
Generated Sound Waves in
Corrugated Pipes

Master’s thesis in applied mathematics

by

Arve Lillejord

June 1, 2012

Department of Mathematics
University of Bergen

Norway

i

Prologue

When I set out to do my master’s thesis I had not had any experience in computational fluid
dynamics except for theory on the Navier-Stokes equations. This meant that a large part of my
master’s would be dedicated to learning the fundamentals of the discretisation of the Navier-
Stokes equations, turbulence modelling and mesh generation. In addition to that, OpenFOAM is
notorious for having a steep learning curve and a little sparse documentation. However, by taking
part in the OpenFOAM community and studying the source code I was able to learn a lot.

As I progressed in learning OpenFOAM, my work flow began to be more structured. I would first
generate the geometry, then a great deal of effort was put into meshing this geometry. This was
in the beginning done with the third party software Salomè [1]. Then I would set up the case
parameters to the best of my knowledge, such as boundary conditions and solver settings. As I
learnt more about meshing and OpenFOAM I could gradually improve these parameters. From
mesh to a complete simulation is a rather lengthy process, which made this a big part of my
work. In computational fluid dynamics, experience with the tools you are working with is very
valuable in order to get the most out of any simulation. Unfortunately, time was restricted as I
had a deadline for my master thesis. When solving a large eddy simulation problem, the mesh
requirements makes the required computing time massive. Luckily, at the University of Bergen
we have one of the most powerful computing resources in Norway which I was given permission
to use. This has given me hands on experience with HPC (high performance computing).

I would like to extend my sincere gratitude to my supervisors Guttorm Alendal and Gunnar Furnes
for their guidance, support and their enthusiasm towards this project, which in turn motivated
my work and wanting to continue to pursue this project even after finishing my master’s degree
in applied mathematics. I would also like to thank my fellow students who has provided me with
countless breaks from the long hours spent at the university. Finally I would like to thank my
family for making my education possible and a heartfelt thank to my girlfriend Lisa who has been
there all the way.

ii

iii

Abstract

This paper studies sound waves generated in corrugated pipes by using computational fluid dynam-
ics. The author did not have any prior experience in computational fluid dynamics and therefore
a substantial part was dedicated to theory in computational fluid dynamics. On this background,
this paper aimed to develop the necessary boundary conditions and solver settings in order to
simulate the problem using OpenFOAM. The main result consists of two cases, where the first
case studied the flow over a single corrugation and the second case a study of the flow through a
corrugated pipe. It was found that the first case was able to predict frequencies matching previous
work. The second case was not able to produce the features connected to singing in corrugated
pipes. This is largely attributed to how the inlet boundary condition was set.

iv

CONTENTS v

Contents

Prologue i

Abstract iii

1 Introduction 1

2 Fluid Dynamics 3
2.1 The Continuum Hypothesis . 3
2.2 Flow Field Description . 3
2.3 Material Derivative . 3
2.4 Mass Conservation . 4
2.5 Momentum Conservation . 5

2.5.1 Constitutive Equation . 6
2.6 Energy Conservation . 7
2.7 Equations of State . 9
2.8 Transport Equation . 9

3 Computational Fluid Dynamics 11
3.1 Discretization . 11

3.1.1 Finite Difference Method . 11
3.1.2 Finite Volume Method . 11
3.1.3 Finite Element Method . 11

3.2 Finite Volume Method . 12
3.3 Discretisation Scheme Properties . 14

3.3.1 Conservativeness . 14
3.3.2 Transportiveness . 14
3.3.3 Boundedness . 14

3.4 Central Differencing Scheme . 15
3.4.1 Scheme Properties . 15

3.5 Upwind Scheme . 16
3.5.1 Scheme Properties . 17

3.6 QUICK Scheme . 17
3.6.1 Scheme properties . 18

3.7 TVD Schemes . 19
3.7.1 Total Variation . 20
3.7.2 Sweby’s TVD Criteria . 21
3.7.3 Flux Limiter Functions . 22
3.7.4 Scheme Properties . 22

3.8 Unsteady Convection Diffusion Discretisation . 22
3.8.1 Properties . 24

3.9 Pressure-Velocity Coupling . 24
3.9.1 SIMPLE Algorithm . 25
3.9.2 PISO Algorithm . 25

4 Turbulence Modelling 27
4.1 Reynolds-Averaged Navier-Stokes Equations . 27

4.1.1 The k-epsilon Turbulence Model . 29
4.2 Large Eddy Simulation . 29

4.2.1 Spatial Filtering . 30
4.2.2 Filtering The Navier-Stokes Equations . 30
4.2.3 Filtering Compressible Navier-Stokes Equations 31
4.2.4 Smagorinsky Turbulence Model . 31

CONTENTS vi

5 OpenFOAM 33
5.1 Introduction . 33
5.2 Selecting a Solver . 33
5.3 Boundary Conditions . 33

5.3.1 Inlet . 33
5.3.2 Outlet . 34
5.3.3 Walls . 34
5.3.4 Other . 34

5.4 Numerical Schemes . 35
5.4.1 Time Derivative . 35
5.4.2 Spatial Discretisation . 35

5.5 Mesh Generation . 35
5.6 Turbulence Model . 36

6 Flow over Corrugations 37
6.1 Geometry . 37
6.2 Simulation Parameters . 38

6.2.1 2D Symmetric Mesh . 39
6.2.2 Axisymmetric Mesh . 47

7 Flow Through a Corrugated Pipe 48
7.1 Geometry . 48
7.2 Results . 51

8 Summary and Discussion 57

A Appendix 59

References 69

1. Introduction 1

1 Introduction

Today the easiest and most practical way of transporting fluids is by using pipes. Pipes come in
different sizes and shapes depending on their intended usage. For flexible pipes the most common
design is a corrugated pipe, which is both strong and highly flexible. Unfortunately these pipes
are prone to ”singing”. When air with sufficient speed flows through a corrugated pipe a clear
acoustic tone is heard. The turbulence produced by the corrugation leads to vortex shedding/shear
instabilities, which in turn excites the acoustic natural frequency of the pipe. This results in a
standing wave. For small pipes this may not be a problem as they are normally not used for
transporting air/gas, however in sea installations (oil and gas production) the use of corrugated
pipes is very common in flexible risers. When gas is transported in these risers they produce sound
waves. These sound waves are a problem that oil companies want to reduce as they are a nuisance
on the platforms.

In order to solve this problem it is important to have a good understanding of the mechanics
behind this event and being able to predict the singing. This is where computational fluid dynamics
(CFD) comes in as a quick and cost effective way of studying the capability a corrugated pipe has
of singing. This paper will use the open source computational fluid dynamics code OpenFOAM

to study the phenomenon of sound generated by corrugated pipes.

The singing corrugated pipe phenomenon has been studied for some time. Most studies have been
experimental in nature [17, 4, 19, 8] and some have utilized computational fluid dynamics [15].
There is an agreement on the source of the singing which is found to be vortex shedding caused
by the corrugations and in turn excites a standing wave inside the pipe [9]. The standing wave
is similar to that of a straight pipe which is open in both ends [4]. The frequency of the vortex
shedding and the velocity is connected by the dimensionless Strouhal number St = f · L/u. The
Strouhal number should be constant for any velocity and is found to lie between 0.4-0.6 [8, 19]. The
onset of turbulence is important for the generation of the vortices occurring inside the corrugations,
however, there has been debate as to which Reynolds number is sufficient in order to obtain a
turbulent flow. Crawford [4] found that the classical limit ofRe ≈ 2000 was sufficient, this has been
protested by Cadwell [3], which found that the necessary Reynolds number for turbulence could
be lower and suggested a different choice of characteristic length scale for calculating the Reynolds
number. It is logical to assume that the shape of the corrugation will impact the pipes ability
to produce sound. From experiments it was found that rounding the edges of the corrugation up
stream could increase the amplitude of the sound produced by a magnitude of 3-4 [12, 19]. This
paper will mainly study the behaviour of flow over corrugations and will use a simple model of
the corrugation.

1. Introduction 2

2. Fluid Dynamics 3

2 Fluid Dynamics

2.1 The Continuum Hypothesis

At the base of fluid mechanics, or continuum mechanics, lies the continuum hypothesis. The moti-
vation comes from daily experiences with fluids. We observe fluids as a medium filling a container
continuously, which is what the continuum hypothesis describes. The continuum hypothesis of
continuum mechanics simply asserts that the macroscopic variables of the medium are distributed
continuously throughout the medium [5]. In reality this is not true as molecules are discontinuous,
or discrete. However, we assume that the continuum hypothesis is valid as long as the Knudsen
number Kn is large enough. The Knudsen number is the ratio of the mean free path of a molecule
(average distance between collisions) and the length scale of the problem we wish to study. So if
Kn = λ/L << 1 we assume that the continuum hypothesis is valid.

2.2 Flow Field Description

In fluid mechanics we can describe the flow field in two different ways. There is Lagrangian and
Eulerian description. Lagrangian describes the path of an individual particle starting at time t0
at the point a = a(a1, a2, a3). As time progresses the particle traces a curve in R

3 which can be
described as

x = r(a, t). (2.1)

The velocity of the particle is then given by

v(a, t) = lim
∆t→0

∆r

∆t
=
∂r

∂t
(a, t). (2.2)

The Eulerian description describes a flow field f = f(x, t) in a geometric volume at a position x.
In contrast to Lagrangian description where you follow a particle, in Eulerian description we look
at a geometric volume in space where particles flow through. We write the velocity as

dx

dt
= v(x(t), t). (2.3)

For fluids undertaking large deformations, such as turbulence, Eulerian description is more useful
[5].

2.3 Material Derivative

Since Eulerian is the description of choice the following will derive the material derivative in
Eulerian coordinates. By definition acceleration is the second derivative of the position vector, or
the first derivative of the velocity. By differentiating (2.3) with respect to time the acceleration
for a particle is obtained. Care must be taken as x is a function of time, so by the multivariate
chain rule the acceleration is given by

a(x, t) =
dv

dt
(2.4)

=
∂v

∂t

∂t

∂t
+
∂v

∂x

∂x

∂t
(2.5)

=
∂v

∂t
+ v · ∇v. (2.6)

The term ∇v is the covariant derivative of a vector or more generally the tensor derivative. This
also holds for scalar fields where the tensor derivative becomes the gradient. One defines the
general material derivative with capital letters

D

Dt
≡

∂

∂t
+ v · ∇ (2.7)

2.4 Mass Conservation 4

The material derivative consists of two parts, namely the local acceleration and the convective
acceleration. Let φ be a generic variable, then the local acceleration is the rate of change of φ
at a fixed point in space, where as the convective acceleration is the change in φ caused by the
convective motion from one point in space to another where the value of φ is different.

2.4 Mass Conservation

Motivated by the principle of mass conservation, the change of mass inside a domain Ω must be
equal to the rate of mass flowing into the domain through the boundary. The total amount of
mass inside Ω at any given time t is

∫

Ω

dm =

∫

Ω

dm

dV
dV =

∫

Ω

ρdx. (2.8)

By differentiating with respect to time, the change of mass per time inside the domain is

d

dt

∫

Ω

ρdx =

∫

Ω

∂ρ

∂t
dx. (2.9)

To calculate the mass flow into the domain, consider a small surface element dσ on ∂Ω shown in
figure 2.1. After a small time interval dt this surface element has moved a distance vdt and traced
out a cylinder shown in the figure 2.1. Assuming that dσ and dt are sufficiently small such that all
particles in the cylinder has equal and constant velocity as well as equal density, then all particles
that pass through dσ has to be inside the cylinder.

n v

v · ndt

∂Ω

Ω

dσ

Figure 2.1: Flow through surface dσ.

The volume of this cylinder is given by

dV = v · n dt dσ. (2.10)

Which in turn gives the mass flow through dσ

dm = ρdV = ρv · n dt dσ. (2.11)

Here n is the outward unit normal to the surface. The expression ρv · n dσ is the mass through
dσ per time, which when integrating over the whole surface gives the rate of mass flow through
∂Ω

−

∫

∂Ω

ρv · n dσ. (2.12)

2.5 Momentum Conservation 5

The minus sign in front of the integral is to define it so that mass flowing into the domain increase
the mass. By equating the change of mass per time inside the domain to the mass flow into the
domain an equation for mass conservation is obtained:

∫

Ω

∂ρ

∂t
dx = −

∫

∂Ω

ρv · n dσ. (2.13)

Going from a surface integral on the right hand side to a volume integral by Gauss’s theorem we
obtain the continuity equation in global form

∫

Ω

(
∂ρ

∂t
+∇ · ρv

)
= 0. (2.14)

Since this is valid for any arbitrary domain we can write the continuity equation on local form

∂ρ

∂t
+∇ · ρv = 0. (2.15)

2.5 Momentum Conservation

An equation of motion can be derived through the use of Newton’s law of motion applied to an
infinitesimal fluid element. Consider a small fluid element, then Newton’s law requires that the
sum of forces applied to the element is equal to the mass times acceleration of the fluid element.
The forces on the fluid element is a result of the stress acting on the fluid element. The stress will
be denoted as a tensor called the stress tensor τ .

τ31 +
∂τ31
∂x3

dx3
2

τ31 −
∂τ31
∂x3

dx3
2

τ11 −
∂τ11
∂x1

dx1
2

τ11 +
∂τ11
∂x1

dx1
2

τ21 −
∂τ21
∂x2

dx2
2

Figure 2.2: Stresses on a fluid element. For clarity, not all sides are shown.

From figure 2.2 it is apparent that the forces in the x-direction is given by
(
τ11 +

∂τ11
∂x1

δx1
2

− τ11 +
∂τ11
∂x1

δx1
2

)
δx2δx3

+

(
τ21 +

∂τ21
∂x2

δx2
2

− τ21 +
∂τ21
∂x2

δx2
2

)
δx1δx3

+

(
τ31 +

∂τ31
∂x3

δx3
2

− τ31 +
∂τ31
∂x3

δx3
2

)
δx1δx2

=

(
∂τ11
∂x1

+
∂τ21
∂x2

+
∂τ31
∂x3

)
δx1δx2δx3.

The other directions are derived in the same manner giving the general result

∂τij
∂xj

δx1δx2δx3. (2.16)

2.5 Momentum Conservation 6

Then by using Newton’s law we get

ρδx1δx2δx3
Dui
Dt

= ρgiδx1δx2δx3 +
∂τij
∂xj

δx1δx2δx3, (2.17)

where ρgiδx1δx2δx3 is the body force and ρδx1δx2δx3 is the mass of the fluid. Dividing by the
volume gives what is usually called Cauchy’s equation of motion

ρ
Dui
Dt

= ρgi +
∂τij
∂xj

. (2.18)

This equation governs the motion of the fluid.

2.5.1 Constitutive Equation

In order to obtain the complete Navier-Stokes equations we need to relate the stress and defor-
mation in a fluid. This relation is called a constitutive equation. We will look at a linear relation
between the stress and deformation for a newtonian fluid. The stress in a fluid can be split up
into two main components, one stress component for when the fluid is at rest and one for the
stress developed due to the motion of the fluid. For a fluid at rest the stress is composed of only
normal components on a surface and does not depend on the orientation of the surface. Therefore
the stress tensor would be isotropic and the only second order tensor which is isotropic is the
Kronecker delta.

δ =




1 0 0
0 1 0
0 0 1



 . (2.19)

For a fluid at rest the only normal stress component would be the thermodynamic pressure such
that τij = −pδij. For a fluid in motion the stress would be influenced by the viscosity which would
cause the stress tensor to lose its isotropicy. Therefore we introduce a nonisotropic component σij
called the deviatoric stress tensor. The stress tensor can now be written as

τij = −pδij + σij . (2.20)

The negative sign is introduced as the normal components of the stress tensor are regarded as
tension when positive and compression when negative. For a general newtonian fluid it can be
shown [10] that the deviatoric stress tensor becomes

σij = 2µeij + λemmδij , (2.21)

where

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.22)

and emm = ∇·u is the volumetric strain rate and µ and λ are scalars. The complete stress tensor
is now

τij = −pδij + 2µeij + λemmδij . (2.23)

When the fluid is incompressible the stress tensor reduces to τij = −pδij +2µeij by the continuity
equation ∇ · u = 0. There is a relationship between the scalars µ and λ which is not fully
understood, so it is common to use Stokes assumption which has been found to be sufficiently
accurate for most applications

λ+
2

3
µ = 0, (2.24)

λ = −
2

3
µ. (2.25)

2.6 Energy Conservation 7

Using Stokes assumption the complete stress tensor (2.23) can be written as

τij = −pδij + 2µeij −
2

3
µ(∇ · u)δij . (2.26)

With the term for the stress tensor (2.26) substituted into (2.18) we get a general form of the
Navier-Stokes equation

ρ
Dui
Dt

= −
∂p

∂xi
+

∂

∂xj

(
2µeij −

2

3
µ(∇ · u)δij

)
+ ρgi. (2.27)

2.6 Energy Conservation

From the first law of thermodynamics we can derive an equation for the conservation of energy.
The first law of thermodynamic states that

Rate of
increase in energy

= Net rate of
heat added

+ Net rate of
work done

In order to develop the energy equation we will find expressions for each of the terms in the first
law of thermodynamics. We define the total energy E = i+ 1

2
(u21+u

2
2+u

2
3), where i is the internal

energy and 1

2
(u21 + u22+ u23) is the kinetic energy. This energy is often called the stored energy per

unit mass.

Rate of increase in energy: Let E be the total amount of energy in a control volume. Then
the rate of change in energy in the control volume will be expressed using the material derivative,

ρ
DE

Dt
δx1δx2δx3. (2.28)

Net rate of heat added: This is energy entering the control volume by heat conduction. Let
q = (q1, q2, q3) be the heat flux vector. By doing a similar analysis as in section 2.5 we can obtain
an expression for the rate of heat added to the control volume. The following figure shows, for
clarity, two of the components of the heat flux vector.

q1 +
∂q1
∂x1

δx1

2q1 −
∂q1
∂x1

δx1

2

q3 −
∂q3
∂x3

δx3

2

q3 +
∂q3
∂x3

δx3

2

Figure 2.3: The heat flux vector for x1 and x3 direction.

We will consider only the x-direction as the other directions follows directly from the x-
direction. Therefore by looking at the heat entering the control volume in the x-direction we

2.6 Energy Conservation 8

get [(
q1 −

∂q1
∂x1

δx1
2

)
−

(
q1 +

∂q1
∂x1

δx1
2

)]
δx2δx3 = −

∂q1
∂x1

δx1δx2δx3. (2.29)

Similarly we get the y- and z-direction. When combined we see that this is the divergence of the
heat flux vector q

−
∂q1
∂x1

δx1δx2δx3 −
∂q2
∂x2

δx1δx2δx3 −
∂q3
∂x3

δx1δx2δx3 = −div(q)δx1δx2δx3. (2.30)

We can obtain an expression for the heat flux vector by using Fourier’s law of heat conduction
which relates the heat flux vector to the local temperature gradient.

q = −k grad(T), (2.31)

where k is the thermal conductivity of the fluid. Throughout this paper the mathematical operators
div and grad will be used interchangeably in order to increase readability. When combining the
equations (2.30) and (2.31) we obtain an equation expressed by the temperature for the net rate
of heat added to the control volume

−div(q)δx1δx2δx3 = div(k grad(T))δx1δx2δx3. (2.32)

Net rate of work done: The work rate done on the fluid element is equal to the velocity
component in the direction of the force times the force. From section 2.5 we know the force acting
upon the fluid element is

∂τij
∂xj

δx1δx2δx3, surface force (2.33)

ρgiδx1δx2δx3. body force (2.34)

Multiplying this by the velocity gives us

∂(uiτij)

∂xj
δx1δx2δx3, surface force (2.35)

ρuigiδx1δx2δx3. body force (2.36)

The energy equation: Collecting all the terms and dividing by the volume we obtain the
conservation equation for energy

ρ
DE

Dt
= ρuigi − div(q) +

∂(uiτij)

∂xj
, (2.37)

or expressed with the temperature

ρ
DE

Dt
= ρuigi + div(k grad(T)) +

∂(uiτij)

∂xj
. (2.38)

It is common to use a different form of the energy equation, an equation for the internal energy.
By removing the kinetic energy from the energy equation one is left with an equation for the
internal energy. The kinetic energy can be obtained by multiplying the momentum conservation
equation (2.18) with the velocity. This yields

ρ
Dui
Dt

ui = ρuigi + ui
∂τij
∂xj

,

ρ
D

Dt

(
1

2
uiui

)
= ρuigi + ui

∂τij
∂xj

.

(2.39)

2.7 Equations of State 9

It can be shown [10] that the kinetic energy equation can, when using the constitutive equation
(2.26), be written as

ρ
D

Dt

(
1

2
uiui

)
= ρuigi +

∂(uiτij)

∂xj
+ p(∇ · u)− φ, (2.40)

where φ is the rate of viscous dissipation

φ = 2µ

(
eij −

1

3
(∇ · u)δij)

)2

. (2.41)

Equation (2.40) is the kinetic energy. Subtracting this from the energy equation (2.37) gives us
the equation for internal energy

ρ
Di

Dt
= −∇ · q− p(∇ · u) + φ. (2.42)

This equation is also called the heat equation.

2.7 Equations of State

The equation of state is an equation which relates state variables and is based on thermodynamic
equilibrium. In thermodynamics we have the two equations

p = p(ρ, T),

i = i(ρ, T).
(2.43)

For a perfect gas the equations of state are p = ρRT and i = CvT . When the flow is compressible
this equations provide the link between pressure and temperature which determines the density
of the fluid.

2.8 Transport Equation

A summary of all the governing equations in fluid dynamics can be found in the following table

Continuity equation
∂ρ

∂t
+∇ · ρui = 0

Momentum equation
D(ρui)

Dt
= −

∂p

∂xi
+

∂

∂xj

(
2µeij −

2

3
µ(∇ · u)δij

)
+ Si

Energy equation
D(ρi)

Dt
= −∇ · q− p(∇ · u) + φ

Equations of state p = p(ρ, T) and i = i(ρ, T)

Table 2.1: Governing equations for a compressible Newtonian fluid

In the next section we will develop numerical schemes for solving the above conservation
equations, however working with several different equations would become cumbersome. Which
is why we will reduce this to a single equation. If we observe that all the conservation equations
have similar structure, we can create a single equation in which all the other equations can be
expressed. Usually this equation is called the transport equation.

∂(ρΦ)

∂t
+ div(ρuΦ) = div(Γ grad(Φ)) + SΦ. (2.44)

Here Φ represents any flow variable and Γ is the diffusion coefficient. Setting Φ to different values
(1, u, v, w, i) and appropriate values for SΦ and Γ we obtain the original equations. In this form a
physical meaning of the terms in equation (2.44) can with little effort be deduced.

Rate of
increase of Φ

+
Net rate of flow
of Φ out of fluid

=
Rate of increase
of Φ due to
diffusion

+
Rate of increase of
Φ due to sources

2.8 Transport Equation 10

3. Computational Fluid Dynamics 11

3 Computational Fluid Dynamics

Solving the Navier-Stokes equation analytically is in general extremely difficult or even impossible.
Only a select set of simple problems can be solved analytically. More complicated and useful
problems requires numerical solutions. However simple problems with analytical solutions are
of high value for learning fluid dynamics. This section will explore some possible mathematical
models being used in computational fluid dynamics so a reasonable model can be chosen for this
specific problem. It is also imperative to have a thorough understanding of computational fluid
dynamics in order to correctly use and interpret results from existing CFD codes, thus making
this section of great importance.

3.1 Discretization

There are three main discretisation methods used for solving partial differential equations, namely
the finite difference method, the finite volume method and the finite element method. The two
most important properties of any discretization method is the available order of the discretisation
schemes used and the ability to handle geometries. The following sections will compare these
methods with a more in-depth look at the finite volume method, as it is the discretisation of
choice in CFD.

3.1.1 Finite Difference Method

The oldest method of solving partial differential equations numerically was believed to have been
developed by Euler. The main idea to this method is that one can estimate the derivative at each
nodal point in a grid by a Taylor series expansion of the partial derivatives. This makes it easy
to obtain higher order differencing approximations on a uniform grid, which in turn yields better
accuracy of the solution. By the means of Taylor series the values at non-nodal positions can
be evaluated. The finite difference method can be applied to any grid shape, however it is most
commonly used in uniform grids as it requires a high degree of regularity to maintain accuracy.
This limitation is not very well suited for computational fluid dynamics where complex grids are
very common.

3.1.2 Finite Volume Method

Introduced in the early 70’s the finite volume method uses a discretization of the integral form
of the conservation equations. The computational domain is decomposed into a finite number of
contiguous control volumes on which the conservation equations are solved on each control volume.
The control volumes are often made with triangles (in 2D) and tetrahedrals (in 3D) making it able
to handle complex geometries. This is in stark contrast of the finite difference method. However,
approximations of higher order than two are difficult to develop in three dimensions since the
finite volume method requires three levels of approximation; interpolation, differentiation and
integration.

3.1.3 Finite Element Method

Similarly to the finite volume method, the finite element method also divides the domain into small
volumes, or finite elements. Making it an excellent method for solving problems on unstructured
meshes for complex geometries. This has been the main method for solving partial differential
equations for quite some time. It has seen its use in structural analysis, electromagnetics and fluid
dynamics. Compared to the finite volume method, the implementation for complex geometries is
straight forward, which is why FEM is widely used in structural analysis. The down side, however,
is that the FEM requires more computational power than the finite volume method [20], which is
why it is not widely used for computational fluid dynamics.

3.2 Finite Volume Method 12

3.2 Finite Volume Method

The finite volume method is composed in three stages.

1. Mesh generation

2. Discretization

3. Solve system of equations

In this section the second stage will be examined. The first and last step is also very important,
more so the mesh generation. Generating a good mesh is an art in itself and will not be discussed
in detail here. We begin with the transport equation given in equation (2.44):

∂(ρφ)

∂t
+ div(ρφu) = div(Γgradφ) + Sφ. (3.1)

This chapter will start by looking at a pure steady state diffusion problem such that a discreti-
sation of the diffusion term in the transport equation can easily be obtained. Following that, a
discretisation approach to a steady convection-diffusion problem will be presented which will be
the basis for the differencing schemes discussed here. The unsteady convection-diffusion problem
can be discussed independently of the steady state problems and will be presented last. Before
the discretisation process can take place a suitable mesh is needed. For clarity a one dimensional
mesh will be used, extending to other dimensions is straight forward. On this one dimensional
mesh we need to place a number of nodes with boundaries to make up small control volumes. We
will follow standard CFD convention and use ’P’ for a general node, ’W’ for west, ’E’ for east and
so on. Upper case letters signifies nodal points and lower case represents the boundary (or faces)
of a nodal point.

W w P e E

Figure 3.1: One dimensional grid.

Now we are ready to discretise the problem. As stated above, we will first discretise a steady
diffusion problem. By removing the transient and convective terms in the general transport equa-
tion (2.44) we get the steady diffusion equation

div(Γgradφ) + Sφ = 0. (3.2)

Following next is what separates the finite volume method from the finite element method, namely
the control volume integration. The steady diffusion equation integrated over the control volume
is ∫

∆V

d

dx

(
Γ
dΦ

dx

)
dV +

∫

∆V

SΦdV = 0. (3.3)

By applying Gauss’s divergence theorem to the first volume integral and approximating the source
term by the midpoint rule we obtain

∫

A

n ·

(
Γ
dΦ

dx

)
dA+

∫

∆V

SΦdV ≈

(
ΓA

dΦ

dx

)

e

−

(
ΓA

dΦ

dx

)

w

+ SΦ∆V = 0, (3.4)

where we have assumed that the source term is constant over the volume. In order to express (3.4)
in nodal points (P, W and E) we need to approximate the gradients. Assuming a linear gradient
between nodal points we get the following

(
ΓA

dΦ

dx

)

e

≈ ΓeAe

(
ΦE − ΦP

δxPE

)
, (3.5)

(
ΓA

dΦ

dx

)

w

≈ ΓwAw

(
ΦP − ΦW

δxWP

)
. (3.6)

3.2 Finite Volume Method 13

By substituting (3.5) and (3.6) into (3.4) and rearranging terms to collect ΦP , ΦE and ΦW we
obtain the fully discretised equation for our problem.

ΓeAe

(
ΦE − Φp

δxPE

)
− ΓwAw

(
ΦP − ΦW

δxWP

)
+∆V SΦ = 0 (3.7)

(
ΓeAe

δxPE

+
ΓwAw

δxWP

)
ΦP =

(
ΓwAw

δxWP

)
ΦW +

(
ΓeAe

δxPE

)
ΦE +∆V Sφ. (3.8)

The coefficients of ΦP , ΦE and ΦW are conveniently renamed to aP , aE and aW respectively, such
that equation (3.8) can be written as

aPΦp = aEΦE + aWΦW +∆V SΦ, (3.9)

where

aE =
ΓeAe

δxPE

, aW =
ΓwAw

δxWP

, aP = aE + aW .

The equation (3.9) is the complete discretised form for the steady diffusion problem.

Steady state convection-diffusion equation The steady state transport equation without
the source term is the equation governing convection and diffusion of a property Φ. Again consider
the one dimensional case,

d

dx
(ρuΦ) =

d

dx

(
Γ
dΦ

dx

)
. (3.10)

The continuity equation must also be satisfied

d(ρu)

dx
= 0. (3.11)

Integrating over the control volume as before we obtain

(ρuAΦ)e − (ρuAΦ)w =

(
ΓA

dΦ

dx

)

e

−

(
ΓA

dΦ

dx

)

w

. (3.12)

Integrating the continuity equation over the control volume yields

(ρuA)e − (ρuA)w = 0. (3.13)

In order to discretise these equations we have to approximate the transported property Φ on the
left hand side of equation (3.12), the right hand side was already approximated using central
difference in the previous section. We introduce now a notation such that working with different
differencing schemes is less cluttered. Let

F = ρu and D =
Γ

δx
, (3.14)

where F represents the convective mass flux per unit area and D represents diffusion conductance
at cell faces. Using this notation, equation (3.12) can be written

FeΦe − FwΦw = De(ΦE − ΦP)−Dw(ΦP − ΦW), (3.15)

where

Fw = (ρu)w, Dw =
Γw

δxWP

, (3.16)

Fe = (ρu)e, De =
Γe

δxPE

. (3.17)

The integrated continuity equation using this notation becomes

Fe − Fw = 0. (3.18)

We have yet to calculate the value of the transported property Φ to the faces w and e. There
are a number of schemes which accomplishes this, some are better than others. In the following
sections we shall consider common interpolation schemes used in computational fluid dynamics.

3.3 Discretisation Scheme Properties 14

3.3 Discretisation Scheme Properties

Before investigating any schemes, it is important to define three properties connected to a dis-
cretisation scheme. The more a scheme coheres to the different properties the better it is expected
to perform in computations. The three properties are

• Conservativeness

• Transportiveness

• Boundedness

These properties will be assessed when considering the different discretisation schemes.

3.3.1 Conservativeness

When solving these discretised conservation equations it is desirable that the property Φ is to be
conserved over the whole domain of computation. To achieve this the flux going out of a control
volume face is to be equal the flux going in to the adjacent control volume face. This adds a
restriction to the discretisation scheme where the flux through the adjacent faces needs to be
consistently represented.

3.3.2 Transportiveness

Consider a nodal point P with adjacent nodes W and E (as in the previous figures) where both
W and E contains a source. The influence of these sources on point P can be described using the
non-dimensional cell Peclet number. The Peclet number is a measure of the relative strength of
convection and diffusion and is defined as

Pe =
F

D
=

ρu

Γ/δx
, (3.19)

where F and D is given by (3.14), Γ is the diffusion coefficient and δx is the characteristic length
(cell width). When the computation is pure diffusion (Pe → 0) the point P is influenced equally
by the two sources at W and E. However, when the fluid is undergoing pure convection (Pe→ ∞)
and the fluid is flowing from W to E, the point P will get a larger contribution from W than E.
To satisfy transportiveness a scheme needs to account for fluid direction.

3.3.3 Boundedness

Boundedness states that a property Φ, in the absence of a source term, is bounded by its boundary
values. As an example, consider a steady conduction problem with no sources. Let the bondary
take the values of 100 kelvin and 200 kelvin. Boundedness requires that the property T (temper-
ature) inside the domain is less than 200 kelvin and greater than 100 kelvin. Combined with the
requirement that all the coefficients of the discretised equations should have the same sign, forms
the boundedness property.

A diagonally dominant coefficient matrix is favourable in the task of satisfying boundedness.
Scarborough (1958) presented a sufficient condition for a iterative method to be convergent:

∑
|an|

|a′P |

{
≤ 1 at all nodes

< 1 at least at one node
(3.20)

Here aP is the central node and an is all the neighbouring nodes. When this condition is satisfied
the coefficient matrix is diagonally dominant.

3.4 Central Differencing Scheme 15

3.4 Central Differencing Scheme

As mentioned we need to calculate the values Φe and Φw for the convection diffusion problem.
The central difference scheme for Φe and Φw when using a uniform grid is

Φe =
ΦP +ΦE

2
, (3.21)

Φw =
ΦW +ΦP

2
. (3.22)

Substituting this into equation (3.15) yields

Fe

ΦP +ΦE

2
− Fw

ΦW +ΦP

2
= De(ΦE − ΦP)−Dw(ΦP − ΦW). (3.23)

When rearranged this becomes

[(
Dw +

Fw

2

)
+

(
De −

Fe

2

)
+ (Fe − Fw)

]
ΦP (3.24)

=

(
Dw +

Fw

2

)
ΦW +

(
De −

Fe

2

)
ΦE . (3.25)

As before we identify the coefficients of ΦP , ΦW and ΦE as aP , aW and aE respectively. Then
the discretised convection diffusion can be, using central differencing, written as

aPΦP = aWΦW + aEΦE , (3.26)

where

aP = aW + aE + (Fe − Fw), aW = Dw +
Fw

2
, aE = De −

Fe

2
. (3.27)

Next we will discuss the properties of the central differencing scheme.

3.4.1 Scheme Properties

Conservativeness: The flux at a control volume face is determined by only one function and is
therefore consistent and conservative.

Transportiveness: There central differencing scheme does not recognise the direction of flow
and can therefore not generally possess the transportive property. The central differencing scheme
can be used for small enough Peclet number. Depending of course on the problem needed to be
solved.

Boundedness: From the coefficients (3.27) we see that when applying the continuity equation
(3.18) we get aP = aW + aE . We see then that the coefficients satisfy the Scarborough (3.20)
condition. A second condition required for boundedness is that the sign for all the coefficients
should be the same. Let both Fw and Fe be positive. Then aw is always positive, but ae can be
negative for a large enough value of Fe. For this coefficient to be positive the Peclet number has
to be constrained by

Fe

De

= Pe < 2. (3.28)

A larger Peclet number will result in a negative coefficient.

Numerical accuracy: The numerical accuracy can be determined by a Taylor expansion and is

3.5 Upwind Scheme 16

of second order accuracy. A Taylor expansion around Φe gives us

ΦE = Φe +

(
dΦ

dx

)

e

∆x

2
+O((∆x/2)2) (3.29)

ΦP = Φe +

(
dΦ

dx

)

e

∆x

2
+O((∆x/2)2 (3.30)

ΦE +ΦP = 2Φe + 2O((∆x/2)2) (3.31)

ΦE +ΦP

2
= Φe. (3.32)

Truncating the second order term and higher makes this interpolation of second order.

General behaviour: It is well known that the central differencing scheme can exhibit large
over and under shoots, which eventually leads to a divergent solution. To reduce these over and
undershoots, an increase in mesh resolution could overcome the problem, but for any practical
application this solution falls short due to the high resolution needed.

3.5 Upwind Scheme

The central differencing scheme weights all neighbouring nodes equally when evaluating the control
volume faces. This effectively eliminates the transportiveness property. In general the node up
stream should have a stronger influence than the node down stream in a strong convective flow,
this is the motivation for developing a scheme which considers the flow direction. The upwind
scheme accomplishes this by setting the control volume face to the value at the up stream node.
If the flow goes from west to east (Fw > 0, Fe > 0), we would then set

Φw = ΦW , (3.33)

Φe = ΦP . (3.34)

Similarly, if the flow is reversed we set

Φw = ΦP , (3.35)

Φe = ΦE . (3.36)

For west to east flow the equation (3.8) becomes

FeΦP − FwΦW = De(ΦE − ΦP)−Dw(ΦP − ΦW). (3.37)

Collecting coefficients for ΦP , ΦW and ΦE gives

(Dw +De + Fe)ΦP = (Dw + Fw)ΦW +DeΦE . (3.38)

Rewriting the coefficient for ΦP in terms of the coefficients of ΦW and ΦE gives

[(Dw + Fw) +De + (Fe − Fw)]ΦP = (Dw + Fw)ΦW +DeΦE . (3.39)

Substituting the coefficients in this equation with aP , aW and aE , as in equation (3.9), we obtain
the same general form of the discretisation

aPΦP = aWΦW + aEΦE , (3.40)

with central coefficient aP = aW + aE + (Fe − Fw), where aW and aE are dependent on flow
direction. For flow with (Fw > 0, Fe > 0) they become

aW = Dw + Fw , (3.41)

aE = De. (3.42)

For flow with (Fw < 0, Fe < 0) they become

aW = Dw, (3.43)

aE = De − Fe. (3.44)

3.6 QUICK Scheme 17

3.5.1 Scheme Properties

Conservativeness: The upwind scheme is consistent in calculating the flux through control
volume faces and does therefore inherit the conservative property.

Transportiveness: The upwind scheme is based on the transport property and does therefore
satisfy the condition for transportiveness.

Boundedness: From the coefficient aW and aE it is apparent that they are always positive
which is a requirement for boundedness. The Scarborough condition (3.20) is satisfied when
the continuity equation is applied to the central coefficient, which is a sufficient condition for a
convergent iterative method.

Numerical accuracy: Taylor expansion shows that the upwind scheme (backward differencing)
has first order accuracy.

Φw = ΦW +

(
dΦ

dx

)

W

∆x

2
. (3.45)

Φw = ΦW +O(∆x/2) (3.46)

General behaviour: The upwind scheme is known for its numerical stability with no over or
under shoots in the solution. It does however introduce unwanted diffusion in space when the flow
is not aligned with the grid lines. Which is commonly known as false diffusion. Care has to be
taken in high Reynolds flow as the diffusion can be large enough to lead to non-physical results.

3.6 QUICK Scheme

The previously discussed upwind scheme is stable and posses the transportive property, but does
however do this at first order accuracy which leads to diffusion in the solution. A higher order
scheme is needed. The QUICK (quadratic upstream interpolation for convective kinetics) scheme
aims at keeping the transportive property of a upwind scheme but at the same time using a higher
order discretisation in order to reduce numerical diffusion errors.

The QUICK scheme utilises two nodal points upstream and one point downstream in order
to obtain third order accuracy and transportive property. A quadratic interpolation is used to
calculate the face values at the control volume. The direction of the flow dictates the use of nodal
points for interpolation, which makes the transportiveness directly implemented in the scheme as
with the upwind scheme. Consider a flow going from west to east; uw > 0 and ue > 0. The value
at Φw is evaluated from a quadratic interpolation through the nodes WW , W and P . The nodes
at W , P and E is used to evaluate the value at Φe. The faces Φw and Φe takes the value

Φw =
6

8
ΦW +

3

8
ΦP −

1

8
ΦWW , (3.47)

Φe =
6

8
ΦP +

3

8
ΦE −

1

8
ΦW . (3.48)

Inserting into equation (3.15) yields

[
Fe

(
6

8
ΦP +

3

8
ΦE −

1

8
ΦW

)
− Fw

(
6

8
ΦW +

3

8
ΦP −

1

8
ΦWW

)]

= De(ΦE − ΦP)−Dw(ΦP − ΦW).

(3.49)

Collecting the coefficients of ΦP , ΦW and ΦE and then rewriting the coefficient for ΦP in terms

3.6 QUICK Scheme 18

of the coefficients of ΦW and ΦE gives us

[
Dw −

3

8
Fw +De +

6

8
Fe

]
ΦP

=

[
Dw +

6

8
Fw +

1

8
Fe

]
ΦW +

[
De −

3

8
Fe

]
ΦE −

1

8
FwΦWW .

(3.50)

Taking the coefficients of ΦP , ΦW and ΦE to be aP , aW and aE respectively we write equation
(3.50) in standard form

aPΦP = aWΦW + aEΦE + aWWΦWW , (3.51)

where

aW = Dw +
6

8
Fw +

1

8
Fe (3.52)

aE = De −
3

8
Fe (3.53)

aWW = −
1

8
Fw (3.54)

aP = aW + aE + aWW + (Fe − Fw). (3.55)

For flow in the opposite direction, Fw < 0 and Fe < 0 the discretisation becomes

aPΦP = aWΦW + aEΦE + aEEΦEE , (3.56)

where

aW = Dw +
3

8
Fw (3.57)

aE = De −
6

8
Fe −

1

8
Fe (3.58)

aEE =
1

8
Fe (3.59)

aP = aW + aE + aEE + (Fe − Fw). (3.60)

3.6.1 Scheme properties

Conservativeness: The QUICK scheme is conservative as it uses consistent quadratic functions
to calculate the control volume face flux.

Transportiveness: As with the upwind scheme, the transportiveness is present in the QUICK
scheme by construction.

Boundedness: If the flow satisfies the continuity equation, then aP = aW + aE ; this satisfies the
Scarborough condition (3.20) which is desirable for boundedness. However, the QUICK scheme
have stability problems restricted by the Peclet number. For Fw < 0 and Fe < 0 the coefficient
aE will be negative when the Peclet number is larger than

aE = De −
3

8
Fe < 0 (3.61)

Pee =
Fe

De

>
8

3
. (3.62)

This makes the QUICK scheme conditionally stable.

Numerical accuracy: Taylor expansion shows that the QUICK scheme is of third order accuracy.

3.7 TVD Schemes 19

Expanding around the east face we obtain

ΦE = Φe +

(
dΦ

dx

)

e

1

2
∆x+

(
d2Φ

dx2

)

e

1

2!

(
1

2
∆x

)2

+O(∆x3) (3.63)

ΦP = Φe −

(
dΦ

dx

)

e

1

2
∆x+

(
d2Φ

dx2

)

e

1

2!

(
−
1

2
∆x

)2

+O(∆x3) (3.64)

ΦW = Φe −

(
dΦ

dx

)

e

3

2
∆x+

(
d2Φ

dx2

)

e

1

2!

(
−
3

2
∆x

)2

+O(∆x3) (3.65)

Adding these equations with the appropriate coefficients we can cancel out the derivatives and be
left with only third order terms.

3

8
ΦE +

6

8
ΦP −

1

8
ΦW = Φe +O(∆x3). (3.66)

General behaviour: The QUICK scheme has third order accuracy and has transportive prop-
erties. The solutions are generally low in false diffusion and can produce good results on coarse
grids. However, the Peclet number restriction makes this scheme prone to numerical instabilities
in complex flows, which can result in overshoots and undershoots.

3.7 TVD Schemes

The previously presented schemes have different advantages and disadvantages, therefore it would
be only reasonable to attempt to construct a scheme which has all the good qualities and none
of the bad qualities. This has led to the development of the TVD (total variation diminishing)
schemes. These schemes are of second order, has low false diffusion, oscillation free solutions and
the conservativeness/boundedness/transportiveness properties. The TVD schemes are based on
a generalisation of upwind weighted differencing schemes. The upwind differencing (UD) scheme
for the face value Φe is

Φe = ΦP . (3.67)

This scheme is first order. The linear upwind differencing (LUD) scheme is a second order version
of the standard UD scheme and can be expressed as

Φe = ΦP +
1

2
(ΦP − ΦW). (3.68)

This is the upwind scheme plus a correction making it second order. Similarly the central differ-
encing (CD) scheme and the Hayase et al. QUICK scheme [7] can be expressed as the upwind
scheme plus a correction, namely

Φe = ΦP +
1

2
(ΦE − ΦP), (CD) (3.69)

Φe = ΦP +
1

8
(3ΦE − 2ΦP − ΦW) . (QUICK) (3.70)

We can now create a generalised expression of these schemes.

Φe = ΦP +
1

2
Ψ(ΦE − ΦP), (3.71)

where Ψ is a function determining the properties of the scheme called a flux limiter function.
Accurately named so because we are attempting to approximate the convective flux FeΦe and in
order to make a scheme TVD we need to limit the range of values the convective flux FeΨ(ΦE −
ΦP)/2 can take. This will be discussed in detail later. One can easily see that Ψ = 0 is the

3.7 TVD Schemes 20

standard upwind scheme and Ψ = 1 is the central differencing scheme. Some manipulation is
needed in order to obtain the Ψ function for the LUD and QUICK schemes.

Φe = ΦP +
1

2

(
ΦP − ΦW

ΦE − ΦP

)
(ΦE − ΦP), (LUD) (3.72)

Φe = ΦP +
1

2

[
1

4

(
3 +

ΦP − ΦW

ΦE − ΦP

)]
(ΦE − ΦP). (QUICK) (3.73)

The ratio (ΦP−ΦW)/(ΦE−ΦP) is usually expressed with the constant r, which makes the function
Ψ = Ψ(r). The generalised scheme is then written as

Φe = ΦP +
1

2
Ψ(r)(ΦE − ΦP), (3.74)

where

r =
ΦP − ΦW

ΦE − ΦP

. (3.75)

The four schemes mentioned can now be expressed as

Ψ(r) = 0 (UD) (3.76)

Ψ(r) = 1 (CD) (3.77)

Ψ(r) = r (LUD) (3.78)

Ψ(r) = (3 + r)/4 (QUICK) (3.79)

If we plot the Ψ functions we get, in figure 3.2, what is known as the Ψ− r-diagram which is used
to illustrate the region in which the TVD schemes resides.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

CD: Ψ = 1

LUD: Ψ = r

UD: Ψ = 0

QUICK: Ψ = (3 + r)/4

r

Ψ

Figure 3.2: Ψ− r -diagram of the four schemes.

3.7.1 Total Variation

Total variation for a conserved property Φ:

TV (Φn) =
∑

k

|Φn
k − Φn

k−1|. (3.80)

A system is said to conserve monotonicity if

• it does not create a local extrema

3.7 TVD Schemes 21

• the value of an existing local minimum is non decreasing and the value of a local maximum
is non increasing

For a numerical method to be total variation diminishing it needs to satisfy

TV (Φn+1) ≤ TV (Φn). (3.81)

3.7.2 Sweby’s TVD Criteria

For a scheme to be TVD it needs to lie within a certain range in the Ψ− r diagram. Sweby (1984)
found a necessary and sufficient condition for a scheme to be TVD which limits Ψ for different
values of r.

Ψ(r) ≤ 2r, 0 < r < 1 (3.82)

Ψ(r) ≤ 2. r ≥ 1 (3.83)

The only scheme previously mentioned which is TVD with no restriction on r is the upwind
differencing scheme, the other schemes are TVD only for a limited range of r. Sweby also presented
a criteria for a TVD scheme to be of second order accuracy which further narrows the possible
values the flux limiter function Ψ(r) can take. For a TVD scheme to be of second order accuracy
it needs to pass through the point (1, 1) in the Ψ− r diagram. Sweby found that the new possible
values for the flux limiter function is now bound by the central difference and linear upwind
schemes.

r ≤ Ψ(r) ≤ 1 for 0 < r < 1,

1 ≤ Ψ(r) ≤ r for r ≥ 1.
(3.84)

This restriction can be seen as the greyed out area in figure 3.3. In order to simplify any
programming of TVD schemes, Sweby proposed another requirement to the flux limiter function
called the symmetry property. This requirement makes the limiter function treat both backward
and forward facing gradients the same. The symmetry property is

Ψ(r)

r
= Ψ(1/r). (3.85)

When this is satisfied no special coding is needed to treat different gradients.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

r

Ψ

Ψ = 2r

Ψ = 1

Ψ = r

Figure 3.3: Ψ − r -diagram showing the area where a limiter function needs to be in order to be
of second order.

3.8 Unsteady Convection Diffusion Discretisation 22

3.7.3 Flux Limiter Functions

There exists a great number of flux limiter functions, here we will briefly look at a handful of the
most common, which are all of second order.

van Leer (1974)

Ψ(r) =
r + |r|

1 + r
, lim

r→∞

Ψ(r) = 2

van Albada (1982)

Ψ(r) =
r + r2

1 + r2
, lim

r→∞

Ψ(r) = 1

UMIST (Lien and Leschziner 1993)

Ψ(r) = max[0,min(2r, (1 + 3r)/4, (3 + 4r)/4, 2)], lim
r→∞

Ψ(r) = 2

superbee (Roe 1985)

Ψ(r) = max[0,min(2r, 1),min(r, 2)], lim
r→∞

Ψ(r) = 2

Sweby (1984)

Ψ(r) = max[0,min(βr, 1),min(r, β)], (1 ≤ β ≤ 2), lim
r→∞

Ψ(r) = β

min-mod (Roe 1985)

Ψ(r) = max[0,min(r, 1)], lim
r→∞

Ψ(r) = 1

3.7.4 Scheme Properties

TVD schemes satisfies by default conservativeness, transportiveness and boundedness as they are
generalisations of existing schemes with these properties.

Numerical accuracy: TVD schemes that follows the limitation (3.84) on the flux limiter are of
second order accuracy.

General behaviour: Solutions produced by TVD schemes are in general oscillation free, low in
false diffusion and of second order. Complex limiter functions can require more CPU time than
regular differencing schemes. As an example, the UMIST scheme uses 15% more CPU time than
the standard QUICK scheme. When selecting a TVD scheme to use, there are no arguments for
one over the other, the performance difference is negligible.

3.8 Unsteady Convection Diffusion Discretisation

The unsteady transport equation has the form

∂(ρΦ)

∂t
+ div(ρΦu) = div(ΓgradΦ) + SΦ. (3.86)

To account for time we need to integrate over a time step ∆t. As usual we also need to integrate
over the control volume, which gives

∫ t+∆t

t

(∫

∆V

∂(ρΦ)

∂t
dV

)
dt+

∫ t+∆t

t

(∫

∆V

div(ρΦu)dV

)
dt

=

∫ t+∆t

t

(∫

∆V

div(ΓgradΦ)dV

)
dt+

∫ t+∆t

t

(∫

∆V

SΦdV

)
dt.

(3.87)

3.8 Unsteady Convection Diffusion Discretisation 23

We will consider the one dimensional case in which to develop methods for time integration. Each
of the terms in equation (3.87) becomes

∫

∆V

(∫ t+∆t

t

∂(ρΦ)

∂t
dV

)
dt = ρ(ΦP − Φ0

P)∆V, (3.88)

∫ t+∆t

t

(∫

∆V

div(ρΦu)dV

)
dt =

∫ t+∆t

t

(ρuAΦ)e − (ρuAΦ)edt, (3.89)

∫ t+∆t

t

(∫

∆V

div(ΓgradΦ)dV

)
dt =

∫ t+∆t

t

(
ΓA

dΦ

dx

)

e

−

(
ΓA

dΦ

dx

)

w

dt, (3.90)

∫ t+∆t

t

(∫

∆V

SΦdV

)
dt = SΦ∆V∆t. (3.91)

In equation (3.89) and (3.90) we do, as before, the substitution F = ρu and D = Γ/δx. The ∆V
terms appearing here is the control volume, which is equal to ∆V = A∆x, where A is as usual
the face area of the control volume. The width of the control volume is ∆x. The right hand side
of equation (3.89) becomes

FeAe

∫ t+∆t

t

Φedt− FwAw

∫ t+∆t

t

Φwdt, (3.92)

and the right hand side of equation (3.90) becomes

DeAe

∫ t+∆t

t

(ΦE − ΦP)dt−DwAw

∫ t+∆t

t

(ΦP − ΦW)dt. (3.93)

For simplicity the terms Φe and Φw are approximated using central differences

Φe =
ΦP +ΦE

2
, (3.94)

Φw =
ΦW +ΦP

2
. (3.95)

The equation now has the form

ρ(ΦP − Φ0
P)∆V + FeAe

∫ t+∆t

t

ΦP +ΦE

2
dt− FwAw

∫ t+∆t

t

ΦW +ΦP

2
dt

= DeAe

∫ t+∆t

t

(ΦE − ΦP)dt−DwAw

∫ t+∆t

t

(ΦP − ΦW)dt+ SΦ∆V∆t.

(3.96)

The time integration of the property Φ needs to be consider in order to advance the calculation.
We generalise the integration by means of a weighting parameter θ such that the integration would
use values from the current time step, the previous time step or both. The time integral may then
be approximated by ∫ t+∆t

t

Φdt ≈
[
θΦ+ (1 − θ)Φ0

]
∆t. (3.97)

Using this integration in equation (3.96) and dividing by A∆t we get

ρ

(
ΦP − Φ0

P

∆t

)
∆x+

Fe

2

[(
θΦP + (1− θ)Φ0

P

)
+
(
θΦE + (1− θ)Φ0

E

)]

−
Fw

2

[(
θΦW + (1 − θ)Φ0

W

)
+
(
θΦP + (1 − θ)Φ0

P

)]

= De

[(
θΦE + (1− θ)Φ0

E

)
−
(
θΦP + (1− θ)Φ0

P

)]

−Dw

[(
θΦP + (1− θ)Φ0

P

)
−
(
θΦW + (1− θ)Φ0

W

)]

+ S∆x.

(3.98)

3.9 Pressure-Velocity Coupling 24

This can be rearranged to give

[(
Fw

2
+Dw

)
θ +

(
De −

Fe

2

)
θ + ρ

∆x

∆t
+ (Fe − Fw)θ

]
ΦP

=

(
Fw

2
+Dw

)
(θΦW + (1− θ)Φ0

W) +

(
De −

Fe

2

)
(θΦE + (1− θ)Φ0

E)

+

[
ρ
∆x

∆t
− (1− θ)

(
Fw

2
+Dw

)
− (1 − θ)

(
De −

Fe

2

)]
Φ0

P + S∆x.

(3.99)

We now recognize the coefficients of ΦW and ΦE as aW and aE respectively, thus equation (3.99)
can be written

aPΦP = aW
[
θΦW + (1− θ)Φ0

W

]
+ aE

[
θΦE + (1− θ)Φ0

E

]

+
[
a0P − (1− θ)aW − (1 − θ)aE

]
Φ0

P + b,
(3.100)

where

aP = θ(aW + aE) + θ(Fe − Fw) + a0P , (3.101)

a0P = ρ
∆x

∆t
, (3.102)

b = S∆x. (3.103)

The time discretisation is heavily dependent upon the parameter θ. Typical choices are θ =
{0, 1, 1/2}.

The scheme is called explicit when θ = 0 is used. It uses only the previous values of Φ in
order to advance the solution.

When using θ = 1 the scheme is called fully implicit and uses values of Φ from the next time
step. This results in a system of equations that needs to be solved for each time step.

Letting θ = 1/2 we get the Crank-Nicolson scheme which is also implicit and requires the
solution of a system of equations for each time step.

3.8.1 Properties

The properties investigated for spatial discretisation does not apply to the temporal discretisation.
For the three methods described we will look at stability and the order of the scheme.

Explicit Conditionally stable First order
Implicit Unconditionally stable First order

Crank-Nicolson Unconditionally stable Second order

3.9 Pressure-Velocity Coupling

In the derivation of the differencing schemes, we assumed that the velocity field was known. This
is not the case in a general situation. Therefore some techniques for calculation the entire flow
field has been developed. The two most widely used are the SIMPLE and the PISO algorithm.
The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) was proposed in 1972 by
Patankar and Spalding. It is an iterative process which guesses the pressure field and then corrects
its until a convergence criteria has been fulfilled. The PISO (Pressure Implicit with Splitting of
Operators) proposed by Issa (1986) is an extension of the SIMPLE algorithm for calculating
unsteady compressible problems. The details of these methods are not in the scope of this paper,
therefore an outline of these methods will be presented. In general the SIMPLE algorithm is
used for steady state flows and the PISO algorithm for unsteady flows. Therefore the algorithms
presented here will be a steady state for the SIMPLE algorithm and unsteady for the PISO
algorithm. Details of the following algorithms can be found in [21] and [20].

3.9 Pressure-Velocity Coupling 25

3.9.1 SIMPLE Algorithm

The SIMPLE algorithm is, as stated before, an iterative process. The first step is to guess a
pressure field, p∗, which is then used to solve the discretised momentum equations

ai,Ju
∗

i,J =
∑

anbu
∗

nb + (p∗I−1,J − p∗I,J)Ai,J + bi,J , (3.104)

ai,Jv
∗

i,J =
∑

anbv
∗

nb + (p∗I,J−1 − p∗I,J)Ai,J + bi,J . (3.105)

The star, ·∗, denotes a guessed variable. Then the continuity equation is solved from which a
pressure correction equation is obtained,

aI,Jp
′

I,J = aI+1,Jp
′

I+1,J + aI−1,Jp
′

I−1,J

+ aI,J+1p
′

I,J+1 + aI,J−1p
′

I,J−1 + b′I,J ,
(3.106)

where p′ is the pressure correction. From this one obtains the corrected pressure and velocities

pI,J = p∗I,J + p′I,J ,

ui,J = u∗i,J + di,J (p
′

I−1,J − p′I,J),

vI,j = u∗I,j + dI,j(p
′

I,J−1 − p′I,J).

(3.107)

Following this, all other transport equations are solved, such as temperature and turbulence
properties. If the residuals has not converged, a new iteration begins with the guessed variables
being the previously solved values. A flowchart of this algorithm can be found in figure 3.4.

Convergence?

END

BEGIN

Solve the pressure correction

equations and

Solve all other discretised transport equations

Iterate with updated variables
equation

Solve the discretised momentum equations

Correct pressure and velocities

p∗ = p, u∗ = u
v∗ = v, φ∗ = φ

(3.104) (3.105)

(3.106)

(3.107)

Figure 3.4: The SIMPLE algorithm

3.9.2 PISO Algorithm

The unsteady PISO algorithm is presented here, it can also be used in steady state calculations,
but it is commonly used in unsteady problems. The PISO algorithm is similar to the SIMPLE
algorithm in that it does a prediction step and a correction step, however the PISO algorithm
computes an additional correction. The PISO algorithm starts off with the same three first steps

3.9 Pressure-Velocity Coupling 26

of the SIMPLE algorithm. However, after the correction of the pressure and velocities the PISO
algorithm solves a second pressure correction equation,

aI,Jp
′′

I,J = aI−1,Jp
′′

I−1,J + aI+1,Jp
′′

I+1,J

+ aI,J−1p
′′

I,J−1 + aI,J+1p
′′

I,J+1 + b′′I,J .
(3.108)

From which the pressure and velocity is corrected for a second time.

p∗∗∗I,J = p∗I,J + p′I,J + p′′I,J , (3.109)

u∗∗∗i,J = u∗i,J + di,J (p
′

I−1,J − p′I,J) +

∑
anb(u

∗∗

nb − u∗nb)

ai,J
(3.110)

+ di,J (p
′′

I−1,J − p′′I,J),

v∗∗∗I,j = v∗I,j + dI,j(p
′

I,J−1 − p′I,J) +

∑
anb(v

∗∗

nb − v∗nb)

aI,j
(3.111)

+ dI,j(p
′′

I,J−1 − p′′I,J).

The outline of the algorithm is presented as a flowchart in figure 3.5.

BEGIN

Set

END

Correct the pressure and velocities

Solve the second pressure correction equation

Set
p∗ = p, u∗ = u
v∗ = v, φ∗ = φ

u = u∗∗∗

v = v∗∗∗

p = p∗∗∗

Convergence?

Solve all other discretised transport equations

Execute the three first
steps of the SIMPLE algorithm

t > tmax?

Set
t = t+∆t

p0 = p, φ0 = φ
u0 = u, v0 = v

(3.108)

(3.109) − (3.111)

Figure 3.5: The PISO algorithm

4. Turbulence Modelling 27

4 Turbulence Modelling

Solving the Navier-Stokes equations is very expensive in terms of computing time. Solving the
equations directly is called DNS (Direct Numerical Simulation) and requires a large number of
grid points for the discretised equations and a small time step in order to capture turbulence
interacting on all scales. In order to reduce the cost of DNS a turbulence model is used to model
some aspects of the turbulence. The two most commonly used turbulence models is the RANS
(Reynolds-Averaged Navier-Stokes) and LES (Large Eddy Simulation). Each model approaches
the turbulence modelling differently and will be described in closer detail in this section.

4.1 Reynolds-Averaged Navier-Stokes Equations

The Reynolds-averaged Navier-Stokes (RANS) approach to turbulence is a time averaging of the
Navier-Stokes equations. This method needs to only solve for the mean properties of the flow such
that the details of the turbulence can be ignored which reduces the computational cost. The RANS
turbulence model solves the Reynolds-averaged Navier-Stokes equations which will be derived in
this section. We will begin by splitting a property φ into a mean value Φ and a time varying
fluctuating value φ′. This is called a Reynolds decomposition

φ(t) = Φ + φ′(t). (4.1)

Here Φ is the average value and φ′ is the fluctuations. The time average of φ is defined by

φ = Φ =
1

∆t

∫ ∆t

0

φ(t)dt, (4.2)

and the time average of the fluctuations φ′ is, by definition, zero

φ′ =
1

∆t

∫ ∆t

0

φ′(t)dt ≡ 0. (4.3)

The terms in the Reynolds decomposition has a set of rules which will be used when averaging
the Navier-Stokes equations. Let φ = Φ + φ′ and ψ = Ψ+ ψ′.

φ′ = ψ′ = 0 Φ = Φ

φ+ ψ = Φ+Ψ
∂φ

∂s
=
∂Φ

∂s

φψ = ΦΨ+ φ′ψ′ φΨ = ΦΨ

φ′Ψ = 0

(4.4)

Similarly for divergence and gradient terms we have

div(a) = div(A),

div(φa) = div(φa) = div(ΦA) + div(φ′a′),

div gradφ = div gradΦ.

(4.5)

The compressible Navier-Stokes equations without body forces are

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (4.6)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) = −

∂p

∂xi
+
∂τij
∂xj

. (4.7)

It would be sufficient to use the time averaging of the compressible Navier-Stokes equations in most
situations where the fluctuation in the density is insignificant, whereas it would greatly influence

4.1 Reynolds-Averaged Navier-Stokes Equations 28

the turbulence in highly compressible and supersonic flows. However, for generality the Favre
averaging will be derived for the compressible Navier-Stokes equations. The Favre averaging is
defined by

Φ̃ =
ρΦ

ρ
. (4.8)

The flow variables can then be decomposed, similarly to Reynolds decomposition, into

Φ = Φ̃ + Φ′′, (4.9)

where Φ′′ contains both the turbulent fluctuation and the density fluctuation. Observe that when
the flow is incompressible the Favre averaging becomes the Reynolds averaging; Φ̃ = Φ and
Φ′′ ≡ Φ′. Also, for Favre averaging, the time average of the fluctuation is not zero Φ′′ 6= 0. The
time averaged continuity equation (4.6), when using Favre averaging, becomes

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (4.10)

∂ρ

∂t
+

∂

∂xi
(ρ(ũi + u′′i) = 0, (4.11)

∂ρ

∂t
+

∂

∂xi
(ρũi + ρu′′i) = 0, (4.12)

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (4.13)

where we have used that ρΦ′′ = 0 and ρΦ̃ = ρΦ̃. For comparison, the continuity equation without
Favre averaging is

∂ρ

∂t
+

∂

∂xi
(ρ ui) +

∂

∂xi
(ρ′u′i) = 0. (4.14)

Similarly we can derive the time average for the momentum equation (4.7) with Favre averaging.
Time averaging each term in the momentum equation by itself yields

∂(ρui)

∂t
=
∂(ρ(ũi + u′′i))

∂t
,

=
∂(ρũi + ρu′′i)

∂t
,

=
∂(ρ ũi)

∂t
,

(4.15)

for the first term. The second term, without the divergence for readability, becomes

ρuiuj = ρ(ũi + u′′i)(ũj + u′′j),

= ρũiũj + ρũiu′′j + ρu′′i ũj + ρu′′i u
′′

j ,

= ρũiũj + ρu′′i u
′′

j .

(4.16)

The two terms on the right hand side simply becomes

−
∂p

∂xi
+
∂τij
∂xj

. (4.17)

Thus the time averaged momentum equation with Favre averaging becomes

∂(ρ ũi)

∂t
+

∂

∂xj
(ρũiũj + ρu′′i u

′′

j) = −
∂p

∂xi
+
∂τij
∂xj

. (4.18)

Similarly equations for scalar transport and energy can be derived, but will not be presented here.
The extra term ρu′′i u

′′

j is called the Reynolds stresses. The appearance of this term makes the

4.2 Large Eddy Simulation 29

Navier-Stokes equation to not be closed. As it is not possible to close the problem with a set of
exact equations, details can be found in [6], one has to approximate the Reynolds stresses and the
turbulent scalar fluxes with a turbulence model. There are numerous models which can be used
to model the turbulence, some are more general than others. In table 4.1 there is a short list of
commonly used models grouped by the number of turbulent transport equations to be solved.

Equation type Model name

Algebraic Mixing length model

One equation Prandtl’s one equation model
Spalart-Allmaras model

Two equation k-epsilon model
k-omega model

Table 4.1: Common turbulence models

The k-epsilon model, being the most used turbulence model due to its simplicity and good
performance in most types of flow, will be explored in the following section.

4.1.1 The k-epsilon Turbulence Model

There are several k-epsilon turbulence models, all which has their own strengths and weaknesses.
Here we will present the ’standard’ k-epsilon model proposed by Launder and Spalding (1974). The
k-epsilon turbulence model solves two extra transport equations in order to resolve the turbulent
kinetic energy k and the turbulent dissipation ǫ. The basis for the k-epsilon turbulence model is
the Boussinesq eddy viscosity assumption, which approximates the Reynolds stresses linearly to
the mean strain rate tensor:

−ρu′iu
′

j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
−

2

3
ρkδij . (4.19)

The eddy viscosity µt is given by

µt = ρCµ

k2

ǫ
. (4.20)

The transport equation for k is

∂(ρk)

∂t
+
∂(ρkuj)

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+ µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− ρǫ, (4.21)

and the transport equation for ǫ is

∂(ρǫ)

∂t
+
∂(ρǫuj)

∂xj
=

∂

∂xj

(
µt

σǫ

∂ǫ

∂xj

)
+ C1ǫ

ǫ

k
µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− C2ǫρ

ǫ2

k
. (4.22)

The five constants present in equations (4.20 - 4.22) are usually set to

Cµ = 0.09
C1ǫ = 1.44 C2ǫ = 1.92
σk = 1.0 σǫ = 1.3

4.2 Large Eddy Simulation

Large eddy simulation aims at directly solving only the large scale eddies in a DNS fashion, whereas
the small eddies are approximated. In order to separate the large eddies from the small eddies the
Navier-Stokes equations are filtered. By specifying a certain cutoff width for a filtering function
the large eddies are filtered out from the smaller eddies who’s width are smaller than the cutoff

4.2 Large Eddy Simulation 30

width. As with all filtering functions some information is lost, in this case the information about
the smaller eddies are filtered out. In order to capture the interaction between the large eddies
and the smaller eddies a model is necessary. These models are known as sub-grid scale models
(SGS-models).

4.2.1 Spatial Filtering

In order to filter the Navier-Stokes equations, we need to define a filter operator. This spatial
filter operator is defined as

Φ(x, t) ≡

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

G(x,x′,∆)Φ(x′, t)dx′1dx
′

2dx
′

3, (4.23)

where

Φ(x, t) is the filtered function,

G(x,x′,∆) is the filter function,

Φ(x, t) is the unfiltered function,

∆ is the cutoff width.

There are different filter functions for different applications. In research, Gaussian and spectral
filtering functions are commonly used. A more practical filter function is the top-hat which is
widely used in finite volume implementations:

G(x,x′,∆) =

{
1/∆3 |x− x′| ≤ ∆/2

0 |x− x′| > ∆/2
(4.24)

The choice of ∆ determine the size of the smallest eddy that is to be resolved. This cutoff width
can be of any size larger than the cell size, as selecting a value less would be pointless. There are
different ways of selecting a suitable ∆. It is common to select a cutoff width of the same order
as the grid. The most commonly used is the cube root of the cell volume

∆ = 3
√
∆x∆y∆z. (4.25)

For structured grids it would suffice to take the maximum of ∆x,∆y and ∆z.

4.2.2 Filtering The Navier-Stokes Equations

In Cartesian coordinates the incompressible Navier-Stokes equations are

∂(ρui)

∂xi
= 0, (4.26)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= −

∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))
. (4.27)

When filtering these equations we obtain

∂(ρui)

∂xi
= 0, (4.28)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= −

∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))
. (4.29)

The only term here which cannot be directly computed is the convection term uiuj since uiuj 6=
ui uj . This is where we need to introduce a model in our large eddy simulation. By introducing

∂(ρuiuj)

∂xj
=
∂(ρui uj)

∂xj
+

(
∂(ρuiuj)

∂xj
−
∂(ρui uj)

∂xj

)
(4.30)

4.2 Large Eddy Simulation 31

equation (4.29) can be written

∂(ρui)

∂t
+
∂(ρui uj)

∂xj
=−

∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi

))

−

(
∂(ρuiuj)

∂xj
−
∂(ρui uj)

∂xj

)
.

(4.31)

The last two terms are the ones we are going to approximate, which is called subgrid-scale Reynolds
stress

τij = ρuiuj − ρui uj . (4.32)

The name ’stress’ is not directly applicable here as most of what τij represents comes from the
convective momentum transport due to the action of the unresolved eddies. These SGS-stresses
requires a turbulence model. The Smagorinsky model will be presented in the following section.

4.2.3 Filtering Compressible Navier-Stokes Equations

Favre filter is a density-weighted filtering operation defined as

Φ̃ =
ρΦ

ρ̄
. (4.33)

By using the Favre averaging the averaged Navier-Stokes equations become

∂ρ̃

∂t
+ div(ρ̄ũ) = 0 (4.34)

∂(ρ̄ũ)

∂t
+ div(ρ̄ũũ) = −

∂p̄

∂x
+ µ div(grad(ū)) + Fx (4.35)

∂(ρ̄ũ)

∂t
+ div(ρ̄ṽũ) = −

∂p̄

∂y
+ µ div(grad(v̄)) + Fy (4.36)

∂(ρ̄ũ)

∂t
+ div(ρ̄w̃ũ) = −

∂p̄

∂z
+ µ div(grad(w̄)) + Fz (4.37)

where bar denotes averaging and tilde denotes Favre averaging.

4.2.4 Smagorinsky Turbulence Model

This model proposed by Smagorinsky (1963) is a widely used eddy viscosity model and was one
of the earliest models to be used in large eddy simulation. The approximation used in this model
is that the local SGS-stresses is proportional to the local strain rate of the flow

τij = −2µSGSSij +
1

3
τijδij , (4.38)

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (4.39)

The proportionality constant here is the dynamic SGS viscosity µSGS . This viscosity term is
evaluated from

µSGS = ρC2
S∆

2|S|, (4.40)

where |S| =
√
2SijSij , ∆ is the filter length scale and CS is a problem dependent parameter

called the Smagorinsky constant. This constant is generally agreed upon to be approximately 0.2,
however values ranging from 0.065 to 0.24 have been used successfully [6, 21].

Setting the parameter CS to a constant is not easily justified as one can imagine, this constant
is highly dependent on geometry, the Reynolds number or other flow properties. To improve this
constant the dynamic SGS model was proposed (Germano et al., 1991). In this model the local
values of CS are computed for each time step. The details of dynamic models will not be explored
here, more information can be found in [6].

4.2 Large Eddy Simulation 32

5. OpenFOAM 33

5 OpenFOAM

The focus of this paper is not to develop new code for solving fluid dynamics with the finite volume
method. It focuses on using existing code and analyse the output concerning sound generated by
corrugated pipes. The choice of OpenFOAM (Field Operation And Manipulation) for this paper
was an easy task as it is both free and of high quality. A circumstantial reason for selecting this
code is that the University of Bergen currently uses OpenFOAM on their supercomputer running
in parallel.

5.1 Introduction

OpenFOAM is mainly a C++ toolbox for computational fluid dynamics, and consists of numerical
solvers, pre-processors and post-processors. All of which are open source under the GNU General
Public License. The toolbox comes with a large set of pre compiled applications divided into two
categories; solvers and utilities. The different solvers are distributed in twelve categories ranging
from continuum mechanics to electromagnetics to finance. In utilities there are a number of
different applications for mesh generation and manipulation, pre-/post-processing and conversion
tools.

5.2 Selecting a Solver

OpenFOAM has a vast range of solvers for incompressible and compressible flows. This problem
needs a compressible solver in order to capture the sound waves. The rhoPimpleFoam solver seems
to be a good choice for our problem. It is a transient compressible solver with turbulence. It uses
a merged PISO-SIMPLE algorithm.

5.3 Boundary Conditions

To obtain a good numerical simulation the boundary conditions need to be properly specified.
More often than not, the boundary conditions is the source of a bad simulation. Here we will
prescribe the boundary conditions for the problem at hand. Only the velocity and pressure will be
given in detail, the remaining boundary conditions for other transport values are given in appendix.
In all the simulations, the geometry consists of four patches on which boundary conditions are
applied; inlet, outlet, walls and axis. The axis will primarily be either a symmetry plane or axis
of rotation.

5.3.1 Inlet

For the inlet we will use a velocity inlet.

Velocity (U): A constant velocity parallel to the pipe. A velocity of 8 m/s in the x-direction
would be written as

type fixedValue;

value uniform (8 0 0);

Pressure (p): Since the inlet velocity has been explicitly set, the pressure needs to be able to
vary. Therefore we will set the pressure to have a gradient of zero. If we wanted to drive the flow
by pressure, we would set the pressure to a constant number and let the velocity vary at the inlet.
In OpenFOAM this boundary condition is written

type zeroGradient;

This is of course a Neumann boundary condition where we specify the gradient of the variable,
such that the actual value is able to change.

5.3 Boundary Conditions 34

5.3.2 Outlet

The outlet is a difficult patch to specify boundary conditions on. We want the outlet to be a free
(or open) boundary condition and should ideally not influence the solution upstream. However
this is difficult using standard boundary conditions (Dirichlet/Neumann). To make it simpler the
outlet boundary should be moved sufficiently far away from the domain of computational interest.
This will help in minimizing the non-physical effects from a insufficiently defined boundary.

Velocity (U): The velocity will be a mix of Dirichlet and Neumann boundary condition. In
OpenFOAM this is called inletOutlet, which sets the boundary to Dirichlet if the velocity gradient
is directed into the domain and sets the boundary to Neumann if the gradient is directed out of
the domain.

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

Pressure (p): The pressure boundary condition can be difficult to set. As this is supposed to be
a free boundary (atmosphere), a fixed value of atmospheric pressure could suffice. This boundary
condition is unfortunately very reflective. However, in OpenFOAM there is a boundary condition
called waveTransmissive which is very successful in eliminating the reflected pressure waves off
the boundary condition.

type waveTransmissive;

field p;

phi phi;

rho rho;

psi psi;

gamma 1.3;

fieldInf 1e5;

lInf 1;

value uniform 1e5;

5.3.3 Walls

The walls represents the physical walls of the pipe and the boundary conditions for velocity and
pressure are easy to determine. The turbulence parameters needs more attention, as one can use
a wall function to account for behaviour in the boundary layer. In this case we will not need
a wall function as we aim at fully resolving the boundary layer with enough grid points. The
requirements for this can be found in [20].

Velocity (U): The velocity will be a no-slip boundary condition at the walls.

type fixedValue;

value uniform (0 0 0);

Pressure (p): The pressure does not have a constant value at the walls and will be therefore
prescribed a Neumann boundary condition.

type zeroGradient;

5.3.4 Other

For a compressible and turbulent simulation we need to specify more than just the velocity and
pressure. The other variables needed by OpenFOAM in a compressible simulation are

• Temperature (T)

5.4 Numerical Schemes 35

• αSGS (alphaSgs)

• µSGS (muSgs)

The temperature is closely connected to the density and pressure and needs to be specified. In this
case the temperature will be set to 300 degrees Kelvin in the entire domain. The two turbulence
parameters αSGS and µSGS are computed at run time and is given the zeroGradient boundary
condition. Note that, if we were to use a wall function it would be defined in the αSGS file.

5.4 Numerical Schemes

5.4.1 Time Derivative

When running LES we want to reduce the temporal diffusion as much as possible which is why
we select a small time step and employ a second order time discretisation scheme. A first order
scheme would be too diffusive in time. In OpenFOAM we have two second order schemes, namely
the backward and the Crank-Nicolson scheme. It will be sufficient to use the backward scheme as
the increase in accuracy and storage requirements from the Crank-Nicolson scheme would not be
worth the increase in computational cost.

5.4.2 Spatial Discretisation

OpenFOAM requires a discretisation scheme for each of the three operators; gradient, divergence
and Laplace. For most of the time, the gradient and Laplace discretisation schemes are never
changed.

The gradient discretisation scheme is set to be the central difference, any other schemes would
be very rarely used. The other choices OpenFOAM has for the gradient is a second order least
squares and a fourth order least squares.

The only choice of discretisation for the Laplacian is the Gauss scheme with a interpolation scheme.
For interpolation the central difference is often used, but other schemes are available [14].

The choice of discretisation scheme for the divergence operator will have significant influence in
the solution. Same as the laplacian, the only scheme available is the Gauss scheme with an
interpolation. Common choices of interpolation schemes are the upwind, linear and TVD schemes
discussed in section 3. The choice of discretisation scheme is discussed in the Cases section.

5.5 Mesh Generation

Second to a properly defined problem is the generation of a good mesh. Any computation done
with a bad mesh can in general not be trusted, which is why much care is needed when generating a
mesh. When running LES a sufficiently fine mesh is needed in order to capture the eddies which are
of interest. Therefore we can expect to have to generate a mesh with a large amount of cells. The
cell density will be larger at the walls in order to resolve the boundary layer behaviour. The cells
of a three dimensional mesh are usually either tetrahedrons or hexahedrons. If possible one should
use hexahedral cells which offers superior accuracy to tetrahedra with the same amount of cells.
Therefore OpenFOAM’s own meshing software, blockMesh, is a decent way of producing the mesh
for this problem as it produces hexahedral cells. The block mesh utility has limited capabilities
when it comes to complex geometries, but should be sufficient for generating a corrugated pipe.

There are two important parts of a mesh which requires special care when constructing, the
inlet and the outlet. These two parts are difficult to obtain a physical solution at, as errors can
propagate upstream/downstream and introduce inaccuracies in the solution. A common solution
to this problem is to move the inlet and outlet far away from the domain of interest such that any
errors produced are negligible. In my simulations, the inlet cannot be easily moved a significant

5.6 Turbulence Model 36

amount in the upstream direction and may therefore be a source of error. The reason behind this
will be explained in section 7.

5.6 Turbulence Model

For the problem of sound generated in corrugated pipes we need a turbulence model which can
resolve the existence of pressure waves. In OpenFOAM we have the choice between Reynolds-
averaged simulation (RAS) and large eddy simulation (LES). We will choose for the latter one.
The RAS model does a time averaging which is unable to account for pressure waves. The LES
model resolves all the eddies down to a specified cut-off width and models the smaller eddies,
making it suitable for resolving the pressure waves. DNS (direct numerical simulation) is also a
possibility, but for this type of problem it would be prohibitive to compute the solution as the
mesh resolution needed would be far greater than LES and a much smaller time step would be
needed.

The LES requires a sub-grid scale model. In OpenFOAM we have a number of models to
choose from. The most frequently used are

• Smagorinsky

• Dynamic Smagorinsky

• One equation eddy

• Spalart Allmaras

However, in OpenFOAM the dynamic Smagorinsky model is not available for compressible calcu-
lations. In the paper [15] the Smagorinsky sgs model was successfully used in computing the flow
through a corrugated pipe, which will also be used in these simulations. The Smagorinsky sub
grid scale model requires a constant Cs which determines the behaviour of the model. The Cs

constant usually lies between Cs = 0.065 and Cs = 0.2 [18, 16] and for pipes the value Cs = 0.1
was found to be optimal [16]. In OpenFOAM the Smagorinsky constant is not directly specified,
it is calculated from two constants named Ce and Ck. The implementation of the Smagorinsky
model in OpenFOAM has roots in the paper by Sullivan [18]. They are related to the Smagorinsky
constant by

C2
s = Ck

√
2Ck

Ce

. (5.1)

The value of these constants are discussed in section 6.2.

6. Flow over Corrugations 37

6 Flow over Corrugations

This paper will mainly deal with two cases. This first case will examine the flow over corrugations
in OpenFOAM. The second case will be a study of the flow through a small pipe with the length
of 294 mm. In this section we will deal with setting up different parameters for the simulation,
such as sub grid scale model for the LES, solver settings and mesh size. The second case will
examine the onset of a standing wave inside the corrugated pipe.

6.1 Geometry

The pipe has an inner radius of 5.5 mm and and an outer radius of 8 mm, such that the cavity
depth is 2.5 mm as shown in figure 6.1. The width of the cavity is 2 mm. The bend into the cavity
is a quarter circle with radius 0.5 mm and the inside of the cavity is a square. The actual pipe
is not square inside the cavity, this but should not influence the sound generating mechanism as
there is little flow at the bottom of the cavity.

2 mm

2.5 mm

5.5 mm

Figure 6.1: Single corrugation

In most computational fluid dynamics problem the dimensionless Reynolds number tells a
great deal about the problem in regards to turbulence. We need to ensure that the velocity in
the pipe is large enough to generate turbulence in order for the vortex shedding to occur, which is
important for the sound generating mechanism [15]. When calculating the Reynolds number for
a flow around a cylinder the characteristic length is the diameter of the cylinder. Thus, with this
geometry the dimensionless Reynolds number,

Re =
ρvL

µ
=
vL

ν
, (6.1)

is approximately 6000 with a velocity of 6m/s, a characteristic length of L = 0.016m and the
kinematic viscosity at atmospheric pressure and temperature K = 300 is ν = 1.568 · 10−5m2/s. It
has been discussed, Cadwell [3], as to which Reynolds number is needed in order for the pipe to sing.
Classic turbulence theory suggests a Reynolds number of approximately 2000 [2] is needed in order
for turbulence to evolve. This however, as we will see, is not the case for a corrugated pipe where
the turbulence mechanism is different. Cadwell presented two methods of determining the onset of
turbulence which would generate sound. One could either use the diameterD of the pipe (diameter-
induced turbulence) or the corrugation length d (corrugation-induced turbulence) to calculate the

6.2 Simulation Parameters 38

Reynolds number. From experimental values he found that singing could occur at Reynolds
numbers lower than 2000 when using the diameter to compute the Reynolds number. These
experiments lead to the conclusion that the singing is caused by corrugation-induced turbulence
and suggested a Reynolds number for corrugated pipes at which turbulence develops,

Recorr ≈ 500. (6.2)

Thus, by setting the characteristic length to l = 0.002m, the new Reynolds number is approxi-
mately 765. Both calculations of the Reynolds number should yield a turbulent flow.

6.2 Simulation Parameters

In 2009 SINTEF published a paper (Popescu [15]) describing the flow induced acoustics in cor-
rugated pipes. In the paper they used Fluent 6.3 to carry out numerical simulations on a single
corrugation and this section will attempt to produce similar results using OpenFOAM 2.0. How-
ever, after some comparisons between a single corrugation and a section with three corrugation
it was clear that the single corrugation had trouble maintaining stability during simulation. This
seems to be caused by the inlet being very close to the outlet. As a result of these tests the ge-
ometry will feature three corrugations when doing the initial analysis such that any complications
related to the two boundary conditions being very close to each other are eliminated. This should
have no impact on the flow as it is still an infinite pipe being computed.

The geometry of the single corrugation with key measurements is presented in figure 6.1. In
the paper by Popescu [15] a rotational symmetry was used, which will also be used here as well as
a pure 2D simulation. The boundary conditions proposed in section 5.3 will be used with small
modifications to the inlet and outlet in order to recycle the flow. The boundary conditions at
the inlet and outlet will be a periodic boundary condition which will be equivalent to an infinite
length pipe such that the necessary features of the flow is able to properly develop. In this case the
behaviour of the flow inside and around the cavity is what we wish to capture. In OpenFOAM there
are several different boundary conditions which could accomplish this and even a dedicated solver.
However, each boundary condition behaves differently and needs to be tested. The dedicated
solver was not an option as it was not able to solve for compressibility or LES. Initially the
cyclic boundary condition looked promising, but is unable to drive the flow and is therefore not
suitable for periodic inlet and outlets. The boundary condition named directMappedFlowRate

should accomplish what is needed in order to recycle the outlet to the inlet, see listing 6 in the
appendix. This should be equivalent to the mass flow boundary condition used by Popescu [15].
As the simulation will be using LES for the turbulence and the Smagorinsky sub grid scale model,
the Smagorinsky constant needs to be determined. However, there is no universal Smagorinsky
constant which would fit all types of problems, but as discussed previously a value of 0.1 is a good
starting point for pipe flow. In OpenFOAM the Smagorinsky constant is computed by equation
(5.1) where both Ce and Ck can be varied. A natural choice is to select these two constants in close
vicinity to the standard values in such a way that the Smagorinsky constant becomes 0.1. The
two constants were chosen to be Ce = 1.59 and Ck = 0.043. The solver used is the rhoPimpleFoam

which in essence is the PISO algorithm with several outer correctors, where the PISO algorithm
uses one outer corrector. This allows for relaxation of the solution, however from several test runs
it appears that the relaxation factors is off little use. Therefore no relaxation of the solver will be
used. If this had been a steady state simulation, then the relaxation of the solution would have
been much more influential of the convergence rate.

When computing a LES problem the numerical schemes of the convective flow are of great
importance. It is desirable to use a low-dissipation scheme which is of high order. This means
that the standard upwind scheme is unsuitable as it is first order and highly diffusive. The central
difference is of second order and is a viable candidate, but is too diffusive. OpenFOAM does
however have a modified central difference scheme which is filtered in order to reduce staggering
by introducing small amounts of upwind [13]. In OpenFOAM this discretisation scheme is called
filteredLinear and will be used for the momentum. All other discretisations will use central dif-
ference. The mesh requires sufficient resolution close to the wall to resolve the effects from the

6.2 Simulation Parameters 39

boundary layer and a sufficient resolution over all for the LES in order to capture the eddies of
interest. At the wall the cell size is ∆x ≈ 1.6 · 10−5m, which grows to ∆x ≈ 6 · 10−5m at the axis
of the pipe. The mesh is shown in figure 6.2. Total cell count for a single corrugation is 10400
cells.

Figure 6.2: Mesh resolution inside a corrugation

As this set up results in an infinite pipe, it is not possible for a standing wave to be maintained
and the results should be used to gain insight in the ability for a pipe to sing [15]. Nonetheless,
the vortex shedding frequency should be obtainable and thus also the Strouhal. The dimensionless
Strouhal number is defined as

St =
fL

v
, (6.3)

where f is the vortex shedding frequency, L is the characteristic length and v is the velocity of the
fluid. In the case for a flow past a cylinder the characteristic length L is the hydraulic diameter
and is set to be the diameter of the cylinder. The Strouhal number is constant for any diameter
and fluid velocity for a flow past a cylinder. For flow inside a corrugated pipe, the diameter may
not be a good choice for the characteristic length. In the paper by Popescu [15] they used the pitch
length as the characteristic length and found that the Strouhal number varied for different pitch
lengths, where it should remain constant as with the Strouhal number for a flow past a cylinder.
Therefore the pitch length does not represent a very good choice for characteristic length for
corrugated pipes. However, since the Reynolds number is calculated using the pitch length, it
does seem intuitive to use the pitch length as the characteristic length. The cavity width would
be a better choice as it remains constant even if the pitch length changes. This was also noted by
Tonon [19] and Kristiansen and Wiik [9].

6.2.1 2D Symmetric Mesh

The two dimensional mesh is a cut out of the pipe in the direction of the axis with a plane of
symmetry at the axis in order to reduce the computational cost. The velocity field was initiated
by the solver called potentialFoam, the solver is described as ”Simple potential flow solver which

can be used to generate starting fields for full Navier-Stokes codes” in the user guide [14]. This
will help avoid problems which may occur when starting the simulation from zero. The inlet was
set to have a velocity of 8m/s and potentialFoam produced the flow field depicted in figure 6.3.

6.2 Simulation Parameters 40

Figure 6.3: Initial value for the velocity field

When the simulation starts, it can be seen that a vortex forms at the edge of the corrugation
and the vortex travels across the width of the corrugation until hitting the other edge. After
this, the vortex travels back to the center of the corrugation where it remains, see figure 6.4.
The vortex appears close to the open pipe, such that most of the fluid inside the corrugation
remains at rest. The formation of secondary vortices closer to the corrugation bottom and at the
corrugation entrance has been observed, which most likely has little influence of the overall sound
generation mechanism. The vortex inside the corrugation appears at any velocity. However, the
mere existence of the vortex does not guaranty any sound generation as the vortex itself needs
to be strong enough to make any significant change in the pressure which in turn generates the
acoustic field.

Figure 6.4: Vortex (t=0.003s)

It is clear that the flow over a corrugation gives rise to a vortex inside the corrugation, which is
what was to be expected. The shedding of this vortex is the main component in the generation of

6.2 Simulation Parameters 41

sound waves generated by corrugated pipes. The center of the corrugation was probed to extract
the pressure over time. If we look at how the pressure behaves over time we observe a periodic
event. This event grows in frequency and amplitude over time until it reaches a point (t = 0.09s)
where it seems to be reset, see figure 6.5a. This happens twice and the simulation diverges the
second time.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.99

0.995

1

1.005

1.01
x 10

5

Time (seconds)

P
re

ss
ur

e
(P

as
ca

l)

(a) Pressure inside the corrugation over time

0 0.02 0.04 0.06 0.08 0.1
0.996

0.998

1

1.002

1.004
x 10

5

Time (seconds)

P
re

ss
ur

e
(P

as
ca

l)

1 2
3

4

5

(b) Pressure over time up to t = 0.1s

Figure 6.5: Pressure inside the corrugation over time

If we take a closer look at the pressure between t = 0s and t = 0.09s we see a clear sinusoidal
behaviour with increasing frequency over time. The reason for the increase in frequency is difficult
to determine as there may be several factors causing this behaviour. It could be because this is an
infinite pipe and the frequency increases with the distance travelled, or it could be a consequence
of the periodic boundary conditions which causes a drift in the velocity. Taking this event to be
the vortex shedding we can calculate the Strouhal number at sections (see the sections in figure
6.5b) in time where the frequency is approximately constant. As the velocity increases, so should
the frequency in order to keep the Strouhal number constant. The following figures shows the
frequency plotted against the velocity and the calculated Strouhal number.

2.5 3 3.5 4 4.5 5 5.5 6
800

1000

1200

1400

1600

1800

2000

Average velocity (m/s)

F
re

qu
en

cy
 (

H
z)

Figure 6.6: Frequency plotted against average velocity in the system

In figure 6.6 we see that as the velocity increases and the frequency increases linearly with the
velocity. This is expected as the Strouhal number should ideally remain constant for any velocity.

6.2 Simulation Parameters 42

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Section

S
tr

ou
ha

l n
um

be
r

Figure 6.7: Strouhal number over time

From figure 6.7 we see that the Strouhal number for each frequency is nearly constant, but
varies between 0.6 and 0.7. This deviation may be attributed to the averaging of the velocity used
in the calculation of the Strouhal number. It is common to observe Strouhal numbers around
0.6 in corrugated pipes [12, 19]. This is a good indication that the solver selected and the solver
parameters are able to resolve the physics of the singing corrugated pipe. However, the solution
is not at all stable and we will next discuss the inadequacy of the boundary condition.

When observing unwanted results, it can be insightful to look at important properties of the
flow. In this case we will look at the average velocity and mass over time which is plotted in
figures 6.9 and 6.8. This can give valuable information about the behaviour of the solution and
give indication of what the problem might be.

0 0.05 0.1 0.15 0.2 0.25 0.3
2

4

6

8

10

Time (seconds)

A
ve

ra
ge

 v
el

oc
ity

 (
m

/s
)

Figure 6.8: Average velocity in the system over time

The average total velocity in the system over time is increasing steadily past 0.15s and ulti-
mately diverges. The initial drop in the average velocity figure is explained by how the initial value
was obtained, namely the use of the potentialFoam solver described previously. This method of
setting the initial flow field seem to not fully describe the flow field as there is no vortex appearing
inside the corrugations and subsequently the velocity in some areas is higher, see figure 6.3. This
causes the solution to undergo a spin up phase in order to reach the correct flow field. As the
simulation starts, the flow begins to form vortices in the corrugations and the higher velocity areas
disappears reducing the average velocity of the entire domain.

6.2 Simulation Parameters 43

0 0.05 0.1 0.15 0.2 0.25 0.3
0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

Time (seconds)

R
el

at
iv

e
m

as
s

(m
as

s/
m

as
s 0)

Figure 6.9: Relative total mass in the system over time

The increase in mass, seen in figure 6.9, is almost 0.05% when the simulation diverges, which
is not too good as the solver should be able to maintain the total mass in the system. There is,
however, virtually no increase in mass from the start of the simulation up to t = 0.05s, which could
suggest that the simulation past that point already began to run badly. This is further backed up
by the average total velocity shown in figure 6.8, where at t = 0.05s the average velocity began to
increase. By calculating the mass flow rate at the inlet, see figure 6.10, and outlet it is clear that
the mass flow is not constant over time and follows the same curve as the average velocity in the
interval 0 to 0.1 seconds. Figure 6.10 does not show the mass flow at the outlet boundary as it is
identical to the inlet mass flow.

0 0.02 0.04 0.06 0.08 0.1 0.12
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−5

Time (seconds)

F
lo

w
 r

at
e

(k
g/

s)

Figure 6.10: Mass flow at the inlet boundary

The most likely source to this behaviour must be within the implementation of the boundary
condition. As there is little documentation on how to use the directMappedFlowRate boundary
condition, there is a chance that the boundary condition was not set correctly. As the name
suggests, this boundary condition uses flow rate in order to drive the flow. In order to obtain more
information about the boundary condition one has to study the source code. When inspecting
the source code for this boundary condition, it is apparent that it does only preserve the velocity
component which is normal to the boundary. In this case the velocity component in the x-direction

6.2 Simulation Parameters 44

is preserved over the boundary, but not the y-direction, which is set to zero. This may have an
adverse affect on how the velocity field develops over time as the inlet does not carry over the
correct velocity components from the outlet. This explains why the mass flow is able to remain
the same through the boundary, and may very well have a connection to the over all behaviour
of the solution. Therefore one can argue for that this boundary condition may be unsuitable
for simulating an infinite pipe. The apparent inadequacy of the directMappedFlowRate boundary
condition shifts my attention to a different boundary condition in OpenFOAM called directMapped.
Originally this boundary condition was discarded as it was not apparent in how it would drive
the flow except for the option in the code called average. The average option rescales the flow at
the boundary such that the average velocity is equal a pre set value. The averaging did not seem
appropriate in this case as it may average out the oscillations caused by the flow over corrugations.
Nonetheless this boundary condition has to be explored.

The changes to the boundary condition for the inlet velocity can be seen in listing 7 in the
appendix. The same initial field, see figure 6.3, is used here as with the previous boundary
condition. The boundary condition will be tested with the average option set to true and false.
The simulation quickly diverged when the average option was set to true and was not investigated
further. With the average option set to false the simulation was stable and produced interesting
results. The total average velocity shows the same behaviour with the dip in the beginning and then
increasing. This time, however, the velocity settled at 5m/s as shown in figure 6.11. By inspecting
the source code and the simulation result, it was found that contrary to the directMappedFlowRate

boundary condition the directMapped boundary condition does preserve all velocity components
from the outlet boundary.

0 0.02 0.04 0.05 0.08 0.1 0.12 0.14 0.16 0.18
3

4

5

6

7

Time (seconds)

V
el

oc
ity

 (
m

/s
)

Figure 6.11: Total average velocity

When computing the total mass in the system over time, see figure 6.12, we can see a continuous
increase in mass over time, as with the previous case. This may suggest that the increase in mass
is a bi-product of the periodic boundary condition or even a fundamental problem with the solver.
It is more likely that the boundary condition is the problem here as the solver has most likely
undergone careful testing.

6.2 Simulation Parameters 45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

Time (seconds)

R
el

at
iv

e
m

as
s

(m
as

s/
m

as
s 0)

Figure 6.12: Total relative mass in the system

In order to compute the Strouhal number the pressure needs to be plotted over time and a fast
Fourier transform has to applied to retrieve the frequencies present in the pressure. The pipe will
be probed in two locations; the first inside the corrugation and the second a distance outside the
corrugation. The probes can be seen in figure 6.13.

Probe 1

Probe 2

Figure 6.13: Probe locations

The pressure fluctuations at the probes are shown in figure 6.14. At the first probe, figure
6.14a, there is an obvious repeating fluctuation in the pressure as if there was a wave train passing
through. The spin up phase is also clearly present up till t = 0.1 where the simulation stabilises
as the transients1 fade away and the structured fluctuation in the pressure is allowed to form.

1Transients is a short burst of energy caused by sudden change in events

6.2 Simulation Parameters 46

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.998

0.999

1

1.001

1.002
x 10

5

Time (seconds)

P
re

ss
ur

e
(P

as
ca

l)

(a) Pressure over time at probe 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.996

0.998

1

1.002

1.004
x 10

5

Time (second)

P
re

ss
ur

e
(P

as
ca

l)

(b) Pressure over time at probe 2

Figure 6.14: Pressure over time at different probe locations.

The second probe contains no distinct fluctuating parts. This does not necessarily mean that
there are none. In order to obtain the frequencies of the pressure fluctuations, the fast Fourier
transform will be used. The resulting frequencies are shown in figure 6.15.

6.2 Simulation Parameters 47

0 1000 2000 3000 4000 5000
0

5

10

15

20

X: 3728
Y: 2.473

Frequency (Hz)

X: 2573
Y: 4.94

P
ow

er

X: 1382
Y: 17.31X: 1435

Y: 16.36

(a) FFT of the pressure at probe 1

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35
X: 1364
Y: 34.43

Frequency (Hz)

P
ow

er X: 2573
Y: 18.17

X: 3724
Y: 7.163

(b) FFT of the pressure at probe 2

Figure 6.15: FFT of the pressure fluctuations at the probes

As we can see, the two probes measures the same frequencies which even seems to be higher
harmonics of the first first frequency. The Strouhal number for this simulation is St = 0.5456 when
using the most prominent frequency f = 1364 and velocity v = 5. This simulation appears to be a
good basis for checking the flow over corrugation and predict the Strouhal number associated with
the average flow velocity. Unfortunately this result came too late in order to run more simulations
with different initial velocity conditions. The method of setting the initial condition is not optimal
and needs to be improved further such that the initial behaviour can be avoided.

6.2.2 Axisymmetric Mesh

The axisymmetric mesh consist of a single corrugation which is a 4 degree wedge of a complete pipe,
where the wedge was set up such that the axis of the pipe was aligned with the x-axis and the pipe
body extruded in the y-plane. As this is a type of mesh better suited for pipe flow calculations,
we should expect better results than with the pure two dimensional mesh. Unfortunately the
axisymmetric mesh simulation was consistently unstable and seemed to have problems at the
center of the pipe where the axis of rotation is. The source of this instability is unknown. One
source of error could be the mesh, however great care was put in developing the proper mesh to
the requirements that OpenFOAM needs in order to run an axisymmetric case. The output from
OpenFOAMs own tool (checkMesh) for checking mesh quality reported no problems in regard to
the wedge generated. However, as the problem seems to be closely connected to the axis of the
pipe, it is reasonable to assume that the mesh is the problem. Due to my limited experience with

7. Flow Through a Corrugated Pipe 48

meshing, this problem has to be left unsolved at this time. The results obtained in the pure two
dimensional simulation are very promising and should act as an incentive for further work with
the axisymmetric mesh such that the results can be further improved.

7 Flow Through a Corrugated Pipe

Simulating only the flow over a corrugation is not enough to obtain practical data concerning the
sound emitted by a corrugated pipe. The natural step forward is to simulate a physically accurate
pipe such that key acoustic properties of the pipe can be predicted and possibly countered. In
this section a corrugated pipe will be simulated and the problems arising from boundary condition
and LES will be discussed.

7.1 Geometry

This case will simulate a pipe of 294 mm using the boundary conditions described in section
5.3. The inlet will have a constant velocity of 8 m/s in the x-direction. The inlet boundary
posed a challenge and may be the source of errors in this simulation. From a qualitative test of
different lengths of the pipe, it was concluded that the longer the pipe is, the easier it sings. The
complete pipe consists of 98 corrugations, making it 294 mm long. In addition to the pipe, there
is a square domain outside the end of the pipe which represents the atmosphere. This box also
helps eliminating any problems which may occur, see 5.5, at the outlet boundary conditions as
explained before, with the exception of the inlet. As the flow moves farther away from the outlet
of the pipe, the less important is the accuracy of the solution as we have moved away from the
domain of interest. This allows us to gradually increase the size of the cells towards the boundary
condition in this box and subsequently reducing the total amount of cells which in turn reduces
the computational cost. The inlet is more difficult to move away from the domain of interest as
the geometry of the inlet may significantly influence the generation of sound. If the inlet is moved
downstream and a flat pipe is used to transport the flow between the inlet and the corrugated
pipe, I found from experiments that the sound generating mechanism disappears. Therefore for
this simulation the inlet will be placed at the beginning of the corrugated pipe. See geometry in
figure 7.1. The mesh will have the same resolution per corrugation as the single corrugation, which
results in a mesh with 5.6 · 106 cells. Combined with the small time step needed, approximately
10−7s, this is a very time consuming calculation, as large eddy simulations usually are. In order be
able to do analysis of this simulation the data produced by needs to be stored with an appropriate
time interval. However, as the mesh consist of a very large amount of cells, the necessary storage
requirements would go into hundreds of gigabytes if the sampling time would be allowed to be
every 5 · 10−5s. This high sampling rate is needed in order to resolve the frequencies produced
by a singing corrugated pipe. To avoid this storage problem, nine probes were placed in areas of
interest which captures the data at run time. This reduces the storage cost down to a couple of
megabytes. These probes can be seen in figure 7.1 with the corresponding coordinates in table
7.1. All the data for each cell will be stored every 10−2s such that visual inspection of the solution
can be done and will therefore not use unmanageable amount storage space.

7.1 Geometry 49

Probe x-coordinate y-coordinate
1 0.300072285030473 0.00483425133840653
2 0.293898677744827 0.00529938613390042
3 0.14453174757383 0.0055350234786035
4 0.145418467191904 0.00689454256071798
5 0.144461066095217 0.000523670586583546
6 0.151593132959457 0.00379370914884357
7 0.311242999020088 0.0140585531646709
8 0.438076555149122 0.0608618660095729 0
9 0.53595232101649 0.0493470700251767

Table 7.1: Probe coordinates

7.1 Geometry 50

1

2

3
45 6

7

8

9

Ux = 8m/s

Figure 7.1: Geometry of the com-
putational domain for the corrugated
pipe with probe locations

7.2 Results 51

7.2 Results

The simulation ran until t = 0.04s2, which may be insufficient in order to obtain the standing wave
when comparing to the run time from Popescu [15] at t ≈ 0.2s. The required computational cost
was far too great to accompany in the allotted time I had in my master’s thesis. There are steps
which can be done in order to reduce the computational cost, where the most effective would be
reducing the mesh resolution in less important areas. There exists also a different approach to aero
acoustics, which has not been discussed in this paper, called acoustic analogy. This is a hybrid
approach to aero acoustics based on computing the flow field with a more cost efficient way, such
as RANS, and then computing the acoustic source using an analogy such as Lighthill’s analogy
[11]. This hybrid approach is beyond the scope of this paper, but is an interesting approach to
general aero acoustics. It can be seen in figure 7.2 that there are pressure waves emitted at the
end of the pipe which travels in a radial direction.

Figure 7.2: Pressure field at the outlet at time t = 0.0438151

These waves represents a difference in pressure travelling through the air and is appropriately
called sound waves as the propagation speed is the speed of sound. The frequency of these waves
can be calculated by the relationship between velocity and wavelength; v = λf . The velocity is
the velocity of sound in air, v = 343m/s and the wavelength is λ = 0.003m. This gives a frequency
of f = 114333Hz which is far beyond the frequency which humans can hear (approximately 20
kHz is the threshold for humans). This is far from what frequencies a corrugated pipe produces
with such a modest velocity. In order to investigate further, the data produced by the nine probes
needs to be analysed. The pressure data from the probes can be viewed in figure 7.2.

2The simulation ran for 4 weeks on 128 cores

7.2 Results 52

0 100 200 300 400
0.98

1

1.02x 10
5

(a) Pressure at location 1

0 100 200 300 400

9.8

10

10.2x 10
4

(b) Pressure at location 2

0 100 200 300 400
0.95

1

1.05

1.1x 10
5

(c) Pressure at location 3

0 100 200 300 400
0.98

1

1.02x 10
5

(d) Pressure at location 4

Figure 7.3: Pressure over time at different probe locations. (The axis units have been removed to
reduce clutter. x-axis: Time (seconds), y-axis: Pressure (Pascal)).

0 100 200 300 400
0.95

1

1.05x 10
5

(e) Pressure at location 5

0 100 200 300 400
0.95

1

1.05x 10
5

(f) Pressure at location 6

0 100 200 300 400
9.9

9.95

10

10.05x 10
4

(g) Pressure at location 7

0 100 200 300 400
9.96

9.98

10

10.02x 10
4

(h) Pressure at location 8

0 100 200 300 400
9.985

9.99

9.995

10

10.005x 10
4

(i) Pressure at location 9

Figure 7.3: (Cont.) Pressure over time at different probe locations. (The axis units have been
removed to reduce clutter. x-axis: Time (seconds), y-axis: Pressure (Pascal)).

From all the pressure plots from the probes, it is clear that probe 4 has a distinct sinusoidal
form. This probe is located inside a corrugation and has the frequency f = 235.7Hz which was
found by a fast Fourier transform shown in figure 7.4. This frequency shows that there is a periodic
event happening and is most likely connected to the appearing and disappearing of vortices inside
the corrugations. More on this below. The probes 7 to 9 are located outside the pipe and one
could expect them to resolve the high frequency which was found previously. This is, however,

7.2 Results 53

not the case. The reason it does not show the frequency found to be f = 114333Hz is because
the sampling rate for the probes only allows frequencies up to 10000Hz. This limitation comes
from the Nyquist frequency, which allows us only to capture frequencies which is at most half
the sampling frequency, therefore in this case the maximum frequency we are able to capture is
1

2

1

10−5 = 10000Hz.

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

X: 235.7
Y: 1076

Frequency (Hz)

P
ow

er

Figure 7.4: FFT of the pressure at probe 4

From the previous simulation, flow over corrugations, we can expect to find similar vortices in
the corrugations of the pipe. The figure 7.5 shows the instantaneous velocity field of a couple of
corrugations midway into the pipe at the time t = 0.0438151. As we can see, there are vortices
present in the corrugations. Some vortices are more prominent than others, which may be a result
of the periodic high velocity and low velocity parts. The mechanism which determines when a
vortex is present or not relates to the standing wave occurring in a corrugated pipe. From [15] it is
shown that in areas with a mean acoustic pressure there is little to no rotation in the corrugation,
whereas in areas with an extreme value of the acoustic pressure is present the vortices are quite
strong. This suggests that there may be something similar to a standing wave in figure 7.5 and
may be attributed to the high frequency present in the system likely caused by the inlet, which is
to be discussed next.

7.2 Results 54

Figure 7.5: Velocity field snapshot taken at the center of the pipe at time t = 0.0438151

From visually inspecting the solution is was immediately clear that the inlet boundary condition
was far from optimal and seems to be the source of the high frequency produced at the outlet.
Figure 7.6 shows the inlet velocity field at time t = 0.0438151.

Figure 7.6: Velocity field at the inlet

The inlet is most likely causing problems downstream. As we can see from figure 7.6, the
velocity magnitude is far greater than what would seem to be natural. The source of the high
frequency found outside the pipe seems to come from errors produced by the inlet boundary
condition. The boundary condition imposed on the inlet was a flow parallel to the axis of the
pipe with no turbulent structures. Therefore, in order for the solver to cope with this uniform
flow it produces packets of high velocity near the axis. These high velocity packets influences the
solution down stream as the high frequencies produced by these packets may be kept alive by
the corrugated pipe. The velocity of these packets do slow down to a more physical level further

7.2 Results 55

down the pipe and can be viewed as transients. However, there is a constant production of these
high velocity packets at the inlet which would produce transients through out the simulation. In
addition to the flow, we have pressure waves going both upstream and downstream in the pipe, as
this is the nature of sound waves. The boundary condition for pressure at the inlet does not allow
the energy from these waves to exit the system and is consequently reflected back into the pipe.
This allows energy to build up over time and may be a strong contributor to the behaviour which
we observe at the inlet. In order to let the pressure waves to exit the domain through the inlet, we
would need the boundary condition defined at the outlet. However, if one were to do this, the inlet
would be over determined as the pressure and velocity is defined with a specific value. This is a
bad configuration of the boundary conditions and would lead to a divergent solution. In order to
avoid this problem, we need to define a non reflective boundary condition for the pressure at the
inlet. As it currently stands, I do not know if there is such a boundary condition in OpenFOAM
which could work for the inlet.

Unfortunately there was not enough time to attempt to correct the inlet boundary condition
due to the lengthy simulation time. In order to produce a better inlet flow field one could define
a fully developed flow at the boundary or use the boundary condition used in the previous case
and recycle the flow a little bit downstream back to the inlet. This would ensure that the flow
would develop a much better turbulent flow field at the inlet after some time. Another approach
would be to use the converged solution of a steady state RANS simulation as the initial value.
This could possibly remove transients from the solution and subsequently the standing wave could
develop at a much earlier point in time.

7.2 Results 56

8. Summary and Discussion 57

8 Summary and Discussion

When a gas flows through a corrugated pipe at a high enough velocity there is a distinct ”singing”
which can be heard. This paper has explored this phenomenon using computational fluid dynamics,
with code implemented in OpenFOAM. Throughout this thesis the necessary boundary conditions
and initial values have been discussed, as well as mesh generation. When I began working on
this thesis I had no prior experience with computational fluid dynamics, which is why a big
part of this work was to develop the theory behind CFD code. The work flow for setting up
the correct boundary conditions, initial values, solver settings and discretisation schemes is, as I
experienced, an iterative process stretching over a long period of time. As I progressively became
more experienced with both CFD and the workings of OpenFOAM, the time spent on each iteration
would shorten, which in turn allowed me to perform even more iterations. The process was plagued
with divergent simulations, bad meshes and insufficiently defined boundary conditions. However,
in the end, most aspects of setting up a CFD case fell in place and some promising results were
produced.

The two cases investigated was the flow over corrugations and the flow through a corrugated pipe.
The first case was split into two types of mesh; symmetric and axisymmetric. The axisymmetric
simulation had problems which I was unable to solve. The most likely reason for the simulation
diverging is the the mesh. Creating a good mesh is somewhat of an art itself and with time and
experience a working mesh could have been produced. The difference in the solution between a
symmetric and axisymmetric mesh is something worth investigating in order to determine if the
extra work needed to generate a good enough mesh for axisymmetric calculations is worth it. The
symmetric mesh only had boundary condition problems, which was resolved by discarding the
directMappedFlowRate boundary condition and using the directMapped boundary condition. The
directMappedFlowRate exhibited a drift in the velocity, which resulted in a divergent solution.
It was found that this boundary condition does not preserve the complete velocity field when
mapping it back to the inlet. Only the velocity component normal to the boundary is preserved.
This makes it unusable for simulating an infinite pipe as there is information lost through the
boundary. The second boundary condition did not suffer from this limitation and proved to be
a stable boundary condition. Simulation using the directMapped boundary condition resulted in
a Strouhal number which was in agreement with previous work. There were unfortunately not
enough time to compute the Strouhal number for different velocities, which would have been the
next natural step for this case.

The second case featured a corrugated pipe of finite length, which was given a uniform inlet
velocity. This simulation was very computational expensive due to the high resolution mesh
needed. The computational time could have been reduced by decreasing the amount of cells by
removing superfluous parts of the mesh. However, most of the cells are located in the corrugated
pipe and can not be altered too much in order to keep the mesh resolution needed by a large eddy
simulation. The results from the simulation yielded sound frequencies far greater than expected,
which was traced back to a problematic inlet boundary condition. Ideally the inlet should have
been moved away from the domain of computational interest to reduce the transients continuously
produced at the inlet. However, as the corrugated pipe is sensitive to flat sections of pipe before or
after the corrugations, the inlet was positioned at the start of the corrugated pipe. As a result, the
simulation was unsuccessful in obtaining the standing wave present in a corrugated pipe. The inlet
boundary needs to be improved before any further analysis can be done. If I had the time to work
more on this project, I would have begun to investigate different approaches to the inlet problem.
There are three solutions I have been considering following the result from the simulation. I could
prescribe a fully developed flow at the inlet boundary condition such that the flow hitting the
corrugation is as physically valid as possible. The boundary condition used in the first case could
also be used to recycle the flow field down stream back to the inlet. This would allow the flow
to develop realistic turbulence at the inlet over time. Another way, perhaps in combination with
the other suggestions, is to calculate the steady state solution using RANS as a initial value for

8. Summary and Discussion 58

the whole domain. This would allow turbulent areas to start with an approximate turbulence and
reduce the time spent on computing the spin up phase which is prone to transients and may be
uninteresting.

The phenomenon of singing corrugated pipes is an interesting subject and should be investigated
further, as the practical implications of being able to predict and reduce the sound generated is
of high value.

A. Appendix 59

A Appendix

All boundary conditions

Listing 1: Boundary file for U

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVectorF i e ld ;
l o c a t i o n ”0” ;
ob j e c t U;

}
// ∗ //

dimens ions [0 1 −1 0 0 0 0] ;
i n t e r n a l F i e l d uniform (0 0 0) ;

boundaryField
{

wal l
{

type f i xedValue ;
value uniform (0 0 0) ;

}
i n l e t
{

type f i xedValue ;
value uniform (8 0 0) ;

}
ou t l e t
{

type i n l e tOu t l e t ;
i n l e tVa l u e uniform (0 0 0) ;
value uniform (0 0 0) ;

}
ax i s
{

type symmetryPlane ;
}
de fau l tFaces
{

type empty ;
}

}

A. Appendix 60

Listing 2: Boundary file for p

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo l S ca l a rF i e l d ;
l o c a t i o n ”0” ;
ob j e c t p ;

}
// ∗ //

dimens ions [1 −1 −2 0 0 0 0] ;

i n t e r n a l F i e l d uniform 100000;

boundaryField
{

ax i s
{

type symmetryPlane ;
}
wal l
{

type zeroGradient ;
}
i n l e t
{

type zeroGradient ;
}
ou t l e t
{

type waveTransmissive ;
gamma 1 . 3 ;
f i e l d p ;
phi phi ;
rho rho ;
p s i p s i ;
f i e l d I n f 100000;
l I n f 1 ;
value uniform 1e5 ;

}
de fau l tFaces
{

type empty ;
}

}

// ∗∗∗ //

A. Appendix 61

Listing 3: Boundary file for T

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo l S ca l a rF i e l d ;
l o c a t i o n ”0” ;
ob j e c t T;

}
// ∗ //

dimens ions [0 0 0 1 0 0 0] ;

i n t e r n a l F i e l d uniform 300 ;

boundaryField
{

ax i s
{

type symmetryPlane ;
}
wal l
{

type f i xedValue ;
value uniform 300 ;

}
i n l e t
{

type f i xedValue ;
value uniform 300 ;

}
ou t l e t
{

type i n l e tOu t l e t ;
i n l e tVa l u e uniform 300 ;
value uniform 300 ;

}
de fau l tFaces
{

type empty ;
}

}

// ∗∗∗ //

A. Appendix 62

Listing 4: Boundary file for alphaSgs

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo l S ca l a rF i e l d ;
l o c a t i o n ”0” ;
ob j e c t alphaSgs ;

}
// ∗ //

dimens ions [1 −1 −1 0 0 0 0] ;

i n t e r n a l F i e l d uniform 0 ;

boundaryField
{

ax i s
{

type symmetryPlane ;
}
wal l
{

type zeroGradient ;
}
i n l e t
{

type zeroGradient ;
}
ou t l e t
{

type zeroGradient ;
}
de fau l tFaces
{

type empty ;
}

}

// ∗∗∗ //

A. Appendix 63

Listing 5: Boundary file for muSgs

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo l S ca l a rF i e l d ;
l o c a t i o n ”0” ;
ob j e c t muSgs ;

}
// ∗ //

dimens ions [1 −1 −1 0 0 0 0] ;

i n t e r n a l F i e l d uniform 0 ;

boundaryField
{

ax i s
{

type symmetryPlane ;
}
wal l
{

type zeroGradient ;
}
i n l e t
{

type zeroGradient ;
}
ou t l e t
{

type zeroGradient ;
}
de fau l tFaces
{

type empty ;
}

}

// ∗∗∗ //

A. Appendix 64

Modified boundary conditions for Case 1

Listing 6: Boundary file for U using directMappedFlowRate

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVectorF i e ld ;
l o c a t i o n ”0” ;
ob j e c t U;

}
// ∗ //

dimens ions [0 1 −1 0 0 0 0] ;
i n t e r n a l F i e l d uniform (0 0 0) ;

boundaryField
{

wal l
{

type f i xedValue ;
value uniform (0 0 0) ;

}
i n l e t
{

type directMappedFlowRate ;
phi phi :
rho rho ;
neighPhi neighPhi ;
value uniform (0 0 0) ; // p l a c eho l d e r

}
ou t l e t
{

type i n l e tOu t l e t ;
i n l e tVa l u e uniform (0 0 0) ;
value uniform (0 0 0) ;

}
ax i s
{

type symmetryPlane ;
}
de fau l tFaces
{

type empty ;
}

}

A. Appendix 65

Listing 7: Boundary file for U using directMapped

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
=========	
\\ / F i e l d	OpenFOAM: The Open Source CFD Toolbox
\\ / O perat i on	Vers ion : 2 . 0 . 1
\\ / A nd	Web: www.OpenFOAM. com
\\/ M an ipu l a t i on	
\∗−−−∗/
FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s vo lVectorF i e ld ;
l o c a t i o n ”0” ;
ob j e c t U;

}
// ∗ //

dimens ions [0 1 −1 0 0 0 0] ;
i n t e r n a l F i e l d uniform (0 0 0) ;

boundaryField
{

wal l
{

type f i xedValue ;
value uniform (0 0 0) ;

}
i n l e t
{

type directMapped ;
value uniform (8 0 0) ;
setAverage f a l s e ;
average (0 0 0) ;

}
ou t l e t
{

type i n l e tOu t l e t ;
i n l e tVa l u e uniform (0 0 0) ;
value uniform (0 0 0) ;

}
ax i s
{

type symmetryPlane ;
}
de fau l tFaces
{

type empty ;
}

}

A. Appendix 66

Solver settings

Listing 8: Discretisation schemes

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona r y ;
l o c a t i o n ” system ” ;
ob j e c t fvSchemes ;

}
// ∗ //
ddtSchemes
{

de f au l t backward ;
}

gradSchemes
{

de f au l t Gauss l i n e a r ;
grad (p) Gauss l i n e a r ;

}

divSchemes
{

de f au l t none ;
div (phi ,U) Gauss f i l t e r edL i nea r 2V 1 0 ;
div (phiU , p) Gauss l i n e a r ;
d iv (phi , h) Gauss l i n e a r ;
d iv (phi ,K) Gauss l i n e a r ;
d iv ((muEff∗dev2 (T(grad (U))))) Gauss l i n e a r ;

}

l aplac ianSchemes
{

de f au l t none ;
l a p l a c i a n (muEff ,U) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n (mut ,U) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n (DkEff , k) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n (Deps i lonEf f , e p s i l o n) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n (DREff ,R) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n (DomegaEff , omega) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n ((rho ∗ (1 |A(U))) ,p) Gauss l i n e a r co r r e c t ed ;
l a p l a c i a n (alphaEf f , h) Gauss l i n e a r co r r e c t ed ;

}

i n te rpo l at i onSchemes
{

de f au l t l i n e a r ;
}

snGradSchemes
{

de f au l t co r r e c t ed ;
}

f l uxRequ i r ed
{

de f au l t no ;
p ;

}
// ∗∗∗ //

A. Appendix 67

Listing 9: Solution settings

FoamFile
{

ve r s i on 2 . 0 ;
format a s c i i ;
c l a s s d i c t i ona r y ;
l o c a t i o n ” system ” ;
ob j e c t f vSo l u t i on ;

}
// ∗ //
s o l v e r s
{

”(p | rho) ”
{

s o l v e r PCG;
to l e r ance 1e−06;
r e lTo l 0 . 0 1 ;
p r e cond i t i one r DIC ;

}
”(p | rho) F ina l ”
{

$p ;
r e lTo l 0 ;

}
”(U | h | k | e p s i l o n | omega) ”
{

s o l v e r PBiCG;
p r e cond i t i one r DILU;
to l e r ance 1e−6;
r e lTo l 0 . 1 ;

}
”(U | h | k | e p s i l o n | omega) F ina l ”
{

$U ;
to l e r ance 1e−06;
r e lTo l 0 ;

}
}

PIMPLE
{

momentumPredictor yes ;
nOuterCorrectors 15 ;
nCor r ector s 4 ;
nNonOrthogonalCorrectors 1 ;
rhoMin rhoMin [1 −3 0 0 0] 0 . 5 ;
rhoMax rhoMax [1 −3 0 0 0] 2 . 0 ;

r e s i dua lCont r o l
{

”(U | k | e p s i l o n | p) ”
{

r e lTo l 0 ;
t o l e r ance 1e−05;

}
}

}
r e l axa t i onFac to r s
{

”(p | rho |U |T) .∗” 1 ;
”(h | k | e p s i l o n | omega) .∗” 1 ;

}

A. Appendix 68

REFERENCES 69

References

[1] Salomè. http://www.salome-platform.org/.

[2] K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, and B. Hof. The Onset of
Turbulence in Pipe Flow. Science, 333(6039):192–196, July 2011.

[3] L.H. Cadwell. Singing corrugated pipes revisited. American Journal of Physics, 62:224–227,
March 1994.

[4] F.S. Crawford. Singing Corrugated Pipes. American Journal of Physics, 42:278–288, April
1974.

[5] H.K. Dahle. Lecture Notes in Continuum Mechanics. University of Bergen Department of
Mathematics, 2010.

[6] J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer, 2002.

[7] T. Hayase, J.A.C. Humphrey, and R. Greif. A consistently formulated QUICK scheme for
fast and stable convergence using finite-volume iterative calculation procedures. J. Comput.

Phys., 98(1):108–118, 1992.

[8] V. Kop’ev, M. Mironov, and V. Solntseva. Aeroacoustic interaction in a corrugated duct.
Acoustical Physics, 54:197–203, 2008.

[9] U.R. Kristiansen and G.A. Wiik. Experiments on sound generation in corrugated pipes with
flow. The Journal of the Acoustical Society of America, 121(3):1337–1344, 2007.

[10] P.K. Kundu and I.M. Cohen. Fluid Mechanics. Academic Press. Elsevier, 2010.

[11] M.J. Lighthill. On sound generated aerodynamically. i. general theory. Proceedings of the

Royal Society A Mathematical Physical and Engineering Sciences, 211(1107):564–587, 1952.

[12] G. Nakiboǧlu, S.P.C. Belfroid, J.F.H. Willems, and A. Hirschberg. Whistling behavior of
periodic systems: Corrugated pipes and multiple side branch system. International Journal
of Mechanical Sciences, 52(11):1458 – 1470, 2010. Special Issue on Non-linear Oscillations.

[13] OpenCFD. OpenFOAM - The Open Source CFD Toolbox - Documentation. OpenCFD Ltd.,
2.0 edition, 2011.

[14] OpenCFD. OpenFOAM - The Open Source CFD Toolbox - User’s Guide. OpenCFD Ltd.,
2.0 edition, 2011.

[15] M. Popescu, Stein T. J., and Wei S. Flow-induced acoustics in corrugated pipes. Commun.

Comput. Phys., 10(1):120–139, 2011.

[16] M. Rudman and H.M. Blackburn. Large eddy simulation of turbulent pipe flow. Second
International Conference on CFD in the Minerals and Process Industries, 1999.

[17] M.P Silverman and G.M Cushman. Voice of the dragon: the rotating corrugated resonator.
European Journal of Physics, 10(4):298, 1989.

[18] P.P. Sullivan, J.C. McWilliams, and C. Moeng. A subgrid-scale model for large-eddy
simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 71:247–276,
1994.

[19] D. Tonon, B.J.T. Landry, S.P.C. Belfroid, J.F.H. Willems, G.C.J. Hofmans, and
A. Hirschberg. Whistling of a pipe system with multiple side branches: Comparison with
corrugated pipes. Journal of Sound and Vibration, (329):1007–1024, 2010.

REFERENCES 70

[20] J. Tu, G.H. Yeoh, and C. Liu. Computational Fluid Dynamics: A Practical Approach.
Butterworth Heinemann. Butterworth-Heinemann, 2008.

[21] H.K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics:

The Finite Volume Method. Pearson Education Limited, 2007.

