java ME toolkits used during

the development process.

Java ME SDK 3 [53] Java ME SDK 3 is the other toolkit used during the development

process.

Bouncy Castle [8] Bouncy Castle is a third party cryptography library used in the API.

Ant [29] And is the build tool used in the development work done.

In chapter 6 the candidate will discuss his experiences with the di�erent technologies.

Since we are developing software for mobile devices, we will be using emulators (part of the

toolkits used) for testing on the computer. But in the end it is how the API works and

performs on actual devices that matters. We will primarily be using the Nokia 2330c-2 [47]

for benchmarks and testing. Based on preliminary performance testing that can be found

in [36], this phone has fair performance while still being inexpensive. Other devices will be

tested in the future.
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3
Record Store and Serialization Performance

3.1 Benchmark Background

As can be seen from the preliminary tests results in [36], the performance of the Record

Management Store (RMS) systems on the di�erent phones vary. Because of this, it is

essential to see which aspects or features of the RMS system is most costly and base the

design of the API around these �ndings.

Some existing benchmark tools for Java ME enabled devices were used such as RMStress

[6] which didn't work out of the box (nullpointer exception), once �xed and working it

produced very inaccurate results due to display update (progress gauge) code being within

the benchmarked code section. TastePhone [17] was also run which produced a lot of general

information, but not enough for our purpose, as a result we created our own benchmarks.

The basic operations for working with the MIDP RMS system are listed below [40],

Opening Record Stores Open and if required to create a record store.

Closing Record Stores Close an opened record store.

Adding Records Create a record in a open record store, and add some data to it. The

data can not be added in chunks, it has to be written as a whole to the record.

Updating Records Update an already existing record in an open record store. This will

overwrite any data already in the record. As with adding records this cannot be done
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in chunks.

Reading Records Read the content of an existing record in an open record store into

memory so it can be used by the application.

Deleting Records and Record Stores Delete a record or an entire record store.

Creating and deleting record stores are operations not frequently used in the API. Nor can

much be done to optimize the use of these operations when designing the application. As

such, these aren't benchmarked.

It is noteworthy that Java ME does not support automatic serialization, ie. you can't

implement the serializable [50] interface as it is not a part of Java ME. When talking about

serialization, we mean that the object have methods for turning itself into a storable format

and to initialize itself from such a format. The way this is done in the API is by writing all

the �elds into a byte array using a stream writer.

3.2 Benchmark setup

All the RMS benchmarks are done on an empty store, more speci�cally, before each test,

the entire record store is deleted and created with no content. The serialization benchmarks

which will be discussed later, are done on newly created bu�ers.

All benchmarks are run on the target phone Nokia 2330c [47].

To more easily explain how the benchmark is done, we will de�ne some terms that will be

used in the following explanations:

Feature - A feature we want to test. Writing a record for instance.

Test - Performing a feature and timing (in ms) how long it takes.

Iteration - Running a test once.

Benchmark - Running a number of iterations, returns the total time.

The �nal result is determined in the following way: For each feature the benchmark is run

10 times with each of the di�erent data sizes. Each benchmark consists of 5 iterations. Out

of these 10, the minimum of maximum result from each data size is discarded to minimize

errors. The remaining 8 values are then averaged giving the �nal result for 5 iterations, this

is then divided by 5 to give the per iteration result.

The hypothesis is that it is more expensive, time wise, to store an amount of data in multiple

records than it is to store the same data in a single record. This can be achieved by serializing

the di�erent parts of data in an object into one larger byte array and storing this in one

record. Since most of the data is not static in size, we also need to look at how size variation

impacts update times of a record.
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At this point we are interested in determining how to design our record stores, and as such

we primarily want to determine if storing all the data as one big chunk is better than multiple

minor records. The additional benchmarking details regarding updating with di�erent data

sizes can be found in A.1. Since serializing data requires processing it is important to make

sure that serialization does not take longer than any potential gain by using a single record,

as such we benchmark this as well.

Benchmark A - Store record This benchmark will determine the time it takes to store

a number of records of a given size in an existing record store.

Listing 3.1: Benchmark for record write time.

1 // Recordstore rms is opened, and contains no records.
2 long result, total = 0;
3 for (int i = 0; i < itt;i++) {
4 bmData = genRandomByteArray(size);
5 startClock();
6 rms.addRecord(bmData, 0, bmData.length);
7 result = stopClock();
8 total += result;
9 }

Benchmark B - Update record This benchmark will determine the time it takes to up-

date an existing records data with some new set of data of the same size.

Listing 3.2: Benchmark for �xed sized record update time.

1 // Recordstore rms is opened, and contains 1 record of "size"
bytes.

2 long result, total = 0;
3 for (int i = 0; i < itt;i++) {
4 bmData = genRandomByteArray(size);
5 startClock();
6 rms.setRecord(1,bmData, 0, bmData.length);
7 result = stopClock();
8 total += result;
9 }

Benchmark C - Read record This benchmark will determine the time it takes read an

existing record into a byte array.

Listing 3.3: Benchmark for dynamic sized record update time.

1 // Recordstore rms is open, contains 1 record of "size" bytes.
2 long result = 0, total = 0;
3 for (int i = 0; i < itt;i++) {
4 startClock();
5 bmData = rms.getRecord(1);
6 result = stopClock();
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7 total += result;
8 }

Benchmark D - Delete a record This benchmark will determine the time it takes to

delete an existing record.

Listing 3.4: Benchmark for record deletion time.

1 // Recordstore rms is open, contains no records.
2 long result = 0,total = 0;
3 // Note that once a record is deleted, the record id will never
4 // be reused, which is why we can’t simply refer to record 1.
5 int id;
6 for (int i = 0; i < itt;i++) {
7 id = rms.addRecord(bmData, 0, bmData.length);
8 startClock();
9 rms.deleteRecord(id);
10 result = stopClock();
11 total += result;
12 }

Benchmark E - Update record unevenly Benchmark B updates with a record of the

same size, as this is not always the case, this benchmark will determine the time it

takes to update when the stored and new data are of di�erent sizes.

Listing 3.5: Benchmark uneven record updating.

1 // Record store is open, contains 1 record.
2 // initSize is a percentage (can be over 100%) of size.
3 long result, total = 0;
4 for (int i = 0; i < itt;i++) {
5 bmData = genRandomByteArray(initSize);
6 rms.setRecord(1,bmData, 0, bmData.length);
7 bmData = genRandomByteArray(size);
8 startClock();
9 rms.setRecord(1,bmData, 0, bmData.length);
10 result = stopClock();
11 total += result;
12 }

Benchmark F - Add multiple data This benchmark will determine the actual time it

takes to �ll the record store with a �xed amount of data by using multiple smaller

pieces. Comparing this to the results from benchmark A's results might give some

interesting results. Ie. will the measured time for writing 512 bytes into 16 32 byte

records be higher than the estimating results found by multiplying the results for

adding a single 32 byte record by 16?

Listing 3.6: Benchmark multiple records.

1 // Recordstore rms is open, contains no records.
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2 long result, total = 0;
3 for (int i = 0; target > (i * chunkSize);i++) {
4 bmData = genRandomByteArray(chunkSize);
5 startClock();
6 rms.addRecord(bmData, 0, bmData.length);
7 result = stopClock();
8 total += result;
9 }
10 return total;

Benchmark G - Serialize data This benchmark will determine the time it takes to se-

rialize a number of bytes into an array using a ByteArrayOutputStream and

DataOutputStream.

Listing 3.7: Benchmark for data serialization.

1 long result, total = 0;
2 for (int i = 0; i < itt;i++) {
3 // Close buffer/stream.
4 startClock();
5 SerializationHelper.writeByteArrayToStream(out, bmData);
6 result = stopClock();
7 total += result;
8 // Close buffer/stream.
9 }

Benchmark H - De-serialize data This benchmark will determine the time it takes to

de-serialize a number of bytes into an array using a ByteArrayInputStream and

DataInputStream.

Listing 3.8: Benchmark for data serialization.

1 long result, total = 0;
2 for (int i = 0; i < itt;i++) {
3 // Set up buffer/stream.
4 startClock();
5 bmData = SerializationHelper.readByteArrayFromStream(in);
6 result = stopClock();
7 total += result;
8 // Close buffer/stream.
9 }

Benchmark I - Overhead serialize data This benchmark will determine the overhead

time for creating and opening the bu�er and stream used while serializing. ByteArrayOutputStream
and DataOutputStream.

Listing 3.9: Benchmark for data serialization.

1 long result, total = 0;
2 for (int i = 0; i < itt;i++) {
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3 startClock();
4 ByteArrayOutputStream baos = new ByteArrayOutputStream();
5 DataOutputStream out = new DataOutputStream(baos);
6 result = stopClock();
7 total += result;
8 // Data is written.
9 startClock();
10 bmData = baos.toByteArray();
11 out.close();
12 baos.close();
13 result = stopClock();
14 total += result;
15 }

Benchmark J - Overhead de-serialize data This benchmark will determine the over-

head time for creating and opening the bu�er and stream used while de-serializing.

Listing 3.10: Benchmark for data serialization.

1 long result, total = 0;
2 for (int i = 0; i < itt;i++) {
3 // bmData contains some serialized data.
4 startClock();
5 ByteArrayInputStream bais = new ByteArrayInputStream(bmData);
6 DataInputStream in = new DataInputStream(bais);
7 result = stopClock();
8 total += result;
9 // The data is read.
10 startClock();
11 in.close();
12 bais.close();
13 result = stopClock();
14 total += result;
15 }

3.3 Results and Conclusion

3.3.1 Record Store

Looking at table 3.1 we can see that for all operations in this table the total time is more

dependant on the operation than the data size, this could indicate that the actual writing

of bytes to storage takes less time than setting up the record and other book keeping. In

other words, the increase of data size does not seem to e�ect how long it takes to complete

an operation to a very large extent. When comparing the ratio between the largest (20480

bytes) and the smallest (32 bytes) record size used, the di�erence in size is 64 000%, but
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Data Size (bytes) Write Update Read Delete

32 1,5 0,6 0,8 0,4

64 1,4 0,7 0,1 0,5

128 1,5 0,7 0,8 0,4

256 1,6 0,8 1,0 0,4

512 1,8 0,8 0,5 0,5

1024 1,9 0,9 1,1 0,4

5120 2,6 1,2 4,0 0,6

10240 3,0 1,5 8,0 0,7

20480 4,4 2,3 16,3 0,8

25600 4,8 2,8 21,8 0,9

Table 3.1: Benchmark results for basic RMS operations. The results are the time it takes

to perform the di�erent operations. All times are in ms.

Data Size (bytes) Measured Calculated

32 33,6 23,6

64 13,9 11,0

128 5,8 5,9

256 2,9 3,1

512 2,1 1,8

Table 3.2: Benchmark results for write operations in multiple records, a total of 512 bytes

are stored in records of �data size� bytes each. The calculated value is based on the write

results in table 3.1.

Data Size (bytes) Measured Calculated

32 273,8 236,2

64 144,6 110,1

128 71,6 59,0

256 36,1 31,0

512 18,0 17,8

1024 10,1 9,3

5120 2,0 2,6

Table 3.3: Benchmark results for write operations in multiple records, a total of 5120 bytes

are stored in records of �data size� bytes each. The calculated value is based on the write

results in table 3.1.

the time di�erence however is 320% for writing, 466% for updating, 2 725% for reading and

225% for deleting.

Furthermore, when looking at tables 3.2, 3.3 and 3.4, we can see that the actual time it
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Data Size (bytes) Measured Calculated

32 1037,0 944,6

64 497,4 440,3

128 253,0 236,2

256 135,4 124,0

512 72,6 71,0

1024 37,8 37,0

5120 8,6 10,4

10240 5,8 6,0

20480 3,3 4,4

Table 3.4: Benchmark results for write operations in multiple records, a total of 20480 bytes

are stored in records of �data size� bytes each. The calculated value is based on the write

results in table 3.1.

takes to write an amount of data as many small pieces is, on average, even larger than what

�gure 3.1 suggests. This is either because it takes longer to write once the number of records

go up, or because the values in �gure 3.1 are lower than the actual average. Regardless we

can see that the accumulated overhead for smaller pieces of data becomes nontrivial once

the number of pieces go up.

It is noteworthy at this point that because the operations are timed in milliseconds, and

some of them on average take 1 ms or less, some inaccuracy is to be expected in the �ndings.

In addition to the above presented data, some benchmarks have been done on updating

under di�erent scenarios (the existing record is larger / smaller than the data it is update

with). It seems that regardless of the size or con�guration of the record, not surprisingly,

it is quicker to update than to write the same amount of data to a new record using the

setRecord(). The results and descriptions can be found in appendix A.1.

3.3.2 Serialization

We have seen in the record store benchmarks that using a single record for storing a chunk

of data can be far more e�ective than storing the same data in multiple pieces. However, if

transforming the many pieces of data into a single array of bytes is more costly (time wise)

than what we gain by storing this way, then it ultimately becomes meaningless.

Table 3.6 shows the total time it takes to either serialize or de-serialize a byte array of a

given size. Comparing this to the results in table 3.1, we can see that for data sizes below

5kb, time spent serializing is negligible compared to the time it takes to write the data to

the store, this means that for many small records, serialization is considerably faster.

For larger data sizes let us look at an example: To calculate the estimated time it takes

to store something serialized we need to multiply the serialization time with the number
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Data Size (bytes) Serialize De-Serialize Overhead S. Overhead DS.

32 0,2 0,1 0,1 0,1

64 0,1 0,1 0,1 0,0

128 0,1 0,1 0,1 0,0

256 0,1 0,1 0,1 0,1

512 0,2 0,2 0,2 0,0

1024 0,5 0,2 0,3 0,1

5120 1,1 0,9 0,9 0,1

10240 1,8 1,6 1,6 0,1

20480 3,4 3,3 3,1 0,1

25600 3,9 3,7 3,9 0,1

Table 3.5: Benchmark results for serialization. S is short for serialization and DS for de-

serialization. Times are in ms.

Data Size (bytes) Total S. Total DS.

32 0,3 0,2

64 0,1 0,1

128 0,2 0,1

256 0,2 0,2

512 0,4 0,2

1024 0,7 0,2

5120 2,0 0,9

10240 3,4 1,6

20480 6,5 3,4

25600 7,8 3,8

Table 3.6: Calculated total time for serialization. The values are the sum of (overhead S +

serialize) or (overhead DS + de-serialize) from �gure 3.5. Times are in ms.

of elements, add the overhead for serializing some data of that total size (returning the

ByteArrayOutputstream as an array takes time) plus the time it takes to write the

serialized data into the record store. Storing 20480 bytes of data consisting of four 5120

byte records would then take an estimated (1, 1ms ∗ 4) + 3, 1ms+ 4, 4ms = 11, 9ms storing

this as four records (without serialization) would take 2, 6ms ∗ 4 = 10, 4ms, compared to

the obvious gains when serializing smaller arrays, it is slightly faster to store a few larger

records than to use serialization. In other words, if we want to store some large pieces of

data, it might be bene�cial to write them as separate records, at least if there aren't many

of them.
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3.3.3 Conclusion

Based on the results from the benchmarks it is pretty clear that our hypothesis holds true.

It can quickly become costly to store data in separate records when the number of records

goes up, the amount of data that is being stored seems to matter less than the overhead for

performing any given operation. Furthermore, the cost of serializing multiple data sets into

a single larger array does not exceed the bene�ts of storing in single records. If the data

sizes exceed approximately 5120 kb each, it might be more viable to store them as separate

records, however, this comes down to the number of data pieces to store. It would be fair

to say that in most cases it is better to store data in a single record than split into multiple

ones. This also holds true for updating data, in this case however, the threshold for number

of records to be updated separately before serialization being better is slightly higher.
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Implementing secureXdata

4.1 Implementation Criteria and Challenges

Before starting any work, it is imperative that some goal or ground rules are laid down

regarding what we are trying to accomplish. The ultimate goal of this work is obviously to

create a working API implementation of the protocol discussed in section 2.5, this will be

referred to as secureXdata or simply the API. There are a number of solutions to this problem

however, so in order to be more precise, we determined some criteria for the implementation.

These are loosely based on the talk �How to Design a Good API & Why it Matters� [28].

4.1.1 Ease of Use / Transparent Design

This is the most important of the criteria we have decided on. As mentioned in the intro-

duction chapter 1 there are multiple MDCS in use today, many of which lack proper security

2.1. If we are to be successful in getting any of these to adopt the API into their applications,

integrating the API into an existing system needs to be as hassle free as possible.

Trying to address this, we have focused on making the API design as transparent as possible.

This means that a programmer using the API to the least possible degree needs to know

anything about what's going on inside the API, ideally any programmer with Java ME

experience should be able to use the API without having to read any documentation.

As we will discuss later in this chapter, it is not possible to extend the existing Java ME
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classes we're interested in. Instead we will mimic the way they work down to the method

signatures. This makes integration into existing systems very easy, since the only changes

needed to be done is one or two lines of initialization and changing the object type.

4.1.2 Functionality Decoupling and Flexibility

The full API provides more than one functionality, primarily there are three di�erent services

provided. Since each of these cover di�erent areas (server/user authentication, secure stor-

age, secure communication), they should be as decoupled as possible, preferably completely

independent of each other.

This makes the API very �exible since a programmer can use only the aspects of the protocol

that is needed, and not being forced to add other unwanted functionality. Further more, it

is desirable to provide more than one way of using each of the parts or modules of the API

this is to accommodate any di�erent requirements applications might have.

4.1.3 Low-end Device Requirements

As discussed in 2.3.1 the primary target for the API is low end (in terms of memory and

CPU) devices or feature phones [60], as such it is obvious that the API needs be designed

to support such devices. On a strictly technical note, this would be using a Java ME

con�guration that the device is capable of running.

The other side of the matter would be to accommodate the varying capabilities of di�erent

devices in terms of hardware capabilities. Cryptographic algorithms are heavy processes

and as such it should be possible to make trade o�s between better security and better

performance. This should of course have some lower limits to ensure at least a minimal level

of security.

The user experience or usability also comes into the picture when working with low-end

devices. Many devices have small screens and limited capabilities for inputting passwords

etc, and this needs to be taken into consideration. How well the system performs also

a�ects the usability. Long wait times can make users oppose securing their system, and

heavy processing can be draining on the battery which in turn means the device needs to

be charged often which while in the �eld might be a serious problem.

4.2 SecureXdata Architecture

Before going into detail on the di�erent packages, this section will give an overview of the

packages and the intended ways for integration, as well as some of the package dependencies.

This should give a basic understanding of the API architecture, and how things �t together
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Figure 4.1: High level overview of package dependencies and API entry points.

before going more in depth later in the chapter. Figure 4.1 shows the high level API

architecture.

One of the criteria for the design of the API is as described in 4.1.2 function decoupling,

and as we can see from the dependency diagram 4.1 the API can be split into four primary

parts. The core packages which are used by the entire system, the communication
package, the storage package and the secureclient and display packages. In the

following sections we will summarize the purpose of the di�erent packages and see how much

they depend on each other. There will be a more detailed description of the di�erent parts

later in this chapter.

4.2.1 Core packages

These packages contain the core functionalities of the API that are used by the other packages

such as the ApplicationStore which contain the application settings. The core also

contains support/helper classes for array manipulation or serialization.
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4.2.1.1 The core Package

This is where all the support classes are, for instance the Arrays class which provides

features similar to java.util.Arrays in Java SE. The custom exceptions thrown by the

API are also de�ned in this package.

4.2.1.2 The core.crypto Package

When attempting to provide a secure system, cryptography is essential. As such most of the

functionality provided by the API uses cryptography to some extent. This package contains

the cryptographic classes used throughout the API, this provides �exibility with regards to

how cryptography is implemented. This will be discussed in more detail in a later section.

4.2.1.3 The core.storage Package

This package contains the classes that relate to data storage. Classes of interest here are

ApplicationStore, UserKeyStore and SecurityPolicy, which store application

settings, user settings and security related settings respectively. Helper classes for interaction

with the RMS system is also within this package.

4.2.2 The secureclient Package

Later we will described how the AbsSecureClient can be leveraged by a programmer to

create a �secure gateway� into his or her application that will handle server authentication,

user registration and logging in users.

The securelient can be considered a template or basic client that provides some common

functionality though its abstract class, and as such it depends on most of the other packages.

More speci�cally all but the storage.

4.2.3 The communication Package

The purpose of this package is to provide secure communication. It depends on core.crypto
for cryptography and on the ApplicationStore for protocol related settings such as the

ApplicationId. It is, however, completely independent from the SecureClient and the

storage.

The main class of interest in this package is the SecureHttpConnection which provides

the means to create a secure communication channel between the client and server.
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4.2.4 The storage Package

This package provides facilities for storing data securely on the device. The classes of interest

here are SecureUserRecordStore and SecureRecordStore which will be discussed

in greater detail later in this chapter.

As with the communication package, the storage package depends on the core compo-

nents for cryptography and application settings, but is independent from communication
and secureclient as well. So if an application uses HTTPS for communication, it would

be able to use storage to secure data saved locally without changing its transport layer.

4.2.5 Decoupling and Flexibility

Even though we have not yet gone into any details about how the di�erent parts of the

API function, we have seen that the main functionalities are decoupled and can be used as

separate modules. In the next subsection we will look at three possible approaches that can

be used to integrate an application with the API. These have little to do with and should

not be confused with the three integration points as show in �gure 4.1.

4.2.6 Integration Approaches

There are three main approaches for integration, these provide di�erent degrees of control

and responsibility for the programmer. That is, as with most other things, with more control

comes greater responsibility. If the programmer is knowledgeable when it comes to security,

he or she can control how keys are stored and managed. If the programmer is not familiar

with security design then this task can be taken care of by the API. The approaches will go

from programmer control to API control.

4.2.6.1 Manually Manage Keys

The SecureRecordStore and SecureHttpConnection can be initialized by the pro-

grammer directly, this means that the keys used will be managed by the program using the

API and the API only provides secure transmission (ie. securing the communication from

the device to the server) and secure storage, meaning the data stored on the device is secure.

This is the most �exible way of using the API. The programmer has full control of how user

credentials and data is stored and handled. However, this means that the programmer has

to take care of keeping any keys used safe both from a potential attacker, and from being

lost. This could be done by using the SecureRecordStore class provided by the API for

instance.
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4.2.6.2 Using The UserKeyStore

The API provides a user key store 4.5.2 which has the responsibility of handling user speci�c

data and keys. The key store is protected by a password and identi�ed by a user name, if the

correct log in information is provided, the key store will be unlocked and the data made avail-

able to the program. This means that the programmer does not need to manage user keys

and data, they will be stored in the UserKeyStore. Furthermore, once a UserKeyStore
is unlocked, the SecureUserRecordStore 4.5.3.3 and SecureHttpConnection 4.6.2

are both initialized with data from the key store. As a result the programmer need only be

concerned with one or two keys: a users password (the programmer needs to retrieve it from

the user), and as a contingency should the users lose their passwords, backing up the key

used by the SecureUserRecordStore (called the storage key, discussed in greater detail

later) is advised. Failing to do so could result in not being able to decrypt data should a

user forget his/her UserKeyStore password.

This approach takes care of most of the key management required, but still leaves the

programmer with a decent amount of control. This approach, as well as the �rst one,

requires no server interaction what so ever and could be used to secure local data on a

o�ine application, for example. The last approach, however, relies on server connectivity.

4.2.6.3 Using the SecureClient

By extending the AbsSecureClient class an application can delegate the task of handling

users entirely over to the API. Once the application starts, the screen control would be given

to secureXdata by running the SecureController (Discussed later in section 4.3.2).

Depending on the con�guration, the controller may prompt users to authenticate the server

on the �rst run, ask them to register or just log in. Once the registration or authentication

is successful, control is given back to the application. At this point the UserKeyStore

4.5.2, SecureUserRecordStore section 4.5.3.3 and SecureHttpConnection section

4.6.2 have been initialized and are ready for use. This will be discussed in greater detail

in the next section. By using this approach, the programmer is completely free from any

security concerns. The API will take care of server authentication, user registration, account

recovery, logging users in, and initializing the di�erent components with the correct keys.

This however comes at the cost of the programmer being con�ned to the system provided

by the API, and having little to no control over how parts of the application works.

4.3 The secureclient Package

In order to more easily create a secure application, the API provides an abstract client

that can be used as a starting point or template. It easily provides features like server

authentication, user registration and log in facilities.
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4.3.1 The AbsSecureClient Class

As discussed in the last of the integration approach sections 4.2.6.3, the abstract secure client

can be leveraged by the programmer to take care of server authentication, user registration,

account recovery and logging users in.

4.3.1.1 The userMenu() Method

One important thing to pay attention to when developing Java ME applications is the system

thread, more speci�cally not to run your code in it. In short, the system thread won't be

able to do its job, such as updating the current screen until it is not in use. This will be

discussed in greater detail in chapter 6. Because of this, the AbsSecureClient has an

abstract method called userMenu(), the purpose of this method is to give control back to

the application once the API has logged a user in.

The logging in steps are run inside a number of threads, this will be discussed in the next

section. Once these threads have logged in a user, they call the userMenu() method and

the application can run its code. The secureclient threads will then wait until the

application calls logout() at which point they will restart the log in process.

There would be nothing wrong with using a normal method instead of the userMenu()
callback method. One such method could be logInScreen() for instance, which would

return once the user has been logged in. However, the downside of this approach is that the

programmer would be responsible for correctly running this method in a separate thread

to avoid application deadlock. This would be a nuisance, goes against good API design as

proposed by Josh Bloch [28] and would result in boilerplate code [20].

The following code listing shows how an application extending the AbsSecureClient
would be implemented.

Listing 4.1: Example: Using the AbsSecurClient.

1 protected void startApp() {
2 try {
3 // Initialize the SecureController
4 initSecureModule(this,true,null,null);
5 } catch (ProtocolException e) {
6 e.printStackTrace();
7 }
8 // Hand over screen control, since this runs a
9 // thread, it returns immediately.

10 startSecureModule();
11 } // System thread exits the method and is now free
12 // to do screen updates etc.
13
14 public void userMenu() {
15 // A user is now logged in. Application code
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16 // goes in here.
17 }

As shown in the above listing 4.1 once the application starts, control is handed over to the

API which performs the necessary steps to log a user in. Once the user authentication is

successfully completed, userMenu() is called by the API and control is returned to the

application. At this point the programmer can assume three things.

1. The user logged in is authenticated.

2. The users UserKeyStore is unlocked.

3. SecureHttpConnection and SecureUserRecordStore are initialized with the

data for the logged in user and are ready to be used.

This means that the programmer can proceed as if making a normal Java ME application,

and by using SecureUserRecordStore instead of RecordStore and SecureHttpConnection
instead of HttpConnection. These secure classes have the same methods, but secure the
data or communication behind the scenes.

4.3.2 The SecureController Class

The SecureController and its private class the DisplayController are what controls
the screen and program �ow for the SecureClient. These have both been a part of the

system since before the candidate joined the project. As this is not something the candidate

has made many changes to, these will not be discussed in great detail. We will however

overview the basic design and more importantly the role it plays in the API. There will be

a section on this class in the future work section 7.1 as well, since it is in need of updating.

The SecureController is in charge of running/controlling the SecureClient, that is,
set the correct �rst screen depending on whether or not the server has been authenticated or

there are any registered users. Once the initial screen has been set the DisplayController
takes over, this is an inner class inside the SecureController. This takes care of screen
�ow within the SecureClient. Once a user is logged in, the DisplayController sig-

nals the SecureController, which in turn calls userMenu() in the mobile application

and waits until a call to logout() is made.

Both these controllers are threads, and the command handler for any user input in the

SecureClient is also run in a thread of its own. This is, as previously discussed, essential

when it comes to making a responsive Java ME applications. If not done correctly, screen

�ow will be wrong at best, or the application deadlocked. Details regarding the system

thread are discussed in chapter 6.

Even though the SecureController is running in a separate thread, the command han-

dler code inside it will be run by the system thread upon user input. Since the command

handler signals the SecureController to do most of the heavy work and it does not

require any screens to be set to proceed, the application would not be deadlocked had the
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command handler not been in a thread of its own. However, as was the issue in the early

stages of he API, any screen updates to give the user feedback of progress etc, would be

queued until the command handler code returns, at which point all the screens will be set

at once.

4.4 The crypto Package

As we discussed in section 4.1.3 the main Java ME platform does not provide any func-

tionality for cryptography. Though, in some cases some cryptographic primitives might be

available through optional libraries. However, this will vary from device to device. In this

section we will discuss how to deal with this.

4.4.1 The CryptoTools Interface

Because of this lack or di�erence in functionality, anything related to cryptography needs

to be very �exible to be able to accommodate any requirements or shortcomings a device

might have. Through the CryptoTools interface the API tries to address this by enabling

the developer to make their own implementation using whatever algorithms or libraries they

have available. In other words, if there exists some implementation of the used cryptographic

primitives that works on the device, the API will be able to use these. Some devices support

native Java ME libraries based on the JSR177 [56] speci�cations, using these might be

bene�cial with regards to memory and CPU/battery usage compared to using third party

libraries such as BouncyCastle [8]. Using native code will also help keep the binary sizes of

the resulting application down.

Listing 4.2: Interface: Overview of The CryptoTools interface.

1 public interface CryptoTools {
2 /**
3 * Returns a String describing which security provider is used
4 * for the implementation. In this case either "BC" or "JSR"
5 *
6 * @return A string describing the provider used for
7 * implementing the cryptographic functions
8 */
9 public String getProvider();

10
11 /**
12 * Sets the public key used by asymmetric ciphers.
13 */
14 public void init(byte[] publicKey) throws ProtocolException;
15
16 /**
17 * Encrypts the given message with the stored public key.
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18 *
19 * @param message The message to encrypt
20 * @return The encrypted message
21 */
22 public byte[] publicKeyEncryption(byte[] message)
23 throws ProtocolException;
24
25 /**
26 * Method used to add seed material to the random number generator
27 *
28 * @param seed The seed material
29 */
30 public void seed(byte[] seed);
31
32
33 /**
34 * Encrypts the message by using some symmetric encryption and
35 * the given key.
36 *
37 * @param message The message to ecrypt
38 * @param key The key for the encryption
39 * @param iv The initialization vector if the cipher works with
40 * CBC mode
41 * @return The message encrypted with the given key
42 */
43 public byte[] symmetricEncryption(byte[] message, byte[] key,
44 byte[] iv)
45 throws ProtocolException;
46
47 /**
48 * Decrypts the given encrypted message with the given key.
49 *
50 * @param message The message to decrypt
51 * @param key The key to use for the decryption
52 * @param iv The initialization vector if the cipher works with
53 * CBC mode
54 * @return The message in clear
55 */
56 public byte[] symmetricDecryption(byte[] message, byte[] key,
57 byte[] iv)
58 throws ProtocolException;
59
60 /**
61 * Generates a random byte array of given size, which can be
62 * either 16 or 32 or 64.
63 *
64 * @param i The size of the array (key)
65 * @return A random generated sequence of {@see i} bytes
66 */
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67 public byte[] generateRandomKey(int i) throws ProtocolException;
68
69 /**
70 * Creates a digest of the input message based on the
71 * implementation used. Most likely SHA1
72 *
73 * @param message - The message to create a digest of
74 * @return - The digest
75 */
76 public byte[] digest(byte[] message) throws ProtocolException;
77
78 /**
79 * Function to compute a key given the password and the salt.
80 * The implemented PBE scheme depends on the underlying
81 * implementation.
82 *
83 * @param password the user password provided at the login
84 * @param salt The random 16 bytes to append to the password in
85 * order to generate the key
86 * @param iterations the number of iterations the PBE algorithm
87 * will use to generate the key
88 * @return The encryption key
89 */
90 public byte[] pbe(String password, byte[] salt,int iterations)
91 throws ProtocolException;
92
93 /**
94 * Method to produce a HMAC.
95 * @param data - The text used to generate the digest
96 * @param key - The key used to authenticate the digest
97 * @return - The HMAC for data and key
98 */
99 public byte[] hMac(byte[] data,byte[] key);

100 }

All of the cryptographic operations done by the API use an implementation of this interface.

4.4.1.1 Bouncy Castle and the Default Implementation

The API comes with a default implementation of CryptoTools, this implementation uses

BouncyCastle [8]. Since BouncyCastle is a third party API it should support any Java ME

enabled phone with the capacity to load it. So the default implementation should work

on any device. It also provides a large arsenal of cryptographic algorithms and primitives,

making di�erent implementations possible.

On the other hand, since it is not a native implementation there are down sides. Computa-

tional time and memory usage might be higher than what would be the case with a native
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implementation, this indirectly e�ects battery usage. This is because native code can be in

a more powerful language or even hardware. Furthermore, the BouncyCastle library is huge

(the version used in this project is roughly 1mb), and as such the memory footprint of the

API will take a hit, obfuscation helps keeping the size down, but it will still be larger than

if using native libraries. In order to use some of the features of Bouncy Castle obfuscation

is required, which can add complexity to the testing and debugging aspect of things.

The default implementation uses, as described in the protocol paper [36]: RSA for public

key encryption. AES in padded CBC mode with initializing vector (IV) for symmetric

cryptography. SHA1 digest. HMAC based on SHA1 digest. Password Based Encryption

based on PKCS#12. A random generator based on the SecureRandomGenerator class

provided by Bouncy Castle. During the next phase of the development of the secureXdata

system, these and other algorithms will be tested extensively on a number of di�erent devices

to get an overview of what works better on which devices and so on.

4.4.2 The CryptoToolsFactory Class

The CryptoToolsFactory is the means by which the API gets access to the crypto-

graphic primitives it should use. Once initialized with a cryptographic provider (an imple-

mentation of CryptoTools) it will be accessible by the API through the public static
CryptoTools getCt() method.

4.5 The storage Package

In this section we will look at how the API stores application settings and manages user

keys. We will also explain how the API provided secure storage works.

4.5.1 Application store

The application store is, as the name suggests, the store object that contains information

for the actual application. Unlike the UserKeyStore 4.5.2, the data in the Application

Store contains mostly constant data once it has been created. This data is shared between

all the users on the device and consists of among other things the public key of the secure

server, the URL to said server and the security policy for the system.

4.5.1.1 The Java Application Descriptor (JAD) �le

The JAD �le [46] is used to describe a corresponding JAR [46] �le and its content. The

application manager on the device can use the JAR �les content to check whether or not it

is capable of running the application prior to loading the JAR. It is also possible to specify
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custom attributes, for instance to de�ne con�guration settings for the device in the JAD

�le. This will be relevant in the next section.

4.5.1.2 The SecurityPolicy Class

As one would expect, the SecurityPolicy contains various settings regarding the security

of the system. These dictate things like how many iterations should be used in generating

some keys within the API, if HTTPS should be used, the size of the AES keys and so on.

These values are read from the JAD �le during the �rst run of the system, and is since

persisted as a part of the ApplicationStore. When reading the values from �le, some

of the attributes are checked to ensure they are not below some minimum requirement, this

is to ensure that even if with a badly con�gured JAD �le, security isn't compromised.

4.5.1.3 Implementation of the ApplicationStore

The ApplicationStore is a static class. The reason for this is that its data is used by

the majority of the other classes in the secureXdata system and as already mentioned, the

data it contains is primarily static. When it comes to how the actual data is persisted in

the RMS system there are two obvious alternatives. Each �eld in the Application Store can

map to a record in the RMS system, this will be referred to as �Multiple records approach�,

the alternative is to serialize the entire object and store it in a single record in the RMS

system. This will be referred to as the �Single record approach�.

Server and JAD authentication Before discussing di�erent ways of implementing the

actual storage, we will look at the design of another important part of the ApplicationStore,
the JAD hashing used as part of server authentication. As discussed in the one of the pa-

pers [36], some of the attributes in the JAD should be dynamically generated in order to

customize the settings for each application instance/installation. This poses as a problem

because the JAR �le contains a manifest that is added at compile time where you can add

attributes. This JAR can then be signed, and even if it is not, the JVM will check the values

that are in the JAD �le against the ones inside the JAR manifest. Meaning that we would

have to recompile every time the attributes are changed/generated.

In the original protocol [34] a digest of the public key was calculated and used as a part

of the server authentication. However, since the public key is inside the JAD �le we can

expand on this idea and calculate the digest of the whole JAD �le, containing the public

key and thus verify not only the key, but an arbitrary set of JAD properties that we want

to make sure are not tampered with. The digest is computed on the server and sent as part

of the server authentication response. [36] The client can then calculate the digest for the

JAD present on the device, and compare this with the one from the server.

The hashing is done by concatenating a string consisting of the values we want to verify in a
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prede�ned order. The order is the same on client and server. This alone however leaves the

system vulnerable to spoo�ng attacks, if we have the properties �a=1�,�b=2�, and �c=3� and

we concatenate them in the same order, there is nothing stopping an attacker from leaving

�b� and �c� blank, and setting �a=123�. To prevent this, we pre�x the value with its length

+ ';'. Any empty values would have the length of 0. The previous example would then yield

the value �3;1230;0;� which would not be the same as �1;11;21;3�. The concatenated string

is then hashed and the hash from the server compared to the hash from the client values.

Multiple Records This is the approach that was initially used as it is usually the easiest

to implement. Each �eld in the class is stored in a separate record in the record store. This

can easily be achieved by mapping the record id to a constant and use this to retrieve or

set the value in the record store. This means that each �eld can be changed and stored

independently in the RMS. The bene�ts of having a one to one relation between the stored

data and the object is that it is very easy to persist the data, even if just one �eld is changed.

On the other hand, storing the whole object or retrieving it means that a number of records

need to be written or read.

Another issue with storing an object as multiple records has to do with data integrity. Since

there is no support for transactions when working with the Java ME RMS system, you

could end up with inconsistent data in the record store. This could happen if an application

terminates while storing data to a RecordStore. For example, we are storing the state

of an object that has 10 �elds. The �rst 5 are written successfully, then the application

terminates due to the battery being empty. When the application starts back up, there is

no way for it to know that the stored object stat is not correct. To avoid this issue one

would have to keep an update bit in the record store, set it to invalidate the data, and then

unset it once done to signal the state being valid.

Single Record This approach is used in the current implementation of the secureXdata

system. Instead of storing each �eld as a separate record, we serialize all the �elds into a

single byte array using a DataOutputStream and store this in a single record in the record

store. When we read the data from the record store it is de-serialized by reversing the store

operation and the �elds are set to their respectable values. Unlike with the multiple record

approach, this means that a single read or write operation needs to be performed when

storing or retrieving the data. On the downside, persisting a single �eld change means that

the whole object will be serialized and stored.

Whereas the multiple records approach might cause objects to be in an unde�ned or incon-

sistent state, this problem can not occur with this approach. Since we are only working with

one record, once we begin updating it will either �nish successfully or the record would be

in a corrupt state, in which case an exception would be thrown.

Hybrid approach A third alternative is to combine the two into a hybrid design. If some

of the �elds are changed frequently, it can be bene�cial to keep these as a separate record in
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the record store and use serialization to store the data that rarely changes in a single record.

This way one can get the bene�ts of both approaches, though it adds to code complexity.

For the Application Store however this is not very relevant since its data seldom changes.

It could however be bene�cial for the UserKeyStore which we will discuss in the next

section.

4.5.2 The UserKeyStore Class

As described above the Application store contains information used by the whole applica-

tion, that is, non user speci�c information. The UserKeyStore class' main role in the

secureXdata system is to protect and manage the credentials and information. By success-

fully unlocking a UserKeyStore a user is also authenticated since the store is encrypted

using a user password based key.

4.5.2.1 Storage Key

As described in [37], it is bene�cial to separate the password used on the server, the password

used locally on the device and the actual key used to encrypt the data stored on the device

(storage key).

The most obvious bene�t from this is that if the device should become compromised, an

attacker would gain nothing more than the information on the device. Given they manage

to crack the local storage, the password they would gain is used only locally and thus the

server is safe.

Secondly, by saving the storage key elsewhere, such as on a remote location during regis-

tration, we make it possible to recover any encrypted data on the device even if the local

password should be lost.

A third e�ect of this separation is that it is possible to change the local password indepen-

dently from any data that might be stored on the device. In other words, if a user changes

his or her password, the data on the device does not have to be re-encrypted, we only need

to encrypt the UserKeystore with the new password. See �gure 4.2 below for a graphical

representation.

4.5.2.2 Implementation of the UserKeyStore

As already mentioned, the UserKeyStore protects the user data, this protection however

includes giving the rest of the system access to it in a secure manner. The UserKeyStore
keeps the following data: storage key, user id, session key, seed, request number and salt.

The user name can be derived from the store's name.
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Encrypted using the local 
password

User Key Store

Encrypted using the storage 
key

Data Record Store

Storage keyServerServer

Storage key

Figure 4.2: Separation of data and storage key.

4.5.2.3 Usage Example

Before going into detail on the speci�c methods, it is advised the reader has a look at diagram

4.3 which illustrates a user logging in using the UserKeyStore and then writes some data

to a SecureUserKeyStore. The user �Bill� is already registered in this example.

The open() Method The open method opens a underlying record store where the data

will be stored. If the user does not exist and the create �ag is set to false, an exception is

thrown. Once the record store is opened, the UserKeyStore tries to read the encrypted

data from it.

The init() Method Once a UserKeyStore has been opened for the �rst time, ie.

no user data exists, it needs to be initialized. There are two methods for initializing a

UserKeyStore, the �rst takes only a string, this string will be the password used to

decrypt the key store. This method generates all the data that is needed (storage key, seed,

number of iterations) encrypts the data using the provided password and stores it. Once

done it cleans the object and returns the storage key.

The second method lets the programmer generate or otherwise decide on the storage key and

seed used by the UserKeyStore. This can be useful for password resetting for instance, it

is primarily provided as a part of the SecureClient user registration system.
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UserKeyStoreApplication

open("Bill")

A UserKeyStore<<create>>

RecordStore

open("Bill")

unlock(password)

decryptData() [Login failed] throw exception

SecureUserKeyStore

init(this)

open("data")

open("Bill_data")

getUserName()

write(bytes);

A RecordStore<<create>>

A RecordStore<<create>>

read()

"Bill"

storageKey

getStKey()

<<create>> A SecureUserKeyStore

write(encryptedBytes)

UserKeyStore

SecureUserKeyStore

Figure 4.3: Sequence diagram showing how the UserKeyStore and

SecureUserRecordStore is used to store some bytes for user Bill

The decrypt() Method When the UserKeyStore is saved, it persists encrypted data

only, in other words, no plain text data is stored. When being opened, the stored data is

read from the RMS and into memory. The decrypt() method decrypts the data and
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puts the plain text values into memory. Once there, they are accessible by the application

through get methods. The process of decrypting the store unlocks the data but also acts as

authentication since only the account owner should know the local password on the device.

If the decryption fails a number of times (by default 3), the UserKeyStore data is deleted

permanently. In order to recover the account, the storage key must be set and secured

with a password. This is essentially the init() being re-done. If the storage key used

has not been backed up however, there is no way to recover the data encrypted in the

SecureUserRecordStore. Initialization for recovery would use the second init()
method that takes the storage key as a parameter.

The clean() Method To prevent other people from accessing the plain text values in

memory, it is crucial that this data is removed once a user is logged out. This method sets

all values in memory to null. This means that open() needs to be called followed by a

successful decrypt in order to access the data again.

4.5.3 The SecureRecordStore Class

Whereas the ApplicationStore and the UserKeyStore are primarily used by the se-

cureXdata system itself, containing information such as keys and security settings, the

SecureRecordStore class provides the developer using the system with the means to

secure the data used in the application in question.

4.5.3.1 Implementation of the SecureRecordStore

Extending the existing Java ME RecordStore class and adding security features to it

would be the most obvious way to go about making this class. However, this is not possible

due to the fact that the RecordStore class has no visible constructors, it is private.

Because of this we instead wrap the SecureRecordStore around the insecure RecordStore.

To be able to easily provide a number of alternatives when it comes to how the client

application initializes the secure storage, most of the functionality is in an abstract class

(AbsSecureRecordStore). The abstract class has one unimplemented method: byte[]
getKey(). This method de�nes how the class gets the cryptographic key to use for en-

crypting and decrypting data going in and out.

4.5.3.2 Transparent Design and Easy Integration

As discussed in 4.1.1, one of the criteria for the design of the API was that it should

be transparent and easy to integrate into existing systems. To accommodate this the
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SecureRecordStore has been designed around the idea that it should be interchangeable

with the normal RecordStore.

Mimics the RecordStore Even though it is not possible to make a class inherit from

RecordStore, it is possible to mimic it by having the same method de�nitions in the

SecureRecordStore as the normal one. By doing this we enable a programmer to inter-

change the API and Java ME version of the record store on the code level.

In chapter 7 we will discuss how we can make the relationship between the RecordStore
and SecureRecordStore stronger.

Transparent Design Since the RecordStore class uses the singleton design pattern

[31], the SecureRecordStore does the same. This opens a underlying RecordStore
object that the secure object will write to and read data from. Code listing 4.3 shows the

constructor. To the programmer the SecureRecordStore behaves the same as the normal
RecordStore, and this conforms well with the �rst criteria 4.1.1. Internally however the

data is encrypted before it is stored and decrypted before being returned to the application

using the object. See code listing 4.4.

Apart from the read and write methods, nothing more than returning the corresponding

value of the underlying RecordStore is done. See code listing 4.7 for clari�cation.

Code listing 4.5 and 4.6 shows a comparison of a code snippet using the normal RecordStore
and the SecureRecordStore.

There is an additional method in the SecureRecordStores compared to the Java ME

RecordStore: the getRecordSizeQuick() which returns the number of bytes stored

in a record, that is, the size of the encrypted data. Since the data we are storing is encrypted,

it might be in blocks. This depends on the CryptoTools implementation used, the block

size could vary as well.

The default implementation 4.4.1.1 that comes with secureXdata uses a blockcipher and

encrypts in blocks of 16 bytes [48]. This means that the cipher will only encrypt or decrypt

16 bytes at the time, if 6 bytes are given as input to the cipher and no more data exists, the

remaining 10 bytes will be padded. If 16 bytes total are encrypted, a 16 byte padding block

will be appended at the end.

This means that the data stored in the record store, might be of a di�erent size than the

number of bytes being written, but never less than the plain text data. So there would never

arise a situation where the programmer expects to get more data than what would actually

be returned when reading a record.

Since we are talking about, in most cases, a very small di�erence (maximum 16 bytes with

the default implementation of CryptoTools) and since it can never be less than the actual
data, it might make more sense to use the size of the encrypted data. This is because to get

the actual byte size of the plain text data, it has to be decrypted, something that might be
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computational expensive.

The getRecordSize() method returns the correct number of bytes as expected, but as

mentioned, this comes at the cost of having to decrypt the data.

Listing 4.3: Singleton constructor method for SecureRecordStore.

1 public abstract class AbsSecureRecordStore {
2 // ...
3
4 /**
5 * Superclass constructor for the abstract SecureRecordStore.
6 *
7 * @param store the underlying store that the data will be
8 * written to.
9 */

10 protected AbsSecureRecordStore(RecordStore store) {
11 this.store = store;
12 }
13
14 // ...
15 }
16
17 public class SecureRecordStore extends AbsSecureRecordStore {
18 // ...
19 /**
20 * Open a secure record store, internally uses the key that i
21 * has been initialized with.
22 * @param recordStoreName the name of the record store
23 * @param createIfNecessary if true, creates the record store
24 * if needed.
25 * @return an instance of SecureRecordStore
26 */
27 public static SecureRecordStore openRecordStore(String
28 recordStoreName, boolean createIfNecessary) throws
29 RecordStoreFullException,
30 RecordStoreNotFoundException,
31 RecordStoreException {
32 return new SecureRecordStore(
33 RecordStore.openRecordStore(
34 recordStoreName, createIfNecessary
35 )
36 );
37 }
38
39 /**
40 * Open a secure record store, internally uses the key that i
41 * has been initialized with.
42 * @param recordStoreName the name of the record store
43 * @param createIfNecessary if true, creates the record store
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44 * if needed.
45 * @param authmode the mode under which to check or create access.
46 * (See RecordStore API).
47 * @param writable true if the RecordStore is to be writable by
48 * other MIDlet suites that are granted access.
49 * @return an instance of SecureRecordStore
50 */
51 public static SecureRecordStore openRecordStore(String
52 recordStoreName, boolean createIfNecessary, int
53 authmode, boolean writable) throws
54 RecordStoreFullException,
55 RecordStoreNotFoundException,
56 RecordStoreException {
57 return new SecureRecordStore(
58 RecordStore.openRecordStore(
59 recordStoreName, createIfNecessary,
60 authmode, writable
61 )
62 );
63 }
64
65 /**
66 * Open a secure record store, internally uses the key that i
67 * has been initialized with.
68 * @param recordStoreName the name of the record store.
69 * @param vendorName the vendor of the owning MIDlet suite.
70 * @param suiteName the name of the MIDlet suite.
71 * @return an instance of SecureRecordStore
72 */
73 public static SecureRecordStore openRecordStore(String
74 recordStoreName, String vendorName, String suiteName)
75 throws RecordStoreNotFoundException,
76 RecordStoreException {
77 return new SecureRecordStore(
78 RecordStore.openRecordStore(
79 recordStoreName, vendorName, suiteName
80 )
81 );
82 }
83 }

Listing 4.4: getRecord() and setRecord() internal workings

1 /**
2 * Encrypts the data and adds it to the underlying record store.
3 *
4 * @param data the data to be added
5 * @param offset the index into the data of the first relevant
6 * byte to store
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7 * @param numBytes the number of bytes from the offset to
8 * include in the record
9 * @return the id of the newly created record

10 */
11 public int addRecord(byte[] data, int offset, int numBytes)
12 throws RecordStoreNotOpenException, RecordStoreFullException,
13 RecordStoreException, ProtocolException {
14 byte[] lBuffer = new byte[numBytes];
15 System.arraycopy(data, 0, lBuffer, offset, numBytes);
16 byte[] d = CryptoToolsFactory.getCt().symmetricEncryption(
17 lBuffer, getKey(), new byte[16]);
18 return store.addRecord(d, 0, d.length);
19 }
20
21 /**
22 * Sets the content of a record to the passed in data.
23 *
24 * @param recordId the id of the record in the store that is
25 * to be updated
26 * @param newData the array containing the new data to store
27 * @param offset the index into the data of the first relevant
28 * byte to store
29 * @param numBytes the number of bytes from the offset to
30 * include in the rec
31 */
32 public void setRecord(int recordId, byte[] newData,
33 int offset, int numBytes)
34 throws RecordStoreNotOpenException,
35 InvalidRecordIDException, RecordStoreFullException,
36 RecordStoreException, ProtocolException {
37 byte[] lBuffer = new byte[numBytes];
38 System.arraycopy(newData, 0, lBuffer, offset, numBytes);
39 byte[] d = CryptoToolsFactory.getCt().symmetricEncryption(
40 lBuffer, getKey(), new byte[16]);
41 Logger.write(Arrays.toString(d),doLog );
42 store.setRecord(recordId, d, 0, d.length);
43 }

Listing 4.5: Example: SecureRecordStore (Transparent design)

1 // Uses the secure class
2 SecureRecordStore rs = SecureRecordStore.openRecordStore("test_store",

true);
3 if (rs.getNumRecords() == 0) {
4 byte[] b = "Data to store recordstore".getBytes();
5 rs.addRecord(b, 0, b.length);
6 print("Stored data..");
7 }
8 print("Reading data:");
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9 print(new String(rs.getRecord(1)));
10 rs.closeRecordStore();

Listing 4.6: Example: Normal Java ME RecordStore (not secure)

1 // Uses the Java ME class
2 RecordStore rs = RecordStore.openRecordStore("test_store", true);
3 if (rs.getNumRecords() == 0) {
4 byte[] b = "Data to store recordstore".getBytes();
5 rs.addRecord(b, 0, b.length);
6 print("Stored data..");
7 }
8 print("Reading data:");
9 print(new String(rs.getRecord(1)));

10 rs.closeRecordStore();

Listing 4.7: Methods return the corresponding underlying values.

1 // Store is the underlying RecordStore.
2 public long getLastModified() throws RecordStoreNotOpenException {
3 return store.getLastModified();
4 }
5
6 public String getName() throws RecordStoreNotOpenException {
7 return store.getName();
8 }
9

10 public int getNextRecordID() throws
11 RecordStoreNotOpenException, RecordStoreException {
12 return store.getNextRecordID();
13 }

Future Work: Descriptions for SecureRecordStore entries When data is stored

using theSecureRecordStore, the data needs to be decrypted in order to give get any

meaningful information. Cryptographic operations are generally costly (see chapter 5 for

benchmarks). It is not unrealistic to assume that an application using the API would want

to display a list of records for the users to pick from, this means that all the records need

to be decrypted just to inform the user of what they contain.

In order to make it less costly for the application to display such a list, some form of

description should be added for the records. Structurally it would make the most sense to

store all of these in a single (the �rst) record in a given record store in a serialized format.

Since it should be fair to assume that if such descriptions would be shown, it would most

likely not be shown by itself, rather the descriptions of all records in a record store would

most likely be shown together in a list. To make it secure the description record could be

encrypted in the same way as the rest of the record store.
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This would mean that one or more additional methods would be added to the secure record

store classes. These could be for instance public String[] getDescriotions()
which would return all the descriptions, or public String getDescription(int id)
which would return the description for a single record.

A way of setting the description can be more di�cult to add. Since most of the current API

is designed around mimicking the Java ME classes we don't want to break this by changing

the existing methods. Making an overloaded write/update method for a record store which

takes an additional description parameter should not be a problem.

However, this would mean that changes would have to be made in any existing MDCS. To

make such an integration easier, we propose that an interface can be added and integrated

by the programmer. The record store could be initialized with an instance of this interface

and through it extrapolate a description from any written using the existing addRecord()
and setRecord() methods.

The interface could look something like the following listing:

Listing 4.8: Description extractor interface

1 public interface DescriptionExtractor {
2 /**
3 * Extracts a description based on the given byte array.
4 *
5 * @return the description.
6 */
7 public String makeDescription(byte[] data);
8 }

This way any current applications don't need to change in order to get a description for

their data. An implementation could be as easy as taking the �rst 20 bytes of the data and

storing it as a string.

4.5.3.3 The SecureUserRecordStore Class

As described above, the SecureRecordStore encrypts the data before storing it on the

device, this provides the programmer the means to secure the data from being read or

tampered with by anyone knowing the key used to store it.

Initially, the UserKeyStore initialized the SecureRecordStore with a storage key upon
user log in, this however obviously caused issues when more than one user comes into the

picture. Since user A does not have the same storage key as user B, reading any data written

while a di�erent user was logged in, would result in a cipher exception. This situation occurs

because the intended method of integration was to replace the existing RecordStore with

the SecureRecordStore when securing existing MDCS. The database name is therefore

the same for both users. The solution to this as far as the SecureRecordStore is con-

cerned is to not initialize it when a user logs in. This however means the programmer would
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have to keep track of the di�erent users' stores which in itself is an issue, since security re-

lated responsibilities would be put on the programmer. Furthermore, this would mean that

to integrate security into an existing application a lot of changes would have to be made.

Both of these issues go against the design criteria for the API. To try and remedy this, we

introduce the SecureUserRecordStore. The SecureUserRecordStore works in the same

way as the SecureRecordStore. The methods and method signatures are the same and

with the exception to the open method, they do the same. The open method however adds

a pre�x to the record store name provided. This pre�x is the user name of the currently

logged in user (this means that SecureUserRecordStore won't work without a user

being logged in.) This means that in a way, each user has their own RMS system or storage

environment.

If the programmer calls SecureUserRecordStore.openRecordStore(“data”,true);
while user B is logged in, the actual record store name would be �B_data�. In normal

database terms, this could be seen as each user having their own database. Even though

all the queries are done on tables with the same names, the data is di�erent. This gives

us three things: �rst, a users data can be encrypted with said users storage key and not

cause any trouble. Secondly, because this happens behind the scenes, integrating with an

existing application would only be a problem if you want to be able to share data among

users. Lastly, this means the SecureUserRecordStore performs authorization on the

data, only the correct user has access to his or her data.

4.5.3.4 The SecureRecordEnumeration Class

A RecordStore can be iterated with a RecordEnumeration, this would however re-

turn the data as it is stored, in other words the encrypted data. To remedy this the

SecureRecordEnumeration was created, it works the same way as the normal enu-

merator, however any calls to the nextRecord() method will return the plain-text stored

in the record as expected.

Since decrypting the stored data can be processor intensive, it is generally a good idea to

refrain from enumerating the SecureRecordStore unnecessarily. See the Implementation

Evaluation chapter 5 and Future Work section 7.1 for details on speed benchmarks and

alternative solutions.

4.6 The communication Package

We've looked at how we can secure the data stored on the device, and how the programmer

can leverage the SecureClient to register and log users in. In this section we will discuss

how to provide secure communication in a easy and �exible way.
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4.6.1 The SecureOutStream Class

This class encrypts anything written to it prior to writing the data into a OutputStream
given in the constructor. It also takes care of appending the correct IV and a HMAC to the

output so that the data can be successfully decrypted and its integrity veri�ed once received

by the server.

4.6.1.1 The write() Method

SecureOutStream::
write(data)

cipher.processBytes(data)

isFinalized?

return

true

false

Ciphered 
block(s) 

returned?
false

true

outstream.write(cipheredData)
HMACHasher.update(cipheredData)

Figure 4.4: Inner workings of SecureOutStream.write().
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As we can see in 4.4 a few steps are taken before any data is actually written to the underlying

stream. First we need to check if the stream is �nalized, more on this in the next paragraph.

If it isn't �nalized, we pass the data to a cipher object. Depending on what type of cipher

this is, it may or may not return any ciphered bytes. As previously mentioned, in our

default implementation, a PaddedBufferedBlockCipher [48] is used. Whenever any

data is added to the cipher, it will check if it has enough bytes to create a complete block

(16 bytes). If this is the case, it will return as many ciphered blocks as possible. If not,

it will add the new data to the bu�er and wait for more until it can complete at least one

block. When a block is returned, this is written to the out stream and the HMAC [22] is

updated with the additional blocks.

4.6.1.2 The flush() and finish() Methods

Once we are done writing data to the SecureOutStream, it needs to be �ushed correctly.

The cipher and HMAC makes this more complicated than just �ushing the bu�er.

The �rst step is making sure any data written to the cipher is �ushed out and that the

ciphered data is complete so it is possible to decrypt it at some later point. This is done

using the doFinal(..) method. What this does is to pad any data in the cipher-bu�er

so that it can create a full block. This block is then returned, and as with write(..),
written to the underlying stream and used to update the HMAC.

The next step is to append the HMAC hash at the end of the stream, this is done by calling

doFinal(..) on the HMAC object. This returns a hash of all the ciphered bytes that have

been written into the stream. This hash is written to the end of the OutputStream and

it is �ushed. The SecureOutStream object is now considered �nalized. This is because

we have sent the �nal cipher block and the HMAC of the data and as a result no further

writing is possible.

As just described, the �ushing of this stream is not without consequence. Once it has been

�ushed, no more data can be written. Because of this, and to avoid any inadvertent �ushing,

the finish() method takes care of �ushing.

On some devices, �ushing the stream will close it. This is at least the case on the Nokia

2330c [47], and as such, the flush() method has been changed to do nothing. Instead,

if one wishes to �ush the underlying bu�er there is a forceFlush() method available to

explicitly do so without �nalizing the stream.

4.6.2 The SecureHttpConnection Class

The SecureOutStream provides the means to stream encrypted data to some destination,

in this section we will discuss how we can, among other things, use this to create a class for

securing HTTP communication between the client and server.
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4.6.2.1 Common Issues

Before discussing di�erent ways of designing a secure HTTP class based on the protocol,

we will look at some common issues which we will encounter regardless of what design we

choose.

As discussed in [38], the integrity of the data sent using the protocol is maintained by

computing the HMAC [22] of the data received and making sure this is identical to the

HMAC calculated by the server prior to sending. This means that we need to read all the

data in the response before we can verify its integrity. In other words, even though the

cipher used might support decrypting the data in chunks, we have no way of verifying it

until it has all been read.

This can be problematic while working on phones with restricted memory and communicat-

ing large amounts of data. In order to address this, it would be possible to split the data

into multiple requests and verify one piece at a time. This will be discussed in chapter 7

Conclusion and Future Work.

4.6.2.2 Di�erent Approaches

The papers (section 1.3) on which this work is based, gives the grounds for the actual

protocol used to secure the communication between client and server. However, how to

implement this functionality and make it available to the programmer is yet to be discussed.

In this section we will look at di�erent approaches to making the protocol available to a

programmer and look at how the current API implementation does this.

As a Static library One approach to this problem is to provide the bits and pieces needed

to use the protocol. This means that the programmer using the API would use a normal

HTTP connection, and through the API create the correct headers or chunks of data to send

to the server in order to secure the communication. This is best illustrated by example.

Listing 4.9: Example: SecureHttp as a static library

1 // Get the HttpConnection object and set it to a post request.
2 c = (HttpConnection)Connector.open(url);
3 c.setRequestMethod(HttpConnection.POST);
4 // Get the output stream
5 os = c.openOutputStream();
6 // Write the protocol header.
7 os.write(SecureHTTP.getHeader());
8 // Write the desired data.
9 os.write(SecureHTTP.encapsulateData(data));

10 // Write the HMAC to the stream, after this point no further
11 // Calls to SecureHTTP.encapsulateData() would be possible.
12 os.write(SecureHTTP.getHMAC());
13 // Normal HttpConnection checking of response code and getting
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14 // the response data, the read data will be in the array respData.
15 rc = c.getResponseCode();
16 if (rc != HttpConnection.HTTP_OK) {
17 throw new IOException("HTTP response code: " + rc);
18 }
19 is = c.openInputStream();
20 (...)
21 if (SecureHTTP.validHMAC(respData)) {
22 // Extract the actual response data and process it
23 byte[] respDataPT = SecureHTTP.decaspulate(respData);
24 process(respDataPT);
25 }

Pros

The programmer has full control of the code and when what is done.

The API enforces no restrictions, there are no limitations to what other items might

be put in the stream.

The programmer could design his or her own systems for uploading and downloading

data to the server.

Cons

It is up to the programmer to make sure the protocol speci�cations are followed.

(Header needs to be written �rst, followed by the data, and the HMAC appended at

the end.)

Programmer needs to understand security concerns.

Easy to make mistakes.

API Controlled At the other end of the spectrum we can let the API handle the entire

process of securing and performing the communication. The API would more or less integrate

the above code listing 4.9 and make it available as a method. The programmer would then

supply a URL, and the request to send. The API would then do everything and return the

response data when the transaction is complete. See the below code listing.

Listing 4.10: Example: API controlled SecureHttp

1 SecureHTTPRequest req = new SecureHTTPRequest(url);
2 req.setProperty("Content-Language", "en-US");
3 SecureHTTPResponse resp = SecureHTTP.fetch(url,data);
4 if (resp.isValid()) {
5 process(resp);
6 }

Pros

The programmer needs no knowledge about the underlying security concerns.

Very easy to use, retrieving the content of a URL takes only four lines of code.

58



4.6. The communication Package

Cons

The programmer has no control of what goes on while the data is being fetched, this

means that giving feedback to the end user would be di�cult.

Integration into existing systems could prove di�cult or require a lot of changes.

Transparent Design A third approach to the problem is to make a compromise between

the two previous solutions. As we did with the SecureRecordStore 4.5.3, we can try and

mimic the way the Java ME HttpConnection works, only our implementation secures

the data streams using the SecureOutStream described in 4.6.1. This means that the

programmer would use the SecureHttpConnection in more or less the same way as the

default Java ME HttpConnection. The only di�erence would be, as discussed in the

SecureOutStream 4.6.1, to ensure no issues with �ushing the SecureOutStream the

finish() method needs to be used to �nalize and �ush the stream.

This would only be a problem if the programmer wishes to explicitly �ush the stream, in

which case the forceFlush() would have to be used. However, since one would not

normally explicitly �ush, but rather use a method to proceed to the next �stage� of the

communication this, should not be an issue. Such methods are getResponseCode() and

openInputStream() (see [49] for details).

The example code listings below shows the di�erence between standard Java ME code and

the secure code using SecureHttpConnection, line 3 in 4.11 is the integration point.

Listing 4.11: Example: SecureHttpConnection (Transparent design)

1 HttpConnection hc = (HttpConnection)Connector.open(url);
2 // Make the connection secure.
3 SecureHttpConnection c = new SecureHttpConnection(hc);
4 c.setRequestMethod(HttpConnection.POST);
5 os = c.openOutputStream();
6 os.write(someData);
7 rc = c.getResponseCode();
8 if (rc != HttpConnection.HTTP_OK) {
9 throw new IOException("HTTP response code: " + rc);

10 }
11 is = c.openInputStream();
12 byte[] data;
13 // Reads the available data into the array.
14 readData(is,data);
15 process(data):

Listing 4.12: Example: Normal Java ME HttpConnection (not secure)

1 HttpConnection c = (HttpConnection)Connector.open(url);
2 c.setRequestMethod(HttpConnection.POST);
3 os = c.openOutputStream();
4 os.write(someData);
5 rc = c.getResponseCode();
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6 if (rc != HttpConnection.HTTP_OK) {
7 throw new IOException("HTTP response code: " + rc);
8 }
9 is = c.openInputStream();

10 byte[] data;
11 // Reads the available data into the array.
12 readData(is,data);
13 process(data):

Pros

Very easy to integrate into existing systems.

Programmer needs no knowledge about underlying security concerns.

The API puts no restrictions on the programmer compared to normal Java ME.

Cons

Flushing the OutputStream requires special attention if done directly.

4.6.2.3 Selected Approach

Based on the criteria discussed in 4.1, we decided that the best approach to this problem

is the transparent design solution. In the following section we will look closer at some key

aspects of the implemented SecureHttpConnection class.

Sessions As described in one of the the protocol papers [38], both symmetric and asym-

metric encryption is used to secure the communication with the server. The asymmetric

part is needed to initially verify the server and to securely transmit the session key used

in the current communication. Once this communication is established we no longer need

to include the asymmetrically encrypted header information and instead we use a normal

HTTP session [42] and encrypt using a symmetric cipher and the session key. By doing so

we save data overhead from the secure header, but more importantly, we save computational

time since we no longer need to do costly asymmetric encryption.

Figures 4.5 and 4.6 show the di�erences between the HTTP request sent to the server with

and without an active session.

The openOutputStream()Method This method sets up and opens the SecureOutputStream
used to write the request data to the server. See �gure 4.7 for an overview of the inner work-

ings.

When the method is called, if an output stream has been opened already, the same object

is returned. If not, the request method of the underlying HttpConnection is set to post

and an IV is generated. If there exists a valid session, this is set to the cookie of the

underlying HttpConnection. Else a new session key is generated and the API header is
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CLIENT HTTP REQUEST

  POST  /someurl HTTP/1.1
  Host: SercureServer.com

Encrypted using session key

Client request data

Client request headers

HMAC of β 

Secure HTTP Header

               β 

Figure 4.5: API secured HTTP request without session

added instead, see �gures 4.5 and 4.6 for details. This means that it is the API meaning

the client, that establishes the session. Even if a session already exists, it is entirely possible

for the client to establish a new session. Figure 4.8 shows the actual byte stream structure

in either case. The IV is written to the underlying HttpConnection output stream (in

plain text) and a SecureOutputStream is created wrapping the said stream. Using a

DataOutputStream any properties set in the SecureHttpConnection is written to

the secure stream and the secure stream is returned.

The openInputStream() Method This method returns a ByteArrayInputStream
containing all the response data sent from the server. As mentioned in 4.6.2.1 to be able

to check the HMAC of the read data and thereby verify its integrity, we need to read all

the data from the input stream and this is why we return a ByteArrayInputStream.
Figure 4.10 shows the inner workings of this method. When the method is called, we check

if the input stream has already been opened, in which case we return the existing stream.

If not we must make sure the ouput stream has been properly �ushed to the server. If no

output stream has been opened we open one and �nalize it. Otherwise we make sure it has

been �nalized. This conforms to the state transitions as described in the HttpConnection
documentation [49]. We can now open the HttpConnections input stream and read the

data. If the status code is not 200 an exception is thrown.
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CLIENT HTTP REQUEST WITH SESSION

  POST  /someurl HTTP/1.1
  Host: SercureServer.com
  Cookie: JSESSIONID=aaafh0WAE-Vrw5;

Encrypted using session key

Client request data

Client request headers

HMAC of β 

               β 

Figure 4.6: API secured HTTP request with session

Once all the data has been read we split it according to the protocol speci�cations as seen

in �gure 4.8. We can then verify the integrity of the data by calculating the HMAC of what

we received and compare it to the HMAC provided by the server. If they do not match the

data has been corrupted and an exception is thrown.

If no exception occurred, the The data is decrypted. Depending on whether or not a session

exists for the current communication, the decrypted response may contain some session

details from the server. This needs to be extracted before we can return the actual response,

�gure 4.9 shows the details. Once any session information is taken out, the remaining bytes

comprise the plaintext response from the server. Since all the data is already read we return

a ByteArrayInputStream.

4.7 The display Package

The Display package contains the di�erent screens and displays used by the SecureClient.
Getting user information and displaying the di�erent steps. Not much interesting goes on in

this package and as such it will not be discussed to any greater extent than some screenshots

of the di�erent steps when logging in to the application.
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SecureHttpConnection::
openOutputStream()

Already 
opened?

return 
encryptedOut

true
Set request method to Post.

Generate IV
false

Valid session 
exists?

Set session in request.
Get stored session key.

Open underlying output stream.

true

Generate new session key.
Make API request header.

Open underlying output stream.
Write request header to stream.

false

Write IV to underlying stream.
Create and initialize a 
SecureOutputStream.

Write any SecureHttpConnection 
properties to the secure stream using 

a DataOutputStream.

Figure 4.7: Inner workings of the openOutputStream() method.

4.7.1 Screen Flow

The screen and program �ow between the di�erent screens is managed by the already dis-

cussed SecureController 4.3.2.

Figure 4.11 shows the �ow between the di�erent screens depending on user actions. The

actual screens corresponding to the di�erent stages can be seen in the screenshots below the

�gure.

We do note however that there is a �WaitingScreen� as part of the screens in this package,

and in order to get this to work properly special care needs to be taken with the system

thread. This is discussed in chapter 6.
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Asymmetric key encryption

API HTTP Header w/ 
sesssion info

HMAC
HTTP Request 

Properties
Any data written to 

the SecureOutStream
IV

API HTTP Header HMAC
HTTP Request 

Properties
Any data written to 

the SecureOutStream
IVSecure API header

Symmetric key encryption

SecureHttpRequest without session

SecureHttpRequest with session

Figure 4.8: Content/structure of the byte SecureHttp output stream.

3 Session id Session timeout Response data

Figure 4.9: Decrypted response data with session data.
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SecureHttpConnection::
openInputStream()

Input stream 
already opened?

Return inputstream true

OutputStream is 
opened?

false

Open ouput stream 
and finalize it.

false
OutputStream is 

finalized?
true

Open underlying iputstream.
Get HTTP response code.

false

Finalize output stream.

true

Status code is 200 
OK?

Throw exception

false

Read all bytes from stream.
Parse the bytes.
Calculate HMAC.

true

HMAC from server 
matches calculated 

HMAC?
false Decrypt the data.true

Connection created 
new session?

Return inputstream

false

Parse decrypted data.
Save session data.

true

Figure 4.10: Inner workings of the openInputStream() method.
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startSecureModule()

Is server 
authentication 

enabled?

Is server 
authenticated?

true
Show server 

authentication 
screen. [4.12-4.13]

false

Are there 
registered 

users?
false

true

Show user 
registration screen. 

[4.17]
false

Show set new 
password screen. 

[4.19]

Show log in screen. 
[4.21-4.23]

User forgot password
or failed log in 3 times

Call userMenu() and 
sleep. [4.24-4.25]

User logged in

Recover storage key 
from server.

logout() called

stop

Application terminated

Figure 4.11: Screen �ow in the application. The screenshots below show the di�erent screens,

the numbers in the diagram are the �gure numbers for the corresponding screen.
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Figure 4.12: Server authentication: before the

�rst user can be registered, the server must be

authenticated.

Figure 4.13: Server authentication: all the

screens have a menu, here we �nd options like

OK and Exit, the mapping of these commands

can vary from device to device.
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Figure 4.14: Waiting screen: this is the

waiting screen, it gives the user feedback on

progress so they can know the application is

working.

Figure 4.15: Waiting screen: getting this to

work can be a challenge, see section 6.2 and

the article [45] for details.
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Figure 4.16: Server authentication: the server

has been authenticated and a user can now be

registerd.

Figure 4.17: User registration: registers a new

user on the device, this can be considered log-

ging on to the server, only users on the server

should be able to register on the device.
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Figure 4.18: User registration: the user has

been registered on the device, and now needs

to select a password for loggin in locally.

Figure 4.19: Password registration: the pass-

word is entered twice to avoid any typos.
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Figure 4.20: Password registration: the pass-

word is set and the user credentials are en-

crypted in the UserKeyStore using a pass-

word derived key.

Figure 4.21: User selection: once one or more

users are registered on the device, this is the

default screen. Entering the local password

would log the user in to the application.
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Figure 4.22: User selection: the drop down

menu gives a list of the registered users on the

device.

Figure 4.23: User selection: by opening the

menu, a user can recover his or her account or

a new user can be registered on the device.
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Figure 4.24: OpenXdata: Once the user has

been logged in the userMenu() method is

called, and control is given to the application.

This is a screen in the openXdata application.

See the next chapter for more information on

the prototype integration with openXdata.

Figure 4.25: OpenXdata: as we can see these

are the applications features available. Log-

ging out would lead back to the screen in �g-

ure 4.21
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5
Implementation Evaluation

5.1 Prototype Integration With OXD

As discussed in chapter 2, we are using the openXdata MDCS as a reference system for

testing. As such, a prototype client which integrates the secureXdata API into an existing

openXdata client has been developed. In this section we will look at how this is done and

how smoothly the integration went.

5.1.1 Securing the OpenXdata Client

Since this is a prototype or proof of concept integration and since both the API and the

openXdata client has evolved since the original integration started, we will not go into great

detail regarding all the code changes needed. We will focus on the parts that related to the

API and how it is integrated.

For the prototype we wanted to test all the features, and as such we did a complete integra-

tion using the SecureClient. The original openXdata client has its own log in system.

This is both bene�cial and troublesome. On one hand this needs to be bypassed since the

SecureClient would take care of user authentication and so on. On the other hand, since

there was already a log in system in place, there would also have to be a point after which

a user is logged in. This would be where we want to give the client back control once the

SecureClient successfully authenticates a user.
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5.1.1.1 Prototype Implementation

Once the application starts, the SecureClient takes control and either authenticates the

server or new registers users if the application is started for the �rst time, or asks a user

to authenticate. Once a user is authenticated, as discussed in chapter 4, the userMenu()
method is called by the controller and the client gets back control. Since we were interested

in developing the API and not the openXdata client, the prototype crudely bypasses the log

in part of the openXdata system by setting all the openXdata speci�c data and program-

matically setting a default user that exists in the openXdata system as logged in. This is

not ideal, but for our purposes (prototyping/testing of the API) it is su�cient.

Once authentication was in place, securing the communication and device storage was the

next phase. However, since the API had been designed to be easily integrated into existing

applications and because the openXdata client has a loosely coupled transport layer and

RMS storage system, it was rather straightforward to secure the storage and the connection.

5.1.1.2 Ease of Integration

The integration with the existing openXdata client consisted of three parts, bypassing the

existing authentication system, securing storage and securing communication.

Bypassing the OpenXdata Authentication As discussed in chapter 4, a way to add

the security layer in an existing application through the API, is to extend the SecureClient
class and once the application starts, we start the SecureController which performs

server authentication or user registration as needed and ultimately authenticates a user fol-

lowed by a call to userMenu() method. The user is at this point authenticated based on

the data in the secureXdata server. The application then programmatically sets the de-

fault user as logged in (no actual authentication is done on the openXdata system) so that

the openXdata server will accept requests passed through the secureXdata communication

tunnel.

This part of the integration was the most time consuming and di�cult, however it is also

the most trivial. If we had been doing a proper integration and not just prototyping, the

entire openXdata log in system would have been replaced by the SecureClient, and the

secure server would have shared the user credentials with the openXdata server.

Securing storage Once user authentication was in place, the next step was to secure the

storage. There are two things that we wish to accomplish: �rst and foremost we want to

keep the data safe on the device, and secondly we wish to separate data from di�erent users.

OpenXdata has an issue with their storage system, if a user logs out, the next user logging in

has access to the other users data. By using the SecureUserKeyStore both these issues

can be solved. Since openXdata uses a centralized class for all storage and stores no data
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that are shared between users, very few changes were needed to secure storage and provide

users with their separate storage areas.

Code listings 5.1 and 5.2 show the integration of the secure record store. Lines 4 and 9 are

of interests as this is where the changes are made. Because the method signatures are the

same, no other changes are needed for the record store to be secure.

Listing 5.1: The original openXdata RMS system.

1 public class RMSStorage implements Storage{
2 // ...
3 // Normal record store
4 private RecordStore recStore;
5 // ...
6 private boolean open(){
7 try{
8 // Opening normal record store
9 recStore = RecordStore.openRecordStore(name, true);

10 return true;
11 }
12 // ...
13 }
14 }

Listing 5.2: The secureXdata secured RMS system.

1 public class RMSStorage implements Storage{
2 // ...
3 // Secure record store
4 private SecureUserRecordStore recStore;
5 // ...
6 private boolean open(){
7 try{
8 // Opening secure record store
9 recStore = SecureUserRecordStore.openRecordStore(name, true);

10 return true;
11 }
12 // ...
13 }
14 }

Securing Communication The last part of the integration was securing communication.

As with securing the record store, openXdata has a centralized transport layer class, so

changes were only needed in one place. The below code listings (5.3 and 5.4) describe the

changes needed to secure the communication. Lines 4 and 12 are of interest. Again, as

with the record store, the method signatures are the same and as such no other changes are

needed.
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Listing 5.3: The original openXdata transport layer.

1 public class TransportLayer implements Runnable, AlertMessageListener
{

2 // ...
3 // Normal connection
4 private HttpConnection con;
5 // ...
6 protected void connectHttp() throws IOException {
7 // ...
8 try{
9 String HTTP_URL = (String)conParams.get(

10 TransportLayer.KEY_HTTP_URL);
11 // Opening the normal connection
12 con = (HttpConnection)Connector.open(HTTP_URL);
13 // ...
14 }
15 }

Listing 5.4: The secureXdata secured transport layer.

1 public class TransportLayer implements Runnable, AlertMessageListener
{

2 // ...
3 // Secure connection
4 private SecureHttpConnection con;
5 // ...
6 protected void connectHttp() throws IOException {
7 // ...
8 try{
9 String HTTP_URL = (String)conParams.get(

10 TransportLayer.KEY_HTTP_URL);
11
12 // Wrapping the normal connection
13 con = new SecureHttpConnection(
14 (HttpConnection)Connector.open(HTTP_URL));
15 // ...
16 }
17 }

Other Changes In addition to the above described changes, for a proper integration with

the openXdata client, somewhere the exceptions that the secure classes throw (ProtocolExceptions)
should be caught and handled to make users aware if something should go wrong. For our

prototype however we have not done this.
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5.1.1.3 Actual Integration with OpenXdata

Since we used the openXdata client as our reference system, we have been in collaboration

with the openXdata group throughout the development of the API. At the current time

it is their wish to try and actually incorporate the API into their system. Together we

decided to give priority to the integration of the secure storage part, as this requires only

local changes to the client (and possibly some small changes to the server side to allow a

recovery procedure for users' passwords).

In the current version of openXdata, as mentioned in chapter 2 they no longer store the

entire user database on the device, only the registered users. Leveraging on this, we can

use the UserKeyStore for storing the user credentials instead of storing them in a normal

record store. When a user tries to authenticate, if a user's UserKeyStore exists, we try

to unlock it using the supplied password and stored salt. If the password is entered three

times incorrectly, the user is locked out and needs to recover the account by contacting the

server. If a user's UserKeyStore does not exist, the user name and password are sent to

the server for authentication, and, if successful, the salt is returned and the UserKeyStore
is created.

The integration of the SecureUserRecordStore would be done in the same way as

described in the in the prototype integration section (listings 5.1 and 5.2). Server commu-

nication would still be insecure, however providing con�dentiality locally on the device is a

step in the right direction.

5.2 Evaluation of performance

While designing the API, the main focus has been to make it easy to integrate with exist-

ing systems and easy to use in general. Furthermore, decoupling between the storage and

communication parts have also been important. In this section we will evaluate the cryp-

tographic performance of the current design. That means using the default CryptoTools
implementation that is implemented using BouncyCastle.

5.2.1 Cryptographic Benchmarking

The benchmark of the cryptography will be done in the same way as the record store

benchmarks. We will be benchmarking the encryption and decryption speed of the same

setup as used in the default implementation of CryptoTools. Once we have the times,

we can calculate the throughput speed of both operations, and the combined speed for

decrypting followed by encrypting. Decryption followed by encryption is what happens if

data is read from a secure record store and then sent to the server, this is a result of the

strong decoupling between storage and communication.

The reason it is of interest to view the results as throughput speed and not just as times is
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that this relates to the upload / download connectivity speed on the device. If the speeds for

the cryptographic operations are much lower than the speed at which data can be transferred

to or from the server, then this means that the cryptography is a bottleneck in the system,

which we do not want.

As with the previous benchmarks, we include the code listings of the actual benchmarked

code.

The Cipher Method Unlike the record store and serialization benchmarks which were

all on Java ME API methods, the cipher method is made using a third party library, and as

such it is relevant to see how the method itself is designed.

Listing 5.5: Cipher benchmarks: Common cipher code used in both benchmarks.

1 private PaddedBufferedBlockCipher symEnc = new
2 PaddedBufferedBlockCipher(new CBCBlockCipher(new AESLightEngine()));
3 private PaddedBufferedBlockCipher symDec = new
4 PaddedBufferedBlockCipher(new CBCBlockCipher(new AESLightEngine()));
5
6 /**
7 * symEnc is initialized to encrypt
8 * symDec is initialized to decrypt
9 */

10
11 private void init() {
12 // ...
13 symEnc.init(true, new ParametersWithIV(new KeyParameter(key), iv));
14 symDec.init(false, new ParametersWithIV(new KeyParameter(key), iv));
15 // ...
16 }
17
18 /**
19 * Performs the cipher operation on data using the provided
20 * cipher object. Returns the resulting byte array.
21 */
22 private byte[] cipherData(byte[] data,
23 PaddedBufferedBlockCipher cipher) {
24 // get the minimum output size.
25 int minSize = cipher.getOutputSize(data.length);
26 byte[] outBuf = new byte[minSize];
27
28 // process all blocks of 16 bytes
29 int length1 = cipher.processBytes(data, 0, data.length, outBuf, 0);
30 int length2=0;
31
32 try {
33 // process the rest and add padding
34 length2 = cipher.doFinal(outBuf, length1);
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35 } catch (Exception e) {
36 e.printStackTrace();
37 }
38
39 // Return the result.
40 if (cipher == symEnc)
41 return outBuf;
42
43 int actualLength = length1 + length2;
44 byte[] result = new byte[actualLength];
45 System.arraycopy(outBuf, 0, result, 0, result.length);
46 return result;
47 }

Benchmark K - BouncyCastle PaddedBufferedBlockCipher encryption. This

benchmark will determine how long it takes to encrypt a byte array of varying size and

content.

Listing 5.6: Benchmark for encryption

1 long total = 0, result;
2 for (int i = 0; i < itt;i++) {
3 // generate test data
4 startClock();
5 encryptedData = cipherData(dataToEncrypt, symEnc);
6 result = stopClock();
7 total += result;
8 }
9 return total;

Benchmark L - BouncyCastle PaddedBufferedBlockCipher decryption. This

benchmark will determine how long it takes to decrypt a byte array of varying size and

content.

Listing 5.7: Benchmark for decryption

1 long total = 0, result;
2 for (int i = 0; i < itt;i++) {
3 // generate test data
4 startClock();
5 decryptedData = cipherData(dataToDecrypt, symDec);
6 result = stopClock();
7 total += result;
8 }
9 return total;
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5.2.1.1 Results

Data Size (bytes) Encrypt Decrypt

32 3,0 3,8

64 4,5 6,4

128 8,4 10,8

256 15,3 19,5

512 29,0 37,8

1024 56,1 74,9

5120 277,6 365,9

10240 556,2 720,9

20480 1103,7 1454,1

25600 1374,8 1824,4

Table 5.1: Benchmark results for encryption and decryption using the default CryptoTools
implementation. All times are in ms.

Data Size (bytes) Encryption Decryption Combined

32 11,1 8,7 4,9

64 14,5 10,2 6,0

128 15,7 12,2 6,9

256 17,2 13,5 7,5

512 18,1 13,9 7,8

1024 18,7 14,0 8,0

5120 18,9 14,3 8,1

10240 18,9 14,5 8,2

20480 19,0 14,4 8,2

25600 19,1 14,4 8,2

Table 5.2: Speeds for encryption and decryption. The combined speed is the throughput

speed for decrypting and then encrypting some data. Speeds are in kb/s

As we can see from the tables 5.1 and 5.2 and the chart 5.1, cryptographic operations are very

costly on the slow processor. If these results are acceptable or not depends on the context

in which the API would be used. How large are the data sets stored? What connectivity

conditions will the application operate under? In the end it comes down the the individual

project to determine if these results are acceptable. One thing we can however conclude

is that the throughput speeds on the used device (Nokia 2330c) are not very high. Under

optimal conditions a GPRS/EDGE [21] as of 2007 speeds up to 22 kb/s can be reached

for upload [23]. If 3G [19] then higher speeds could be expected. It is however likely that

the areas where the API and device would be used (low-income countries) would not have

optimal conditions.

Since reliable data regarding what connectivity conditions to expect are scarce, we try
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Figure 5.1: A chart displaying the speed results found in table 5.2. The X axis is bytes and

Y axis is kb/s. Each node is a data pair from table table 5.2.

to put the speeds into perspective using a di�erent factor: the maximum size of a given

record store on the device. This also provides some insight in how the throughput is when

looking at the other speci�cations of the phone. The size can be found easily by using the

getSizeAvailable() method on an empty record store. Doing so shows that the record

store can contain a maximum of 131072 bytes, or 128 kilobytes. These bytes would include

any bookkeeping or structure overhead from the RMS system itself. Comparing this to the

speeds of the larges benchmarked data set, we get the following times: 6,7s encryption,

8,9s decryption, or 15,6s for both. Waiting 6,7s to store some data is a fairly long time to

wait, but then we are talking about a full record store. The average English word length

is somewhere around 8 [43] characters. Lets assume that due to spaces or other formatting

characters the average length is 10. This means that a full record store corresponds to

roughly 1300 words of text, that is a lot of text for a low-end mobile device. OpenXdata
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estimates a form being between 1 and 50 kb in size, usually a couple of kilobytes.

5.2.1.2 Making it Faster

In this section we will look at what can be done to improve the cryptographic performance

on the device. One obvious way is to upgrade the hardware, but this is not a viable option.

Save for Upload The main issue with the current API design is that when something

is being transferred from the secure store and to the server, it needs to �rst be decrypted

and then re-encrypted before sending. Though this makes for highly decoupled and �exible

implementations, it has a severe impact on the performance as seen in section 5.2. In an

earlier version of the protocol [35], the API is designed in such a way that data can be

uploaded as it is in the record store. This means that the only encryption needed is when

data is stored and data is only decrypted if it is edited.

In most cases, data is not stored all at once. Take forms, for example. A form would have

to be �lled out before being stored, so the actual time spent storing the data would be some

seconds over the course of a session making the actual wait time negligible or at least appear

so. For upload on the other hand, all the forms being uploaded would have to be processed

at once.

The reason this was not done during the current work was that the main priority was to make

the API easy to integrate into existing systems. After looking closer at how the di�erent

cryptographic operations perform on the device however, the candidate suggests that this

should be changed.

A solution to this issue would need to solve three problems. The �rst is how the data should

be stored, so that it can be uploaded without being decrypted and at the same time being

accessible on the client. A possible solution is to let each separate record be encrypted

using a randomly generated key. The key with the corresponding IV is then encrypted using

the storage key and stored together with the encrypted data in the record. See �gure 5.2

below for an illustration of what this might look like. Since each record would have it's own

key, the di�erent records could be uploaded, changed, or uploaded independently from each

other.

The second problem is how to write the data from the record store into the output stream

without exposing encrypted data to the programmer, and without allowing the programmer

to write plain text data to the stream. This is a problem because the output stream and

the record store are in di�erent packages, making any direct communication between them

public and also available to the programmer. The existing SecureHttpConnection’s
SecureOutStream encrypts anything written to it so this cannot be used.

A number of di�erent solutions have been considered, the easiest being having a public write

method for writing plain text data, though this would make the API too easy to misuse.

Other alternatives are moving everything into one package, which is not acceptable since
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RandomKey IV Record Data

Encrypted using the storage key.

Encrypted using RandomKey

Data saved for upload.

Figure 5.2: Record format when saving for upload.

storage and communication should be separate. The best solution the candidate could come

up with is to make a separate write method which takes some interface as input. This

interface would contain the bytes from a record. As we will discuss in the next paragraph,

some object would then read data from the record store, wrap it in the interface, and pass

it to some output stream or object. Since the write method and the interface would both

be public this could still be misused, but it appears to be the best solution.

The third and �nal problem stems from the transparent design used in the rest of the

API. As with the SecureHttpConnection, we want to encapsulate the request in such

a way that it appears to the programmer they are writing into an output stream. This

can be achieved by making an additional iterator, such as SecureUploadIterator. This
iterator would be constructed using the factory pattern on a opened secure record store

object containing the records that should be uploaded. The constructor would take some

specialized SecureHttpConnection or SecureOutStream as input parameter.

The iterator object would have methods for iterating through record descriptions 4.5.3.2

or uploading given record ids. Whenever something is written by the programmer to the

output stream, it is cached somewhere. When the iterator is told to upload some record,

that encrypted record would be written into the stream as plain text, together with the

session key encrypted key and IV for the record. Furthermore, some placeholder token with

an id would be added to the cached output data so that the secure server would be able to

reconstruct the correct request. In the end, the cached data would resemble the formatting

string of a call to printf(). As the connection is �nalized, the cached data would be

�nally written to the server. Figure 5.3 shows what the HTTP request could look like. If a

session exists, the secure HTTP header would be omitted as shown in �gures 4.9 and 4.9.

Code listing 5.8 shows a code example using the proposed iterator. In a real example, a

DataOutputStream would be used to structure the data instead of a simple ; separator. In

�gure 5.4 we depict what the �Data written by the programmer and SecureUploadIterator�
portion of the request (see �gure 5.3) would look like. �REC1� and �REC2� are placehold-

ers for the record data in the request. The server would �rst read the encrypted records

and decrypt them using the supplied keys. The �Data written by the programmer and

SecureUploadIterator� part of the request could then be parsed by the server, and

the decrypted record store data be put where the placeholders are. Meaning, the plain text
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Encrypted using the session key.

CLIENT HTTP REQUEST

  POST  /someurl HTTP/1.1
  Host: SercureServer.com

Client request headers

HMAC of β 

Secure HTTP Header

               β 
Encrypted with 
key1(Record1)

Key1,
IV1

Encrypted with 
key2(Record2)

Key2,
IV2

Data written by the programmer and SecureUploadIterator

Figure 5.3: The structure of the client request data when uploading directly from store.

record data for record 1 would be where the place holder �REC1� is in �gure 5.4. The recon-

structed request can then be sent to the server on the other side of the secure connection.

Listing 5.8: Example: Possible usage of the store for upload code.

1 protected void startApp() {
2 // The data sink we want to send the records to.
3 SecureUploadOutStream out;
4
5 // The store containing the data.
6 SecureUserRecordStore store;
7
8 /* The store and connection has been opened */
9

10 // Open the upload iterator
11 SecureUploadIterator uploadIt = store.secureUploadIterator(out);
12 // write some server command in the request
13 out.write("UPLOAD;2;");
14 // write record 1 into the request
15 uploadIt.uploadRecord(1);
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16 // separator for server
17 out.write(";");
18 // write record 2 into the request
19 uploadIt.uploadRecord(2);
20 // finish the request and flush.
21 out.write(";");
22 out.flush();
23 out.close();

UPLOAD;2; REC1 ; REC2 ;

Figure 5.4: Example: �Data written by the programmer and SecureUploadIterator�
portion of �gure 5.3 after running the code in listing 5.8.

Instead of caching the programmer made request with placeholder tokens in it, we could

write this into the stream immediately and then append the record data sets at the end.

However, this would mean that the programmer cannot delete the record after it is written

to the stream, since it is not actually read until we �ush.

There are still some issues to be resolved, such as how to make sure the placeholder tokens are

unique, that is, the data written by the programmer can not be mistaken for a placeholder

token. If the programmer uses a DataOutputStream for writing his or her data, then

the SecureUploadIterator needs to do the same. Since this has not been tested in the

API, and since there are probably some other quirks that need be resolved for it to work,

we propose this as future work.

Alternative Cryptographic Implementations The use of other cryptographic imple-

mentations or algorithms might give better performance. For instance, stream ciphers could

yield better speeds [59]. As mentioned in previous chapters, the JSR177 standard [56] could

be better in multiple ways (memory footprint, memory usage, speed). These things would

have to be tested though, and are outside the scope of this thesis.

Using Compression If speeding up the cryptographic operations is not an option, then

reducing the amount of data to process might be an alternative. This can be achieved by

compressing the data prior to encryption. Since the compression ratio is highly dependent

on the input data, and the data can be more or less anything, we can not give any concrete

answer as to whether or not compression should be used. Assuming the speed of the oper-

ations are more or less regardless of the data, we can however get an indication to whether

or not compression can be bene�cial at all.

The tests are run using a old version of JZlib [44] using the default con�guration, we are

compression randomly generated data. For details on the benchmark setup can be found in

section A.2 in the appendices.
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Data Size (bytes) Compress (kb/s) Decompress (kb/s) Even Split Ratio

32 0,3 7,4 N/A

64 0,6 13,5 N/A

128 1,1 23,4 N/A

256 2,0 15,8 N/A

512 3,5 24,2 N/A

1024 6,0 36,2 0,07

5120 13,3 58,6 0,58

10240 15,6 63,6 0,63

20480 16,0 64,6 0,64

25600 16,1 65,9 0,64

Table 5.3: Benchmark results for compression and decompression using jZlib. The even split

ratio is the compression ratio needed in order to get the same total time using compression

and not using compression in the following scenario: data is compressed, then encrypted and

stored in a record store, data is read and decrypted, written to a SecureHttpConnection
and thereby encrypted. In other words it's the minimum ratio for compression to give any

positive e�ect.

As already discussed, the total time spent encrypting data when storing is distributed across

a number of operations in a session. Uploading data however does not bene�t from this and

as a result long consecutive wait times can occur for large amounts of data. Regardless of

the compression time, any compression ratio below 1.0 would be bene�cial with regards to

upload. The compression occurs before encrypting the data for storage, so the time spent

compressing would also be distributed. Since the data needs not be decompressed before

being uploaded, this would reduce the overall size of the data and therefore also the time

spent handling it during upload. In other words we would move some of the waiting time

from upload to when data is being stored. This could bene�t the user experience.

The even split ratio is the compression ratio that would result in the same total wait time

for the user. Total means the time it takes to store (herein also the compression) in addition

to the it takes to decrypt and encrypt during upload. The time distribution would be shifted

so that more time is spent storing data and less time spent uploading, but the total time

would be the same as without compression. Any compression rate smaller than this would

result in less total time than without compression.

Looking at the results in 5.3 we can see that for data smaller than 5kb compression is rather

pointless, the overhead is so large that it cripples the throughput speed, and as a result it

would be better to not use compression at all. For larger data sizes compression might be

a viable option, according to zlib typical compression rates range from 0.5 to 0.2 which is

better than all the even split ratios for data above 5kb.
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5.2.1.3 Conclusion

Cryptographic algorithms are computationally intensive, and running them on a device with

limited processing power such as the target device 2330c gives rather low throughput speeds.

Whether or not these speeds are acceptable depends on the circumstance under which the

API is being used. If data transfer rates are low as well, there might not be any notice-

able di�erence. However, if connectivity conditions are very good, then the cryptographic

processing will de�nitely be a bottleneck.

Changing the API design to allow uploading of records as they are stored on the client, the

cryptographic implementation used or applying compression to lower the amount of data to

transfer are some ways to improve performance. Compression can also be seen as the means

to move some of the time spent uploading to a earlier stage when the data is saved. This

can be bene�cial since the time spent saving data is distributed, ie. 20 records can be saved

across the duration of 2 days. Whereas with uploading it will most likely have to process

multiple records at once.
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6
Experiences

In this chapter the candidate will re�ect on some of the experiences he is left with after

working on the project, both in terms of the tools used and general experiences.

6.1 Programming in the Large

The candidate �nds that the most valuable experience gained through the work described

in this document has to be from working with the mHealth Security Group and the collab-

oration with openXdata. While the candidate has worked on a number of projects in the

past, these are more or less exclusively part of some course in school working with friends,

classmates or acquaintances.

As part of the secureXdata project the candidate was part of writing a number of papers,

one of which was accepted at ESSoS12 [5] and one that is still pending acceptance. This

part of the work has given the candidate a greater insight into how academic research is

done and works.

Through the collaboration with openXdata the candidate got exposed to programming in

the large. Having discussions with people working in a system that they will continue

to work on and care about for many years to come, is very di�erent from discussing this

weeks programming assignment with your fellow classmates. Stakeholders have much strong

opinions and have to conform to micropolitics and the overall goal of the project, which they

may or may not agree with.
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Seeing how openXdata is structured in order for it to be able to be a collaboration between

di�erent groups and people from across the world, all with di�erent personal goals, has given

the candidate an insight into some of the non-programming related challenges behind larger

projects. A simple discussion becomes much more complicated when the participants are

from �ve di�erent timezones and nationalities.

6.2 Java ME

Before starting this project the candidate had no previous experience with Java ME, or

developing applications for hand held devices in general. Java ME is as discussed in chapter

2 a platform for running applications on mobile devices. As a result of previous experience

with with Java SE [54] and Java EE [51] starting to work with Java ME [52], it was not

di�cult to pick up. The remainder of this section will be divided into three categories.

The Good Since Java ME and Java SE are both still java at the end of the day, having

experience with one will make using the other much easier, at least as far as basic syntax and

concepts are concerned. So picking up Java ME and writing simple applications is pretty

straight forward with some previous java experience. The application �ow is pretty straight

forward and there are many great resources online to get you started [13].

The Bad Since Java Me is more or less a stripped down version earlier of Java SE, there

are limitations compared to Java SE. Most of these are annoyances such as the lack of for-

each loops, or more frequently encountered, lacking commonly used and familiar packages

such as java.util.*. A lot of the time the candidate would �nd himself trying to use

classes from the java.util library. In some cases, such as with lists and collections, Java

ME provides some lesser alternatives such as the Vector class. As its features are not as

rich and there are no generics in Java ME (see next paragraph) this can be tedious compared

to Java SE. Objects retrieved from a vector need to be cast to the correct class for instance,

which requires extra work and can easily cause mistakes. In other cases, re-implementing

commonly used methods such as Arrays.toString() or Arrays.equals() was needed
as there is no alternative available.

The Ugly The only lack in functionality that couldn't be circumvented was the absence of

generics. Generics are a powerful tool for reusing or making dynamic code and the candidate

found himself trying to use generics a number of times before getting used to the Java ME

restrictions.

Apart from functionality, there is one aspect of the Java ME platform the candidate found to

be di�cult at �rst. The system thread or the main thread of the application is responsible

for screen updates and other system related tasks. When the candidate tried to make a

waiting screen for user feedback while the application was communicating with a server, the
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application would freeze for the duration of the communication and then for a fraction of a

second display the waiting screen before setting the next screen.

This happened because the lengthy process of downloading data was being run in the system

thread, so while the system had been instructed to set the new screen, it had to wait for the

download process to complete in order to be freed and thus able to order to do so, at which

point the download would be done.

When deploying the openXdata prototype on the actual device, this became more than just

a nuisance, the application manager on the device would prompt the user to allow the client

to connect to the Internet, but since the system thread was busy waiting to connect, it would

not properly handle the user response and instead the client would deadlock.

Understanding how the system thread works is critical in order to be able to make re-

sponsive applications that won't deadlock. For a more in depth explanation see the article

�Networking, User Experience, and Threads� [45]

Because the applications are run on emulators it can at times, be very tedious to test your

code. This was very frustrating when being used to working with Java SE programming.

6.3 Eclipse

Due to previous experience and personal preference the candidate used Eclipse [32] during

the project. Both for writing the applications and for writing this report. The candidate

has had good experience with Eclipse throughout the work, in the rest of this section we

will look closer at some of the plug-ins and features used.

6.3.1 EclipseME

EclipseME [33] is a Eclipse plug-in for developing Java ME applications in Eclipse. It allows

you to create a Java ME suite project in Eclipse in which you can add Java ME MIDlets.

The candidate found the plug-in very useful when initially starting to make applications.

EclipseME will take care of creating and con�guring the JAD �le and setting up and running

the emulator when you run your code.

Installing and con�guring the plug-in was pretty straight forward, install the desired Java

ME SDK and then install EclipseME using the Eclipse plug-in manager. Details can be

found at [14].

The candidate found that once the projects grow in complexity, meaning additional libraries

and things like code obfuscation and so on comes into the picture using EclipseME can

become tedious. All settings are set in menus and unless you have used the plug-in for a

while it is not always that easy to �nd which menu does what.
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If you add a code obfuscation step to your build process, your build might fail during the

preveri�cation/obfuscation step, even though the un-obfuscated code will run �ne. The error

messages return from the preveri�er or obfuscator give little indication to what's wrong. In

some cases adding the libraries to the preveri�ers command line parameters remedied this

problem.

All in all, the candidate found the EclipseME plug-in to be very useful as an aid when

initially starting to develop Java ME applications. However, once you have gained a fair

understanding of how the di�erent pieces �t together the candidate found that using build

scripts were a better solution. Moving from EclipseME to using a build script is easy as

EclipseME can generate one for the existing project. See the next section.

6.3.2 Apache Ant

Ant comes as a part of Eclipse, and so no installation is required.

Ant primarily has two bene�ts compared to using EclipseME. Firstly, anyone wanting to

work on or compile the project needs to be using both Eclipse and EclipseME in order

to properly import the project. Using ant scripts, anyone can build and run the solution

regardless of what IDE and con�guration they run, in fact, a normal text editor and ant is

su�cient.

The second bene�t, which some might see as a downside, is that ant builds based on a build

script. The candidate �nds that build scripts give much more control over the build process

and what goes into it and comes out. Any error messages that might be produced during

the build process were also easier to resolve than when using EclipseME.

The openXdata client is distributed with a ant build script as opposed to being a EclipseME

project.

The downside of using ant is that while EclipseME takes care of mostly everything, especially

for simple projects, with ant one needs to create the build scripts as well as the code. Once

learned however this becomes a very powerful tool.

6.3.3 Subclipse [16], LaTeX [7] and Texlipse [18]

Subclipse is a Eclipse plug-in that provides subversion from within Eclipse. Installing it can

be done through the Eclipse plug-in manager. Subclipse is easy to use and provides all the

features the candidate was looking for in a version control program.

This document is written in LaTeX, the candidate had no previous experience with latex

prior to writing this report. Knowing HTML and and programming, LaTeX was a very nice

way of writing documents. Unlike Microsoft o�ce and other WYSIWYG (what you see is

what you get) editors, working in LaTeX a template controls most of the layout so you can

focus on writing the content.
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For writing the LaTeX documents, the Texlipse plug-in for Eclipse was used, this provides

a view, project type and con�guration for working with LaTeX in eclipse. The plug-in can

be installed from the Eclipse plug-in manager, this does however not include the programs

used to compile the LaTeX documents. The candidate has been using MiKTeX [1] which is

a package that contains all the needed tools for making a LaTeX document.

6.4 Emulators

During the development, we used emulators for testing the application and API prior to

running it on the device itself. This makes things much easier since not only is it much

harder to test/debug the application on the device, but to the candidates knowledge it is

not possible to deploy a JAD and JAR pair to the device through Bluetooth or cable. This

means that in order to run a proper test of the application, it has to be downloaded from

an external server, meaning paying for bandwidth costs. At 5 kr per megabyte and a 200kb

application, not many deployments are needed before this starts to be come costly. This

might not be the case with all devices, but is the case with the Nokia 2330c.

One way to work around this is to include all the JAD attributes in the JAR manifest when

running tests. As we discussed in chapter 4 we want to be able to generate some JAD

attributes after the code has been compiled, these attributes can be inside the JAR when

testing, making it possible to deploy over Bluetooth. Once we have a working version we

take them out of the JAR manifest and deploy by downloading from a server.

Originally the Java ME SDK 3 [53] emulator was used when doing initial testing and de-

velopment of the API itself. However, once integration started with the openXdata client,

the Sun Java Wireless Toolkit 2.5.2 (WTK) [55] emulator was introduced as this is used by

openXdata for client development.

One interesting observation is that out of the box, the emulators behaved di�erently. The

Java ME SDK 3 emulator put very few restrictions on the emulated application, for example

running benchmarks that took up to a minute on the device were instant on this emulator.

The WTK 2.5 emulator on the other hand seems to emulate the device speci�cations, or at

least the speci�cations of a low-end device, and the same benchmarks took if not a minute,

at least some notable time.

There were some other di�erence as well. Unlike the SDK emulator, the WTK one prompted

the user for permissions when the unsigned application tried to access the Internet in the

same way as the device would, this revealed some issues with the system thread. On the

SDK emulator it would run smoothly and everything would work, but on the WTK emulator

and on the device the application would prompt for user permission and thus deadlock. A

third and very important di�erence between the two is that the WTK emulator persists any

record stores between runs. So if the emulator is shut down and then started with the same

application at a later point, any data saved in the record store on the �rst run will still be

present. The SDK emulator on the other hand, does not persist anything and would start
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the second time with empty records.

It is likely that either of the emulators can be con�gured to behave the way the other does,

however the candidate found it useful to have them behave di�erently. The SDK emulator

made early stage testing easier since it would always start with empty record stores and not

bring up permission screens. However, once the application worked as intended, the WTK

emulator would be used for testing if the application behaved correctly when the record

stores were not empty, or if there were any parts that could deadlock due to improper

threading. In fact the WTK emulator would deadlock in cases where the Nokia 2330c would

not, most likely other devices would not recover from these deadlocks however.

6.4.1 Emulator vs Deployment

Deploying the actual application to the device would be done by either installing it from a

online source (have to pay for bandwidth) or by sending the JAR �le to the device using

Bluetooth. However, even with testing on both emulators prior to deployment, the applica-

tion would not always run as expected on the device. One such issue is with �ushing. On

either of the emulators, �ushing a HttpConnection OutputStream would do just that,

�ush the data. On the device however, �ushing would also close the connection which caused

the application running on the device to throw seemingly unexplained IOExceptions until

this di�erence was discovered. In other cases, minor errors might run �ne on the emulators

but not on the device.

In general, as long as the application ran on the WTK 2.5 emulator, it would behave in the

same way on the actual device.

6.5 ProGuard and Code Obfuscation

ProGuard [57] is a tool for shrinking, optimizing, obfuscating and pre-verifying java class

�les. There are two reasons why we use this tool.

The Java ME (also known as lightweight) version of BouncyCastle contains some Java

SE classes in the java/* namespace. According to their FAQ [9] his is to provide better

consistency between any server application and Java ME applications. However, the JVM

will not allow you to create classes in the java namespace and as such, code obfuscation is

required to make this work. In short, obfuscation means that methods, classes and packages

have their name changed to something that would be hard to read for humans [61]. This

changes the namespace and therefore the JVM will accept the code.

Since mobile devices have size limitations for binary �les run on them, including large

libraries such as the BouncyCastle API, it will make the resulting binary too large to run on

the phone. ProGuard however shrinks the bytecode by removing any unused parts and as a

result we get a much smaller compiled binary that will �t on the device. The secureXdata
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integration JAR is 1,33 megabytes prior to obfuscation/reduction, the Nokia 2330c maximum

JAR size is 512 kb, so the application is way too big. After ProGuard has been run however

the JAR is 213 kb, and �ts nicely on the device.

Obfuscation, as the name suggests, also makes the code hard to read and as a result reading

a stack trace becomes considerably harder since none of the methods or classes have mean-

ingful names anymore. (See listings 6.1 and 6.2) ProGuard does however come with a tool

(ReTrace) used to de-obfuscate stack traces. This did however not work out of the box. The

output from the emulators are di�erent from the standard/expected stack trace structure,

(see listings 6.1 and 6.2 for comparison) which means that ReTrace is unable to parse the

supplied stack trace.

In order to get a readable stack trace from de-obfuscating, either post-processing of the

output to make it conform to the expected format is needed. Or alternatively we can supply

ReTrace with a custom regex that will match the output from the emulators. The candidate

had trouble getting the latter to work, and in the end had to debug the ReTrace source code

to �nd the problem: for ReTrace to be able to parse the given stack trace correctly, the

regex used contains some custom wildcards which are used to signal that here comes a class

name (%c) or a method de�nition (%m). See [58] for all wildcards and more details. The

reason the candidates regex didn't work was related with the Windows operating system,

the % character has special meaning when read used in the windows command line terminal

or scripts for it. This caused the % characters in the regex to be evaluated and thus the

command passed to ReTrace was not what was written in the script �le. The solution is to

escape the % by using %%. In this way the correct regex is passed to the program, as seen

in listing 6.3.

Listing 6.1: Expected stack trace for-
mat.

1 java.lang.Exception:
2 at r.a()
3 at r.run()

Listing 6.2: Emulator stack trace for-
mat.

1 [exec] java.lang.Exception:
2 [exec] - r.a(), bci=438
3 [exec] - r.run(), bci=19

Listing 6.3: Batch script for de-obfuscation.

1 @echo off
2 REM set the regex to the variable r and reference it in the call.
3 set r="(?:.*\s%%c:.*)|(?:.*-\s%%c.%%m\s*\(.*\).*)"
4 java -jar retrace.jar -regex %r% map.txt trace.txt

Working with obfuscated code makes things more complicated. Not only does it require

some extra e�ort to be able to read stack traces, you add another step to the build process

which introduces new tools and processes that can break and ultimately the build time is

extended.
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6.6 Character Encoding

As discussed in 4.5.1.3, we hash the JAD attributes to verify the server and the integrity

of the JAD �le. While working on this part of the API, the candidate encountered some

problems. Even though the values were all the same both on the server and the client, the

generated hashes were di�erent.

It was pretty obvious that this had to do with character encoding, what was not so clear at

�rst was the number of places that this could be an issue.

The �rst thing we made sure was that the �le was saved in UTF-8, then we had the server

read the �le as UTF-8, this gave a di�erent hash, but still not the correct one. Turning the

String object containing the data we want to hash into bytes, we used the getBytes()
method. This however will return the bytes depending on the server settings, so we need to

explicitly specify the encoding getBytes(“UTF-8”). Now we have the correct bytes to

hash. The client returned UTF-8 by default, but this will probably di�er between devices

so using getBytes(“UTF-8”) here as well would be good measure.

6.7 Wireshark and WebScarab

When working on anything related to communication, it is very useful to be able to inspect

the communication going between the emulator and the server. Wireshark [24] and Web-

Scarab [15] are two tools used by the candidate to monitor the tra�c going back and forth,

without these, �nding bugs and verifying that things are as they should in the communi-

cation, would be much more di�cult. Wireshark is a packet sni�er while WebScarab is a

HTTP proxy which lets you intercept and read/edit any HTTP(S) communication going

trough it.

6.8 Best Practices and pitfalls

This section will in short summarize some best practices and pitfalls that the candidate �nd

would be useful to anyone who would work on Java ME or similar projects.

6.8.1 Java ME

General

System thread and threading In order for the application to be responsive, never run

any code that will not return at once in the system thread, make your own.
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Character encoding Always specify the encoding when using String.getBytes() and
be consistent with the encoding across the entire system.

Use build scripts Use build scripts for building your applications instead of IDE plug-ins.

You'll spend more time working and less time looking for the correct menu to set some

options. Some plug-ins such as the EclipseME can generate a build script based on

your current project as well.

Record Store

Serialize when possible It is bene�cial to store sets of data (for instance an object) as a

single serialized byte array in a single record instead of storing multiple smaller records.

Record id's are not reused When deleting a record, the record id will not be reused.

Communication

flush() might close the stream On the Nokia 2330c, �ushing the output stream of an

HttpConnection will also close it. This might be the case on other devices too.

Decompression on the Device is Cheap It is relatively cheap (time wise) to decom-

press data on the device, this means that having the server compress data before

upload can be bene�cial.

97



7
Future Work and Conclusion

7.1 Future Work

Since the API is at an early stage of development, there is still a lot of room for improvements.

In this section we will discuss some of them and how they might be implemented.

7.1.1 Descriptions for SecureRecordStore entries

In section 4.5.3.2 we suggested that the encrypted data in the secure record stores could be

given a description. This is to make them easier to identify for the end user without having

to decrypt all the encrypted records. A very costly operation, as seen in chapter 5.

7.1.2 HTTPS support for SecureHttpConnection

The current SecureHttpConnection requires a HttpConnection as a parameter for its

constructor. This means that any application that uses both the SecureHttpConnection
and HTTPS for data transmission, would have to implement a special case for each of these.

This can quite easily be remedied by supporting HttpsConnection to be passed in the

SecureHttpConnection constructor as well. The type of connection can be detected

inside the SecureHttpConnection object and any data written to it would just be sent

as plain text if the connection is HTTPS. This way enabling or disabling HTTPS would be
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as easy as changing the URL.

7.1.3 Stronger Relationship Between Record Stores

As discussed in 4.5.3 it is not possible to extend the Java ME RecordStore class as this is

a singleton created using the factory pattern. Instead we mimic the behavior of this class.

The downside of this is that there is no relationship between the SecureRecordStore
and RecordStore classes. If one wishes to swap one for the other this has to be done on

the code level.

One way around this is to create a interface based on the RecordStore class and then

have all the record stores implement this interface. The only problem then is that they are

all created using the factory pattern, and as such another record store factory responsible

for creating both the Java ME RecordStore as well as the secure versions is needed.

This would make swapping between di�erent kinds of record stores without having to re-

compile possible. The downside is increased code complexity.

7.1.4 Chunk Reading from SecureHttpConnection

As discussed in 4.6.2.1, because we calculate the HMAC of the entire encrypted message

during transmission, we also have to read the entire message into memory on the device

before we can verify that it has not been tampered with. For very large messages this could

prove troublesome if the device does not have enough memory to keep the whole response

in memory at once.

By sending the message in chunks at the time, and having a HMAC calculated for each

chunk, this problem could be avoided. The client would only need to load a single chunk

into memory at any given time to verify it's integrity and then it could be stored or read and

discarded by the application. This would however add some overhead to the communication.

7.1.5 Dynamic JAD Hashing

As a part of the server authentication process, the JAD �le is hashed and compared to

the one located on the server. If the hashes do not match, it is assumed that it has been

tampered with and it is therefore discarded. Since this functionality is already in place, it

would be convenient to provide the programmer with the means to verify his or her own

JAD attributes that are outside the JAR package. The best approach to this would be

to sort any attributes names in the same way on the server and the client, otherwise the

programmer would have to be very careful that the values are added in the same order on

both the server and the client. Otherwise they will not produce the same hash. Sorting the

list �rst would give the order list regardless or which order they are added in.
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7.1.6 Store for Upload

In section the candidate proposes a way to store records so that they can be uploaded with

minimal overhead for decryption and encryption. Since this has not been tested and is not

a complete system it is proposed as future work.

7.1.7 Improve or Remake of the SecureClient

The back end controllers for the SecureClient are more or less the same as they were

in the prototype. Though it works as intended, the system is overly complicated and could be

made to better utilize new features such as the support classes for the SecureHttpConnection.
This could also in a nice way expose some of the steps that make up the SecureClient
to give better �exibility compared to the current all or nothing design.

7.1.8 Roles and Shared Storage

By not using the UserKeyStore and instead managing keys and stores manually, a pro-

grammer could introduce roles and shared record stores into their application. It would be

possible to extend the UserKeyStore and introduce such features into the API.

7.2 Conclusion

The main objective for the work described in this thesis was to evolve the prototype imple-

mentation of the protocol into an easy to use API for making secure Java ME applications.

Based on some working assumptions regarding what context the API would most likely be

used in, we determined some criteria for the implementation.

We have discussed how the API works and why it is designed the way it based on benchmarks

and the intended usage.

We will evaluate to what degree the criteria which the API should satisfy has been ful�lled.

The �rst criterion is that the API should be easy to use. Most of the classes that are exposed

to the programmer are very similar to the Java ME counterparts in terms of methods and

behavior. This means that any programmer who knows how to use the normal Java ME

classes will also know how to use the secure ones. Furthermore, we have seen from the

integration with openXdata that by simply changing some of the classes used in the existing

MDCS code to the secure version, existing code can be secured given the secure classes have

been initialized. By using the UserKeyStore or SecureClient this initialization should

not be more than a few lines of code. So yes, the candidate would say that this criterion

has been satis�ed.
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7.2. Conclusion

The second criterion is that the di�erent functionalities should be decoupled and be �exible.

Looking at the package overview diagram 4.1 we can see that the di�erent packages are

loosely coupled. In fact, disregarding the core packages which are used by most of the other

classes in the system, the only inter-package dependency is from the SecureClient to the

communication package. As far as �exibility is concerned, we have seen that the API

supports multiple ways of using the di�erent aspects of the system. Ranging from simply

leveraging on the complete API through the SecureClient (meaning less work but also

less control for the programmer), to the programmer having full control of every aspect of

the application, including keys and data storage. The candidate �nds it fair to say that this

criterion is satis�ed as well.

The third criterion is that the API should work on low-end devices. The API is implemented

using Java ME and a con�guration is supported by most java enabled devices. The user

interface is easy to use even on small screens and areas such as the record store has been

tested to �nd the best way of storing data through benchmarks. However, as discussed in

7.1.6, it would be possible to get noticeable gains as far as time spent ciphering data being

uploaded is concerned by storing data in a format that allows for direct upload. Regarding

cryptographic throughput while storing data on the device, little can be done in terms of

the API design in order to improve this.

One aspect of performance which has not been discussed in depth in this thesis is alternative

implementations of CrytpoTools. This might give performance bene�ts in multiple areas,
but is as previously mentioned outside the scope of this document. Does the API, to a

su�cient degree, take the low-end device requirements into consideration? The candidate

�nds it fair to say yes it does. However, for the SecureHttpConnection to be a more

viable option, especially in areas where decent network connectivity is available (if connection

is fast the cryptographic processes will be the bottleneck), a faster solution for uploading

stored data is needed.

OpenXdata has shown interest in integrating the API with their existing client to, as a �rst

step, secure data stored on the device. The candidate �nds this to be an indication that

the API holds potential and may be adopted by other systems in the future. Some work,

especially actual �eld testing, remains though.

The candidate has gained a much better understanding of how mobile technologies work in

general, but even more so how Java ME is designed and works. Based on the work presented

the candidate feels that making APIs for the Java ME is not that di�erent from making an

API for any other Java platform. The only two real di�erences are that Java ME is more

restricted in what one can and cannot do and that the system thread needs to be given

special attention if a method does not return instantly.

All in all the project has given the candidate an insight into how working on larger projects

with many di�erent people di�ers from working on a small project in ones spare time, or on

a school project with fellow students. Being part of writing and publicating research papers

the candidate has a better understanding of how this type of research and publication is

done.
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A
Benchmark Extras

A.1 Additional RecordStore Benchmark Results

As stated in section 3.1 benchmarks on di�erent update scenarios has been done. It can not

be assumed that the data being updated always is the same size, and so below we will look

at the results of a number of di�erent update con�gurations.

Results Based on the results in tables A.1 and A.2 we can see that regardless of the update

con�guration, it will at worst be marginally slower than doing a write operation. Considering

one would have to perform a delete prior to writing the data to avoid duplicates, in the end

updating will always be faster than writing.

It is interesting to observe that updating with a marginally smaller data set is faster than

updating with one of the same size as exists, and that updating with an additional 50%

sized array is slower than twice as much data when the data sizes become big.

A.2 Compression Benchmark

We use JZlib [44] to do the compression and decompression, this is a java implementation

of zlib [27]. Because of the way the DEFLATE [39] algorithm used by zlib works, the

compression ratio is completely dependant on the input data. In our tests we will use
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A.2. Compression Benchmark

Data Size (bytes) Update Update-1% Update-50%

32 0,6 0,3 0,5

64 0,7 0,5 0,6

128 0,7 0,7 0,6

256 0,8 0,6 0,6

512 0,8 0,7 0,6

1024 0,9 0,7 0,7

5120 1,2 1,0 1,0

10240 1,5 1,4 1,6

20480 2,3 2,4 2,8

25600 2,8 2,8 2,8

Table A.1: Benchmark results for di�erent update scenarios. The percentage refers to the

di�erence between the stored data and the new data that it is being updated with. -50%

would mean that a record of 100 bytes is being updated with 50 bytes of data.

Data Size (bytes) Write Update+10% Update+50% Update+100%

32 1,5 0,7 0,8 1,5

64 1,4 0,6 1,4 1,5

128 1,5 0,5 1,5 1,5

256 1,6 0,8 1,4 1,4

512 1,8 2,0 1,5 1,8

1024 1,9 1,8 1,9 1,9

5120 2,6 2,4 2,4 2,5

10240 3,0 3,0 3,4 2,9

20480 4,4 4,2 4,7 4,2

25600 4,8 4,9 5,2 4,7

Table A.2: Benchmark results for di�erent update scenarios. The percentage refers to the

di�erence between the stored data and the new data that it is being updated with. +10%

would mean that a record of 100 bytes is being updated with 110 bytes of data.

random data and as such the achieved compression ratio is not of any interest.

The compression benchmark is performed in the same way as the other benchmarks done.

10 data sets are generated, the min and max of each is discarded and the remaining is

averaged.

Compression and Decompression Methods As with the encryption benchmarks, we

supply the used methods since these are note a part of Java Me.

Listing A.1: Compression method.

1 /**
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2 * Compresses the input data and returns the compressed
3 * byte array. Uses the default JZlib settings.
4 */
5 public static byte[] compress(byte[] data) {
6 baos = new ByteArrayOutputStream();
7 try {
8 zDefalte = new ZOutputStream(baos,JZlib.Z_DEFAULT_COMPRESSION);
9 int i = 0;

10 while (data.length-i > 2048) {
11 zDefalte.write(data,i,2048);
12 i+=2048;
13 }
14 zDefalte.write(data,i,data.length-i);
15 zDefalte.finish();
16 zDefalte.close();
17 return baos.toByteArray();
18 } catch (IOException e) {
19 e.printStackTrace();
20 }
21 return null;
22 }

Listing A.2: Decompression method.

1 /**
2 * Decompresses the input data and returns the original
3 * byte array. Uses the default JZlib settings.
4 */
5 public static byte[] decompress(byte[] data) {
6 bais = new ByteArrayInputStream(data);
7 try {
8 zInflate = new ZInputStream(bais);
9 baos = new ByteArrayOutputStream();

10 int i;
11 while ((i = zInflate.read(buff ,0,buff.length)) != -1) {
12 baos.write(buff,0,i);
13 }
14 zInflate.close();
15 return baos.toByteArray();
16 } catch (IOException e) {
17 e.printStackTrace();
18 }
19 return null;
20 }

Benchmark M - Compression This benchmark will determine how long it takes to

compress a byte array of varying size and content.
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Listing A.3: Benchmark for compression.

1 long result, total = 0;
2 for (int i = 0; i < itt;i++) {
3 // generate test data of some size
4 startClock();
5 deflatedData = compress(dataToDeflate);
6 result = stopClock();
7 total += result;
8 }
9 return total;

Benchmark N - Decompression This benchmark will determine how long it takes to

decompress a compressed byte array of varying size and content. The input will be the

output from a compression process.

Listing A.4: Benchmark for decompression.

1 long result, total = 0;
2 for (int i = 0; i < itt;i++) {
3 // generate test data of some size and compress this
4 // dataToInflate will be this compressed data.
5 startClock();
6 inflatedData = decompress(dataToInflate);
7 result = stopClock();
8 total += result;
9 }

10 return total;
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