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ABSTRACT

This thesis is a theoretical study of the behavior of electrons in atoms and molecules
subjected to external electromagnetic fields. Three electronic systems have been cen-
tral in this work, the atomic and quasimolecular Rydberg states and the carbon al-
lotrope graphene. The exaggerated properties of the highly excited Rydberg atoms,
such as long lifetime, large spatial extension and low binding energy make them ex-
cellent candidates for both theoretical and experimental considerations. The analytical
solutions of the hydrogen atom in quantum mechanics provide a good description for
most Rydberg atoms. This is exploited in the work presented in this thesis and the ac-
companying papers, where we show results of numerical computations on interacting
Rydberg atoms, with and without the presence of radiating fields, as well as dynamic
Rydberg wave packets influenced by a train of femtosecond laser pulses. In the final
part of the thesis the optical process of high-order harmonic generation in an extended
molecular structure, represented by graphene, is considered.

Rydberg atoms have a large dipole moment due to the large average electronic ra-
dius in the atom, which leads to a very strong dipole-dipole coupling between inter-
acting particles in a gas of cold Rydberg atoms. This interaction, which is dependent
on the internuclear separation between the atoms, induces a shift in the energy lev-
els, which again prohibits the excitation of more than one atom in the gas, an effect
commonly known as the Rydberg blockade. A correlated behavior is observed for the
intrashell transitions in mutually excited Rydberg atoms. The microwave field driven
dynamics is significantly supressed for internuclear distances below a given conditional
radius which scales linearly with the principal quantum number n. Such an entangled
electronic behavior may open for the realization of quantum gates applied in quantum
informatics.

The long-range interaction of Rydberg atoms is dominated by the dipole-dipole
terms. Nevertheless, the investigation of two interacting Rydberg atoms, without the
influence of electromagnetic radiation, has shown that the lower order multipolar terms
play a vital role in the energy shifts as well as for the electronic probability distribu-
tions. We found that the energy curves, when including all multipole orders, correspond
to both repulsive and attractive states with a stronger repulsion than attraction. We also
propose a laser assisted approach for stabilization of Rydberg gases by controlled tran-
sitions between such attractive and repulsive energy states.

Single-electron ionization of a dynamic Rydberg wave packet confined within a sin-
gle energy level has been investigated. The ionization probability of an intrashell Ry-
dberg wave packet depends strongly on the degree of polarization. For a wave packet
driven repeatedly between the circular (least polarized) state and the linear (most polar-
ized) state by a rotating microwave field and subjected to a train of femtosecond laser
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pulses, the ionization probability will depend crucially on the laser repetition rate and
number of pulses. The angular-resolved ionization probability and energy distribution
in the continuum are also influenced by these parameters.

The last part of the thesis is devoted to the study of high-order harmonic generation
(HHG) in graphene. In the simple man’s model HHG can be described by an electron
that is ionized and driven in an external field, after which it returns to the parent atom
and recombines, emitting a high-energy photon with frequency that is a multiple of the
incident laser frequency. We show that the harmonic spectra obtained from the inter-
action with linearly as well as circularly polarized femtosecond lasers yield harmonics
up the classical limit for extended molecules. In contrast to diatomic molecules, the
stable grid structure of graphene ensures that the harmonic generation cutoff remains
constant with increasing signal power as the graphene diameter extends beyond the
classical limit. Additionally, for circularly polarized lasers harmonics exceeding the
classical predictions have been observed.
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CHAPTER 1

INTRODUCTION

Throughout the entire human history there have been groundbreaking discoveries that
have altered our perceptions of nature and forced new thinking. The current year we
celebrate the 100-years anniversary for such a mind changing idea in the field of atomic
physics. When the Danish physicist Niels Bohr in 1913 published the atomic model
bearing his name, it marked the start of a scientific and technological revolution that
has prevailed to this day. In the Bohr model the atom is described as a small, posi-
tively charged nucleus surrounded by negatively charged electrons orbiting in circularly
shaped, classical trajectories with well-defined energy values [1]. The classical model
reigning at the time described the electronic motion by Maxwell’s theory of electro-
magnetism, but had a fundamental problem; It predicted that all atoms would loose
energy in the form of electromagnetic radiation, and consequently the electron would
spiral inwards until it eventually collapsed into the nucleus. Not only did Bohr’s inno-
vative idea that the electron motion is restricted to discrete energies explain why atoms
are stable, it also provided a solution to one of the most essential problems of the time,
the explanation of the spectral lines from atoms. As early as 1888 Johannes Rydberg
was able to describe the spectral lines in hydrogenlike atoms with the formula [2],

1

λvac
= RZ2

(
1

n2
1

− 1

n2
2

)
, (1.1)

where λvac is the wavelength of electromagnetic radiation in vacuum, Z is the atomic
number and n1 < n2 are integers. The fundamental constant R ≈ 1.097× 107 m−1 be-
came known as the Rydberg constant. Despite scientific consensus on the validity of
the Rydberg formula, it lacked a theoretical foundation. The main success of the Bohr
atomic model lay in its ability to provide a long awaited explanation of the Rydberg
formula, both qualitatively and quantitatively. The masterwork of Niels Bohr put him
in the front along with the leading physicists at the time, despite his young age. Lord
Rutherford, whose work Bohr built his upon, even stated,

“Bohr’s original quantum theory of spectra was one of the most revolution-
ary, I suppose, that was ever given to science, and I do not know of any
theory that has been more successful. I consider the work of Bohr one of
the greatest triumphs of the human mind.”

The first decades of the 20th century were very productive ones in regards to the
development of the quantum theory. The perhaps most famous equation in quantum
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mechanics was put forward in 1926 by Erwin Schrödinger. We know it simply as the
time-dependent Schrödinger equation [3–5], given by

i
∂
∂ t

Ψ = HΨ, (1.2)

where Ψ is the wavefunction and H is the Hamiltonian operator representing the to-
tal energy of the system. In the standard interpretation of quantum mechanics, also
known as the Copenhagen interpretation, formulated by Bohr and his assistant Werner
Heisenberg in Copenhagen during the years 1924-1927, all physical properties of the
quantum mechanical system is fully characterized by the wavefunction which depends
on the spatial coordinates and time. The Schrödinger equation (1.2) describes the time
evolution of the wavefunction, which is essentially probabilistic, in the sense that the
absolute square of the wavefunction provides the spatial probability distribution of the
quantum system. However, any measurements made cannot have results that violate
Heisenberg’s uncertainty relations, i.e., ΔiΔ j ≥ h̄/2, where Δi and Δ j represent the stan-
dard deviations of two complementary physical properties, for example position x and
momentum p.

It is no exaggeration to say that the emergence of the quantum theory, and with
that the improved understanding of atoms and molecules, has had a profound impact
on the world as we know it. From basic science to our daily lives, the possibility
to control and influence atomic systems has played a vital role in the technological
revolution we have seen the last hundred years. In fact, it is hard to come up with areas
that are totally unaffected by technologies based on fundamental quantum mechanics.
Personal computers and mobile phones have almost become a necessity to take part
in the modern society. Today, nearly 90 percent of the world’s population have their
own cell phone, a situation it is hard to believe even the most visionary could have
anticipated a century ago.

The realization of the laser around 1960 is one of the most important applications of
quantum theory to a real system [6, 7]. The laser is an acronym for light amplification
by stimulated emission of radiation and the theoretical foundations date all the way
back to the work of Albert Einstein in 1917 [8]. A laser takes direct advantage of the
quantization of electron energy in atoms and molecules. The light emitted is coherent,
enabling it to be concentrated on very tiny spots or over large distances. Lasers have
a wide selection of applications, from common office laser printers to eye surgery,
measurement devices for detecting speed or range, entertainment and military purposes.
Since the very beginning of laser research, a variety of specialized laser types has been
developed and optimized to meet different criteria and goals. The first lasers had an
output power of some thousand watts and a duration of a few millisecond (10−3 s).
Nowadays, scientists have been able to produce laser systems with an output power of
petawatts (1015 W), which is more than a thousand times the power consumed by the
USA in any instant of time. Such high-intensity lasers are currently being exploited
in scientific explorations of laser ignited nuclear fusion processes for future energy
production [9, 10].

From a scientific point of view the laser is perhaps the most powerful tool in the
study of the interactions between light and matter. The widely tunable dye laser, dis-
covered independently by Peter P. Sorokin in USA and Fritz P. Schäfer in Germany in
1966 [11, 12], made it possible to excite atoms into well-defined high-energy states,
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Introduction

also known as Rydberg states [13], opening a new era in atomic physics with the ma-
nipulation and study of such systems.

Today, isolated Rydberg atoms can be experimentally prepared in almost any linear
combination of states and substates [14–16]. In a gas of Rydberg atoms, it has been
shown that the large dipole moment of the Rydberg states induces a detuning which
prohibits the interacting particles to become optically excited simultaneously. This en-
tanglement, known as the Rydberg dipole blockade [17, 18], has been proposed as a
way to implement controllable quantum bits for the realization of quantum comput-
ers [19].

In 1961, shortly after the invention of the laser, Peter Franken and colleagues at the
University of Michigan demonstrated what is known as frequency doubling, or sec-
ond harmonic generation [20]. They sent a ruby laser beam with wavelength of 694nm
into a quartz sample, and recorded an output light with wavelength of 347nm, half the
wavelength and twice the frequency of the incident field. This was the first demon-
stration of the nonlinear optical process of harmonic generation, and in the following
decades scientists were able to produce harmonics of higher and higher order [21–
23]. The properties of the generated light, such as temporal and spatial coherence,
strongly depend on the driving laser. In addition, neighboring harmonics can add con-
structively to form a high-intensity pulse of very short duration. For a femtosecond
(10−15 s) laser with wavelength of 800nm, the output pulse can then be in the attosec-
ond (10−18 s) regime [24, 25], which is the typical timescale for electronic motion in
atoms and molecules. Visualizing the motion of these electrons thus requires a spa-
tial resolution at the Ångström1 scale and a temporal resolution at the attosecond scale,
which has previously not been possible. Nowadays, powerful laser systems are avail-
able as table top devices. Thus high-order harmonic generation has proved an efficient
way to produce coherent XUV/Soft X-ray pulses on the attosecond timescale, with a
wide range of applications such as ultrafast photoemission spectroscopy and ultrahigh
resolution imaging [26, 27].

The motivation behind this thesis is to study the behavior of electrons in atoms and
molecules influenced by other atoms in the presence of external electromagnetic fields.
The thesis can be divided into three main parts, based on the accompanying papers;
The first part (Paper I and II) deals with the dynamics between two interacting Ryd-
berg atoms. The second part (Paper III) investigates the influence of a femtosecond
laser pulse on a dynamic wave packet of a single Rydberg atom. The third, and last,
part (Paper IV and V) is devoted to the study of laser-matter interactions in an extended
molecular system, more specifically the generation of high-order harmonics in a sheet
of graphene from the interaction with a femtosecond laser pulse. In the three follow-
ing chapters an overview of the basic theory on which the papers have been built is
presented, including a description of Rydberg atoms, the Stark effect, the strong-field
approximation and high-order harmonic generation, followed by a summary and a brief
outlook. The last chapter gives an introduction to the five papers enclosed in the dis-
sertation.

Throughout the thesis and the papers atomic units, where me, h̄ and e are scaled
to unity, have been used unless stated otherwise. An additional list of derived units is

1An Ångström is a unit length equal to 10−10 m. It is named after Anders Jonas Ångström, a Swedish physicist

who, despite his relatively short life, made significant contributions to the fields of spectroscopy and astrophysics

during the 19th century.
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given in Appendix A.
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CHAPTER 2

RYDBERG ATOMS

An atom with one or more electrons excited to an energy level of high principal quan-
tum number n is said to be in a Rydberg state. Any chemical element can be excited
into a Rydberg atom, and given that the excited electron is far enough from the ionic
core, the atom can be treated similar to a hydrogen atom. This makes Rydberg atoms
particularly convenient for theoretical computations, seeing that the hydrogen atom is
one of the few quantum mechanical systems with analytical solutions. However, the
screened nuclear potential arising from the presence of the remaining electrons sur-
rounding the nucleus may induce quantum defects in the Rydberg state energy as com-
pared to the hydrogen energy levels. Rydberg atoms have a very large mean radius and
correspondingly low binding energy, which causes them to be easily perturbed by even
weak fields. However, the average lifetime of such excited states scales as n4.5 [28], and
hence undisturbed Rydberg atoms are far more reluctant to decay than lower excited
states. Rydberg atoms also possess a very large dipole moment, which particularly in-
fluences the interplay between these particles in a cold gas. The combination of these
exaggerated properties makes Rydberg atoms especially well-suited for linking exper-
imental results and theory.

2.1 The Schrödinger equation

As mentioned in the introductory chapter, all physical properties of a quantum mechan-
ical system are described by its wavefunction Ψ(r, t). The evolvement of the wavefunc-
tion in time is governed by the time-dependent Schrödinger equation (TDSE), which
for a one-particle system reads,

i
∂
∂ t

Ψ(r, t) =
(
−∇2

2
+V (r, t)

)
Ψ(r, t), (2.1)

where the terms in the brackets make up the Hamilton operator, consisting of a kinetic
energy term to the left and a time-dependent potential V (r, t) to the right. The Hamil-
ton operator is Hermitian, meaning that its eigenvalues are real and that the eigenvec-
tors form a complete orthonormal basis. When all potentials influencing the quantum
system are included in the Hamiltonian, the solutions of the TDSE yield all the infor-
mation there is to know about the system. However, in most cases, the TDSE cannot
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2.1 The Schrödinger equation

be solved exactly, and approximations must be made in order to obtain satisfactory so-
lutions. One such approach is perturbation theory, which applies for atoms subjected
to “small” disturbances. Perturbation theory is described in Sec. 3.2.2 and in Sec. 3.3
for time-dependent and time-independent electromagnetic fields, respectively. How-
ever, when the interfering field is strong, perturbative approximations are no longer
valid. An alternative approach may then be to treat the system within the strong-field
approximation [29–31]. This will be considered in the theory for high-order harmonic
generation in Ch. 4.

2.1.1 Time-independent potential

When describing the wavefunction of a Rydberg atom, we make the assumption that the
electron in the Rydberg state is sufficiently far from the nucleus so that we can employ
the solutions of the hydrogen atom. Since the hydrogenic Coulomb potential (V (r) =
−1/r) is time-independent, we can separate the time-dependency from the solutions of
the TDSE in Eq. (2.1). The stationary states thus take the form Ψ(r, t) = ψ(r)e−iEt ,
where E is the energy and ψ(r) satisfies the time-independent Schrödinger equation
(TISE), which for the hydrogen atom reads,(

−∇2

2
− 1

r

)
ψ(r) = H0ψ(r) = Eψ(r). (2.2)

The wavefunction ψ(r) can be separated in spherical coordinates into a radial function
and spherical harmonics as,

ψnlm(r) = Rnl(r)Ylm(θ ,φ), (2.3)

depending on the principal, angular and magnetic quantum numbers denoted n, l and
m, respectively.

The corresponding energy eigenvalues obtained from Eq. (2.2) are given by [32]

En =− 1

2n2
. (2.4)

The electronic probability density can be obtained by the wavefunction squared,
|ψ(r)|2 = ψ∗(r)ψ(r). Since the states ψ(r) form a complete, orthonormal set of func-
tions, we can expand any (normalized) wavefunction Ψ(r, t) in them such that

Ψ(r, t) = ∑
i

ci(t)ψi(r). (2.5)

where ci(t) is the expansion coefficients for state ψi(r). Due to the orthonormality, we
obtain the following expression for the probability distribution,

|Ψ(r, t)|2 = ∑
i
|ci(t)|2, (2.6)

and therefore the coefficients ci(t) are commonly known as the probability amplitudes.
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2.1.2 Parabolic coordinates

The one-electron TISE (2.2) is separable in spherical coordinates for any spherically
symmetric potential V (r). Yet, when the potential is the Coulomb potential, the prob-
lem is separable also in parabolic coordinates. In addition, such a choice of coordinates
turns out to be beneficial when the atom is influenced by an external electric field, such
as in the Stark effect (see Sec. 3.3). Despite the fact that the spherical symmetry of the
potential V (r) is lost in the Stark effect, the Schrödinger equation in parabolic coordi-
nates remains separable even in the presence of the static field [28, 33]. The relations
between parabolic coordinates (ξ ,η ,φ ) and Cartesian coordinates (x,y,z) read,

x =
√

ξ η cosφ
y =

√
ξ η sinφ

z =
1

2
(ξ −η) (2.7)

with ξ ,η ∈ [0,∞] and φ ∈ [0,2π]. Omitting the steps in the derivations, the normalized
bound wavefunction of hydrogenic atoms in parabolic coordinates reads [32],

ψn1n2m(ξ ,η ,φ) =

√
2

n2

√
n1!n2!

[(n1 + |m|)!(n2 + |m|)!]3

×e−(ρ1+ρ2)/2(ρ1ρ2)
|m|/2L|m|

n1+|m|(ρ1)L
|m|
n2+|m|(ρ2)

eimφ
√

2π
(2.8)

where ρ1 = ξ/n, ρ2 = η/n. The principal and magnetic quantum numbers are related
to the parabolic quantum numbers n1 and n2 such that n1 +n2 = n−|m|−1.

2.2 Interacting Rydberg atoms

The constant interplay between Rydberg atoms in gas phase can cause collisions re-
sulting in ionization and heating, and as such it constitutes a great challenge for ex-
perimentalists [34]. On the other hand, these interactions also provide a unique insight
into the processes governing them, and might as such open for the control of interact-
ing Rydberg atoms [35, 36]. In Paper II the long-range interaction between two neutral
hydrogen atoms, both excited to the same energy level, is examined. The nuclei A and
B are separated a distance R, directed along the z axis, cf. Fig. 2.1, with the associated
electronic coordinates r1,2.

The Hamiltonian for the system thus reads,

H = ∑
i=1,2

H0(ri)+
1

R
− 1

|r1 −R| −
1

|r2 +R|+
1

|r1 − r2 −R|
= ∑

i=1,2

H0(ri)+V (r1,r2,R) (2.9)

where H0 is the Hamiltonian for the isolated hydrogen atoms, cf. Eq. (2.2). In the
present case we consider solely large internuclear distances, and consequently the in-
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2.2 Interacting Rydberg atoms

Figure 2.1: Coordinate system describing the interaction between two Rydberg atoms sepa-

rated by the internuclear vector R parallel to the z axis.

teraction term V (r1,r2,R) can be expressed asymptotically as [37],

V (r1,r2,R)≈
∞

∑
l1=1

∞

∑
l2=1

Vl1,l2(r1,r2)

Rl1+l2+1
. (2.10)

The function Vl1,l2(r1,r2) is simply a sum over products of the spherical harmonics
Ylm(θ ,φ) for each atom, see Paper II and references therein. The total wavefunction of
the system can be expanded in products of the eigenstates ψnlm assigned to each atom,
with n1 = n2 = n, by

Ψ(r1,r2) =

m1,m2=l1,l2
l1,l2=n−1

∑
l1,l2=0

m1,m2=−l1,−l2

cl1m1,l2m2
ψnl1m1

(r1)ψnl2m2
(r2). (2.11)

The alignment of the internuclear axis with the z axis restricts the perturbation to only
the product states with m1 +m2 = 0, the so-called Σ states. For a two-atom system
mutually excited to the n = 2 level there are six Σ states. By exploiting symmetry
properties, like invariance to particle exchange and reflection by the xy plane, we can
make linear combinations of the six basis states, so that the matrix representing the
long-range interaction becomes block diagonal,

V sym(R) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − 18
R3 0 −√

2 9
R3 0 0

− 18
R3

864
R5 −√

2108
R4

√
2432

R5 0 0

0 −√
2108

R4
18
R3 −108

R4 0 0

−√
2 9

R3

√
2432

R5 −108
R4

432
R5 0 0

0 0 0 0 − 18
R3 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.12)

The dipole-dipole terms (R−3) dominate, but as seen in the bottom panel of Fig. 2.2
the lower order terms play a vital role for smaller internuclear separations. In these
plots the zero energy level has been adjusted to −1/2n2. The energy curves are non-
symmetrically distributed around the adjusted E = 0 level, in contrast to the plot in
the upper panel, which shows that when only the dipole terms are included, the energy
curves are symmetrically distributed around E = 0. The electronic density plots in the

8



Rydberg atoms

insets show that also the wavefunction is strongly influenced by the multipolar terms in
the interaction, with a heavy accumulation towards the molecular center for the highest
energy state when including all orders of the interaction term. However, when only
the dipole terms are considered the wavefunction is symmetrically distributed around
each nuclei. Interestingly, the asymmetry in the electronic distribution remains even for
large R, i.e., in the regions where the energy curves are very well given by the dipole
terms alone.

In the last section of Paper II we propose a mechanism to prevent the process of
unwanted heating in cold Rydberg gases. By having a set of masers operating at fre-
quencies resonant to the energy separations one could drive transitions between the
attractive and repulsive energy states and thereby cool the system.
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Figure 2.2: Top panel: Potential energy curves resulting only from the dipole-dipole inter-

action terms for the Σ states of two Rydberg atoms mutually excited to the n = 4 manifold,

plotted as a function of the internuclear distance R. The zero energy level has been adjusted

to −1/2n2. Bottom panel: The potential energy curves for the same system of Rydberg atoms

as in the top panel, except here all multipole orders of the interaction are included. The up-

per (lower) inset in both panels shows the electronic probability density at R = 125a.u. for the

highest (lowest) energy state. The figure was published in Paper II.
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CHAPTER 3

RYDBERG ATOMS IN WEAK ELECTROMAGNETIC FIELDS

Treating the interaction between an atom and an external electromagnetic field in quan-
tum electrodynamics requires the electromagnetic field to be described in terms of each
photon in the field. However, in the papers enclosed in this thesis, the photon density
is high enough for the photons to be treated as a continuous variable, which justifies
the use of the semi-classical approach. That is to say, we describe the external electro-
magnetic field classically by Maxwell’s equations, while the atomic system is treated
quantum mechanically. Furthermore, we assume that the nucleus has infinite mass, and
that only the electrons are affected by the radiation field, i.e., we ignore the interaction
between the nucleus and the external field.

3.1 The electromagnetic field

In classical electrodynamics the electric and magnetic fields are described by two vec-
tors, E(r, t) and B(r, t), satisfying Maxwell’s equations, which can be derived from the
scalar and vector potentials φ(r, t) and A(r, t) by

E(r, t) =−∇φ(r, t)− ∂
∂ t

A(r, t), (3.1)

and
B(r, t) = ∇×A(r, t). (3.2)

The fields E and B remain unchanged under the gauge transformation A → A+∇χ
and φ → φ − ∂ χ/∂ t, where χ = χ(r, t) is a real, differentiable function, and thus we
are free to impose the convenient Coulomb gauge on the field vector, i.e. ∇ ·A = 0. In
addition, since there are no sources present in the field, φ = 0, and A(r, t) satisfies the
wave equation

∇2A(r, t)− 1

c2

∂
∂ t

A(r, t) = 0, (3.3)

with plane wave solutions that can be written as

A(r, t) = A0(ω)cos(k · r−ωt +ϕ)ε̂, (3.4)

where k is the wave vector, ϕ denotes the phase and ε̂ is the polarization unit vector.
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3.2 One-electron atoms in external fields

3.1.1 The dipole approximation

The electronic wavefunction of a ground state atom typically extends over a few
Ångström. For interactions with radiation of low frequency and corresponding long
wavelength, we can therefore usually ignore the spatial variation of the field over the
atom. In other words we assume that |k · r| � 1. This is known as the dipole approxi-
mation, and for a laser it is generally said to be valid as long as r � 137/ω . The zeroth
order expansion of the vector potential describing the field thus becomes,

A(r, t) = A0(ω)cos(k · r+ωt +ϕ)ε̂ ≈ A0(ω)cos(ωt +ϕ)ε̂. (3.5)

In the dipole approximation A(t), and hence E(t), are functions depending only on the
time, and consequently the magnetic field B(r, t) vanishes, cf. Eq. (3.2). This leads to
the following relation between the electric field and the vector potential,

E(t) =−dA(t)
dt

. (3.6)

When the extent of the atom is large, such as Rydberg atoms of very high principal
quantum number n, or the frequency of the field is very high, the validity of the dipole
approximation must be assessed. In Paper III we study the photoionization processes
of a Rydberg atom interacting with a train of femtosecond pulses. The Rydberg atom is
initially in the energy level corresponding to n = 16, and seeing that the orbital radius
scales as n2, the radius r ≈ 2.5×102 a.u. Compared to the incident 800nm femtosecond
laser (ω = 0.057a.u.), which leads to 137/ω ≈ 2.5× 103 a.u., we conclude that r is
sufficiently small for the system to be treated within the dipole approximation.

3.2 One-electron atoms in external fields

The time-dependent Schrödinger equation (TDSE) for the hydrogen atom in an external
electromagnetic field reads,

i
∂
∂ t

Ψ(r, t) = (H0 +Hint)Ψ(r, t), (3.7)

where r is the coordinate of the electron and H0 is the field-free Hamiltonian given in
Eq. (2.2). The term

Hint(t) = A(t) ·p+
1

2
A2(t) =−iA(t) ·∇∇∇+

1

2
A2(t) (3.8)

describes the interaction of the electron with the external radiation field in the Coulomb
gauge. Here we have inserted the substitution p =−i∇∇∇ for the momentum operator.

3.2.1 Gauge transformations

The TDSE in Eq. (3.7) is said to be in the velocity gauge due to the interaction term
which couples the vector field A(t) and the momentum operator p. By performing the
following gauge transformation on the wavefunction

ΨL(r, t) = eiA(t)·rΨ(r, t), (3.9)
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Rydberg atoms in weak electromagnetic fields

and substituting into Eq. (3.7), we obtain the Schrödinger equation in the length gauge

i
∂
∂ t

ΨL(r, t) = (H0 +E(t) · r)ΨL(r, t). (3.10)

The label refers to the interaction of the atom with the radiating field being described
by the electric field E(t) and the position r. If no further approximations are made,
matrix elements and expectation values calculated in the different gauges must yield
identical results.

3.2.2 Time-dependent perturbation theory

In the case of weak fields, the time-dependent Hamiltonian Hint = E(t) · r ≡ H ′ can be
treated as a small perturbation. The eigenvalues and corresponding normalized eigen-
states of the unperturbed part H0 are given by H0ψk = Ekψk. The solutions of the TDSE
in Eq. (3.7) can be expanded in the complete basis of the known stationary states as,

Ψ(r, t) = ∑
k

ck(t)ψk(r)e−iEkt (3.11)

where the expansion coefficients ck(t) satisfy the coupled equations given by,

dcn(t)
dt

=−i∑
k

H ′
nk(t)ck(t)eiωnkt . (3.12)

The coupling matrix elements are given by H ′
nk = 〈ψn|H ′(t)|ψk〉 and ωnk = (En −Ek).

For a system initially in the well-defined bound state ψa interacting with a laser
pulse turned on at time t = 0, the first-order transition amplitudes are given by,

cb(t) =−i

∫ t

0
〈ψb|E(t ′) · r|ψa〉eiωbat ′dt ′. (3.13)

These amplitudes can be used to evaluate transitions within the bound states, i.e., exci-
tation processes, as well as transitions from bound states to the continuum, i.e., ioniza-
tion processes. In Paper III the latter scenario is considered for a Rydberg wave packet
interacting with a train of femtosecond laser pulses. The transition amplitudes are em-
ployed in the evaluation of the total ionization probability, in addition to the angular
resolved ionization probability and energy distribution in the continuum.

3.3 The linear Stark effect

The Stark effect refers to the splitting of the energy levels in an atom or molecule due
to the presence of an external static electric field. We here assume that the electric
field strength E0 is low enough for allowing the system to be treated by time-dependent
perturbation theory, but at the same time large enough for fine structure effects to be
disregarded. For hydrogen in the first excited state (n = 2) this means that 105 V/m �
E0 � 1010 V/m.

The perturbation due to an electric field directed along the z axis which is uniform
throughout the atom is given by the Hamiltonian,

H ′ = E0z. (3.14)
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3.4 Rydberg atom in a weak electromagnetic field

According to perturbation theory we need to calculate the dipole matrix elements given
by,

〈ψnlm|H ′|ψn′l′m′〉= E0〈ψnlm|z|ψn′l′m′〉 (3.15)

The selection rules for the angular integrals predict that these matrix elements vanish
unless m = m′ and l = l′ ±1.

As mentioned in Sec. 2.1.2 the TDSE for a one-electron atom represented in
parabolic coordinates remains separable even in the presence of a constant electric
field. We therefore adopt such coordinates in our description of the Stark effect. With
the Hamiltonian (3.14) in parabolic coordinates reading,

H ′ =
1

2
E0(ξ −η), (3.16)

and the hydrogenic parabolic wavefunction in Eq. (2.8), the first-order correction to the
energy of the unperturbed atom reads,

E(1) =±3

2
E0n(n1 −n2) =±3

2
E0nk. (3.17)

The energy depends on n and the difference between the parabolic quantum numbers
n1 and n2, and this is commonly known as the Stark quantum number k ≡ n1 − n2.
The highest energy is obtained when n1 = n− 1 and n2 = 0, and the lowest energy
when n1 and n2 are interchanged, which leads to |kmax| = (n− 1). The hydrogenic
parabolic wavefunction can be expanded in the spherical wavefunctions by Clebsch-
Gordan coefficients by the following relation [13],

|ψnkm〉= ∑
l
(−1)l

〈n−1

2
,
m− k

2
,
n−1

2
,
m+ k

2

∣∣∣lm〉|ψnlm〉. (3.18)

Figure 3.1 shows an illustration of the linear Stark effect in a hydrogen atom in the
n = 8 level.

The two most polarized Stark states (with |km〉 = |± kmax,0〉) have an energy cor-
rection of approximately ±3E0n2/2. To avoid crossing between adjacent energy levels
with energy spacings of 1/n3, we must have that 3E0n2/2 � 1/n3. This gives the
Inglis-Teller limit for the electric field strength [38],

E0 =
1

3
n5, (3.19)

for the avoided crossing of the energy levels in the Stark effect.

3.4 Rydberg atom in a weak electromagnetic field

When external time-dependent fields are applied to a Rydberg atom, its states are al-
tered according to the field strength and variation in time. For a constant, low intensity
electric field the Rydberg n-level can split in equidistant sublevels, due to the linear
Stark effect. If an additional oscillating field is applied, slowly varying in time and
with photon energy low enough such that excitation between n-levels or ionization is
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Figure 3.1: Stark states |nkm〉 of a Rydberg atom in the n = 8 level due to the static electric

field Ez. The states populated by the resonant microwave field in the xy plane, from the initial

circular state (|nkm〉= |8,0,7〉) to the most polarized state (|nkm〉= |8,7,0〉), are indicated by

arrows.

prohibited, the entrapped Rydberg wave packet can undergo transitions within the man-
ifold, provided the frequency of the external field is in resonance with the Stark split-
ting [14, 15, 39, 40], see Fig. 3.1. It follows that the oscillating field frequency must be
ω0 =

3
2nE0 � 1/n3.

A general treatment of the intrashell time-evolution of Rydberg atoms in external
electric and magnetic field, E(t) and B(t), can be formulated in the following man-
ner [41–43]. When the electron transitions are restricted to a single n manifold, the
position operator r can be substituted by the Pauli operator replacement −3

2na, where
a is the quantum mechanical counterpart of the classical Runge-Lenz vector L, defined
as

a =

√
1

−2E

[1

2
(p×L−L×p)− r

r

]
. (3.20)

The dynamics can be described in terms of the pseudospins

J± =
1

2
(L±a), (3.21)

for which the contribution to the Hamiltonian from the weak fields becomes

Hint = ωωω+ · JJJ++ωωω− · JJJ−, (3.22)
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3.4 Rydberg atom in a weak electromagnetic field

with ωωω± = 1
2B± 3

2E. Here we have redefined the zero energy level to that of −1/2n2.
The two independent spins J± play the role of angular momentum operators “ro-
tating” in the effective magnetic fields ωωω±. They have eigenvalues J2±| j±,m±〉 =
j( j + 1)| j±,m±〉 where j = (n− 1)/2, and the eigenenergies of the Hamiltonian be-
come

E = m+|ωωω+|+m−|ωωω−|, (3.23)

with m± = −(n − 1)/2,−(n − 1)/2 + 1, . . . ,(n − 1)/2 − 1,(n − 1)/2. Based on the
Majorana principle of spin reduction from 1932, which proves that a system with total
spin J rotating in a field can be replaced by 2J spin 1/2 systems in the same field [44],
Kazansky and Ostrovsky demonstrated in 1996 that the solution of the Schrödinger
equation with the Hamiltonian (3.22) could be separated into two spin 1/2 systems [45].
Consequently, J± = ∑2J

i=1 ji, which greatly reduces the complexity of the problem, and
we are left with solutions of the form,

| jm〉= c−1/2(t)
∣∣∣1
2
,−1

2

〉
+ c+1/2(t)

∣∣∣1
2
,
1

2

〉
, (3.24)

where the coefficients satisfy the coupled differential equations,

i
d

dt

(
c−1/2

c1/2

)
=

1

2

( −ω±
z ω±

x + iω±
y

ω±
x − iω±

y ω±
z

)(
c−1/2

c1/2

)
. (3.25)

This method applies for any n level, and for a given initial condition the system (3.25)
is usually straightforward to evaluate numerically. In Paper I and III the intrashell
dynamics of Rydberg atoms is derived using this method, considering only the presence
of an electric field.

3.4.1 Rydberg blockade

The strong dipole-dipole interaction between Rydberg atoms can induce a shift in the
energy levels of the Rydberg states. Consequently, in a gas of cold atoms, the Rydberg
excitation of one atom becomes dependent on the excitation of the other atoms. This
is the mechanism behind the so-called Rydberg blockade effect [18, 46, 47]. It can be
described by a system of two atoms initially in the ground state, with the two-atom
state denoted |g,g〉. The principles of this excitation scheme is shown in Fig. 3.3.
For independent atoms an external field with a resonant frequency ω can excite the
atoms to the state |e,g〉 or |g,e〉 and further to |e,e〉. However, for non-independent

atoms, the intermediate state is given by
(

1/
√

2
(|e,g〉± |g,e〉)), and the strong dipole-

dipole interaction in the doubly excited state |e,e〉 will shift the energy level by ΔE =
±C/R3, as described in Sec. 2.2. For sufficiently small internuclear distance R, this
shift becomes so large that the field is no longer in resonance with the energy splitting,
and hence the system is prohibited to excite more than one atom.

3.4.2 Interacting Rydberg atoms in a weak field

When two Rydberg atoms mutually excited to the same energy level are placed in a
crossed electromagnetic field that comply to the criteria for intrashell dynamics, the
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Figure 3.2: Rydberg dipole blockade between two atoms separated a distance R. The ground

state |g〉 is coupled to the excited state |e〉 by the resonant frequency ω . The dipole-dipole

interaction arising when both atoms are in the excited state, i.e. the two-atom system |e,e〉,
induces an energy shift ΔE =±C/R3. When this shift becomes large enough the external field

is no longer in resonance with the energy splitting, and the system is locked in the intermediate

state
(

1/
√

2
(|e,g〉± |g,e〉)), which corresponds to only one atom being excited.

dipole interaction can cause the states to become entangled and the intrashell behavior
to become dependent in analogy to the Rydberg blockade mechanism.

A system of two interacting Rydberg atoms separated by R = [0,0,R] can be de-
scribed by the Hamiltonian

H = ∑
i=1,2

H0(ri)+V (r1,r2,R), (3.26)

where H0(ri) is the field-free Hamiltonian. We consider only the dipole-dipole terms in
the interaction V (r1,r2,R) described by Eq. (2.10). The crossed-field setup comprises
a constant electric field along the z direction, and a rotating microwave field in the xy
plane written as

E(t) = [ε0 cosωt,ε0 sinωt,Ez], (3.27)

which drives the intrashell transitions. When the internuclear separation is large, the
Rydberg atoms are driven from the initial circular state to the most polarized (linear)
state, and back again during the time Trev = 4π/3nε0, with close to unit probability,
as seen by the full black curve in Fig. 3.3. However, for diminishing internuclear
distances the probability for revival of the initial state decreases until the initial state
becomes completely locked, plotted by red (gray) lines in the figure. The electrons are
thus prohibited from leaving the initial state, and the intrashell dynamics is blocked.
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Figure 3.3: Time development (in a.u.) of the initial circular state of two interacting Rydberg

atoms in the principal n = 8 level with internuclear distance R (in a.u.). The external electric

field is of the form E = [ε0 cosωt,ε0 sinωt,Ez]. Full black line, R = 5000; Dashed-dot black

line, R = 3000; Dashed black line, R = 2000; Dashed-dot red (gray) line, R = 800; Full red

(gray) line, R = 600. Figure published in Paper I.

Figure 3.4: Ionization probability for a Rydberg wave packet (n = 16) driven in a Stark setup

hit by a train of femtosecond laser pulses. N is the number of succeeding pulses and Δt is

the time delay. The initial state is the circular Stark state |nkm〉 = |16,0,15〉. The plot was

published in Paper III.
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3.4.3 Pulse-train ionization of a Rydberg wave packet

In Paper III we consider the ionization process of an intrashell Rydberg wave packet,
for a single atom in the energy level of principal quantum number n = 16, from the
interaction with a train of femtosecond laser pulses. The wave packet is initially in the
circular Stark state (|nkm〉 = |16,0,15〉) and is driven in a Stark setup by a resonant
microwave field, via transitions similar to the ones shown in Fig. 3.1 for the n = 8
level. That is to say, the wave packet drifts repeatedly between the circular state and the
linear state. The strong dependency of the ionization probability on the Stark quantum
number k leads to large variations in the total ionization probability when varying the
number of succeeding femtosecond pulses N and the time separation Δt between the
pulses, as shown in Fig. 3.4. We see that certain combinations of N and Δt yield a
strong increase or suppression in the ionization probability.
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CHAPTER 4

HIGH-ORDER HARMONIC GENERATION

Atoms and molecules subjected to intense laser pulses can produce photons with fre-
quencies that are multiples of the central frequency ω0 of the incident light. The process
is known as high-order harmonic generation (HHG), and can be described classically
by the simple man’s model, also called the three-step model, after the three main steps
in the process [48]: The irradiated atom undergoes tunneling ionization and releases an
electron to the continuum. The electron is then accelerated in the field during half an
optical cycle of the laser pulse, after which it returns to the ion and recombines while
emitting a high-energy photon with a frequency that is N times the central frequency
ω0 of the driving laser field. If the system consists of a monochromatic field interacting
with an atom or a homonuclear molecule, the harmonic order N of the outgoing photon
is restricted to take on odd values only, i.e. the output frequency is,

Ω = Nω0, where N = 1,3,5, . . . . (4.1)

In this thesis the interaction of atoms and molecules with high-intensity lasers is
described within the strong-field approximation (SFA) [29–31]. A summary of this
method is given in the following section of this chapter, after which the process of
HHG is considered, with emphasis on HHG in graphene, which is the subject for Paper
IV and V.

4.1 Strong-field approximation

The strong-field approximation is built upon three basic assumptions:

• Firstly, in the strong-field regime we must have Up > Ip. In other words the pon-
deromotive energy Up, defined as the classical quivering energy of a free electron
in the field, given by

Up =
E2

0

4ω2
0

, (4.2)

must exceed the binding energy of the atom, Ip. This allows us to assume that the
continuum part of the wavefunction is not influenced by the Coulomb potential,
V (r).

• Secondly, the bound wavefunction is described by a single state only. This is a
valid assumption as long as the binding energy is much larger than the photon
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4.1 Strong-field approximation

energy of the incident field, Ip/ω0 
 1. Thus the mixing of the bound states can
be neglected.

• Thirdly, we assume that only a small fraction of the bound wavefunction is ion-
ized, so we need not worry about depletion of the initial state. This approxima-
tion is similar to the one made in time-dependent perturbation theory, described
in Sec. 3.2.2. However, it should be emphasized that SFA is considered a non-
perturbative method.

4.1.1 Volkov states in length gauge and velocity gauge

The TDSE for a free electron with momentum p in an external laser field, described in
the dipole approximation by the vector potential A(t), reads

i
∂
∂ t

ΨV(r, t) =
1

2
[p+A(t)]2 ΨV(r, t). (4.3)

The solutions are the velocity gauge Volkov states, given by

ΨV(r, t) =
1

(2π)3/2
eik·r−iS(k,t,t0), (4.4)

where k is the wave vector, and the function S(k, t, t0) = 1
2

∫ t
t0 dt ′

[
k+A(t ′)

]2
can be

interpreted as the classical effect of the field on the electron.
By performing the gauge transformation on the wavefunction, cf. Eq. (3.9), we

obtain the TDSE for a free electron in the field in the length gauge,

i
∂
∂ t

ΨL(r, t) =
[

p2

2
+E(t) · r

]
ΨL(r, t), (4.5)

with the length gauge Volkov states given by

ΨL(r, t) =
1

(2π)3/2
ei[k+A(t)]·r−iS(k,t,t0). (4.6)

4.1.2 The SFA wavefunction

In accordance with the third assumption made above the SFA wavefunction can be
written as a sum over the bound and the continuum part,

Ψ(r, t)SFA � Ψb(r, t)+
∫

d3k c(k, t)Ψc(r, t). (4.7)

The amplitudes for ionization from the bound state to a Volkov state in the continuum
are given by

c(k, t) =−i

∫ t

0
dt ′〈Ψc(r, t ′)|V (r, t ′)|Ψb(r, t ′)〉, (4.8)

where V (r, t) denotes the time-dependent interaction potential, given by E(t) · r in the
length gauge, and A(t) ·p+A2(t)/2 in the velocity gauge. If we assume that the initial
state is the hydrogen ground state, with energy ε0, written as

Ψb(r, t) = ψ0(r)e−iε0(t−t0), (4.9)
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High-order harmonic generation

and that the continuum state is the velocity gauge Volkov wavefunction, Eq. (4.4), by
substitution into Eq. (4.7) we obtain the following SFA wavefunction in the velocity
gauge,

Ψ(r, t)SFA � ψ0(r)e−iε0(t−t0)− i

(2π)3

∫ t

0
dt ′e−iε0(t ′−t0)

∫
d3ke−iS(k,t,t ′)

×
∫

d3r′ e−ik·r′
[
A(t ′) ·p+

A2(t ′)
2

]
ψ0(r′) eik·r. (4.10)

4.2 The HHG spectrum

The HHG power spectrum along a direction n can be obtained by taking the Fourier
transform of the expectation value of the momentum operator with the velocity gauge
wavefunctions, Eq. (4.10), as expressed by the following formula:

Sn(ω) =
∣∣∣n ·

∫ ∞

−∞
dt eiωt〈Ψ(r, t)SFA|p|Ψ(r, t)SFA〉

∣∣∣2 (4.11)

The matrix elements for HHG can, alternatively to the momentum form given above,
be calculated in the dipole or acceleration form. However, it was demonstrated by
Baggesen and Madsen that the momentum form is the one that relates directly to the
harmonic field obtained by solving Maxwell’s wave equations [49]. They also showed
that the dipole and acceleration forms could be obtained from the momentum form by
some scaling factors depending on the harmonic frequency ω . In Paper IV and V the
dipole velocity form is used throughout. The choice of gauge is motivated by the fact
that the length gauge gives rise to an unphysical dependency of the HHG spectrum on
the internuclear distances in the molecule [31].

When neglecting couplings amongst the continuum states the expectation value of
the momentum operator with the velocity gauge SFA wavefunction thus reads,

〈Ψ(r, t)|p|Ψ(r, t)〉SFA � −
(

1

2π

)3∫ t

0
dt ′eiε(t−t ′)

∫
d3ke−iS(k,t,t ′)×

∫
d3re−ik·r

[
A(t ′) ·p+

A2(t ′)
2

]
ψ0(r)︸ ︷︷ ︸

R(k,t ′)

∫
d3rψ∗

0 (r)∇eik·r︸ ︷︷ ︸
V(k,t)

+ c.c. (4.12)

The integrals R(k, t ′) and V(k, t) represent the amplitudes for ionization at time t ′ dur-
ing the laser pulse interaction, and recombination at a later time t.

4.2.1 The cutoff

The harmonic spectra obtained in HHG have some characteristic features. The sig-
nal strength drops quickly for the first, lower-order harmonics, after which the signal
strength levels out over a range of frequencies. This plateau is a series of harmonic
peaks of equal power, and it usually ends abruptly with the cutoff harmonic frequency.
Beyond the cutoff the signal strength rapidly falls off, and as such it is a measure of the
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4.2 The HHG spectrum

maximum photon energy producible in a HHG setup. The cutoff energy can be calcu-
lated classically as the maximum energy that an electron can gain in the electric field.
This classical approach, which results in,

Emax = Ip +8Up, (4.13)

has been shown to agree very well with experiments for diatomic systems [50, 51].
From a classical point of view the electron in a diatomic system ionizes at one atom,
accelerates in the driving field and recombines with the other atom. On the other hand,
in the case of a single atom, the electron’s only possibility for recombination is with
itself. Hence the harmonic frequencies can solely be generated by an electron that is
ionized and accelerated in one direction of the driving field amplitude, until the field
changes sign and the electron is accelerated back towards the parent ion and recom-
bines. As a result, the maximum harmonic frequency is limited to [52, 53],

Emax = Ip +3.17Up. (4.14)

In Fig. 4.1 the HHG power spectra obtained for a single atom and a diatomic molecule
are shown. The characteristic plateau ending in the classically predicted cutoff fre-
quency is evident.

Figure 4.1: HHG power spectrum as function of harmonic order for a linearly polarized laser

interacting with a single atom (left panel) and a diatomic molecule (right panel) with inter-

nuclear distance R = 95a.u. The classically computed cutoff frequencies for both systems

are indicated by arrows. The laser pulse is modeled by a six-cycle plane wave with cen-

tral frequency ω0 = 0.057a.u. (800nm), and electric field strength E0 = 0.114a.u. (Ipeak =
4.6×1014 Wcm−1), modulated by a trapezoidal envelope function.

The single atom HHG is also limited to linearly polarized laser fields. Increasing
ellipticity on the laser polarization results in a rapidly decreasing harmonic signal for
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High-order harmonic generation

a single atom, as demonstrated in [54]. These results strongly support the classical
picture, which predicts that a higher degree of ellipticity will cause the electron to
’miss’ the parent atom during its trajectory in the field. HHG can also be limited by very
strong laser fields, with Ipeak ≥ 1016 Wcm−2. In such cases the dipole approximation
is no longer valid, and the magnetic component of the external field may deflect the
electron’s trajectory, and ultimately prevent recombination.

4.3 HHG in graphene

Graphene is a monolayer of carbon atoms distributed in a hexagonal pattern, where the
carbon atoms are bound together by the strong, but flexible, covalent bonds between
hybridized sp2 orbitals [55]. The extraordinary strength of graphene, combined with
very light weight and superior electronic conductivity, give rise to a number of potential
applications within electronics and material science, as well as various medical and
industrial processes. Hence graphene has received an explosive interest in the last years,
and nowadays it is considered a promising material for nonlinear optical processes,
such as HHG, in nanostructures [56, 57]. The process of HHG from a flake of graphene
is the subject for Paper IV and V.

The chemical and optical properties of graphene is not governed by the sp2 orbitals,
but rather of the highest occupied molecular orbital (HOMO), which in graphene com-
prises a single p orbital perpendicular to the molecular plane. This allows us to model a
graphene layer extended in the xy plane by pz orbitals distributed on a honeycomb lat-
tice, as illustrated in Fig. 4.2. The bound graphene wavefunction can thus be generated
as a linear combination of atomic orbitals by

Ψb(r, t) =
1√
N

N

∑
j

ψb(r j)e
−iε0(t−t0), (4.15)

where each atomic site in the molecule is modeled by a Gaussian type orbital (GTO) of
the form,

ψ(r j) = a jr
k j
jx r

l j
jyr

m j
jz e−α(r−R j)

2
, (4.16)

For pz we have that k j = l j = 0 and m j = 1, and ε0 denotes the HOMO energy eigen-
value. The coefficients and exponents must be carefully evaluated to ensure that the
GTOs yield a good approximation to carbon pz orbitals. In our work they are computed
using The General Atomic and Molecular Electronic Structure System (GAMESS),
a software package for various chemical computations, including the calculation of
molecular orbitals using the Hartree-Fock, or self-consistent field, method [58].

The foremost reason to employ Gaussian functions for calculating molecular or-
bitals is that the product of two Gaussian functions can be expressed as another Gaus-
sian function, according to the “Gaussian product theorem”. Generally this can be
described as

e−a(k−A)2
e−b(k−B)2

= e−
ab

a+b (A−B)2
e−(a+b)(k−P)2

, (4.17)

with P = (aA+bB)/(a+b).
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4.3 HHG in graphene

Figure 4.2: Visualization of the graphene sheet, with atomic sites modeled by pz orbitals

distributed on a honeycomb lattice in the xy plane. The angle θ represents the polarization

angle of the incident linearly polarized laser light. Figure taken from Paper V.

4.3.1 Evaluation of the integrals

To evaluate the HHG spectra one needs the matrix elements for ionization from the
initial state to the Volkov state, and recombination from the Volkov state to the bound
state. From Eq. (4.12) we see that in the SFA the process of ionization is expressed by
the integral

R(k, t ′) =
∫

d3re−ik·r
[
A(t ′) ·p+

A2(t ′)
2

]
ψb(r), (4.18)

and for recombination we have that,

V(k, t) =
∫

d3rψ∗
b (r)∇eik·r. (4.19)

A thing to notice is that the ionization matrix element is a scalar, whereas the recombi-
nation matrix element is a vector. Consequently, the components of the driving field in
the all polarization directions (ε̂x,ε̂y,ε̂z) will influence the HHG spectrum along a given
direction n.

Both matrix elements are analytic functions depending on the electron momentum
k. With the graphene wavefunction in Eq. (4.15) as the initial state and by rearranging
Eq. (4.12), we obtain the following expectation value,

〈Ψ(r, t)|p|Ψ(r, t)〉SFA � − 1√
N

N

∑
j

(
1

2π

)3∫ t

0
dt ′ei

[
ε0(t−t ′)− 1

2

∫ t
t′ dt ′′A2(t ′′)

]

×
∫

d3kV j(k, t) R j(k, t ′) e−i
[

1
2 k2(t−t ′)+Ã·k

]
+ c.c.,

(4.20)

where Ã(t)≡ ∫ t
t ′ dt ′′A(t ′′). The momentum integrals,

∫
d3k, can either be calculated ap-

proximately by applying the stationary phase method (SPM) or by analytic evaluations.
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High-order harmonic generation

4.3.2 Stationary phase method

The SPM, also known as the saddle-point approximation, is a useful way of approxi-
mating integrals of rapidly oscillating functions. For integrals of the form∫ ∞

−∞
f (x)eig(x)dx, (4.21)

where f (x) is slowly varying and g(x) is rapidly varying, most of the contributions
to the integral come from the points where g′(x) = 0. The points xs satisfying this
criterion are commonly called the stationary points. A Taylor expansion around these
points substituted into the integral (4.21), yields approximative solutions of the form,∫ ∞

−∞
f (x)eig(x)dx ≈ f (xs)e

ig(xs)
∫ ∞

−∞
eig′′(xs)(x−xs)dx = f (xs)e

ig(xs)

√
2π

ig′′(xs)
. (4.22)

When we apply his method to the kχ -integrals (χ = x,y,z) in the expectation value,
Eq. (4.20), the stationary points read,

ks
χ =−

Ãχ +(R jχ −R j′χ )

t − t ′
(4.23)

and g′′(ks
χ) = −(t − t ′). The SPM generally yields HHG spectra that are completely

consistent with the harmonics obtained from exact integrations of the momentum in-
tegrals. Nevertheless, the SPM has a fundamental issue when considering HHG in
graphene; The antisymmetry of the pz orbitals, combined with an external field polar-
ized in the molecular plane such that the stationary points ks

z = 0, result in vanishing
spatial integrals. Thus for in-plane polarized fields the momentum integrals must be
evaluated analytically.

4.3.3 Exact integration

The convenient form of the GTOs makes the analytical evaluation of the integrals
needed for the HHG spectrum rather straightforward. For the spatial integrals R(k, t ′)
and V(k, t), as well as for the momentum integrals, the problem reduces to integrals of
the form [59]

F±
n (β ,u) =

∫ ∞

−∞
e±iuvvne−βv2

dv

= (±i)n
√

π
β

n!

2nβ n/2
e−u2/4β

[n/2]

∑
k=0

(−1)k

k!(n−2k)!

(
u√
β

)n−2k

. (4.24)

The expectation value of the momentum operator, Eq. (4.12), can neatly be expressed
as

〈Ψ(r, t)|p|Ψ(r, t)〉SFA

≈ −2Re

[
i

(2α)5N

∫ t

0
ei[ε0(t−t ′)− 1

2

∫ t
t′ A2(t ′′)dt ′′]

×∑
j, j′

⎛
⎝ F2,0,2 F1,1,2 F1,0,3

F1,1,2 F0,2,2 F0,1,3

F1,0,3 F0,1,3 F0,0,4

⎞
⎠ ·A(t ′)dt ′

]
, (4.25)

27



4.3 HHG in graphene

where we have used the contracted notation denoted by

Fk,l,m = F+
k

(
τ,σ j, j′

x

)
F+

l

(
τ,σ j, j′

y

)
F+

m

(
τ,σ j, j′

z

)
, (4.26)

with τ = [1/α + i(t − t ′)]/2 and σ j, j′ = R j −R j′ +
∫ t

t ′ A(t ′′)dt ′′.
The above integration methods, SPM and exact evaluation, allow for calculations of

harmonic generation in graphene for linearly as well as circularly polarized fields with
arbitrary polarization angles. The results presented in Paper IV and V indicate that
graphene may indeed be a promising material for such non-linear optical processes.
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CHAPTER 5

INTRODUCTION TO THE PAPERS

Paper I: Interatom intrashell blockade

In this paper we explore the interaction dynamics of two initially excited Rydberg
atoms. The atoms are placed in a static electric field in the z direction, which splits
the energy levels, according to the linear Stark effect. A weak time-dependent mi-
crowave field drives transitions between the initial circular Stark state and the most
polarized, or linear, state. Isolated, such atomic intrashell transitions can be driven
between the initial and final states with almost unit probability. For two interacting
Rydberg atoms, however, the strong dipole-dipole interaction induces a conditional
behavior of the intrashell dynamics. We identify three characteristic regimes depend-
ing on the interatomic separation R; A conditional regime, where the atoms exhibit
entangled conditional behavior, is separated to the region in which the atoms behave
independently by a conditional radius, Rc. The innermost region, separated from the
conditional region by a blocking radius, Rb, is where the atoms are completely locked
in their initial states, and no intrashell transitions occur. This controllable conditional
behavior makes Rydberg atoms an interesting and promising candidate within quantum
information.

In the making of this paper I contributed in the development of the code, mostly
debugging and performing some of the calculations. I also contributed to the making
of the figures.

Paper II: Long-range interaction and state characteristics of interacting Rydberg
atoms

In this paper we investigate the long-range interaction between mutually excited Ry-
dberg atoms in principal quantum numbers n = 4,8,16. The quasimolecular states
are constructed from the basis of hydrogen-like product states with the configuration
interaction method and with the inclusion of all order multipole moments of the to-
tal electrostatic interaction. We found that the energy curves are both attractive and
repulsive, generally non-intersecting and the repulsion splitting is stronger than the at-
tractive. The electronic probability densities of the selected states are studied as well as
their relation to the single product states consisting of linear Stark states on each atom.
One of the observed features is that the least bound states are always characterized by
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a high degree of polarization favored towards the molecular center, and therefore well
approximated by a product of two Stark states. The most bound states are similarly ex-
pressed as a coherent combination of such states which secure symmetry with respect
to electron exchange and parity.

I contributed to the development and running of the code used to perform calcula-
tions for this paper, and I made some of the figures. I also participated in the writing of
the paper.

This paper was picked up by the Editorial Board of Journal of Physics B to feature
within the “Highlights 2011” collection.

Paper III: Femtosecond-pulse-train ionization of Rydberg wave packets

This paper is a study of the dynamics of a Rydberg wave packet in the principal n = 16
shell subjected to a train of femtosecond laser pulses. The Rydberg wave packet is
placed in a microwave setup that drives transitions periodically between the initial cir-
cular state and the linear state. We use first-order perturbation theory to calculate the
ionization probability as function of the number of succeeding pulses and repetition
rate. We also study the angular distribution of the ionized wave packet. The total ion-
ization probability is shown to depend crucially on the laser repetition rate, originating
in the strong dependency of the ionization probability on the Stark quantum number k
of the initial state.

The computer code used in this paper, as well as the main parts of the theory be-
hind it, has been developed by myself in close collaboration with the second author. I
performed calculations, wrote parts of the paper, and made some of the figures.

Paper IV: High-order harmonic generation from graphene: Strong attosecond pulses
with arbitrary polarization

In this paper we explore high-order harmonic generation (HHG) from a graphene sheet
irradiated by an intense linearly polarized femtosecond laser pulse within the Lewen-
stein model. The bound wavefunction of the graphene sheet is described as a coherent
sum of Gaussian type pz orbitals distributed on a two-dimensional hexagonal (honey-
comb) lattice. We present results showing that the HHG cutoff frequency increases
with graphene size up to the classical limit for interactions with linearly polarized laser
fields. In addition we found that the extended nature of graphene allows for a strong
HHG signal at maximum cutoff, and in contrast to diatomic molecules the cutoff fre-
quency in graphene remains constant even if the diameter of the sheet extends beyond
the maximal electron excursion.

I developed the theory and codes employed in this paper together with the co-
authors. I participated in all parts of the writing process, including the making of the
figures.

Paper V: High-order harmonic generation in graphene flakes exposed to circularly po-
larized femtosecond pulses
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Introduction to the papers

In Paper IV we employed the stationary phase method in the calculations of high-order
harmonics from a graphene sheet. We experienced that this method fails when com-
bining the pz orbitals representing graphene and certain orientations of the polarization
vector of the incident laser field. Therefore, in this paper we study the high-order har-
monic generation from graphene by exact evaluations of the momentum integrals. The
incident laser field is circularly polarized, and the plane of polarization is tilted with re-
spect to the molecular plane. We found that both the cutoff frequency and the general
structure of the harmonic spectra depend strongly on the tilt angle. Additionally, we
observed exaggerated cutoff frequencies as compared to the classical limit. Whether
these results really represent a characteristic feature of HHG in graphene is left as an
open question. Nevertheless, the stable lattice structure makes graphene a promising
material for the generation of high-energy photon pulses.

The codes used in this paper are modified from the codes utilized in Paper IV, and
I have been partly responsible for the modifications. I contributed to all parts of the
making of the paper.

31





CHAPTER 6

SUMMARY AND OUTLOOK

The work presented in this dissertation ranges from single Rydberg atoms interacting
with weak fields, to diatomic Rydberg molecules and extended molecular systems ir-
radiated by intense lasers. Nevertheless, a common feature of these systems is their
extended nature as compared to ground state atoms, and the emphasis has been on the
electrons’ response to external fields.

We found that in the asymptotic regime of interacting Rydberg atoms the strong
dipole-dipole interaction induces a shift in the energy levels that leads to a significant
dependency of both the intershell and the intrashell excitation on the separation be-
tween the atoms. Results in this work point to that controlled transitions can be made
between the attractive and the repulsive energy states, and thus serve as a way to handle
the constant interplay between Rydberg atoms in cold gases to avoid unwanted heating
and ionization. The stabilization of Rydberg matter is a prerequisite for the controlled
manipulations of interacting Rydberg atoms. During the last forty years the entan-
gled behavior of such atoms have been studied extensively, and in 2012 Serge Haroche
and David J. Wineland shared the Nobel Prize in Physics for the invention of methods
for measuring and manipulating individual quantum states [60]. Haroche’s group used
prepared circular Rydberg states in a microwave cavity to control and measure pho-
tons without destroying the photon’s initial state. It is not unlikely that such a setup in
the future may serve as a device for measurement and manipulation of more complex
structures with a wide range of potential applications. The cavity quantum electrody-
namic combined with laser cooling and trapping techniques has proposed applications
in quantum optics and quantum information [61], and the conditional behavior of Ry-
dberg atoms makes them interesting candidates for the realization of quantum bits for
implementations in quantum computers [19].

The study of high-order harmonic generation of graphene reveals that graphene is
indeed an interesting material for non-linear optical processes in nanosystems. The
solid grid structure of graphene allows for a large number of potential recombination
sites, which opens for generation of strong high-order harmonics and selective har-
monic generation. In contrast to diatomic molecules, HHG in graphene provides a
maximum cutoff frequency with a high yield even when the graphene molecule ex-
tends beyond the classical limit. The possibility to have strong attosecond pulse gen-
erators as table top devices allows us to carry out electronic orbital reconstructions
with Ångström resolution, and opens for the enhanced imaging of ultrafast atomic and
molecular dynamics. Such devices are powerful tools in the quest for understanding
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the electronic orbital structure in molecular and solid structures as well as the dynam-
ics in external electromagnetic fields. To reach this level it is called for experiments to
probe these phenomena and further theoretical research should develop more realistic
and applicable electronic models of the graphene flakes. The capability to monitor and
govern chemical and physical properties is a prerequisite for the control of nanosys-
tems utilized in areas as distant as material science, renewable energy production and
medical diagnostics and treatment. However, independent of potential applications it is
a subject of fundamental interest in its own right.
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CHAPTER 7

SCIENTIFIC RESULTS
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