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I 

 

Abstract 

This study aims to elucidate ecological processes and human interaction concerning regeneration 

of pines (Pinus sylvestris and  Pinus mugo ssp uncinata) 36 years after a fire in Starmoen nature 

reserve (1976). The reserve has an underlying substrate of aeolian sand dunes, which create a 

unique landscape with a varying topographic relief. This results in a difference in exposure to 

solar radiation among the different topographic units, which again affects growth conditions of 

the different types of vegetation through for example moisture. 

Sampling of data was done under a stratified approach with 8 transects of 8 plots each. Within 

these plots, measurements were made of relative radiation index, number of recruits, DBH 

structure, degree of canopy cover and cover of ground vegetation. Soil samples were taken to 

estimate moisture and loss-on-ignition. Several analyses were done with the compiled data, 

including correlation, t-tests, regression, multiple regression and analysis of spatial 

autocorrelation. 

The size of adult trees varied greatly, depending on which topographic unit they were located on, 

and its specific growth conditions. Regeneration was mostly successful for the native Pinus 

sylvestris, whereas the introduced pine, Pinus mugo ssp. uncinata had little to no on-going 

reproduction. The inferential statistics indicated that difference in exposure to solar radiation 

(expressed as radiation index) across the sand dunes had an effect on the %-moisture in the soil, 

which also affects distribution of lichens and ericaceous dwarf shrubs. 

Regeneration of Scots pine was interpreted to be strongly inhibited by lichens as well as 

ericaceous dwarf shrubs (mainly heather) when one life-form dominated the ground vegetation. 

However, a mosaic of both life forms gave the optimal conditions for Pinus sylvestris seedlings. 

The study questioned the decision to introduce an alien pine species for reforestation, and shows 

that future sustainability would be better with the native Scots pine. 
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Introduction 

Pine, specifically Scots pine (Pinus sylvestris, hereafter referred to as P. sylvestris) is, together 

with European spruce (Picea abies) the most dominant evergreen tree species in Norway. It is  

one of the oldest species in Norway (9000 B.P. (Øyen 2006)) and can be found in many habitats 

due to its wide ecological amplitude (Ellenberg et al. 1988). It dominates in large parts of 

northern Europe (Richardson 1998) (Fig. 1). Pinus sylvestris is generally drought tolerant, and 

can therefore be found on dry substrates such as sand or moraines, unlike other conifer in 

Norway, which need more moisture to thrive. One such type of forest is lichen-pine forest 

(Fremstad 1997, Moen 2010). This is the driest forest type in Norway and is normally found in 

the mountainous regions of eastern Norway and on well-drained moraine substrates. It is 

dominated by P. sylvestris a ground vegetation of various lichens (e.g. Cladonia) and dwarf 

shrubs (Fremstad 1997, Moen 2010, Gjærevoll 1984). Another habitat where this forest type 

thrives is on aeolian sand-dunes, where wind has deposited fine sand. These are often found on 

the coast of Norway and sporadically in places in eastern Norway (Hafsten 1971). One of these 

places is Starmoen nature reserve near Elverum, Hedmark in south-east Norway.  

This study aims to investigate the regeneration of a forest in Starmoen nature reserve which has 

recently undergone secondary succession due to a severe forest fire in 1976. Scots Pine and 

Mountain Pine (Pinus mugo ssp. uncinata, hereafter referred to as P. uncinata) are canopy 

dominates in a relative young forest in this nature reserve, with its underlying substrate of aeolian 

sand-dunes. The sand dunes create a landscape with ridges, slopes and flat slacks in-between 

(Klemsdal 2010). Such a landscape, with its different topographical units, will have a wide 

variation in incoming radiation and distance to the underlying water-table that affect moisture 

availability, temperature and ground-layer vegetation (Holland and Steyne 1975, Gallardo-Cruz  

et al. 2009). Bakkestuen et al. (2008) identifies topographic relief on a crude scale as one of the 

main gradients for environmental variation in Norway, but in this study area there was a unique 

possibility to study the effects of variation in incoming radiation on a relatively small spatial 

scale, which may resemble the zonation found in alpine zones with lichen-dominated ridges and 

dwarf shrub-dominated slopes towards the snow-beds (Gjærevoll 1984).  

The forest contains mainly the native P. sylvestris, but an alien species, Mountain Pine has also 

been planted in various places. The ground vegetation is a mix of different life-forms. One life-

form is ericaceous dwarf-shrub, mainly dominated by heather (Calluna vulgaris), but with some 

scattered individuals of blueberries (Vaccinium myrtillus), cowberry (Vaccinium vitis-idaea) and 
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crowberry (Empetrum nigrum). Another life-form is lichen; Cladonia rangiferina, Cladonia 

arbuscula and Cladonia stellaris. And thirdly, different feather and hepatic mosses. These life-

forms might affect the regeneration of the present trees in a negative (inhibition) or positive 

(facilitation) way (Mallik 2003, Brooker 2006, Porter 1929). The spread of these life forms might 

also be affected by the different ecological factors induced by the unique sand-dune landscape. 

I will investigate the present biological and abiotic environmental factors that might influence 

regeneration in the nature reserve and try to understand the general ecological pattern that has 

resulted in the forest we can observe today. Hopefully, this study will be able to give insight into 

the complex process that involves succession, planting, regeneration, disturbances and various 

environmental factors that are present in the study area at hand, and tie this up to a perspective of 

forest management concerning reforestation, thinning and introduction of alien species. These 

issues are further elaborated into research questions and according hypotheses in the conceptual 

framework. 

 

Figure 1 Range of P. sylvestris; 1) Main range of the species. 2) Isolated occurences. 3) Natural populations 

extinct due to human intervention (reintroduced populations established in some areas). 4) Arctic Circle. 
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Conceptual framework 

As this study wants to assess the varying ecological factors in a specific forest, there are a 

number of existing theories and concepts that are important to include.  

Vegetation change 

The thesis aims to elucidate factors that may influence regeneration of pine trees after a major fire 

more than thirty years ago. It is therefore important to define what is meant by regeneration and 

succession. Miles (1979, p. 36.) explains regeneration as follows: “When vegetation keeps the 

same overall composition in terms of the combinations and proportions of the species present, the 

replacement processes may be thought of as regeneration”. Succession, on the other hand, is 

defined by Miles (1979) as vegetational change that occurs away from an initial state. In this 

study, I am in a sense studying both succession and regeneration, depending on which scale I am 

observing in the landscape. If I limit the view to the burned forest, this area is in the process of 

restoring the forest that burned, through secondary succession, which may create a forest which  

is similar, but not equal to the forest that has been burned. However, if I look at the whole area 

with burned and non-burned forest, I may say that it is in the process of regenerating itself. The 

non-burned forest may have had a role as a seed pool to the opened area, so the newly grown 

forest inside the nature reserve can therefore be looked on as an expansion of the mature forest 

that originally inhabited the area before the disturbance, which was a fire in this case. As 

described, the conceptual definition might change when one changes the spatial scale, however, 

the question might also be different depending on the scale of time. Secondary succession is 

taking place in the nature reserve. However, the seed pool for regeneration may come from the 

reserve itself or from the surrounding mature pine forest. It is also possible to see how well the 

young forest is capable of reproducing itself without the surrounding seed pool, or rather, how it 

is not capable to reproduce itself. The process can be perceived as regeneration viewed at a short 

timescale. Finally, it also depends on the organisational level: either species or community. The 

species themselves are trying to regenerate, but the community is going through a successional 

change in vegetation. 

Species interaction 

The process of succession and regeneration involves a large degree of interactions and mechanics 

between different species. These interactions are a key part of understanding the composition of 

vegetation in an area, and can widely affect the diversity and function of an ecosystem (Brooker 

2006). Interactions may manifest as competition between species such that some species may not 
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be able to co-exist with other species, making it harder for certain species to become established 

in an ecosystem (inhibition), or as positive interactions which might either be beneficial for each 

other or beneficial for further/later colonization of other species (facilitation) (Burrows 1990, 

Vetaas 1992). To understand the regeneration in this area, it is natural, and important, to take a 

closer look at these dynamics. 

Facilitation 

Facilitation is a model within succession theory. Its original concept is that certain species are 

well suited for first-time colonization during primary or secondary succession. Later on, it then 

makes the site more suitable for colonization by other species (Connel 1977). Facilitation does 

not necessarily have to be a part of a successional cycle, but can also happen during interaction 

between coexisting species. This may “… promote species survival and regulate community 

composition” (Brooker 2006; p. 637, Vetaas 1992).  

Brooker (2006) also suggests a specific interaction of facilitation which is relevant for this study. 

He claims that saplings of P. sylvestris growing within heather might be protected from browsing 

and the general severity of the environment. This might influence both survival and biomass 

response. As there are moose grazing in this area, this may be an important factor in the 

landscape. Heather surrounding seedlings or saplings might also facilitate recruits by physically 

protecting them from wind and cold.   

Inhibition 

The inhibition model is a conceptual model that explains how some species at a certain site can 

make the site less suitable for colonization of other, new species (Connel & Slatyer 1977). This is 

an assumed process in succession, where species that first colonize a new area may be able to 

prevent or inhibit other species from establishing in the same area. The model implies that the 

“inhibiting-state” will remain the same until a new disturbance opens the area that allows new 

species to establish. The inhibiting species can also suppress the growth of vegetation that is 

already present in the system (Connel & Slatyer 1977).  

The operational inhibition process may act in different ways. One way is through the production 

of organic chemicals, allelopathy. Miles (1979) defined allelopathy as plants which produce toxic 

chemicals which inhibit the growth of other plants. Mallik (2003) writes that “Allelopathy [… 

has] been implicated in conifer regeneration failure in the presence of dense ericaceous 

understory resulting from forest harvesting and fire in boreal forest and sub-alpine spruce 
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forests”. He also gives ericaceous plants the name “ecosystem engineers”, due to their ability to 

modify the habitat. By modifying the habitat, and inhibiting the growth of conifers, a 

retrogressive succession might happen. Mallik (2003) identifies three mechanisms which may 

help explain the conifer regeneration failure, and shift from forest to an ericaceous understorey. 

These are: (1) the absence of severe natural fire and the limitation of good enough conifer 

seedbed in the presence of thick humus, (2) competition resulted by quick vegetative regeneration 

of ericaceous dwarf shrubs after forest canopy opening by removal of trees or nonsevere fire, and  

(3) degradation of the habitat, due to phenolic allelochemicals of ericaceous plants causing a 

nutrient imbalance in the soil.  The poisonous substances which may cause inhibition against 

other species are called phytotoxins. Jalal (1982) documents that acid compounds of high 

phytotoxicity have been isolated and identified from Calluna heathland soil. He continues to 

explain that heathlands with communities of Calluna vulgaris (outside anthropogenic heathlands) 

often have an absence of trees, and how observations show that “roots of trees or herbs may fail 

to develop or be markedly inhibited in Calluna heathland soil”.  

 

Another type of inhibition that has been observed is the concept of physical inhibition. This 

means that a species physically covers the soil so that other species do not get a chance to 

germinate seeds (Porter 1929). An example of this might be a carpet-like cover of lichens.  

 

The study area is dominated by lichens and dwarf shrubs (heather), which are commonly found in 

dry lichen pine forests (Fremstad 1997). From this, one may suppose that there could be an 

inhibiting effect by these on the vegetation in the study area. I hypothesize that both the cover of 

lichens and heather will have an effect on the number of recruits found in the sample plots. 

Radiation 

Topographic features, such as the sand dunes, may create a habitat with different features from 

the main vegetation, primarily due to variations in incoming solar radiation (Holland and Steyne 

1975, Gallardo-Cruz et al. 2009). Topographic relief is claimed to be one of the main working 

gradients for variation in vegetation in Norway (Bakkestuen et al. 2008). The primary source of 

energy for any ecosystem is the degree of incoming solar radiation. A landscape with north- and 

south facing slopes will have a big variation in the distribution of solar radiation (Fig. 2). A result 

of this variation is a spatial difference in the micro-climate (temperature) and soil moisture, which 

are two of the key explanations for the composition and regeneration of the vegetation in the area 
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(Woodward, 1987; Gallardo-Cruz et al. 2009). However, radiation is a dubious factor: although it 

is the source of energy, increased radiation also evaporates more moisture. Given a specific 

species, as well as the general climate of the area, increased incoming radiation might be positive 

or negative, depending on the initial moisture level. For instance in arid conditions, where access 

to moisture is the depending factor, the highest biotic production might be found on north-facing 

slopes with low solar radiation, whereas under moist conditions, more optimal conditions might 

be found on the sun-exposed south-facing slopes (Sternberg & Shoshany 2001, Hawkins et al., 

2003). 

 

Figure 2 Conceptual cross-section of a dune of sand with incoming radiation. Thicker lines depict more 

accumulation of radiation. 

Moisture 

Aeolian sand has a relatively high permeability and does not hold moisture as well as other 

substrates (Pye 2009). Thus sources of soil moisture will be a crucial factor in shaping vegetation 

dynamics. Such a substrate will generally be more suitable for drought-tolerant species. Scots 

pine is known to tolerate drought, but its seeds need a certain amount of water to germinate 

(Oleskog 2000). One may also expect that the dune-shaped landscape results in micro-

topographic differences in soil-water content. This is due to the varying degree of incoming 

radiation which can result in different rates of evaporation, as well as the dune-slacks being 

physically closer to the water-table and thus generally having better access to moisture. 

Precipitation will also drain from the ridges/slopes to the slacks, resulting in better growing 

conditions for vegetation. As previously mentioned, the ground is widely covered by lichens, and 

this may also influence moisture level. Porter (1929) writes that lichens will absorb incoming 

precipitation and can swell up to 4.5 times its own weight when dry, preventing the moisture from 
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running down into the soil. However, because of the physical barrier it produces, it can also help 

retain a certain amount of moisture in dry periods which would otherwise normally evaporate.  

Shade tolerance 

All trees need a certain level of light to be able to grow, but the minimum level varies between 

species and life stages within the same species, i.e. shade tolerance. This concept identifies the 

minimum level that some trees may tolerate, while still being able to grow (Valladares 2008). It is 

closely related to incoming radiation, and estimates of degrees of canopy closure are important 

because canopy cover will indirectly indicate how much light is likely to penetrate to the ground 

where the initial establishment and regeneration of recruits take place. There are a number of 

ways to categorize species into degrees of shade tolerance, but Mason (2004) mentions three 

categories: shade-tolerant, intermediate, and light-demanding. Shade tolerance does not 

necessarily affect a species’ growth rate, rather that shade-tolerant trees have a better chance of 

surviving under low light conditions than the light-demanding species (Ameztegui 2011) Mason 

also claims that Pinus species are generally light-demanding. In his research, he estimated the 

specific shade tolerance of Scots pine (P. sylvestris) (Fig. 3). The figure depicts that pine is 

sensitive to light, which implies that incoming solar radiation and canopy cover are relevant 

parameters that may indicate if variation in light influences regeneration to include in this study 

of regeneration.   

A       B 

Figure 3 (A) The dry matter of scots pine (SP) in relationship with sunlight compared with other species 

(western hemlock (WH); Douglas fir (DF); Sitka spruce (SS). (B) The mean root collar diameter of four year 

old scots pine, in relationship with degree of sunlight. From Mason (2004).  
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Alien species 

Species might be introduced into new habitats intentionally (often plants) or un-intentionally 

(often animals). Intentional introduction usually happens due to human interest in nurturing a 

species that may be positive, for example in forestry (McNeely 2001). Planting of trees far away 

from their native habitat can be for commercial interest or for control of erosion or drift sand, for 

example (Richardson 1998). The main reasons for using alien species, as opposed to native 

species, are that alien trees often grow much quicker than native species, seeds of native species 

are often more difficult to obtain, aliens might establish more successfully in degraded forest 

lands, and that knowledge of biology and management of native species are often poor, making it 

easier for foresters to work with well-studies alien species (Zobel et al. 1987, Mather 1993). 

Richardson et al. (2000) explains the different stages of alien species establishment: Introduction 

is the action (by humans) of transporting a species across geographical space to establish it 

outside its native location; Naturalization happens when the environmental barriers of survival 

are overcome, and the introduced species manage to start reproduction; and Invasion is a fact 

when the alien vegetation manages to produce reproductive recruits a certain distance from the 

original place of introduction. Invasion of certain alien trees has in later decades been shown to 

cause major problems in the ecosystems to which they have been introduced (Richardson 1999). 

Richardson continues to explain that pine trees are especially problematic. This is due to the 

pine’s low seed mass, short juvenile period and frequent occurrence of large seed crops. The 

introduction of an alien species may therefore cause a shift in the dominant life-form, reduce 

diversity, increase the biomass and density of trees and change nutrient cycling (Richardson 

1999). 

Thinning 

Thinning—the removal of usually young trees at intervals—is an established method to manage 

forest stands (Oliver and Larson 1990). This type of management can either be done through 

schematic thinning or selective thinning. Schematic usually means corridor thinning in rows and 

columns, giving more area for the remaining trees to increase in volume. This practice also makes 

it easier for machinery to perform future cutting (Bergström 2009). Bucht (1981), however, 

reported that this type of thinning might not be optimal for future growth. This is due to the 

unexploited growing area the corridors create, as well as the retention of poorly-growing trees 

rather than selecting to keep the healthiest and fastest growing trees. This problem is avoided 

through selective thinning, where the poorly-growing trees are cut away to make growing 

conditions optimal for the strongest trees in the stand (Karlson et al. 2012). 
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Questions and hypotheses 

Conferring with the introduction and conceptual framework, I have made the following research 

questions that I will discuss, and according hypotheses that I will try to test.  

Q1: Are all individuals of pine (P. sylvestris and P. uncinata) planted, or does the forest also self-

regenerate? 

- H1: All trees are planted 

- H2: The planted trees are producing recruits  

- H3: The forest present today has undergone natural succession with no planting 

Q2: Does the sand-dune landscape, and the associated micro-topographic units influence the 

general vegetation in the area and the regeneration of the two pine species? 

- H4: Increased radiation is positive for regeneration of recruits 

- H5: Increased radiation is negative for regeneration of recruits 

- H6: Radiation affects the ground vegetation 

Q3: Do the different environmental factors have an observable effect on the regeneration in the 

area? 

- H7: Increased radiation means decreased moisture 

- H8: Moisture has an observable effect on regeneration 

- H9: Canopy cover and density of trees has an observable effect on regeneration 

Q4: Are there biological inhibiting factors that prevent regeneration? 

- H10: Lichens have a negative effect on regeneration 

- H11: Dwarf shrubs have a negative effect on regeneration 

Q5: How has the interaction between management and the biotic/abiotic environment 

influenced the demonstrated regeneration dynamics, and which consequence has this for the 

future management of the protected landscape?
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Study area 

Location  

The area for this study is Starmoen nature reserve. This reserve lies approximately 7.5 km south 

east of Elverum in Hedmark county, south east Norway. The midpoint of the nature reserve, 

which has an area of 0.6km2, is located at 60°51' 20’’N, 11°41'21’’E. (See Fig. 4 and 5) The 

elevation above sea level is 210 – 225m. 

 

Figure 4 Sketch map showing the location of Starmoen nature reserve, marked in red.  Modified from 

Klemsdal (2010) 
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Figure 5 (A) Aerial photo of the study area 

(norgeibilder.no) (B) Height contours in the 

study area (5m equidistance) (C) Dunes mapped 

by Klemsdal (Modified from Klemsdal 2010). 
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Geology 

The underlying bedrock in the area is a layer of limestone and clay slate (snl.no). The overlying 

geomorphological substrate is composed of wind-built (aeolian) sand dunes. These dunes have 

previously been mapped by Klemsdal (2010) (Fig. 5C). Starmoen nature reserve is located on one 

of the largest fossil aeolian fields in Norway, created after the last deglaciation (10,000 yr. before 

present (BP)) when melt-water transported large amounts of fluvioglacial sediments to the area. 

After this, strong winds blowing from north-northwest down the slope of the glacier started to 

build up sand dunes. This was possible because of the lack of vegetation (Klemsdal 2010). The 

sand dunes create a varying landscape with ridges, south-facing slopes, north-facing slopes and 

flat areas between these (slacks), and the different ecological factors that follow from this. Due to 

the sand-substrate, the soil has a relatively high permeability, and will therefore mostly only be 

able to host draught-tolerant species. However, the slacks in the landscape will generally have 

better access to moisture because they are physically closer to the underground water-table (Fig. 

6). Precipitation will also drain from the ridges to the slacks, resulting in better growing 

conditions for vegetation. The shape and orientation of the dunes in the landscape result in a 

different exposure to sunlight and radiation (Fig. 6). This results in a unique opportunity to study 

the impact of these environmental changes on a relative small scale, instead of comparing the 

same changes on a crude scale such as mountain slopes. 

 

Figure 6 Conceptual cross-section of sand dune with variation in incoming radiation (thicker lines depict 

larger accumulation of radiation) and a presumed underlying water-table. 
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Climate 

Starmoen is located in south-east Norway, and has a continental climate with relatively low 

precipitation, cool winters, warm summers and a big difference in day/night temperatures during 

summer. The mean annual temperature of the closest station (Elverum) is 2.7 °C. Average 

monthly temperature in January is -10 °C and average monthly temperature in July is 15 °C 

(met.no). Moen’s map of growth season also depicts that the area has 160-170 days per year with 

temperatures of 5 °C or more. Average, yearly rainfall is 670 mm, and the number of days per 

year with rainfall >0.1 mm is 150-160 (Moen 2010). See Fig. 7 for monthly temperature and 

precipitation data. 
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Figure 7 (A) Monthly mean temperature. (B) Monthly mean mm precipitation (from eklima.met.no). 
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Vegetation 

The area is located within the south boreal zone. The vegetation we can observe in the nature 

reserve today is a dry lichen-pine forest of Scots pine (P. sylvestris) containing a number of 

mountain pine (P. uncinata), with varying ground vegetations, possibly as a result of microscale 

variations in ecological factors. These ground-level vegetation types include different types of 

lichen: Cladonia rangiferina, Cladonia arbuscula and Cladonia stellaris; dwarf shrubs, mostly 

dominated by heather (Calluna vulgaris); and a scarce cover of different types of moss. The 

ground cover might also provide different conditions for growth and regeneration of the target 

pines. Both species of pines, and the two main ground cover life-forms, have a characteristic 

distribution on the topographic units. Pinus sylvestris is generally found everywhere in the area, 

except for some areas on the ridges and south-facing slopes were P. uncinata seemed to 

dominate. The ridges and south facing slopes were generally covered by a continuous layer of 

lichens, but some dwarf shrubs were distributed sporadically. The slacks and north facing slopes 

mostly contained a dense spread of ericaceous dwarf shrubs, but lichens also seemed to be 

randomly distributed (Figs. 8, 9, and 10).  

 

 

Figure 8 Conceptual cross-section of sand dune with generalized variation in vegetation distribution. 
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Figure 9 Slack with mainly dwarf shrubs (heather).  

 

Figure 10 South facing slope covered by lichens. Photo: Ole Reidar Vetaas. 
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Target species 

Scots pine (Pinus sylvestris) 

Scots pine is a widespread and dominant tree-species in Norway. It is long-lived (250-300 yrs.) 

and is generally large in size, growing up to 45 m, with an average height of 20-25 m. It thrives in 

soil that is well-drained, often of mineral composition, and has no problems growing in poor, 

infertile ground. It is resistant to drought and needs a large amount of light to grow (low shade 

tolerance) (Mason 2004). Lawesson (2002) explains how pine is adapted to both dry and moist 

habitats, and thereby has a very wide niche tolerance. Its abundance is high at the dry end of the 

scale, but also in habitats with excessive amounts of moisture, such as marsh or wetlands. In 

habitats with intermediate moisture levels, pine may be outcompeted by other trees such as Fagus 

on the continent and Picea abies or Betula pubescens in Norway. Its extensive root system is 

good for preventing soil erosion (Richardson 1998). The seed production cycle of Scots pine is 

complicated and long-lasting. We differentiate between 3 stages in the cycle. The first is the stage 

of pollination, and it is recorded that high temperatures at this time are beneficial for the next 

stage (Nygaard 2007). Most of the pollen is spread during the daytime between 08:00 and 20:00. 

The next stage, flowering, is also strongly affected by the springtime temperature. High 

temperature results in earlier blossoming. The last stage is seed dispersal. Scots pine mostly 

releases its seeds over a short time span, which is reported to be around April–June in south-east 

Norway (Nygaard 2007). This stage is also decided by temperature, and because of this, seed 

dispersal might be non-existent in April, or even start in March when conditions are favourable. 

Øyen (2006) verifies this dependence on temperature, and writes that “Scots pine needs a 

minimum summer air temperature (June to August) of 10.5°C to produce viable seeds”, which 

corresponds to the climate of the Starmoen area. 

The fact that Scots pine disperses its seeds so late is a negative factor. Spruce seeds, which have 

an earlier dispersal, can be transported further away from their source because they can travel 

easily across the snow crust aided by the wind. Scots pine seeds are less prone to undergo this due 

to their late seed dispersal, when the snow has already melted, and will therefore not be able to be 

transported far away from their source. Seeds usually fall up to 18 m away from the mother tree, 

and not longer than 30 m (Booth 1984). A free-standing Scots pine can be fertile at 10–15 years, 

but in a stand forest, not until 30–50 years. Maximum seed production is not reached until an age 

of 60–80 years. Under mountainous or unfavourable conditions, it may take even longer.  
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Figure 11 The two pine species side by side. P. sylvestris to the left and P. uncinata to the right. Photo: Ole 

Reidar Vetaas. 

 

Mountain pine (Pinus mugo ssp. uncinata) 

The geographical distribution of mountain pine covers mountain ranges in south and middle 

Europe (Øyen 1999). It is widely used in gardens, parks, plantations and in forestry. It was 

introduced to Norway in the 1870s, with most of the seeds coming from the French Alps and 

Pyrenees. Until now, it has been used extensively in reforestation of Western Norway, and it is 

estimated that 60 million mountain pine trees have been planted, covering an area of circa 6000–

7000 hectares (Øyen 1999). The mountain pine can grow as tall as 25 m, but the multi-stemmed 

individuals seldom grow taller than 10 m. Together with the dwarf mountain pine (Pinus mugo 

ssp. mugo), it is known to have extremely low requirements of soil quality and depth. They also 
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have a strong tolerance against wind, and are therefore excellent for reforestation on especially 

aeolian sand (Øyen 1999). Another known ability is that the different mountain pines can 

transform poor heathlands into forested areas, by facilitating the establishment of other trees 

which may develop into a forest so that future trees can develop normally without inhibition from 

ericaceous dwarf shrubs. They have therefore been referred to as “nursing-trees”. This is because 

mountain pine may, even on bare mountain or washed-out sandy soils, gradually build a thick 

layer of humus.   

Both of the mountain pines have a generally shallow root system, and are therefore more 

subject to wind-throw at an older age and height. It is a known practice to plant other trees 

under the cover of the so called nursing-trees (Øyen 1999).  

Heather (Calluna vulgaris) 

The cover of dwarf shrubs in the area is mainly dominated by heather. Heather is a widespread 

low-growing shrub in the Ericaceae family. It is usually 20 50 cm tall but can reach up to 1 m. It 

needs a considerable amount of moisture to thrive and reproduce. Because of this, it is mostly 

dominant in the west of Europe (Fægri 1970). It is evergreen and the leaves are covered with a 

thick layer of wax. Because of this, it can keep moisture well during dry and sunny periods 

(Haaland 2002). It mostly grows in well-lit openings within reach of sunlight. Ecologically, 

heather can make the soil unfavourable for other plants. This is due to both leaching of nutrients 

and the production of allelopathic chemicals. This, combined with its large seed production, 

explains how the shrub is able to rapidly spread in open landscapes and become the dominant 

species (Fægri 1970). Haaland (2002) also explains that where the cover of heather is at its 

thickest, only 2% of sunlight reaches the soil. Due to this, heather creates a local climate change 

by decreasing the temperature under its branches, as well as decreasing access to moisture. This 

makes it difficult or even impossible for other species to germinate. A well-known practice is to 

burn the heather to make the soil more favourable to herbaceous plants and tree growth.  

Lichens 

The lichens present in the study area are different species of the genus Cladonia, mainly Cladonia 

rangiferina and Cladonia arbuscula which are moss-like lichens. The species are characteristic of 

dry pine forests on moraine substrate and, as here, on aeolian sand (Fremstad 1997). They are an 

important food source for reindeer, which gives them their Norwegian name “Reinlav”. They 

cover the ground in a carpet-like way, which might result in a barrier against moisture and seed 
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germination of other species. An important indicator-species is Cladonia stellaris, known to be 

more tolerant of snow cover than other Cladonia. This was found sporadically in the area. 

Additional info 

Management and disturbance events 

As previously written, the area was subjected to a severe forest fire that started at a refuse dump 

on 30 June 1976. During a few hours, the fire burned through an area of 1.2–2.0 x 8 km, just 

inside the field of the fossil aeolian landforms (Klemsdal 2010). After the fire, the area was 

evaluated for agricultural use. In 1979 and 1980, Klemsdal studied and mapped the underlying 

sand dunes. With the knowledge that the area contained a fossil aeolian landscape, the  

Norwegian department of environmental protection proclaimed the area to be a nature reserve. 

The purpose was to conserve an interesting natural historic area with windblown aeolian sand 

dunes. The conservation restricts any activity that might compromise the sand dunes, such as 

digging or road-construction. It does not restrict cutting of trees or management that corresponds 

with official guidelines for this (lovdata.no). At the time of conservation designation, the forest 

was divided into several private properties. The local government then decided to trade patches of 

land with the private owners to make the reserve and surrounding areas government property 

(oral source, Olav Kaveldiget). Right after the official designation, the nature reserve was 

managed by the environmental department of the county, but after a certain time, the  

management was shifted to the local city government, Elverum. Ecologically, the forest fire 

opened up the area for secondary succession. The type of management undertaken after this is 

unavailable, despite several enquiries with the local government and official institutes that had 

anything to do with the area (fylkesmannens miljøvernavdeling). I therefore decided to evaluate 

for myself what has happened in the reserve after the forest fire.  

Additional biotic info  

Moose is known to graze frequently in the area. This was supported by frequent observations of 

moose-droppings all over the area. In the slacks, I observed a limited distribution of birch, which 

is a known indicator of greater access to moisture.
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Methods 

Before I present the sample design for this study, I wish to define the explanatory variables that 

might affect regeneration in the area and the possible response to these.  

Environmental / abiotic variables: 

- Micro topography; slope, aspect and inclination. 

o Ridges, slacks, south-facing slopes (SS) and north-facing slopes (NS), calculated 

into a radiation index-variable. 

- Access to moisture. 

Biotic 

- Degree of canopy cover and shade induced by this. 

- Cover of dwarf shrubs. 

- Cover of lichens. 

- Human interaction; dead stumps 

Response: 

- Number of seedlings 

- Number of saplings 

- Number of adult trees  

- Diameter at breast height (DBH) structure, including all DBH values summed into the 

“biomass” variable 

Sample design 

The sample design intended to investigate these variables by means of a systematic stratified 

approach. There are several reasons to choose this instead of another random sample design. For 

example, Bhatta & Vetaas (2012) write that a systematic approach, instead of a random approach, 

is generally easier to apply in the field. It can also be better to record the ecological variation in 

the forest, and thus, be more accurate. They also mention a general drawback of the systematic 

approach in that it does not keep the possible independency between sampled plots, to “enable an 

appropriate assessment of error”(Bhatta & Vetaas 2012). Transects were placed across the nature 

reserve in an east-west direction. Each transect followed one of the topographic units in the 

landscape such as ridges, slacks, south-slopes and north-slopes. The number of transects was 
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eight: two in each of the four, different topographic units. Each transect had 8 plots. These plots 

were mapped by GPS and later extracted to ArcGIS, to create a map of the sampling design (Fig. 

12).  

 

Figure 12 Map of transects and sampling plots in Starmoen nature reserve. 

Criteria were used to exclude certain locations of plots, such crossing foot paths and degree of 

inclination of slopes. The transects should have ideally followed one topographic unit that was as 

uniform as possible. I set a minimum inclination of the slopes to be 10 °. The ridges had to be a 

continuous ridge-shaped top, with a noticeable elevation and adjacent slopes with the preferred 

inclination. The slacks were generally the easiest to find, by following the spaces between dunes. 

I also tried to lay transects where they could stretch for 400 m or longer, to ensure a certain 

distance between the plots. The plots were generally placed an equal distance apart within the 

criterion that the plots should follow a representative type of vegetation for that specific 
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topographic unit. This would enable me to avoid certain disturbances like cart tracks and places 

where the vegetation was destroyed by trampling by moose, and other anomalies such as 

abnormal heaps of sand. In these cases, the plots were located along the transects at a less 

disturbed site. A north-south running cart track is located in the eastern part of the reserve, 

disturbing the uniform, geomorphological slope. When crossing this track, I moved the transect to 

the next similar slope in order to keep the plots in the representative habitats. This is why the two 

southern-most transects cross (Fig. 12). 

Plots 

The plots in the sample design, located along the east-west going transects through the nature 

reserve were rectangular, measuring 20 x 5 m. The rectangular shape of the plot was used to more 

easily capture the relatively narrow slopes and ridges, than an equally sided square would do.  

Biotic factors 

Within these plots, I counted all trees, seedlings and saplings, differentiating between P. sylvestris 

and P. uncinata. Diameter at breast height was measured on every tree inside the plot. This was 

later summarized to create a “biomass variable”, reflecting how much biomass there were in the 

plots. To classify trees, seedlings and saplings, I use the criteria of DBH (breast height being 

approximately 1.3 m) and height: trees DBH 5 cm, saplings DBH <5 cm, and seedlings with 

height <1.3 m. One challenge was that the young seedlings of the two species look basically 

identical. I therefore decided to classify them through the most probable source, i.e. the trees in 

closest proximity. Seedlings located inside a cluster of P. uncinata would most probably be 

seedlings of this species. However, if there were no seedlings within a cluster, but seedlings 

appeared close to the border with Scots pine, they would probably be seedlings of P. sylvestris. 

This is, of course, not a solid method to distinguish the two, so several errors might have been 

recorded. I also measured the DBH of all adult trees within the plot. I dated approximately one 

adult tree per plot, using dendrochronology from a core taken with a 5 mm drill. An equal number 

of Scots pine and mountain pine was dated.  I also counted the presence of dead stumps in each 

plot to estimate the extent of human interference through forest management in the specific plot.  

From preliminary observations, I realised that the ground vegetation cover in the study area was 

widely dominated by either lichens or dwarf shrubs. Considering this together with the facts in 

the conceptual framework, one may hypothesise that a different distribution of these ground 

vegetation will be found on the different topographic features. As heather known to be moisture-
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demanding, and this is the dominant species among the dwarf shrubs, it was thought that this life 

form would be dominant in the slacks and on north-facing features, while the lichens might be 

dominant on the south-facing features and ridges, due to the latter two being subjected to more 

incoming sunlight and radiation and water draining towards the slacks. The third life-form, moss, 

will probably have an insignificant spread, but will be more normal on the moist features. To 

measure this, I estimated the percentage cover of these three types of ground cover in each of the 

plots 

Whether or not the forest in the nature reserve had been planted was something I tried to get 

information about before conducting my fieldwork. This was, however, inconclusive. It was not 

until I was actually in the field that I observed that the trees were aligned in more or less perfect 

rows and columns. This was very obvious on the wind-exposed south-facing slopes, but with a 

more thorough survey, I realised that this was the case for the entire forest. Due to this I made the 

variable Symmetry (“Sym”) that could indicate derivation from a perfect planting. This was a 

qualitative value based on how optimal the number and location of trees were compared to a 

block of three rows with nine trees in each. I observed that in the most symmetrical areas of the 

reserve, the trees were sited in perfect rows 2.5 m apart. A plot of 20 x 5 m would then contain 3 

x 9 adult trees. Values of 1 to 5 were assigned with 1 being the least observable symmetry and 

low number of adult trees, and 5 being as close as possible to symmetry and with 27 trees. The 

symmetry variable is, however, not a real continuous variable, which affected the statistical 

methods that followed. Closely related to symmetry, I estimated per cent canopy cover within the 

plot, which will relate to the shade tolerance of pine, by making a visual evaluation of how much 

a perpendicular projection of the canopy will cover the ground.  

Abiotic factors 

Aspect and slope was measured in each of the plots using a clinometer compass, and assigning a 

value of degree on the direction of the ridge/slope and the inclination of the slopes (north-facing 

and south-facing). From these measurements, I could calculate a relative radiation index (RRI) 

using Oke’s (1987) formula and differentiate this value between the different topographical units 

in the reserve. RRI is an expression of the annual relative difference in midday radiation intensity 

between slopes (Vetaas 1992). I also measured soil moisture. To do this, I used a shovel to make 

an incision at 5 random spots inside the plot. I then sampled a spoonful of the soil immediately 

under the top-layer humus in each of these spots and mixed these into one sample. This sample 

was then stored in an airtight plastic bag. Each of these samples were later weighed, then dried in 
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105 °C for >12 hours, to see the weight difference caused by loss of moisture. After this, I 

measured loss-of-ignition, to determine the soil’s organic content, which is a key factor to how 

well the soil can keep moisture (Fekete 2012). The dried soil samples were burned at 550 °C for 

four hours and weighed again to estimate the lost carbon content. Both drying and burning 

followed the procedures of Heiri et al. (2001).  

Statistical methods 

It is possible to conduct several tests on the data compiled by the sampling procedures described 

above, and this will provide knowledge on how the different ecological factors and pine recruits 

are linked together. The geographical coordinates of all sampling plots were recorded by GPS, 

which enables me to explain the relationship between biotic and abiotic factors that may affect 

the regeneration of pine trees, and to check whether the residuals from the multiple regression 

models with respect to autocorrelation follow the potential spatial patterns in the residuals.  

Data for each variable in every plot were entered into a MS Excel sheet, a format accessible by 

the SAM (Spatial Analysis in Macroecology) program. In SAM, I first derived basic, descriptive 

statistics. I calculated the minimum value, maximum value, mean, standard deviation, standard 

error of the mean and kurtosis for each of the variables. For the count variables such as dead 

stumps, trees, seedlings and saplings, I also summarized all the counted individuals. These 

calculations were first done on the entire forest, and then for each of the four different 

topographic units (ridge, slack, north-slopes and south-slopes), divided into explanatory and 

response variable categories. In this study, there is a certain progressive dependency between the 

explanatory variables. Some of the variables classified as explanatory at one analyses, may 

therefore later be used as response variables. The recorded dendrochronological data was 

imported into SAM and made into a scatterplot showing both age and DBH. 

There were a number of anomalies in the dataset, i.e. statistical outliers. These are depicted in box 

plots as dots outside the whiskers. The frequency histograms of response variables showed that 

they were not normally distributed. I therefore decided to transform the data of the response 

variables by square rooting the data (Fig. 13). This was then later used in the correlation and 

regression analysis.   
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Figure 13 (A) Example of skewed distribution by P. sylvestris saplings. (B) Close to normal distribution of P. 

sylvestris saplings after square rooting. 

I then proceeded to compile a correlation matrix of all the explanatory variables against each 

other. Correlation, not to be confused with regressions, only look at how variables vary together 

(covary), indicating if they are interdependent (Sokal 1987). By doing this, I could see which 

ones had an immediate, linear correlation. I did the same for the four response variables. I chose 

to use the Pearson’s r matrix instead of Spearman’s, because most of the variables were 

continuous. My data had 64 samples and 62 degrees of freedom, and by looking at a table of p-

values of Pearson’s correlation coefficients (r), the following limits appeared: r > 0.250 to be 

within the 0.05 p-value (5% chance that the null-hypothesis is still valid) threshold, and r > 0.325 

to be within the 0.01 p-value threshold (Snedecor 1980). 

This was followed by extensive regression analyses in SAM. Regressions deal with the cause-

and-effect relationships based on theoretical reason, and is less explorative compared with 

correlations. A regression tries to “… predict what values of a variable Y corresponds to given 

values of a variable X” (Sokal 1987, p. 231). In other words, we try to see how a dependent 

variable (Y) is affected by another explanatory (independent variable) (X). By conducting a 

regression analysis, one can highlight hypotheses concerning causal relationships (Sokal 1987). 

In my analysis, a certain explorative approach was used, using the scatterplot function within the 

SAM software to see how the Y-variable was affected by the X-variable. I decided to include 

calculations up to the second order, to see if Y could be “explained” by X in a non-linear way. 

However, I only recorded the significant calculations in the spreadsheet: linear or curved. The 

curved lines are either X
2
 (quadratic) or X+X

2
 (quadratic, unimodal), the direction of the line is 

shown with the value being either positive or negative. The numbers recorded for each 

explanatory variable were coefficient, degrees of freedom, t-value, and p-value (of the single 
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variable, different p-values if the calculation was of second order), and R
2
-value, F-value and p-

value of the full model. The last p-value of the full model is the crucial value of what is 

significant, and I chose to use the standard value of “0.05” significance as an upper limit. Firstly, 

four responsive variables (P. sylvestris seedlings and saplings, P. uncinata seedlings and 

saplings) were analysed separately against all the mentioned explanatory variables. After this, I 

also made a regression analysis on a selection of the variables classified as explanatory. These 

were compared to the other explanatory variables that logically could have an effect on the 

variable at hand, seeing as there is a certain casual, linear system of effect in the ecology I am 

studying. 

The value I created for symmetry is not a real continuous variable. Thus, the results from the 

statistical analysis made on the symmetry-variable may not follow the strict assumptions of 

descriptive statistics, correlations and regressions. The associated mean values, F-values and p-

values have primarily a descriptive value to aid the interpretation of casual links. 

After doing the single regressions, I decided to combine two explanatory variables that each 

explained the response variables best into a multiple regression to create a small two-predictor 

model. This follows a forward selection procedure. It was done by firstly using the variable that 

explained the most in the single regression (primary variable), and then using an explorative 

approach to see which other variable could explain the most in addition to the primary variable. 

To add a specific, geographical approach to the study, I decided to look at how the recruits, as 

well as the residuals from the multiple regressions, were spatially autocorrelated. Spatial 

autocorrelation assesses random pairs of a certain variable that are separated by a spatial distance. 

These variables are either more or less similar than one would expect from random observations 

(Legendre 1993). In a sense, this is the essence of Tobler’s first law of geography; “everything is 

related to everything else, but near things are more related than distant things” (Tobler 1970). By 

doing this, I can see whether or not the multiple regression managed to explain the occurrence of 

recruits, or if there might be another significant variable which had been left out of the model.  



  Results 

27 

 

Results 

In this chapter, I shall present the numerical analyses described in the previous chapter, as well as 

first-hand observations.  

Firstly I wish to statistically describe the entire forest, and then each of the topographical units 

individually, such as slacks and ridges. 

Spatial distribution of target pines  

Demography 

The pines in the area belong to two populations, a population of P. sylvestris and a population of 

P. uncinata. These two populations have different size and spatial distributions. The counted P. 

sylvestris in all plots totalled 630 adults, 529 saplings and 2423 seedlings, while P. uncinata only 

totalled 125 adults, 71 saplings and 90 seedlings. The mean numbers of P. sylvestris per plot were 

9.8 adults, 8.2 saplings and 37.9 seedlings, for P. uncinata 1.9 adults, 1.1 saplings and 1.4 

seedlings (Table 1). Pinus sylvestris was generally distributed across the entire study area, while 

P. uncinata was only found on south-facing slopes and ridges, mainly in the western part of the 

reserve. In the eastern part, P. sylvestris was the dominant tree species. By dividing the number of 

seedlings by number of adult trees per species, we see that P. sylvestris has 3.84 seedlings per 

adult, while P. uncinata has 0.72 seedlings per adult. 

Dendrochronology showed that adult trees of both species were approximately 25 to 27 years old, 

but there were a few outliers of 30 to 35 and 55 years old (P. sylvestris). One adult P. uncinata 

was calculated to be 19 years old. The diameter at breast height varied more than age, for instance 

the 25-year-old individuals of P. sylvestris had a minimum DBH of 4 cm and maximum of 19 cm. 

The recorded DBH of P. sylvestris ranged from 4 cm to 55 cm, while P. uncinata had a range 

from 5 cm to 19 cm (Fig. 14). 

Pinus sylvestris was present in nearly all plots, but five plots had no seedlings or saplings, 

whereas recruits of P. uncinata were absent in many plots: 47 plots had no seedlings and 45 plots 

had no saplings. 
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Figure 14 (A) Age/size diagram of adult P. sylvestris. (B) Age/size diagram of adult P. uncinata 

                

Table 1 Descriptive statistics of explanatory and response variables within each plot in entire forest. 

Statistics of each topographic unit is in Appendix I, II, III, and IV. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 explained abbreviations and variables: Sym; Symmetry, CC; Canopy cover, Inc; Degree of Inclination, Dir; 

Degree of Direction, Lich; Lichens %, Hea; dwarf shrubs (heather) %, Moss; Moss %, DS;# Dead stumps, Moi; 

Moisture %, Loi; Loss-on-ignition %,RRI; Relative Radiation Index, Syseed; # Seedlings of P. sylvestris, Sysap; # 

Saplings of P. sylvestris, Uncseed;# Seedlings of P. uncinata, Uncsap;# Saplings of P. uncinata, Trees; # of trees 

combined, biomass; DBH combined 

Forest: Variable Mean  Min Max Std. Dev. S. E. Mean Kurtosis Sum 

Explanatory: Sym 2.828 1 5 1.017 0.127 - 
 

 

CC 0.442 0.1 0.9 0.205 0.026 -0.819 

 

 
INC 8.953 1 35 8.888 1.111 -0.565 

 

 

DIR 131.047 1 355 113.991 14.249 -0.646 

 

 

Lich 56.719 20 100 21.236 2.654 -0.906 

 

 

Hea 38.281 0 80 20.973 2.622 0.977 

 

 

Moss 5.156 0 70 10.54 1.317 22.666 

 

 
DS 3.156 0 13 3.082 0.385 1.994 202 

 

Moi 4.343 0.22 9.44 2.41 0.301 -0.815 

 

 
LOI 1.327 0.61 3.17 0.488 0.061 3.008 

 

 

RRI 0.493 -0.08 0.823 0.177 0.022 0.744 

 

 

Sytrees 9.8 1 21 5.034 0.629 -0.235 630 

 
Unctrees 1.953 0 18 4.42 0.553 4.651 125 

 

Trees 11.75 3 21 4.684 0.585 -0.975 755 

 
Biomass 112.8 33 262 51.625 6.453 -0.296 7819 

         Response: Syseed 37.859 0 100 24.484 3.06 -0.221 2423 

 

Sysap 8.166 0 30 6.528 0.816 1.175 529 

 

Uncseed 1.406 0 25 3.816 0.477 23.813 90 

 
Unssap 1.109 0 10 2.154 0.269 4.586 71 
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Topographical distribution of pine in the study area 

Adult trees of P. sylvestris had the largest mean number of individuals on south-facing slopes 

(11.1 per plot). The other features supported similar mean values: 9.4 on the ridges, 9.5 in the 

slacks, and 9.75 on north-facing slopes. Trees of the secondary pine had a mean number of 3.9 

individuals per plot on the ridges and 3.94 individuals on south-facing slopes. 

Highest numbers of P. sylvestris seedlings were found on the ridges (49.5 mean per plot), and 

smallest numbers were found on the south-facing slopes (20.9 mean per plot). P. sylvestris 

saplings were most frequent on north-facing slopes and slacks with means of respectively 14.5 

and 10.7 per plot. The south-facing slopes and ridges had much fewer saplings, with means of 4.2 

and 3.7  Most seedlings of P. uncinata were found on south-facing slopes (3.8 mean per plot), 

while ridges had a mean of 1.9 seedlings per plot. The distribution of saplings was similar, with a 

mean of 1.9 on the ridges and 0.95 on south-facing slopes. For further details on the topographic 

distribution, see Appendix I, II, III, and IV. 

The relationship between the four different types of recruits can also be seen in the constructed 

boxplots and associated t-tests. 

Differences between the topographically defined habitats 

There were obvious differences between topographical units and the magnitude of these 

differences are indicated in the boxplots (Figs. 15, 16, 17, and 18) and the associated t-tests. 

The boxplots show that P. sylvestris seedlings on south-facing slopes were the only ones which 

were significantly different from the other topographical units, having much fewer individuals 

than the rest. The test gave a p-value of 0.02 between south-facing slopes and slacks. The number 

of seedlings on the ridges, slacks and north-facing slopes were not statistically different from 

each other (Fig 15). The test done on P. sylvestris saplings show that the features fall into two 

groups: the ridges and south-facing slopes being statistically alike with the least amount of 

individuals, and the slacks and north-facing slopes being alike with most individuals. These two 

pairs are also significantly different from each other, with a p-value of <0.0001 between each 

group (fig 16). P. uncinata is absent from the slacks and north slopes, and numbers of seedlings 

on ridges and south-facing slopes were not significantly different from one another (p=0.3409) 

(Fig. 17), whereas the number of saplings on the ridges and south sides were statistically different 

from each other (Fig. 18).  
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Figure 15 Boxplots of P. sylvestris seedlings at the different topographic units and variation around mean. 1= 

Ridge, 2= South side, 3=Slacks, 4=North side. South facing ridges are different from the other units (2 vs 3 = 

p<0.05), but the other combinations are similar (p>0.05). 
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Figure 16 Boxplots of P. sylvestris saplings at the different topographic units and variation around mean.1= 

Ridge, 2= South side, 3=Slacks, 4=North side. Saplings appear as 2 groups, one of ridges and south facing 

slopes, the other as sink and north facing. These groups are different from each other (p=0.0001). 
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Figure 17 Boxplots of P. uncinata seedlings at the different topographic units and variation around mean. 1= 

Ridge, 2= South side, 3=Slacks, 4=North side.  Mean number of seedlings are similar on south facing slopes 

and ridges (p>0.05). 
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Figure 18 Boxplots of P. uncinata saplings at the different topographic units and variation around mean. 1= 

Ridge, 2= South side, 3=Slacks, 4=North side. Ridges and south facing slopes are different from eachother 

(p<0.05). 
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Explanatory variables and their distribution in the study area 

The inclination and aspect of the slopes were used to estimate a radiation index (RRI). The 

highest mean value of RRI was found, as expected, on the south-facing slopes (0.718), followed 

by the ridges (0.513), slacks (0.485) and north-facing slopes (0.255) (Appendix I, II, III, and IV).  

The overall mean moisture content of the soil was 4.3% (Table 1). The ridges were driest with an 

average of 2.65%, while the slacks had more than double i.e. 5.7%. The sun-exposed south-facing 

slopes had a mean of 3.8%, while the shaded north-facing slopes had a mean of 5.2%. The 

analysis of loss on ignition (LOI) turned out to be less conclusive than initially thought. The 

overall mean LOI was 1.33% for the entire study area (Table 1). The values for south-slopes and 

north-slopes were a bit higher (1.45% and 1.42%) than the ridges and slacks which were lower 

than the overall mean (1.1% and 1.33%) (Appendix I, II, III, and IV). 

There was a large variation in the estimated biomass index (sum of DBH in one plot). The south-

facing slopes had the highest value (157), while the north-facing slopes only had an average of 

75.7 per plot. The ridges and slacks had an average of 121.1 and 97.8, respectively. The 

“symmetry”-value described how symmetrical the trees appear today, i.e. to what degree the 

initial planting symmetry had remained. From observation, it looked like the trees on the south-

facing slopes were most symmetrical. Appendix III shows that this qualitative variable had a 

mean of 3.5 on these slopes, while the others had 2.3 (ridge), 2.4 (sink), and 3.1(north-facing 

slope) (Appendix I, II, and IV). Most dead stumps were found on the south-facing slopes, with a 

sum of 81, followed by ridges (71), slacks (32) and north-facing slopes (18). The canopy cover 

estimates showed that the mean of all the plots was 44%. It was highest in the slacks (59%), 

closely followed by the south-facing slopes (54%). The ridges and north-facing slopes had a 

cover of 42% and 44%, respectively (Appendix I, II, III, and IV). 

I expected a difference in the distribution of the different life-forms (lichens, dwarf shrubs 

(mainly heather) and mosses). Looking at the overall mean in the entire study area, lichens were 

the most dominant life-form (56.7%) followed by dwarf shrubs (38.2%) and lastly, moss (5.1%) 

(Table 1). Lichens had the largest cover on south-facing slopes (79.4%), while plots on the ridges 

had a mean cover of 67%. The north-facing slopes and slacks had a mean of 42.5% and 38% 

lichens, respectively. The mean cover of dwarf shrubs was largest on the north-facing slopes and 

slacks, both 53%, but there was much lower cover on ridges (29%) and south-facing slopes 

(17.5%) where lichens dominated. The cover of mosses was always lower than ten percent for all 

topographic units (Appendix I, II, III, and IV). The distribution of dwarf shrubs and lichens is 
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very much complementary, or negatively correlated (Fig. 19), which is also shown in photos 

(Figs. 20 and 21). This distribution of life forms is a generalized description of how the 

distribution appeared, however, a mosaic of both life forms could also be observed some places, 

on any of the topographic units, as Figure 22 depicts. 
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Figure 19 Linear, negative co-variation of mean percentage distribution of dwarf shrubs and lichens. 

 

Figure 20 South facing slope covered with lichens. 
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Figure 21 Slack mainly covered in dwarf shrubs, but a few scattered patches of lichens, especially towards the 

north facing slope. 

 

Figure 22 North facing slope covered in a mosaic of lichens and dwarf shrubs. 
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Correlation between variables 

The next step in the analytical procedure was to assess the co-variation of the explanatory and 

responsive variables. Correlation of explanatory variables is important to know before one uses 

them in multiple regression analyses, due to the assumption of independence between terms in the 

regression model. The numerical data were compiled into correlation matrices, one for the 

explanatory variables (Table 2), and two for response variables, one with transformed and one 

with raw data (Tables 3 and 4). These correlations showed which variables had linear, statistically 

significant relationships, and whether it was positive or negative (in this context, significant 

means from this point on statistically significant). The explanatory variables which were 

significantly correlated are depicted in Table 2. Here I wish to emphasis those relationships that 

may be important for the evaluation of plausible causal links further in the regression analyses. 

Comparing explanatory variables 

Conferring with table 2, the strongest correlation between two variables were, naturally, number 

of adult trees and the estimated biomass index. Number of trees per plot was also strongly 

correlated with canopy cover, symmetry, and to a certain degree, dead stumps. All the above-

mentioned variables also had significant relationships to one another. The other strong correlation 

was a negative relationship between percentage of dwarf shrubs and lichens. The radiation index, 

number of trees and number of adult P. uncinata also co-varied strongly with these vegetation 

variables: positive for lichens and negative for dwarf shrubs. In contrast to this, moisture co-

varied positively with dwarf shrubs and negatively with lichens. The radiation index had a strong 

correlation with the biomass index, and a negative correlation with soil moisture (Table 2). Loss 

on ignition and mosses did not have any correlation with any of the other explanatory variables. 

Comparing responsive variables 

Within the non-transformed response variables, there were negative relationships between the 

spatial distribution of seedlings of P. sylvestris and P. uncinata. The same negative relationship 

was also found with saplings for the two species. There was no significant correlation between 

seedlings and saplings of P. sylvestris, but a strong correlation between seedlings and saplings of 

P. uncinata (Table 3).  In the table of the transformed responsive variables, it shows that all 

recruits were significantly correlated with each other, with recruits of P. sylvestris and P. 

uncinata being negatively correlated. They were all strongly or very strongly correlated, except 

for seedlings of P. sylvestris which had a negative correlation with saplings of P. uncinata (Table 

4).
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Table 2 Correlation matrix, only explanatory variables (Pearson’s r)  

 

Sym CC Lich Hea Mo DS Sytrees Unctrees trees Moi LOI RRI biomass 

Sym 1 0.577 0.201 -0.2 -0.02 -0.093 0.314 0.21 0.524 -0.207 0.022 0.136 0.406 

CC 0.577 1 0.31 -0.438 0.251 0.249 0.463 0.25 0.735 -0.249 -0.004 0.137 0.742 

Lich 0.201 0.31 1 -0.875 -0.278 0.389 0.025 0.433 0.438 -0.451 -0.155 0.674 0.453 

Hea -0.2 -0.438 -0.875 1 -0.218 -0.408 -0.027 -0.41 -0.417 0.44 0.111 -0.647 -0.534 

Moss -0.02 0.251 -0.278 -0.218 1 0.033 0.021 -0.063 -0.041 0.011 0.074 -0.069 0.158 

DS -0.093 0.249 0.389 -0.408 0.033 1 0.265 0.062 0.344 -0.202 0.146 0.401 0.329 

Sytrees 0.314 0.463 0.025 -0.027 0.021 0.265 1 -0.51 0.581 -0.012 -0.147 0.094 0.517 

Unctrees 0.21 0.25 0.433 -0.41 -0.063 0.062 -0.51 1 0.4 -0.321 0.137 0.325 0.34 

trees 0.524 0.735 0.438 -0.417 -0.041 0.344 0.581 0.4 1 -0.331 -0.023 0.409 0.877 

Moi -0.207 -0.249 -0.451 0.44 0.011 -0.202 -0.012 -0.321 -0.331 1 0.176 -0.291 -0.233 

LOI 0.022 -0.004 -0.155 0.111 0.074 0.146 -0.147 0.137 -0.023 0.176 1 -0.109 -0.063 

RRI 0.136 0.137 0.674 -0.647 -0.069 0.401 0.094 0.325 0.409 -0.291 -0.109 1 0.514 

biomass 0.406 0.742 0.453 -0.534 0.158 0.329 0.517 0.34 0.877 -0.233 -0.063 0.514 1 

Abbreviation explanation; refer Table 1.  0.05 p-value = r>0.25 (62 df), 0.01 p-value =r>0.325 (62 df) 

Table 3 Correlation matrix, response variables (Pearson’s r).                               Table 4 Correlation matrix, square rooted response variables (Pearson's r). 

             

     

 

 

Abbreviation explanation; refer Table 1.           Abbreviation explanation; refer Table 1 

0.05 p-value = r>0.25 (62 df), 0.01 p-value =r>0.325 (62 df)                0.05 p-value = r>0.25 (62 df), 0.01 p-value=r>0.325 (62 df)                                                      

         

 

Syseed Sysap Uncseed Uncsap 

Syseed 1 0.436 -0.457 -0.255 

Sysap 0.436 1 -0.493 -0.573 

Uncseed -0.457 -0.493 1 0.508 

Uncsap -0.255 -0.573 0.508 1 

 

SySeed SySap UncSeed UncSap 

SySeed 1 0.168 -0.33 -0.089 

SySap 0.168 1 -0.226 -0.448 

UncSeed -0.33 -0.226 1 0.244 

 UncSap -0.089 -0.448 0.244 1 
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Analysis 

The univariate and multivariate regression analysis that followed showed to what extent the 

explanatory variables explained the response variables, linear or non-linear, as well as if and how 

the explanatory variables had a causal relationship in a non-linear way. This provides a more 

thorough analysis than just the linear correlation (Table 2). Regressions were made on both the 

non-transformed and transformed data of responsive variables. However, the square rooted values 

without outliers gave a much more robust result. I will therefore only present the regression 

results with the transformed data here. 

Regression of explanatory variables 

The regression analysis showed that radiation index had a significant relationship with degree of 

moisture found in the soil, with an almost linear response (R² = 0.121) (Table 5) (Fig. 23), but it 

had no significant relationship with LOI. 
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Figure 23 Percentage variation of moisture in soil, as function of Relative Radiation Index (RRI). 

 

Lichens had a very strong (quadratic) relationship with RRI (R² = 0.505) and a fairly strong 

(negative quadratic) relation to moisture (R² = 0.219). Its vegetation cover counterpart, dwarf 

shrubs, had a similar but opposite response to RRI (negative quadratic) with R² = 0.463 and to 

moisture (quadratic) R² = 0.219 (Table 5, Fig. 24). There were no significant predictors for the 

cover of mosses. 
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Figure 24 (A) Relationship between the relative radiation index and percentage cover of dwarf shrubs. (B) 

Relationship between the relative radiation index and percentage cover of lichens. (C) The variation of dwarf 

shrub cover percentage as a function of percentage soil moisture. (D) Variation of lichen cover percentage as a 

function of percentage soil moisture. For statistics see Table 5. 

The total number of trees per plot had a fair relationship to several of the other predictors. It was 

especially explained by lichens (R² = 0.192: linear), dwarf shrubs (R² = 0.173: negative linear) 

and RRI (R² = 0.167: linear). Number of dead tree-stumps (cut stems) was explained by the same 

variables: lichens (R² 0.151: linear), dwarf shrubs (R² = 0.187: negative quadratic) and RRI (R² = 

0.161: linear). The biomass index was directly related to, and was therefore also significantly 

explained by number of trees (R² = 0.769: linear) and canopy cover (R² = 0.55: linear). It was also 

strongly explained by the radiation index (R² = 0.307: quadratic), and had a negative relationship 

with lichens (R² = 0.218: quadratic) and dwarf shrubs (R² = 0.286: linear) (Table 5). 
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Table 5 Regression results - selection of responsive explanatory variables (Res. Var.) as a possible function 

of other explanatory variables (Exp. var.). 

      

(full model) (full model) (full model) 

Res. var. Exp. var Coeff. Res -df t  p (t) R-squared F p ( F) 
Lichens Moi * Moi 0.457 62 -4.174 <0.001 0.219 17.423 <0.001 

         

 

LOI -6.744 62 -1.237 0.221 0.024 1.529 0.221 

         

 

RRI * RRI 90.478 62 7.947 <0.001 0.505 63.15 <0.001 

         
         D. shrubs Moi * Moi 0.451 62 4.172 <0.001 0.219 17.409 <0.001 

         

 

LOI 4.776 62 0.881 0.382 0.012 0.777 0.382 

         

 

RRI * RRI -85.55 62 -7.304 <0.001 0.463 53.353 <0.001 

         
         Moss Moi 0.046 62 0.083 0.934 <0.001 0.007 0.934 

         

 

LOI 1.605 62 0.587 0.559 0.006 0.345 0.559 

         

 

RRI -4.099 62 -0.542 0.59 0.005 0.294 0.59 

         
         Dead  Lich  0.056 62 3.322 0.002 0.151 11.036 0.002 

stumps 

        

 

Hea * Hea <0.001 62 -3.778 <0.001 0.187 14.276 <0.001 

         

 
Sytrees^2  0.008 62 2.36 0.021 0.082 5.572 0.021 

         

 

Unctrees 0.747 62 2.516 0.015 

   

 

Unctrees^2 -0.05 61 -2.473 0.016 0.095 3.188 0.048 

         

 
Trees 0.226 62 2.881 0.005 0.118 8.301 0.005 

         

 

Biomass 0.078 62 2.448 0.017 

   

 

Biomass^2 <0.001 61 -1.879 0.065 0.157 5.68 0.005 

         

 

RRI 6.997 62 3.445 0.001 0.161 11.868 0.001 

         
         Trees Lich 0.097 62 3.841 <0.001 0.192 14.757 <0.001 

         

 

Hea -0.093 62 -3.607 <0.001 0.173 13.013 <0.001 

         
 

Moss -0.018 62 -0.323 0.748 0.002 0.104 0.748 

         

 

DS 0.522 62 2.881 0.005 0.118 8.301 0.005 

         

 

Moi -0.644 62 -2.766 0.007 0.11 7.653 0.007 

         
 

LOI -0.216 62 -0.178 0.86 <.001 0.032 0.86 

         

 

RRI 10.849 62 3.529 <0.001 0.167 12.453 <0.001 

         
         Biomass Sym * Sym 3.629 62 3.693 <0.001 0.18 13.636 <0.001 

         
 

CC 1.872 62 8.707 <0.001 0.55 75.818 <0.001 

         

 

Lich * Lich 0.009 62 4.155 <0.001 0.218 17.265 <0.001 

         

 

Hea -1.315 62 -4.978 <0.001 0.286 24.785 <0.001 

         
 

Moss 0.773 62 1.258 0.213 0.025 1.582 0.213 

         

 

DS 5.509 62 2.742 0.008 0.108 7.521 0.008 

         

 

Trees 9.667 62 14.374 <0.001 0.769 206.615 <0.001 

         
 

Moi -4.993 62 -1.887 0.064 0.054 3.56 0.064 

         

 

LOI -6.641 62 -0.496 0.622 0.004 0.246 0.622 

         

 

RRI * RRI 171.432 62 5.235 <0.001 0.307 27.405 <0.001 

         
         Moi RRI -12.662 62 -2.212 0.031 

   

 

RRI * RRI 9.611 61 1.586 0.118 0.347 4.185 0.02 

         
         LOI RRI -0.301 62 -0.862 0.392 0.012 0.744 0.392 

Abbreviation explanation; refer Table 1 
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Regression of response variables 

The variables which best explained the occurrence of P. sylvestris seedlings were radiation index 

(R² = 0.335), dwarf shrubs (R² = 0.313) and lichens (R² = 0.309) (Table 6). They all showed a 

unimodal curve of explanation (Fig. 25). This indicates that a moderate occurrence each of these 

three variables was optimal for seedlings. The seedlings were also fairly well explained by the 

symmetry-variable (R² = 0.108) with a negative quadratic curve. This means that number of 

seedlings decreases as the symmetry-variable goes up. Seedlings had a unimodal relationship 

with occurrence of adult P. sylvestris trees (R² = 0.135). A barely significant relation was found 

with canopy cover (unimodal). There was no significant relationship between seedlings and the 

biomass index (Table 6). 

        A              B 

RRI
0.80.60.40.20

P
. 
s

y
lv

e
s

tr
is

 s
e

e
d

li
n

g
s

10

9

8

7

6

5

4

3

2

1

0

Dwarf shrubs
80706050403020100

P
. 
s

y
lv

e
s

tr
is

 s
e

e
d

li
n

g
s

10

9

8

7

6

5

4

3

2

1

0
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Figure 25 Variation in transformed P. sylvestris 

seedlings in response to (A) RRI (R² = 0.335) (B) 

percentage cover of dwarf shrubs (R² = 0.313) and 

(C) percentage cover of lichens (R² = 0.309). For 

further statistics, see Table 6. 
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Saplings of P. sylvestris had a relatively strong relationship with the majority of the predictor 

variables. The strongest connections were with biomass index (R² = 0.431: negative linear), RRI 

(R² = 0.395: negative quadratic) and the mutually exclusive dwarf shrub (R² = 0.426: linear) and 

lichens (R² = 0.365: negative linear). A negative, linear relationship was also found with the total 

number of trees per plot (R² 0.355). Unimodal responses were found with respect to the 

symmetry-variable (R² = 0.118), adult P. sylvestris (R² 0.254), adult P. uncinata (bimodal), R² = 

0.21) and vaguely on loss on ignition (R² = 0.11) (Table 6).  

P. uncinata recruits, seedlings and saplings, had almost the same response to the predictors. They 

both had a strong linear relationship to the occurrence of P. uncinata trees (seedlings: R² = 0.218, 

saplings: R² = 0.251). Seedlings were also very well explained by the cover of lichens (R² = 

0.363: quadratic), but this variable did not explain the number of saplings very well (R² = 0.193: 

linear). To a certain extent they are also explained by the radiation index, which both showed 

linear relationships to seedlings (R² = 0.191) and saplings (R² = 0.085) (Table 7). 

 

Figure 26 Seedling of presumably P. sylvestris, on a bed of moss and proximity of heather. Photo: Ole Reidar 

Vetaas. 
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Table 6 Regression results - P. sylvestris recruits (seedlings & saplings)(Res. Var.) as a possible function of 

various explanatory variables (Exp. var.). 

      
(full model) (full model) (full model) 

Resp. var. Exp. var. Coeff. df t  p (t) R-squared F p ( F) 
P. sylvestris Sym * Sym -0.133 62 -2.743 0.008 0.108 7.525 0.008 

seedlings 

        
 

CC * CC <0.001 62 -2.063 0.043 0.064 4.255 0.043 

         

 

Lich 0.194 62 2.828 0.006 

   

 

Lich * Lich 0.002 61 -3.569 <0.001 0.309 13.623 <0.001 

         

 

Hea 0.201 62 4.256 <0.001 

   

 

Hea * Hea -0.002 61 -3.29 0.002 0.313 13.907 <0.001 

         

 

Moss -0.008 62 -0.274 0.785 0.001 0.075 0.785 

         

 

DS 0.045 62 0.443 0.659 0.003 0.196 0.659 

         

 

Sytrees 0.699 62 3.071 0.003 

   

 

Sytrees² -0.028 61 -2.895 0.005 0.135 4.758 0.012 

         

 

Unctrees -0.545 62 -2.353 0.22 

   

 

Unctrees² 0.027 61 1.73 0.089 0.128 4.459 0.016 

         

 

Trees -0.072 62 -1.089 0.28 0.019 1.186 0.28 

         

 

Moi -0.058 62 -0.449 0.655 0.003 0.202 0.655 

         

 

LOI 0.117 62 0.184 0.854 <0.001 0.034 0.854 

         

 

RRI 10.275 62 2.031 0.047 

   
 

RRI * RRI -18.329 61 -3.421 0.001 0.335 15.334 <0.001 

         

 

Biomass² <0.001 62 -1.89 0.064 0.054 3.572 0.063 

         P. sylvestris Sym 1.427 62 1.862 0.067 

   saplings Sym * Sym -0.291 61 -2.257 0.028 0.118 4.093 0.021 

         

 

CC -0.024 62 -3.201 0.002 0.142 10.247 0.002 

         
 

Lich -0.037 62 -5.974 <0.001 0.365 35.695 <0.001 

         

 

Hea 0.04 62 6.777 <0.001 0.426 45.934 <0.001 

         
 

Moss -0.009 62 -0.61 0.544 0.006 0.372 0.544 

         

 

DS -0.401 62 -2.903 0.005 

   
 

DS * DS 0.029 61 2.415 0.019 0.13 4.539 0.015 

         

 

Sytrees 0.411 62 3.69 <0.001 

   

 

Sytrees² 0.02 61 -4.247 <0.001 0.254 10.369 <0.001 

         
 

Unctrees -0.302 62 -2.605 0.012 
   

 

Unctrees² 0.013 61 1.618 0.111 0.21 8.111 <0.001 

         

 

Trees -0.164 62 -5.838 <0.001 0.355 34.077 <0.001 

         
 

Moi * Moi 0.015 62 1.992 0.051 0.06 3.97 0.051 

         

 

Loi 3.732 62 2.711 0.009 

   
 

Loi * Loi -1.014 61 -2.529 0.014 0.11 3.785 0.028 

         

 

RRI * RRI -4.854 62 -6.361 <0.001 0.395 40.458 <0.001 

         
 

Biomass -0.016 62 -6.853 <0.001 0.431 46.964 <0.001 

 Abbreviation explanation; refer Table 1 
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Table 7 Regression results - P. uncinata recruits (seedlings & saplings) (Res. var.) as a possible function of 

various explanatory variables (Exp. var.). 

      

(full model) (full model) (full model) 

Resp. var. Exp. Var. Coeff. df t  p (t) R-squared F p ( F) 
P. uncinata Sym 0.24 62 1.86 0.068 0.053 3.459 0.068 

seedlings 

        

 

CC * CC <0.001 62 2.753 0.008 0.109 7.58 0.008 

         
 

Lich * Lich <0.001 62 5.941 <0.001 0.363 35.294 <0.001 

         

 

Hea <0.001 62 -3.943 0.001 0.2 15.547 <0.001 

         
 

Moss -0.016 62 -1.244 0.218 0.024 1.546 0.218 

         

 

DS 0.057 62 1.31 0.195 0.027 1.716 0.195 

         

 

Sytrees -0.02 62 -0.742 0.461 0.009 0.55 0.461 

         

 

Unctrees 0.112 62 4.152 <0.001 0.218 17.243 <0.001 

         
 

Trees 0.078 62 2.891 0.005 0.119 8.358 0.005 

         

 

Moi -0.112 62 -2.079 0.042 0.065 4.323 0.042 

         
 

LOI -0.456 62 -1.689 0.096 0.044 2.852 0.096 

         

 

RRI 2.624 62 3.821 <0.001 0.191 14.599 <0.001 

         
 

Biomass <0.001 62 3.296 0.002 0.149 10.866 0.002 

         
         P. uncinata Sym 0.067 62 0.593 0.555 0.006 0.352 0.555 

saplings 

        

 

CC <0.001 62 0.049 0.961 <0.001 0.002 0.961 

         
 

Lich 0.019 62 3.851 <0.001 0.193 14.823 <0.001 

         

 

Hea  -0.018 62 -3.638 <0.001 0.176 13.236 <0.001 

         
 

Moss -0.005 62 -0.47 0.64 0.004 0.221 0.64 

         

 

DS 0.004 62 0.111 0.912 <0.001 0.012 0.912 

         
 

Sytrees -0.261 62 -3.119 0.003 
   

 

Sytrees² 0.01 61 2.724 0.008 0.153 5.523 0.006 

         

 

Unctrees 0.103 62 4.553 <0.001 0.251 20.733 <0.001 

         
 

Trees 0.046 62 1.924 0.059 0.056 3.701 0.059 

         

 

Moi -0.114 62 -2.498 0.015 0.091 6.242 0.015 

         

 

LOI -0.237 62 -1.012 0.316 0.016 1.023 0.316 

         

 

RRI 1.5 62 2.399 0.019 0.085 5.757 0.019 

         
 

Biomass 0.003 62 1.526 0.132 0.036 2.328 0.132 

Abbreviation explanation; refer Table 1 
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Multiple regression models 

The multiple regression aims to build explanatory models by means of the previous regressions 

analyses, and include at least two predictors. Here I also used the transformed response variables. 

The model that best explained the occurrence of P. sylvestris seedlings included radiation index 

and cover of dwarf shrubs. The radiation index had a negative quadratic response and dwarf 

shrubs had a unimodal response. The model has an R²-value of 0.368. It appeared that a few of 

the variables gained significance when used in a multiple regression. For instance, moisture did 

not have any statistically significant relationship with P. sylvestris seedlings when used as a sole 

predictor in regression analysis, but when included in a multiple regression, it had the best 

additional explanation to dwarf shrubs. This was on the non-transformed data and is not included 

in these results. The model for P. sylvestris saplings contained biomass (negative linear) and the 

radiation index (negative quadratic). This model has an R²-value of 0.532. Both models for P. 

uncinata recruits contained lichens and adult P. uncinata trees. Seedlings had a linear response to 

both and the model had an R²-value of 0.386. Saplings on the other hand, had a linear response to 

adult P. uncinata trees and a unimodal response to lichens. R²-value is 0.347 (Table 8). The 

variation partitioning and degree of explanation by the multiple regression results are depicted in 

Figs. 27, 28, 29, and 30.  

 

Table 8 Multiple regression results - P. sylvestris and P. uncinata recruits (Res. var.) as a function of the 

two best explanatory variables (Exp. var.). 

      
(full model) (full model) (full model) 

Res. var. Exp. var. Coeff. df t  p (t) R-squared F p ( F) 

P. sylvestris RRI * RRI -4.934 62 -2.292 0.025 

   seedlings Hea 0.143 61 2.736 0.008 
   

 

Hea * Hea -0.002 60 -2.568 0.013 0.368 11.67 <0.001 

         P. sylvestris Biomass -0.011 62 -4.232 <0.001 

   saplings RRI * RRI -2.951 61 -3.633 <0.001 0.532 34.7 <0.001 

         P. uncinata Lich 0.023 62 4.083 <0.001 

   seedlings Unctrees 0.065 61 2.422 0.018 0.386 19.138 <0.001 

         P. uncinata Unctrees 0.088 62 3.617 <0.001 

   saplings Lich 0.056 61 2.235 0.029 
   

 

Lich * Lich  <0.001 60 -1.804 0.076 0.347 10.628 <0.001 

Abbreviation explanation; refer Table 1 
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Figure 27 Variation partitioning of P. sylvestris seedling multiple regression results: Predictor A: RRI * RRI, 

Predictor B: D. shrub + D. shrub². Total explained by A = 0.29, Total explained by B=0.313, total explained by 

A+B =0.368, Unexplained variation = 0.632. Set theory explanation: A.B = variation explained by A, but not B, 

B.A = variation explained by B, but not A, A:B = variation explained by both A and B. 

 

 

Figure 28 Variation partitioning of P. sylvestris saplings multiple regression results: Predictor A: Biomass, 

Predictor B: RRI * RRI. Total explained by A = 0.431, Total explained by B=0.395, total explained by A+B 

=0.532, Unexplained variation = 0.468. Set theory explanation; refer Fig. 27. 

 

 

Figure 29 Variation partitioning. of P. uncinata seedlings multiple regression results: Predictor A: Lichens, 

Predictor B: Adult P. uncinata. Total explained by A = 0.326, Total explained by B=0.218, total explained by 

A+B =0.386, Unexplained variation = 0.614. Set theory explanation; refer Fig. 27. 

 

Figure 30 Variation partitioning. P. uncinata saplings multiple regression results: Predictor A: Adult P. 

uncinata, Predictor B: Lichens + Lichens². Total explained by A = 0.251, Total explained by B=0.205, total 

explained by A+B =0.347, Unexplained variation = 0.653. Set theory explanation; refer Fig. 27. 
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Regression diagnostics on the residuals from the multiple regressions 

 

Distribution of residuals 

Residuals after the multiple regressions of P. sylvestris recruits were both normally distributed. 

Residuals of P. uncinata recruits, however, were positively skewed. (Figs. 31, 32). 

Frequency

P. sylvestris seedling residuals
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Figure 31  Example of normally distributed residuals of P. sylvestris seedlings after multiple regression. 
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P. uncinata seedling residuals
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Figure 32  Example of skewed distribution residuals of P. uncinata seedlings after multiple regression. 

Moran’s I 

Autocorrelation analysis by means of Moran’s I was done on the transformed response variables, 

as well as the residuals from the previous two-predictor, multiple regression models. By doing 

this, we could see whether or not the residuals of the two-predictor model were autocorrelated, 

which may indicate whether there are some important spatially structured explanatory variables 

missing in the model. 

 

The autocorrelation analysis for P. sylvestris seedlings indicated that they were originally not 

significantly autocorrelated, but after performing the multiple regression, the residuals became 

autocorrelated. I do not have a good explanation for this. The saplings on the other hand, were 

highly autocorrelated in the first distance class, meaning they were more alike than expected by 

chance. They also had an equally significant negative autocorrelation in the fourth distance class. 

The residuals from the two-predictor model showed no significant autocorrelation. The seedlings 
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of P. uncinata showed high autocorrelation in the first and seventh distance classes and a negative 

autocorrelation in the third, fourth and sixth distance classes. Also here, the regression residuals 

were completely free of autocorrelation. The saplings had a similar response with significant 

autocorrelation in the first and seventh, and a negative autocorrelation in the fourth distance 

classes. The residuals had no autocorrelation (Fig. 33). 
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Figure 33 Moran's I (spatial autocorrelation) on (A) P. sylvestris seedlings (B) multiple regression residuals of 

P. sylvestris seedlings (C) P. sylvestris saplings (D) P. sylvestris saplings multi. reg. residuals (E) P. uncinata 

seedlings (F) P. uncinata seedlings multi. reg. residuals (G) P. uncinata saplings (H) P. uncinata saplings multi. 

reg. residuals.
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Discussion 

Regeneration of the two pines showed a distinct difference in magnitude and spatial distribution. 

The main regeneration, seedlings of P. sylvestris, had a strong relationship with dwarf shrubs 

(heather) and lichens, where both life forms predicted a unimodal response of number of 

seedlings. These two types of ground vegetation showed to be significantly explained by the 

environmental variables (RRI and soil moisture).  These relationships will now be further 

discussed, along with the research questions and associated hypotheses given in the conceptual 

framework. I will start with the initial question concerning if the forest regenerates, and to what 

extent it was planted. 

Planting vs. regeneration 

There have been a couple of preliminary surveys before the actual fieldwork. The first survey was 

in wintertime, and it appeared that there was little to no observable regeneration, which would be 

an understandable observation due to the young age of the forest (36 years), and the fact that P. 

sylvestris might not be able to reach fertility before 30–60 years of age (Øyen 2006). At this time, 

it was not apparent if the trees had any structure that might resemble planting. There was large 

variation in the size of the trees, and it looked as if they had germinated rather randomly in the 

timeframe from the forest fire until now. However, during the second survey, a number of 

seedlings of various sizes were observed, and a structure of rows and columns that resembled a 

planting regime could be discerned. At first, this was only apparent on the south-facing slopes 

and ridges, but during the course of fieldwork, it became clear that these rows and columns were 

present in all topographic units in the entire study area. The reason why it only looked planted on 

the south-facing slopes is possibly because both the number of trees and the biomass index had 

the highest values here. The trees also looked more identical concerning height, shape and DBH. 

The dendrochronology showed that the majority of trees were in fact 25–27 years old (both 

species). The first assumption, that the different sizes also imply a variety in age-structure, was 

thus rejected by the dendrochronological data: 25 year old P. sylvestris could vary from 4 cm to 

19 cm DBH. Adult P. uncinata also had a relatively wide DBH-range of 5 to 19 cm. There were a 

few trees of older age which are larger, but they are not in the same planted structure as the rest.  

It is plausible to suggest that the entire forest was planted 25 to 27 years ago in the standard rows 

and columns that we can observe today (Fig. 34). The fact that the date varies by 3 years could be 

caused by errors in the dendrochronology from counting the year rings, or that the planting of 

trees was conducted over 3 years, e.g. by replanting the spots where the seedlings did not survive. 
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Figure 34 P. sylvestris planted in rows and columns on one of the ridges. Ground vegetations are lichens 

and patches of moss. Photo: Ole Reidar Vetaas. 

 

The single P. uncinata with an age of 19 years is currently unexplained. The few, larger, scattered 

P. sylvestris trees in the area probably regenerated naturally after the fire, but before the planting. 

Scarce natural regeneration of P. sylvestris after a fire is documented e.g. in Spain (Vilá-Cabrera 

et al. 2012). The largest individual I found, which had a tree-ring age of 55 years, must have been 

one of the few individuals to have survived the forest fire. It is difficult to give a clear explanation 

for why P. uncinata was only planted on the ridges and south-facing slopes, and in the western 
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part of the reserve. However, P. uncinata is well known to be used for reforestation, especially 

where soil erosion is an issue, e.g. sand dunes (Øyen 1999). One may therefore speculate that the 

reforestation regime considered the ridges and south-facing slopes to be the most exposed areas 

for wind stress. It is questionable if it was ecologically sound to introduce an alien species into an 

area where P. sylvestris seems to be the only native pine. 

Concerning the question about regeneration of the forest, the spatial distribution of seedlings 

indicated that their parent trees are within the study area. If the parent trees were in adjacent 

plantations one would have expected more seedlings close to the border of the reserve. On 

average, there were 3.84 seedlings per adult P. sylvestris and 0.72 seedlings per adult P. uncinata, 

giving a good image of how well the native species regenerates compared to the alien species. 

These numbers, however, cannot be said to be perfectly reliable, because of the challenge to 

separate the two species at an early stage. The seedlings were rather similar, and the clear 

difference of young individuals is found on the cones (Lid 2005). My initial assumption was that 

all saplings would be classified as recruits, and an indicator of regeneration. A sapling was 

defined to be trees higher than 1.3 m, but with a DBH of <5 cm. However, dendrochronological 

data showed that a measured “sapling” with a DBH of 4 cm was actually a 25-year-old planted 

individual. It is therefore possible that most of the recorded saplings, or even seedlings (Fig. 35), 

are actually just small, adult trees (I will not exclude the fact that a few might actually be 

recruits). The interpretation will therefore be rather different from being an indicator of vital 

regeneration, since it may now be an indicator of poor growing conditions. If the saplings are 

only stunted, adult trees, it explains why they showed a strong relationship to the majority of the 

predictors in the regression analysis, especially the fact that they were negatively correlated with 

the data for biomass and number of trees per plot, i.e. because a small number of adult trees 

meant that the planted individuals had not reached the size of what I defined as an adult tree. This 

also explains why the south-facing slopes were the only topographic unit which seemed to have 

been planted. If most of the saplings were in fact “small” adult trees, the rows and columns in the 

plots containing these would appear more asymmetrical. The data of P. sylvestris saplings had a 

significant relationship with 12 of 13 explanatory variables (Table 7). This shows that the 

saplings are rather dubious when it comes to ecological interpretations, whereas number of 

seedlings is a more direct response to estimated ecological factors in the area, and provides a 

more reliable interpretation on how well the forest manages to regenerate itself. 
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Figure 35 Small, stunted adult P. uncinata (see cone) which was by definition classified as a recruit 

(seedling). 

Because most of the adult trees seem to have been planted, one may claim that the initial 

hypothesis (H1), all trees are planted, was partly supported. Natural regeneration immediately 

after the forest fire has resulted in a couple of individuals scattered in the study area, but the 

forest present today is mainly a result of extensive planting. I hypothesised (H2) that the planted 

trees are producing recruits, and this is fully supported by the results when we look at the 

extensive spread of seedlings (mostly P. sylvestris). Saplings, on the other hand, cannot be 

regarded robustly as recruits. Although I cannot exclude the fact that a few saplings might 

actually be the offspring of the planted trees, the age of the planted trees (25–27 years), suggests 

that it is unlikely that they would have been able to produce offspring such that they appear as 

saplings today. The third hypothesis (H3), that the forest present today has undergone natural 

succession with no planting, was therefore completely falsified. 
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Sand dunes and radiation 

I hypothesised that the topographical units would create differences in incoming solar radiation, 

and thereby influence vegetation and the on-going regeneration. The angle and orientation of a 

slope, and the resulting variation of incoming radiation, plays a key role in the complexity of 

varying vegetation cover. This is due to the effect it has on the general energy-distribution, as 

well as its effect on temperature and soil moisture. These are both factors which widely affect 

species composition and growth behaviour (Holland and Steyne 1975; Castán & Vetaas 2003). 

The south-facing slopes received relatively much more solar radiation (0.718) than the north-

facing slopes (0.255) for example, although they are just a few metres apart, i.e. over the crest 

(Fig 36). 

 

Figure 36 Conceptual cross-section of sand dune with varying incoming radiation (with RRI-values). 

Thickness of line depict amount of accumulated radiation. 

This variation in topography clearly had an effect on the ground vegetation in the area, which can 

be seen in photos (Figs. 9, 10, 20, and 21). There was a much denser ericaceous understory in the 

slacks and on the north-facing slopes of the dunes than on the ridges and south-facing slopes. On 

the south-facing slopes a continuous blanket of lichens was more common. This was also 

confirmed by the descriptive statistics (Appendix I, II, III, and IV). However, mosaics of both 

types of ground vegetation were also observed, and seemed to appear on any of the topographic 

units. 

The regression analysis showed a clear and direct effect by RRI on number of P. sylvestris 

seedlings. RRI was the explanatory variable that explained most of the variation in number of 

seedlings, and was also included in the multiple regression. The response was close to unimodal, 
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but is better described as a negative quadratic curve (Fig. 25A), meaning that a higher degree of 

radiation might negatively impact the establishment or survival of the seedlings. This is, in a way, 

contrary to my initial assumptions from the conceptual framework. Mason (2004) wrote that P. 

sylvestris is generally light-demanding, but Ameztegui (2011) wrote that light-demand is rather a 

question of survivability than actual growth rate. The negative effect of RRI on P. sylvestris 

seedlings is of course somewhat biased due to the planting of P. uncinata on the south-facing 

slopes or ridges, where RRI-values are highest. The plots on these topographic features with no  

P. sylvestris seedlings affected the regression, and made it look like RRI had a negative effect on 

number of seedlings. In those plots there is an absence of P. sylvestris parent trees due to the 

exclusive presence of mountain pine. The lack of P. sylvestris seedlings is therefore not due to 

high radiation, but more an effect of a restricted area where the seedlings potentially may have 

established. However, south-facing slopes actually had a higher total number of adult P. sylvestris 

than the slacks, but only a total of 334 seedlings compared with a total of 643 seedlings in the 

slacks, showing that poor regeneration on south-facing slopes was apparent also when ignoring 

plots where P. sylvestris was absent. Seedlings of P. uncinata had a strong, positive relationship 

to RRI, but this may be due to the fact that adult P. uncinata trees were only planted on ridges 

and south-facing slopes, with high RRI. However, more radiation meant more seedlings of P. 

uncinata also when the plots with absent values were not included in the analysis.  

The next hypothesis under this research question was if the changes in radiation affect the ground 

vegetation cover. The results from the regression analysis showed that the radiation index 

explained well both percentage cover of lichens and dwarf shrubs (Table 5). Increasing radiation 

is related to more lichens, and less dwarf shrubs. A close relationship between variation in 

vegetation, here the two types of ground vegetation, and the induced radiation gradient, has often 

been documented at a crude spatial scale, for example in the Himalaya (Vetaas 2000), the Middle 

East (Boyko 1947), South Africa (Granger & Schulze 1977), the Iberian Peninsula (Dargie 1984, 

1987) and Australia (Kirkpatrick et al. 1988). At Starmoen, the uniquely shaped sand dunes 

provided an opportunity to see the effect of varying degree of incoming radiation at a relatively 

small spatial scale. The question at hand is whether it is radiation, or another ecological variable 

that has a causal effect on the ground cover. Heather is not known to be greatly affected by 

exposure to direct sunlight but the conceptual framework suggests that it needs a large amount of 

moisture to thrive and reproduce. This will be discussed further in a later section.  
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The radiation index explained, to a large degree, the biomass index in the regression. This, taken 

with the light-demanding nature of P. sylvestris, makes it plausible to suggest that the adult trees 

in the forest experience the most optimal conditions on the south-facing slopes, followed by the 

ridges, slacks, and lastly, north-facing slopes. Such a suggestion is supported by the biomass 

index, number of adult P. sylvestris and the symmetry value having their highest values on the 

south-facing slopes. Several studies document that the amount of biomass in any forest stand is 

linearly related to intercepted radiation (Bergh et al. 2005, Monteith 1977, Will et al. 2001). 

Without actually testing it, I will also assume that the radiation index positively affects melting of 

snow, making the optimal period of growth longer for trees located on the south-facing slopes and 

ridges. This was tested by Gjærevoll (1949), where plants in mountainous areas with different 

placements in the landscape varied in their length of growing season because the overlying snow 

melted at different speed.  

I hypothesised that increased radiation is either positive (H4) or negative (H5) for regeneration of 

recruits. Neither of them can be falsified, since radiation appeared to be negative for regeneration 

of P. sylvestris and positive for regeneration of P. uncinata (seedlings). However, the small 

number of P. uncinata seedlings does not make this a very robust statement. It is important to 

note that this is only the direct translation of the covariance in the data, and does not necessarily 

mean that the radiation affects the survival of seedlings. The hypotheses are therefore not 

rejected, although they are not very valid statements. 

H6 (radiation affects the ground cover) comes under the same category as H4 and H5, with it 

being indirectly verified. There is a very strong relationship, but it does not necessarily mean that 

it is an actual causal relationship.  

Abiotic and biotic environmental factors 

The operational environmental factors that presumably might influence regeneration are soil-

moisture and light, expressed indirectly by canopy cover and density of trees. RRI is a consistent, 

continuous and indirect variable, whereas moisture is a direct factor on the forest’s ecological 

system. There was a strong significant relationship between RRI and %-moisture in the soil, as 

seen in the regression results. The relationship between these two can also be said to be rather 

logical. More radiation means more evaporation, thus less soil moisture (Woodward 1987, Castán 

& Vetaas 2003). From this, it follows that there should have been more moisture on the north side 

of the slope than in the slacks, and less moisture on the south-facing slopes than on the ridges. 
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This, however, was not the case, but other factors are likely to be of importance. Higher moisture 

in the slacks might be a result of drainage from higher to lower elevations, and both the slacks 

and the shallow-angled south-facing slopes are closer to the level of the underground water-table 

than the steeper north-facing slopes and ridges. The dryness of the south-facing slopes and ridges 

may also be influenced by the water-storing abilities of lichens (Porter 1929), making it harder for 

precipitation to reach the soil.  

I hypothesised (H7) that increased radiation means decreased soil moisture, and this is, in my 

opinion, a verified hypothesis. I base this on the regression analysis which showed a significant 

relationship between soil moisture and radiation index. By looking at the trends in the basic 

statistics, one can also see how these two variables co-vary. The final argument for this is that the 

relationship is highly logical, where more incoming sunlight should mean more evaporation.  

Both types of ground vegetation cover (lichens and dwarf shrubs) had strong, but contrary, 

relationships with amount of soil moisture, as seen in the regression analysis. This means that 

increasing soil moisture is associated with more ericaceous dwarf shrubs, while less moisture is 

associated with more lichens. Fægri (1970) writes that heather needs large amounts of moisture to 

thrive and reproduce. Haaland (2002) also writes that heather’s evergreen leaves help the plant to 

keep moisture during sunny and dry periods. From these statements, one may imagine that the 

areas which are dominated by dwarf shrubs (heather) are located in habitats with sufficient 

moisture. Even though it tolerates periods of drought and high radiation, it does not seem to grow 

in the most sun-exposed parts in the area. That there were areas which were generally dominated 

by lichens does not necessarily mean that they were the most favourable place for this life form, 

but that the absence of heather allows it to grow there. 

Pinus sylvestris is drought-tolerant, but it is known that the seedlings require a certain amount of 

moisture to be able to germinate (Oleskog 2000). Surprisingly, the results of the regression 

analysis did not depict any type of relationship between P. sylvestris seedlings and soil moisture. 

P. uncinata seedlings on the other hand, had a significant negative relationship with degree of 

moisture, meaning that less moisture was positive for regeneration. The latter is biased by the fact 

that adult P. uncinata trees were only planted where there is also the least recorded soil moisture 

(south-facing hills and ridges). Since P. sylvestris seedlings were least commonly found on the 

south-facing slopes, I thought that this might be due to restricted access to moisture, but, the 

largest number of seedlings on average was found on the ridges, where there is least access to 
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moisture. The relationship between moisture and establishment by P. sylvestris seedlings has 

been documented in Mongolia by Dulamsuren et al. (2013), where the emergence of seedlings 

was shown to be directly limited to access to soil moisture. Mong & Vetaas (2006) also show that 

pine in the Himalaya has a clear response to moisture, with the majority of seedlings occurring at 

intermediate or high amounts of soil moisture. Ellenberg et al. (1988), on the other hand, claimed 

that P. sylvestris thrives in either low or high amounts of moisture. Why I did not find this 

relationship in my area is debateable, but it might mean that there is in fact enough moisture 

everywhere in the area for P. sylvestris seedlings to germinate. So there are probably other 

variables, and not moisture, which are the limiting factors. Another explanation is that the 

sampling design did not allow valid recording of the moisture data. With increasing size of the 

plot, it becomes increasingly difficult to record a value which is representative of the theoretical 

mean soil moisture of the plot (Reed et al. 1993). 

Hypothesis H8 claiming that moisture had an effect on regeneration was not verified, because the 

null hypothesis in the numerical analysis was not rejected. 

Access to sunlight is crucial for the survival of the light-demanding P. sylvestris. The variable for 

incoming radiation does not take into consideration that there is a canopy that might block 

incoming sunlight from reaching the ground cover and seedlings. The regression indicated that 

canopy cover had an influence on number of P. sylvestris seedlings, with greater canopy cover 

resulting in fewer seedlings. This fits well with the statements about P. sylvestris needing strong 

sunlight to germinate and survive. An area with a high density of adult trees, and thus a high 

degree of canopy cover, will not be optimal for regeneration and establishment of new recruits. 

Pinus uncinata seedlings showed the complete opposite reaction, with greater cover of the canopy 

resulting in higher regeneration. The reason for this might be that the data were less reliable due 

to the small number of individuals. It might also be because a higher degree of canopy cover also 

means greater seed production, as each adult P. uncinata does not generally produce many 

offspring.  

The regression results depicted that seedlings of P. Sylvestris had a significant, unimodal 

response to density of adult trees of the same species (adult individuals per plot). This means that 

few or many adult trees correspond to low numbers of seedlings, whereas an intermediate number 

of trees correspond to a maximum number of seedlings. Hence one may infer that optimal seed 

production is found where there are a fair amount of adult trees (10–12 individuals per plot), but 
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beyond this, the density of trees might negatively affect regeneration (probably via the light-

deflecting canopy cover). Vickers & Palmer (2000) studied the effect of canopy cover on 

regeneration of P. sylvestris and documented a similar trend, where a canopy cover of 20% was 

optimal for seedlings of <1 m, due to the proximity to seed sources and undisturbed access to 

sunlight. Seedlings taller than this and saplings had optimal conditions with zero canopy cover.  

Data for P. uncinata are relatively inconclusive here, since to a large degree, more adult P. 

uncinata just means that this is where the populations are located, and does not indicate that a 

higher/lower number is positive for regeneration. Biomass does not seem to explain anything 

conclusive for the two types of pine. 

The hypothesis (H9) that “canopy cover and density of trees have an observable effect on 

regeneration” is in my opinion verified. 

Inhibition 

It was hypothesised that both ericaceous dwarf shrubs and lichens might inhibit regeneration of 

pine species, as explained by the model of inhibition in the conceptual framework (Connel & 

Slatyer 1977). The two types of vegetation are dominant in the study area. There are arguments 

for inhibition by both types of vegetation, and because recruits were observed throughout the 

study area, the question would not be where the inhibition is strongest, but rather what type of 

ground cover vegetation is optimal for regeneration?  I do not include seedlings of P. uncinata in 

this particular discussion, because this species is only located on plots with a large amount of 

lichens, which may bias the interpretation of the results. 

I partly confirmed the hypothesis concerning ericaceous dwarf shrubs. The regression analysis 

showed that seedlings of P. sylvestris had a unimodal response to the ericaceous ground cover. 

The peak (highest number of individuals) appeared at 50% ericaceous cover within the plot. 

Further increasing the cover resulted in fewer seedlings. Heather is reported to produce large 

amounts of allelopathic phytotoxins, known to cause regeneration-failure of conifer (Jalal, 1982). 

Problems with conifer regeneration in an ericaceous understorey have been widely documented 

with different types of species, e.g. the negative influence of sheep laurel (Kalmia augustifolia) 

on regeneration of black spruce (Picea mariana) (Mallik 1987; Yamasaki et al., 1998) and jack 

pine (Pinus banksiana) (Krause 1986), or how Labrador tea (Ledum groenlandicum) has a 

negative effect also on black spruce (Inderjit and Mallik 1996). Salal (Gaultheria shallon) and 

various species of Vaccinium are also reported to inhibit growth of conifer-species such as Sitka 
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spruce (Picea sitchensis), red cedar (Tsuga plicata), western hemlock (Thuja heterophylla) and 

amabilis fir (Abies amabilis) (Bunnell 1990, Messier 1993, Prescott et al. 1996, Fraser 1993). 

Growth problems of Sitka spruce (Picea sitchensis) and various Pinus in the presence of heather 

is also a well-known phenomenon, extensively documented by several scientists in Britain (e.g. 

Wheatherell 1953 and Leyton 1954).  

 

I also partly confirmed the hypothesis concerning lichens. The concept here is that lichens might 

physically hinder seeds from reaching the soil (Porter 1929). It has been questioned if lichens 

may have allelopathic attributes, as phytotoxins have been isolated from various Cladonia 

species. This, however, was mostly concerning inhibition of other species of Cladonia or moss, 

because the amounts produced are too low to have any effect on other species. This has in later 

research been partly falsified (Favero-Longo et al. 2010). Conferring with the regression analysis, 

P. sylvestris seedlings had almost the same unimodal response to lichens as they had to the dwarf 

shrubs, where the largest number of seedlings appeared when the cover of lichens was at 

approximately 50%. The specific effect that lichens might have on regeneration of pine does not 

seem to have been previously documented. 

 

One may assume therefore that both the presumed inhibiting agents (Cladonia-lichens & heather) 

are in fact negative for regeneration. A total cover of heather might produce too many allelopathic 

chemicals for seedlings to thrive, while a total cover of lichens might not make it easy for seeds 

to reach the soil for germination. However, if a plot has a mosaic of both lichens and heather, the 

continuous, blocking surface of the lichens is broken by plants of heather, making it easier for 

seeds to reach the soil. With a lower cover of heather, the amount of phytotoxins might not be 

large enough to inhibit the seedlings. This trend was, to some degree, observable in the field, 

where it looked like regeneration was absent when the ground cover consisted only of lichens or 

heather. Concerning the question of which ground vegetation is optimal for regeneration, I 

suggest that a mosaic of patches with 50% lichens and 50% dwarf shrubs might create the best 

habitat for pine seedlings. There were cases outside this trend though, for example, a plot with 

mainly lichens which had the largest number of pine individuals (100) in the entire study area. 

The main conclusion illustrates that the models suggested by Connel & Slatyer (1977) are useful 

for deducing hypotheses, however the empirical results may not be as clear-cut as one may expect 

(Connell et al. 1987). 
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Direct and indirect cause of forest regeneration 

To explain the different dynamics which has influenced regeneration in the nature reserve, I will 

use a system of linear causality. By this I mean that there are a number of cause-and-effect 

relationships in the complex landscape, and although some of the variables may seem to   

correlate or have a relationship through regression analysis, it may not necessarily mean that they 

have an operational effect on each other, but just that they are in the same dynamic system. There 

are numerous variables that appear to affect the degree of regeneration in the area, as well as 

variables which affect the ones affecting regeneration. Based on observation and the numerical 

results one may suggest plausible causal links between variables and factors which may have a 

direct effect on each other, and which variables these again effect in the next step of the linear 

causality. This may be viewed as a conceptual model (Fig. 37). 

It is important to use logical reasoning and be critical of the reliability of the compiled data. If 

one bases all interpretation on numerical results, it is possible to conclude that the predictor which 

has the best statistical explanation for a response is also the one which has the largest effect in the 

ecological system. It is thus possible to blatantly say that radiation has a negative effect on 

regeneration of P. sylvestris, and a positive effect on regeneration of P. uncinata. On the other 

hand, although an area’s energy-balance is determined by incoming sunlight, the variation in 

vegetation should be looked at as a product of not only the varying degree of incoming radiation, 

but also the effect radiation has on, for example, soil moisture (Woodward 1987, Castán & Vetaas 

2003). Another example is that recruits of P. uncinata were, unlike initially planned, declared to 

be an invalid response variable for regeneration. This was due to its limited distribution which 

gave biased results in the regression analyses. It was also intended to use spatial autocorrelation 

to elucidate if the regression analysis managed to explain the distribution of response variables. 

Ultimately, seedlings of P. sylvestris were the only recruits which were not rejected as a valid 

indicator of regeneration. The seedlings were originally not autocorrelated, unlike the other 

recruits which all were autocorrelated, but the residuals of P. sylvestris after the multiple 

regression appeared to have gained spatial autocorrelation. This does not have a logical 

explanation, making this analysis irrelevant for further understanding of the forest regeneration.  

The system of causality concerning regeneration starts with the degree of incoming sunlight, RRI, 

because this is the general source of an ecosystem’s energy balance. I have elucidated that the 

radiation index, to a certain degree, explains access to moisture. Here it is important to understand 

that the measurement of moisture is not highly reliable, and there are other dynamics which 
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NS 

explain the access or absence of moisture than just evaporation caused by incoming solar 

radiation.  

Through logical reasoning, it is plausible to think that the ecosystem’s access to moisture is 

largely decided by the micro-topography, resulting in variation in received radiation and thus 

evaporation. This micro-topography causes drainage from the ridges/slopes to the slacks, which 

are closest to the underlying water-table. The water-storing abilities of lichens also cause a 

reduction in water reaching the soil on ridges and south-facing slopes. Further on, the degree of 

soil moisture is probably a key factor explaining the cover of lichens and ericaceous dwarf 

shrubs. This relationship was significant in the regression, and it is documented that heather  

needs moisture to thrive (Fægri, 1970). The next step of the linear causality is the inhibiting effect 

the ground cover has on regeneration. It is clear that the optimal habitat for regeneration of P. 

sylvestris seedlings is when there is an equal cover of lichens and ericaceous dwarf shrubs within 

a plot, which presumably might reduce the potential inhibiting effect of these life forms.  

The reason why RRI always had the best explanation for each of the variables within the analyses 

may be because this is the most accurate and less varying measurement I have estimated, whereas 

moisture and degree of ground cover could be less accurate. However, moisture and ground  

cover might be more direct in their influence on regeneration, whereas RRI is an indirect variable. 

Even if RRI does not directly affect regeneration, it has an effect on moisture, which then again 

affects degree of vegetation cover, which finally might be an indicator for how well the native P. 

sylvestris regenerates. Degree of canopy cover and density of trees, which are products of the 

different growth conditions in the forest, also indicated through the regression analysis that they 

might have an effect on number of seedlings (Fig. 37). 

 

        

                 

 

 

Figure 37 Flow-chart showing the possible casual relationships affecting the regeneration of P. sylvestris 

in the nature reserve. 
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Management and forest dynamics 

The forest we observe in the present nature reserve is influenced by a complex mixture of many 

different processes. An important aspect of this is human interaction in the form of planting and 

later management (thinning). The observed dead stumps were more or less randomly scattered 

within the plots, perhaps due to selective thinning. It was questionable if the symmetry was 

connected with the variable for dead stumps, where more dead trees would explain the 

asymmetry. As we can see in the tables (Appendix I, II, III, and IV), this is not the case. The 

south-facing slopes had a mean of 5.1 dead stumps, while the slacks had a mean of only 2 dead 

stumps per plot. This shows that management was mostly done where there was the highest 

number of trees, as well as in the places they originally planted P. uncinata. The reason for this is 

not clear. One reason might be that growth conditions were best on these features, making these 

places the only ones with enough trees to conduct any thinning on. Another reason might be that 

the thinning was mostly concerned with conserving the geological formations, which is the  

reason behind the establishment of this protected nature reserve. It has been documented that 

thinning in dense forests of Scots pine strongly affects future growth. After selective thinning, the 

increased area of growth gets distributed among the remaining, largest and fastest growing trees. 

This increases biomass per tree, as well as making the stand more even-sized (Nilsson et al. 2010, 

Burns & Puettmann 1996 & Mäkinen et al. 2006 cited in Karlsson et al. 2012). In this study area, 

due to thinning or ecological conditions, the topographic features which have been subjected to 

most thinning are also the ones which look the most even-sized, and with the highest biomass 

index. 

From a management perspective, one can question if the conducted planting was optimal for 

regrowth, conservation and regeneration. To kick-start the secondary succession after the forest 

fire, the planting was arguably the best thing to do, since a natural regrowth would have taken 

considerably longer. The vulnerability forests of P. sylvestris have to fire has been extensively 

studied in Spain. Forests which had been burned up to 30 years ago show no observable 

regeneration. Forest fires older than this, however, show regeneration, but with a relatively low 

capacity. Even after more than 30 years, 55% of all new recruits were found 10 m away from the 

undamaged edge of the forest; 90% of all recruits found were 25 m away (Vilá-Cabrera et al. 

2012).  
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Concerning the introduction of P. uncinata in Starmoen nature reserve, one can imagine that this 

was positive for conservation of the protected landforms which were exposed after the fire, due to 

P. uncinata’s ability to reduce soil erosion (Øyen 1999), and the fact that alien species often grow 

faster than native species (Zobel et al. 1987). However, from the perspective of future 

regeneration, it appears that P. uncinata regenerates to a much lesser extent than P. sylvestris. 

Pinus uncinata has not become naturalized, meaning that it will not produce enough offspring to 

make the population sustainable in the future. This makes it doubtful that planting of an alien 

species was a good decision for the regeneration of the forest, and thus, conservation of the 

protected landforms. Unfortunately, the rationale for the planting was not possible to obtain, 

neither written nor orally from any official institutes. This information was probably lost during 

the shift of management from the county’s environmental department to the municipality. The 

negative effects of alien pines on an ecosystem (see conceptual framework) have been widely 

documented in the Southern Hemisphere. A large number (>19) of different alien pine species in 

Africa have now been classified as invasive. In New Zealand, alien species mainly used for 

erosion control (P. sylvestris, P. contorta, P. nigra, P. ponderosa) are now also considered to be 

major weeds (Richardson & Higgins 1998).  

The question for the future is what actions should be made concerning the alien species and how 

to ensure the optimal conditions for the future of the nature reserve. One option is to physically 

remove P. uncinata and replant with native P. sylvestris. A problem with this is that it would 

leave the sand dunes exposed for a period of time. If what I presume is correct, P. uncinata will 

not be able to regenerate itself beyond the generation of adult trees present today. According to 

Booth (1984), P. sylvestris seeds can fall up to 30 m away from the parent tree. Pinus sylvestris 

should not have any problems spreading seeds within the areas currently dominated by P. 

uncinata, seeing as the patches of P. uncinata only cover parts of the sand-dunes (approximately 

20-30 meters in north-south direction). This may take place in the lifespan of P. uncinata (100 

years (Øyen 1999)), I presume that a natural shift will happen on the south facing slopes and 

ridges, from the introduced species to the native Scots pine.  
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Conclusions 

This study has analysed the different ecological and human-induced factors which may have 

influenced the regenerative pattern of a restored pine forest that was planted just after a forest fire 

(1976). The unique landscape with its topographic features of aeolian sand dunes had a wide 

variation of abiotic and biotic factors at a fine scale. The gradient induced by variation in 

topographic relief has often been documented at a broader scale, but this study provided a unique 

opportunity to see the direct effect of this on a (relatively) fine spatial scale. The micro-scaled 

topographic relief, induced by the sand dunes, gives a gradient of different exposures to incoming 

solar radiation. This was expressed by the indirect variable, radiation index, which corresponds to 

incoming light, but it also corresponds to microclimate temperature and therefore evaporation of 

moisture, which is a direct resource variable for vegetation growth. The topographic features also 

cause drainage of precipitation from the ridges/slopes to the slacks, which are also closer to the 

underlying water-table. The variation in access to soil moisture is a possible reason for the 

observed variation in ground cover vegetation (dwarf shrubs & lichens). The statistical analyses 

showed that RRI and moisture influenced the distribution of the two main types of ground 

vegetation, and this may have affected the number of P. sylvestris seedlings. These were not 

linear relationships, but quadratic, and an intermediate distribution (50%) of both life forms gave 

the optimal conditions, and thus largest number of seedlings. This was interpreted to be due to a 

balancing of the inhibiting effects of lichens and dwarf shrubs (mainly heather) found when one 

life form dominated the ground vegetation. Assuming that the entire nature reserve was planted 

evenly, then the observed variation in the size of adult trees has been a result of different, internal 

growth conditions induced by the varying topographical features. Where growth conditions have 

been less optimal, many of the originally planted trees were stunted. This made them look like 

saplings, and the area appeared as a more open forest. These variations in growth conditions thus 

also explained the variations in canopy cover and density of trees, which again had a relationship 

with number of seedlings, where a compromise between enough incoming sunlight and large 

enough seed production seemed to be critical. 

Human impact on the forest was through initial planting 25-27 years ago and later selective 

thinning, probably with the idea of protecting the conserved dunes from erosion. The native pine, 

P. sylvestris, was generally planted across in the entire area, whereas the alien species, P. 

uncinata, was planted on ridges and south-facing slopes, presumably in an effort to reduce soil 

erosion. Although this decision probably had good intentions, it has been shown that this species 
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has not become naturalized and does not produce enough (if any) reproductive offspring, making 

its future sustainability doubtful. Although an alien species has qualities and attributes which 

makes it attractive for reforestation, this study shows that it is questionable to introduce aliens 

into a nature reserve which already has a well-established native conifer. Concerning future 

management, given the issues this study has highlighted, it would be preferable to conduct a shift 

from the alien species to the native Scots pine. However, to physically remove the P. uncinata 

and to replant with P. sylvestris would leave the ridges and south-facing slopes exposed to 

erosion, compromising the landscape which is the reason for the area being a nature reserve. This 

makes it advisable to let the forest conduct a gradual, natural shift.  
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Appendices 

 

Appendix I Descriptive statistics of explanatory and response variables within each plot on ridges. 

Ridge: Variable Mean  Min Max Std. Dev. S. E. Mean Kurtosis Sum 

Explanatory: Sym 2.313 1 4 1.014 0.254 -0.534 

 

 

CC 0.419 0.1 0.7 0.194 0.048 -0.779 

 

 

INC 1 1 1 0 0 0 

 

 
DIR 159.688 115 190 20.49 5.122 -0.002 

 

 

Lich 66.875 50 90 12.5 3.125 -0.834 

 

 
Hea 29.375 10 50 9.975 2.495 0.22 

 

 

Moss 4.375 0 20 7.274 1.819 0.783 

 

 

DS 4.438 0 13 3.723 0.931 1.348 71 

 
Moi 2.65 0.22 7.61 2.424 0.606 -0.534 

 

 

LOI 1.102 0.61 1.74 0.311 0.078 0.053 

 

 
RRI 0.513 0.506 0.515 0.003 0.001 2.254 

 

 

Sytrees 9.4 1 21 5.795 1.45 -0.2 150 

 

Unctrees 3.9 0 18 6.17 1.543 1.379 62 

 

Trees 13.25 6 21 5.132 1.283 -1.297 212 

 

Biomass 121.1 49 191 46.268 11.567 -1.118 1937 

         Response: Syseed 49.5 0 95 28.493 7.123 -0.978 792 

 
Sysap 3.688 0 8 2.522 0.631 -1.191 59 

 

Unsseed 1.875 0 6 2.187 0.547 -0.588 30 

 

Unssap 3.5 0 10 3.033 0.758 -0.432 56 

Abbreviation and variable explanation; refer table 1. 

 

 

Appendix II Descriptive statistics of explanatory and response variables within each plot on "slacks". 

Slacks: Variable Mean  Min Max Std. Dev. S. E. Mean Kurtosis Sum 

Explanatory: Sym 2.438 1 4 0.814 0.203 -0.208 
 

 

CC 0.59 0.1 0.9 0.255 0.064 -0.52 

 

 
INC 1 1 1 0 0 0 

 

 

DIR 1 1 1 0 0 0 

 

 

Lich 38.125 20 50 10.468 2.617 -0.948 

 

 
Hea 53.125 10 70 17.017 4.254 1.301 

 

 

Moss 8.75 0 70 18.212 4.553 9.277 

 

 
DS 2 0 6 1.713 0.428 0.83 32 

 

Moi 5.719 2.76 8.46 1.622 0.405 -0.953 

 

 

LOI 1.328 0.88 2.08 0.392 0.098 -1.148 

 

 

RRI 0.485 0.485 0.485 NS NS NS 

 

 

Sytrees 9.5 5 17 3.633 0.908 0.165 152 

 
Unctrees 0 0 0 0 0 0 0 

 

Trees 9.75 5 17 3.856 0.964 -0.294 152 

 
Biomass 97.75 33 195 48.899 12.225 0.073 1564 

         Response: Syseed 40.188 16 70 16.113 4.028 -0.459 643 

 
Sysap 10.688 3 19 4.285 1.071 -0.334 171 

 

Unsseed 0 0 0 0 0 0 0 

 
Unssap 0 0 0 0 0 0 0 

Abbreviation and variable explanation; refer table 1. 
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Appendix III Descriptive statistics of explanatory and response variables within each plot on south facing 

aspects. 

South: Variable Mean  Min Max Std. Dev. S. E. Mean Kurtosis Sum 

Explanatory Sym 3.5 2 5 1.033 0.258 -0.994 

 

 

CC 0.544 0.2 0.8 0.182 0.046 -0.991 

 

 
INC 17.5 10 26 4.457 1.114 -0.439 

 

 

DIR 168.75 120 195 20.831 5.208 0.496 

 

 
Lich 79.4 50 100 14.361 3.59 -0.302 

 

 

Hea 17.5 0 50 14.376 3.594 0.299 

 

 

Moss 3.125 0 20 6.021 1.505 3.035 

 

 
DS 5.1 1 12 3.193 0.798 -0.186 81 

 

Moi 3.781 0.483 5.73 1.781 0.43 -0.639 

 

 
LOI 1.454 0.77 3.17 0.647 0.162 2.191 

 

 

RRI 0.718 0.568 0.823 0.062 0.015 1.294 

 

 

Sytrees 11.1 1 20 6.84 1.71 -1.5 177 

 

Unctrees 3.94 0 13 5.26 1.315 -0.933 63 

 

Trees 15 7 20 4.258 1.065 -1.205 240 

 
Biomass 156.7 69 262 48.523 12.131 0.417 2507 

         Response: Syseed 20.9 0 100 27.391 6.848 3.792 334 

 

Sysap 4.2 0 12 4.475 1.119 -0.858 67 

 

Unsseed 3.8 0 25 6.787 1.697 6.199 60 

 
Unssap 0.95 0 4 1.237 0.309 1.182 15 

Abbreviation and variable explanation; refer table 1. 

 

 

Appendix IV Descriptive statistics of explanatory and response variables within each plot on north-facing 

aspects. 

North: Variable Mean  Min Max Std. Dev. S. E. Mean Kurtosis Sum 

Explanatory: Sym 3.1 2 4 0.8 0.19 -1.194 

 

 

CC 0.44 0.1 0.7 0.15 0.04 0.413 

 

 
INC 16.3 10 35 6.426 1.607 3.849 

 

 

DIR 203.5 10 355 163.515 40.879 -2.191 

 

 
Lich 42.5 20 70 13.416 3.354 -0.255 

 

 

Hea 53.1 20 80 15.37 3.843 0.298 

 

 

Moss 4.375 0 10 5.123 1.281 -2.219 

 

 
DS 1.125 0 4 1.204 0.301 0.653 18 

 

Moi 5.224 1.91 9.44 2.584 0.646 -1.546 

 

 
LOI 1.422 0.78 2.87 0.502 0.126 2.771 

 

 

RRI 0.255 -0.08 0.373 0.11 0.027 5.329 

 

 
Sytrees 9.75 3 17 3.376 0.844 0.595 156 

 

Unctrees 0 0 0 0 0 0 0 

 

Trees 9 3 14 2.608 0.652 1.036 156 

 
Biomass 75.7 35 121 21.657 5.414 0.382 1211 

         Response Syseed 40.875 17 70 15.108 3.777 -0.491 654 

 

Sysap 14.5 7 30 6.812 1.703 0.283 232 

 

Unsseed 0 0 0 0 0 0 0 

 
Unssap 0 0 0 0 0 0 0 

Abbreviation and variable explanation; refer table 1.



   

 

 

 

 


