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2. Summary 

Antipsychotic agents represent efficient therapy for serious psychiatric disorders, 

particularly schizophrenia, but also bipolar disorder, and are used by millions of 

patients worldwide. Metabolic adverse effects of antipsychotic drugs are thought to 

contribute significantly to the fact that life expectancy among schizophrenic patients 

is reduced with several decades. In particular, the so-called second-generation 

antipsychotics – most notably clozapine and olanzapine - significantly increase the 

prevalence of obesity, dyslipidemia, and type 2 diabetes. After initial cell culture 

experiments in our lab demonstrated that antipsychotic drugs activate lipid 

biosynthesis through the transcription factor SREBP, we set out to elaborate our 

findings in various preclinical model systems. Exposing glial-like and neuronal-like 

cultured cells to different antipsychotic agents, we showed that antipsychotics 

activated the expression of several SREBP-regulated genes encoding key enzymes in 

lipid synthesis with varying potency between the different drugs. The effects were 

much more potent in glial-derived than in neuron-derived cells, which is interesting in 

light of the fact that glial cells produce the bulk of lipids, essential in myelination and 

synaptic development, in the central nervous system.  

We then treated female rats with the metabolically potent antipsychotic agent 

olanzapine or with aripiprazole, which is considered metabolically neutral in humans, 

for two weeks. Olanzapine induced marked increase in food intake and significant 

weight gain in rats. By including olanzapine-treated rats with restricted access to 

food, which did not gain weight, we demonstrated that weight gain primarily relies on 

increased food intake. Aripiprazole, included as a negative control, yielded significant 

increase in food intake and weight gain. Notably, increased serum triglyceride levels 

were detected in all olanzapine-treated rats, independent of weight gain, while serum 

triglyceride elevation was not present in rats treated with aripiprazole. In olanzapine-

treated rats, serum triglyceride increase was accompanied by lipogenic activation in 

peripheral metabolic tissues, particularly in visceral adipose tissue.      
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In this 2-week experiment, we also included one treatment group receiving the 

modified fatty acid tetradecylthioacetic acid (TTA), a lipid-lowering agent, and one 

group treated with a combination of olanzapine and TTA. Despite olanzapine-induced 

weight gain in the olanzapine-TTA treatment group, TTA cotreatment led to 

significant reduction in lipid levels in serum and liver. In a follow-up experiment 

spanning 8 weeks, serum and lipid levels were similarly reduced in all rats receiving 

TTA, either as monotherapy or in combination with olanzapine or clozapine, in spite 

of weight-potentiating effects. In the liver, we found that TTA induced the 

transcription and activity of the key oxidative enzymes ACOX1 and CPT2, and 

downregulated transcription of HMGCR, the rate-limiting step in cholesterol 

synthesis. The effects of olanzapine monotherapy on food intake and weight gain 

wore off approximately three weeks into the experiment, and serum triglycerides were 

not elevated in olanzapine-treated after 8 weeks of treatment. Clozapine, unlike in 

humans, did not induce weight gain. We concluded that improved dosing regimens 

are necessary in order to maintain dysmetabolic effects of antipsychotic in rat in the 

long term and thus increase the relevance of this animal model. The concomitant 

weight gain potentiation and lipid-lowering effects of TTA, on the other hand, further 

supported the presence of independent mechanisms regulating body weight and lipid 

levels. These parameters may not be fully disconnected, however, as one potential 

mechanism suggested by us to underlie favourable lipid values was increased adipose 

tissue mass, providing storage capacity for surplus lipids.  
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5. Introduction 

5.1 Schizophrenia  

5.1.1. Historical aspects 

Schizophrenia is probably the psychiatric diagnosis surrounded by the most persistent 

mythical beliefs and the most resistant prejudice. In Norway, the adjective 

“schizophrenic” is quite frequently used in order to describe equivocal or inconsistent 

actions, statements or situations, demonstrating that members of the public confuse 

schizophrenia with the far less common dissociative identity disorder (formerly 

known as multiple personality disorder). The fact that the term “schizophrenia” 

originally means “split mind” may have contributed to this misconception. When 

Eugene Bleuler introduced the term in 1908, he used the German words “Zerreißung” 

(tearing) and “Spaltung” (splitting) in order to describe the core concept of a group of 

“syndromes” (i.e., constellations of symptoms) characterized, among other 

pathological manifestations, by disintegrated psychological association processes 1. 

He elaborated on the concept of “splitting” in his famed 1911 work on schizophrenic 

disorders, “Dementia praecox oder gruppe der schizophrenien”, and defined several 

other classic symptoms of schizophrenia, such as psychotic symptoms (“a predilection 

for fantasy”), disrupted affective abilities and “autism”, a severe loss of interest in the 

surroundings 1.  

5.1.2 Clinical manifestations 

At present, the most commonly used diagnostic criteria for schizophrenia are found in 

the diagnostic manuals published by the American Psychiatric Association 

(Diagnostic and Statistical Manual of Mental Disorders, 4th  edition - DSM-IV), or by 
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the World Health Organization (International Statistical Classification of Diseases 

and Related Health Problems, 10th revision - ICD-10) 2, 3. DSM-IV lists 5 diagnostic 

subgroups for schizophrenia, with the common features of “disturbances in thought, 

perception, affect, behaviour, and communication that last longer than 6 months.” In 

addition, patients must exhibit so-called “active phase symptoms” for at least 1 of 

these 6 months (unless successfully treated). Active phase symptoms include 

psychotic symptoms, such as hallucinations (often auditory) and delusions, odd 

beliefs, or bizarre perceptual experiences. Such symptoms, representing features not 

seen in healthy individuals, are often characterized as “positive symptoms”. In the 

other end of the spectrum, “negative symptoms” are also hallmarks of schizophrenia. 

This term is used to describe the absence of emotions, thoughts or behaviour desirably 

present in healthy individuals, and may manifest as social withdrawal, affective 

flattening, apathy, or anhedonia. Patients may present with additional symptoms such 

as disorganized speech and/or disorganized or catatonic behaviour. Impairment of 

cognitive capabilities is also recognized as an important aspect of schizophrenia. Most 

patients with schizophrenia experience recurring psychotic episodes throughout their 

lives.  

5.2 Epidemiological aspects of schizophrenia 

5.2.1 Incidence and prevalence  

The lifetime risk of schizophrenia has traditionally been given at ~1% worldwide. 

Estimates of incidence (i.e., the number of new cases in a given population per year) 

depend on a large number of factors such as diagnostic criteria, the diagnostic 

methods used, the organisation of local health care systems, and demographic 

elements such as general mortality and migration 4. Thus, incidence estimates vary 

between studies. Stringent diagnostic criteria yielded incidence rates ranging from 
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6/100,000 to 14/100,000 in a large multinational WHO study (the so-called 10-

country study) 5. One of the conclusions in this study was that the incidence of 

schizophrenia shows little variation across populations. However, the question of 

whether the 10-country study was designed in a way that would ensure the detection 

of differing incidence between populations has been raised, and the results sparked 

much debate 6. Recently, a meta-analysis indicated an overall median incidence of 

schizophrenia of 15,2 per 100,000, with an estimated 7 out of 1000 individuals 

diagnosed with the disorder at some point in their life 7. This and other studies 

indicate that average lifetime prevalence across all populations may be slightly lower 

than the conventional 1% estimate, and that schizophrenia may be less uniformly 

distributed than previously thought 7-9. Furthermore, contrasting former beliefs of 

even gender distribution, meta-analyses have revealed that the male:female risk ratio 

of developing schizophrenia may be ~ 1.4:1 10, 11.  

5.2.2 Costs of schizophrenia  

Due to factors such as early symptom debut (i.e., early twenties), protracted course 

and complex treatment schemes, the economic burden of schizophrenia is 

overwhelming. An estimated 1,5-3% of health care and social spending of developed 

countries is accounted for partly by direct costs, such as expenses for treatment, and 

partly by indirect costs (e.g., lost productivity) of schizophrenia 12. In addition, non-

quantifiable losses of social and psychological character affect patients and family 

members alike. In statistics generated by the WHO, schizophrenia is listed as the 5th

and 6th most significant cause of years lived with disability (YLD) in men and 

women, respectively 13.
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5.2.3 Risk factors for schizophrenia 

Twin and adoption studies have provided clear evidence that the heritability of 

schizophrenia is high, perhaps as high as 80% according to one meta-analysis 14. 

Conventionally, a heritable, “intrinsic” vulnerability is thought to coincide with 

“external” risk factors to trigger the onset of the disorder in an individual. Generally 

accepted “external” risk factors include being born during the winter, high paternal 

age, obstetric complications, prenatal viral infections, and cannabis use 8. The 

disorder is often characterized as “multifactorial”, meaning that several circumstances 

must coexist in order to trigger symptoms.  

Conscious of the high heritability, researchers have attempted to identify 

susceptibility genes for schizophrenia, i.e. genes in which defects (mutations) could 

increase the risk of suffering from the disorder. The Schizophrenia Research Forum 

(http://www.schizophreniaforum.org) maintains a list of the genes presently found to 

have the strongest association with schizophrenia. The latest ranking (April 2011) is 

topped by the genes PRSS16 (PRSS16 protease, serine, 16), PGBD1 (piggyBac 

transposable element derived 1), and NRGN (neurogranin (protein kinase C substrate, 

RC3) 15.  

5.2.4 Neurochemical paradigms of schizophrenia 

The pathophysiology of schizophrenia, despite eager research, remains elusive. The 

most influential paradigm in neuromolecular schizophrenia research during the last 40 

years has undoubtedly been the so-called dopamine hypothesis. Early versions of this 

theory were based on the fact that several drugs relieving schizophrenic symptoms 

bind to, and block, dopamine receptors (particularly D2 receptors) in the brain, as 

discussed below 16. Thus it was suggested that cerebral dopaminergic “overdrive” is 

an essential component of the pathophysiology of schizophrenia. Later versions of the 

dopamine hypothesis proposed differential dopaminergic dysfunction in neuronal 
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subpopulations, with elevated mesolimbic (subcortical) dopaminergic signalling 

possibly underlying positive symptoms, and reduced dopaminergic activity in the 

prefrontal cortex theoretically causing negative symptoms 17. It has been suggested 

that the prefrontal hypodopaminergic state may actually cause an increase in striatal 

dopaminergic signalling 17. More recently, dysfunction in other neurotransmitter 

systems, such as the glutamatergic and GABAergic systems, have also been 

implicated 16. Possible defects in several aspects of neuronal signalling are integrated 

in the so-called neurodevelopmental hypothesis, which focuses on 

embryonic/developmental defects in synaptic density and other aspects of neuronal 

function 16. Demyelination, i.e. loss of myelin, the primary component of white 

matter, affects neuronal connectivity and is thought to be of significance in the 

pathophysiology of schizophrenia 18, 19. In the CNS, myelin is synthesized by 

oligodendrocytes, a type of glial cells embedding neurons, to facilitate neuronal 

conductivity 20. Signs of impaired myelination have been demonstrated in patients 

with schizophrenia 18, 21, 22, and may either result from reduced myelination during late 

adulthood or degenerative processes during the course of the illness itself.  Most 

relevant studies include schizophrenic patients receiving pharmacological treatment 

for schizophrenia, an important confounder which is difficult to avoid, but often 

deemphasized in the interpretation of results.  

  

5.3 Antipsychotic drugs 

5.3.1. Early history of pharmacological therapy for psychiatric disorders 

Historically, medicine had little to offer patients suffering from psychosis or other 

severe psychiatric symptoms. Often, treatment was characterized by more or less 

desperate attempts to ameliorate suffering and prevent patients from inflicting injury 

on themselves or others. Methods of treatment such as lobotomy, insulin shocks (the 
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induction of a hypoglycaemic state leading to loss of consciousness) or “sleep cures” 

(prolonged comatose states induced by barbiturates or similar agents) were employed 

during the first half of the 20th century 23, 24. Treatment attempts such as these, which 

may seem primitive and ill-considered to us, must be viewed in light of the scarce 

options available at the time. Some patients actually appear to have improved, or at 

least to have experienced blunted positive symptoms, after receiving unspecific 

pharmacological treatment employed in order to achieve general sedation 24, 25. 

Nevertheless, the fact remains that many types of treatment administered to the 

mentally ill caused considerable harm or even fatal outcome; for instance, “sleep 

cures” had a 5% mortality rate 24. 

Throughout the 1950s, several pharmacological agents specifically improving 

psychotic symptoms were introduced, and rapidly made their way into clinical 

practice. Reserpine, an alkaloid isolated from the dried root of the shrub Rauwolfia 

serpentina, predated the drugs presently regarded as antipsychotic agents. In India, 

Rauwolfia serpentina was reportedly used to treat “insanity” long before being 

introduced to the Western world as an antihypertensive agent in the late 1940s 26. 

Indeed, in addition to its antihypertensive properties, reserpine was found to possess 

antipsychotic properties 27. However, reserpine never gained widespread use as an 

antipsychotic agent due to unacceptable side effects (hypotension and, importantly, 

depression 28), and due to the introduction of other pharmacological agents with 

antipsychotic properties.  

5.3.2 First-generation antipsychotics 

The first specific antipsychotic agent was chlorpromazine, a phenothiazine 

synthesized in 1950 26. Commercially introduced as a treatment for psychiatric 

illnesses in 1953, chlorpromazine is considered the prototype antipsychotic agent, and 

the first of the so-called “typical”, or first-generation, antipsychotics 29. Its 

introduction has been described as a revolution by psychiatrists who, for the first time, 

observed specific treatment-induced regression of positive symptoms in patients with 
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schizophrenia 25. Haloperidol, synthesized in 1958 and commercially launched in 

Europe in 1959, belongs to a different chemical class than chlorpromazine, namely 

the butyrophenones 29. Several other antipsychotics were also introduced during the 

1950s and 1960s (Table 5.1). During the 1970s, experiments revealed that all 

antipsychotic agents known thus far were characterized by high affinity for 

dopaminergic receptors, blocking such receptors in the brain and thereby inhibiting 

the binding of dopamine 30. In particular, dopamine D2 receptor antagonism seemed 

essential in terms of antipsychotic effect; drugs lacking this property have later been 

demonstrated to have inferior effect on psychotic symptoms 31, 32. Chlorpromazine is a 

relatively weak D2 antagonist compared to other early antipsychotics, while 

haloperidol is a potent D2 blocker 33, 34.  

Drug Chemical group Commercially introduced Current trade names 1

Chlorpromazine Phenothiazine 1953 (Largactil)2

Perphenazine Phenothiazine 1957 Trilafon 

Haloperidol Butyrophenone 1959 Haldol 

Zuclopenthixol Thioxanthene 1962 Cisordinol 

Table 5.1 Selected first-generation (typical) antipsychotics 35.

The correlation of D2 affinity with antipsychotic effect is now well established; D2

occupancy above a certain threshold is required in order to achieve clinical 

antipsychotic effect 36. However, several dopaminergic pathways with physiologically 

                                             

1 Norway 

2 Not for standard sale in Norway (2011) 
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distinct functions exist in the brain, and D2 occupancy yields site-specific clinical 

effects 32. During clinical trials and early clinical use, it became evident that both 

chlorpromazine, haloperidol and other typical antipsychotic agents induce severe 

dose-dependent extrapyramidal side effects, including akathisia (an intense feeling of 

restlessness or unease), Parkinsonism, dystonias, and tardive dyskinesia 34, 37. The 

propensity to induce these adverse effects is correlated with D2 affinity in the 

striatum, and dopaminergic blockade in this area of the brain is thought to be the main  

cause of extrapyramidal side effects 32.  

5.3.3 Second-generation antipsychotic agents 

The serious adverse effects associated with typical antipsychotic agents encouraged 

the search for new antipsychotics. Clozapine, the first of the so-called second-

generation antipsychotic agents, was synthesized in 1958 (i.e., the same year as 

haloperidol) patented in Schwitzerland in 1960, but not introduced clinically in 

Europe until 1972, and in the USA in 1990 (reviewed in 38, 39). Second-generation 

antipsychotics are frequently designated “atypical” and viewed as a group, despite 

pharmacological heterogeneity. In general, the most distinct differences between first- 

and second-generation drugs result from variations in D2 and serotonin (5-

hydroxytryptamine, 5-HT) receptor affinity. Several second-generation agents occupy 

90-100% of 5-HT2 receptors, with 5-HT2A antagonism not observed for typical 

agents, while the degree of D2 blockade is generally lower than among the typical 

antipsychotics 32, 36. Accordingly, the risk of extrapyramidal side effects is 

significantly lower in patients treated with second-generation than in those treated 

with first-generation antipsychotics. For instance, clozapine binds D2 receptors much 

more weakly than do first-generation drugs, while its affinity for serotonergic 

receptors (5-HT2A, 5-HT2C) is as much as 20 times higher than its D2 affinity 31, 36, 40. 

Unfortunately, treatment with clozapine carries a risk of agranulocytosis (a sharp 

decline in the number of circulating white blood cells, with resultant risk of 

infection), a potentially lethal adverse effect 41. After being withdrawn from the 
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market in 1975 due to the risk of agranulocytosis, clozapine was relaunched in the 

USA in 1990 after clinical studies demonstrated its superiority over typical 

antipsychotic agents in treatment-resistant cases of schizophrenia 42. At present, 

however, other atypical drugs are commonly regarded as primary choices in newly 

diagnosed psychoses. 

Drug Chemical group Commercially 

introduced 

Current trade names 

(Norway) 

Clozapine Dibenzodiazepine 1972 Leponex, Clozapin, Clozapine 

Risperidone Benzisoxazole 1994 Risperdal, Risperidon 

Olanzapine Thienobenzo-

diazepine 

1996 Zyprexa, ZypAdhera, 

Olanzapin 

Ziprasidone Benzisothiazolyl 2001 Zeldox 

Aripiprazole Quinolone 2002 Abilify 

Quetiapine Dibenzothiazepine 1998 Seroquel, Quetiapin 

Amisulpride Benzamide 1990 Solian 

Table 5.2 Second-generation (atypical) antipsychotics 35. Aripiprazole has been called the 
first “third-generation” antipsychotic due to its properties as a partial D2 agonist.

Olanzapine, approved by the American Food and Drug Administration (FDA) in 

1996, is chemically related to clozapine 43. Reminiscent of clozapine’s properties, 

olanzapine’s affinity for 5-HT2 receptors exceeds its affinity for D2 receptors, with an 

in vitro 5-HT2/D2 affinity ratio approximating 12 40. Imaging studies have 
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demonstrated that olanzapine’s D2 affinity is higher than that of clozapine 36. 

Agranulocytosis has rarely been reported in patients treated with olanzapine 44. 

However, relatively soon after the drug’s introduction, reports of severe metabolic 

side effects surfaced; these effects are discussed below 45. Ziprasidone, marketed 

since 2001, is another atypical antipsychotic, with D2 affinity comparable to that of 

risperidone as well as high affinity for several 5-HT receptors, combined with 

serotonin and noradrenaline reuptake inhibition 46. Aripiprazole, commercially 

available from 2002, is frequently referred to as the first “third-generation” 

antipsychotic. This agent’s pharmacological properties deviate from that of prior 

antipsychotics in that it is a partial D2 agonist (or possibly possessing “functionally 

selective” D2 affinity) rather that a “traditional” D2 antagonist 47. Aripiprazole also 

possesses partial agonism at 5-HT1A receptors, as well as 5-HT2 antagonism.  

5-HT1a 5-HT2A 5-HT2C D1 D2 2C A1 1B 2 M1 M3 H1 

Chlorpromazine (+) +++ ++ + +++ ++ ++++ ++++ + ++ ++ ++++

Haloperidol (+) ++ 0 ++ +++ + ++ +++ 0 0 0 (+) 

Risperidone + ++++ ++ + +++ +++ +++ +++ 0 0 0 ++ 

Olanzapine (+) +++ ++ ++ ++ ++ + + 0 ++ ++ +++ 

Clozapine + ++ ++ + + ++ +++ +++ 0 ++ ++ +++ 

Quetiapine + + (+) + + ++ ++ ++ (+) + (+) +++ 

Aripipazole +++ +++ + + ++++ ++ ++ ++ 0 (+) (+) ++ 

Ziprasidone ++ +++ ++ ++ +++ ++ ++ +++ (+) 0 0 + 

Table 5.3 Receptor binding profiles of various antipsychotic agents. 0: no affinity; (+) very 
weak affinity; + weak affinity; ++ intermediate affinity; +++ strong affinity; ++++ very 
strong affinity for the receptor subtype, reflected in darkening colour gradient.  Adapted from 
31. 5-HT: 5-hydroxytryptaminergic (=serotonergic); D: dopaminergic; , : subtypes of 
adrenergic receptors; M: muscarinic, H: histaminergic.
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5.3.4 Metabolic adverse effects of antipsychotic drugs 

Metabolic disturbances, including weight gain, are recognized adverse effects of 

typical antipsychotic drugs, both phenotiazines and, to a moderate degree, 

haloperidol, as reviewed in 48, 49. Glucose dysregulation, occasionally debuting as 

ketoacidosis, was also observed in patients treated with typical antipsychotics 50, 51, 

and increased serum cholesterol was described in patients treated with 

chlorpromazine in 1967 52. With increasing use of clozapine and olanzapine, however, 

it soon became evident that these antipsychotics induce more frequent and more 

serious metabolic dysfunction than older drugs, and this issue has gained increasing 

attention during the last decades. Early clinical studies on clozapine mention weight 

gain as an adverse event 53, 54. Several years later, elevated serum triglyceride levels 

were reported in patients treated with clozapine 55-57.  Reports on olanzapine’s adverse 

effect profile published in the late 1990s, while describing low risk of dyskinesias and 

hematotoxicity, also mention the risk of weight gain 58, 59, later demonstrated to occur 

due to increased adipose tissue mass 60, 61. For olanzapine and clozapine, a frequently 

cited meta-analysis estimated an average short-term weight gain (10 weeks) in the 

range of 3.5-4 kg, with continued weight gain at least during the first year of 

treatment – in one study, 80% of first-episode psychotic patients receiving olanzapine 

gained >7% of pre-treatment body weight during the first 52 weeks of treatment 62.  

During the early years of olanzapine availability, the implications of metabolic 

adverse effects remained unclear (“the significance of this [i.e., weight gain] beyond 

cosmetic effects is unknown” 63), but the first reports of olanzapine-induced 

hypertriglyceridemia were published during the same period 63-65. Average 

olanzapine-induced increase in serum triglycerides is often given at 30-50%, while 

increase in serum cholesterol levels has also been reported during clozapine and 

olanzapine treatment 57, 65, 66. Furthermore, both clozapine and olanzapine have been 

demonstrated to increase the risk of insulin resistance and type 2 diabetes 66-69. 

Consequently, atypical antipsychotics significantly increase the risk of developing the 

constellation of parameters often termed the metabolic syndrome (Table 5.4).  
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Parameter Males Females 

Waist circumference 94 cm* 88 cm* 

Serum triglycerides >1,7 mmol/l >1,7 mmol/l 

Serum HDL <1,03 mmol/l <1,29 mmol/l 

Blood pressure Systolic >130 or diastolic >85 mmHg 

Fasting serum glucose > 5,6 mmol/l or recognized type 2 diabetes 

Table 5.4. Patients with central obesity plus any two of the findings described above fulfil 
the criteria for the diagnosis of metabolic syndrome 70. * Europids. 

The risk of weight gain, serum lipid increase and glucose dysregulation is generally 

regarded as intermediate for the second-generation agents risperidone and quetiapine, 

and low for aripiprazole and ziprasidone 49, 62, 65, 69, 71-73. In fact, replacing olanzapine 

with aripiprazole has been shown to significantly improve the metabolic status of 

patients 74.  

5.3.5 Clinical implications of metabolic adverse effects 

Mortality rates among patients with schizophrenia are markedly increased compared 

to those found in the general population, causing patients with serious mental 

disorders to lose 2-3 decades of life on average 7. This is partly due to increased 

suicide rates and increased susceptibility to fatal accidents, but most importantly due 

to early death from somatic conditions, with cardiovascular disorders as the single 

most common cause of death 7, 75, 76. Compared to the general population, patients 

with psychiatric disorders may have a higher background risk of developing the 

metabolic syndrome, which may lead to cardiovascular disorders 77, 78. Failure to seek 
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medical care or attend screening programmes, life style issues among patients 

(smoking, sedentary life style), and inadequate attention from caregivers concerning 

somatic comorbidity are probably important causes 75, 76, 79. This complicates the 

interpretation of data regarding the contribution of antipsychotics to metabolic risk, 

particularly as some reports on metabolic dysfunction in schizophrenic patients 

include patients having received antipsychotic agents 80. However, numerous studies 

indicate that treatment with antipsychotics adds significantly to the mortality rates in 

patients with serious mental disorders 69, 75, 81, 82. Metabolic dysfunction, particularly 

weight gain, is also a potential cause of non-adherence, increasing the risk of 

psychotic relapse  83.  

In addition to patients with schizophrenia, many individuals diagnosed with other 

psychiatric disorders, e.g. bipolar disorder, may respond well to antipsychotic drugs 
84. According to Eli Lilly’s 2008 sales figures, the company made $4.7 billion from 

worldwide sales of olanzapine that year 85. In Norway, official sales figures show that 

15,649,516 DDD (estimated average daily dose for an adult patient) of antipsychotic 

agents were prescribed in Norway in 2008 86. Consequently, a very large number of 

patients worldwide receive antipsychotic treatment and are thus at risk of developing 

metabolic adverse effects. 

5.3.6 Can receptor binding profiles explain metabolic adverse effects? 

Increased food intake, primarily due to impairment of satiety onset, is thought to be 

the main underlying cause of weight gain induced by antipsychotic agents, and has 

been demonstrated both in humans 81, 87 and in rodents 88-90. At present, no consensus 

exists in terms of the pharmacological properties underlying hyperphagia and other 

metabolic adverse effects, or the intracellular signalling pathways through which they 

are mediated. Several antipsychotic agents have antihistaminergic properties 31, and 

affinity for histaminergic (H1) receptors correlates with weight gain 91, 92. H1

antagonism is linked to increased food intake 91, suggestedly through H1-mediated 

activation of AMP-activated protein kinase (AMPK) in the hypothalamus 93. The 
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involvement of several other receptors (serotonergic 5-HT2C, adrenergic 1 and 2 

receptors, and muscarininc M3 receptors) has also been implicated in antipsychotic-

induced weight gain 89. The complex receptor binding profiles of antipsychotic drugs 

(Table 5.3) complicate the identification of one or several receptors primarily 

responsible for weight gain 94, and predictions of weight gain risk based on receptor 

binding profiles are sometimes unsuccessful. For instance,  ziprasidone, which is 

recognized not to induce significant weight gain in humans, possesses both 5-HT2C

antagonism (high) and H1 affinity (moderate) 95, and would thus be expected to 

induce weight gain. Notably, some antipsychotics with weak affinity for H1 receptors, 

e.g. haloperidol, are known to cause moderate weight gain 31, 49, 91. Thus, a well-

defined receptor binding profile resulting in increased risk of weight gain has yet to 

emerge. Regarding other dysmetabolic adverse effects, H1, 5-HT2C, and M3 receptors 

has been linked to derangements in glucose metabolism, while no receptor binding 

profile has been defined as far as dyslipidemia is concerned 96, 97.  

5.3.7 Animal models for antipsychotic-induced metabolic adverse effects 

In the exploration of the molecular mechanisms underlying metabolic adverse effects, 

a reliable animal model is instrumental. Rodent models of antipsychotic treatment 

have been extensively explored, with two major challenges surfacing during the two 

last decades. Firstly, the degree to which each specific antipsychotic agent induces 

metabolic side effects differ, in some cases, between human and rodent, particularly 

with regard to weight gain. Secondly, in rodents, antipsychotic-induced weight gain is 

sex-dependent, i.e. observed almost exclusively in females (Table 5.5). Conclusive 

evidence for gender differences in the risk of developing antipsychotic adverse effects 

has not been found in humans 98, 99. As described above, olanzapine and clozapine are 

the antipsychotic agents most prone to induce massive weight gain and related 

dysmetabolic features, such as dyslipidemia, in patients 49, 51, 100, 101. In female rats, 

elevated food intake and weight gain through increased adipose tissue mass during 



24

short-term treatment with olanzapine (1-10 mg/kg) are well characterized, even in 

animals receiving standard rodent chow with high carbohydrate and low fat content 89, 

102, 103. Olanzapine has also been demonstrated to have hyperphagic effects in male 

rats 88, 104, 105. Furthermore, studies in male rats have shown that subchronic treatment 

with olanzapine increases adipose tissue mass, but not body weight, using diets with 

medium to high fat content 106, 107. One study in which olanzapine-treated male rats 

received standard laboratory chow also reported increased adipose tissue mass in the 

absence of hyperphagia and body weight gain after 20 days of olanzapine treatment 
105.  

As for clozapine, with a clinical metabolic profile similar to that of olanzapine 69, 

hyperphagia has been reported in male rats receiving a clozapine dose of 0.3 mg/kg 88. 

Weight gain has not been demonstrated in rats of either gender treated with 0.5-8 

mg/kg 108, 109, but was reported in one 28-day study in female rats treated with 20 

mg/kg clozapine 110. In contrast, clozapine has somewhat unexpectedly been reported 

to induce weight reduction in rats at doses of 6-10 mg/kg 109, 111. Reminiscent of 

observations from olanzapine-treated male rats, clozapine treatment has been shown 

to induce adiposity in female rats, with no effect on weight gain, except in one study 

reporting weight gain in male rats receiving clozapine 20 mg/kg for 7 weeks 111, 112. 

Aripiprazole, considered metabolically neutral in patients, has been demonstrated in 

one study to induce moderate weight gain in female rats (8 mg/kg) 103, while 

apparently weight-neutral in a similar experiment using aripiprazole a dose of 2.25 

mg/kg 113. In agreement with the latter report, an aripiprazole dose of 2 mg/kg failed 

to induce hyperphagia in female rats 114. Ziprasidone, also regarded metabolically 

neutral in patients, has not been demonstrated to possess hyperphagic effect in rat, 

although some groups have reported moderate weight gain in female rats at relatively 

low doses (2-10 mg/kg) 115-117.  
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Olanzapine Clozapine Aripiprazole Ziprasidone 

Weight  

gain 

105-

107, 118

119

89, 102, 

103, 118

/ 108, 

109, 118

112

/ 108, 

109, 111, 118

110

103

113

106 117

Adipose mass 105-107 103 111 113 106

Hyperphagia 88, 105

105

103, 

120

88

118

111, 118 114 106

Serum 

triglycerides 

103, 

115, 121

    106

115

Glucose 

dysmetabolism 

122, 123 124 122, 123    122, 

123

Table 5.5 Overview of dysmetabolic features demonstrated in rats. : increase observed 
relative to vehicle. : no change observed relative to vehicle. decrease observed relative to 
vehicle. 
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Few studies have reported lipid levels in rodent experiments. Serum triglycerides have 

largely been reported as unaltered by olanzapine 103, 115, 121, while increased serum free 

fatty acids after treatment with this drug have been shown in one experiment 103. 

Derangements in glucose metabolism have been thoroughly demonstrated in rats 

treated with olanzapine and clozapine 122-124. In female mice, the same pattern as in 

rats, with olanzapine-induced weight gain, has been demonstrated 125. A few studies 

have also shown olanzapine-induced increase in serum triglycerides in female mice 
126, 127.  
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5.4 Lipid metabolism 

5.4.1 General aspects of lipid metabolism 

Lipids constitute a large group of molecules involved in numerous essential processes 

and structures in the human organism. Fatty acyls (fatty acids), mono-, di-, and 

triglycerides, phospholipids and sterol-containing molecules, such as cholesterol, all 

belong to this class of macromolecules. A short overview of relevant aspects of lipid 

metabolism is presented below.  

5.4.2 Free fatty acids and triglycerides 

In times of excess, energy is primarily stored as triglycerides in adipose depots 128. 

Lipids may be absorbed from the diet or synthesized de novo from pyruvate 128. De 

novo synthesis primarily occurs in the liver, from which triglycerides are exported to 

white adipose tissue. The committed step in fatty acid synthesis is the formation of 

malonyl-CoA from acetyl-CoA, synthesized by acetyl-CoA carboxylase 1 (ACC1) 

(Figure 5.1) 128. Malonyl-CoA then undergoes elongation in several steps catalyzed by 

fatty acid synthase (FASN), which possesses 7 enzymatic sites 128. FASN synthesises 

palmitate (16:0), a 16-carbon, saturated fatty acid (i.e., lacking double bonds). 

Palmitate may be further elongated by elongases, and/or desaturated by desaturases, 

enzymes introducing double bonds. The desaturase most relevant to this thesis is 

stearoyl-CoA desaturase (SCD1), a 9 desaturase introducing double bond between 

C9 and C10 to yield, if palmitate is the substrate, palmitoleate [C16:1( 9)] 128.  

Three fatty acyl-CoA molecules linked to a glycerol-derived backbone (glycerol-3-

phosphate) form a triglyceride molecule. Two of the three carbon sites of the glycerol 

backbone is acetylated in a reaction catalyzed by glycerol-3-phosphate acyltransferase 

(GPAT; Figure 5.1) and monoacylglycerol acyltransferase (MGAT), forming 
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phosphatidic acid 129. GPAT constitutes the committed step in triglyceride synthesis. 

After dephosphorylation of phosphatidic acid, yielding diacylglycerol (DAG), DAG is 

acetylated by diacylglycerol acetyltransferase (DGAT), producing triacylglyceride 

(triglyceride) 129.  

The anabolic hormone insulin is necessary for both triglyceride synthesis and for 

energy uptake and storage in adipose depots; lipid uptake to adipose tissues depends 

on maintained insulin sensitivity 128. Abnormalities in lipid metabolism and glucose 

dysregulation are intimately related, and obesity is closely correlated with insulin 

resistance 130.   

Figure 5.1 Important steps in fatty acid synthesis (purple), desaturation (orange), triglyceride 
biosynthesis (yellow) and fatty acid oxidation (blue). Taken from 131, with permission. For 
full names of relevant enzymes, see text. 
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5.4.3 Cholesterol metabolism 

The percentage of cholesterol in cellular membranes has significant influence on the 

physical properties and organization of the membrane 132, 133. In addition, cholesterol 

is a substrate for synthesis of complex sterols, such as steroid hormones (e.g. cortisol, 

testosterone and estradiol), and bile acids 134. Like fatty acids and triglycerides, 

cholesterol may be absorbed from the diet or synthesized de novo in the liver. De 

novo synthesis of cholesterol is a complex pathway, with hydroxymethylglutaryl-

Coenzyme A reductase (HMGCR) as the rate-limiting enzyme  128. Statins, commonly 

used lipid-lowering drugs, are inhibitors of HMGCR 128. For transport and storage, 

cholesterol is esterified, i.e., linked to fatty acids through an ester binding, possible 

because cholesterol contains an –OH group.  Esterification, which decreases 

cholesterol’s lipophilic properties, is catalyzed by the enzyme sterol O-acyltransferase 

(SOAT, also known as ACAT).  

5.4.4 Lipids in the brain  

As mentioned in section 5.2.4, glial cells (oligodendrocytes) produce myelin 

embedding the axons of neurons in the CNS 135. Myelin is rich in cholesterol, which is 

synthesized de novo by glial cells, as cholesterol cannot be transported across the 

blood-brain barrier, and neurons have been thought to possess limited capacity for 

cholesterol synthesis 136, 137. Increasing amounts of data also support the idea that glial 

cells, previously regarded as passive cells whose only function is to maintain neurons, 

may be required for the formation and maintenance of interneuronal synapses in the 

brain 138, 139.  Lipids, among them cholesterol, constitute key components in the 

efficient communication between neuronal and glial cells 133, 138-140. Glial cells secrete 

apolipoprotein E (ApoE)-bound cholesterol, which is taken up by neurons by means 

of low-density lipoprotein (LDL) receptors and acts as a growth factor for neurons 138, 

141, 142. 
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5.4.5 Regulatory factors in lipid biosynthesis 

As Figure 5.1 shows, a large number of enzymes are involved in the synthesis of fatty 

acids and triglycerides. Many of these are primarily regulated at the transcriptional 

level, meaning that transcription of the genes encoding them is regulated in a 

coordinated manner 143. The sterol regulatory element binding proteins (SREBPs) are 

transcription factors involved in numerous aspects of fatty acid, triglyceride, and 

cholesterol synthesis, and are frequently designated “master” transcription factors in 

lipogenesis, as they hold key positions in the coordinated transcription of lipogenic 

genes. Two main SREBP proteins, SREBP1 and SRBEP2, are encoded by two 

distinct genes. The SREBPF1 gene encodes two isoforms, SREBP1a and SREBP1c, 

of which SREBP1c is the isoform most extensively expressed in liver and adipose 

tissues in mice, while SREBP1a is primarily found in cultured cells 144. SREBP1c is a 

main regulator of genes encoding enzymes involved in fatty acid and triglyceride 

metabolism, e.g. the genes encoding ACC1, FASN, SCD1, and GPAM 145-147. 

SREBP2, encoded by SREBF2, controls the transcription of enzymes synthesizing 

sterols, including the rate-limiting HMGCR as well as HMGCS and several of the 

enzymes catalyzing later steps in the cholesterol biosynthesis pathway 147.  
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Figure 5.2 SREBP and its activation. SREBP, constisting of one regulatory domain and one 
domain containing a basic-helix-loop-helix leucine zipper (bHLH-Zip) protein 148. The 
inactive form of SBERP forms a complex with SREBP cleavage activating protein (SCAP), 
a lipid sensor. Insulin-induced gene (Insig) immobilizes the SREBP-SCAP complex in the 
ER when lipid levels are high. Upon cholesterol depletion, SREBP-SCAP is transported to 
the Golgi apparatus, where the bHLH-Zip domain is released, translocating to the nucleus to 
initiate transcription of its target genes. SREBP1 is regulated by numerous nutritional factors 
(e.g. carbohydrates) 149, while SREBP2 is primarily regulated by cholesterol levels. 
Illustration by Johan Fernø.  

The SREBP proteins reside in the endoplasmatic reticulum (ER) membrane as 

inactive precursor proteins of 120-130 kDa. Intracellular sterol depletion or other 

alterations in the cell’s nutritional status result in translocation of the inactive SREBP 

protein to the Golgi apparatus, where proteolytic cleavage produces an active 

(nuclear) form of 60-70 kDa (Figure 5.2) 147. A large number of lipogenic gene 

promoters contain sterol regulatory elements (SRE) or an E-box motif with affinity 

for cleaved SREBPs. As a key regulator of anabolic processes, SREBPs are activated 

in states of energy surplus, such as increased energy intake (in the form of 
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carbohydrates or lipids). Both saturated fatty acids and insulin promotes SREBP1c-

mediated lipogenesis 147, 150, 151.   

5.4.6 Mechanisms of fatty acid oxidation 

When energy mobilization is required, free fatty acids may be released from 

triglycerides by lipolysis, and oxidised in the mitochondria in a process releasing ATP 
128. If energy reserves are depleted, free fatty acids are transported from white adipose 

tissues to skeletal muscle, heart, and liver, for oxidation 152. Oxidation takes place in 

the mitochondrial matrix. Fatty acids, “activated” through linkage to CoA yielding 

fatty acyl-CoA, are linked to carnitine by carnitine palmitoyltransferase 1 (CPT1) 

before being transported across the outer mitochondrial membrane (Figure 5.1). In the 

mitochondrial matrix, the fatty acyl group is transferred from carnitine to a matrix-

specific pool of CoA. The transient linkage to carnitine (carnitine shuttle) represents 

the rate-limiting steps of fatty acid oxidation. In the matrix, fatty acyl substrates are 

oxidised in a four-step process. Oxidation of one palmitoyl molecule (C16:0), which 

is broken down to 8 acetyl-CoA molecules, yields 28 ATP units (in addition, acetyl-

CoA oxidation through the citric acid cycle yields further ATP) 128. Organelles other 

than mitochondria, namely peroxisomes, may also be the site of fatty acid oxidation, 

catalyzed by different enzymes than those found in mitochondria. In particular, the 

enzyme acyl-CoA oxidase 1 (Acox1), catalyzing the first step in peroxisomal 

oxidation, is important.  

5.4.7 Regulation of fatty acid oxidation and lipid storage 

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors sensing 

lipid levels and regulating a wide array of responses to altered lipid load. Three PPAR 

isoforms - PPAR , PPAR , and PPAR  - are recognized, all transcription factors with 

a large number of target genes 152. PPAR , highly expressed in the liver, induces -

oxidation in times of reduced energy access, e.g. in the fasting state. PPAR  is 

predominantly expressed in adipose tissues, and activates pathways facilitating lipid 
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storage through biosynthesis and adipocyte differentiation. Increased lipid storage 

capacity resulting from PPAR  activation is thought to be an important mechanism of 

action for the pharmacological PPAR  agonists thiazolidinediones (TZDs), presently 

used as insulin-sensitizing agents in patients 152. 

Figure 5.3 The structural formula of TTA.

5.4.8 Tetradecylthioacetic acid (TTA) 

Tetradecylthioacetic acid (TTA) is an artificially synthesized fatty acid where the 3rd

carbon atom is replaced with a sulphur atom, producing a non-oxidizable fatty acid 

derivative (CH3-(CH2)13-S-CH2-COOH). Acting as an agonist for all PPAR 

subspecies, with most potent effects on PPAR , TTA nevertheless induces the 

mitochondrial -oxidative apparatus, resulting in increased mitochondrial oxidation 

of naturally occurring substrates for -oxidation 153. In male rats, TTA has been 

shown to prevent adiposity and insulin resistance induced by high-fat diet, decreasing 

plasma triacylglycerol and free fatty acid levels 153, 154. Fibrates, another type of 

PPAR  agonists used clinically in the management of hypertriglyceridemia 152, have 

also been shown to improve insulin sensitivity in rodents 155-157. Small clinical trials 

have indicated metabolically beneficial effects of TTA in patients 158, and TTA was 

therefore included in our rat experiments. 
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6. Aims of the study

The overall aim of this study was to identify new molecular mechanisms underlying 

metabolic adverse effects of antipsychotic drugs, and to confirm their relevance by 

means of a rat model.  

Specific aims:  

o To identify differential metabolic effects of different antipsychotic drugs in 

various cultured cell types modelling cell populations in the CNS 

o To clarify the role of hyperphagia in antipsychotic-induced weight gain, in a 

rat model 

o To examine the possible uncoupling of weight gain from alterations in lipid 

metabolism in rat exposed to antipsychotic drugs 

o To explore the use of a non-invasive imaging technique (MRI) for 

quantification of antipsychotic-induced adiposity in rat 

o To examine the development of food intake, weight gain and lipogenic 

alterations in long-term antipsychotic treatment in rat 

o To investigate the lipid-lowering, modified fatty acid TTA as a potential 

pharmacological intervention strategy for metabolic adverse effects 
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7. Summary of results 

Paper I 

The experiments in Paper I were based on results from our initial microarray studies 

in antipsychotic-treated, cultured cells 159, 160. Examining the effects of a number of 

antipsychotics on lipogenic gene expression in human neuron-like and glial-like cell 

types we  found that clozapine, one of the two most metabolically potent 

antipsychotics in humans, and chlorpromazine, the “prototype” first-generation 

antipsychotic, activated the transcription of lipogenic genes with most pronounced 

effects in glial-like cells. Lipogenic activation was mediated by the SREBP 

transcription factor, a master regulator of lipogenesis.  

Paper II 

Rats were treated with olanzapine or aripiprazole for 13 days. As expected, 

olanzapine-treated rats increased their food intake and gained weight in the form of 

increased adipose tissue mass, demonstrated by weighing and MRI-based 

quantification of adipose tissue. Aripiprazole, included as a negative control due to its 

clinical status as metabolically neutral, induced a similar pattern. In an olanzapine-

treated group of rats with limited food access, weight gain was absent. However, 

serum triglyceride levels were increased in both olanzapine treatment groups, as was 

lipogenic gene expression in visceral adipose tissue. Aripiprazole-treated rats did not 

develop these features. We concluded that factors other than weight gain may 

significantly contribute to antipsychotic-induced metabolic derangements.  
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Paper III

Seeking to elaborate our findings from Paper II, we extended the treatment period to 8 

weeks, included two new antipsychotics and slightly lower drug doses. The weight 

gain-inducing effects of olanzapine wore off ~ 3 weeks into the experiment, while 

treatment with clozapine failed to induce weight gain. The modified fatty acid TTA 

potentiated weight gain both in combination with olanzapine and clozapine, with 

concomitant reduction in plasma and liver lipid levels. The lipid-lowering effects of 

TTA were accompanied by substantial increase in the transcription and enzymatic 

activity of the key oxidative enzymes ACOX1 and CPT2 in the liver, as well as 

reduced transcription of the rate-limiting enzyme in cholesterol, HMGCR. While 

calling the relevance of the female rat model into question, the results supported the 

concept of weight-lipid uncoupling. 
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8. Discussion

8.1. Methodological aspects 

8.1.1 Cell culture 

In paper I, we examined potential lipogenic effects of antipsychotic drugs in five 

different cell cultures. The use of cell cultures is extremely widespread in biological 

research. Among the numerous advantages of using cultured cells are the easily 

controlled environment, e.g. availability of nutrients, and flexible experimental 

setups, e.g. regarding drug doses. Furthermore, working with cell culture circumvents 

most ethical considerations. However, even though cultured cells interact, traditional 

cell cultures represent a considerable oversimplification, since interaction between 

different cell types usually present in an organ, as well as tissue-tissue interaction, are 

absent. In addition, cells are usually transformed, usually malignantly, in order to 

enable division and growth in culture. In many instances, such “non-physiological” 

conditions are necessary in order to discriminate relevant molecular processes from 

feedback responses and other compensatory events normally present in a complete 

organism. Using two neuron-like (HCN2 and SH-SY5Y) and two glial-like (GaMg 

and CCF-STTG1) human cell lines, as well as one hippocampal primary culture from 

rat (R-Hi-501), we found corresponding upregulation of SREBP target genes in all 

cell types, but with minor effects in cells derived from neurons. The common pattern 

observed across cell lines indicated that antipsychotic-induced SREBP activation 

observed in GaMg cells in our previously published article 159 is not limited to one 

type of cultured cells, and could represent a generalized drug effect.  
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8.1.2 RealTime PCR  

In order to quantify expression levels of potentially relevant genes in both cell culture 

and in rat tissues, we have extensively used RealTime PCR. This method is based on 

the concept of a fluorescent probe or a DNA-binding dye being released as mRNA is 

replicated throughout 35-40 PCR cycles. Continuous quantification of released probe 

or dye permits “real-time” quantification of mRNA levels 161. The PCR cycle during 

which the level of probe or dye is first detected at a higher level than the sample 

background represents the gene’s cycle threshold (Ct) value 161. The RealTimePCR 

method is highly sensitive to alterations in gene expression across a wide range of 

expression levels, i.e. even for genes with particularly high or low expression levels in 

a certain tissue 161. We used SYBR® Green, a DNA-binding dye, and primers 

designed in-house, for all RealTime reactions. For analysis of results, we used the 

comparative Ct method (2- Ct method), with normalization towards one or more 

endogenous control genes. Here, the relative difference in gene expression between 

antipsychotic-treated samples and vehicle-treated samples, with the latter used as 

calibrator, was calculated based on the genes’ Ct values. This method assumes similar 

replication efficiencies between genes, controlled by means of serial dilutions, and is 

more reliable if PCR products are kept below 150 bp. We therefore designed utilized 

primers such that the PCR product size was kept below this size for all genes.   

In order to control for differences in RNA input in the reverse transcription stage, Ct 

values for all target genes were normalised to Ct values for genes thought to be stably 

expressed in target tissues (i.e. housekeeping genes). Selection of endogenous control 

genes is a major challenge when using RealTime PCR, and the expression of several 

housekeeping genes have been shown to be affected by drug exposure in cell culture 
162.  
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Figure 8.1 Ct values (Y axis) for 7 potential endogenous control genes in white adipose 
tissue from rats exposed to different pharmacological treatments. Each data point represents 
one sample. Samples were taken from rats exposed to different pharmacological treatments. 
Each coloured curve represents one potential reference gene. Arrows signify the two 
endogenous control genes used in our rat experiments.  

Preparing to analyze tissues not previously examined in our lab (particularly white 

adipose tissues), we ran selected samples on predesigned panels (low density arrays, 

LDA; Applied Biosystems) containing several pre-selected endogenous control genes 

commonly used (Figure 8.1; unpublished data), in order to select stably expressed 

housekeeping genes. Based on LDA results, candidate genes for further use as 

endogenous controls were chosen and further evaluated using different RealTime 

assays. The reference gene used in Paper I, ribosomal protein, large, P0 (Rplp0; 

designated P0 in Paper I-III) in addition to the commonly used -actin, were selected 

for use in further analyses, and these two reference genes were run in each new batch 

of cDNA in the rat experiments. In order to detect potential systematic treatment 

effects on endogenous control genes, Ct values in vehicle- and antipsychotic-treated 

rats were habitually compared for all examined genes during analysis of RealTime 
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PCR data. Results from several biological replicates have confirmed our initial 

patterns of transcriptional regulation by antipsychotic agents, increasing the validity 

of results. Furthermore, several key findings were validated at the protein level using 

Western blots.  

8.1.3 MRI-based quantification of adipose tissue volume 

Paper II includes tissue imaging data collected using a 7T MRI scanner. Olanzapine- 

and aripiprazole-exposed rats included in a 2-week experiment underwent MRI 

scanning prior to the initiation of treatment, and by the end of the treatment period. 

The protocol used for image analysis was developed by in-house collaborators. In the 

attempt to extract quantitative data (adipose tissue volumes) from MRI images, two 

major challenges deserve mention. Firstly, in order to quantify alterations in white 

adipose tissue mass between two time points, one needs reliable anatomical 

landmarks. Scanning the entire animal was not an option, as this would require an 

unreasonable amount of time (considering both time spent in anaesthesia and 

experimental logistics). As MRI is not a sensitive method for imaging of skeletal 

parts, the early idea of using lumbar vertebrae as landmarks was dismissed. Instead, 

we chose to use the easily visible kidneys.  A second challenge was the distinction 

between white adipose tissue and artefacts, particularly in the intestine. The 

segmentation protocol developed to distinguish and quantify adipose tissue yielded a 

relevant impression of increased adipose tissue volume in olanzapine-treated rats, but 

numerical estimates were not significantly correlated with dissected adipose tissue 

mass (Paper II). The reasons behind this discrepancy remain unclear. In further 

developing MRI acquisition and analysis, a natural first step would be to increase the 

anatomical area examined, e.g. by scanning the entire abdominal area. Alternative 

methods (e.g. dual-energy X-ray absorptiometry [DXA] scans) are available for 

quantification of total adipose tissue mass in rodents (reviewed in 163). MRI images 

permit the distinction of different adipose depots (visceral, subcutaneous), and as 

demonstrated by us, rodents could be examined at several time points during the same 
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experiment, with no significant mortality among examined rats. These are among the 

advantages that should encourage further use and development of MRI protocols and 

analysis tools in studies centred on metabolic adverse effects.  

Figure 8.2. Deeply anaesthetized rat mounted for MRI examination, covered by a heating 
mat (blue). Photograph by Silje Skrede.  

8.1.4 Selecting a drug vehicle 

Most antipsychotic agents are close to insoluble in water, but readily dissolved in 

DMSO or alcohol. Concerns over toxicity, vehicle-induced biochemical effects 

confounding results, and palatability issues led us to search for an appropriate vehicle 

for use in rat studies involving oral administration of antipsychotics. Eventually, 

based on our own experiments and relevant literature, 4% carboxymethyl cellulose 

(CMC) was chosen 114, 117. Antipsychotics were suspended, not dissolved, in the CMC 

solution. As the drugs rapidly precipitated, frequent resuspension was necessary in 

order to maintain the correct drug concentration during administration to rats, 

potentially introducing dosing inaccuracy. Measurements of serum drug levels 



42

showed modest variation across antipsychotic-treated rats at the time of sacrifice, 

indicating adequate dosing of drug suspended in CMC.  

8.2 Modelling metabolic adverse effects in rat 

8.2.1 Divergent findings in human and rat  

As mentioned in the Introduction (see Table 5.5), several aspects of metabolic adverse 

effects diverge in rodent and human, primarily considering gender differences 

(observed in rat, not convincingly demonstrated in humans) and dysmetabolic 

potencies between different antipsychotic agents. In particular, the near absence of 

metabolic alterations in clozapine-treated rats remains puzzling.  

The question of gender specificity raises the question of whether endocrine factors 

may play a more significant role than has been demonstrated thus far. Antipsychotics, 

as recognized dopamine receptor antagonists, are known to increase prolactin levels 

in patients 164, 165. Olanzapine has been demonstrated to increase serum prolactin 

levels both in female 117, 124 and in male rat 105, 166, indicating that hyperprolactinemia 

per se cannot provide a straightforward explanation for the gender pattern observed in 

rat. Oestrogens are closely linked with distribution of adipose tissue as well as several 

other aspects of energy metabolism 167, and may be relevant to the gender differences 

observed in rat. One study found unaltered serum oestradiol levels in female, 

olanzapine-treated rats 124. In ovariectomized rats, with negligible oestradiol levels, 

olanzapine has still been demonstrated to induce food intake and weight gain 168. In 

patients, olanzapine treatment had no effect on oestradiol levels, neither in males 169

nor in females 170. Even though other endocrine factors could be relevant, there are no 

obvious candidates in the relatively limited number of studies examining hormonal 

effects of antipsychotics with high dysmetabolic potential 171.   
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During the last few years, a quite differentiated picture of antipsychotic-induced 

alterations in rodents has emerged. For instance, increased adiposity in spite of 

constant body weight after subchronic olanzapine treatment of male rats has been 

described in several studies 105, 106. Through these, and our subchronic experiments 

demonstrating olanzapine-induced serum triglyceride elevation, an increased number 

of shared features in human and rodent may emerge, adding to the relevance of rodent 

models. Nevertheless, in further development of animal models for antipsychotic-

induced metabolic adverse effects, several important challenges remain.  

8.2.2 Challenge I: pharmacokinetics of antipsychotics in rat 

In rat, metabolism of antipsychotic agents differs significantly from human 

metabolism of these drugs. For instance, the half-life (t1/2) of clozapine in rat serum is 

1.5 hours, while the average t1/2 is 10 hours in human 172, 173. Similar differences are 

found for olanzapine, with a t1/2 of 2.5-3 hours in rat, compared to an average of 30 

hours in human 174-176. The rapid metabolism of antipsychotics in rat complicates the 

selection of appropriate drug doses in rat experiments, as serum drug concentrations 

rapidly reach negligible levels.  

8.2.3 Challenge II: dosing of antipsychotics in rats 

Defining a “correct” dose for antipsychotics in rats based on clinical observation is 

difficult. A commonly used approach when selecting doses for rat experiment is direct 

transfer of doses used in patients. In many countries, the maximum olanzapine dose 

approved for use in patients is 20 mg, i.e. ~0.3 mg/kg in a person weighing 70 kg 177. 

As for clozapine, patients may receive 600 mg, i.e. ~8.6 mg/kg 177. In rats, these doses 

are too low to induce weight gain 108, 109, 111, 178. Based on the significant differences in 

human and rodent drug metabolism, a dosing strategy based on the percentage of D2

receptor occupancy in the CNS has been suggested 179. In order to achieve D2
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occupancy comparable with that observed in humans (65-80% for olanzapine and 45-

65% for clozapine) after a single dose of antipsychotic agents in rat, olanzapine doses 

in the range of 1-2 mg/kg and clozapine doses of 5-15 mg/kg have been 

recommended 179. As mentioned in the Introduction, raising clozapine doses in rats to 

this level has so far not yielded weight gain. In fact, in one subchronic study rats 

received 30 mg/kg clozapine, with absence of weight gain 180. Notably, in male rats 

receiving 20 or 40 mg/kg clozapine, D2 occupancy in the CNS was far below the 

levels observed in humans at clinically relevant doses; body weight was not measured 
181. High doses (olanzapine: ~ 20 mg/kg; clozapine: 10-20 mg/kg?) may cause 

sedation 108, 182, and this fact has influenced the doses selected for studies in rodents. 

Some studies, however, reported absence of sedation in rats in the 20-40 mg/kg 

clozapine dose interval 180, 181.  Thus, underdosing may represent an explanation for 

the lack of weight gain in clozapine-treated rats. 

A second dosing-related issue is drug tolerability. In patients, weight gain is typically 

considered to continue for approximately one year 183, 184 before body weight reaches 

a plateau, although this issue is debated (reviewed in 100, 185). Weight gain in rats 

treated with low to moderate doses of olanzapine (1-6 mg/kg) seems liable to dwindle 

during treatment, as indicated by our results, with dampened effects on weight gain 

after 2-3 weeks of treatment Papers II, III), although one group showed continued 

weight-inducing effect of olanzapine 1,5 mg/kg for 8 weeks 113. A stepwise increase 

of olanzapine doses, from 4 to 20 mg/kg, potentiated weight gain compared to our 

results, but at 33 days, cumulative weight gain for rats treated with control substance 

and olanzapine (end dose 20 mg/kg) was nevertheless relatively similar 108. Stepwise 

dose increase may, however, circumvent sedation, and should be considered in long-

term rat experiments.  
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8.2.4 Challenge III: administration of antipsychotics to rats 

Administration of antipsychotics to rats is commonly achieved by means of 

subcutaneous or intraperitoneal injections 124, 186, oral administration through gavage 
102, through food 106 or through drinking water 105, 181. As the number of daily 

injections is, for practical reasons, limited, and food/water intake is unevenly 

distributed throughout the light/dark phases, all these approaches are likely to result in 

fluctuating serum concentrations during a 24-hour period 181. Several antipsychotic 

agents degrade when exposed to light, further complicating the approach of mixing 

drugs with food or drinking water. In order to ensure constant delivery of non-

degraded antipsychotics, some researchers have utilized osmotic minipumps, with 

subcutaneous or intraperitoneal implantation of a syringe constantly delivering a fixed 

dose of dissolved drug. As pumps previously needed to be refilled frequently due to 

drug degradation, the use of osmotic minipumps could be more labour-intense than 

anticipated 187. Implantation of syringes carries a risk for infection, and minipumps 

are subject to mechanical failure. In carefully controlled conditions, using light-

protected minipumps, dissolved olanzapine has been demonstrated to remain stable 

for 42 days 188. When successful, serum drug concentrations reached by means of 

minipumps are higher and more stable than those achieved through other means of 

administration 118, 188. The use of minipumps, therefore, may be preferable to 

intermittent oral dosing or injections. Other potential strategies include pellets 

designed for subcutaneous implantation, followed by constant drug release, which are 

available, but have not been extensively used 189.  

8.2.5 Challenge IV: the influence of diet 

Standard rat chow used in laboratories is very high in carbohydrate (40-50%), with a 

low fat content (~5%). In male, olanzapine-treated rats and in female, clozapine-

treated rats, the limited number of studies demonstrating weight gain included chow 
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with high fat content 110, 119, 190. Some studies with very similar setups, however, have 

not yielded significant weight gain 106, 190, 191. Finding the “ultimate” dietary 

composition may not be sufficient to achieve weight gain in male rats treated with 

olanzapine or in clozapine-treated rats, but is likely to represent one of several 

necessary conditions.  

8.2.6 Steps towards increased reliability of rat models 

The possibility remains that a certain constellation of drug dose, mode of 

administration, and dietary fat content will lead to successful replication of a more 

“human-like” pattern of antipsychotic-induced metabolic adverse effects than has 

previously been achieved. In two recently described experiments, male rats were fed 

high-fat chow and treated with 1.5-10 mg/kg olanzapine administered by minipumps; 

still, only marginal effects on body weight gain were observed, in spite of increased 

adipose tissue mass 188, 192. Experiments including even higher antipsychotic doses 

than previously administered to rats may be a natural next step. Of course, one can 

ask whether the need to “fine-tune” several parameters will yield a sufficiently robust 

model - even if clozapine-induced weight gain is successfully modelled, the fact may 

remain that some as yet unrevealed property distinguishes metabolic effects of 

olanzapine in rat from that of clozapine.  
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8.4. Molecular mechanisms of metabolic adverse effects 

8.4.1 Hyperphagia is the main cause of body weight gain 

Weight gain may be caused by increased energy intake, reduced energy expenditure, 

or a combination of the two. In order to investigate the role of food intake in 

olanzapine-induced weight gain, we included olanzapine-treated, pair-fed treatment 

groups in our rat experiments. Pair-fed rats were offered an amount of chow 

corresponding with the average amount consumed by control animals during the 

preceding 24 hours, typically 15-16 grams per rat. Freely fed olanzapine-treated rats 

may consume 20-24 g of chow during 24 hours. We observed that olanzapine-treated 

rats with free access to chow rapidly gained weight, while pair-fed rats did not gain 

weight, or even gained less weight than control animals (Paper II). This led us to 

conclude that increased food intake (hyperphagia) is the main driving force behind the 

observed weight gain, in agreement with previous rat studies 88, 121 as well as clinical 

studies 193, 194. Our MRI studies, coupled with dissection and weighing of adipose 

tissues, demonstrated that weight gain occurred primarily in the form of increased 

adipose tissue mass, also in agreement with previous results in rat (Table 5.5) 103, 124

and in patients 60, 61. The pair-fed rats in our experiment did not show signs of 

increased adipose tissue mass. In an article not included in this thesis, our group has 

explored the possible mechanisms of antipsychotic-induced hyperphagia, 

demonstrating increased levels of appetite-stimulating neuropeptides in hypothalamus 
195. 

8.4.4 The role of energy expenditure in weight gain

In addition to increased energy intake, reduced energy expenditure may contribute to 

weight gain. As previously mentioned, sedation resulting in reduced physical activity 

is a recognized adverse effect of antipsychotic agents. We did not, however, observe 
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significant sedation in the experiments described in Paper II. If sedation contributed 

significantly to weight gain, the obese phenotype would have been expected to be 

present in the olanzapine pair-fed treatment group.  

Rodents possess brown adipose tissue, which is able to convert surplus energy to heat 

through a process termed thermogenesis 196. Reduced thermogenesis, measured as 

reduced protein levels of uncoupling protein 1 (UCP1), has been reported in pair-fed, 

olanzapine-treated rats which gained weight, in contrast to pair-fed rats in our 

experiments 197. In a previously mentioned study, olanzapine treatment did not induce 

altered thermogenic rates in brown adipose tissue from rats with stable body weight, 

but increased adiposity 178.  Based on these conflicting findings, we examined the 

expression of UCP1, PPAG , and peroxisome proliferator activated receptor gamma 

coactivator 1  (PGC1 ), important markers of thermogenesis, in brown adipose tissue 
198. Several of these markers were downregulated in both ad libitum-fed and pair-fed 

olanzapine groups, possibly signifying reduced thermogenesis. Although synergistic 

effects of hyperphagia and reduced thermogenesis in the olanzapine ad libitum-group 

cannot be ruled out, the lack of weight gain in the olanzapine pair-fed group 

demonstrated that reduced thermogenesis alone did not significantly contribute to 

weight gain in our experiments. In our 8-week experiment (Paper III), TTA 

monotherapy downregulated PGC1  and UCP1, while no weight gain was observed 

in this treatment group. In olanzapine-TTA treated rats, PGC1  was also 

downregulated, possibly contributing to the weight gain observed in this treatment 

group. 

Adult humans were formerly thought to lack brown adipose tissue. In recent years, 

however, the presence of brown adipose tissue in adults has been demonstrated by 

means of PET scans 199-201. Brown adipose tissue may play a significant role in human 

metabolism, and should not be ignored when examining energy balance 201. 
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8.4.5 The role of fatty acid oxidation in antipsychotic-induced metabolic adverse 

effects 

Reduced capacity for fatty oxidation could, theoretically, induce energy surplus and 

thus obesity. Examining the expression of ACOX1, CPTs, and PPARs in liver and 

white adipose tissues from subchronically treated rats (Paper II) or from chronically 

treated rats (Paper III), we found no evidence for reduced oxidative capacity induced 

by olanzapine or clozapine. The lipid-lowering effects of TTA, on the other hand, 

were likely related to the sharp increase observed in hepatic ACOX1 and CPT1 

transcription and activity.  

8.4.6 “Uncoupling” of body weight and serum lipid levels  

Hypertriglyceridemia is known to correlate with obesity, in particular with the amount 

of visceral adipose tissue. However, the existence of both “obese, but metabolically 

healthy” and “metabolically obese” populations is now recognized 202. The latter 

group is characterized by normal BMI, but still present with dyslipidemia and reduced 

insulin sensitivity 203. In paper II, through the introduction of pair-fed treatment 

groups, we found that olanzapine-treated rats developed elevated levels of serum 

triglycerides without concomitant adiposity. These results were further supported by 

results in paper III, in which olanzapine-TTA treated rats gained weight, while 

nevertheless developing lowered serum and liver levels of cholesterol and 

triglycerides, resulting in lipid profiles not expected in rats with this degree of obesity.  

Interestingly, early clinical findings, both of chlorpromazine-induced increase in 

serum cholesterol levels and olanzapine-induced increase in serum triglyceride levels, 

indicated that serum lipid levels in patients were not simply raised secondary to 

weight gain 52, 65. Several recent clinical studies have also presented evidence for 

increased serum triglycerides independent of weight gain 204-206. In the CAFE study, 

patients treated with quetiapine experienced the least increase in weight gain; in spite 
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of this, increase in serum triglycerides and total cholesterol were most pronounced in 

this treatment group 207. Of note, in a “drug switching” study in which patients 

changed from olanzapine to aripiprazole treatment, a significant reduction in serum 

triglycerides occurred rapidly after the switch, while weight loss occurred more 

gradually, indicating that triglyceride levels did not simply decrease in parallel with 

body weight 208. To our knowledge, no animal studies other than our own have 

investigated the potential uncoupling between weight gain and increased serum lipids.  

8.4.7 Antipsychotic-induced, SREBP-mediated lipogenic activation in cultured 

cells  

In addition to our papers describing antipsychotic-induced SREBP activation in 

GaMg cells, our research group published a work demonstrating similar effects in 

human liver cell lines (THLE-3 and HepG2) 160. Several studies in cell culture have 

subsequently supported our finding of antipsychotic-induced SREBP activation in 

cells, including adipocyte cultures and primary hepatocytes 209-212. In paper I, we 

demonstrated that antipsychotics induce both SREBP1 and SREBP2 target genes. We 

showed increased proteolytic cleavage of SREBP2, i.e. activation at the protein level, 

and upregulation of the genes encoding the SREBP1a and SREBP2. The exact nature 

of the interaction between antipsychotic agents and the SREBP system remains 

unclear, but may be related to hampered intracellular cholesterol transport through 

direct interaction between drugs and intracellular membranes 213, 214. Chlorpromazine, 

which was demonstrated by us to induce cholesterol biosynthesis genes in GaMg 

cells, is a tricyclic cationic amphipathic drug with both lipophilic and hydrophilic 

chemical properties 215. Several antipsychotics, among them clozapine, also possess a 

tricyclic structure, and have been demonstrated to directly interact with the cholesterol 

biosynthesis pathway 212, 215-217. Possibly, reduced ER cholesterol causes “imaginary” 

lack of intracellular cholesterol, inducing SREBP translocation, maturation and thus 

target gene transcription. Recently, an antipsychotic-induced ER stress response 

(unfolded protein response) has been suggested to contribute to SREBP activation, 
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offering a potential explanation for the activation of both SREBP isoforms, which are 

differentially regulated in the physiological setting 218.  

8.4.8 Antipsychotic-induced lipogenic activation in rodents and humans 

Prior to our subchronic studies, we performed acute experiments on clozapine and 

olanzapine treatment in rats. We found short-term lipogenic effects, most notably 

significant hepatic lipid accumulation, accompanied by an early transcriptional 

activation followed by sustained downregulation of lipogenic genes in liver and 

adipose tissues 219, 220. These observations illustrate the presence of potent negative 

feedback mechanisms complicating interpretation of direct pharmacological effects of 

antipsychotics in rat. In our two-week studies with moderate olanzapine doses (Paper 

II), feedback mechanisms were partly circumvented through the reduction of drug 

doses and repeated exposure, and we demonstrated weight-independent upregulation 

of several SREBP1c target genes in liver and in visceral adipose tissue. 

Corresponding upregulation of Fasn has previously been demonstrated in adipocytes 

from male, olanzapine-treated rats that did not gain significantly more weight than 

control animals during 5 weeks of treatment, but developed increased adipose tissue 

mass 107. Furthermore, in our subchronic study (Paper II), we found signs of 

SREBP1c activation in the liver, both at the transcriptional and at the protein level. In 

agreement with other studies, serum levels of monodesaturated fatty acids were 

increased, indicating elevated desaturase activity 221, 222. Upregulation of Scd1 

transcription is notable, as this desaturase has been suggested to represent a key 

branch point in lipid biosynthesis, directing lipids towards triglyceride or cholesterol 

ester formation (i.e., lipid storage) 223.  

In visceral adipose tissue, in spite of upregulation of several recognized SREBP1c 

target genes, Srebpf1 transcription or SREBP1c activation at the protein level were 

absent. In fact, there are indications that in adipocytes and adipose tissues, SREBP1c 

excerts less profound effects on the transcription of its classic target genes than in the 

liver 224-227. Other, as of yet unrevealed, mechanisms may contribute to olanzapine-
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induced lipogenic activation in adipose tissues. As lipogenic upregulation was present 

in olanzapine pair-fed rats, this induction is likely to represent a pharmacological 

effect of olanzapine, not a consequence of hyperphagia and obesity.  

In conclusion, we found partial overlap of results in cell culture and animal models, 

underlining the complexity of lipid metabolism in the “real-life” setting. SREBP-

mediated lipogenesis may be relevant for dyslipidemic adverse effects of 

antipsychotics, independent of hyperphagia and weight gain. Further experiments are 

required in order to examine potential subchronic effects of clozapine on lipogenesis, 

the relationship between lipogenic activation in metabolic tissues and the elevation of 

serum triglycerides, to identify the factors mediating lipogenic effects of 

antipsychotics in adipose tissues, and to perform relevant clinical studies. 

Interestingly, a clinical pilot study demonstrated elevated transcription of the genes 

encoding FASN and SDC1 in blood cells from olanzapine-treated patients 228. 

8.5. Clinical aspects related to lipogenic activation by 

antipsychotics 

8.5.1 Do metabolically potent antipsychotic agents have superior clinical 

efficiacy? 

Whether some antipsychotic agents are more efficient than others in relieving either 

positive or negative symptoms of schizophrenia - in particular, whether second-

generation antipsychotics are more efficient than first-generation drugs - has been 

extensively debated 229-237. Results from several large clinical studies, among them the 

CATIE and CUtLASS studies, indicate that despite trends towards superior efficacy 

of olanzapine on certain outcomes (primarily time to treatment discontinuation), 

atypical antipsychotics are not convincingly superior to first-generation antipsychotics 

in terms of overall clinical efficiency or quality of life scores 177, 233, 238, 239. As 
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previously mentioned, several reports have documented the superior efficacy of 

clozapine in treatment-resistant schizophrenia 42, 177. In fact, a large population-based 

Finnish study demonstrated significantly reduced mortality in patients treated with 

clozapine compared to patients treated with other antipsychotics, in spite of 

clozapine’s metabolic risk profile 240; this study subsequently received criticism for 

strongly confounded analyses 241.  

Comparisons of typical and atypical antipsychotics are complicated, among other 

issues, by differences in dosing and adverse effect profiles. For instance, motor 

effects of typical antipsychotics could result in the impression that patients suffer 

from more severe negative symptoms 242. Potential interests of the pharmaceutics 

industry must also be kept in mind when evaluating treatment effects 243. In general, 

issues such as adverse effect profile, former response to medication, patient 

satisfaction, cost-effectiveness, and clinicians’ former experiences are significant 

issues when patients with suspected schizophrenia are assigned to a certain 

pharmacological treatment 177, 231, 244. Naturalistic, non-sponsored studies are required 

to further facilitate evidence-based choice of treatment of psychosis 245.  

8.5.2 Are the differences in dysmetabolic potency between different antipsychotic 

agents as substantial as formerly thought?  

As mentioned above, adverse effect profile constitutes an important consideration 

when selecting an antipsychotic, particularly for patients experiencing their first 

episode of symptoms. Therefore, a balanced image of adverse effect profiles is 

required. In paper II, as expected, we found a significant stimulatory effect of 

olanzapine on food intake and weight gain in female rats. Aripiprazole, believed to be 

metabolically neutral in humans, was included as a negative control, and both in our 

subchronic and in our chronic (8-week) experiment (Paper III), aripiprazole showed 

hyperphagic and weight-inducing potential. One former experiment in female rat 
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resulted in aripiprazole-induced weight gain (aripiprazole dose 4-8 mg/kg) 103, while a 

long-term experiment yielded no weight gain (aripiprazole dose 2.25 mg/kg) 113. This 

could indicate that body weight in female rats is more easily affected by 

pharmacological treatment than body weight in human subjects. On the other hand, 

could these results be transferred back to the clinical setting, helping to define a more 

differentiated picture of the dysmetabolic potential of individual antipsychotics? It is 

quite obvious that in patients, some antipsychotics - particularly clozapine and 

olanzapine - induce more potent weight gain, dyslipidemia and insulin resistance than 

other agents. Furthermore, the switching of treatment from olanzapine, quetiapine, or 

risperidone to aripiprazole in patients led to significant improvemens in body weight 

and lipid parameters 74, 208. However, it is obligatory to keep in mind the fact that a 

majority of clinical data is obtained through studies involving previously medicated 

patients, which may significantly influence results. The value of data collected in 

previously unmedicated patients is gaining increasing attention 246. For instance, 

quetiapine and risperidone, have been shown to cause significant weight gain ( 7% of 

pre-tratment body weight) after 1 year of treatment in 50% of treatment-naïve patients 

receiving quetiapine, and in 58% of treatment-naïve patients receiving risperidone 62, 

207. Similarly, aripirazole, quetiapine and risperidone all caused weight gain in 

adolescent patients 247. As agents such as quetiapine and aripiprazole have been in 

clinical use for an increasing number of years, more data concerning their metabolic 

adverse effects will accumulate, and results from rat experiments may turn out be 

more relevant than they presently appear.  

8.5.3 Are clinical improvement and metabolic adverse effects correlated, 

independent of antipsychotic agent?  

As discussed in paragraph 8.5.1, no sound conclusion has been reached regarding 

superior efficacy of individual antipsychotics. The idea of a link between symptom 

relief and metabolic adverse effects has been a recurrent issue for decades of research 

on antipsychotics. In 1967, an article concerning patients treated with chlorpromazine 
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stated that serum cholesterol levels were positively correlated with clinical 

improvement 52. A number of studies, both in patients treated with olanzapine and in 

clozapine-treated patients, have pointed out a similar link between metabolic adverse 

effects, commonly weight gain, and improvement of positive or negative 

schizophrenic symptoms 205, 248-251. One study found a relation between therapeutic 

response and weight gain both in olanzapine and haloperidol treatment groups, most 

pronounced in olanzapine-treated patients 98. Another study, which has received 

criticism for prophylactically administering the anticholinergic drug to benztropine to 

all patients receiving haloperidol, reported positive correlation of serum cholesterol 

and improved cognition in schizophrenic patients across clozapine, olanzapine and 

haloperidol treatment groups 252.  

Findings such as these are highly interesting considering that antipsychotics 

recognized to have the highest incidence of weight gain, hyperlipidemia and glucose 

dysregulation remain widely used 85. However, some studies have failed to detect 

correlation of clinical state and metabolic adverse effects; for instance, analyses of 

data from the CATIE study resulted in drug-independent association between 

increased BMI and improvement, but the effect size was deemed too subtle to be 

clinically significant 205, 253. Furthermore, lack of correlation between clinical 

improvement and weight gain has been reported in clozapine-treated patients 254, 255. 

A recent study in hospitalized psychotic patients found that quetiapine, which is less 

metabolically potent than olanzapine, was more efficient than olanzapine in reducing 

several treatment outcomes 245. Several issues complicate correlation analyses of 

metabolic adverse effects and clinical improvement. For instance, regain of self-care 

(including increase in food intake), could precede weight gain. No mechanistic link 

has yet been suggested between clinical response and metabolic adverse effects, but 

antipsychotic-induced lipogenesis is highly interesting in this context. 
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8.5.4 Lipogenesis as a possible therapeutic mechanism of action 

As mentioned in the Introduction, demyelination (decreased volume or disrupted 

function of white matter) is presently thought to play a significant role in the 

development of schizophrenia, and may be of particular importance with regard to 

negative symptoms 18, 256-258. Oligodendrocytes, the cells primarily responsible for 

myelin production, synthesize cholesterol, an essential component of myelin, as 

cholesterol is not imported to the CNS 133, 137. Interestingly, a physiological role of the 

SREBP transcription factors in the CNS is emerging (reviewed in 259). Lipid 

synthesis, controlled by both SREBP1 and SREBP2, in different subtypes of glial 

cells is thought to be important both in myelination and various aspects of neuronal 

development, such as synaptic plasticity. For instance, SREBP1 and SCD1 activation, 

correlated with oleic acid synthesis in astrocytes, may be involved in neuronal growth 

and differentiation 259. Thus, alterations in lipid metabolism in the CNS may be highly 

relevant in light of the demyelination, as well as other aspects of neuronal 

dysfunction, observed in patients with schizophrenia. Indeed, myelin-related genes 

have been shown to be downregulated in prefrontal cortex from patients 260, 261. In 

paper I, we demonstrated that SREBP2-activating effects of antipsychotics were more 

potent in glial-derived cells than in cells derived from neurons. A similar study on 

antidepressant drugs yielded comparable results 262. Consequently, our results 

demonstrating antipsychotic-induced induction of lipid metabolism may be relevant 

both to the clinical and adverse effects of these drugs. In fact, the potential effects of 

antipsychotic agents on myelination have been investigated in a rodent model for 

demyelination, where the copper chelator cuprizone was used to pharmacologically 

induce demyelination. In rats treated with cuprizone, which developed phenotypic 

features reminiscent of negative symptoms of schizophrenia, downregulation of 

oligodendrocyte markers was demonstrated in the prefrontal cortex 263. In another 

experiment on mice, clozapine and quetiapine was found to prevent loss of myelin 

induced by cuprizone 264. In male patients with schizophrenia, treatment with 

risperidone led to increased myelination, as quantified by means of MRI 265, 266. A 
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recent review by the first author of the latter article states that “[…] widely used 

psychotropic treatments have under-appreciated CNS metabolic and neurotransmitter 

effects on myelination, its plasticity, and repair that may substantially contribute to 

their mechanisms of action”  267. The possible relation between clinical efficacy and 

metabolic adverse effects is intriguing, and the results discussed above underline the 

fact that avoiding all use of antipsychotics with metabolically unfavourable adverse 

profiles does not provide an easy solution to the huge clinical challenge represented 

by metabolic adverse effects.  

8.5.5 Potential intervention strategies in patients with antipsychotic-induced 

dysmetabolism  

88% of patients with dyslipidemia identified in the CATIE study population received 

no lipid-lowering treatment 79. In general, secondary prevention of metabolic 

complications of antipsychotic treatment appears to have received little attention. 

Clinical studies have suggested that adjunctive treatment with metformin may have 

beneficial effect on insulin sensitivity and body weight 268-270. Statins, i.e. inhibitors of 

HMGCR, have been demonstrated as efficient in antipsychotic-induced dyslipidemia 
271. Notably, metformin indirectly inhibits HMGCR through the activation of AMPK 
272, meaning that both classes of agents regarded as candidates for efficient 

intervention act on the rate-limiting step in cholesterol synthesis.  

Prior to pharmacological intervention strategies, information regarding hyperphagia 

and the risk of developing metabolic adverse effects should be given; patients may be 

surprisingly accessible to educational measures 273. A few relatively small studies 

have addressed the effect of healthy dietary habits and exercise, and found promising 

effects 274-276. Combining behavioural and pharmacological intervention strategies 

could probably reduce the risk for cardiovascular disease in patients receiving 

antipsychotic agents, but it is difficult to imagine that other measures than newly 

developed, clinically efficient drugs with negligible adverse effects will reduce risk 

levels to those found in the general population.  
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9. Concluding remarks 

In selecting the correct treatment for psychotic, delusional or cognitively impaired 

patients, a substantial responsibility rests on the carer. Patient compliance is more 

crucial and challenging in schizophrenia than in many somatic conditions, and 

facilitating compliance greatly reduces the risk of relapse. Risk-benefit considerations 

must rely on solid evidence for clinical efficiency and adverse effects. A survey of the 

massive body of literature published regarding clinical effects of antipsychotic agents 

leaves no definite conclusion with regard to superior clinical efficacy of individual 

antipsychotics. In terms of adverse effect profiles, though, some antipsychotics are 

clearly more metabolically potent than others.  Quite a few authors have pointed to a 

correlation of clinical improvement with the degree of metabolic adverse effects. 

Despite several important confounders, this apparent link is highly interesting in light 

of the essential role of lipid synthesis in the brain. Thus, understanding the 

mechanisms underlying adverse effects is not simply a step towards elimination of 

side effects, but may be necessary in order to develop more efficient antipsychotics. 

Judging by the lack of progress in such development during the last 60 years, the most 

realistic short-term aim will be to develop well-founded strategies for the prevention 

of weight gain, diabetes and dyslipidemia in patients treated with the drugs in 

question. As a complement to dietary measures and physical activity, metformin and 

statins appear to be the best prophylactic candidates.  
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10. Future perspectives 

As mentioned in the Discussion, we recently published an article detailing the 

hypothalamic mechanisms underlying olanzapine-induced hyperphagia. An important 

question is whether the antipsychotics’ lipogenic effects and negative effects on 

glucose metabolism are mediated via the CNS, or whether they occur due to direct 

effects of antipsychotics on peripheral metabolic tissues, such as the liver or adipose 

tissues. Distinguishing primary effects from feedback effects is challenging, and 

specific pharmacological and/or genetic inhibition seems a natural step forward in this 

regard. Such strategies may also strengthen the rationale for prophylactic 

pharmacological intervention for antipsychotic-induced metabolic adverse effects.  

Further work is also necessary in order to increase the scientific and clinical relevance 

of rodent models in this field. In particular, issues such as drug dosing and 

administration should be carefully considered in order to reduce the gap between 

effects of olanzapine and clozapine, as well as gender differences, in rat. An 

improved rat model would facilitate in vivo investigations of the potential significance 

of antipsychotic-induced lipogenesis in myelination.  

Regarding the translational aspects of our work, we plan to search for biological 

markers associated with the use antipsychotic drugs and metabolic adverse effects, in 

patient materials including several hundred patients who will be thoroughly examined 

clinically and biochemically. In one study, patients will be offered follow-up 

appointments for at least a year after starting randomized treatment with either 

olanzapine, amisulpride, or aripiprazole. We will have the opportunity to examine 

DNA and RNA profiles from these patients and, among other outcomes, investigate 

alterations in RNA expression during treatment initiation. Searching for alterations in 

the transcripts described in this thesis, as well as new candidates for further research, 

will be highly exciting. Correlating gene expression with clinical parameters may 
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enable the identification of biomarkers for clinical response, or for increased risk of 

metabolic adverse effects.  
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