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Abstract

This thesis will consider the performance of the cross-validation copula information

criterion, xv-CIC, in the realm of finite samples.

The theory leading to the xv-CIC will be outlined, and an analysis will be conducted on

an assorted collection of bivariate one-parameter copula models. The restriction to the

bivariate case is not a grave one, since more complex d-variate samples can be broken

down into a study of conditioned bivariate samples, by the methodology of regular

vine-copulas, the pair copula construction and stepwise-semiparametric estimation of

parameters.

As a by-product of our analysis, we can give an advice with regard to the selection of

model selection method in the semiparametric realm.
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Chapter 1

Introduction

Every day vast amounts of data are encountered in science and commerce, and there is

a high demand for the construction of statistical models that for instance can be used

to attain reasonable predictions with regard to what the future might bring, be it stock

values, levels of precipitation, losses due to natural disasters or whatnot.

In the construction of such models, one need to make distributional assumptions for the

available d-variate observations Xn = {xi}ni=1. However, if the family of distributions

used does not allow for more extreme cases, this might e.g. result in severely underesti-

mated risk-rates for ruin in a financial setting.

It is not a trivial task to find a distributional model that can describe a set of d-variate

observations Xn in a faithful way. Even though theoretically sound algorithms exist

for the estimation of the parameters, these algorithms might be rendered useless if

the number of parameters used to describe the structures inherent in Xn leads to a

computational time that spans eons.

Moreover, in addition to fitting models to our observations Xn, we will also like to rank

the models in order to select the one which seems to give the best description of the

data-generating process.

This thesis will investigate the finte sample performance of such a model selection method

in a semiparametric setting, and this first chapter will now proceed by presenting an

outline of the theory motivating the cross-validation copula information criterion.

1
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1.1 Classical multivariate theory

Some data are easier to describe than others. For instance, one could have data origi-

nating from a biological process, where most of the observations will be clustered in the

proximity of the mean, and where we due to the biological nature of the data-generating

process will find rather few extreme deviations.

In the univariate case, the distribution that often describes the features of such obser-

vations have in fact received its name from the multitude of cases where it popped up,

i.e. the normal distribution.

Moreover, as we can learn from a textbook like e.g. Johnson and Wichern [1], the uni-

variate normal distribution can be extended to a multivariate distribution, uniquely

determined by its mean µ and its covariance matrix Σ.

As in the univariate case where we might need to consider the t-distribution when we

want to do an inference based on a sample, we might need to use the multivariate

t-distribution instead of the multivariate normal-distribution. The multivariate normal

distribution and multivariate t-distribution are commonly known as elliptical distribu-

tions, due to the elliptical contour-lines they feature. If our data feature such sym-

metrical properties, these distributions surely are worth to consider in our quest for a

model.

However, our data might not fit into this fold, e.g. a daily measure of temperature,

precipitation and wind (direction + strength) would after a while probably contain a

much higher amount of extreme observations (for one or more of the covariates) than

what we would have expected to see if the data-generating process were of an elliptical

nature.

Another example of data that might be erroneous to model by an elliptical distribution

is the daily values of stocks. In this case we might expect there to be less correlation

between the prices in a bull market than in a bear market, i.e. the tail-dependencies

will be different. In particular, when some stocks in a bull market start to rise, we

do not expect all other stocks to rise as well – but in a bear market, many stocks will

simultaneously plummet into the abyss.

Whereas we rather easily can produce an elliptical model for a set of observations that

exhibits symmetrical features, the situation is tremendously more difficult in the general

case – and we will be forced to assume quite a few simplifying assumptions in order to

produce any model at all.
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It is thus important to keep strictly in mind that the model we obtain after our sim-

plifying assumptions not should be confused with the unknown data-generating process

that our observations stemmed from. The following quote from G. E. P. Box is a nice

reminder with regard to how we should look upon our models:

Remember that all models are wrong; the practical question is how wrong

do they have to be to not be useful.

Empirical Model-Building by Box and Draper, p. 74.

1.2 Sklar’s theorem

The theory of copulas, introduced in Sklar [2] tells us that there is a nice connection

between general d-variate distributions with support on Rd and a particular class of

d-variate distributions, called copulas. To be precise, a d-variate copula is a function

C : [0, 1]d → [0, 1] satisfying the following two properties

(i) For every u = (u1, . . . , ud) ∈ [0, 1]d, (1.1a)

C(u) = 0 if at least one coordinate of u is 0,

and for all j = 1, . . . , d

C(1, . . . , 1, uj, 1 . . . , 1) = uj.

(ii) C is d-increasing (see Nelsen [3]). (1.1b)

If we make the simplifying assumption that the cumulative distribution function F (x)

is continuous, Sklar’s theorem tells us that there exists an unique copula C(u) on [0, 1]d

such that

F (x) = C(F⊥(x)), (1.2)

where F⊥(x)
def
= (F1 (x1) , . . . , Fd (xd)), with Fj

(
xj
) def

= P
(
Xj ≤ xj

)
the vector of cdf’s for

the marginal distributions.

This implies that the copula C encodes all the multivariate dependencies of the distri-

bution F , and by this connection we can separate the study of the dependency structure

of F (x) from the structure of its marginal distributions.

Furthermore, this enables us to construct new multivariate distributions, since the

copula C can be given any set of cdfs as inputs – and thereby give us new d-variate

distributions G with the same dependency structure as the F we started with.

http://en.wikipedia.org/wiki/George_E._P._Box


Chapter 1 – Introduction 4

A consequence of this is that we “easily” can produce a plethora of different d-variate

models by using different combinations of d-variate copula models C and different col-

lections of marginal distributions {F i}di=1.

However, with regard to the computational costs required for the fitting of a model to

the observations Xn, it is recommendable to restrict our attention to models that we

initially think might have a decent match with the data.

When we consider this, there are two parts to deal with – the marginal models {F i}di=1

and the d-variate copula model C – and in both of these parts there will in general

be necessary to make simplifying assumptions in order to get a manageable estimation

problem. The discussion of estimation related to the copula will be postponed to the

next section.

Models for the marginal distributions could of course be investigated by considering the

relevant subset from Xn, in order to restrict our attention to models that at least have a

decent fit to the corresponding empirical data. However, an option (that will be further

discussed later on) is to get rid of the marginal distributions completely, by using the

empirical marginals to create a set of pseudo-observations Xp n in [0, 1]d.

There are several reasons that justifies this simplification. One reason is that we in

general will be more interested in the parameters describing the interdependencies of Xn,

and that we thus can sacrifice all those other parameters that the marginals would

have introduced. Furthermore, if we want the estimation-algorithm to finish within a

reasonable timespan, it is a necessity to keep the number of parameters as low as possible.

Thirdly, even though the transformation Xn → Xp n introduces some extra bias into our

computation, the effect of this dwindles when we have larger samples, cf. appendix B.

1.3 Bivariate copulas and vine copulas

When it comes to the copula-models, there is a tremendous difference between the

bivariate case and the general case – which we now will briefly comment upon.

In the bivariate case, one or two copula-parameters is sufficient to reasonably model

features like symmetry and tail-dependence. In addition to the copulas corresponding

to the symmetric elliptical distributions (i.e. the normal-copula1 and the t-copula), a

major part of the toolbox in the bivariate case of copula-modeling is the Archimedean

copulas – which can be constructed by the help of a generating function (see chapter 2

for the formal definition, and cf. Joe [4] or Nelsen [3] for lengthy lists of such copulas).

1The normal-copula is also known as the Gaussian-copula.
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When the dimension d increases, there is a rapid increase in the number of possible

internal symmetries and the number of corners/edges in [0, 1]d where some kind of tail-

dependence can occur. In particular, this implies that the copula-models need a higher

number of parameters in order to faithfully model d-variate observations.

However, the problem of finding suitable d-variate copula models is rather complicated.

We can construct Archimedean copulas in any dimension, but they are stuck with the

one or two parameters that they have in the bivariate case – and they are thus to

rigid to be useful. The other easy available source of d-variate copula-models is the

copula models corresponding to the elliptical distributions, but these are not suitable

when the observations Xn depart from symmetry, e.g. by having a prominent one-sided

tail-dependency.

The lack of flexible d-variate copula models made the usefulness of Sklar’s theorem

rather limited in the general d-variate setting, but this changed when the pair-copula

construction (PCC) and vine-copulas entered the stage, in particular when this was

successfully applied in a modeling problem, see Aas and Berg [5] and Aas et al. [6].

1.3.1 The pair copula construction

This section will briefly sketch the pair copula construction (PCC) and only mention

the concept of vine copulas. These concepts are needed in order to give at least a partly

justification for restricting the analysis in chapter 4 to the bivariate case, but otherwise

we will not mention them again. The interested reader can find a rigorous introduction

to this theory in Brechmann [7].

For the discussion below, recall that we are working under the simplifying assumption

that we have a continuous d-variate distribution F (x) = C(F⊥(x)), with notation as

given in eq. (1.2).

We will henceforth denote by respectively f and c the pdfs of F and C, and we will

furthermore denote by fi the pdfs of the marginal distributions Fi.

The following connection between the pdfs follows directly from eq. (1.2):

f(x) =

(
d∏

k=1

fk (xk)

)
· c(F⊥(x)). (1.3)

In addition to this expression, the density f(x) can also be expressed by the help of

conditional distributions like

f(x) = f1 (x1) f2|1 (x2|x1) · · · fd|12 . . . (d− 1)

(
xd|x1, . . . , xd− 1

)
, (1.4)
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or we might equally well have used any permutation of the indices (1, . . . , d).

Joe [8] showed how the conditional densities in eq. (1.4) could be expressed by conditional

densities derived from the copula C, and how an iterative process then gives a formula

which decomposes the d-variate density f in terms of d univariate marginal densities

and d(d− 1)/2 bivariate copula densities. We will here briefly sketch this result.

With notation borrowed from Haff [9], where a more detailed argument can be found,

the following rule tells us how a conditioning variable xj in fi|j ∪ v can be “removed” by

using the bivariate conditional copula cij|v (·, ·|xv) instead, i.e.

fi|j ∪ v
(
xi|xj, xv

)
= cij|v

(
Fi|v (xi|xv) , Fj|v

(
xj|xv

)
|xv
)
· fi|v (xi|xv) . (1.5)

Note that v here is a nonempty subset of {1, . . . , d} \ {i, j}, and that xv thus is to be

interpreted as the collection of variables indexed by v.

An iteration of eq. (1.5) leads to an expression of the following form for the density f ,

f(x) =

(
d∏

k=1

fk (xk)

)
·

d−1∏
`=1

∏
(i,j,v)

cij|v
(
Fi|v (xi|xv) , Fj|v

(
xj|xv

)
|xv
) , (1.6)

in which the triplet (i, j, v) is such that v is a subset of size `− 1 from {1, . . . , d} \ {i, j}.

If we in eq. (1.6) make the simplifying assumption that all the bivariate conditional

copula densities cij|v (·, ·|xv) are constant with regard to xv, i.e. that we assume that the

random pair
(
Fi|v (Xi|Xv) , Fj|v

(
Xj|Xv

))
is independent of the random vector Xv, then

we arrive at the following simpler expression for the density f(x)

f(x) =

(
d∏

k=1

fk (xk)

)
·

d−1∏
`=1

∏
(i,j,v)

cij|v
(
Fi|v (xi|xv) , Fj|v

(
xj|xv

)) . (1.7)

According to Haff et al. [10], the nonparametric shape constraint assumption of indepen-

dence is satisfied by copulas like the t-copula and the clayton copula. Moreover, even

though this assumption does not hold in general, it provides in many cases an acceptable

approximation to the true distribution. The interested reader is urged to check out Haff

[9] for further details.

An important consequence of eq. (1.7) with regard to the study of a d-variate sample Xn
(from some unknown data-generating process), is that we can draw on all the knowledge

we have of bivariate copulas. This gives a tremendous increase in flexibility, which is

clearly preferable if we want the resulting model to have a god fit to the data.
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1.3.2 Regular vines and vine copulas

The combinatorial rules that the triplets (i, j, v) from eq. (1.7) must satisfy, was inves-

tigated in Bedford and Cooke [11, 12], and lead to the definition of regular vines and

vine copulas.

For our purposes the following informal description of a vine copula is sufficient: A vine

copula is a collection of bivariate copula models that labels all the edges of a regular vine,

where the latter can be described as a nested set of trees where the edges of tree i are

the nodes of tree i+ 1, and where two edges in tree i are joined by an edge in tree i+ 1

only if they share a common node.2

With the vine copula as a part of our toolkit, the problem of finding a copula model that

can describe the interdependencies in a d-variate set Xn is much simplified – and the

models we get have plenty of parameters that can be tweaked in order to fit the models

to our observations.

However, with an increased number of parameters comes a formidable increase in com-

puting time could result. Remember that we can factorize the d-variate pdf f into d

univariate marginals and d(d − 1)/2 bivariate copula densities, and if all of these dis-

tributions then have one or two parameters, any work on the resulting structure would

demand a large computational cost

Moreover, we would typically like to compare several fitted models against each other, in

order to see if some of them seems to fit Xn better than the others. This also heightens

the total computational load. Even for rather low values of d will it be infeasible to try

to fit all possible regular vine structures, and all the different vine copulas they can be

labeled with, when searching for a model for some Xn. In short, we need techniques

that can delimit our attention to the most promising candidates.

1.3.3 Delimiting techniques

As mentioned above, we need some way to restrict our attention to the most promising

models when we want to model a d-variate set of observations Xn. And in addition we

need some way to decide if one of the models have a better fit to the data, and thus

should be the preferred one if we want to make some predictions, say.

Like in the previous sections, we will once more only give a sketch of the arguments here,

the interested reader can find a complete treatment of these topics in Brechmann [7].

2The rigorous formal definitions of regular vines and vine copulas will not be given in this thesis, but
the interested reader can find an exquisite introduction in Brechmann [7, Chap 2.4].
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First of all, we need to pick a regular vine to be used as the frame for the vine copula

models. The standard strategy with regard to this is to employ an algorithm that picks a

vine where as much as possible of the dependence structure is captured in the first levels.

When a regular vine has been chosen, we can use that as a frame for a vine copula model,

i.e. we need a collection of d(d− 1)/2 bivariate copula models to put on the edges of the

vine. It is trivial to produce a lot of such vine copula models, but the time needed for the

estimation of the parameters implies that we still need to apply simplifying assumptions

if we want an answer within a reasonable timespan.

When the focal point of interest is the multivariate dependencies between the covariates,

a standard procedure is to “sacrifice” the parameters related to the marginal distribu-

tions. In particular, we avoid the specification of models for the marginals by replacing

F γ,⊥ with Fn,⊥(x)
def
= (Fn,1(x1), . . . , Fn,d(xd)), where Fn,j(xj) stands for n

n+1 times the

empirical marginal, i.e. Fn,j(xj)
def
= 1

n+1

∑n
i=1 1{Xj ≤ xj}. 3

We thus replace the independent observations Xn from Rd, with dependent pseudo-

observations Xp n in [0, 1]d. This strategy simplifies the estimation process of the re-

maining parameters, but there is a price to pay since the transformation Xn → Xp n

introduces extra noise that must be accounted for when we consider the bias of our

estimated parameters, and the corresponding fitted models.

This semiparametric approach – that solely focus on the parameters of the copula –

might still not reduce our problem to a manageable one, since we even for quite few

covariates might reach an intractable number of parameters to estimate.

Stepwise semiparametric, reduction to the bivariate case: When we use a

vine-copula as a model for our pseudo-observations Xp n, we can counter the problem of

too many parameters by using the stepwise semiparametric (SSP) strategy – which at

the price of some further simplifying assumptions enables us to estimate our parameters

in smaller batches. The strategy is to focus on the regular vine, and start out with the

tree at its lowest level. At each edge of this tree there will be a corresponding conditioned

bivariate set, and we will fit our bivariate copulas to these sets. When all the trees in

a level is accounted for, the process goes on to the next level. Haff [9] can be consulted

for further details with regard to this procedure.

To emphasize: The SSP strategy for parameter estimation implies that we even for

d-variate observations Xn will restrict our attention to the bivariate case when we want

to find a copula that models the interdependencies of our observations.

3The rescaling with the factor n
n+1

ensures that we avoid points on the edge of the unit cube in Rd.
This is important since many copula models of interest are heavy tailed, and points on the boundary
could then introduce infinities into our calculations.
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A consequence: The results from the approach used in chapter 4, where we re-

strict our attention to the bivariate case when we investigate the performance of our

semiparametric selection methods, will be useful in a more general setting too.

Some additional comments: The consequence mentioned above is the one of inter-

est for this thesis, but there are two additional concepts that deserves to be mentioned

before we leave this subject.

The point is, that even though the SSP strategy splits the estimation of the parameters

into manageable chunks, i.e. one bivariate copula at a time, we might still have that the

number of such chunks results in a total computational time beyond acceptable limits.

A strategy that can be used to face this problem, is to stop the SSP-process by either

using simplification or truncation when the conditioned observations at a level is suffi-

ciently close to a normal copula or to the independence copula, such that the remaining

layers then become approximated by the chosen structure. See Brechmann [7] and Haff

[9] for the definitions of simplification and truncation, and note that [7] in addition gives

criteria and algorithms for determining at which level of the vine (if any) it might be

advisable to use simplification or truncation in order to reduce the computational load

even further.

Simplifications and truncations give a simpler model than the one we otherwise would

have obtained, and quite probably a much simpler model than the one that generated

the data. But as we anyway never can expect to find the true data-generating process

from a finite sample, the important point is whether or not our model can enlighten us

to the workings of the data-generating process. Caution must anyway be applied with

regard to how much we can deduce from our model, and the following warning from

Whitehead should be observed.

The aim of science is to seek the simplest explanations of complex facts. We

are apt to fall into the error of thinking that the facts are simple because

simplicity is the goal of our quest. The guiding motto in the life of every

natural philosopher should be, ”Seek simplicity and distrust it.”

The Concept of Nature (1926), Alfred North Whitehead.

http://en.wikiquote.org/wiki/Alfred_North_Whitehead


Chapter 1 – Introduction 10

1.4 Model selection, bias and the need for simulations

The previous section mentioned challenges that we encounter when we search for a model

which in an adequate way can describe a set of d-variate observations Xn = {xi}
n
i=1,

and we saw how techniques based on the vine-copulas and the pair-copula construction

could enable us to produce an abundance of models with enough parameters to capture

interesting structures in Xn, like symmetry and tail-dependence.

Moreover, we mentioned how the technique of stepwise semiparametric estimation could

enable us to compute the estimates of the parameters in a vine copula within a reasonable

timespan, by replacing the task of estimating all the parameters at the same time with

the more feasible task of estimating the parameters of the bivariate copulas in the vine

copula one level at the time.

But in general the fitting of a model to the observations is only a part of the story. We

will typically attempt to fit an assorted collection of models to our observations Xn,

and when all of these have been fitted to the data – we would like to rank the fitted

models4 in order to see which model to select, i.e. to find the model that based on the

observations Xn (or pseudo-observations Xp n) seems to give the the best approximation

to the process that generated our observations.

The important thing to keep in mind is that we need enough parameters to capture the

interesting structures in Xn, but not so many that we over-fit our model to the specific

set of observations. We should also take into account the number of observations that

will be necessary in the estimation process in order to get estimates with an acceptable

level of error.

In a setting where we use a fully parametric approach to the modeling of Xn, i.e. where

we use parametric models for the univariate marginals Fi in eq. (1.2), we could use a

model selection method like AIC, introduced in Akaike [13], in order to rank different

proposed models against each other.

The validity of the AIC-formula is due to a likelihood-based argument on the independent

observations inXn. But when we in a practical application use the empirical marginals in

order to reduce the amount of parameters to be estimated – we end out with an analysis

that must be based on the dependent pseudo-observations Xp n. And in this framework

the likelihood is replaced with the pseudo-likelihood introduced by Besag [14].

Even though AIC as a selection method is based on a maximum likelihood (ml) argument,

it has been common practice to “tweak” it slightly and apply it without further ado in

the semiparametric setting where a maximum pseudo likelihood (mpl) is at play.

4By “a fitted model” we mean the model we get when we use the estimated parameters.
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This difference is a central one in this thesis, and we will henceforth introduce the

notation
p
AIC when the AIC-like selection method is applied on models based on a set

of dependent pseudo-observations Xp n. The formulas that is used for their respective

computation is as follows,

AIC(F ) = 2 · `max(F )− 2 · dim(F ) (1.8)

and

p
AIC(C) = 2 · p`max(C)− 2 · dim(C), (1.9)

in which `(F ) represents the log-likelihood-function of a model F on the independent

observations Xn from Rd, while
p
`(C) represents the pseudo-log-likelihood-function of a

copula model on the dependent pseudo observations Xp n in [0, 1]d. The subindex max

is to indicate that we are considering the maximum of these functions, i.e. that they

are evaluated at the estimated values of the parameters in the models. Further, dim(·)
simply refers to the number of parameters that the two models contain, and it is present

in order to give us a bias-correcting term when different models to the observations (or

pseudo-observations) are to be ranked against each other.

The formal validity of eq. (1.9) was investigated in Grønneberg and Hjort [15], and it

turned out that the simple bias-correction term did not properly account for the noise

in the transformation Xn → Xp n. An analysis was conducted in [15] in order to find

theoretically valid model selection methods for the semiparametric case, but the two

resulting formulas turned out to have the rather unappealing property of not being

generally applicable (see latter chapters for details).

However, in Grønneberg [16, Part III] a generally applicable model selection method for

the semiparametric realm was created as an analytical approximation to the semipara-

metric leave-one-out cross-validation technique.

The result of this approach, named the cross-validation copula information criterion

(xv-CIC), is the main theme of this thesis. An outline for its theoretical foundation is

given in chapter 3.

Bias-correction and the need for simulations. An essential detail to be aware

of for model selection methods, is that their bias-correcting terms often are based on

the asymptotic behavior of the finite-sample bias-correcting distributions, i.e. that the

bias-correction is given as the expectation of this limiting distribution.

The use of limiting distributions in order to simplify the computations should introduce

a negligible error when the number of observations is large enough, since the deviations
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from the true (but unobtainable) finite-sample bias-correcting terms then should be so

small that the ranking of the considered models should be unaffected.

But how large must the number of observations be before we can trust the conclusion of

the selection method? The answer to that question will in fact depend on which models

we are considering, as the number of observations needed for a good approximation of

the bias-correcting term for one model might turn out to give an awful approximation

for another one.

It seems that the only way we can probe how much faith we should put in the conclusion

of a selection method (for a given size of observations and a given list of candidate

models) is to perform simulations in order to see how often the method actually hits

the mark.

This thesis gives in chapter 4 the performance-results of the xv-CIC as a model selection

method, when tested on bivariate samples of sizes N ∈ {100, 250, 500, 1000}.

Note that we do not make a severe restriction when we only test the performance in

the bivariate case, since the methodology of the stepwise semiparamteric estimation

procedure breaks the estimation process into chunks that handles one bivariate copula

at the time.

A note of caution. When we investigate a collection of models, that for some reason

has been proposed as the ones we want to fit to some observations Xn (or pseudo-

observations Xp n), it is paramount that we are aware of the fact that most selection

methods does not inform us if any of these models are any good.

To emphasize: The selection method will rank the fitted models and tell us which of

these that gives the best description of our data, but if all of our initially considered

models are useless – then even the best of them will share that deficiency.

Unless we are quite certain that one of the fitted models should give a good description

of our data, we should apply some goodness of fit test to investigate whether or not

the chosen model is any good at all. If none of the models seems to be worth their

salt, we should consider other models instead – confer the discussion in section 4.4 for a

concrete example.



Chapter 2

Some background theory

This chapter contains a collection of assorted background theory.

We will in section 2.1 discuss the copula models that will be used when we test the

small-sample behavior of xv-CIC in chapter 4, and we will moreover consider how the

use of the empirical marginals in the transformation Xn → Xp n creates noise in our

estimated parameters and bias-correcting terms.

Section 2.2 will mention different strategies used to estimate parameters in parametric

and semiparametric models, and i.e. why we might like to replace a parametric approx-

imation F(θ,γ) on Xn with a semiparametric approximation Cθ on Xp n.

Finally, in section 2.3 comes a list of things we might wish to consider when we want to

do a model selection.

2.1 Seven copula models

This section presents the seven bivariate copula-families that will be used when we in

chapter 4 investigate the small-sample performance of xv-CIC, i.e. we will first use them

to create simulations Xn, and then they will be used as proposed models C that will be

fitted to the corresponding pseudo-observations Xp n.

We will in this thesis use names that matches those in the copula-package, and the

copula models will henceforth be denoted by clayton, frank, galambos, gumbel, huslerReiss,

normal and t.

The first five of these copula models are all one-parametric Archimedean copulas, while

the two last are elliptical copula models. Note that we in the bivariate case only have

13
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one parameter in the correlation matrix, so the bivariate normal copula is thus also

one-parametric. The t copula have an additional parameter in its degrees of freedom,

but we will in our analysis fix this value to four, i.e. we should strictly speaking rather

write t (df=4) than t.

In chapter 1 we skipped the discussion of how the different copula models where obtained,

so let us mention that before we look closer upon the models mentioned above.

One way to produce copula models is to start out with Sklar’s theorem, see eq. (1.2)

and use the inverses of the marginals to obtain the following expression for the copula

C corresponding to F ,

C(u1 . . . , ud) = F (F 1
−1(u1), . . . , F d

−1(ud)). (2.1)

This method is only useful in those cases where we do have a well defined d-variate cdf

F to start with, and this restricts the possibilities. But we can at least obtain d-variate

copula models from the d-variate elliptical distributions by this strategy.

Another class of d-variate copula models is the Archimedean copulas:

A d-variate copula C(u) is Archimedean if there exists a ψ(t) : [0,∞]→ [0, 1] such that

C(u) = ψ

(
d∑
i=1

ψ−1(ui)

)
, (2.2)

where the generator ψ is subject to the following restrictions

1. ψ is continuous and decreasing, with ψ(0) = 1 and ψ(∞)
def
= limt→∞ ψ(t) = 0,

2. ψ is strictly decreasing on [0, ψ−1(0)],

3. ψ ∈ Cd(0,∞) (i.e. at least d times differentiable) and for all k in {1, . . . , d} we

have (−1)kψ(k)(t) ≥ 0, and

4. the inverse ψ−1(τ) : [0, 1]→ [0,∞] has ψ−1(0)
def
= inf {t : ψ(t) = 0}.

Note: This definition of Archimedean copula is in line with the one used for the bivariate

case in Joe [4, p 86], and the multivariate formulation here is based on Hofert [17, p 52].

This definition is the most convenient to work with when we want to find tractable

expressions for the derivatives, otherwise we could just as well have followed the receipt

given in Nelsen [3, Chapter 4]. In the latter case we would have used a strictly decreasing

function φ(τ) : [0, 1]→ [0,∞], with φ(1) = 0, and then defined an Archimedean copula

to be a copula expressible as C(u) = φ[−1](φ(u1) + · · · + φ(ud)), where φ[−1](t) (the

generalized inverse) is defined as φ−1(t) on [0, φ(0)) and as 0 otherwise, and where

moreover φ[−1](t) must satisfy (−1)k
(
φ[−1](t)

)(k) ≥ 0 for k = 1, . . . , d.

Remember from chapter 1 that the copula models mentioned above in general can be

too rigid to be useful when we want to model a d-variate set of observations, but that
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we by the help of vine copulas can model Xn by using bivariate copula models on the

conditioned bivariate subsets corresponding to the edges of a regular vine. Note: Another

approach to the modeling of d-variate observations is to use nested Archimedean copulas

– interested readers can consult Hofert [17] for further details.

Some cdfs: With regard to the testing performed in chapter 4, the explicit func-

tions/generators describing our seven copula models are of no interest whatsoever, since

everything is taken care of by the functions in the copula-package – but for the sake of

completeness we nevertheless include the cdfs for the seven bivariate copulas we consider.

1. cdf for the bivariate normal copula, ρ ∈ (−1, 1)

C(u1, u2) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)
,

where Φρ denotes the bivariate standard normald cdf with correlation ρ.

2. cdf for the bivariate t copula, ρ ∈ (−1, 1), ν > 0 degrees of freedom

C(u1, u2) = tρ,ν
(
tν
−1(u1), tν

−1(u2)
)
,

where tρ,ν denotes the cdf of the bivariate standard t distribution with correlation

parameter ρ and ν degrees of freedom.

3. cdf for the bivariate clayton copula, θ > 0

C(u1, u2) =
(
u1
−θ + u2

−θ − 1
)−1

θ
.

4. cdf for the bivariate frank copula, θ ∈ R \ {0}

C(u1, u2) = −1

θ
log

[
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

]
.

5. cdf for the bivariate gumbel copula, θ ≥ 1

C(u1, u2) = exp

[
−
(

(− log(u1))
θ + (− log(u2))

θ
)1
θ

]
.

6. cdf for the bivariate galambos copula, θ > 0

C(u1, u2) = exp

log(u1u2) ·

1−

((
log(u2)

log(u1u2)

)−θ
+

(
1−

(
log(u2)

log(u1u2)

))−θ)−1
θ



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7. cdf for the bivariate huslerReiss copula, θ > 0

C(u1, u2) = exp

log(u1u2) ·

 log(u2)

log(u1u2)
· Φ

1

θ
+
θ

2
· log

 log(u2)
log(u1u2)

1− log(u2)
log(u1u2)


+

(
1− log(u2)

log(u1u2)

)
· Φ

1

θ
− θ

2
· log

 log(u2)
log(u1u2)

1− log(u2)
log(u1u2)


Note: The first five cdfs are taken from Brechmann [7, p. 9-11], in which more details

can be found. The two latest cdfs are as given in the copula-package. It is a trivial task

to simplify the cdf for the huslerReiss, but then it would not be given exactly like it

is presented in the huslerReissCopula-function.

Some plots: Instead of the dreary cdfs mentioned above, what we really should

consider are the plots that show us the properties of our copula models, i.e. how they

are suited for the different structures that a bivariate set of observations can contain.

We will briefly discuss this in the following paragraphs and plots, without going deeply

into the technical details.

We will give four plots in each figure, in order to show how the contour-lines of our

copulas change with the value of Kendall’s τ . In addition to the three values used later

on in chapter 4, i.e. τ ∈ {0.25, 0.50, 0.75}, we will also include an example with τ = 0.10.

The lowest value of τ is included in order to see how all these copula models approaches

the independence copula when τ becomes small

In addition to the contour lines, the plots also contain some observations generated from

the model in order to see realizations of a concrete sample of size N = 100 . Moreover,

the empirical value of Kendall’s τ is also presented – but note that this might deviate

somewhat from the true value since the sample-size is rather small.

Elliptical copula models: Lets start out by considering figs. 2.1 and 2.2, which

gives us the plots corresponding to the normal copula and the t (df=4) copula. The

symmetry in these plots are easy to spot – and if we compare the subplots corresponding

to the different values of Kendall’s τ , we can see that the t (df=4) have some more

weight at the lower left and upper right corner. This difference will diminish when

the degrees of freedom increase, and it is customary to use the normal-copula as an

approximation if the degrees of freedom in the t-copula exceed thirty.

Extreme value models: From Nelsen [3, p. 97] we learn that a copula C∗ is an ex-

treme value copula if there exists a copula C such that C∗ (u, v) = limn→∞C
n(u1/n, v1/n).

Three of our five Archimedean copula models belongs to this class, i.e. galambos, gumbel

and huslerReiss. Plots corresponding to these three are given in figs. 2.3 to 2.5. The
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Figure 2.1: normal copula - four values of tau

τ = 0.1    τ̂ = 0.200
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N = 100 observations

contour-lines in these plots shows that there are a higher chance of finding observations

where the two covariates both have large values or small values, and that the former of

these cases is the most frequent one. These three copula models is hard to distinguish

from each other, and their closeness makes it difficult for the model selection methods

to correctly identify the data-generating process based on small samples.

The frank copula In fig. 2.6 the contour lines and sample-examples for the frank

copula is presented. This is a symmetric copula, which (for higher values of τ) has

prominent tails and otherwise has a lot of its density concentrated along the diagonal

from the lower left to the upper right corner.

The clayton copula The plot of the last copula model, the clayton, is given in

fig. 2.7. This copula is asymmetric, with greater dependence in the negative tail. It is

thus easier for the selection methods to correctly identify data generated by this copula.
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Figure 2.2: t copula - four values of tau

τ = 0.1    τ̂ = 0.297
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Figure 2.3: galambos copula - four values of tau

τ = 0.1    τ̂ = 0.141
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Figure 2.4: gumbel copula - four values of tau

τ = 0.1    τ̂ = 0.178
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Figure 2.5: huslerReiss copula - four values of tau

τ = 0.1    τ̂ = 8.85 ⋅ 10−2
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Figure 2.6: frank copula - four values of tau

τ = 0.1    τ̂ = 3.72 ⋅ 10−2
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N = 100 observations

Figure 2.7: clayton copula - four values of tau

τ = 0.1    τ̂ = 8.36 ⋅ 10−2
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Noise in transformation Xn → Xp n Throughout this thesis, we often refer to

the noise that originates when the empirical marginals are used to replace a set of

independent observations Xn in Rd with dependent pseudo-observations Xp n in [0, 1]d.

When this phrase is used, we have in mind the effect which is illustrated in fig. 2.8,

where we have used a ridiculous small sample of size N = 15 to stress the fact that the

observations Xn (the starting point of the arrows) will be shuffled around quite a bit

before we have the dependent pseudo-observations Xp n (the end points of the arrows).

Figure 2.8: Noise in transformation Xn → Xp n

Normal copula family

N = 15 observations and pseudo−observations

τ = 0.5    τ̂ = 0.505
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The noise that this shuffling incurs on the mpl-based estimate of the parameter, and

the corresponding maximum of the pseudo-log-likelihood function, is investigated in sec-

tion 4.3 – and not surprisingly will the effect diminish when the number of observations

grows, cf. figs. 4.1 to 4.4.

Another detail that can be commented upon in view of fig. 2.8, is that the pseudo-

observations Xp n always will be positioned at the gridpoints shown in the figure, i.e.

that a bivariate Xp n based on a sample of size n will be restricted to a subset of n2

points in [0, 1]2.

Moreover, due to the way Xp n is created by the help of the empirical marginals – we

will have that there only can be one pseudo-observations on each horizontal/vertical line
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in the grid.1 This latest statement is under the assumption that there is no ties in our

observations Xn, which we can considered to be “automatically” fulfilled whenever we

have samples from a continuous data-generating process.

In a practical situation ties can of course occur due to rounding of observed values or

grouping of data. In such cases the data can be jiggled slightly to get rid of the ties,

and then we consider the pseudo-observation Xp n corresponding to these jiggled data.

In section 4.4 there is a concrete example where we get rid of ties this way. As discussed

there, it seems to be no reason at all to fear that another jiggled version of the data

should lead to a different conclusion.

2.2 Estimation of parameters.

This section will comment upon different approaches that can be used when we want

to estimate the parameters α of a model Fα (x), in order to get an optimal fit to some

d-variate observations Xn.

We know from Sklar’s theorem, cf. eq. (1.2), that we can express the cdf Fα by a copula

C that takes care of all the dependencies between the covariates, and the d cdfs of the

marginal distribution. It is thus possible to separate the content of α into a couple of

vectors θ and γ, which respectively represent the parameters of the copula C and the

collection of parameters that are needed in the d marginal distributions (F1, . . . , Fd).

To make this explicit in our notation, we will write F(θ,γ) instead of Fα and we will

write F(θ,γ) (x) = Cθ

(
Fγ,⊥(x)

)
, with Fγ,⊥(x) =

(
Fγ(1) (x1) , . . . , Fγ(d) (xd)

)
. Note that

there is no a priori reason to assume that the parameters of the marginal distributions

should be disjunct. The notation γ(i) thus represents the sub-vector of γ needed for the

parametrization of the i’th marginal cdf, i.e. Fi (xi) = Fγ(i) (xi).

We will consider different approaches with regard to estimating the parameters for a

model that aims to describe some d-variate observations Xn. If the observations stem

from some (unknown) distribution F ◦, and we want to find the parameters (θ,γ) that

bests fit a model F(θ,γ) (x) to Xn – then we would like some kind of“measure of distance”

in order to decide the optimal parameters given the data we have available.

We will in section 3.2 discuss in detail one way to estimate the parameters (θ,γ) that

ensures that our fitted model F(θ,γ) (x) is the “closest one” to the true model F ◦, and

1This implies that the pseudo-observations are dependent.
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that is the Kullback-Leibler information criterion – defined relatively the pdfs f ◦ and f ,

KLIC (f ◦, f)
def
=

∫
log

f ◦

f
dF ◦

=

∫
log f ◦ dF ◦ −

∫
log f dF ◦

= Ef◦ [log f ◦]− Ef◦ [log f ] . (2.3)

For the purpose of this section, the result of interest (see section 3.3.1) is that the param-

eters that minimize the KLIC-function will be the same that maximize the likelihood-

function.

Thus, if we insert the maximum likelihood estimate of the parameters (θ,γ) into our

function F(θ,γ) (x), we have the model that based on our sample Xn is the closest one

to F ◦. This implies that the following will be our strategy in a fully parametric setting.

First approach, MLE: We make assumptions regarding which parametric families

the d marginals Fγ(i) and the copula Cθ stem from, and then we use a maximum like-

lihood estimation (MLE) to find an estimate (θ̂MLE, γ̂MLE) of the optimal parameter

configuration (θ◦,γ◦)
def
= argmin(θ,γ) KLIC

(
f ◦, f(θ,γ)

)
.

A problem with this approach is that the estimation of all the parameters at the same

time can imply that the estimation-algorithm literally will take for ever to finish. It

might thus be prudent to consider the following approach instead.

Second approach, IFM: We make the same assumptions as in the first approach, but

instead of MLE we use the two-step procedure named inference functions for margins

(IFM) method, that was introduced in Joe and Xu [18]. In the first step we find an

estimate γ̂IFM of the marginal parameters γ,

γ̂IFM = argmax
γ

d∑
i=1

n∑
j=1

log fγ(i)

(
Xij

)
, (2.4)

and then we proceed in the next step by replacing F(θ,γ) (x) = Cθ

(
Fγ,⊥(x)

)
with

F (θ,IFM)(x) = Cθ(Fγ̂IFM,⊥(x)), and finally we use MLE to find an estimate θ̂IFM of

θ◦IFM
def
= argminθ KLIC

(
f ◦, f(θ, IFM)

)
.

Note that this procedure simplifies if the marginal distributions Fi do not have any

parameters in common, since we then can use MLE on each individual marginal in the

first step. Yan [19] contains further details regarding this approach (and the next one),

together with a numerical computation that supports the use of the resulting estimate

(θ̂IFM, γ̂IFM) as an approximation to (θ◦,γ◦).
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Third approach, MPLE: When the goal is an estimate of the multivariate dependen-

cies of the distribution F ◦, we can assume that the copula belongs to some parametric

family and avoid the specification of models for the marginals by replacing F γ,⊥ with

Fn,⊥(x), as discussed on page 8.

Since the marginals now are unspecified, we need to use maximum pseudo-log-likelihood

estimation(MPLE) instead of MLE when we are searching for our parameters.

In this approach we thus replace the problem of fitting F(θ,γ) (x) = Cθ

(
Fγ,⊥(x)

)
to the

observations Xn with the problem of fitting Cθ (u) to the dependent pseudo-observations

Xp n – in which the latter part has to be done by the help of a mpl-technique.

Fourth approach, SSP: The goal of this approach is the same as in the previous one,

i.e. our quest is the interdependence parameters. This method is used when d ≥ 3 and

we have used vines and the pair-copula construction in order to create our copula C. A

direct application of the third method is then exchanged with a stepwise semiparametric

(SSP) estimation, in which the strategy resembles the one from IFM, i.e. we estimate

the parameters one level at a time. The resulting estimate θ̂SSP obtained by this method

will then be used in our model instead of θ̂MPLE, which would have been the one we

would have obtained if we had considered all the levels simultaneous.

Some comments upon these approaches: The four approaches mentioned above

have different drawbacks. The first approach will, unless the number of parameters

is small, require quite a demanding computational cost. The computational cost is

significantly reduced in the other approaches, but then there is a question regarding

how much the estimates have gone astray from the true target θ◦.

In addition, the estimates of the interdependency parameters θ in the two first ap-

proaches will be sensitive to the marginal models that has been used. To emphasize,

even if we have found the correct model for the copula – if the parametric families

we have used for the marginals does not hit the mark, the resulting estimate of the

θ-parameters can be severely affected.

The two last approaches do not suffer from any risk of misspecified marginals, as they

instead use the empirical marginals to replace the estimation problem to one concerning

the pseudo-observations Xp n. This transformation will in addition reduce the computa-

tional costs involved in our estimate. And moreover, for higher values of d, limitations

on the available computational resources might make SSP our only realistic alternative.

There is however a drawback with the use of the unspecified marginals in the third

and fourth approach, and that is that the transformation process from observations to
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pseudo-observations introduces some noise into our estimation process. But as we will

see later on, this is hardly an issue at all if we have a decent-sized sample to work upon.

2.3 Some model selection issues

The following list is based on a similar list in Claeskens and Hjort [20, chapter 1], and

it presents some of the issues that might influence the model selection process.

1. Models are approximations. The “true” model that generated the data will

in general be unknown. Furthermore, if the true model is very complex, it might

be useful to consider a simpler model (e.g. if we have limitations with regard to

computational power).

2. The bias-variance trade-off. Simplicity vs. complexity: A simple model with

few parameters to estimate will have a lower variability at the cost of introducing

modeling bias, while complex models with many parameters give a small bias at

the cost at higher variability. Statistical model selection methods must seek a

proper balance between overfitting (a model with too may parameters, more than

actually needed) and underfitting (a model with too few parameters, not capturing

the right signal).

3. Parsimony. Keep it as simple as possible. Only include more parameters if this

improves the predictional quality of the model.

4. The context. All modeling is rooted in an appropriate scientific context and is

for a certain purpose. “The purpose of models is not to fit the data but to sharpen

the questions”, S. Karlin at the 11th R. A. Fisher Memorial Lecture, Royal Society

20, April 1983.

5. The focus. Some quantities or functions of parameters might be more interesting

than others, and model building and model selection could emphasize good per-

formance precisely for those quantities that are more important. Different aims

might thus introduce different loss functions for the same data, and thus result in

the preference of different models.

6. Conflicting recommendations. Different model selection strategies might end

up offering different advise for the same data and the same list of candidate models.

It is thus important to know how different selection schemes are constructed and

what their aims and properties are.

7. Model averaging. If a selection strategy does not assign a clear winner, it might

be advantageous to combine inference output across the best models.
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The Copula Information Criteria

This chapter will sketch the theory leading to the three different strands of the copula

information criterion (CIC). The first two, CIC
AIC

and CIC
TIC

were introduced in

Grønneberg and Hjort [15], and also discussed in Grønnebergs contribution to Kurowicka

and Joe [21],1 whereas the third one, xv-CIC were presented in Grønneberg [16, Part III].

3.1 An overview

The CIC is a machinery aimed at selecting the best available copula-model c from a

collection C of proposed dependency-models for a set of pseudo-observations Xp n. It is

a semiparametric analogue to selection methods like the Akaike Information Criterion

(AIC), introduced in Akaike [13], the Bayesian Information Criterion (BIC) introduced

in Schwarz [22], and the Takeuchi Information Criterion (TIC), introduced in Takeuchi

[23]. In particular, the main point of CIC is to assign a numerical value to each of the

models from C, and then pick the one with the best result, and this assignment must

balance bias versus variance by introducing a “penalty” for the most complex models.

Note that several issues might influence the model selection process,2 and thus our

decision of which model that is the “best”.3 Grønneberg [16] states it like this:

Many approaches to what “best” means have been suggested in the liter-

ature, and the following two are the most common. Firstly, the best model

may be the one containing the parameter configuration that minimizes some

1His contribution to [21] is also included in his dissertation, Grønneberg [16, Part II]
2See section 2.3 for a list of model selection issues taken from Claeskens and Hjort [20].
3There is no guarantee that the “best” of the proposed models is a good model for our observations

Xn, so it might be recommendable to apply a goodness-of-fit test to see if the chosen model can be
trusted in further applications.

26

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Bayesian_information_criterion
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distance to the postulated true model. Secondly, the best model may be the

one giving best predictions for new, and as of yet unobserved cases.

The first of these approaches can be referred to as the“loss-function perspective”, whereas

the second can be refereed to as the “prediction perspective”.

The AIC-method was developed in a setting where the models to be ranked are fully

parametric, but it has nevertheless been a standard procedure to use a tweaked version

of it in the realm of semiparametric models. As mentioned in chapter 1, the formula for

the AIC is then modified by replacing the maximum of the log-likelihood function with

the maximum of the pseudo-log-likelihood function, cf. eqs. (1.8) and (1.9). In order to

emphasize the difference between these two, we will in this thesis use
p
AIC as the name

of the mpl-based pseudo-variant of AIC.

Note that the AIC formula requires a proper log-likelihood, cf. section 3.3.2, and the
p
AIC is thus not formally valid since it uses a pseudo-log-likelihood instead. The use of
p
AIC has, according to Grønneberg and Hjort [15], been justified by the belief that in

the limit there could be a continuous connection between AIC and
p
AIC. However, when

the extra noise from the transformation-step from observations to pseudo-observations

is accounted for, we end up with the CIC
AIC

and CIC
TIC

selection formulas, whose bias-

correcting terms does not behave as nicely as those encountered in the fully parametric

setting. In contrast to the case of AIC, the bias-terms of CIC
AIC

and CIC
TIC

can actually

attain infinite values for copulas with heavy tail-dependence.

The CIC
AIC

and CIC
TIC

can of course be used to rank a list of semiparametric models

for some pseudo-observations Xp n, but all the time we might doubt the conclusion (due

to the lack of general applicability), we probably should do something else instead (like

using
p
AIC).

Even though these two CIC-variants lacks the desired property of being generally appli-

cable, we will include the arguments leading to them since these are useful when giving

the formula for the better behaved xv-CIC– which where introduced in Grønneberg [16,

Part III].

As discussed in Grønneberg [16, Part III], when the “loss-function perspective” is used

instead of the “prediction perspective”, we can construct the cross-validation copula

information criterion, xv-CIC. The xv-CIC-formula use another threshold for what it

consider as low-level noise in the (pseudo)observations, and the resulting formula turns

out to be of a generally applicable nature.

The arguments presented in Grønneberg [16] for the semiparametric case is motivated by

the machinery that in the parametric case leads to the AIC-formula, and the first sections
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of this chapter will thus consider the theory connecting the AIC with the Kullback-

Leibler information criterion, and how this is connected with TIC and cross-validation.4

The latter sections then sketch how CIC
AIC

, CIC
TIC

and xv-CIC are developed based on

a similar approach with respect to the semiparametric situation.

3.2 Kullback-Leibler, KLIC (f ◦, f)

We will in this section look closer upon the Kullback-Leibler information criteria, KLIC,

which were defined in eq. (3.1) on page 23. The KLIC is closely related to the loss-

function perspective of model selection, since it gives us a way to gauge how much a

postulated model f from F deviates from the true data generating-model f ◦.

For the sake of completeness of the present section, we restate the definition of KLIC

once more.

KLIC (f ◦, f)
def
=

∫
log

f ◦

f
dF ◦

=

∫
log f ◦ dF ◦ −

∫
log f dF ◦

= Ef◦ [log f ◦]− Ef◦ [log f ] . (3.1)

By the use of e.g. the Jensen inequality, it can be shown that KLIC (f ◦, f) always will be

non-negative, and that it is equal to zero if and only if f = f ◦ almost everywhere. This

implies that the KLIC-values can be used to rank the models in F = {fi}i∈I according to

how well they approximate our distribution f ◦, whereupon we can find the best available

approximation by choosing the one which minimizes KLIC (f ◦, fi).

Note that the KLIC, as defined in eq. (3.1), gives a non-symmetric measure of the

difference between two probability distributions, and thus does not give a metric on the

space of probability distributions.5

In a practical setting with real data Xn = {x1, . . . ,xn}, we will have a situation where

the models in F are those we think might fit our data in the best possible fashion, while

the true model f ◦ that we want to approximate will be unknown. In this case, with an

unknown f ◦, we must settle for the empirical distribution and use the observations in

Xn to get an estimate of the Kullback-Leibler divergence.

4Kullback-Leibler information criterion is also known as information divergence, information gain,
relative entropy or Kullback-Leibler divergence, see e.g. Claeskens and Hjort [20] for details regarding
the connection to information and entropy).

5A symmetric version of KLIC does exist, but eq. (3.1) is the one used in Grønneberg [16].
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If our goal is to find the model in F which is the best approximation to f ◦, an inspection

of eq. (3.1) shows that it will be sufficient to estimate Ef◦ [log f ]. This follows since the

estimate of Ef◦ [log f ◦] will be present in all the estimated Kullback-Leibler divergences,

and as we seek the model which minimizes this divergence it will thus be sufficient to

find the model which maximizes the part Ef◦ [log f ].

A note of warning: When we simplify our quest for an optimal model from F , by

ignoring the estimation of Ef◦ [log f ◦], we also lose the information telling us whether or

not our chosen model f̃ is an adequate approximation to (the empirical estimate of) f ◦.

In particular: If all of the proposed models in F are awful as approximations of f ◦,

the one picked by this simplified method might turn out to be rather ill-suited for our

intended purposes.

Unless we have some good a priori reason to expect that (at least one of) the proposed

models in F are in the KLIC-vicinity of the true model f ◦, it is highly recommendable to

employ a goodness-of-fit (GoF) test to check the adequacy of f̃ . Brechmann [7] contains

(among other things) a very good overview with respect to available GoF-tests for the

copula setting, and the interested reader should take a look there.

3.3 Parametric model selection

We will in this section consider the realm of model selection between fully parametric

models, before we in section 3.4 presents the adjustments from [16] that is required to

deal with the nonparametric setting.

3.3.1 Kullback-Leibler and MLE

We will follow the argumentation from Grønneberg [16], and first consider the justifica-

tion of the maximum likelihood estimator (MLE) as a method of selecting the member

from a fully parametric family Fα = {fα} that in a best possible fashion fit a set of inde-

pendent identically distributed d-variate observations Xn = {x1, . . . ,xn}. The estimated

p-dimensional parameter configuration that identifies this member will be denoted by α̂.

Selection by the use of KLIC. As outlined in section 3.2, the model in Fα that

minimizes the KLIC-value is the same that maximizes the value of Ef◦ [log fα]. In
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particular, the optimal parameter-configuration will be given by α◦ satisfying

α◦
def
= argmin

α
KLIC (f ◦, fα)

= argmax
α

Ef◦ [log fα]

= argmax
α

∫
log fα dF ◦. (3.2)

If we have a number of observations Xn stemming from f ◦, but f ◦ itself is unknown, we

can exchange dF ◦ with dF̂n in eq. (3.2) – where the d-variate empirical distribution F̂n

is defined by

F̂n(x)
def
= n−1

n∑
i=i

d∏
j=1

1
{
Xj, i ≤ xj

}
= n−1

n∑
i=1

1{xi ≤ x}. (3.3)

This implies that we based on our observations Xn = {x1, . . . ,xn} can compute an

estimate α̂n of α◦ by the following expression

α̂n
def
= argmax

α

∫
log fα dF̂n

= argmax
α

n−1
n∑
i=1

log fα(xi). (3.4)

The integral in eq. (3.4) is a Lebesgue-Stieltjes integral, and as such its continuity prop-

erties implies that given uniform convergence of F̂n, i.e.

lim
n→∞

sup
x∈Rd

∣∣∣F̂n(x)− F ◦(x)
∣∣∣ = 0 almost surely,

we will have that α̂n will converge almost surely to α◦ as n→∞.

Selection by the use of MLE. When we want to find the optimal parameter

configuration by the use of the maximum likelihood estimator, our goal will be to find the

parameter value α̂ that maximizes the likelihood function with respect to the available
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i.i.d. observations Xn, i.e.

α̂
def
= argmax

α
L (α;Xn)

= argmax
α

n∏
i=1

fα (xi)

= argmax
α

elog(
∏n
i=1 fα(xi))

= argmax
α

n∑
i=1

log fα (xi) (3.5)

= argmax
α

`(α;Xn),

where ` is the log-likelihood corresponding to our proposed model fα.

The factor n−1 in the first of eqs. (3.4) and (3.5) does not affect the attained argmax

with respect to α, and the two approaches thus gives the same result.

This states that the procedure used to find the maximum likelihood estimate, i.e. that we

solve the system of p equations given by setting the score vector u(α;Xn) = ∂
∂α`(α;Xn)

equal to the zero-vector, gives the same answer as the one we find by using the strat-

egy based on the Kullback-Leibler divergence. In particular, under ordinary regularity

conditions, we have

α̂ = α̂n
a.s−→ α◦ as n→∞. (3.6)

If the true model f ◦ is contained in the parametric family Fα, we will have fα◦ = f ◦,

and in this case we can expect our approximation by fα̂ to be working quite well (at

least if the number of observations in Xn is sufficiently large).

3.3.2 Kullback-Leibler and AIC/TIC

The previous section looked upon the situation where the approximations to f ◦ all

stemmed from one parametric family Fα, and we saw that the selection strategy based

on the minimization of the KLIC-values, i.e.

f̃ = fα◦ where α◦ = argmin
α

KLIC (f ◦, fα), (3.7)

gave us the same result we would have obtained by using an approach based on the

maximum likelihood estimator.
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If the approximating model is to be chosen from a set of N parametric families,6 i.e.

F = ∪Nk=1Fk,α(k), it is clear that the task of finding the best approximation to f ◦ from

F boils down to finding the best approximation from the set that constitutes the best

approximations within each parametric family. This implies that it is enough to con-

sider the set F◦ =
{
f1,α(1)◦ , . . . , fK,α(N)◦

}
and find the value k◦ that minimizes the

KLIC-values of these models with respect to the model f ◦. This gives us the following

expression for the best approximation to f ◦:

f̃ = fk◦,α(k◦)◦ where k◦ = argmin
1≤k≤N

KLIC
(
f ◦, fk,α(k)◦

)
= argmax

1≤k≤N

∫
log fk,α(k)◦ dF ◦. (3.8)

In a practical situation where we have observations Xn = {x1 . . . ,xn} from an unknown

model f ◦, we will need a strategy to select the optimal approximation from F with

respect to the available information. To do this we will need estimates α̂(k)n for α(k)◦,

for k = 1, . . . , N and an estimate k̃n for k.

With the same reasoning as in section 3.3.1, we see that within each parametric family

Fk,α(k), the expression for α̂(k)n will be given as in eq. (3.4)

α̂(k)n
def
= argmax

α(k)

∫
log fk,α(k) dF̂n. (3.9)

We know that α̂(k)n converges almost surely to α(k)◦ as n → ∞, but in a situation

with a finite sample Xn there will be a non-negligible bias. This bias can be ignored

when we seek the best model within a parametric family Fα(k), but we can not ignore

it when we want to select a model from a set of several parametric families.

It is thus necessary to establish a bias-correcting term Biask, such that the estimator of

k◦ becomes

k̃n
def
= argmax

1≤k≤N

[∫
log f

k,α̂(k)n
dF̂n − Biask

]
. (3.10)

Bias correction Following the arguments in Grønneberg [16], we will now present a

bias correcting term for the estimators of
∫

log fk,α◦ dF ◦. Since the situation is identical

6For example if we think that one of the parameters in a distribution is connected with the observed
covariates through some polynomial relation, and want to find out whether a linear or quadratic relation
gives the best model.



Chapter 3 – The Copula Information Criteria 33

for all the K parametric families Fk,α(k) in F , we can simplify the notation and consider

the integral R(α)
def
=
∫

log fα dF ◦.

We will now consider the following objects:

R(α◦) =

∫
log fα◦ dF ◦, (3.11)

R̂n = R(α̂n) =

∫
log fα̂n dF ◦, (3.12)

Q̂n = n−1
n∑
i=1

log fα̂n(xi) = n−1` (α̂n;x1, . . . ,xn) . (3.13)

Note: R(α◦), as given in eq. (3.11), is the true value we want to estimate. In eq. (3.12) the

estimator α̂n for α◦ has been inserted into R(α), such that we get R̂n as an estimator for

R(α◦). However, R̂n can only be computed when we know the data generating model f ◦,

and thus we need to modify our estimator by exchanging dF ◦ with dF̂n (the differential

of the estimator for the empirical distribution). This leads us to the estimator Q̂n, as

given in eq. (3.13).

The problem, at least for small values of n, is that the estimator Q̂n gives biased estimates

of R(α◦), and thus we need to find a bias correcting term. We will here follow the

exposition given in Claeskens and Hjort [20, chapter 2] and arrive at an expression for

this bias by the help of p-variate7 Taylor expansions around α◦ for the two functions

R(α) and Q(α)
def
= n−1`(α;x1, . . . ,xn).

The Taylor expansion of R(α). Our quest for a bias-correcting term for Q̂n starts

with a first order Taylor expansion (with second order error term) for the function R(α)

around the optimal value α◦.

To be specific, we want to write R(α) as the sum of a linearization around α◦ and a

second order error term. This gives us

R(α) = R(α◦) +

[(
∂

∂γ
R(γ)

)∣∣∣∣
γ=α◦

]T
· (α−α◦)

+
1

2
(α−α◦)T ·

[(
∂2

∂γ∂γT
R(γ)

)∣∣∣∣
γ=α◦+h1·(α−α◦)

]
· (α−α◦) , (3.14)

for some h1 ∈ [0, 1].

Under the assumption that log fγ behaves nicely enough to allow us to interchange

integration with respect to dF ◦ and partial derivation with respect to γ, we could just

7Here p is the length of the vector α.
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as well have started out with a Taylor expansion of the integrand log fγ . In this case we

readily see that eq. (3.14) can be rewritten as

R(α) = R(α◦) +

(∫
u(γ)|γ=α◦ dF ◦

)T
· (α−α◦)

+
1

2
(α−α◦)T ·

∫
I(γ)|γ=α◦+h1·(α−α◦) dF ◦ · (α−α◦) , (3.15)

where

u(γ)T =

[
∂

∂γ1
log fγ , . . . ,

∂

∂γp
log fγ

]
, and (3.16)

I(γ) =


∂2

∂γ21
log fγ · · · ∂2

∂γ1∂γp
log fγ

...
. . .

...
∂2

∂γp∂γ1
log fγ · · · ∂2

∂γ2p
log fγ

 . (3.17)

The expressions given in eqs. (3.16) and (3.17) are respectively the score vector and the

information matrix of the model fγ . Since the integrals involved in eq. (3.15) represents

expectations, we can rewrite them as

R(α) = R(α◦) +
(
Ef◦ [u(α◦)]

)T · (α−α◦)
+

1

2
(α−α◦)T · Ef◦ [I(α◦ + h1 · (α−α◦))] · (α−α◦)

= R(α◦)− 1

2
(α−α◦)T · J(α◦ + h1 · (α−α◦)) · (α−α◦) (3.18)

Note that the expectation of the score vector at the optimal parameter value α◦ equals

zero, and that term has thus been removed from eq. (3.18). Furthermore, the nota-

tion J(γ) = −Ef◦ [I(γ)] has been introduced to be in accordance with the notation in

Claeskens and Hjort [20, chapter 2]. J(γ) evaluated at α◦ gives the Fisher information

matrix of our model, and this will be denoted by J .

With the Taylor expansion from eq. (3.18), we can consider the behavior of the stochastic

function R̂n = R(α̂n). First of all, remember from eq. (3.6) that our estimator α̂n is

the same as the maximum likelihood estimator, and thus we have the following result

α̂n = α◦ + J−1 · ūn + oP

(
n−1/2

)
, (3.19)

where ūn = n−1
∑n

i=1 u(α◦,xi).
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When n grows, and under regularity conditions like those found in Hjort and Pollard [24],

the central limit theorem tells us that there is a convergence in distribution

√
nūn

d−→ u′ ∼ Np (0,K) , (3.20)

where K = Varf◦ (u(α◦)) is the covariance matrix of the score vector evaluated at the

optimal parametric value α◦.

Note that xn = oP (1) means that for all ε > 0 we have limn→∞ P (|xn| > ε) = 0, and

furthermore, xn = oP (g(n)) means that xn/g(n) = oP (1). We can thus rewrite eq. (3.19)

as

√
n (α̂n −α◦) = J−1 ·

(√
nūn

)
+ oP (1) . (3.21)

This, together with (3.20), gives the following convergence in distribution

vn
def
=
√
n (α̂n −α◦)

d−→ J−1 · u′ ∼ Np

(
0,J−1KJ−1

)
. (3.22)

To abbreviate our notation we will henceforth use vn as defined in eq. (3.22) and more-

over we will introduce J̃h1,n
def
= J(α◦ + h1 · (α̂n −α◦)). With these conventions we can

rewrite R̂n, as given by inserting α̂n into eq. (3.18), as

R̂n = R(α◦)− 1

2
n−1vTn · J̃h1,n · vn. (3.23)

The Taylor expansion of Q̂n When used onQ(α) = n−1`(α;x1, . . . ,xn), the Taylor

expansion argument gives the following expression for Q̂n = n−1
∑n

i=1 log fα̂n(xi), the

estimator from eq. (3.13),

Q̂n = n−1
n∑
i=1

log fα◦(xi) (3.24a)

+ n−1
n∑
i=1

u(α◦;xi)
T · (α̂n −α◦) (3.24b)

+ n−1
n∑
i=1

1

2
(α̂n −α◦)T · I (α◦ + h2 · (α̂n −α◦) ;xi) · (α̂n −α◦) , (3.24c)

for some h2 ∈ [0, 1]
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Before we investigate the difference between the two estimators Q̂n and R̂n, we will in

accordance with Claeskens and Hjort [20] rewrite/rename the parts of eq. (3.24) to get

a more compact notation.

For the first part, eq. (3.24a), we introduce the variables Zi = log fα◦(xi)−R(α◦), i =

1, . . . , n and Z̄n = n−1
∑n

i=1 Zi, such that we can write

n−1
n∑
i=1

log fα◦(xi) = n−1
n∑
i=1

{log fα◦(xi)−R(α◦) +R(α◦)} (3.25a)

= n−1
n∑
i=1

Zi +R(α◦) (3.25b)

= Z̄n +R(α◦). (3.25c)

For the second part we will use ūn = n−1
∑n

i=1 u(α◦,xi) and vn =
√
n (α̂n −α◦) to

rewrite eq. (3.24b) like

n−1
n∑
i=1

u(α◦;xi)
T · (α̂n −α◦) = ūTn · (α̂n −α◦) (3.26a)

= n−1
(√
nūTn

)
·
(√
n (α̂n −α◦)

)
(3.26b)

= n−1
(√
nūTn

)
· vn. (3.26c)

The inclusion of
√
n with the factor ūn is done so that we can take advantage of (3.20)

when we go to the limit.

In the error term we introduce Jh2,n
def
= −n−1

∑n
i=1 I (α◦ + h2 · (α̂n −α◦) ;xi), which

together with vn enables us to express eq. (3.24c) as −1
2n
−1vTn · Jh2,n · vn. Note that

Jh2,n converges to J in probability, and this is an important element of our analysis of

the behavior of Q̂n − R̂n.

All together this implies that we can rewrite eq. (3.24) like

Qn = Z̄n +R(α◦) + n−1
(√
nūTn

)
· vn −

1

2
n−1vTn · Jh2,n · vn, (3.27)

which together with eq. (3.23) gives us the following expression for Q̂n − R̂n:

Q̂n − R̂n = Z̄n + n−1
(√
nūTn

)
· vn −

1

2
n−1vTn ·

(
Jh2,n − J̃h1,n

)
· vn. (3.28)

Due to the fact that Jh2,n and J̃h1,n both converge in probability to J = J(α◦), their

difference in the last part of eq. (3.28) tends to the zero-matrix. In particular, this
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implies that we have

n ·
[
−1

2
n−1vTn ·

(
Jh2,n − J̃h1,n

)
· vn
]

P−−−→
n→∞

−1

2

(
J−1 · u′

)T · 0 · (J−1 · u′) = 0, (3.29)

i.e. the expression for the error term is simply of type oP

(
n−1

)
. With this observation

we can rewrite eq. (3.28) as

Q̂n − R̂n = Z̄n + n−1pn + oP

(
n−1

)
, (3.30)

where pn
def
=
√
nūTn · vn =

√
n
(
n−1

∑n
i=1 u(α◦,xi)

)T · (√n (α̂n −α◦)).

Note that by eq. (3.19) we can rewrite pn as pn =
√
nūTn ·

(
J−1 ·

√
nūn + oP (1)

)
, which

by eq. (3.20) will converge in distribution to

p∞
def
=
(
u′
)t · J−1 · u′. (3.31)

In accordance with the convention from [20] and [16], we will denote the expectation of

p∞ with p∗, and thus we have

p∗
def
= EL [p∞] = Tr

(
J−1K

)
, (3.32)

where J is the Fisher information matrix, andK is the covariance matrix from eq. (3.20).

Note that we, since we deal with n-variate stochastic variables of the i.i.d. variables

x1, . . . ,xn (all distributed like X), need to take the expectations with respect to their

joint distribution function in eq. (3.32), i.e. the expectations are with respect to L def
=

L(x1, . . . ,xn) =
∏n
i=1 f

◦(xi).

We now have at our disposal all the ingredients, and we can thus go through the required

steps leading to an expression for the bias-correcting term Biask from eq. (3.10),

The expectation of Q̂n − R̂n. We can compute the expectation of one part of

eq. (3.30) even without knowledge of the data-generating distribution f ◦: The term

Z̄n = n−1
∑n

i=1 [log fα◦(xi)−R(α◦)] has a very simple structure since it does not contain

α̂n. Due to the definition of R(α◦) from eq. (3.11), the following simple computation

shows that its expectation equals zero.
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EL
[
Z̄n
]

= n−1
n∑
i=1

EL [log fα◦(xi)−R(α◦)]

= n−1
n∑
i=1

∫ · · · ∫ n∏
j=1

f ◦(xj) log fα◦(xi) dx1 · · · dxn −R(α◦)


= n−1

n∑
i=1

[∫
f ◦(xi) log fα◦(xi) dxi −R(α◦)

]

= n−1
n∑
i=1

[R(α◦)−R(α◦)]

= 0.

With this observation, we see that the expectation of the difference Q̂n − R̂n becomes

EL

[
Q̂n − R̂n

]
= n−1 EL [pn] + EL

[
oP

(
n−1

)]
. (3.33)

Note that the expectations of oP

(
n−1

)
in eq. (3.33) might be nigh on impossible to

compute, and it is by no means certain that the expectation of the oP

(
n−1

)
-part or pn

should be finite.8

If we want to estimate the two terms of eq. (3.33), or to be more precise the expectation

of the last two terms of eq. (3.28), then this can of course be estimated by the plug-in

of
∏n
i=1

̂f ◦(xi) dxi instead of
∏n
i=1 f

◦(xi) dxi, which – in the case of the joint distribu-

tion where we only have one observation (x1, . . . ,xn) – leads to the estimate given by

n−1
(√
nūTn

)
· vn − 1

2n
−1vTn ·

(
Jh2,n − J̃h1,n

)
· vn, where the only information we have

regarding h1 and h2 in the error-term is that they both belong to [0, 1]. This implies

that we instead of an estimated value of the expectation get an intractable bivariate

function of (h1, h2).

Under the assumptions needed for the Taylor expansions etc. to be true, there will exist

h1 and h2 that ensures that this function gives ean equality in eq. (3.33). In lack of

knowledge regarding the values to use for h1 and h2, we could in theory attempt to

compute upper and lower limits of the desired expectation. Such an attempt would of

course be a rather tedious affair, and probably quite computational expensive too. It is

thus desirable to find our estimate by other means.

8 Note: The expectation of pn does not exist for many parametric families (e.g. the binomial model,
see Claeskens and Hjort [20]), but this does not constitute a problem since the limiting distribution p∞

have a finite expectation. The breakdown of CIC
AIC

and CIC
TIC

in the case of semiparametric models
is due to the fact that the first-order bias correcting terms then can have limiting distributions with an
infinite expectation.
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When we have n large, we may take advantage of the negligible behavior of the oP

(
n−1

)
-

term and replace that part with zero, and furthermore we can then also replace pn with

the limiting distribution p∞ from eq. (3.31).

With the expression for the expectation from eq. (3.32), we then end up with the fol-

lowing bias-correcting term,

EL

[
Q̂n − R̂n

]
∼ n−1 EL [p∞] = n−1p∗ = n−1 Tr

(
J−1K

)
. (3.34)

The quality of the estimate in eq. (3.34) will depend both on the true distribution f ◦

and the number of observations n. For sufficiently large values of n, we would expect

this to be a nice estimate, but that does not imply that we get an acceptable result

based on the dataset Xn that we have at our disposal. In order to check this we need to

do some simulations to gauge how good this approximation turns out to be for different

sizes of Xn from known distributions.

The AIC- and TIC-connection Since the two matrices J = J(α◦) = −Ef◦ [I(α◦)]

and K = Varf◦ (u(α◦)) are defined with respect to the true model f ◦ and the optimal

parameter configuration α◦, which both are unknown, we will need to find an estimate

p̂∗ to replace the value p∗.

An estimator of p∗ can e.g. be obtained by computing estimates of the two matrices

J and K, but we can simplify this drastically if we assume that we have a correctly

specified model, i.e. that f ◦ = fα◦ for some parameter α◦. We will then have an equality

J = K, which implies that p∗ = Tr (I) = p, i.e. we do not need to use our observations

to compute the bias-correction, since the assumptions imply that p∗ will be identical to

p = length (α), the number of parameters in our model. (This is the estimate used by

AIC, see e.g. Claeskens and Hjort [20, chapter 2] for details.)

If we do not know if our model is correctly specified, we should instead use p̂∗ =

Tr
(
Ĵ−1K̂

)
as our estimate of p∗. (This estimate is used by TIC,9 [20, chapter 2.3].)

We will now summarize and see how our choice of p∗ as our bias-correcting term in our

KLIC-based selection criterion connects with AIC and TIC.

9In many practical situations, AIC is used on all the models, even though it is obvious that the
assumption of correctly specified model can not be valid for all of them – and the rankings attained by AIC
and TIC are then almost identical, cf. the discussion in appendix B. The gain from the computationally
more expensive TIC-estimate of p̂∗ might thus be of minor significance.
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We start out without a specification of whether we assume our model to be correctly

specified or not, and thus considers the following bias-corrected estimator of R(α◦)

Q̃n
def
= Q̂n − n−1 EL [p∞]

= n−1
n∑
i=1

log fα̂n(xi)− n−1p̂∗

= n−1
(
`(α̂n;x1, . . . ,xn)− p̂∗

)
, (3.35)

where the last equality is under the assumption that the observations are independent

and identically distributed.

We thus arrive at the following estimator of the k◦ in eq. (3.8)

k̃∗n
def
= argmax

1≤k≤K
Q̃(k)n

= argmax
1≤k≤N

[∫
log f

k,α̂(k)n
dF̂n − n−1p(k)∗

]
= argmax

1≤k≤N

[
n−1`k(α̂(k)n;Xn)− n−1p(k)∗

]
(3.36)

Note that the number n of observations will influence how good n−1p∞ will work as an

approximation to the two terms n−1pn + oP

(
n−1

)
in eq. (3.30), and thus the quality of

the bias correcting part of the estimator Q̃n will be affected if the sample is small.10 On

the other hand, as we readily see from eq. (3.36), the factor n−1 will be a common factor

in all the calculations, and therefore it does not affect the selection process.

If the models under consideration are nested,11 Fα(1) ⊂ · · · ⊂ Fα(N), and if we make

the assumption that the true model for f ◦ belongs to the family of models under con-

sideration, then our selection criterion can be written like

k̃∗n = argmax
1≤k≤N

[
n−1

(
`k(α̂(k)n;Xn)− p

)]
. (3.37)

If we compare this with the AIC criterion,

kAIC
n

def
= argmax

1≤k≤N

[
2
(
`k(α̂(k)n;Xn)− p

)]
, (3.38)

we immediately see that they give the same result.

10According to Claeskens and Hjort [20, chapter 3], in the presentation of the Bayesian Information

Criterion BIC = 2`k(α̂(k)n;Xn)− log(n)p, the AIC will not succeed in detecting “the true model” with
probability tending to 1 when the sample size increases. The reason for this is that an increase in
the sample-size will increase the maximized log-likelihood-value, and then the AIC-formula does not
sufficiently penalize the model for its number of parameters p.

11For example a setting where we want to check if one of the parameters have a polynomial relation
to the observed covariates.
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If we do not have a collection of nested models, or if we do not want to assume that

the true model for f ◦ is included in F = ∪Ni=1

{
Fα(i)

}
, we should use the estimator

p̂∗ = Tr
(
Ĵ−1K̂

)
. This leads to the following selection criterion

k̃∗n = argmax
1≤k≤N

[
n−1

(
`k(α̂(k)n;Xn)− Tr

(
Ĵ−1K̂

))]
, (3.39)

which a comparison with the TIC criterion,

kTIC
n

def
= argmax

1≤k≤N

[
2
(
`k(α̂(k)n;Xn)− Tr

(
Ĵ−1K̂

))]
, (3.40)

tells us that we have arrived at the same selection criterion.

The above arguments shows that the KLIC-based selection criterion and the AIC and

the TIC, are the same. In particular, we can compare the models by computing the

maximum of their respective log-likelihood-functions and then subtract the (generalized)

dimension of the model - and then we select the model which attains the highest value.

3.3.3 TIC vs. cross-validation

The connection between TIC and “leave-one-out cross-validation” from the parametric

setting gives the heart of the argument in Grønneberg [16] with regard to the introduction

of the cross-validation copula information criterion xv-CIC.

In this section we will briefly present the relevant result, while avoiding the technicalities.

The interested reader can e.g. check out Claeskens and Hjort [20, chapter 2.9] for the

formal argument that is required to prove this connection.

The main point of interest is that we have a “convergence” between the “loss-function

perspective” and the “prediction perspective” when we search for the best model to

describe our observations Xn. In particular, when the number of observations increases,

we can expect an increased chance for the two selection strategies to propose the same

model as the best one.

As previously observed, in eq. (3.1), we only need to compute the following part of the

KLIC-value,

Ef◦ [log fα] =

∫
log fα dF ◦, (3.41)

when we want to investigate the closeness of a model fα from some parametric family Fα

to a specified model f ◦, and the optimal member from Fα is the one whose parameter

α◦ maximizes eq. (3.41).



Chapter 3 – The Copula Information Criteria 42

When the true value α◦ is unknown, we can use as an approximation α̂, the maximum

likelihood estimator based on the observations Xn.

In the realm of i.i.d. observations, we find that the estimate we then are looking for

equals the expectation of a new observation Xnew, i.e. we have

∫
log fα̂ (x) dF ◦(x) = Ef◦ [log fα̂ (Xnew)] , (3.42)

see [20, p. 51] for further details.

Based on eq. (3.42) we introduce the following“prediction perspective” selection method:

x̂vn = n−1
n∑
k=1

log fα̂n(k) (xk) , (3.43)

in which α̂n(i) is the ml-estimate based on the sample without the i’th observation, i.e.

α̂n(i) = argmax
α

∫
log fα (x) dF̂ n\i(x). (3.44)

By the help of influence functions, it is proved in [20] that x̂vn with probability one

tends toward n−1
{
`n (α̂)− Tr

(
Ĵ−1K̂

)}
, which implies the following relation between

x̂vn and TIC n

TIC n = 2nx̂vn + oP (1) . (3.45)

This is used in Grønneberg [16] to construct the selection method xv-CIC for the semi-

parametric realm, and we will in the following sections give an outline of the analysis

leading to xv-CIC.

3.4 Semiparametric model selection, CIC

As discussed in chapters 1 and 2, we will in many cases restrict our attention to semi-

parametric models, i.e. that we instead of a quest for a model F(θ,γ) for some independent

observations Xn will look for a copula model Cθ for the corresponding dependent pseudo-

observations Xp n (obtained from Xn by the help of the empirical marginal distributions).

We will now consider how the machinery from section 3.3 must be tweaked to deal with

model selection in the semiparametric situation.
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3.4.1 Semiparametric models and MPLE.

In the semiparametric approach, we avoid the specification of models for the marginals

by transforming our observations Xn into a set of pseudo-independent observations Xp n

– the latter constituted of the pseudo-observations xp j

def
= Fn,⊥

(
xj
)

originating from

xj ∈ Xn with the help of the empirical marginals Fn,⊥.

When we then want to find the parametric copula cθ, from a copula-family Cθ, that is

closest to the copula c◦ corresponding to the data-generating model f ◦, we need to use

pseudo-likelihoods instead of likelihoods in order to take into account the noise from the

transformation Xn → Xp n. 12

Furthermore, when there are several different copula-candidates available, we would

like to rank them in a consistent way such that we can pick out the one that fits the

pseudo-data Xp n in the best possible fashion.

As the copulas themselves are d-variate distributions, this selection procedure might be

expected to be fairly close to the one treated in the fully parametric case – and it has

been normal practice to use an adjusted AIC-like formula without further ado.13

However, the requirements for the machinery of the AIC-formula is missing in the semi-

parametric context, since the pseudo-observations requires the machinery of maximum

pseudo-log-likelihood introduced by Besag [14].

In particular, this implies that our model selection formula must take into account that

we will use the maximizer of the pseudo-log-likelihood for Cθ (px) in our analysis

p
`n
(
θ;

pX
)

=
n∑
i=1

log cθ ( xp i) , (3.46)

which, as discussed in detail in Grønneberg and Hjort [15], Grønneberg [16], implies quite

a few modifications of the machinery mentioned in the previous discussions connecting

MLE and KLIC with AIC/TIC.

3.4.2 MPLE and the score-function.

We will now look closer upon the changes that follows when MLE is exchanged with

MPLE. The asymptotic behavior of the MPLE is in particular of interest, and as for

the MLE-case we can use the relation between the score-function and the likelihood-

function, i.e. un
def
= n−1 ∂

∂θ

p
`n(θ)

∣∣
θ=θ◦ , to extract this information. This is summarized

12See the discussion around fig. 2.8 for a reminder of what we mean by noise in this context.
13The adjustment being that the maximum of the pseudo likelihood function is used instead of the

maximum of the likelihood function.



Chapter 3 – The Copula Information Criteria 44

in Lemma 1 from Grønneberg [16, Part III], which states that under the necessary

regularity conditions on un, we have a weak convergence14

√
nūn

W−−−→
n→∞

u ∼ Np (0,Σ) , (3.47)

where Σ = I +W , with

I
def
= E

[
φθ◦(ξ)φθ◦(ξ)T

]
, (3.48)

W
def
= Var (Z) , (3.49)

with

Z
def
=

d∑
k=1

∫
∂φθ◦(v)

∂vk
· (1{ξk ≤ vk} − vk) dC◦ (v) , (3.50)

in which ξ is a random vector distributed according to C◦ and

φθ◦(v)
def
=

∂

∂θ
log cθ (v) . (3.51)

This lemma implies that it is possible to give conditions on the parametrization that

ensures a weak convergence
√
n
(
θ̂n − θ◦

)
W−−−→

n→∞
J−1u ∼ Np

(
0,J−1ΣJ−1

)
, where the

limit is defined in terms of a full-rank matrix

J
def
= −

∫
[0,1]d

∂2 log cθ◦ (v)

∂θ∂θT
dC◦ (v) . (3.52)

3.4.3 The arguments leading to CIC
AIC

and CIC
TIC

.

The argumentation in Grønneberg [16] leading to the formulas for CIC
AIC

and CIC
TIC

is

motivated by the connection between MLE and KLIC and AIC/TIC These arguments

therefore closely follows the discussion of the previous part of this chapter, and we will

thus not delve deeply into the details of the arguments in this section.

The difference between the CIC
AIC

and the CIC
TIC

is analogous to the difference between

AIC and TIC, i.e. their bias-correcting terms are molded with regard to whether or not

we find it reasonable to assume that we have a correct specified model for our pseudo-

observations Xp n. Thus the arguments leading to these two formulas are in the same

14 The use of the empirical marginals introduces a bunch of discontinuities that must be accounted
for (see e.g. Ruymgaart [25]), and an effect of this is that the covariance matrix Σ in addition to the
information matrix I gains an additional matrix W (cf. Genest et al. [26] for details). According to
Grønneberg [16], this W can be seen as accounting for the fact that we are dealing with a pseudo
likelihood and not a proper likelihood.
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vein, with the bifurcation point appearing at the moment we need to decide what kind

of estimation regime we will use in our computation.

The argument regarding the connection between the maximum pseudo-log-likelihood

estimator
p
`n and the Kullback-Leibler divergence between the copula C◦ (v) of the

true model F ◦ (x) = C◦ (F⊥(x)) and the copula Cθ (v) of our semiparametric model

Fθ (x) = Cθ

(
Fn,⊥(x)

)
, goes as summarized below.

Similar to the case of the MLE, cf. eqs. (3.4) and (3.5), we first consider the maximizer

of the pseudo-log-likelihood of a copula-model Cθ (v)

θ̂p n

def
= argmax

θ∈Θ
n−1

p
`n(θ; Xp n) = argmax

θ∈Θ
n−1

∫
[0,1]d

log cθ (v) dĈn(v), (3.53)

where Ĉn(v) is the empirical copula, defined by

Ĉn(v)
def
= n−1

n∑
j=1

1{Fn,⊥(xj) ≤ v} = n−1
n∑
j=1

d∏
i=1

1{Fn,i(xj,i) ≤ vi}. (3.54)

Under suitable regularity conditions, e.g. like those in Genest et al. [26], this maximizer

turns out to behave just like eqs. (3.2) and (3.6). We thus have the following convergence

in probability:

θ̂p n

P−−−→
n→∞

θ◦
def
= argmax

θ∈Θ

∫
[0,1]d

log cθ dC◦ (3.55)

= argmin
θ∈Θ

∫
[0,1]d

log
c◦

cθ
dC◦ (3.56)

= argmin
θ∈Θ

KLIC (c◦, cθ). (3.57)

If we have a family of copula-models Cθ = {cθ} parametrized by θ,15 and if we know the

true model c◦, then the best approximation from the family C would be c̃ = cθ◦ . In a

practical situation with an unknown true model, we will replace θ◦ with θ̂p n, and thus

use ĉ = cθ| θ= θ̂
p
n

as our estimate.

If we do not have any competing models, we could let it rest here – but when we want

to use this as basis for a model-selection criterion we need to recap the arguments that

took us from eq. (3.8) to eq. (3.10):

If the best approximation to an unknown model c◦ is to be found within a collection

of different parametric models, i.e. C = ∪Nk=1Ck, θ(k), it is enough to search for the best

15The elements of Cθ could in simple cases e.g. be from an elliptical or Archimedean copula-family. In
a multivariate setting with different kind of tail-dependencies, it might be more natural that Cθ instead
consists of conglomerated structures described by some vine copula or nested Archimedean copula.
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approximation from the set C◦ =
{
c1, θ(1)◦ , . . . , cN, θ(N)◦

}
that constitutes the best approx-

imations within each parametric family. From this set we then pick the index k̃ that

minimizes the Kullback-Leibler distance to our empirical estimate of the true model.

Unless we have an exceptional huge number of observations, we must expect our esti-

mates θ̂(k)
p

n
to have a non-negligible bias, which will induce a non-negligible bias in∫

log c
k, θ̂(k)
p

n
dĈn – and this implies that we will need to adjust our estimates of the

Kullback-Leibler values before we pick our k̃, in particular we get an expression similar

to eq. (3.10)

k̃n
def
= argmax

1≤k≤N

[∫
log c

k, θ̂(k)
p

n
dĈn − Biask

]
. (3.58)

The ingredients needed in our recipe for the bias-correcting terms is based on Taylor-

series expansion around θ◦ of the two functions

A(θ)
def
=

∫
[0,1]d

log cθ (v) dC◦ (v) , (3.59)

An(θ)
def
=

∫
[0,1]d

log cθ (px) dĈn(px) (3.60)

= n−1
p
`n(θ; Xp n),

where A(θ) represents the ideal situation where we actually know the copula of the

data-generating model F ◦ (x) = C◦
(
F ◦n,⊥(x)

)
– whereas An(θ) is the one we must settle

for when the true model is unknown and the best we can do is to make an estimate

based on the pseudo-observations Xp n (obtained from the observations Xn by the help

of the empirical marginals).

The connection between An(θ) and the pseudo log-likelihood function grants us infor-

mation about its asymptotic behavior, and under suitable regularity conditions (e.g.

Ruymgaart [25]) we have the following convergence in probability

An(θ) P−−−→
n→∞

A(θ). (3.61)

In accordance with eqs. (3.11) to (3.13), we can consider

A(θ◦), the true value/target we want to estimate,

A( θ̂p n), an estimate of A(θ◦) based on the MPLE θ̂p n,

An( θ̂p n), the estimate we can obtain when the true copula is unknown.

The argument in Grønneberg [16] is to use An( θ̂p n) to approximate A( θ̂p n), since the

difference An( θ̂p n)−A( θ̂p n) then can be used to make small-sample corrections to the
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estimator An( θ̂p n). In particular, the goal is to find a decomposition of the form

An( θ̂p n)−A( θ̂p n) = ζn + n−1αn + n−1βn, (3.62)

where E [ζn] = 0, and where αn and βn are bias terms such that αn is OP (1), but not

oP (1) and βn is oP (1). In particular: the n−1βn-term can be considered as low-level

noise when n is large enough.

Similarly to the strategy used in the fully parametric case, we can use asymptotic theory

to find a limiting distribution α of αn — and when we want an estimate of the bias, we

can use the estimate of E [α] as our estimate.

Note: It turns out, in contrast to the fully parametric case, that we might have limit-

ing distributions with an infinite expectation – and thus we do not obtain a generally

applicable selection model.

When we linearize A(θ) around θ◦, we get the exact same expressions as we found in

eqs. (3.14) to (3.18):

A(θ) = A(θ◦) +

(∫
u(γ)| γ=θ◦ dc◦

)T
· (θ − θ◦)

+
1

2
(θ − θ◦)T ·

∫
I(γ)| γ=θ◦+h1·(θ−θ◦) dc◦ · (θ − θ◦) , (3.63)

where

u(γ)T =

[
∂

∂γ1
log cγ , . . . ,

∂

∂γp
log cγ

]
, and (3.64)

I(γ) =


∂2

∂γ21
log cγ · · · ∂2

∂γ1∂γp
log cγ

...
. . .

...
∂2

∂γp∂γ1
log cγ · · · ∂2

∂γ2p
log cγ

 . (3.65)

The expressions given in eqs. (3.64) and (3.65) is respectively the score vector and the

information matrix of the model cθ. Since the integrals involved in eq. (3.63) represents

expectations, we can rewrite them as

A(θ) = A(θ◦) + (Ef◦ [u(θ◦)])T · (θ − θ◦)

+
1

2
(θ − θ◦)T · Ef◦ [I(θ◦ + h1 · (θ − θ◦))] · (θ − θ◦)

= A(θ◦)− 1

2
(θ − θ◦)T · J(θ◦ + h1 · (θ − θ◦)), (3.66)
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where the score vector term disappears since its expectation always equals zero, and as

usual the notation J(γ) = −Ef◦ [I(γ)] is used since the Fisher information matrix, i.e.

J(γ) evaluated at θ◦, is denoted by J .

However, when we want to consider the linearization of An(θ) around θ = θ◦, and then

want to evaluate it at θ = θ̂p n, we find that although it is equal in form to eq. (3.24),

it does differ in the important aspect that it is to be evaluated with respect to the

pseudo-observations:

An( θ̂p n) = n−1
n∑
i=1

log cθ◦ ( xp i) (3.67a)

+ n−1
n∑
i=1

u(θ◦; xp i)
T ·
(
θ̂p n − θ◦

)
(3.67b)

+ n−1
n∑
i=1

1

2

(
θ̂p n − θ◦

)T
· I
(
θ◦ + h2 ·

(
θ̂p n − θ◦

)
; xp i

)
·
(
θ̂p n − θ◦

)
, (3.67c)

for some h2 ∈ [0, 1].

In particular, this implies that we must account for the noise from the transformation

from Xn to Xp n in this expression, when we want to find the bias-correcting term at

the OP

(
n−1

)
-level. As done in Grønneberg [16], this requires a closer look upon the

difference An(θ◦)−A(θ◦).

In order to adjust for the deviations from the true values that the transformation step

generates, we need to do a Taylor expansion (two terms plus remainder) of the expression

for An(θ). In particular, we will expand log cθ◦ (v) around v = F ◦⊥ (x).

To summarize, in order to find the bias-correcting terms at the OP

(
n−1

)
-level, we need

to consider the following difference

An(θ◦)−A(θ◦) = n−1
n∑
j=1

log cθ◦
(
Fn,⊥

(
Xj

))
−
∫
Rd

log cθ◦
(
F ◦
⊥
(x)
)

dF ◦ (x), (3.68)

which is what we get from the definitions in eqs. (3.59) and (3.60) when we want to

emphasize that the copulas we consider is related to observations Xn of some d-variate

distribution F ◦ (x) = C◦
(
F ◦
⊥
(x)
)
.

The argument needed in order to arrive at the expression from Grønneberg and Hjort [15],

given in eq. (3.69) below, is to first restate the sum in eq. (3.68) as a Lebesgue-Stieltjes

integral and then do a second order Taylor-expansion of log cθ◦ (v) around v = F ◦⊥ (x).

In order to get the desired result we have to do a minor reshuffling of the terms, and

then go back to sums instead of Lebesgue-Stieltjes integrals for some of the terms.
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Under the condition that the function log cθ◦ (v) can be differentiated twice, we get

An(θ◦)−A(θ◦) =

∫
Rd

log cθ◦
(
F ◦
⊥
(x)
)

d[Fn (x)− F ◦ (x)] +Qn +Rn +Bn, (3.69)

where Qn and Rn denotes the first and second order terms of the Taylor expansion, i.e.

Qn =
1

n

n∑
j=1

ζ′
θ◦

(
F ◦
⊥

(
Xj

))T [
Fn,⊥

(
Xj

)
− F ◦

⊥

(
Xj

)]
,

Rn =
1

2n

n∑
j=1

[
Fn,⊥

(
Xj

)
− F ◦

⊥

(
Xj

)]T
ζ′′

θ◦

(
F ◦
⊥

(
Xj

)) [
Fn,⊥

(
Xj

)
− F ◦

⊥

(
Xj

)]
,

in which

ζ′
θ
(v) =

∂ log cθ (v)

∂v
, (3.70)

ζ′′
θ
(v) =

∂2 log cθ (v)

∂v∂vT
(3.71)

and where Bn represents the remainder term, given by

Bn =
1

2n

n∑
j=1

[
Fn,⊥

(
Xj

)
− F ◦

⊥

(
Xj

)]T [
ζ′′

θ◦

(
Gn(Xj)

)
− ζ′′

θ◦

(
F ◦
⊥

(
Xj

))] [
Fn,⊥

(
Xj

)
− F ◦

⊥

(
Xj

)]
,

where Gn is a vector-function with entries Gn,i(x) = F ◦i (xi)+τn,i(x)
[
Fn, i (xi)− Fi (xi)

]
for some stochastic vector τ n(x) ∈ [0, 1]d.

We need (estimates of) the expectation of eq. (3.69) in order to find the bias-correcting

terms. The expectation of the integral is zero, so it is the other three parts on the right

hand side that we need to work upon. The line of argument mimics the one encountered

in the parametric setting, i.e. we will use expectations of the limiting distributions as

bias-correcting terms in the final selection formulas CIC
AIC

and CIC
TIC

.

Grønneberg [16, Part III] gives arguments in Lemma 2 and Lemma 3 that looks closer

upon the two terms Qn and Rn, and presents conditions that ensures that we have

Bn = oP

(
n−1

)
,16 such that this annoying term disappears when we go to the limit.

The first result is that Qn can be decomposed as n−1qn + ZQ,n, with

E [ZQ,n] = 0, (3.72)

qn =
n

n+ 1

∫
Rd
ζ′
θ◦

(
F ◦
⊥
(x)
)T (

1− F ◦
⊥
(x)
)

dFn (x) = OP (1) , (3.73)

E [qn] =
n

n+ 1

∫
[0,1]d

ζ′
θ◦

(v)T (1− v) dC◦ (v) . (3.74)

16The conditions are given in Grønneberg [16, Part III], in Proposition 1 from Appendix A.2
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Note that ZQ,n is defined in a similar way as Z̄n on page 36, but its explicit form is not

of any importance since its expectation is identical to zero.

Moreover, with Ca, b the cumulative copula of
(
X1, a,X1, b

)
,17 and rn

def
= nRn, we have

E [rn]→ 1TΥ1, where Υ is given by

Υa,a =
1

2

∫
[0,1]d

(
ζ′′

θ◦
(v)
)
a,a

va(1− va) dC◦ (v) , (3.75)

Υa,b =
1

2

∫
[0,1]d

(
ζ′′

θ◦
(v)
)
a,b

[
C◦a, b (va , vb)− vavb

]
dC◦ (v) , (when a 6= b), (3.76)

in which
(
ζ′′

θ◦
(v)
)
a,b

are the elements of the matrix function ζ′′
θ◦

(v) from eq. (3.71).

Grønneberg [16, Part III, Theorem 1] gives the desired expression for An(θ◦)−A(θ◦) as

An(θ◦)−A(θ◦) = n−1(qn + rn) + Z̃n + oP

(
n−1

)
, (3.77)

in which E
[
Z̃n

]
= 0, and introduces

q∗
def
= lim

n→∞
E [qn] =

∫
[0,1]d

(
ζ′
θ◦

(v)
)T
· (1− v) dC◦ (v) , (3.78)

r∗
def
= lim

n→∞
E [rn] = 1TΥ1. (3.79)

As for ZQ,n, the exact form of Z̃n can for our purposes be ignored since its expectation

is identical to zero.

The next section will present the estimates of q∗ and r∗ that give the two selection

models CIC
AIC

and CIC
TIC

, but before we venture into those details it might be worth

to note that we alas can have situations where r∗, the limit of the expectation of rn,

might become infinite.

The reason for this is that copula models cθ (v) that increases rapidly close to the

boundary of [0, 1]d, can have a derived matrix-function ζ′′
θ◦

(v) whose elements in the

vicinity of the boundary grows fast enough for the integrals in Υ to become infinite.

A concrete computation showing this phenomenon is given in [16], with the bivariate

Archimedean B4-copula (see e.g. Joe [4] for the definition) as an example. The generator

of the B4-copula enables us to compute the defining integrals of Υ analytically, and the

conclusion is that this gives infinite elements in Υ, and thus an infinite r∗.

So even though the term we are considering is OP (1), we will for copula models with

some tail-dependence find that the expectation of the limiting distribution is infinite –

17 This cumulative copula is the copula associated with Fa,b(Xa, Xb), defined from F (X1, . . . , Xd) by
letting the superfluous observators tend to infinity.
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in contrast to the situation known from the parametric case where the expectation of

the limiting distribution does not have such an undesirable behavior.

3.4.4 The estimators needed in the computation of CIC
AIC

and CIC
TIC

.

Based on the results mentioned in the previous section, we can now state Proposition 1

from Grønneberg [16, Part III] that motivates the empirical estimates to be used un-

der the assumption of a correctly specified model (AIC-like variant) or a more general

situation (TIC-like variant):

If the parametric model is correctly specified, we have q∗ = 0 and

p∗ = length (θ) + Tr
(
I−1W

)
.

Reminder: The matrices I and W are those defined in eq. (3.48) and eq. (3.49), i.e. the

components that constitute the covariance matrix Σ of the limiting normal distribution

when we must use the pseudo-likelihood instead of the likelihood in our analysis.

The case of CIC
AIC

: The above result motivates the AIC-like Copula Information

Criterion

CIC
AIC def

= 2 · p`n,max − 2 ·
(
p̂∗ + r̂∗

)
, (3.80)

where
p
`n,max is the maximum of the pseudo-log-likelihood, and where p̂∗ and r̂∗ are the

estimates of p∗ and r∗ defined below.

A natural estimator of r∗ in this case, where we assume that we have cθ◦ = c◦, is

r̂∗ = 1T Υ̂1, defined in terms of the plug-in estimators

Υ̂a,a =
1

2

∫
[0,1]d

(
ζ′′

θ̂
p
n

(v)

)
a,a

va(1− va) dC
θ̂
p
n

(v) , (3.81)

Υ̂a,b =
1

2

∫
[0,1]d

(
ζ′′

θ̂
p
n

(v)

)
a,b

[
C

θ̂
p
n; a, b

(va , vb)− vavb
]

dC
θ̂
p
n

(v) , (3.82)

A natural estimator for p∗ is, with regard to the result of the proposition, to use

p̂∗ = length (θ) + Tr
(
Î−Ŵ

)
, (3.83)

where Î− is the generalized inverse of Î, the pseudo empirical information matrix

Î = E
[
φ θ̂
p
n
(ξ)φ θ̂

p
n
(ξ)T

]
(3.84)
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and

Ŵ = Var

(∫
[0,1]d

(
∂2

∂θ∂uT
log c

θ̂
p
n

(u)

)T
(1{ξ ≤ v}⊥ − u) dC

θ̂
p
n

(u)

)
, (3.85)

where ξ ∼ C
θ̂
p
n

(v) and where φθ = ∂
∂θ log cθ (v).

The case of CIC
TIC

: When we consider a situation where we do not want to impose

an assumption about a correctly specified model, we need nonparametric estimators that

gives us a TIC-like formula.

CIC
TIC def

= 2 · p`n,max − 2 ·
(
p̂∗ + q̂∗ + r̂∗

)
, (3.86)

with
p
`n,max the maximum of the pseudo-log-likelihood, and p̂∗, q̂∗ and r̂∗ as given in the

estimates below.

The natural estimator for q∗ is the plug-in estimator

q̂∗ =

∫
[0,1]d

(
ζ′

θ̂
p
n

(v)

)T
· (1− v) dĈn(v), (3.87)

while the estimator for r∗, r̂∗ = 1T Υ̂1, in this case must use the empirical copula

Υ̂a,a =
1

2

∫
[0,1]d

(
ζ′′

θ̂
p
n

(v)

)
a,a

va(1− va) dĈn(v), (3.88)

Υ̂a,b =
1

2

∫
[0,1]d

(
ζ′′

θ̂
p
n

(v)

)
a,b

[
Ĉn;a,b(va, vb)− vavb

]
dĈn(v), (3.89)

where Ĉn,a,b(va, vb) is the empirical bivariate copula corresponding to the pairs of co-

variates indexed by a and b, i.e. (x1, a, x1, b), (x2, a, x2, b), . . . , (xn, a, xn, b).

For the estimation of p∗, we use p̂∗ = Tr
(
Ĵn−1Σ̂

)
, based on estimates of Σ = I +W

and of J defined in eq. (3.52).

In this case Grønneberg [16] gives us

Σ̂ = n−1
n∑
i=1

{
φ θ̂
p
n

(
ξ̂(i)

)
+ Ẑi

}{
φ θ̂
p
n

(
ξ̂(i)

)
+ Ẑi

}T
, (3.90)

with

Ẑi =
d∑
j=1

n−1
n∑

s=1,s 6=i

∂φ θ̂
p
n
(v)

∂vj

∣∣∣∣
v=ξ̂(s)

(
1

{
ξ̂(i)j ≤ ξ̂(s)j

}
− ξ̂(s)j

)
(3.91)

using ξ̂(k) = Fn,⊥(xk).
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A note of warning: The estimators given above for the two selection methods

CIC
AIC

and CIC
TIC

can be computed for any set of pseudo-observations Xp n, but the

estimate of r∗ will only be reasonable in those cases where the data-generating process c◦

does not give an infinite Υ-matrix. If we do not know what kind of process the data

originated from, the use of these estimators could lead us astray if we end up using them

on a situation for which they are not applicable.

In this authors opinion: Even though the theory leading to CIC
AIC

and CIC
TIC

is of

interest, the lack of general applicability implies that they should be shunned in practical

applications.

3.4.5 The arguments leading to xv-CIC.

In section 3.3.3 we mentioned the parametric case connection between the “loss-function

perspective”, and the “prediction perspective”, i.e. eq. (3.45) which states that we for a

n-sized set of observations Xn have the following correspondence

TIC n = 2nx̂vn + oP (1) , (3.92)

with x̂vn as defined in eq. (3.43).

We will in this section consider the adjustments that must be applied when the empirical

marginals replaces observations Xn with pseudo-observations Xp n.

We already now from the previous sections that the semiparametric replacement for the

TIC, the CIC
TIC

from section 3.3.2, does suffer from the rather undesirable property of

not being applicable for observations stemming from copula models with tail-dependence.

As previously mentioned, this implies that we probably are better off if we do not use

CIC
TIC

as a selection model.

In contrast, the generalization of the leave-one-out cross-validation xvn, the xvp
n defined

below in eq. (3.93), gives a selection method that is well behaved for all cases.

The xvp
n is computationally expensive to apply directly, so Grønneberg [16, Part III]

sets out to produce an analytical approximation to it, and the end result of this is the

xv-CIC-formula given in eq. (3.97).

Since xv-CIC is first order equivalent to the generally applicable xvp
n, we then have at

our hand a generally applicable model selection tool that can be used when we want to

find the best available copula-model c from a collection C that describes the interdepen-

dencies of a set of pseudo-observations Xp n.
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The definition of xvp
n. If we make the obvious modifications to eq. (3.92), we ob-

tain the following semiparametric version of the leave-one-out cross-validation formula.18

xvp
n

def
= n−1

n∑
i=1

log cθ
(
Fn,⊥, (i)(Xi)

)∣∣
θ= θ̂p

(i)

, (3.93)

where θ̂p (i) is the maximum pseudo-likelihood estimate (MPLE)

θ̂p (i)

def
= argmax

θ∈Θ

∑
j 6=i

log cθ
(
Fn,⊥, (i)

(
Xj

))
,

and where Fn,⊥, (i) is the (n−1n -rescaled) marginal empirical distribution function based

on all observations X1, . . .Xn except Xi.

There is no reference to the data-generating model c◦ in the definition of xvp
n, which

implies that it does not experience the effect that incurs the CIC
TIC

-formula to become

inapplicable. The xvp
n thus gives a well defined semiparametric model selection strategy,

but the requirement that we need to compute a total of n MPLEs θ̂p (i) implies that the

computational cost becomes formidable.

Motivated by the general applicability of the xvp
n, Grønneberg [16], sets out to find an

expression similar to eq. (3.45) for the semiparametric case, i.e. the goal is to find an

asymptotically equivalent analytical approximation to xvp
n.

The main step toward the desired xv-CIC-formula is Theorem 2 from Grønneberg [16,

Part III], whose proof both requires the use of influence functions like those needed in

the proof of eq. (3.92), and the use of a Taylor series expansion of log cθ (v) in both v

and θ, as sketched in section 3.4.3 for the case of CIC
AIC

and CIC
TIC

.

Note: The similarities with the line of argument used for the CIC
AIC

and CIC
TIC

, implies

that we in the notation below have φθ(v) and ζ′
θ
(v) as defined in eqs. (3.51) and (3.70)

respectively.

The result we need in order to motivate the definition of xv-CIC goes as follows: With

regularity conditions like those in Genest et al. [26], wich for each θ around θ◦ secures

the point-wise convergence of

ẑθ(x)
def
=

d∑
i=1

∫
∂φθ(v)

∂vk
(1{xk ≤ vk} − vk) dĈn(u) P−−−→

n→∞
zθ(x), (3.94)

18Strictly speaking, Fn,⊥, (i) in eq. (3.93) should have been replaced with a slightly modified version

in order to ensure that we do not have to evaluate it at the border of [0, 1]d, since many copula models
might then be undefined (or attain infinte values). However, as discussed in detail in Remark 2 in
Grønneberg [16, Part III], since the arguments later on is of an asymptotic nature, the few potential
problematic values will be insignificant as n→∞.
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and given that the function ẑθ(x) is continuous around θ◦, we have

xvp
n = n−1

[
p
`n(θ)− n−1

n∑
i=1

ζ′
θ
( Xp i)

T (1d − Xp i)

+ φθ( Xp i)
T Ĵ−1φθ( Xp i) + φθ( Xp i)

T Ĵ−1ẑθ( Xp i)

]∣∣∣∣∣
θ= θ̂p n

+ oP (1) , (3.95)

in which θ̂p n is the MPLE for θ in cθ (the model we are considering) with regard to

the pseudo-observators in Xp n. The matrix Ĵ is given by the Lebesgue-Stieltjes integral

(i.e. a sum over the pseudo-observators in Xp n)

Ĵ
def
= −

∫
0,1]d

∂2 log cθ ( Xp )

∂θ∂θT

∣∣∣∣∣
θ= θ̂p n

dĈn ( Xp ) , (3.96)

wich under the regularity conditions of e.g. Ruymgaart [25] will converge in probability

towards the matrix J defined in eq. (3.52).

Motivated by this result, the cross-validation Copula Information Criterion is defined by19

xv-CIC
def
= 2 · p`n,max − 2 · (p̂n + q̂n + r̂n) , (3.97)

where
p
`n,max as usual is the maximum of the pseudo-log-likelihood, and where

p̂n
def
= n−1

n∑
i=1

φθ( Xp i)
T Ĵ−1φθ( Xp i)

∣∣∣
θ= θ̂p n

, (3.98a)

q̂n
def
= n−1

n∑
i=1

φθ( Xp i)
T Ĵ−1ẑθ( Xp i)

∣∣∣
θ= θ̂p n

, (3.98b)

r̂n
def
= n−1

n∑
i=1

ζ′
θ
( Xp i)

T (1d − Xp i)
∣∣∣
θ= θ̂p n

. (3.98c)

Grønneberg [16] also considers how the terms in xv-CIC would look like if we assume

that we have picked the correct copula model, i.e. that we have c◦ = cθ◦ . In this case it

is possible to proove that we under standard coniditons have

xvp
n = n−1

[
p
`n( θ̂p n)− length (θ)− J−1Ŵ n

]
+ oP (1) , (3.99)

which then motivates the following AIC-like cross-validation Copula Information Crite-

rion

xv-CICAIC
def
= 2

p
`n,max − 2

(
length (θ) + J−1Ŵ n

)
. (3.100)

19It is actually xv-CIC/2 that is first order equivalent with the cross-validation sum, but the resulting
model ranking is not affected by this scaling, and the modification is made in order to maintain similarity
with the classical AIC formula.
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As mentioned in [16], the matrix Ŵ n estimates W from eq. (3.49), which can be seen

to account for the fact that we are dealing with a pseudo likelihood and not a proper

likelihood. If it turns out that the term J−1W is small, it might introduce more variance

than it bias-corrects. In such cases the classical AIC approach (i.e. the approach named
p
AIC in this thesis) might be preferable to use.

Note that the xv-CIC formula are motivated by an asymptotic approximation of the

cross-validation formula, and it might thus only be reasonable to apply when n is large

enough to make the oP (1) term in eq. (3.95) negligible. The size of n needed for a

very good approximation will depend on both the data-generating mechanism and the

parametric model cθ under consideration. If n is small to medium sized, we could always

resort to the computation of the full cross-validation in eq. (3.93). When n is large

enough to make the use of eq. (3.93) intractable, we could probably safely apply xv-CIC.

Grønneberg [16] comments that a large simulation study would be necessary to gauge

the small-sample behavior of the xv-CIC for various families of copulas, and the result

from such simulations for an assorted collection of copulas is presented in chapter 4.



Chapter 4

Results from simulations

This chapter presents the result from simulations executed in order to see how the

selection method xv-CIC fares in the realm of finite samples Xn. In addition we will

combine this analysis with a comparison to the results from the selection method
p
AIC.

Remember from the previous chapters that Grønneberg and Hjort [15] shows that
p
AIC,

i.e. the selection method where we use an AIC-strategy on the dependent pseudo-

observations Xp n as if they actually were true independent observations Xn, does not

rest on a theoretically sound framework. [15] tells us that we, when the noise from the

transformation to pseudo-observations is taken into account, either should use CIC
AIC

or CIC
TIC

(depending on whether or not we assume a correctly specified copula model).

But the CIC
AIC

and CIC
TIC

share the unfortunate fate that their bias-correcting terms

can attain infinite values, which implies that they are not generally applicable. However,

the xv-CIC from Grønneberg [16, Part III] gives us a valid selection method for the semi-

parametric settings we are interested in.

But even though the model selection method xv-CIC rests on a theoretical sound frame-

work, it is important to remember that the precision of its bias correcting term will

depend on how many observations we have in Xn. This is directly connected to how

negligible the oP (1) term in the approximation is, and this is in addition connected to

what kind of copulas we wish to rank against each other as possible models for the

interdependencies of Xn.

In the following sections we will first present the framework that has been used to

generate the data, and then we present the analysis based on them.

57
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4.1 The setup

In order to find out how xv-CIC fares as a selection method in the finite realm, we need

to test it on data we know the origin of. This section presents a sketch of the setup that

has been used in order to accomplish this.

First of all, the program that has been used is R (version 2.15.2) and it is in particular the

R-package copula that is at the heart of the computations. Quite a few other packages

have also been necessary in order to properly store and work with the results from the

different steps of the algorithm, and the interested reader can consult appendix C for

further details.

The copula models: As mentioned in section 2.1, we will use the following bivari-

ate copula models in our analysis: clayton, frank, galambos, gumbel, huslerReiss,

normal and t. Of these, the first five are all Archimedean copulas, and the third to

fifth of them are in addition extreme-value copulas. These five models are all included

due to the fact that the code could deal with all Archimedean copulas in a unified and

cost-efficient manner.1

The two copula models normal and t, which respectively refers to the copulas corre-

sponding to the bivariate normal distribution and the bivariate student’s t-distribution

(which in our case has had degrees of freedom fixed to the value four), have been in-

cluded since they are mandatory in any analysis of the interdependence structure of a

set of bivariate data.

The data: The generated samples have been of size N ∈ {100, 250, 500, 1000}, and

the parameters in the models have been picked in order to correspond to values of

Kendall’s τ in the set {0.25, 0.5, 0.75}.

A total of R = 5000 replicates were created for each combination of N and τ , by

performing the steps described below.

1. For all combinations of copula models, sample-sizes N and parameter-values (as

introduced above), the rCopula-function was used in order to generate our “ideal-

ized” samples Xu n, please see the discussion at the the end of this section for the

connection between the original samples Xn, the idealized samples Xu n and the

pseudo-samples Xp n.

2. The pobs-function was then used to create the pseudo-observations Xp n, and then

we used the fitCopula-function on these to find the maximum pseudo likelihood

1See the discussion in appendix C for further details.
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estimate θ̂p and the corresponding maximum of the pseudo log-likelihood function
p
` for all the seven copula models.

3. Based on the value of θ̂p (and on N) the bias-correcting terms of the xv-CIC

formula was computed for each pseudo-observation Xp n and each model copula.

4. For every replicate, the values of
p
AIC and xv-CIC was computed, and the seven

copula models was then ranked according to the result.

The analysis of the data: If we restrict our attention to the model with the highest

rankings, we can easily see how well the xv-CIC has worked with regard to identifying

the correct model for the different combinations of data-generating model, size of sample

and value of parameter.

In addition to a measure of how often the correct model is identified, we can also find

a measure of how often the selected model actually was the model that generated the

data. This will be investigated in the next section, where we also will see how good/bad

xv-CIC is as a model selection in these cases when compared to
p
AIC.

The actual values of the parameters: For those that prefer to have more detailed

knowledge of the values the parameters in the different models must have in order to

give the desired values of Kendall’s τ , the relevant values (with a precision of six digits)

are to be found in table 4.1. These parameters where computed by iTau from the

copula-package.

Table 4.1: The exact parameter values corresponding to τ in {0.25, 0.50, 0.75}.

copula τ = 0.25 τ = 0.5 τ = 0.75

clayton 0.666667 2.000000 6.000000
frank 2.371930 5.736283 14.138504
galambos 0.597775 1.284823 3.290396
gumbel 1.333333 2.000000 4.000000
huslerReiss 0.987050 1.803681 4.099378
normal 0.382683 0.707107 0.923880
t (df=4) 0.382683 0.707107 0.923880

Note on Xn, Xu n and Xp n. In the description of how the data was created, the

term “idealized” observations Xu n was introduced, and this requires an explanation.

First of all it might be prudent to explain why it for our analysis of the pseudo-

observations Xp n is sufficient to create a sample from a copula model C(u1, u2) instead

of a sample from a general bivariate model F (x1, x2) = C(F 1(x1), F 2(x2).

Let us start out by noting that the mvdc-function from the Copula package, which is

the function we would use to create a sample from a bivariate function (specified by its
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copula and its marginal models), would start out by creating a sample like Xu n from the

copula-model, and then it would use the inverse cdfs F 1
−1 and F 2

−1 in order to create

the actual realization Xn of our sample.

Since the pseudo-observations Xp n is created by applying the empirical marginals to our

observations Xn, and since the marginal cdfs (and their inverses) are strictly increasing

functions, there is no need to invest computational resources in order to create an “origi-

nal” sample Xn from the “idealized” sample Xu n, since the resulting pseudo-observations

Xp n will be unaffected by this extra step.

This clarifies why it for our analysis is sufficient to sample from the copula models by

the help of rCopula, but the reason for the term “idealized” on the sample Xu n still

needs an explanation.

For the purposes of section 4.2, where all the analysis is based on Xp n, we do not

need to worry about the distinction between Xn and Xu n. But when we in section 4.3

and appendix B investigate the performance of the parametric model selections methods

AIC and TIC when used on Xu n, it is paramount to stress that we have an exceptionally

rare situation.

In an ordinary situation with some bivariate observations Xn, we would need to specify

marginal distributions in addition to the copula models before we fitted our models

to Xn and applied AIC to rank them. When we in our analysis use Xu n instead, we

have the luxurious knowledge that the marginal distributions are uniform on [0, 1]. In

a practical setting this would imply that we from Xn could construct Xu n, which only

could happen under the idealized condition that we had exact knowledge of the marginal

distributions.

The “cheating” we do when we use Xu n instead of Xn makes the discussion in section 4.3

and appendix B less general in nature. However, as discussed in appendix B it might

still be some insight to be gained from this approach.

4.2 The results

In this section we will present some tables that informs us how good the model selec-

tion method xv-CIC has worked in the cases mentioned in the previous section. And

furthermore, we will see how this selection method compares to the
p
AIC in these cases.



Chapter 4 – Results from simulations 61

The comparison of xv-CIC vs.
p
AIC is of interest since the latter has been widely applied

in practical settings,2 and it is thus of interest to see if the well established practice of

using
p
AIC is superior, inferior or equivalent to the xv-CIC, the latter criterion having a

formally correct theoretical basis.

As it turns out, at last for the cases considered in this thesis, it really does not seem to

matter which one of the two selection methods that are applied. They appear to work

just as good/bad in all the cases investigated, a result which in this authors opinion is

as expected. After all, it resembles the situation from the parametric case where AIC

formally only should be applied under the assumption that we have a correctly specified

model, and otherwise we should fall back on the TIC. However, when we encounter finite

sized samples we will without further ado happily use the computational much simpler

AIC, since the end result in the long run has turned out to be more or less identical, cf.

appendix B for further details.

Some tables: In the following paragraphs, we will present a few tables that sum-

marize some information from the generated data. Most of the tables are postponed to

appendix A, because this chapter otherwise would become quite cluttered.

Let us start with a table which shows how many times the different selection methods

ranked the models first, where the data is based on a total of 5000 replicates, where each

replicate was created with parameters corresponding to a value of Kendall’s τ of 0.5,

and a sample-size of N = 250.

Table 4.2: xv-CIC vs.
p

AIC, N = 250 and τ = 0.5 – counting.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC 4992 2 0 0 0 5 1
clayton xv-CIC 4974 9 0 0 0 11 6
frank

p

AIC 3 4661 6 23 3 268 36
frank xv-CIC 0 4738 8 27 5 198 24
galambos

p

AIC 0 20 1341 1755 1595 170 119
galambos xv-CIC 0 24 1307 2011 1477 108 73
gumbel

p

AIC 0 28 1078 2745 813 133 203
gumbel xv-CIC 0 36 1025 3023 726 83 107
huslerReiss

p

AIC 0 7 909 467 3347 245 25
huslerReiss xv-CIC 0 9 1014 591 3209 161 16
normal

p

AIC 8 133 72 53 265 4174 295
normal xv-CIC 1 193 114 89 350 4021 232
t

p

AIC 8 27 42 228 15 184 4496
t xv-CIC 4 42 54 370 17 208 4305

2Remember that the notation
p

AIC in this thesis is to stress that the computations are based on the
dependent pseudo-observations Xp n instead of the original independent observations Xn, and that the
customary notation in the literature thus simply is AIC.
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Table 4.2 can be used to deduce that the two selection methods follow each other rather

closely, and we furthermore see that
p
AIC has more hits on the correct model for the five

cases clayton, galambos, huslerReiss, normal and t, whereas xv-CIC only “wins” the

two models frank and gumbel. Note that the scores of the three extreme-value copulas

galambos, gumbel and huslerReiss is as expected since they do have a high degree of

resemblance - which makes them hard to distinguish based on small samples. If we blur

their distinction and collects them into one “extreme-value copula folder”, we see that

the selection methods then have a decent level of prediction (compared to the others)

with regard to telling us that an extreme value copula is at play.

Furthermore, table 4.2 shows that there is quite a difference between the number of

erroneous predictions for the models that are considered. The clayton copula is almost

never ranked as number one when the data is from another model, while the normal

and t copulas in comparison has been wrongly proposed as the correct model in quite a

few cases.

To investigate to what extent this can be an effect of the transformation to pseudo-

observations, section 4.3 will compare the result of a ranking based on AIC on the

original independent observations Xn (before the transformation), with those rankings

we achieved by using
p
AIC on the dependent pseudo-observations Xp n.

But before this we need to properly look upon the results from all the other combinations

of τ and N that we have simulated data from. Tables showing the percentages for the

twelve combinations we get from the values of N and τ are given on the following pages.

Note in particular that table 4.7 is the one corresponding to table 4.2 above.

In order to emphasize the most interesting features, the following enhancements has

been applied to the tables.

1. To distinguish
p
AIC from xv-CIC, the rows corresponding to the former is given

with a light-gray tone.

2. For each row, a function has been applied that inserted a ∗ in front of the highest

value. This makes it easier to find the model that the selection method in most

cases proposed as the one generating the observations at hand.

3. For those cells corresponding to a match between the data generating model and

the proposed model, the cell containing the highest score has been changed to

boldface. In those cases were a tie occurs, both cells are emphasized in this way.
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Table 4.3: xv-CIC v.s.
p

AIC N = 100, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗81.28 4.98 0 0.32 0.58 5.90 6.94
clayton xv-CIC *73.34 7.10 0.04 0.52 0.86 9.02 9.12
frank

p

AIC 11.30 *46.66 1.50 6.52 8.88 16.02 9.12
frank xv-CIC 7.18 ∗49.92 1.68 7.78 9.72 15.86 7.86
galambos

p

AIC 2.06 6.86 8.00 26.94 *37.42 9.00 9.72
galambos xv-CIC 1.38 7.52 7.06 33.10 *35.78 7.82 7.34
gumbel

p

AIC 2.20 7.42 6.52 *34.70 27.74 7.34 14.08
gumbel xv-CIC 1.46 8.16 6.04 ∗40.92 26.10 6.66 10.66
huslerReiss

p

AIC 1.78 5.92 6.54 21.32 ∗47.08 9.76 7.60
huslerReiss xv-CIC 1.00 6.34 7.10 26.12 *45.28 8.50 5.66
normal

p

AIC 15.82 17.14 2.42 6.20 18.30 ∗30.80 9.32
normal xv-CIC 10.74 18.96 2.72 8.18 20.04 *30.74 8.62
t

p

AIC 10.50 4.72 1.58 10.60 4.72 4.44 ∗63.44
t xv-CIC 7.34 5.68 1.58 14.98 4.86 4.80 *60.76

Table 4.4: xv-CIC v.s.
p

AIC N = 100, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗95.74 1.30 0 0 0 1.28 1.68
clayton xv-CIC *91.48 2.36 0 0 0 2.96 3.20
frank

p

AIC 2.34 *70.76 0.98 2.80 2.92 14.02 6.18
frank xv-CIC 0.94 ∗75.78 1.00 3.66 3.40 10.56 4.66
galambos

p

AIC 0.08 3.18 11.62 30.82 *38.60 7.86 7.84
galambos xv-CIC 0.04 3.92 11.90 *38.38 35.52 5.30 4.94
gumbel

p

AIC 0 3.06 11.18 *40.64 27.74 6.28 11.10
gumbel xv-CIC 0 3.60 9.60 ∗49.18 25.48 4.46 7.68
huslerReiss

p

AIC 0.06 2.08 10.24 17.66 ∗55.60 10.32 4.04
huslerReiss xv-CIC 0 2.84 11.06 22.56 *54.14 6.56 2.84
normal

p

AIC 4.02 8.54 2.40 2.94 13.78 ∗55.60 12.72
normal xv-CIC 2.08 11.32 3.10 4.72 17.36 *50.20 11.22
t

p

AIC 4.38 3.46 1.96 9.92 3.66 9.66 ∗66.96
t xv-CIC 2.48 4.66 2.06 15.60 4.14 9.38 *61.68

Table 4.5: xv-CIC v.s.
p

AIC N = 100, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗98.46 0.84 0 0 0 0.22 0.48
clayton xv-CIC *95.58 2.56 0 0 0 0.46 1.40
frank

p

AIC 0.24 *89.14 0.34 1.32 0.60 5.94 2.42
frank xv-CIC 0 ∗92.22 0.28 1.68 0.62 3.52 1.68
galambos

p

AIC 0 1.66 15.18 *37.26 28.28 7.76 9.86
galambos xv-CIC 0 2.48 14.14 *46.22 25.98 4.80 6.38
gumbel

p

AIC 0 1.68 14.30 *44.12 22.76 6.30 10.84
gumbel xv-CIC 0 2.48 12.94 ∗53.18 20.50 4.04 6.86
huslerReiss

p

AIC 0 1.40 13.46 16.96 ∗52.40 11.16 4.62
huslerReiss xv-CIC 0 1.96 14.52 23.26 *50.18 7.42 2.66
normal

p

AIC 0.64 4.34 1.94 2.28 8.78 ∗64.38 17.64
normal xv-CIC 0.30 6.54 3.22 5.00 11.80 *57.02 16.12
t

p

AIC 1.16 2.28 1.64 8.44 2.62 13.54 ∗70.32
t xv-CIC 0.64 3.22 2.02 13.96 3.06 12.70 *64.40
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Table 4.6: xv-CIC v.s.
p

AIC N = 250, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗95.30 1.20 0 0.02 0 2.12 1.36
clayton xv-CIC *92.04 1.96 0 0.02 0 3.94 2.04
frank

p

AIC 3.60 *70.90 0.88 3.00 1.94 17.42 2.26
frank xv-CIC 2.24 ∗73.12 1.02 3.54 2.30 15.82 1.96
galambos

p

AIC 0.02 2.34 15.40 30.70 *41.18 7.34 3.02
galambos xv-CIC 0.02 2.70 16.16 34.30 *38.66 5.82 2.34
gumbel

p

AIC 0.12 3.20 13.64 *49.40 21.80 5.46 6.38
gumbel xv-CIC 0.08 3.44 12.72 ∗54.88 20.12 4.36 4.40
huslerReiss

p

AIC 0.08 1.70 13.88 19.50 ∗54.96 7.86 2.02
huslerReiss xv-CIC 0.04 1.98 14.92 22.70 *52.62 6.42 1.32
normal

p

AIC 5.32 14.52 2.64 4.28 10.74 ∗58.56 3.94
normal xv-CIC 3.00 16.12 3.18 5.68 11.88 *57.16 2.98
t

p

AIC 2.76 1.36 0.96 5.92 0.86 2.38 ∗85.76
t xv-CIC 1.88 1.74 1.04 8.60 0.66 2.68 *83.40

Table 4.7: xv-CIC v.s.
p

AIC N = 250, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗99.84 0.04 0 0 0 0.10 0.02
clayton xv-CIC *99.48 0.18 0 0 0 0.22 0.12
frank

p

AIC 0.06 *93.22 0.12 0.46 0.06 5.36 0.72
frank xv-CIC 0 ∗94.76 0.16 0.54 0.10 3.96 0.48
galambos

p

AIC 0 0.40 26.82 *35.10 31.90 3.40 2.38
galambos xv-CIC 0 0.48 26.14 *40.22 29.54 2.16 1.46
gumbel

p

AIC 0 0.56 21.56 *54.90 16.26 2.66 4.06
gumbel xv-CIC 0 0.72 20.50 ∗60.46 14.52 1.66 2.14
huslerReiss

p

AIC 0 0.14 18.18 9.34 ∗66.94 4.90 0.50
huslerReiss xv-CIC 0 0.18 20.28 11.82 *64.18 3.22 0.32
normal

p

AIC 0.16 2.66 1.44 1.06 5.30 ∗83.48 5.90
normal xv-CIC 0.02 3.86 2.28 1.78 7.00 *80.42 4.64
t

p

AIC 0.16 0.54 0.84 4.56 0.30 3.68 ∗89.92
t xv-CIC 0.08 0.84 1.08 7.40 0.34 4.16 *86.10

Table 4.8: xv-CIC v.s.
p

AIC N = 250, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC *100 0 0 0 0 0 0
clayton xv-CIC ∗99.92 0.08 0 0 0 0 0
frank

p

AIC 0 *99.54 0 0.02 0 0.26 0.18
frank xv-CIC 0 ∗99.82 0 0.02 0 0.06 0.10
galambos

p

AIC 0 0.08 29.96 *45.28 19.98 1.68 3.02
galambos xv-CIC 0 0.10 28.42 *51.08 17.98 0.84 1.58
gumbel

p

AIC 0 0.12 26.82 *55.48 12.32 1.46 3.80
gumbel xv-CIC 0 0.14 24.82 ∗61.22 10.92 0.88 2.02
huslerReiss

p

AIC 0 0.08 20.14 6.40 ∗69.02 3.60 0.76
huslerReiss xv-CIC 0 0.10 22.98 8.30 *66.38 1.86 0.38
normal

p

AIC 0 0.48 0.64 0.50 1.92 ∗88.50 7.96
normal xv-CIC 0 0.86 1.66 1.12 3.14 *86.36 6.86
t

p

AIC 0 0.10 0.56 2.46 0.10 4.22 ∗92.56
t xv-CIC 0 0.20 0.66 5.02 0.16 4.88 *89.08
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Table 4.9: xv-CIC v.s.
p

AIC N = 500, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗99.32 0.16 0 0 0 0.40 0.12
clayton xv-CIC *98.98 0.20 0 0 0 0.60 0.22
frank

p

AIC 0.20 *86.86 0.14 1.10 0.24 11.08 0.38
frank xv-CIC 0.12 ∗87.86 0.24 1.18 0.28 10.04 0.28
galambos

p

AIC 0 0.46 26.72 30.78 *38.00 3.40 0.64
galambos xv-CIC 0 0.52 26.92 33.62 *35.78 2.88 0.28
gumbel

p

AIC 0 0.80 19.22 *62.68 13.14 2.38 1.78
gumbel xv-CIC 0 0.82 18.06 ∗65.86 12.16 1.92 1.18
huslerReiss

p

AIC 0 0.24 19.82 12.38 ∗63.56 3.80 0.20
huslerReiss xv-CIC 0 0.30 21.20 14.46 *60.90 3.00 0.14
normal

p

AIC 1.34 8.62 1.54 1.52 4.10 ∗81.96 0.92
normal xv-CIC 0.94 9.50 1.82 1.82 4.92 *80.20 0.80
t

p

AIC 0.26 0.22 0.22 2.38 0.04 0.72 ∗96.16
t xv-CIC 0.22 0.32 0.22 3.24 0.04 0.78 *95.18

Table 4.10: xv-CIC v.s.
p

AIC N = 500, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton xv-CIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 *99.06 0 0 0 0.86 0.08
frank xv-CIC 0 ∗99.40 0 0 0 0.54 0.06
galambos

p

AIC 0 0 ∗41.76 32.02 24.88 0.92 0.42
galambos xv-CIC 0 0.02 *41.42 35.30 22.44 0.58 0.24
gumbel

p

AIC 0 0 27.84 *63.42 7.30 0.52 0.92
gumbel xv-CIC 0 0 25.54 ∗67.26 6.50 0.34 0.36
huslerReiss

p

AIC 0 0.02 20.42 3.20 ∗74.98 1.34 0.04
huslerReiss xv-CIC 0 0.02 22.22 3.86 *73.16 0.72 0.02
normal

p

AIC 0.02 0.48 0.28 0.10 0.70 ∗97.18 1.24
normal xv-CIC 0.02 0.66 0.50 0.16 1.10 *96.62 0.94
t

p

AIC 0 0 0.10 1.24 0.02 0.74 ∗97.90
t xv-CIC 0 0.04 0.12 2.02 0.02 0.88 *96.92

Table 4.11: xv-CIC v.s.
p

AIC N = 500, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton xv-CIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗100 0 0 0 0 0
frank xv-CIC 0 ∗100 0 0 0 0 0
galambos

p

AIC 0 0 *44.86 43.20 11.38 0.24 0.32
galambos xv-CIC 0 0 43.38 *46.04 10.28 0.14 0.16
gumbel

p

AIC 0 0 32.68 *61.72 5.04 0.04 0.52
gumbel xv-CIC 0 0 29.68 ∗65.50 4.46 0.04 0.32
huslerReiss

p

AIC 0 0 17.20 1.50 ∗80.84 0.44 0.02
huslerReiss xv-CIC 0 0 18.84 1.78 *79.10 0.26 0.02
normal

p

AIC 0 0.02 0.06 0.02 0.16 ∗98.22 1.52
normal xv-CIC 0 0.08 0.16 0.02 0.28 *98.08 1.38
t

p

AIC 0 0 0.06 0.44 0 0.74 ∗98.76
t xv-CIC 0 0 0.08 0.98 0.04 0.92 *97.98
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Table 4.12: xv-CIC v.s.
p

AIC N = 1000, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗99.94 0 0 0 0 0.06 0
clayton xv-CIC ∗99.94 0 0 0 0 0.06 0
frank

p

AIC 0 *95.02 0.04 0.04 0.02 4.88 0
frank xv-CIC 0 ∗95.54 0.04 0.04 0.02 4.36 0
galambos

p

AIC 0 0.02 *41.02 24.46 33.76 0.74 0
galambos xv-CIC 0 0.02 ∗41.62 26.08 31.66 0.62 0
gumbel

p

AIC 0 0.10 20.44 *73.42 5.26 0.48 0.30
gumbel xv-CIC 0 0.12 19.34 ∗75.14 4.94 0.32 0.14
huslerReiss

p

AIC 0 0.02 23.54 5.28 ∗70.32 0.84 0
huslerReiss xv-CIC 0 0.02 25.12 5.78 *68.42 0.66 0
normal

p

AIC 0.06 3.32 0.28 0.34 0.66 ∗95.32 0.02
normal xv-CIC 0.04 3.84 0.38 0.42 0.90 *94.42 0
t

p

AIC 0.02 0 0 0.24 0 0 ∗99.74
t xv-CIC 0.02 0 0 0.40 0 0.02 *99.56

Table 4.13: xv-CIC v.s.
p

AIC N = 1000, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton xv-CIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗100 0 0 0 0 0
frank xv-CIC 0 ∗100 0 0 0 0 0
galambos

p

AIC 0 0 ∗56.42 28.04 15.42 0.08 0.04
galambos xv-CIC 0 0 *55.80 30.04 14.12 0.04 0
gumbel

p

AIC 0 0 25.46 *72.82 1.60 0.02 0.10
gumbel xv-CIC 0 0 23.60 ∗74.88 1.50 0 0.02
huslerReiss

p

AIC 0 0 14.42 0.36 ∗85.18 0.04 0
huslerReiss xv-CIC 0 0 15.90 0.40 *83.68 0.02 0
normal

p

AIC 0 0.02 0.04 0 0.06 ∗99.82 0.06
normal xv-CIC 0 0.04 0.04 0 0.08 *99.80 0.04
t

p

AIC 0 0 0 0.12 0 0.02 ∗99.86
t xv-CIC 0 0 0 0.18 0 0.02 *99.80

Table 4.14: xv-CIC v.s.
p

AIC N = 1000, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton xv-CIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗100 0 0 0 0 0
frank xv-CIC 0 ∗100 0 0 0 0 0
galambos

p

AIC 0 0 ∗56.54 39.36 4.10 0 0
galambos xv-CIC 0 0 *55.18 41.24 3.58 0 0
gumbel

p

AIC 0 0 31.90 *67.24 0.86 0 0
gumbel xv-CIC 0 0 29.86 ∗69.40 0.74 0 0
huslerReiss

p

AIC 0 0 8.52 0.04 ∗91.44 0 0
huslerReiss xv-CIC 0 0 9.54 0.04 *90.42 0 0
normal

p

AIC 0 0 0 0 0 *99.88 0.12
normal xv-CIC 0 0 0 0 0 ∗99.94 0.06
t

p

AIC 0 0 0 0 0 0.04 ∗99.96
t xv-CIC 0 0 0 0.02 0.04 0.08 *99.86
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Identifying the correct model — confident conclusions?

The twelve tables from table 4.3 to table 4.14 are nice to consider when we want to

see how the two selection methods fared with regard to proposing different models as

the source of the data that was inspected, and they roughly show the same trend as

in table 4.2. But to examine this closer we look at the data from a slightly different

perspective.

To be specific, the main point of interest is to consider the following two measures

1. Hit rate for selection, i.e. how often do the selection method propose the correct

model as its candidate for the data-generating model.

2. Confidence in conclusion, i.e. how much faith can we put in the result from the

selection method. We compute this column-wise by dividing the number of cor-

rectly proposed models with the total number of proposed models. For example,

if we from table 4.2 would like to find the confidence in conclusion for xv-CIC and

the gumbel-copula, we find that it was proposed correctly 3023 times, but alto-

gether it was proposed 6111 times, leading to a meager confidence in conclusion of

49.47 percent.

To elaborate: A selection method with a high hitting rate for one model might be rather

lousy if it frequently err by proposing the same model as candidate for data from the

other models as well. Conversely, a selection method with a low hitting rate for one of

the models might still be worth to consider if it almost never propose that model as a

candidate when data from other models are considered.

The sequence of tables that is presented from table 4.15 to table 4.28 gives us information,

sorted by the copula models, regarding how the selection method xv-CIC scores against
p
AIC when it comes to hit rate for selection and confidence in conclusion.

Table 4.15: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = clayton

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 81.28 95.74 ∗98.46
100 xv-CIC 73.34 91.48 *95.58
250

p

AIC 95.30 99.84 ∗100
250 xv-CIC 92.04 99.48 *99.92
500

p

AIC 99.32 ∗100 ∗100
500 xv-CIC 98.98 ∗100 ∗100

1000
p

AIC 99.94 ∗100 ∗100
1000 xv-CIC 99.94 ∗100 ∗100

Table 4.16: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = clayton

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 65.05 89.79 *97.97
100 xv-CIC 71.59 94.28 ∗99.02
250

p

AIC 88.89 99.62 ∗100
250 xv-CIC 92.68 99.89 ∗100
500

p

AIC 98.21 99.98 ∗100
500 xv-CIC 98.72 99.98 ∗100

1000
p

AIC 99.92 ∗100 ∗100
1000 xv-CIC 99.94 ∗100 ∗100
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Table 4.17: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = frank

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 46.66 70.76 *89.14
100 xv-CIC 49.92 75.78 ∗92.22
250

p

AIC 70.90 93.22 *99.54
250 xv-CIC 73.12 94.76 ∗99.82
500

p

AIC 86.86 99.06 ∗100
500 xv-CIC 87.86 99.40 ∗100

1000
p

AIC 95.02 ∗100 ∗100
1000 xv-CIC 95.54 ∗100 ∗100

Table 4.18: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = frank

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 49.79 76.59 ∗87.96
100 xv-CIC 48.14 72.53 *82.73
250

p

AIC 74.45 95.55 ∗99.14
250 xv-CIC 72.35 93.80 *98.53
500

p

AIC 89.21 99.49 ∗99.98
500 xv-CIC 88.28 99.26 *99.92

1000
p

AIC 96.48 99.98 ∗100
1000 xv-CIC 95.98 99.96 ∗100

Table 4.19: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = galambos

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 8.00 11.62 ∗15.18
100 xv-CIC 7.06 11.90 *14.14
250

p

AIC 15.40 26.82 ∗29.96
250 xv-CIC 16.16 26.14 *28.42
500

p

AIC 26.72 41.76 ∗44.86
500 xv-CIC 26.92 41.42 *43.38

1000
p

AIC 41.02 56.42 ∗56.54
1000 xv-CIC 41.62 *55.80 55.18

Table 4.20: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = galambos

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 30.12 30.27 ∗32.39
100 xv-CIC 26.92 ∗30.73 30.00
250

p

AIC 32.48 ∗38.89 38.35
250 xv-CIC 32.95 *37.10 36.18
500

p

AIC 39.49 46.19 ∗47.29
500 xv-CIC 39.32 46.12 *47.08

1000
p

AIC 48.07 ∗58.56 58.31
1000 xv-CIC 48.11 *58.52 58.34

Comparing xv-CIC vs.
p
AIC: An inspection of the tables from table 4.15 to table 4.28

tells us the following.

1. Both xv-CIC and
p
AIC fares better when the value of τ increases.

2. Both xv-CIC and
p
AIC fares better when the value of N increases.

3.
p
AIC has a better hit rate for data generated by the five copula models clayton,

galambos, huslerReiss, normal and t.

4. xv-CIC has a higher confidence in the conclusion for data generated by the five

copula models clayton, galambos, huslerReiss, normal and t.

5. The difference in performance between xv-CIC and
p
AIC is altogether rather small,

i.e. when the size of the samples increases. They either both perform good or they

are equally bad.

Note that the interchange we see in the scores of the hit rate and confidence in conclusion

is a consequence of the affinity/aversion the two selection methods show towards the

different copula models. In particular, xv-CIC does not only give a good hit rate for
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Table 4.21: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = gumbel

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 34.70 40.64 *44.12
100 xv-CIC 40.92 49.18 ∗53.18
250

p

AIC 49.40 54.90 *55.48
250 xv-CIC 54.88 60.46 ∗61.22
500

p

AIC 62.68 *63.42 61.72
500 xv-CIC 65.86 ∗67.26 65.50

1000
p

AIC *73.42 72.82 67.24
1000 xv-CIC ∗75.14 74.88 69.40

Table 4.22: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = gumbel

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 32.55 38.78 ∗39.97
100 xv-CIC 31.09 36.67 *37.11
250

p

AIC 43.78 ∗52.07 50.37
250 xv-CIC 42.30 *49.46 48.29
500

p

AIC 56.54 ∗63.43 57.74
500 xv-CIC 54.80 *61.93 57.29

1000
p

AIC 70.74 ∗71.85 63.05
1000 xv-CIC 69.66 *70.97 62.69

Table 4.23: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = huslerReiss

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 47.08 ∗55.60 52.40
100 xv-CIC 45.28 *54.14 50.18
250

p

AIC 54.96 66.94 ∗69.02
250 xv-CIC 52.62 64.18 *66.38
500

p

AIC 63.56 74.98 ∗80.84
500 xv-CIC 60.90 73.16 *79.10

1000
p

AIC 70.32 85.18 ∗91.44
1000 xv-CIC 68.42 83.68 *90.42

Table 4.24: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = huslerReiss

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 32.53 39.07 ∗45.39
100 xv-CIC 31.74 38.66 *44.74
250

p

AIC 41.80 55.43 *66.78
250 xv-CIC 41.68 55.48 ∗67.33
500

p

AIC 53.37 69.50 *82.98
500 xv-CIC 53.38 70.87 ∗84.00

1000
p

AIC 63.91 83.29 *94.85
1000 xv-CIC 64.58 84.20 ∗95.39

data generated from the gumbel copula, it also frequently propose the gumbel for data

from other models too – which naturally leads to a lower score on the confidence in

conclusion.

Furthermore, note that the deterioration in performance due to lower values of τ is as

expected – since the copula models approaches the independence copula when τ is small.

The obvious observation that an increase in the sample size N gives a better performance

of the selection methods does not require any further discussion. However, it is worth

mentioning that the differences in performance between the two selection methods does

become quite small when N increases – and depending on the copula under consideration

they can actual be rather close for small samples too.
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Table 4.25: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = normal

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 30.80 55.60 ∗64.38
100 xv-CIC 30.74 50.20 *57.02
250

p

AIC 58.56 83.48 ∗88.50
250 xv-CIC 57.16 80.42 *86.36
500

p

AIC 81.96 97.18 ∗98.22
500 xv-CIC 80.20 96.62 *98.08

1000
p

AIC 95.32 99.82 *99.88
1000 xv-CIC 94.42 99.80 ∗99.94

Table 4.26: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = normal

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 36.99 52.94 *58.90
100 xv-CIC 36.85 56.13 ∗63.38
250

p

AIC 57.89 80.59 *88.74
250 xv-CIC 59.41 83.94 ∗91.02
500

p

AIC 79.00 95.68 *98.53
500 xv-CIC 80.66 96.93 ∗98.63

1000
p

AIC 93.15 99.83 ∗99.95
1000 xv-CIC 93.98 99.91 *99.92

Table 4.27: xv-CIC v.s.
p

AIC
— hit rate for selection —

copula = t

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 63.44 66.96 ∗70.32
100 xv-CIC 60.76 61.68 *64.40
250

p

AIC 85.76 89.92 ∗92.56
250 xv-CIC 83.40 86.10 *89.08
500

p

AIC 96.16 97.90 ∗98.76
500 xv-CIC 95.18 96.92 *97.98

1000
p

AIC 99.74 99.86 ∗99.96
1000 xv-CIC 99.56 99.80 *99.86

Table 4.28: xv-CIC v.s.
p

AIC
— confidence in conclusion —

copula = t

N IC τ = 0.25 τ = 0.5 τ = 0.75

100
p

AIC 52.76 *60.58 60.52
100 xv-CIC 55.22 64.10 ∗64.72
250

p

AIC 81.87 *86.87 85.48
250 xv-CIC 84.72 ∗90.38 89.06
500

p

AIC 95.96 97.31 *97.64
500 xv-CIC 97.04 ∗98.35 98.11

1000
p

AIC 99.68 99.80 *99.88
1000 xv-CIC 99.85 99.93 ∗99.93
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Conclusion: For those cases treated in this chapter, the two semiparametric selection

methods xv-CIC and
p
AIC seems to perform good and bad at the same cases. When

they do perform good, their difference is small enough to make it tempting to consider

them to be interchangeable. Tables 4.29 and 4.30 gives a summary of the differences in

hit rates and in confidence in conclusion for the sample-size N = 1000. i.e. a positive

number represents a case in which
p
AIC fares better than xv-CIC.

Table 4.29: Difference in hit
rates for N = 1000:

p

AIC − xv-CIC

N = 1000 τ = 0.25 τ = 0.5 τ = 0.75

clayton 0.00 0.00 0.00
frank -0.52 0.00 0.00
galambos -0.60 0.62 1.36
gumbel -1.72 -2.06 -2.16
huslerReiss 1.90 1.50 1.02
normal 0.90 0.02 -0.06
t 0.18 0.06 0.10

Table 4.30: Difference in confi-
dence in conclusion for N = 1000:

p

AIC − xv-CIC

N = 1000 τ = 0.25 τ = 0.5 τ = 0.75

clayton -0.02 0.00 0.00
frank 0.51 0.02 0.00
galambos -0.04 0.04 -0.03
gumbel 1.08 0.88 0.36
huslerReiss -0.67 -0.90 -0.55
normal -0.83 -0.08 0.04
t -0.18 -0.14 -0.06

An inspection of table 4.29 tells us that
p
AIC have an edge over xv-CIC with regard to

the hit rate (it is best in two thirds of the situations), and the difference in confidence

in conclusion given in table 4.30 seems to be negligible. This authors impression is thus

that there has been no payoff for all the extra computational investment that was made

in the production of the xv-CIC-values.

With regard to this, it seems reasonable to propose the same practice here as the one

used in the fully parametric setting, cf. appendix B, where the costly computation of

TIC is avoided in favor of the inexpensive AIC. Even though AIC in cases like this

at most can be correct for one of the models, we still use it for all of them since the

resulting selection tool for most practical uses can be considered to be just as good.

A remark: Neither of the two selection methods performs any good when N is

small, and it might be tempting to wonder if we for those cases should use the leave-

on-out-cross-validation xvp directly. The xvp , however, incurs a tremendous increase

in the computational cost, and additional simulations are needed in order to test if this

would result in a selection method with a satisfying hit rate and an acceptable level of

confidence in the conclusion.

Another remark: The fitCopula, used to find the mpl-estimates θ̂p , can sometimes

fail in its optimization process. The initial small-samples tests used for this analysis

indicated that this might be a problem, but tests on larger sized samples gave the

impression that the effect on the hit-rates should be negligible – and the problem were

thus ignored for the time being. To justify this strategy, a more substantial foundation
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is provided in table 4.31, which gives the number of NA that occurred when the fitting

process tried to fit the correct data-generating copula to the data. As we can see, only 2

cases occurred (of a total of 420000), and both of these were in the smallest case N = 100

– which implies that we for this collection of copulas rarely need to fear the occurrence

of this problem.

In particular, the bad performance of the two selection methods in the case of sam-

ples of size N = 100 is not due to any failure of the estimation of the parameters θ̂p .

Moreover, since a computation of xvp
N requires N mpl-estimates to be carried out, this

might indicate that the use of xvp on small samples might encounter this problem more

frequently.

Table 4.31: NA-number, negligible effect on hit rates.

N τ clayton frank galambos gumbel huslerReiss normal t

100 0.25 0 0 0 1 1 0 0
100 0.50 0 0 0 0 0 0 0
100 0.75 0 0 0 0 0 0 0
250 0.25 0 0 0 0 0 0 0
250 0.50 0 0 0 0 0 0 0
250 0.75 0 0 0 0 0 0 0
500 0.25 0 0 0 0 0 0 0
500 0.50 0 0 0 0 0 0 0
500 0.75 0 0 0 0 0 0 0
1000 0.25 0 0 0 0 0 0 0
1000 0.50 0 0 0 0 0 0 0
1000 0.75 0 0 0 0 0 0 0

4.3 The noise in the transformation from X
n
to Xp

n

This section will consider how the noise from the “empirical marginals transformation”,

cf. page 21, that take independent observations Xn and shuffle them around to depen-

dent pseudo-observations Xp n, affects the values of the estimated parameters and the

corresponding maximum of the log-likelihood.

We will also discuss tables akin to those used in the comparison of xv-CIC vs.
p
AIC, in

order to see how much the noise from the transformation “mess things up” with regard

to the performance of our semiparametric model selection tool
p
AIC.

Remember from section 4.1 that we really do not have at our disposition simulations

of “original” independent observations Xn, and that we thus will have to do with the

less general “idealized” samples Xu n. This implies that the discussion at the end of this

section, where the performance of AIC used on Xu n is compared to
p
AIC on Xp n, gives

AIC an advantage it would not have had in a general setting. Nevertheless, as discussed
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in appendix B, it might still be something to be gained from this approach, since we at

least can get an impression of how the noise in the transformation Xu n → Xp n affects

our results.

Xu n vs. Xp n — estimates of parameters and likelihood. In order to see how

the transformation from Xu n to Xp n can affect the values we are interested in, let us

start out with an example where we see how this process influences which points we will

be using as basis for our fitting process. For this purpose, consider figs. 4.1 to 4.4 –

where we have plotted arrows pointing from observations in Xu n to their corresponding

pseudo-observations in Xp n, for four sample-sizes from the normal copula. Note that the

observations in the first plots are subsets of those later on. Another detail to mention is

that we have added the value of τ̂ , the empirical estimate of Kendall’s τ , to these plots.3

Normal copula family

N = 100 observations and pseudo−observations

τ = 0.5    τ̂ = 0.532

 1 

 2 

 2 

 3 

 3 

 4 

 4 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 The arrows points from observations to pseudo−observations.

seed = 658511484

Figure 4.1: Visualization of noise in Xu n → Xp n, sample of size N = 100

We observe from these plots that the difference between Xu n and Xp n diminishes when

the size of the sample increases from N = 100 to N = 1000, and it is thus reasonable

to expect that we for large samples will have that the noise from the transformation

Xn → Xp n will incur a less severe effect on our computations.

Let us consider this in more detail by comparing the estimates obtained by maximum

likelihood (ml) on Xu n with those found by the help of maximum pseudo-likelihood (mpl)

on Xp n. We will restrict our attention to the case of the normal copula, since the

situation is similar for the other copula models.

3Since τ̂ is a measure based on concordance, its value is unaffected by the shuffling made by the
transformation Xn → Xp n.
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Normal copula family

N = 250 observations and pseudo−observations

τ = 0.5    τ̂ = 0.532

 1 
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 The arrows points from observations to pseudo−observations.

seed = 658511484

Figure 4.2: Visualization of noise in Xu n → Xp n, sample of size N = 250

Normal copula family

N = 500 observations and pseudo−observations

τ = 0.5    τ̂ = 0.488
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2
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0.6

0.8

1.0 The arrows points from observations to pseudo−observations.

seed = 658511484

Figure 4.3: Visualization of noise in Xu n → Xp n, sample of size N = 500

Before we consider the tables based on the ml- and mpl-estimates of our parameters, it

might be nice to refresh from table 4.1 on page 59, that the values they are attempting

to estimate is ρ0.25 = 0.382684, ρ0.50 = 0.707107 and ρ0.75 = 0.923880.

When we inspect table 4.32, which gives us the mean from the parameters estimated on

all or 5000 replicates, we observe the expected tendency that both the ml- and mpl-based

estimates approaches the true values. From table 4.33 we furthermore observe that the
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Normal copula family

N = 1000 observations and pseudo−observations

τ = 0.5    τ̂ = 0.501

 1 
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 4 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 The arrows points from observations to pseudo−observations.

seed = 658511484

Figure 4.4: Visualization of noise in Xu n → Xp n, sample of size N = 1000

mean of the variance of these parameter-estimates decreases nicely when the sample-size

increases, and we also see how the noise from the transformation Xn → Xp n incurs a

larger variance on the estimates.

Table 4.32: Mean of estimated parameters, copula = normal.

N method τ = 0.25 τ = 0.5 τ = 0.75

100 ml 0.38213 0.70719 0.92394
100 mpl 0.39840 0.71594 0.92244
250 ml 0.38155 0.70656 0.92374
250 mpl 0.38991 0.71137 0.92322
500 ml 0.38271 0.70715 0.92389
500 mpl 0.38730 0.70984 0.92364
1000 ml 0.38271 0.70720 0.92391
1000 mpl 0.38508 0.70860 0.92374

Table 4.33: Mean of estimated var.est, copula = normal.

N method τ = 0.25 τ = 0.5 τ = 0.75

100 ml 0.006491 0.001701 0.000118
100 mpl 0.007676 0.002494 0.000295
250 ml 0.002564 0.000674 0.000047
250 mpl 0.002975 0.000990 0.000101
500 ml 0.001275 0.000335 0.000023
500 mpl 0.001475 0.000495 0.000047
1000 ml 0.000637 0.000167 0.000012
1000 mpl 0.000732 0.000248 0.000022
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Some plots of estimated parameters and log-likelihood values. Tables 4.32

and 4.33 only gives us information with regard to the mean of the estimated parameters

and the mean of the corresponding variance of the estimate, but we need to consider a

plot if we want to see how the transformation Xu n → Xp n affects the individual cases.

To investigate this effect, we have created four series of 100 replicates from the normal

copula, with Kendall’s τ equal to 0.5, in which the smaller samples are subsets of the

larger ones. In figs. 4.5 and 4.6 we can respectively see the effect on the quality of the

estimated parameters, and their error-limits, when we increase the size of our samples.

These plot shows us that the shuffling due to the transformation step can have some

effect on the estimates of the parameters and the size of their corresponding variance,

but this effect dwindles when the sample grows – in accordance with what we observed

in figs. 4.1 to 4.4.

Figure 4.5: The normal copula, τ = 0.50, 100 replicates.
Effect of sample size on the estimated parameters

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

0.60 0.65 0.70 0.75 0.80

0.55

0.60

0.65

0.70

0.75

0.80

N = 100

ml

m
pl ●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●● ●

●

●

●

●

●

●
●

●

● ●

●●
●

●

●

●●●

●●

●

●
●●

●

●

●●

●
●

●

●
●

●

●●

●
●●

●

●

● ●

●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

0.60 0.65 0.70 0.75 0.80

0.55

0.60

0.65

0.70

0.75

0.80

N = 250

ml

m
pl

●●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●
●

●
●

●

●

●

●
●●

●●

●
●
●

●

●

●

●

●●●
●

●

●

●●

●

●

● ●
●

●

●●

●

●
●

●
●●●

●

●●
●● ●

●
●

●
●

●

●

●●
●

●●●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●
●

●

● ●

0.60 0.65 0.70 0.75 0.80

0.55

0.60

0.65

0.70

0.75

0.80

N = 500

ml

m
pl ● ●● ●

●●
●

●

● ●●
●

● ●

● ●

● ● ●
●

●●
●

●
●

●●

●
●
●

●
●●●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●●
●

●

●
●

●

●●
●

● ●
●
●

●● ●
●

●●●
●

●

●

●

●●●●
●●●

●
●

●

●
●

●

● ●
●●

●

●
●

●●●●
● ●

0.60 0.65 0.70 0.75 0.80

0.55

0.60

0.65

0.70

0.75

0.80

N = 1000

ml

m
pl

Normal copula family estimated parameters

When we consider the maximums of the ml-based log-likelihood ` versus the mpl-based

pseudo-log-likelihood
p
`, we can not use the same setup as in figs. 4.5 and 4.6 – since

the scales for the different sample-sizes will differ due to the growth of the log-likelihood

values. One way to resolve this is to consider a histogram of their ratios instead, which

is done in fig. 4.7.

These histograms tell us that there can be some difference in the attained values of
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Figure 4.6: The normal copula, τ = 0.50, 100 replicates.
Effect of sample size on the size of the error
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the maximum of the
p
` and the corresponding maximum of `, and it is thus reason-

able to expect that AIC used on the observations Xu n and
p
AIC used on the pseudo-

observations Xp n can differ with regard to which model they rank first. But once more

we can see that the spread declines for larger samples, making it more plausible that the

two selection methods will propose the same model.

Figure 4.7: The normal copula, τ = 0.50, 100 replicates.
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Parametric vs. semiparametric — AIC vs.
p
AIC. In the previous section we used

p
AIC and xv-CIC on pseudo-observations Xp n, in order to figure out how these fared as

pseudo-parametric model selection methods.

Remember from section 4.1 that the pseudo-observations Xp n were created by using the

pobs-function from the copula-package on samples generated by the rCopula-function

on the seven copula models clayton, frank, galambos, gumbel huslerReiss, normal

and t, which implies that we here have the luxury of actually knowing Xu n too.

In particular, since we know that the independent observations Xu n were created using

uniform marginals in the copula-models, we can perform a maximum likelihood based

fitting of the copula models to our observations – and we can then use AIC to rank these

models against each other.

As mentioned at the end of section 4.1, please note that we kind of “cheat” in this

approach. We do know much more than we normally would when we instead of“original”

observations Xn have access to the “idealized” observations Xu n – where we know that

the marginal distributions are uniform on [0, 1]. Nevertheless, even though this approach

is not as general as we might wish – we should still be able to gain some insight from

this line of argument, as discussed in appendix B.

Let us keep in mind the lack of generality of our observations Xu n, and perform an anal-

ysis similar to the one conducted for
p
AIC vs. xv-CIC in the semiparametric case. To be

precise, we want to compare the parametric AIC based on Xu n with the semiparametric
p
AIC on Xp n.

The tables corresponding to most of those presented earlier in this chapter has been

collected in appendix A, and if we we inspect the tables from table A.1 to table A.26

(pages 88 to 94) – we see that we for small samples will have that a selection method

based on the observations Xu n is superior to a selection method that only are given the

pseudo-observations Xp n. As expected: The AIC wins over
p
AIC both with regard to

the hit rate and the level of confidence we can have in the conclusion.4

Note on the normal copula: Tables A.23 and A.24, which respectively gives

the hit rates and confidence in conclusion for the normal copula, implies that there

for small samples seems to be a major difference between the result before and after

the transformation Xu n → Xp n, i.e. that the effect of replacing observations Xu n with

pseudo-observations Xp n seems to be particularly severe for this case.

4Caution: Remember that we did “cheat” here, and that we in a general parametric situation first
would need to guess on models for the marginal distributions, and then our AIC-approach would need
to estimate parameters for both the copula and the marginals.
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However, in a setting with multivariate original observationsXn, where the bivariate data

we are considering has originated from a SSP analysis of a vine copula, cf. chapter 2 – we

might expect this not be much of an issue, since an attempt at finding a multidimensional

structure based on as few as N = 100 observations probably not would be conducted.

Note on the performance of
p
AIC when N grows. In a practical setting, we will

not have exact knowledge of the models that the data originated from, so we do not

have the option to choose between AIC or
p
AIC as our model selection method.

It is however nice to know that the semiparametric model selection strategy of using
p
AIC on the dependent pseudo-observations Xp n, does gives a decent performance with

regard to identifying the correct model.

Tables 4.34 and 4.35 gives us the same kind of information as tables 4.29 and 4.30, i.e.

they give us the difference between
p
AIC and AIC with regard to hit rates and confidence

in conclusion. (Negative numbers thus means that AIC gave the best result.)

Table 4.34: Difference in hit
rates for N = 1000:

p

AIC − AIC

N = 1000 τ = 0.25 τ = 0.5 τ = 0.75

clayton -0.06 0.00 0.00
frank -0.64 0.00 0.00
galambos -1.18 -0.62 -4.02
gumbel 0.18 0.94 4.10
huslerReiss -2.78 -2.78 -4.46
normal -0.66 -0.16 -0.12
t -0.10 -0.12 -0.02

Table 4.35: Difference in confi-
dence in conclusion for N = 1000:

p

AIC − AIC

N = 1000 τ = 0.25 τ = 0.5 τ = 0.75

clayton -0.06 0.00 0.00
frank -0.06 -0.02 0.00
galambos -1.26 -1.38 -2.09
gumbel -1.88 -1.28 -1.73
huslerReiss -0.72 0.75 1.09
normal -1.59 -0.14 -0.02
t -0.04 -0.18 -0.12

We see, as expected, from tables 4.34 and 4.35 that AIC based on the independent

observations Xu n gives better results than
p
AIC on the dependent pseudo-observations

Xp n, but the differences in performance is of a minor magnitude.

If we take for granted that any attempts at finding a multivariate copula model for a

d-variate set of observations Xn, will be based on sets which contain a decent amount

of data, we can from this see that
p
AIC used on the corresponding pseudo-observations

Xp n does deserves its role as a much used model selection method.
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4.4 Danish Fire Loss Data

We will in this section consider an example used in McNeil [27], i.e. we will con-

sider the danish fire loss data, from Copenhagen Reinsurance, which is available at

http://www.ma.hw.ac.uk/~mcneil/data.html.

These data contain the losses, in millions of Danish Krone, from 2167 fires over the

period 1980 to 1990. The losses have been adjusted for inflation to reflect their 1985

values.

A few of the initial rows from the dataset is given in table 4.36, in order to introduce the

headings. We wish to investigate the interdependency between “loss on contents” and

“loss on profits”, when we restrict our attention to the subset of 604 observations where

both of them are nonzero.

Table 4.36: Danish Fire Loss Data

Positions building contents profits total

01/03/1980 1.098097 0.585651 0.000000 1.683748
01/04/1980 1.756955 0.336750 0.000000 2.093704
01/05/1980 1.732581 0.000000 0.000000 1.732581
01/07/1980 0.000000 1.305376 0.474378 1.779754
01/07/1980 1.244510 3.367496 0.000000 4.612006
01/10/1980 4.452040 4.273234 0.000000 8.725274
01/10/1980 2.494876 3.543192 1.860908 7.898975
01/16/1980 0.775690 0.993117 0.439239 2.208045

Since the subset of observations we are interested in have values in the span from 0.004084

to 132.0132 millions of Danish Krone, and most of the observations have low values (the

median is 0.4599, whereas the mean is 1.605), we will apply the logarithm to them in

order to make them more tractable for analysis.

The logarithmically transformed observations are plotted in fig. 4.8. We can from this

figure see that the majority of the observations are at low values, but there are quite a

few extreme cases too. What is not evident from this plot is the amount of ties that are

present in our data. Along the first axis we have 514 unique values, while we along the

second axis only have 381 unique values. With a total of 604 observations, this implies

that we do have a lot of ties.

In our quest for a model that can describe the interdependencies of our data, we will

use the empirical marginals in order to convert them into a setting where we can use
p
AIC and xv-CIC to rank different copula models against each other. The function pobs

from the copula-package has been used with ties.method="random" in order to get the

http://www.ma.hw.ac.uk/~mcneil/data.html
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Figure 4.8: Danish Fire Loss Data, logarithmic plot
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points given in fig. 4.9, i.e. before the empirical marginals was applied the observations

where slightly jiggled in order to get rid of the ties.

Figure 4.9: Danish Fire Loss Data, pseudo-observations
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From fig. 4.9 it seems evident that a copula model for these data ought to have some tail

dependency, but we will nevertheless in our further analysis try to fit all the seven copula

models that we have considered in chapter 4. Table 4.37 presents the mpl-estimates θ̂p



Chapter 4 – Results from simulations 82

obtained by using fitCopula on the pseudo-observations, including the variance of these

estimates and the corresponding maximum of the pseudo-log-likelihood
p
`.

Table 4.38 gives the estimates of the bias-correcting terms that we need in order to

compute the xv-CIC-values of these models, cf. eq. (3.98) on page 55, and in table 4.39

we find the resulting values of
p
AIC and xv-CIC.

Table 4.37: Danish Fire Loss Data, fitting of copula models

estimate var.est loglik

clayton 0.81120 0.00369 80.08194
frank 5.14198 0.12561 162.67866

galambos 1.16026 0.00468 191.21300
gumbel 1.87268 0.00506 192.00155

huslerReiss 1.61860 0.00607 187.15355
normal 0.65482 0.00047 165.81343

t (df=4) 0.63753 0.00087 160.37309

Table 4.38: Danish Fire Loss Data, pqr-values for copula models

p̂N q̂N r̂N

clayton 1.3954996 -0.5246320 3.3954385
frank 0.9765355 0.0488948 0.0951288

galambos 1.0661042 -0.0413715 0.4080203
gumbel 0.9756528 -0.0253286 0.3815788

huslerReiss 1.4380186 -0.1135916 0.3640977
normal 1.1689508 -0.1326271 1.8292126

t (df=4) 0.9188460 -0.0472993 2.4046977

Table 4.39: Danish Fire Loss Data, IC-values for copula models

p

AIC xv-CIC

clayton 158.16 151.63
frank 323.36 323.12

galambos 380.43 379.56
gumbel 382.00 381.34

huslerReiss 372.31 370.93
normal 329.63 325.90

t (df=4) 318.75 314.19

From table 4.39 it is evident that both
p
AIC and xv-CIC gives the following ranking of

the models with regard to the pseudo-observations plotted in fig. 4.9: gumbel, galambos,

huslerReiss, normal, frank, t, and clayton.

In view of the size of our sample (604 observations) and the discussion in section 4.2, it

is hardly a surprise that the two selection methods did agree in this case.

Furthermore, an inspection of the xv-CIC and
p
AIC-values of the three copula models

with the highest rating, i.e. gumbel, galambos and huslerReiss, shows that these are
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clustered close together. This fits well with the fact that these three extreme-value

copulas are hard to distinguish, and it might thus be prudent to investigate some more

before we decide which copula model to settle for in this case.

We can apply a Goodness of Fit test to our models in order to get a better idea with

regard to their suitability as explanations for the interdependencies observed in fig. 4.9.

Table 4.40 gives the result we obtained when we used gofCopula with the default setting.

i.e. Parametric bootstrap based GOF test with ’method’="Sn", ’estim.method’="mpl",

see the documentation in the copula-package for further details.

Table 4.40: Danish Fire Loss Data, GoF-values for copula models

copula p-value

clayton 0.0004995005
frank 0.0004995005
galambos 0.0074925075
gumbel 0.0064935065
huslerReiss 0.0024975025
normal 0.0004995005
t (df=4) 0.0004995005

From table 4.40, we see that none of the p-values are exceptionally high, but there are

still some differences between them. The p-values for the three extreme-value copulas

are the highest, which imply that they should be considered with least suspicion. If we

from the values of table 4.39 are convinced that an extreme-value copula is the most

decent way to explain our pseudo-observations, then in view of table 4.40 it might be

more or less equally good/bad to pick either gumbel or galambos as our copula-model.

Note that the low p-values in table 4.40 could be taken as an indicator that none of

our models are any good, and that we should look for other options in our quest for a

describing model. A possibility to consider in this context is to see if the models might

fit better on a transformed version of our pseudo-observations.

This strategy was applied in Berentsen et al. [28], in which the copula models where

fitted to the “flipped” version of the pseudo-observations,5 which resulted in the con-

clusion that the “flipped” clayton copula were chosen as the best candidate for the

description of the interdependencies of or observations. To be precise, the copula model

Cclayton(1− u1, 1− u2) were picked as the best candidate for the interdependencies be-

tween U1 (corresponding to the logarithm of the loss on contents) and U2 (corresponding

to the logarithm of the loss on profits).

A note with regard to the use of a GoF-test: In this setting, where the data

we are analyzing is obtained by empirical means, we should considered it as a standard

5Whit “flipped” we mean that we want to fit a copula model C(u1, u2) to the set of observations
obtained by sending (u1, u2) to the point (1− u1, 1− u2).
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procedure to compute the Goodness of Fit-values, since we do not know anything certain

about the properties of the process that our data originated from.

Regarding the ties in our sample: As mentioned above, there is quite a few ties

in the original data we started out with. In order to apply the methodology of
p
AIC and

xv-CIC we needed to jiggle them slightly in order to get the points separated from each

other, such that we got distinct pseudo-observations. With regard to the high number

of ties in our data, one might wonder if other randomizations than the one we happened

to use above, would have influenced the conclusion.

To investigate the effect of a different randomization to get rid of the ties, a total of 100

realizations of the pseudo-observations were computed, and then fitCopula where used

to find their estimates of θ̂p and
p
`.

The conclusion from this little experiment with different realizations of the pseudo-

observations, is that there does not seem to be any effect at all with regard to the

corresponding ranking of the seven copula models. Not only where the same model

ranked as number one for all the cases, but the ordering of the remaining once where

also identical.

The estimates of the parameters from the different realizations of our pseudo-observations

are presented in table 4.41 and fig. 4.10, and it might not be that surprising that they

are so close to each other. If we keep in mind how many significant digits we should use

from our estimates when they are based on a collection of 604 observations, it hardly

matters at all which realization of the pseudo-observations we use.

Table 4.41: Danish Fire Loss Data, estimate of parameters

copula min mean max

clayton 0.80837 0.81029 0.81184
frank 5.13157 5.14045 5.14881
galambos 1.15879 1.16135 1.16359
gumbel 1.87121 1.87378 1.87592
huslerReiss 1.61708 1.61930 1.62194
normal 0.65406 0.65473 0.65523
t (df=4) 0.63688 0.63767 0.63827
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Figure 4.10: Danish Fire Loss Data, estimate of parameters
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Chapter 5

Conclusion

In this thesis, the cross-validation copula information criterion (xv-CIC), introduced in

Grønneberg [16, Part III], has been tested with regard to its performance as a semi-

parametric model selection method. The basis for this testing is the combination of

copula-models, parameters and sample-sizes, that are described in section 4.1.

As discussed in section 4.2, the xv-CIC does fare reasonable well when the size of the

sample grows. Moreover, for the smaller samples the selection method can still be

considered trustworthy if we do not have too small values of Kendall’s τ .1 However, the

performance of the semiparametric selection method
p
AIC is just as good as xv-CIC –

but it comes at a fraction of the computational cost.2

The xv-CIC is interesting from a theoretical perspective, but it can not be recommended

as a practical tool for semiparametric model selection - at least not for the one-parametric

bivariate cases considered in this thesis.

To conclude: If you want to investigate which copula model from a collection C that best

describes the interdependencies in a collection of bivariate data Xn, use the empirical

marginals to create pseudo-observations Xp n, fit your models to this set by using the

maximum pseudo-likelihood strategy, and use
p
AIC to rank the models. It might further-

more be advisable to employ a Goodness of Fit-test in order to check that at least some

of the models in C gives a decent description of Xp n. The same advice is valid if the

bivariate data to be fitted originate from a SSP-strategy used on a regular vine-copula:

Use
p
AIC.

1For small values of τ the copula models tend toward the independence copula, and as such it becomes
harder to distinguish the data-generating models based on small samples.

2The notation
p

AIC, is used in this thesis to stress that we apply AIC on the dependent pseudo-
observations Xp n as if they where proper independent observations.
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Appendix A

Tables and plots for section 4.3

Tables related to AIC vs.
p
AIC. In order to avoid to clutter up chapter 4 to much,

this appendix collects tables from section 4.3 that compares the rankings of AIC used

on the independent observations Xu n versus the rankings of
p
AIC used on the dependent

pseudo-observations Xp n.

Note that AIC used on Xu n does not represent a completely general situation, cf. the

discussion in the beginning of appendix B, but it might nevertheless tell us something

interesting with regard to the trustworthiness of
p
AIC as a selection method in the semi-

parametric case.

The most interesting information is given in tables 4.34 and 4.35, while the tables in

this appendix mostly is included for the sake of completeness.
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Table A.1:
p

AIC v.s. AIC N = 100, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC *81.28 4.98 0 0.32 0.58 5.90 6.94
clayton AIC ∗82.24 5.02 0 0.14 0.34 6.88 5.38
frank

p

AIC 11.30 *46.66 1.50 6.52 8.88 16.02 9.12
frank AIC 8.52 ∗56.62 0.82 5.28 6.38 16.88 5.50
galambos

p

AIC 2.06 6.86 8.00 26.94 *37.42 9.00 9.72
galambos AIC 1.14 7.44 7.70 24.32 *41.12 10.92 7.36
gumbel

p

AIC 2.20 7.42 6.52 ∗34.70 27.74 7.34 14.08
gumbel AIC 1.20 8.54 7.16 *32.84 28.78 9.54 11.94
huslerReiss

p

AIC 1.78 5.92 6.54 21.32 *47.08 9.76 7.60
huslerReiss AIC 0.96 6.50 7.12 16.72 ∗51.70 11.68 5.32
normal

p

AIC 15.82 17.14 2.42 6.20 18.30 *30.80 9.32
normal AIC 12.22 20.78 1.62 5.12 13.04 ∗41.48 5.74
t

p

AIC 10.50 4.72 1.58 10.60 4.72 4.44 *63.44
t AIC 8.38 5.80 1.04 8.68 5.02 7.40 ∗63.68

Table A.2:
p

AIC v.s. AIC N = 100, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC *95.74 1.30 0 0 0 1.28 1.68
clayton AIC ∗98.42 0.30 0 0 0 0.52 0.76
frank

p

AIC 2.34 *70.76 0.98 2.80 2.92 14.02 6.18
frank AIC 0.92 ∗83.14 0.32 1.76 1.28 9.86 2.72
galambos

p

AIC 0.08 3.18 11.62 30.82 *38.60 7.86 7.84
galambos AIC 0 1.68 14.36 28.20 *44.32 5.90 5.54
gumbel

p

AIC 0 3.06 11.18 *40.64 27.74 6.28 11.10
gumbel AIC 0 2.26 12.70 ∗42.64 29.66 5.08 7.66
huslerReiss

p

AIC 0.06 2.08 10.24 17.66 *55.60 10.32 4.04
huslerReiss AIC 0 1.10 10.66 13.16 ∗66.08 6.90 2.10
normal

p

AIC 4.02 8.54 2.40 2.94 13.78 *55.60 12.72
normal AIC 1.22 8.40 1.04 1.80 7.48 ∗72.94 7.12
t

p

AIC 4.38 3.46 1.96 9.92 3.66 9.66 *66.96
t AIC 1.88 3.14 1.46 5.98 3.02 13.84 ∗70.68
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Table A.3:
p

AIC v.s. AIC N = 100, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC *98.46 0.84 0 0 0 0.22 0.48
clayton AIC ∗99.96 0 0 0 0 0.02 0.02
frank

p

AIC 0.24 *89.14 0.34 1.32 0.60 5.94 2.42
frank AIC 0.04 ∗97.72 0.06 0.24 0.12 1.40 0.42
galambos

p

AIC 0 1.66 15.18 *37.26 28.28 7.76 9.86
galambos AIC 0 0.20 20.04 34.42 *39.48 2.46 3.40
gumbel

p

AIC 0 1.68 14.30 *44.12 22.76 6.30 10.84
gumbel AIC 0 0.28 18.44 ∗45.12 29.62 2.00 4.54
huslerReiss

p

AIC 0 1.40 13.46 16.96 *52.40 11.16 4.62
huslerReiss AIC 0 0.08 11.80 8.30 ∗76.24 2.74 0.84
normal

p

AIC 0.64 4.34 1.94 2.28 8.78 *64.38 17.64
normal AIC 0.04 0.70 0.46 0.64 2.64 ∗87.76 7.76
t

p

AIC 1.16 2.28 1.64 8.44 2.62 13.54 *70.32
t AIC 0.10 0.50 0.92 3.46 1.46 16.34 ∗77.22

Table A.4:
p

AIC v.s. AIC N = 250, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC *95.30 1.20 0 0.02 0 2.12 1.36
clayton AIC ∗95.94 0.96 0 0.02 0 1.94 1.14
frank

p

AIC 3.60 *70.90 0.88 3.00 1.94 17.42 2.26
frank AIC 2.44 ∗75.82 0.68 2.12 1.38 16.24 1.32
galambos

p

AIC 0.02 2.34 15.40 30.70 *41.18 7.34 3.02
galambos AIC 0 2.14 16.72 27.42 *43.76 7.56 2.40
gumbel

p

AIC 0.12 3.20 13.64 *49.40 21.80 5.46 6.38
gumbel AIC 0.06 2.92 14.32 ∗49.78 22.22 5.96 4.74
huslerReiss

p

AIC 0.08 1.70 13.88 19.50 *54.96 7.86 2.02
huslerReiss AIC 0.02 1.50 12.86 16.16 ∗60.14 7.66 1.66
normal

p

AIC 5.32 14.52 2.64 4.28 10.74 *58.56 3.94
normal AIC 4.08 15.34 1.64 3.66 6.92 ∗66.42 1.94
t

p

AIC 2.76 1.36 0.96 5.92 0.86 2.38 *85.76
t AIC 1.68 1.30 1.02 4.88 0.74 2.78 ∗87.60

Table A.5:
p

AIC v.s. AIC N = 250, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗99.84 0.04 0 0 0 0.10 0.02
clayton AIC *100 0 0 0 0 0 0
frank

p

AIC 0.06 *93.22 0.12 0.46 0.06 5.36 0.72
frank AIC 0 ∗96.60 0.02 0.26 0.06 2.74 0.32
galambos

p

AIC 0 0.40 26.82 *35.10 31.90 3.40 2.38
galambos AIC 0 0.10 29.18 32.46 *35.70 1.24 1.32
gumbel

p

AIC 0 0.56 21.56 *54.90 16.26 2.66 4.06
gumbel AIC 0 0.12 23.92 ∗55.30 17.82 0.82 2.02
huslerReiss

p

AIC 0 0.14 18.18 9.34 *66.94 4.90 0.50
huslerReiss AIC 0 0.04 16.52 6.84 ∗74.68 1.66 0.26
normal

p

AIC 0.16 2.66 1.44 1.06 5.30 *83.48 5.90
normal AIC 0 1.88 0.64 0.42 1.68 ∗92.74 2.64
t

p

AIC 0.16 0.54 0.84 4.56 0.30 3.68 *89.92
t AIC 0.04 0.30 0.52 2.00 0.22 4.16 ∗92.76
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Table A.6:
p

AIC v.s. AIC N = 250, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton AIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗99.54 0 0.02 0 0.26 0.18
frank AIC 0 *100 0 0 0 0 0
galambos

p

AIC 0 0.08 29.96 *45.28 19.98 1.68 3.02
galambos AIC 0 0 34.76 *39.32 25.28 0.20 0.44
gumbel

p

AIC 0 0.12 26.82 ∗55.48 12.32 1.46 3.80
gumbel AIC 0 0 32.62 *51.56 15.18 0.10 0.54
huslerReiss

p

AIC 0 0.08 20.14 6.40 *69.02 3.60 0.76
huslerReiss AIC 0 0 14.16 2.36 ∗83.32 0.10 0.06
normal

p

AIC 0 0.48 0.64 0.50 1.92 *88.50 7.96
normal AIC 0 0.02 0.12 0.04 0.24 ∗97.26 2.32
t

p

AIC 0 0.10 0.56 2.46 0.10 4.22 *92.56
t AIC 0 0 0.10 0.52 0.04 3.92 ∗95.42

Table A.7:
p

AIC v.s. AIC N = 500, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC *99.32 0.16 0 0 0 0.40 0.12
clayton AIC ∗99.62 0.06 0 0 0 0.18 0.14
frank

p

AIC 0.20 *86.86 0.14 1.10 0.24 11.08 0.38
frank AIC 0.16 ∗88.86 0.16 0.94 0.26 9.30 0.32
galambos

p

AIC 0 0.46 26.72 30.78 *38.00 3.40 0.64
galambos AIC 0 0.46 28.46 28.68 *39.38 2.60 0.42
gumbel

p

AIC 0 0.80 19.22 *62.68 13.14 2.38 1.78
gumbel AIC 0 0.64 19.64 ∗62.82 13.54 1.92 1.44
huslerReiss

p

AIC 0 0.24 19.82 12.38 *63.56 3.80 0.20
huslerReiss AIC 0 0.10 19.44 10.30 ∗67.18 2.92 0.06
normal

p

AIC 1.34 8.62 1.54 1.52 4.10 *81.96 0.92
normal AIC 0.82 8.76 1.00 1.10 2.50 ∗85.30 0.52
t

p

AIC 0.26 0.22 0.22 2.38 0.04 0.72 *96.16
t AIC 0.26 0.16 0.20 1.50 0.02 0.72 ∗97.14

Table A.8:
p

AIC v.s. AIC N = 500, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton AIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 *99.06 0 0 0 0.86 0.08
frank AIC 0 ∗99.60 0 0 0 0.36 0.04
galambos

p

AIC 0 0 *41.76 32.02 24.88 0.92 0.42
galambos AIC 0 0 ∗43.00 30.00 26.72 0.12 0.16
gumbel

p

AIC 0 0 27.84 *63.42 7.30 0.52 0.92
gumbel AIC 0 0 28.20 ∗63.92 7.64 0.06 0.18
huslerReiss

p

AIC 0 0.02 20.42 3.20 *74.98 1.34 0.04
huslerReiss AIC 0 0 16.86 2.14 ∗80.90 0.10 0
normal

p

AIC 0.02 0.48 0.28 0.10 0.70 *97.18 1.24
normal AIC 0 0.24 0.08 0.04 0.08 ∗98.98 0.58
t

p

AIC 0 0 0.10 1.24 0.02 0.74 *97.90
t AIC 0 0 0.02 0.18 0 0.70 ∗99.10
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Table A.9:
p

AIC v.s. AIC N = 500, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton AIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗100 0 0 0 0 0
frank AIC 0 ∗100 0 0 0 0 0
galambos

p

AIC 0 0 *44.86 43.20 11.38 0.24 0.32
galambos AIC 0 0 ∗48.58 36.78 14.64 0 0
gumbel

p

AIC 0 0 32.68 ∗61.72 5.04 0.04 0.52
gumbel AIC 0 0 36.90 *57.20 5.88 0 0.02
huslerReiss

p

AIC 0 0 17.20 1.50 *80.84 0.44 0.02
huslerReiss AIC 0 0 9.26 0.46 ∗90.28 0 0
normal

p

AIC 0 0.02 0.06 0.02 0.16 *98.22 1.52
normal AIC 0 0 0.02 0 0 ∗99.62 0.36
t

p

AIC 0 0 0.06 0.44 0 0.74 *98.76
t AIC 0 0 0 0.02 0 0.54 ∗99.44

Table A.10:
p

AIC v.s. AIC N = 1000, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗99.94 0 0 0 0 0.06 0
clayton AIC *100 0 0 0 0 0 0
frank

p

AIC 0 *95.02 0.04 0.04 0.02 4.88 0
frank AIC 0 ∗95.66 0 0.02 0 4.32 0
galambos

p

AIC 0 0.02 *41.02 24.46 33.76 0.74 0
galambos AIC 0 0 ∗42.20 23.04 34.34 0.40 0.02
gumbel

p

AIC 0 0.10 20.44 ∗73.42 5.26 0.48 0.30
gumbel AIC 0 0.06 20.80 *73.24 5.40 0.24 0.26
huslerReiss

p

AIC 0 0.02 23.54 5.28 *70.32 0.84 0
huslerReiss AIC 0 0.02 22.24 4.32 ∗73.10 0.32 0
normal

p

AIC 0.06 3.32 0.28 0.34 0.66 *95.32 0.02
normal AIC 0.02 3.34 0.30 0.10 0.26 ∗95.98 0
t

p

AIC 0.02 0 0 0.24 0 0 *99.74
t AIC 0 0 0 0.12 0 0.04 ∗99.84

Table A.11:
p

AIC v.s. AIC N = 1000, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton AIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗100 0 0 0 0 0
frank AIC 0 ∗100 0 0 0 0 0
galambos

p

AIC 0 0 *56.42 28.04 15.42 0.08 0.04
galambos AIC 0 0 ∗57.04 26.20 16.74 0 0.02
gumbel

p

AIC 0 0 25.46 ∗72.82 1.60 0.02 0.10
gumbel AIC 0 0 26.28 *71.88 1.84 0 0
huslerReiss

p

AIC 0 0 14.42 0.36 *85.18 0.04 0
huslerReiss AIC 0 0 11.84 0.20 ∗87.96 0 0
normal

p

AIC 0 0.02 0.04 0 0.06 *99.82 0.06
normal AIC 0 0 0 0 0.02 ∗99.98 0
t

p

AIC 0 0 0 0.12 0 0.02 *99.86
t AIC 0 0 0 0 0 0.02 ∗99.98
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Table A.12:
p

AIC v.s. AIC N = 1000, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton
p

AIC ∗100 0 0 0 0 0 0
clayton AIC ∗100 0 0 0 0 0 0
frank

p

AIC 0 ∗100 0 0 0 0 0
frank AIC 0 ∗100 0 0 0 0 0
galambos

p

AIC 0 0 *56.54 39.36 4.10 0 0
galambos AIC 0 0 ∗60.56 34.30 5.14 0 0
gumbel

p

AIC 0 0 31.90 ∗67.24 0.86 0 0
gumbel AIC 0 0 35.62 *63.14 1.24 0 0
huslerReiss

p

AIC 0 0 8.52 0.04 *91.44 0 0
huslerReiss AIC 0 0 4.08 0.02 ∗95.90 0 0
normal

p

AIC 0 0 0 0 0 ∗99.88 0.12
normal AIC 0 0 0 0 0 *100 0
t

p

AIC 0 0 0 0 0 0.04 *99.96
t AIC 0 0 0 0 0 0.02 ∗99.98

Table A.13:
p

AIC v.s. AIC
— hit rate for selection —

copula = clayton

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 82.24 98.42 ∗99.96
100

p

AIC 81.28 95.74 *98.46
250 AIC 95.94 ∗100 ∗100
250

p

AIC 95.30 99.84 ∗100
500 AIC 99.62 ∗100 ∗100
500

p

AIC 99.32 ∗100 ∗100
1000 AIC ∗100 ∗100 ∗100
1000

p

AIC 99.94 ∗100 ∗100

Table A.14:
p

AIC v.s. AIC
— confidence in conclusion —

copula = clayton

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 71.72 96.07 ∗99.82
100

p

AIC 65.05 89.79 *97.97
250 AIC 92.05 99.96 ∗100
250

p

AIC 88.89 99.62 ∗100
500 AIC 98.77 ∗100 ∗100
500

p

AIC 98.21 99.98 ∗100
1000 AIC 99.98 ∗100 ∗100
1000

p

AIC 99.92 ∗100 ∗100

Table A.15:
p

AIC v.s. AIC
— hit rate for selection —

copula = frank

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 56.62 83.14 ∗97.72
100

p

AIC 46.66 70.76 *89.14
250 AIC 75.82 96.60 ∗100
250

p

AIC 70.90 93.22 *99.54
500 AIC 88.86 99.60 ∗100
500

p

AIC 86.86 99.06 ∗100
1000 AIC 95.66 ∗100 ∗100
1000

p

AIC 95.02 ∗100 ∗100

Table A.16:
p

AIC v.s. AIC
— confidence in conclusion —

copula = frank

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 51.14 83.12 ∗98.23
100

p

AIC 49.79 76.59 *87.96
250 AIC 75.83 97.53 ∗99.98
250

p

AIC 74.45 95.55 *99.14
500 AIC 89.72 99.75 ∗100
500

p

AIC 89.21 99.49 *99.98
1000 AIC 96.54 ∗100 ∗100
1000

p

AIC 96.48 99.98 ∗100
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Table A.17:
p

AIC v.s. AIC
— hit rate for selection —

copula = galambos

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 7.70 14.36 ∗20.04
100

p

AIC 8.00 11.62 *15.18
250 AIC 16.72 29.18 ∗34.76
250

p

AIC 15.40 26.82 *29.96
500 AIC 28.46 43.00 ∗48.58
500

p

AIC 26.72 41.76 *44.86
1000 AIC 42.20 57.04 ∗60.56
1000

p

AIC 41.02 56.42 *56.54

Table A.18:
p

AIC v.s. AIC
— confidence in conclusion —

copula = galambos

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 30.24 35.42 ∗38.74
100

p

AIC 30.12 30.27 *32.39
250 AIC 35.39 41.21 ∗42.51
250

p

AIC 32.48 *38.89 38.35
500 AIC 41.30 48.77 ∗51.26
500

p

AIC 39.49 46.19 *47.29
1000 AIC 49.33 59.94 ∗60.40
1000

p

AIC 48.07 *58.56 58.31

Table A.19:
p

AIC v.s. AIC
— hit rate for selection —

copula = gumbel

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 32.84 42.64 ∗45.12
100

p

AIC 34.70 40.64 *44.12
250 AIC 49.78 ∗55.30 51.56
250

p

AIC 49.40 54.90 ∗55.48
500 AIC 62.82 ∗63.92 57.20
500

p

AIC 62.68 *63.42 61.72
1000 AIC *73.24 71.88 63.14
1000

p

AIC ∗73.42 72.82 67.24

Table A.20:
p

AIC v.s. AIC
— confidence in conclusion —

copula = gumbel

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 35.27 45.58 ∗48.94
100

p

AIC 32.55 38.78 *39.97
250 AIC 47.84 ∗56.84 54.96
250

p

AIC 43.78 *52.07 50.37
500 AIC 59.63 ∗66.38 60.55
500

p

AIC 56.54 *63.43 57.74
1000 AIC 72.62 ∗73.13 64.78
1000

p

AIC 70.74 *71.85 63.05

Table A.21:
p

AIC v.s. AIC
— hit rate for selection —

copula = huslerReiss

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 51.70 66.08 ∗76.24
100

p

AIC 47.08 *55.60 52.40
250 AIC 60.14 74.68 ∗83.32
250

p

AIC 54.96 66.94 *69.02
500 AIC 67.18 80.90 ∗90.28
500

p

AIC 63.56 74.98 *80.84
1000 AIC 73.10 87.96 ∗95.90
1000

p

AIC 70.32 85.18 *91.44

Table A.22:
p

AIC v.s. AIC
— confidence in conclusion —

copula = huslerReiss

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 35.31 43.51 ∗50.97
100

p

AIC 32.53 39.07 *45.39
250 AIC 44.49 57.37 ∗67.16
250

p

AIC 41.80 55.43 *66.78
500 AIC 54.67 70.14 *81.48
500

p

AIC 53.37 69.50 ∗82.98
1000 AIC 64.63 82.54 *93.76
1000

p

AIC 63.91 83.29 ∗94.85
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Table A.23:
p

AIC v.s. AIC
— hit rate for selection —

copula = normal

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 41.48 72.94 ∗87.76
100

p

AIC 30.80 55.60 *64.38
250 AIC 66.42 92.74 ∗97.26
250

p

AIC 58.56 83.48 *88.50
500 AIC 85.30 98.98 ∗99.62
500

p

AIC 81.96 97.18 *98.22
1000 AIC 95.98 99.98 ∗100
1000

p

AIC 95.32 99.82 *99.88

Table A.24:
p

AIC v.s. AIC
— confidence in conclusion —

copula = normal

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 39.58 63.40 ∗77.85
100

p

AIC 36.99 52.94 *58.90
250 AIC 61.18 89.72 ∗95.74
250

p

AIC 57.89 80.59 *88.74
500 AIC 82.86 98.66 ∗99.46
500

p

AIC 79.00 95.68 *98.53
1000 AIC 94.74 99.98 ∗99.98
1000

p

AIC 93.15 99.83 *99.95

Table A.25:
p

AIC v.s. AIC
— hit rate for selection —

copula = t

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 63.68 70.68 ∗77.22
100

p

AIC 63.44 66.96 *70.32
250 AIC 87.60 92.76 ∗95.42
250

p

AIC 85.76 89.92 *92.56
500 AIC 97.14 99.10 ∗99.44
500

p

AIC 96.16 97.90 *98.76
1000 AIC 99.84 ∗99.98 ∗99.98
1000

p

AIC 99.74 99.86 *99.96

Table A.26:
p

AIC v.s. AIC
— confidence in conclusion —

copula = t

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 60.69 73.18 ∗81.97
100

p

AIC 52.76 *60.58 60.52
250 AIC 86.90 93.39 ∗96.59
250

p

AIC 81.87 *86.87 85.48
500 AIC 97.10 99.04 ∗99.61
500

p

AIC 95.96 97.31 *97.64
1000 AIC 99.72 99.98 ∗100
1000

p

AIC 99.68 99.80 *99.88



Appendix B

AIC vs. TIC

This appendix is included in order to give some support to a couple of comments in

section 4.2, with regard to the use of AIC and TIC in the parametric case.

Lack of generality: Since we instead of general observations Xn from R2 will use

the“idealized”observations Xu n that we got from the procedure described in section 4.1,

the line of argument employed in the analysis below will alas not be general in nature.

In a practial setting, the only way we could obtain Xu n from some observations Xn
would be if the idealized condition of complete knowledge of the marginal distribu-

tions were satisfied. This implies that we cheat when we use Xu n as the basis for our

fully-parametrically model-selection strategy, since the assumption that the marginal

distributions are uniform tremendously simplifies our estimation procedure.

In order to do this analysis in a general setting, we should have simulated general observa-

tionsXn by specifying both the copula model C and the marginal distributions F 1 and F 2

– and then we would need to create an assorted collection of bivariate models (by vary-

ing the choices of the copula models and the marginals), F (x1, x2) = C (F1(x1), F2(x2))

and fit all these to Xn. Thereafter AIC and TIC should be used to rank our models,

and finally our conclusions should be based upon these results.

This special case: Since an analysis along the general lines mentioned above would

incur a large computational load, we will use the less general approach were we only

consider idealized samples Xu n with uniform margins. It is not a general approach, but

we do at least have proper independent observations at our disposal – and the noise from

the transformation Xu n → Xp n is absent. Our analysis can thus be conducted using a

maximum-likelihood approach, and therefore the parametric model selection methods

AIC and TIC can be used to rank the models.

95



Appendix B – AIC vs. TIC 96

The point of interest is to check the sanity of the “folklore” that tells us that it is safe

to apply AIC instead of the computationally more expensive TIC. Remember from the

discussion in section 3.3.2 that the simple form of the bias-correcting term of the AIC is

under the assumption that we are using it on a correctly specified model. This implies

that the use of AIC as a model selection tool on the copula models discussed in this

appendix, at most could be true for one of the models.

If we do not want to make an assumption with regard to whether or not we have found

the correct model, the bias-correcting term should be estimated by the more complicated

expression used in the TIC-formula.

Our investigation in this appendix are identical to the procedure used in section 4.2 to

compare
p
AIC vs. xv-CIC on the dependent pseudo-observations Xp n, the only difference

being that we now are considering AIC and TIC on the independent observations Xu n.

The most interesting tables are tables B.1 and B.2 which corresponds to tables 4.29

and 4.30, so we present them first. The other tables are included at the end, and the

diligent reader can inspect them in order to see that we do have the same kind of closeness

here as the one observed in the tables related to
p
AIC vs. xv-CIC. In particular, the

extra computational effort invested in the computation of the TIC have not resulted in

a payoff that can justify its cost.

Table B.1: Difference in hit
rates for N = 500:

AIC − TIC

N = 500 τ = 0.25 τ = 0.5 τ = 0.75

clayton 0.00 0.00 0.00
frank -0.28 -0.02 0.06
galambos 0.20 0.26 1.50
gumbel -2.70 -2.86 -3.26
huslerReiss 2.78 2.54 2.10
normal 0.82 0.14 0.16
t -0.30 -0.10 -0.04

Table B.2: Difference in confi-
dence in conclusion for N = 500:

AIC − TIC

N = 500 τ = 0.25 τ = 0.5 τ = 0.75

clayton 0.04 0.00 0.00
frank 0.38 0.02 0.00
galambos -0.01 0.12 0.53
gumbel 1.41 1.28 0.86
huslerReiss -0.81 -1.53 -1.69
normal -0.43 -0.08 -0.06
t 0.53 0.12 0.16

Conclusion: We see from tables B.1 and B.2 that the use of AIC as selection model,

in spite of it obviously not being formally valid to use for all the copula models, performs

just as good as the TIC. In order to reduce the total computational load, and keep things

as simple as possible, it is thus clear that the preferred selection method to pick from

our toolbox will be the AIC.

Note: The author would like to apologize for the lack of references to those that already

have considered the question of which model selection method to select in the parametric

case. With regard to their results being ingrained into the folklore, it was deemed easier
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to just do the required computations in the present situation, than to go on a quest for

references to earlier work upon this.

Table B.3: AIC v.s. TIC N = 100, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗82.24 5.02 0 0.14 0.34 6.88 5.38
clayton TIC *81.44 5.06 0.04 0.12 0.38 6.68 6.28
frank AIC 8.52 ∗56.62 0.82 5.28 6.38 16.88 5.50
frank TIC 8.22 *55.46 0.98 5.32 6.38 16.82 6.82
galambos AIC 1.14 7.44 7.70 24.32 *41.12 10.92 7.36
galambos TIC 1.12 7.10 7.54 26.80 *38.22 10.28 8.94
gumbel AIC 1.20 8.54 7.16 *32.84 28.78 9.54 11.94
gumbel TIC 1.38 8.32 6.36 ∗34.78 26.16 8.96 14.04
huslerReiss AIC 0.96 6.50 7.12 16.72 ∗51.70 11.68 5.32
huslerReiss TIC 1.00 6.26 7.08 19.86 *48.46 11.12 6.22
normal AIC 12.22 20.78 1.62 5.12 13.04 ∗41.48 5.74
normal TIC 12.00 20.12 1.80 5.24 12.84 *40.64 7.36
t AIC 8.38 5.80 1.04 8.68 5.02 7.40 *63.68
t TIC 7.78 5.04 0.96 8.26 4.50 6.16 ∗67.30

Table B.4: AIC v.s. TIC N = 100, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗98.42 0.30 0 0 0 0.52 0.76
clayton TIC *98.20 0.36 0 0 0 0.52 0.92
frank AIC 0.92 *83.14 0.32 1.76 1.28 9.86 2.72
frank TIC 0.92 ∗83.30 0.20 1.92 1.30 9.14 3.22
galambos AIC 0 1.68 14.36 28.20 *44.32 5.90 5.54
galambos TIC 0 1.74 13.58 33.62 *39.34 5.18 6.54
gumbel AIC 0 2.26 12.70 *42.64 29.66 5.08 7.66
gumbel TIC 0 2.22 11.58 ∗46.70 25.80 4.58 9.12
huslerReiss AIC 0 1.10 10.66 13.16 ∗66.08 6.90 2.10
huslerReiss TIC 0 1.12 11.08 16.92 *61.94 6.38 2.56
normal AIC 1.22 8.40 1.04 1.80 7.48 ∗72.94 7.12
normal TIC 1.18 8.94 1.24 2.16 7.10 *69.80 9.58
t AIC 1.88 3.14 1.46 5.98 3.02 13.84 *70.68
t TIC 1.78 3.06 1.04 6.16 2.80 11.18 ∗73.98
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Table B.5: AIC v.s. TIC N = 100, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗99.96 0 0 0 0 0.02 0.02
clayton TIC ∗99.96 0 0 0 0 0.02 0.02
frank AIC 0.04 *97.72 0.06 0.24 0.12 1.40 0.42
frank TIC 0.04 ∗97.92 0.04 0.26 0.12 1.12 0.50
galambos AIC 0 0.20 20.04 34.42 *39.48 2.46 3.40
galambos TIC 0 0.20 18.98 *41.20 33.58 2.30 3.74
gumbel AIC 0 0.28 18.44 *45.12 29.62 2.00 4.54
gumbel TIC 0 0.28 17.06 ∗50.90 24.92 1.84 5.00
huslerReiss AIC 0 0.08 11.80 8.30 ∗76.24 2.74 0.84
huslerReiss TIC 0 0.10 13.76 11.68 *70.88 2.66 0.92
normal AIC 0.04 0.70 0.46 0.64 2.64 ∗87.76 7.76
normal TIC 0.04 0.76 0.48 0.82 2.48 *85.06 10.36
t AIC 0.10 0.50 0.92 3.46 1.46 16.34 *77.22
t TIC 0.10 0.48 0.80 3.58 1.18 13.40 ∗80.46

Table B.6: AIC v.s. TIC N = 250, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗95.94 0.96 0 0.02 0 1.94 1.14
clayton TIC *95.74 0.96 0 0.02 0 1.92 1.36
frank AIC 2.44 *75.82 0.68 2.12 1.38 16.24 1.32
frank TIC 2.44 ∗75.86 0.64 2.24 1.30 15.84 1.68
galambos AIC 0 2.14 16.72 27.42 *43.76 7.56 2.40
galambos TIC 0 2.12 16.92 30.60 *40.24 7.34 2.78
gumbel AIC 0.06 2.92 14.32 *49.78 22.22 5.96 4.74
gumbel TIC 0.08 2.86 12.94 ∗52.78 20.08 5.66 5.60
huslerReiss AIC 0.02 1.50 12.86 16.16 ∗60.14 7.66 1.66
huslerReiss TIC 0.02 1.50 14.32 18.34 *56.54 7.34 1.94
normal AIC 4.08 15.34 1.64 3.66 6.92 ∗66.42 1.94
normal TIC 4.16 15.84 1.60 4.04 6.76 *65.08 2.52
t AIC 1.68 1.30 1.02 4.88 0.74 2.78 *87.60
t TIC 1.46 1.32 0.84 4.52 0.62 2.28 ∗88.96

Table B.7: AIC v.s. TIC N = 250, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗100 0 0 0 0 0 0
clayton TIC ∗100 0 0 0 0 0 0
frank AIC 0 *96.60 0.02 0.26 0.06 2.74 0.32
frank TIC 0 ∗96.72 0.02 0.26 0.06 2.54 0.40
galambos AIC 0 0.10 29.18 32.46 *35.70 1.24 1.32
galambos TIC 0 0.12 28.82 *36.42 31.88 1.18 1.58
gumbel AIC 0 0.12 23.92 *55.30 17.82 0.82 2.02
gumbel TIC 0 0.12 22.06 ∗59.58 15.34 0.74 2.16
huslerReiss AIC 0 0.04 16.52 6.84 ∗74.68 1.66 0.26
huslerReiss TIC 0 0.04 18.58 8.44 *70.98 1.66 0.30
normal AIC 0 1.88 0.64 0.42 1.68 ∗92.74 2.64
normal TIC 0 2.16 0.64 0.52 1.58 *91.74 3.36
t AIC 0.04 0.30 0.52 2.00 0.22 4.16 *92.76
t TIC 0.04 0.28 0.40 1.90 0.20 3.28 ∗93.90
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Table B.8: AIC v.s. TIC N = 250, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗100 0 0 0 0 0 0
clayton TIC ∗100 0 0 0 0 0 0
frank AIC 0 *100 0 0 0 0 0
frank TIC 0 ∗99.98 0 0 0.02 0 0
galambos AIC 0 0 34.76 *39.32 25.28 0.20 0.44
galambos TIC 0 0 33.94 *43.60 21.80 0.20 0.46
gumbel AIC 0 0 32.62 *51.56 15.18 0.10 0.54
gumbel TIC 0 0 30.16 ∗56.42 12.76 0.10 0.56
huslerReiss AIC 0 0 14.16 2.36 ∗83.32 0.10 0.06
huslerReiss TIC 0 0 16.68 3.36 *79.78 0.08 0.10
normal AIC 0 0.02 0.12 0.04 0.24 ∗97.26 2.32
normal TIC 0 0.02 0.14 0.06 0.22 *96.54 3.02
t AIC 0 0 0.10 0.52 0.04 3.92 *95.42
t TIC 0 0 0.06 0.50 0.06 3.06 ∗96.32

Table B.9: AIC v.s. TIC N = 500, τ = 0.25 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗99.62 0.06 0 0 0 0.18 0.14
clayton TIC ∗99.62 0.06 0 0 0 0.18 0.14
frank AIC 0.16 *88.86 0.16 0.94 0.26 9.30 0.32
frank TIC 0.18 ∗89.14 0.12 1.00 0.26 8.96 0.34
galambos AIC 0 0.46 28.46 28.68 *39.38 2.60 0.42
galambos TIC 0 0.46 28.26 31.50 *36.74 2.54 0.50
gumbel AIC 0 0.64 19.64 *62.82 13.54 1.92 1.44
gumbel TIC 0 0.62 18.04 ∗65.52 12.30 1.88 1.64
huslerReiss AIC 0 0.10 19.44 10.30 ∗67.18 2.92 0.06
huslerReiss TIC 0 0.12 20.70 11.90 *64.40 2.80 0.08
normal AIC 0.82 8.76 1.00 1.10 2.50 ∗85.30 0.52
normal TIC 0.84 9.22 1.16 1.18 2.36 *84.48 0.76
t AIC 0.26 0.16 0.20 1.50 0.02 0.72 *97.14
t TIC 0.26 0.16 0.12 1.42 0.02 0.58 ∗97.44

Table B.10: AIC v.s. TIC N = 500, τ = 0.5 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗100 0 0 0 0 0 0
clayton TIC ∗100 0 0 0 0 0 0
frank AIC 0 *99.60 0 0 0 0.36 0.04
frank TIC 0 ∗99.62 0 0 0 0.34 0.04
galambos AIC 0 0 ∗43.00 30.00 26.72 0.12 0.16
galambos TIC 0 0 *42.74 32.82 24.16 0.12 0.16
gumbel AIC 0 0 28.20 *63.92 7.64 0.06 0.18
gumbel TIC 0 0 26.22 ∗66.78 6.74 0.06 0.20
huslerReiss AIC 0 0 16.86 2.14 ∗80.90 0.10 0
huslerReiss TIC 0 0 18.76 2.78 *78.36 0.10 0
normal AIC 0 0.24 0.08 0.04 0.08 ∗98.98 0.58
normal TIC 0 0.26 0.10 0.04 0.08 *98.84 0.68
t AIC 0 0 0.02 0.18 0 0.70 *99.10
t TIC 0 0 0.02 0.14 0 0.64 ∗99.20
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Table B.11: AIC v.s. TIC N = 500, τ = 0.75 — based on R = 5000 replicates.

d.cop IC clayton frank galambos gumbel huslerReiss normal t

clayton AIC ∗100 0 0 0 0 0 0
clayton TIC ∗100 0 0 0 0 0 0
frank AIC 0 *100 0 0 0 0 0
frank TIC 0 ∗99.94 0 0 0.06 0 0
galambos AIC 0 0 ∗48.58 36.78 14.64 0 0
galambos TIC 0 0 *47.08 40.20 12.72 0 0
gumbel AIC 0 0 36.90 *57.20 5.88 0 0.02
gumbel TIC 0 0 34.48 ∗60.46 5.04 0 0.02
huslerReiss AIC 0 0 9.26 0.46 ∗90.28 0 0
huslerReiss TIC 0 0 11.22 0.60 *88.18 0 0
normal AIC 0 0 0.02 0 0 ∗99.62 0.36
normal TIC 0 0 0.02 0 0 *99.46 0.52
t AIC 0 0 0 0.02 0 0.54 *99.44
t TIC 0 0 0 0.02 0.02 0.48 ∗99.48

Table B.12: AIC v.s. TIC
— hit rate for selection —

copula = clayton

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 82.24 98.42 ∗99.96
100 TIC 81.44 98.20 ∗99.96
250 AIC 95.94 ∗100 ∗100
250 TIC 95.74 ∗100 ∗100
500 AIC 99.62 ∗100 ∗100
500 TIC 99.62 ∗100 ∗100

Table B.13: AIC v.s. TIC
— confidence in conclusion —

copula = clayton

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 71.72 96.07 ∗99.82
100 TIC 72.10 96.19 ∗99.82
250 AIC 92.05 99.96 ∗100
250 TIC 92.14 99.96 ∗100
500 AIC 98.77 ∗100 ∗100
500 TIC 98.73 ∗100 ∗100

Table B.14: AIC v.s. TIC
— hit rate for selection —

copula = frank

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 56.62 83.14 *97.72
100 TIC 55.46 83.30 ∗97.92
250 AIC 75.82 96.60 ∗100
250 TIC 75.86 96.72 *99.98
500 AIC 88.86 99.60 ∗100
500 TIC 89.14 99.62 *99.94

Table B.15: AIC v.s. TIC
— confidence in conclusion —

copula = frank

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 51.14 83.12 ∗98.23
100 TIC 51.65 82.68 *98.17
250 AIC 75.83 97.53 ∗99.98
250 TIC 75.51 97.26 *99.98
500 AIC 89.72 99.75 ∗100
500 TIC 89.33 99.73 ∗100

Table B.16: AIC v.s. TIC
— hit rate for selection —

copula = galambos

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 7.70 14.36 ∗20.04
100 TIC 7.54 13.58 *18.98
250 AIC 16.72 29.18 ∗34.76
250 TIC 16.92 28.82 *33.94
500 AIC 28.46 43.00 ∗48.58
500 TIC 28.26 42.74 *47.08

Table B.17: AIC v.s. TIC
— confidence in conclusion —

copula = galambos

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 30.24 35.42 ∗38.74
100 TIC 30.45 35.07 *37.12
250 AIC 35.39 41.21 ∗42.51
250 TIC 35.80 40.86 *41.91
500 AIC 41.30 48.77 ∗51.26
500 TIC 41.31 48.65 *50.73
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Table B.18: AIC v.s. TIC
— hit rate for selection —

copula = gumbel

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 32.84 42.64 *45.12
100 TIC 34.78 46.70 ∗50.90
250 AIC 49.78 *55.30 51.56
250 TIC 52.78 ∗59.58 56.42
500 AIC 62.82 *63.92 57.20
500 TIC 65.52 ∗66.78 60.46

Table B.19: AIC v.s. TIC
— confidence in conclusion —

copula = gumbel

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 35.27 45.58 ∗48.94
100 TIC 34.64 43.44 *46.93
250 AIC 47.84 ∗56.84 54.96
250 TIC 46.89 *55.61 54.28
500 AIC 59.63 ∗66.38 60.55
500 TIC 58.22 *65.11 59.69

Table B.20: AIC v.s. TIC
— hit rate for selection —

copula = huslerReiss

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 51.70 66.08 ∗76.24
100 TIC 48.46 61.94 *70.88
250 AIC 60.14 74.68 ∗83.32
250 TIC 56.54 70.98 *79.78
500 AIC 67.18 80.90 ∗90.28
500 TIC 64.40 78.36 *88.18

Table B.21: AIC v.s. TIC
— confidence in conclusion —

copula = huslerReiss

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 35.31 43.51 *50.97
100 TIC 35.38 44.79 ∗53.22
250 AIC 44.49 57.37 *67.16
250 TIC 45.03 59.13 ∗69.59
500 AIC 54.67 70.14 *81.48
500 TIC 55.47 71.66 ∗83.17

Table B.22: AIC v.s. TIC
— hit rate for selection —

copula = normal

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 41.48 72.94 ∗87.76
100 TIC 40.64 69.80 *85.06
250 AIC 66.42 92.74 ∗97.26
250 TIC 65.08 91.74 *96.54
500 AIC 85.30 98.98 ∗99.62
500 TIC 84.48 98.84 *99.46

Table B.23: AIC v.s. TIC
— confidence in conclusion —

copula = normal

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 39.58 63.40 *77.85
100 TIC 40.37 65.36 ∗79.94
250 AIC 61.18 89.72 *95.74
250 TIC 61.71 90.70 ∗96.55
500 AIC 82.86 98.66 *99.46
500 TIC 83.29 98.74 ∗99.51

Table B.24: AIC v.s. TIC
— hit rate for selection —

copula = t

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 63.68 70.68 *77.22
100 TIC 67.30 73.98 ∗80.46
250 AIC 87.60 92.76 *95.42
250 TIC 88.96 93.90 ∗96.32
500 AIC 97.14 99.10 *99.44
500 TIC 97.44 99.20 ∗99.48

Table B.25: AIC v.s. TIC
— confidence in conclusion —

copula = t

N IC τ = 0.25 τ = 0.5 τ = 0.75

100 AIC 60.69 73.18 ∗81.97
100 TIC 57.54 69.84 *79.66
250 AIC 86.90 93.39 ∗96.59
250 TIC 84.85 92.33 *95.87
500 AIC 97.10 99.04 ∗99.61
500 TIC 96.57 98.92 *99.46



Appendix C

Some comments on the code

This appendix gives some comments on the code that was used to test the small-sample

performance of the cross-validation copula information criterion, xv-CIC, for the com-

binations of copula models, values of Kendall’s τ and sample sizes given in section 4.1.

The explicit code that was used will not be included in this appendix, but instead there

will be some remarks with regard to the challenges encountered when executing such

a simulation task - with emphasize on the R-program, R Development Core Team [29],

and some some packages that the author would like to recommend.

Simulations and fitting of models: The main package that everything rests upon

is the copula-package. This package contains functions like rCopula that creates sim-

ulated data from a given copula and parameter combination, the function pobs that

create the corresponding pseudo-observations and the function fitCopula, which com-

putes ml- or mpl-estimates of the parameters and the corresponding maximum of the

(pseudo)log-likelihood.

Computation of bias-correcting terms: The three bias-correcting terms of the

xv-CIC, i.e. p̂n, q̂n and r̂n from eq. (3.97), can be computed numerically by the help

of the function genD from the package numDeriv. However, with regard to the time

used on these computations, it is highly recommendable to use another approach for the

Archimedean copula models. Remember from page 14 that the Archimedean copulas are

given by generators ψ(t) : [0,∞]→ [0, 1], and the point of interest is that the R-function D

symbolically can compute the required derivatives of the corresponding pdfs.

Note that we do not need to bother with the specification of the required generators,

since this information can be found in the copula-objects we are considering. When the

desired derivatives have been created and stored e.g. as a call, it is only necessary to

specify the parameter-value θ and the coordinates of the point u – and then use the
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function eval to get our value. A sanity check of the code can easily be obtained by

comparing with the result of the genD function.

Bookkeeping: When we want to apply the same program on many combinations,

like in section 4.1 where we have the combination of 7 data-generating copula-models

and 7 proposed copula models, 4 sample-sizes and 3 parameter settings, altogether a

total of 588 combinations, we really need some kind of automatic bookkeeping.

With regard to this, the R-package plyr is a package that this author would like to

recommend. The approach used in the code for this thesis primarily used the function

aaply to produce the multi-dimensional arrays containing all the desired information.

The main points of interest to mention with regard to this is that we by using e.g. aaply

can avoid a lot of the inefficient for loops in R.

In most of the applications in this thesis, the aaply-function worked upon a matrix

whose rows were used as labels for the extraction of data from one or two previously

computed multi-dimensional arrays – and these values where then used in functions that

gave the entries in a new multi-dimensional array.

A nice feature of the aaply-function is that the dimension-names on the resulting array

will be inherited from the array it works upon, and in addition, if the function that is

used delivers a result in the form of a named vector/matrix/array, then these names too

will be inherited to the final array.

The argument array for aaply was made by the help of expand.grid, which creates a

matrix containing all the possible combinations of the content of the vectors or lists it

is given as its arguments. A note of warning with regard to the use of expand.grid

is that one of the standard defaults of this functions can mess things up if we want to

extract information from two different arrays. To avoid any potential errors due to the

chance that the two arrays under consideration does not have its content labeled in the

exact same way, it is paramount that we in the argument of expand.grid use the setting

stringsAsFactors = FALSE.

Wrapping of errors: Even though the code is without errors, it can sometimes

happen that the result of a computation still turns out to be a NA or NaN, cf. the

discussion around table 4.31. If this happens within a loop like the one performed by

the aaply-function, then the loop will terminate.

To prevent this undesirable consequence, it is necessary to wrap our functions within

some protecting layer, that will “hide” such errors from the loop, and instead return

some default value that later on can be used to count the amount of such problems. The
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two wrapper-functions try and failwith have been used to prevent the code in this

thesis from terminating due to such errors.

Limitations on memory size, partitioning of problem: A detail that should be

considered from the start, is how much memory that will be required in order to store

the information that R is supposed to work upon. If the amount of required memory

is too large, the problem must be partitioned into smaller chunks. For the case of this

thesis, the solution was to divide the simulations and estimations into four separate

cases according to the sample-sizes, and each of these cases then had 25 chunks of 200

replicates each. This approach ensured that the memory could handle the separate tasks,

but the cost was a need for a lot of file-handling in the course of the code.

Extracting relevant data: The two functions melt and cast from the reshape

package was used when it was time to extract information from the arrays produced by

the aaply-function. In addition, the function abind from the package with the same

name, was found to be very useful when the results from all the different chunks were

to be pasted together. These three functions were used to create the content of all the

tables in this thesis in a simple and uniform way.

Presenting the data The tables in this thesis were converted from arrays in R to

tables in LATEX by the help of the Sweave-program introduced in Leisch [30], and the

R-function xtable. For those unfamiliar with Sweave, the important thing to know is

that this program take cares of the boring task of writing the LATEX-code for the tables,

and in a similar fashion it simplifies the task of including graphical elements in the

document.

Although Sweave tremendously simplifies the writing of a document in LATEX, it does

have some quirks that can take some time to get used to. It might thus be advisable to

learn the more “mature” version knitr, introduced in Xie [31], instead of Sweave, but

that advise is subject to the disclaimer that the author still need to learn knitr first.
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ting. Suri-Kagaku (Mathematical Sciences), 153:12–18, 1976. In Japanese.

[24] Nils Lid Hjort and David Pollard. Asymptotics for minimisers of convex processes.

Technical report, Department of Mathematic, University of Oslo, 1993. URL http:

//www.stat.yale.edu/~pollard/Papers/convex.pdf.

[25] Frederik Hendrik Ruymgaart. Asymptotic normality of nonparamet-

ric tests for independence. Annals of Statistics, 2(5):892–910, 1974.

URL http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=

Display&handle=euclid.aos/1176342812.

[26] C. Genest, K. Ghoudi, and L. P. Rivest. A semiparametric estimation procedure

of dependence parameters in multivariate families of distributions. Biometrika, 82

(3):543–552, September 1995. URL http://biomet.oxfordjournals.org/cgi/

content/abstract/82/3/543.

[27] Alexander J. McNeil. Estimating the tails of loss severity distributions using

extreme value theory. ASTIN BULLETIN, 27(1):117–137, 1999. URL http:

//www.casact.org/library/astin/vol27no1/117.pdf.

[28] Geir Drage Berentsen, B̊ard Støve, Dag Tjøstheim, and Tommy

Nordbø. Recognizing and visualizing copulas: an approach us-

ing local gaussian approximation. University of Bergen, Depart-

ment of Mathematics, 2013. URL http://folk.uib.no/gbe062/

local-gaussian-correlation/Recognizing-and-Visualizing-copulas-an%

20approach-using-local-gaussian-correlation.pdf.

[29] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL

http://www.R-project.org/. ISBN 3-900051-07-0.

[30] Friedrich Leisch. Sweave: Dynamic generation of statistical reports using literate
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