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Abstract

Self organizing maps (SOMs) have been used to estimate seawater fugacity of CO2 (fCO2) distribution
in the Nordic Seas and the northern North Atlantic Ocean for 2005-2007. Four maps were produced
for each region using various combinations of the parameters MLD, SST, CHL and SSS to train the
SOM. The combination of MLD+SST gave the most realistic fCO2 map for all the basins, which was
surprising as one would expect that more input parameters would generate more realistic maps. SOMs
were estimated in the northern North Atlantic Ocean and the Nordic Seas, the northern North Atlantic
Ocean, and the Nordic Seas. The SOMs for the Nordic Seas were also merged with the SOMs for the
northern North Atlantic Ocean, which generated better results than the SOM for the whole study
area. The merged SOMs had minimal issues with discontinuity. All the SOMs generated incorrect
fCO2 values for the deepest mixed layer depths in the Greenland Sea. A theory is that this may
be the result of an artifact in the training dataset. This illustrate the importance of having a broad
data coverage when using the SOM technique. The most optimal SOM for the Nordic Seas provided
realistic estimates of fCO2 distribution. This SOM had an uncertainty of 12.5 µatm, which is close to
the LSCOP target of 10.8 µatm for estimation of net fCO2 �ux for the Northern North Atlantic.
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Chapter 1
Introduction

1.1 Greenhouse E�ect and Global Climate

Earth's climate and biogeochemistry are closely intertwined, as the gases responsible for the greenhouse
e�ect takes part in biogeochemical cycles.The greenhouse e�ect is the result of absorption and re-
radiation of energy by atmospheric greenhouse gases and particles, a process that gives a downward
�ux of radiation from the atmosphere to the surface. 30% of the incoming solar radiation is re�ected
back to space, giving the Earth an average heat �ux of 235 Wm−2 and making it a habitable planet.
Without the atmosphere and the greenhouse e�ect the equilibrium temperature on Earth would be
255K (−18 ◦C), whereas the actual average temperature is remarkable 33K warmer, 288K (15 ◦C)
(Sarmiento and Gruber, 2006). Fig. 1.1 shows the global energy �uxes through the atmosphere.

In order to expand our knowledge of the biogeochemical cycling and how it a�ects the global
climate, it is essential to investigate the biogeochemical interactions between the di�erent reservoirs,
namely atmosphere, ocean and land.
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Figure 1.1: Flow of energy through the atmosphere. Numbers are in Wm−2, and some are uncertain by
as much as 20%. The coupling points between biogeochemical cycles and the physical climate system
are also shown. Figure from Sarmiento and Gruber (2006).

1.1.1 Mechanism of Greenhouse E�ect

The physical mechanism of the greenhouse e�ect is the blocking of outgoing long-wave radiation in our
atmosphere, which a�ects the amount of heat trapped within it. The basic mechanism, on a macro
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level, is as follows: The Earth receives energy from the sun in the form of visible light; short-wave
radiation from the sun reaches the uppermost atmosphere and travels towards the Earth's surface.
Along the way, more than half of the incoming solar radiation is either backscattered to space by
clouds, dust and atmospheric gas molecules, or absorbed. When the solar energy reaches the Earth,
some of it is absorbed by the surface and heats up the planet, while the remaining is re�ected back as a
function of the surface's albedo. Albedo is a measure of the re�ecting power of a surface. The greater
the albedo, the greater the re�ection. The ocean surface has a low albedo of around 10%, except for
the Arctic and Antarctic where ice �elds replace open water (Holden, 2012). Various surfaces and their
corresponding albedo values are presented in Tab. 1.1.

Table 1.1: Values of albedo for various
surfaces

Surface Albedo (%)

Fresh, dry snow 80-95
Sea ice 30-40
Dry light sandy soil 35-45
Meadows 15-25
Dry steppe 20-30
Coniferous forest 10-15
Deciduous forest 15-20

Source: (Holden, 2012)

1.1.2 Greenhouse Gases

The atmosphere consists of numerous gases that vary in concentration. Nitrogen (N2) is the most
abundant component, and constitutes 78% of the atmosphere, followed by 21% oxygen (O2) and
0.9% argon (Ar). The primary greenhouse gases are water vapor (H2O), carbon dioxide (CO2) and
methane (CH4). Nitrous oxide (N2O), ozone (O3) and chloro�uorocarbons (CFCs) are other gases that
contribute to the greenhouse e�ect, but to a lesser extent. These will not be discussed.

Although water vapor is the most abundant greenhouse gas, the atmospheric concentration is more
or less controlled by natural processes linked to the water cycle. The single largest contributor to the
increase in the greenhouse e�ect leading to climate change is CO2, which now represents 0.04% of the
atmosphere, and its levels have been increasing for the past 250 years due to combustion of fossil fuels
such as coal, oil and gas, in combination with deforestation. (Sarmiento and Gruber, 2006).

The third most abundant greenhouse gas is methane, which is produced by cattle, land farming
and decomposing trash. Methane is considered to be the most powerful greenhouse gas on a molecular
level, and its atmospheric levels have increased by 250% since the industrial revolution in 1750 (Trujillo
and Thurman, 2010). However, as it accounts for only 0.00017% of the atmosphere its net radiative
forcing e�ect is smaller than for CO2.

Despite the negative focus on greenhouse gases, their existence are essential for the habitation on
Earth. Yet, continued emissions of greenhouse gases will lead to increased temperatures, which in turn
will cause changes in climate. Therefore, it is important to increase our knowledge of the chemistry of
the atmosphere and the greenhouse gases, with CO2 being the topic for this thesis.

1.2 The Anthropogenic Perturbation

Over the past 250 years the atmospheric carbon dioxide concentration has increased by nearly 40%,
from a pre-industrial level of approximately 280 parts per million (ppm) (Doney et al., 2009) to 393
ppm in 2013 (Tans, n.d.). The atmospheric CO2 increase is attenuated by oceanic uptake, which is
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estimated to account for approximately 1/3 of the total anthropogenic carbon added to the atmosphere
(Sabine et al., 2004). Without this carbon drawdown from the atmosphere to the ocean, the levels
of atmospheric CO2 would be approximately 450 ppm today (Doney et al., 2009). Although the CO2

moves from the atmosphere to the ocean, this does not solve the problem with excessive CO2 emissions.
Ocean CO2 uptake leads to ocean acidi�cation, as the uptake results in reduction in pH. Acidi�cation
is often referred to as the "other CO2 problem" (Doney et al., 2009), as it prevents formation of
calcareous structures by organisms such as phytoplankton. This in turn may disrupt the whole marine
food chain.

1.2.1 Trends in Atmospheric Carbon Dioxide

In 1958 the American scientist Charles David Keeling began atmospheric CO2 measurements at the
Mauna Loa Observatory in Hawaii. The observatory is situated near the summit of the volcano Mauna
Loa, at an altitude of 3400 m. The goal was to create records of CO2 in air masses that would be
representative for large parts of the northern hemisphere, and with a bit of luck, the globe. The main
principle was to select a location that eliminated the in�uence of large spikes of CO2 absorbed or
emitted, either by plants and soils or by human activities (Tans and Thoning, 2008). His choice of
place has been questioned due to the fact that volcanoes outgas CO2. But looking at the actual levels
recorded (Fig. 1.2), it is evident that no volcanic emissions have a�ected the measurements. Generally
the curve has a nice and steady trend with seasonal variations. The annual cycle shows a peak in CO2

concentration in May, while the lowest concentrations of CO2 occur during fall. Random dips or spikes
indicating volcanic activity are absent in the cycle.

Figure 1.2: Records of atmospheric CO2 at Mauna Loa Observatory in Hawaii from 1958 to 2009. The
red curve shows monthly measurements of CO2, while the blue curve represent the annual average.
Figure from Rohde (2011).

To examine the historical development of anthropogenic CO2, scientists needed CO2 records with
longer timescales. Law Dome in Antarctica became the solution. By using ice cores obtained at Law
Dome from 1987 to 1993, one was able to obtain CO2 records going back as far as 1006 A.D. The
Law Dome site ful�lled many of the criteria required to make it the place of choice to reconstruct
historical atmospheric CO2 records (Etheridge et al., 1998). Fig. 1.3 shows the CO2 concentration
from pre-industrial time to present. Values from 1960 and before are from the the Law Dome ice core
in Antarctica, while values from the last 50 years are from the Mauna Loa Observatory.

The remediation of the historical trends in atmospheric CO2 concentration are of tremendous
importance to understand the changes in the Earth's climate. No other indicator is as complete,
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updated and direct as the atmospheric CO2. Needless to say, the oceanic uptake of CO2 from the
atmosphere is an important mechanism to reduce the atmospheric CO2 levels. In the following section,
oceanic CO2 uptake will be introduced.
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Figure 11:3: The atmospheric CO2 record at Mauna Loa observatory over the past c.50 years (1958 to present) along with the

CO2 record for preindustrial time to 1960 as preserved in the Law Dome Ice core in East Antarctica.

Figure 1.3: The atmospheric CO2 records at Mauna Loa Observatory in Hawaii from 1958 to present,
together with preindustrial CO2 records from the Law Dome Ice Core in Antarctica. Figure from
Emerson and Hedges (2008).

1.3 The Carbon Cycle in the Ocean

1.3.1 Inorganic Carbon Chemistry

When atmospheric carbon dioxide dissolves in seawater, it forms aqueous CO2 (CO2
aq). CO2

aq reacts
with water to form carbonic acid (H2CO3), which in two steps dissociate to form bicarbonate (HCO3

−)
and carbonate (CO3

2−).

COg
2 
 COaq

2

COaq
2 + H2O 
 H2CO3

H2CO3 
 H+ + HCO−
3

HCO−
3 
 H+ + CO2−

3

(1.1)

Simplifying the above reactions yields

CO2 + H2O
K1−−⇀↽−− HCO−

3 + H+
K2−−⇀↽−− CO2−

3 + 2 H+ (1.2)

where K1 and K2 are equilibrium constants. These are used to describe the relationship between the
concentration of the species

K1 =
[HCO−

3 ][H+]

[CO2]
(1.3)

K2 =
[CO2−

3 ][H+]

[HCO−
3 ]

(1.4)

and are a�ected by temperature, salinity and pressure (Zeebe and Wolf Gladrow, 2001).
The carbonate species in the ocean are not measured directly, but calculated from measurements of

two of the four measurable parameters: pH, TA, DIC and fCO2. The total concentration of dissolved
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inorganic carbon species in the ocean is called dissolved inorganic carbon, commonly abbreviated DIC.
DIC consists of three carbonate species; H2CO3, HCO

−
3 and CO2−

3 (Williams and Follows, 2011). In
typical seawater, bicarbonate and carbonate are the two major carbon species (Sarmiento and Gruber,
2006).

DIC ≈ [HCO−
3 ] + [CO2−

3 ] (1.5)

Another important carbon system variable is total alkalinity (TA). TA can be de�ned as a measure of
the capacity of water to neutralize acids, or rather, the sum of all titratable bases. An acid (proton
donor) donates hydrogen cations (H+) when dissolved in water, in contrast to a base (proton acceptor)
which accepts H+. Alkalinity as de�ned by Dickson et al. (2007), is determined as:

TA = [HCO−
3 ] + 2 [CO2−

3 ] + [B(OH)−4 ] + [OH−] + [HPO2−
4 ] + 2 [PO3−

4 ]

+ [SiO(OH)−3 ] + [NH3] + [HS−] + . . .−[H+]F−[HSO−
4 ]−[HF]−[H3PO4]−. . . (1.6)

Bicarbonate and carbonate are by far the most important terms (Sarmiento and Gruber, 2006). This
yields

TA ≈ [HCO−
3 ] + 2 [CO2−

3 ] (1.7)

pH is a measure of the hydrogen ion concentration in an aqueous solution: pH=−log[H+]. Values
on the pH scale range from 0 (strongly acidic) to 14 (strongly basic or alkaline), 7 being the neutral
solution. The pH scale is logarithmic, each one-unit change corresponds to a ten-fold change in the
hydrogen ion concentration (Trujillo and Thurman, 2010).
The fourth and last carbon system parameter is the fugacity of CO2 (fCO2). fCO2 is the same as
partial pressure of CO2, pCO2, except that the non-ideality of CO2 is taken into account, and it is
approximately 0.3% lower in value. The distribution of fCO2 is a�ected by temperature, salinity, DIC
and alkalinity (Sarmiento and Gruber, 2006). The warm equatorial regions are typically supersaturated
with respect to CO2 (fCO

sea
2 > fCOatm

2 ), which leads to CO2 outgasing to the atmosphere. Undersat-
urated waters (fCOsea

2 < fCOatm
2 ) are found at higher latitudes and can absorb carbon dioxide from

the atmosphere (Heinze et al., 1991).

Figure 1.4: Plot of the concentrations of H2CO3, HCO
−
3 , CO

2−
3 as functions of pH. Figure from

Sarmiento and Gruber (2006).

The Bjerrum plot (Fig. 1.4) shows how the concentrations of the three carbonate species varies
as a function of pH. At pH=pK1 the concentrations of H2CO3 and HCO−

3 are equal, whereas the
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concentrations of HCO−
3 and CO2−

3 are equal at pH=pK2. Within the ocean's pH range, marked in
Fig. 1.4, the dominant carbonate specie is HCO−

3 (Emerson and Hedges, 2008).

1.3.2 The Solubility Pump

The solubility pump, often referred to as the gas exchange pump, is outlined to the left in Fig. 1.5,
and involves the physical processes of transporting carbon from the ocean's surface to its interior and
visa versa. Warm surface water circulates from equator towards higher latitudes as part of the large-
scale ocean circulation, gradually losing heat to the colder environment. Since the solubility of CO2

increases with decreasing temperature, the cold waters takes up CO2 from the atmosphere. When the
CO2-enriched water reaches high latitudes, it sinks to greater depths, and transports large amounts
of carbon to the ocean's interior (Trujillo and Thurman, 2010), where it is stored until the water
reaches upwelling zones. Subsequent heating of the water decreases the solubility of CO2, which is
then released to the atmosphere.

Figure 1.5: The marine carbon pumps; the solubility pump, the organic carbon pump, and the calcium
carbonate counter pump. From Heinze et al. (1991) revised by Denman et al. (2007).

1.3.3 The Organic Carbon Pump

The middle panel of Fig. 1.5 shows the organic carbon pump, a component of the biological pump
also known as the �soft tissue pump�, where photosynthesis and remineralization control the pattern
of carbon dioxide. The biological processes in the ocean in�uencing DIC are the conversion of CO2 to
organic matter through photosynthesis, and the inverse process of respiration and remineralization:
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106CO2 + 16HNO2 + H3PO4 + 78H2O + 18H+ Photosynthesis



Remineralization
C106H175O42N16P + 150O2 (1.8)

As can be seen in reaction (1.8), the concentration of DIC as well as the concentration of free protons
(H+) decrease when organic matter is formed. For organic matter to be produced from inorganic
nutrients, it is essential to have access to light, so this process takes place in the surface ocean. Carbon
and nutrients are thus consumed in the upper layers by phytoplankton to produce organic matter. A
fraction of the organic matter is exported to the abyss and contributes to a net drawdown of CO2 in
the surface (Heinze et al., 1991). During the subsequent remineralization of the organic matter in the
water column, the CO2 is returned to the seawater. Inorganic carbon is thus transported from the
surface to the deeper layer. During upwelling of this carbon rich water the CO2 is released back to the
atmosphere (Sarmiento and Gruber, 2006).

1.3.4 The Calcium Carbonate Counter Pump

The biological production of CaCO3 in the surface ocean releases CO2 to the atmosphere. This
process, in addition to the dissolution of CaCO3 in the water column and in the sediments, are the
main processes that control the calcium carbonate counter pump, which is shown in Fig. 1.5. This
mechanism works in the opposite direction of the organic carbon pump, hence the name calcium
carbonate counter pump.

Formation and dissolution of CaCO3, either calcite or aragonite occurs through:

2 HCO−
3 + Ca2+

Formation



Dissolution
CO2 + CaCO3 + H2O (1.9)

As can be seen from equation (1.9), stoichiometric amounts of CO2 is formed, which can be released
to the atmosphere during the formation of CaCO3.

Planktonic species such as coccolithophorids, foraminifera and pteropods form shell structures of
calcareous (CaCO3) material (Heinze et al., 1991). Once the calcifying organisms die, their shells
sink and dissolve in the water column. The rate of dissolution is mainly determined by two factors:
the lysocline and the carbonate compensation depth (CCD). The lysocline is the upper limit where
sediments are exposed to corrosive waters, whereas the CCD is the depth where the rates of CaCO3

dissolution and accumulation are equal. Dissolution liberates bicarbonate, which raises the alkalinity.
Only a small fraction of the sinking carbonate reaches the ocean sea�oor and is buried. The overall
process results in a downward transport of DIC and alkalinity from the surface into the deep ocean.

1.4 Thesis Motivation and Aims

1.4.1 Air-sea Gas Exchange of Carbon dioxide

The concentration of some of the atmospheric gases are partially controlled by the mechanisms of
air-water exchange (Millero, 2013), with CO2 being one of them. Understanding how the oceans take
up CO2 from the atmosphere is critical for the prediction of climate change. Air-sea gas exchange of
CO2 is expressed as:

F−−kvα(fCOsea
2 −fCOair

2 ) (1.10)

where kv is the gas transfer velocity expressing the rate with which a gas molecule can pass from a
gaseous to a liquid phase and vice versa (Watson and Orr, 2003), α is the solubility of CO2 a�ected
primarily by temperature and fCO2

sea - fCOair
2 is the fugacity of CO2 in surface ocean and air

respectively, often expressed as ∆fCO2 (Phillips, 1994).

The two most important factors controlling air-sea gas exchange are the gas transfer velocity and
the CO2 concentration di�erence, ∆fCO2. The transfer velocity is often assumed to be a function
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of wind speed (Millero, 2013). Generally, the rate of the gas exchange increases with the wind speed
(Phillips, 1994), but there is a high degree of uncertainty concerning this topic.

The oceanic fCO2 is relatively complex compared to the more uniform atmospheric fCO2 (Sarmiento
and Gruber, 2006). Previously, marine fCO2 measurements were performed by research vessels that
could only cover a fraction of the oceans. Recent technical and �nancial improvements have ensured
that marine fCO2 data are more e�ectively collected, with assistance from the shipping industry (Tel-
szewski, 2009). This has led to a large and unique database of fCO2 measurements. There are still
may areas to cover, especially in the Southern Hemisphere. However, installations of equipment on
merchant vessels have allowed for new investigations. Ocean uptake of CO2 can now be studied on
daily, weekly and monthly timescales. This has resulted in a greater understanding of the diverse
mechanisms controlling ocean uptake of CO2, such as changes in ocean circulation, biological activity
and today's hot topic, climate change.

1.4.2 Previous Work

There are numerous ways to estimate the magnitude and variability of air-sea CO2 �uxes. Some are
based on measurements of the oceanic fCO2, done at vessels and ships, while others use atmospheric
CO2 mixing ratio measurements (Rödenbeck et al., 2003). Takahashi et al. (2009) are known for their
e�ort to estimate global sea-air CO2 �uxes based on climatological surface ocean fCO2. There have
been several approaches towards regional estimates, most of them exploiting the relationship between
fCO2 and oceanic state variables. The most common of these is the multivariable linear regression
(MLR) (Olsen et al., 2008; Lauvset et al., 2013; Chierici et al., 2012), whereas self organizing maps
(Telszewski et al., 2009) have been used a lot less frequently.

1.4.3 Aim of the Thesis

Previous mapping of the Nordic Seas has been done by using MLR (Olsen et al., 2003). However, this
method can usually only be applied to one basin at a time since the MLRs, expressing the net e�ect of
the dominating processes a�ecting fCO2, is usually quite regionally speci�c. In this thesis I will explore
whether self organizing maps can be used to produce seamless mapping of surface fCO2 and air-sea
exchange of CO2 over the Nordic Seas and the northern North Atlantic Ocean. The SOM technique,
which has previously been adopted by Telszewski et al. (2009) in the North Atlantic Ocean, utilizes
the relationship between measured fCO2 and variables such as temperature, salinity, chlorophyll and
mixed layer depth. For chlorophyll I will use data obtained from the SeaWiFS satellite. The fCO2 data
will be obtained from the SOCAT database (Pfeil et al., 2013), which is the most complete collection
of surface seawater fCO2 data from the global oceans. Mixed layer depth, temperature and salinity
data will be extracted from the Mercator Ocean database.



Chapter 2
Method and Data

2.1 Arti�cial Neural Network

The arti�cial neural network (NN) is a �exible mathematical structure inspired by the biological
nervous system. The nervous system's task is to transfer signals between various parts of the body and
coordinate movements of the organism. This complex task is performed by a series of interconnected
units (neurons), which have the ability to communicate and process signals. In the same manner, an
arti�cial neural network transforms non-linearly correlated input signals, triggering numerous neurons
simultaneously, which in turns leads to a �nal output (Telszewski, 2009). By imitating the human
nervous system, an arti�cial neural network acts as an outstanding non-linear modeling tool to extract
patterns from input variables.

For the arti�cial neural network to operate in the right manner, the network has to be con�gured.
This con�guration enables the set of inputs to produce the desired set of outputs, and is done by
training the neural network. Training is the procedure where the network is fed teaching patterns. For
each input provided there are matching output patterns, which are necessary to discover the optimal
operating point. The neural network must undergo this con�guration process in order to learn to
recognize patterns (Dreyfus, 2005).

The NN is based on a �black-box� model with input-output training data and is able to predict an
output pattern when it recognizes a given input pattern (Fig. 2.1). Since the neural network can be
applied to approximate any underlying functional relationship, it is easy to understand why the NN

Figure 2.1: Black-box model. Figure from Hollmén (1996).

is favored over other techniques. In linear models for instance, the parameter independence is rarely
observed. This is not an issue for the NN technique, as the network is trained to learn an approximation
of the relationship by constantly adapting its parameters using observed data (Günther and Fritsch,
2010). The arti�cial neural network is a valuable statistical tool that has proved to be particularly useful
in studies regarding cycles and trends. Over recent decades, this technique has become increasingly
popular among the geosciences, in both oceanography (Liu, Wesiberg and He, 2006; Mihanovi¢ et al.,
2011) and atmospheric science (Niang et al., 2006; Polo et al., 2011) and the evidence does not oppose
the future application of the arti�cial neural network, rather the contrary.
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2.1.1 Self Organizing Map

Self organizing map (SOM), often referred to as Kohonen neural network, is one of many types of
arti�cial neural networks available, and appears to be the best suited technique to study empirical
relationships in geoscience (Telszewski, 2009). The self organizing map belongs to the category of
competitive learning networks and is based on unsupervised learning. The SOM technique can be seen
as an advanced look-up table, where the fCO2 can be determined by the corresponding parameters.
This thesis will use the SOM approach in order to create basin-wide maps of sea surface fCO2 in the
Nordic Seas and the northern North Atlantic Ocean.

The SOM mapping consists of three main steps: (1) the training, (2) the labeling, and (3) the
mapping. The training takes place without fCO2 data, and is the process where a set of data, e.g.
SST, MLD, SSS and CHL, produces a set of weight vectors that represents this data (Telszewski, 2009).
During the training, points that are close to each other in the input are mapped to neighboring neurons,
adjusting the distance between the points. All the neurons in the competitive learning network receive
the same input. The internal competition between the neurons leads to a �winner� or a best matching
unit (BMU, Fig. 2.2), based on the one with most activity (Hollmén, 1996). This can also be described
as the weight vector (w i) with the smallest Euclidean distance D(xi, wi) to the input vector (x i). For
a network with MLD, SST, CHL and SSS the Euclidean distance would be:

D(xi, wi) =
√

(xiMLD − wiMLD)2 + (xiSST − wiSST )2 + (xiCHL − wiCHL)2 + (xiSSS − wiSSS)2

(2.1)
where x iXXX and w iXXX are elements of the input vector and the weight vector for each parameter,
respectively. The second step is the labeling process wheres fCO2 data is assigned to each of the
trained neurons. The third and �nal step is the completion of the geographical mapping using the
preconditioned SOM as de�ned in the two previous steps (Telszewski, 2009). Here the SST, MLD,
CHL and SSS are used to assign fCO2 values to all space coordinates in the geographical map.

Figure 2.2: An input sample (X) updates the best matching unit (BMU) and its neighboring units.
Black dots and solid lines correspond to the situation prior updating, whereas gray dots and dashed
lines correspond to the situation after. Figure from Vesanto et al. (2000).

Various factors make the use of Self Organizing Maps favorable compared to other methods. One
advantage is their ability to organize large, complex datasets, based on observations. The system has
the ability to learn from an example, and does not need to address complex equations regarding phys-
ical, chemical and biological processes like other methods; no relationships between input parameters
are necessary. Another advantage is the possibility to compare an estimated SOM with a realistic
map with measured data. Since no complete fCO2 map with measured data exists, this advantage
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will be shown by comparing a temperature estimated SOM with a map of measured temperatures
(section 3.5).

One disadvantage of using the SOM for mapping is related to the input data. In order to produce
reliable maps, input values for each parameter is essential. This is sometimes impossible, as discussed
in section 2.2.1 regarding chlorophyll data. This can result in limited data and a misrepresentation
of the maps. Another disadvantage can be found in the training. Speci�cally, if the training process
occurs over an extremely short or long period of time, it can result in undertraining or overtraining
respectively. Undertraining means that the map has not been able to recognize the pattern before
the training is ended. Overtraining involves the learning beyond a certain point, where the relevant
information is lost due to too much extraction (Hollmén, 1996). Both cases leads to a distortion of
the real situations. Further drawbacks are that nearby points must have similar behavior and that
mapping can result in clustering.

2.1.2 Other Types of Neural Networks

Several types of NN are used in geoscience, and in addition to SOM, the two most commonly used
networks are the Probabilistic Regularized Self Organizing Map (PRSOM) and the Multilayer Percep-
tron Neural Network (MLP). Due to the previous success of using SOM as an approach to map the sea
surface fCO2 (Lefévre et al., 2005; Telszewski et al., 2009), these two other networks are only brie�y
discussed.

The probabilistic model, PRSOM, is an extension of SOM for visualizing and clustering high-
dimensional datasets. The �rst step, the training phase, is identical to the SOM technique. An
unsupervised classi�cation is built from a dataset by clustering similar input vectors into a certain
number of neurons. The second and last step concerns the labeling of the vectors and groups being
clustered into classes corresponding to physical characteristics provided by an expert (Awa Niang et al.,
2003).

The MLP method is classi�ed as a �feedforward neural network�, and consists of an input layer,
a hidden layer and an output layer, shown in Fig. 2.3. As the name implies, the diagram must be
feed-forward (Bishop, 1995), which results in a layer of neurons being fully connected to the next layer.
Normally the MLPs are trained with the back propagation learning algorithm. This involves letting
some of the information �ow in the backward direction. Based on the amount of errors calculated
during the training, the MLP adjusts the weight of neurons to minimize the error. This is repeated
until the desired result is reached (Telszewski, 2009).

Figure 2.3: Schematic illustration of the Multilayer Perceptron neural network. Circles indicate indi-
vidual neurons. Figure from Heiat (2002).
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2.2 Dataset

Based on previous studies and the successful adoption of SOM in the North Atlantic Ocean by Tel-
szewski et al. (2009), the SOM technique will be used to map fCO2 in the Nordic Seas and the northern
North Atlantic Ocean. The �rst fCO2 map will be estimated with the following two parameters:

fCO2 = f SOM (Θsurf , zmix) (2.2)

where Θsurf is sea surface temperature (SST) and zmix is mixed layer depth (MLD). These are selected
as default parameters and will be included in all SOMs. Several extensions of Eq. 2.2 will be tested to
see whether the use of additional input parameters will optimize the fCO2 maps. The chlorophyll-a
concentration (CHL), de�ned as cchl, is introduced as the third parameter:

fCO2 = f SOM (Θsurf , zmix, cchl) (2.3)

A fourth parameter, sea surface salinity (SSS), represented as Ssurf in Eq. 2.4, has proved to work well
for estimating sea surface fCO2 in the North Paci�c Ocean (Nakaoka et al., 2013) and in the Barents
Sea (Lauvset et al., 2013), and will therefore also be tested:

fCO2 = f SOM (Θsurf , zmix, Ssurf ) (2.4)

Additionally, all four parameters will be tested together:

fCO2 = f SOM (Θsurf , zmix, cchl, Ssurf ) (2.5)

The various combinations of the four parameters are presented in Tab. 2.1.
The chosen parameters a�ect fCO2 either directly or indirectly. SST is regulated by physical

processes such as solar radiation and mixed layer depth, and has a direct in�uence on fCO2. During
winter, when the biological productivity is low, fCO2 is mainly regulated by the thermodynamic
e�ect. Generally, the fCO2 increases with increasing SST. However, during summer, the warming
water contributes to an increased biological production, that causes fCO2 to decrease with increasing
SST. SST has a greater in�uence on fCO2 than SSS (Sarmiento and Gruber, 2006). SSS in�uences
fCO2 indirectly through alkalinity and mixing, in addition to having a minor direct e�ect on regulation
of CO2 solubility. Mixed layer depth in�uences fCO2 indirectly (Olsen et al., 2008). During fall, the
sea surface waters cool, and this in combination with intense wind mixing causes deep mixing to occur.
The deep mixing transports waters rich in remineralized CO2 up from the depths and causes the
sea surface fCO2 to increase. Another indirect in�uence MLD has on fCO2 is through its in�uence
on biological production. As shallow mixed layers form in response to heating in spring, biological
production increases, hence low MLDs tends to be associated with low fCO2 values (Olsen et al.,
2008). Biological production has a direct in�uence on fCO2, and is measured by CHL. During summer
CHL levels are high, and are typically associated with low fCO2 values.

Table 2.1: Various input parameters used for the SOMs

Map name SST MLD CHL SSS

SOM A
√ √

SOM B
√ √ √

SOM C
√ √ √

SOM D
√ √ √ √

Self organizing maps will be estimated for three regions: (i) the northern North Atlantic north of
44◦N including the Nordic Seas, (ii) the northern North Atlantic (44-63◦N) excluding the Nordic Seas,
and (iii) the Nordic Seas only (63-85◦N). This is in order to see whether mapping two independent
basins works better than one large. Additionally, the SOMs for (ii) and (iii) will be merged to see
whether this produces more realistic results than the SOM for (i). The dataset for each parameter
will be presented in the next two subsections. Tab. 2.2 presents a list over the training and labeling
datasets.
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Table 2.2: Dataset used and their corresponding source

Parameter SOCAT Mercator SeaWiFS

The training dataset:

SST ∗
√

MLD
√

CHL
√

SSS ∗
√

The labeling dataset:

fCO2
√

Note: Dataset for validation (∗) and for estimating SOM
(
√
)

2.2.1 The Training Dataset

Subsets consisting of the parameters SST, MLD, CHL and SSS represent the training dataset. Both the
SST and the SSS data exist as two independent datasets. The �rst temperature and salinity dataset
comes from GLobal Ocean ReanalYsis and Simulation (GLORYS2V1) of Mercator Ocean, together
with an MLD dataset. The second dataset is the in-situ values of SST and SSS observed along with
fCO2 data and is obtained from the Surface Ocean CO2 Atlas (SOCAT v2.0, www.socat.info). The
�rst dataset of SST and SSS will be a part of the SOM parameters, whereas the second dataset only
will be used for validation. As this subsection only addresses the training datasets, fCO2 will be
discussed in the section concerning the labeling dataset.

The training datasets from Mercator Ocean are derived from an assimilation model designed to
describe the ocean on a global and regional scale. Both satellite and in-situ measurements are used
in order to make the models as reliable as possible. I will use data from the GLORYS reanalysis
that includes the period from 2005 to 2007 with a resolution of 1/4◦, covering the areas from 0-89◦N
and 107◦W-72◦E. This GLORYS reanalysis constitutes a complete global dataset of temperature (◦C),
mixed layer depth (m) and salinity (psu) henceforth just called Mercator. The Mercator project is a
contribution to MyOcean reanalyses, a European network project aiming to describe the ocean in 3
dimensions and in real-time (www.myocean.eu).

For the CHL data (mg m−3) the Level 3 standard mapped image (8-daily 1/9◦) derived from the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is used (oceancolor.gsfc.nasa.gov). CHL is here
represented by chlorophyll-a, a speci�c form of chlorophyll used by phytoplankton in photosynthesis.
The concentration of CHL represents the amount of photosynthetic organisms in the surface layer.
A disadvantage with SeaWiFS is that the data collection is limited by poor light conditions due to
shorter days in the winter, and cloudiness. Consequently the chlorophyll data can only be obtained
for summer (April-September).

The range of years included in this study was restricted by the limitation of the SOCAT and
SeaWiFS databases. The SOCAT database has few measurements from prior to year 2005, including
these years would therefore be detrimental to the analysis. A drawback with SeaWiFS is that no
data has been collected since December 2010, and a distinct reduction in the number of annual data
collected occurred after 2008. Due to this drawback and the fact that the majority of the data from
this period is from the Paci�c Ocean, the 2008-2010 data was eliminated. This study will therefore
focus on the period from 2005 to 2007.

All datasets were re-gridded onto an 8-daily time scale to �t the CHL data, as it is easier to
convert the SST, MLD and SSS datasets to an 8-daily dataset, than vice versa. The datasets were
then re-gridded to a 1◦ latitude x 1◦ longitude resolution, in order to make them more manageable.
Coastal waters (bottom depth < 350m) have been removed from the datasets, as they are in�uenced by
coastal activities and nutrient pollution from coastal rivers. This was done by using the global model
of ocean bathymetry ETOPO2v2g from National Oceanic and Atmospheric Administration (NOAA),
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available at www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/. Additionally, SST values below -1.85◦C
were assumed to indicate sea-ice cover and removed. This temperature was found by trial and error
and proved to produce the most realistic ice cover around Greenland compared to satellite maps. The
calendar year was divided into 4 quarters; winter (December, January, February), spring (March, April,
May), summer (June, July, August) and fall (September, October, November) in order to distinguish
seasonal variations.

2.2.2 The Labeling Dataset

After the SOM neurons have been trained, it is necessary to label them with fCO2 values (µatm) in
order to use them to estimate the fCO2 maps. This is done by the labeling dataset which consists
of fCO2 measurements with corresponding Mercator and SeaWiFS SST, MLD, CHL and SSS values.
To match the re-gridded training dataset, the fCO2 data from between 2005 and 2007 were bin-
averaged in an 8-daily frequency, with a 1◦latitude x 1◦longitude resolution. This thesis uses the
dataset SOCATv2.0_NorthAtlantic (Bakker et al., 2012), which includes data from 1968-2011. This
dataset has a particularly large contribution of carbon data from the cargo ship R/V Nuka Arctica,
which runs monthly between Denmark and West Greenland (Olsen et al., 2008).

Fig. 2.4 depicts the number of fCO2 data in the labeling dataset for the individual years. The
majority of the data for the �rst six months was collected in 2007, whereas most of the data for the
remaining six months was collected in 2006. The distribution of the fCO2 measurements is illustrated
in Fig. 2.5. Year 2005 has few measurements in both the northern North Atlantic Ocean and the
Nordic Seas, whilst the number of measurements seems to improve spatially the following two years.
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Figure 2.4: Number of fCO2 measurements in the re-gridded labeling dataset (1
◦latitude x 1◦longitude,

8-daily).
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Figure 2.5: Distribution of fCO2 measurements from SOCAT database in year 2005 (a), 2006 (b) and
2007 (c).
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2.3 Validation of Input Parameters

In order to determine the SOM's reliability, a validation of each input parameter is performed. Fig. 2.6
shows the monthly input parameters for the years 2005-2007, averaged over the entire study area.
Unlike the values for fCO2 (Fig. 2.6a) and MLD (Fig. 2.6b), the graphs for SST, SSS and CHL
(Fig. 2.6c-e) show very minor interannual di�erences. The MLD data have some small deviations in
January and March. Most of the monthly values for fCO2 show interannual variations, but nonetheless
the graph shows a distinctive seasonal cycle, which implies that the data are realistic. The relatively
high fCO2 values in June and July 2005 are due to the lower abundance of phytoplanktonic species,
represented by CHL.

Additionally, the input re-gridded parameters were checked against the original data (Fig. 2.7).
This was to ensure that the re-gridded data was able to represent the original data in a realistic
manner. The re-gridded SST dataset (Fig. 2.7a) is missing some values around Greenland due to the
de�nition of sea ice cover invoked in the thesis. As the re-gridded CHL dataset has lower resolution
than the original, the amount of data present appears to be larger in the re-gridded dataset, which is
not the case.
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Figure 2.6: Mean monthly values of fCO2 (a), MLD (b), SST (c), SSS (d) and CHL (e) input data
over the entire study area for year 2005 (blue), 2006 (red) and 2007 (green). Numbers on x-axis (1-12)
represent months.
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(a) (b)

(c) (d)

Figure 2.7: Original SST (a), MLD (b), SSS (c) and CHL (d) data plotted against matching re-gridded
data for January, June and October.
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The SST and SSS data from Mercator consist of simulated values and are plotted for comparison
with measured data from SOCAT in Fig. 2.8. Only the data from Mercator will be used to estimate
fCO2 maps, whilst the SOCAT SST and SSS data is used for validation. As can be seen in Fig. 2.8a
the correlation between temperature from Mercator and SOCAT is nearly perfect, with an r2 of 0.96.
The correlation for salinity between the two datasets are not quite as satisfactory, but lies within an
acceptable range, with an r2 of 0.74.

(a)

(b)

Figure 2.8: Comparison of Mercator input data with measured data from SOCAT: (a) temperature,
(b) salinity. The function represents the regression line (red), while the identity line (black) represents
x=y.

2.4 Seasonal Cycles

This section deals with the distribution of each individual parameter as illustrated by monthly maps
(Fig. 2.9-2.12). The illustrations are produced from data for year 2005, but are representative for 2006
and 2007 as well.
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2.4.1 Sea Surface Temperature

Seasonal variations in solar radiation dominates the distribution of SST. Since the temperature is
a�ected by insolation, the distribution have a tendency to have a zonal pattern. Polar regions receive
lower amounts of heat compared to equatorial regions. Warm surface waters are seen in the eastern
basin, in sharp contrast to the cooler waters in the west. This pattern is due to a combination of
isolation and ocean circulation. The Gulf Stream is transported from equatorial latitudes and brings
warm surface waters along the western coast, whereas the East Greenland current transports cold water
masses from the Arctic Ocean in to the Atlantic Ocean. The lowest temperatures are found in March,
while the highest are found in August. This is due to variations in solar radiation. During spring
the oceans gradually warm, reaching maximum temperatures at the end of summer. The decrease in
temperature during fall and winter is caused by a decrease in solar radiation as well as the occurrence
of deep mixing.

Figure 2.9: Seasonal cycle of SST(◦C) represented by the re-gridded dataset for 2005.



28 Method and Data

2.4.2 Mixed Layer Depth

Most of the ocean strati�cation is determined by temperature, and this also applies to the mixed layer
depth. During winter the MLD may reach hundreds to a thousand meters due to the cold destabilized
water masses. When spring arrives, the upper ocean water masses are gradually heated due to increased
solar radiation, leading to a distinctive temperature gradient in the upper water column. This prevents
the water masses in the interior to mix with the sea surface, resulting in a shallow MLD.

Figure 2.10: Seasonal cycle of MLD (m) represented by the re-gridded dataset for 2005.
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2.4.3 Sea Surface Salinity

A tendency towards zonal arrangement can be seen in the salinity distribution. Seasonal variations
occur to a lesser extent and are mainly driven by ocean circulation and the addition and removal of
freshwater, which occurs through river input and formation or melting of sea ice. The saltier water
masses along the eastern side of the basin are a result of the salt ocean currents transported from the
equator, whilst the fresher areas on the western side are due to the fresher water masses from the Arctic
Ocean. A noticeable change can be seen in the summer months around Greenland, where freshwater
is released due to ice melting. These areas become saltier during winters, when ice formation takes
place.

Figure 2.11: Seasonal cycle of SSS (psu) represented by the re-gridded dataset for 2005.
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2.4.4 Chlorophyll

Due to shorter days and increased cloudiness during winter months, the CHL cycle lacks data at higher
latitudes from October to March. Since phytoplankton use chlorophyll to absorb energy from light
to carry out photosynthesis, CHL data are in�uenced by seasonal variations. When both nutrients
and sun light are available at the surface and the phytoplankton is trapped in a shallow mixed layer,
the spring bloom begins, which leads to a strong increase in phytoplankton abundance. The highest
chlorophyll concentrations are often found in cool waters. This is not due to the temperature itself,
but a result of the cold, nutrient-rich waters brought to surface during deep winter mixing. In April
the spring bloom begins in the North Sea due to strati�cation by coastal currents. In the Nordic Seas
strati�cation is induced by the increase in surface temperature, here the spring bloom peaks about a
month later, in May and June.

Figure 2.12: Seasonal cycle of CHL (mg m−3) represented by the re-gridded dataset for 2005.
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2.5 SOM Parameters and Settings

This section addresses the SOM parameters and the settings used to estimate my fCO2 maps. The
SOM Toolbox version 2.0 for Matlab 5 (Vesanto et al., 2000) adopted in order to produce the maps is
freely downloadable at www.cis.hut.�/projects/somtoolbox. Matlab was used to create the SOMs and
as a data visualization tool.

In the process of producing the most optimal map, both the selection of the input parameters and
the SOM settings in�uences the outcome. The initialization and training part is the �rst step and also
the most crucial. The function �som_make� carries out this step and requires a set of arguments, with
the most commonly used settings for each given in Tab. 2.3.

Table 2.3: Changeable arguments in the `som_make' function

Arguments Options

msize <map grid size>
lattice `hexa' `rect'
shape `sheet' `cyl' `toroid'
neigh `bubble' `gaussian' `cutgauss' `ep'
mask <input columns>
training <rough/�ne>

The map size `msize' is not the resolution of the fCO2 map, but an argument that determines the
number of neurons used in the training process. Too many neurons causes the maps to be overrep-
resented, which makes it di�cult for the SOM to recognize characteristics patterns. Too few neurons
leads to an underrepresentation of the data that produces too smooth patterns. The map size for the
di�erent SOMs was determined by trial and error.

While choosing the most desirable map size, the mean quantization (qe) and topographic (te)
errors are used as indicators to determine the SOM's quality. The qe describes the average distance
between each data vector and its BMU, while the te measures whether the �rst and second BMU are
neighboring neurons. The lower the qe and te values, the better the representation of the training
data. Generally, the qe and te decreases with increasing neurons.

(a) (b)

Figure 2.13: Hexagonal (a) and rectangular (b) SOM lattices. The values 0, 1 and 2 correspond to
neighborhood neurons. Figure from Vesanto et al. (2000).

In addition to map size determination, the lattice and shape must be chosen. The neurons are
placed in either a hexagonal and rectangular lattice (Fig. 2.13). The di�erence between the two lies
in the map topology and the distance between each neuron. Di�erent varieties of lattice shapes can
be chosen, such as sheet, cylinder or toroid (Fig. 2.14). Based on the �ndings of Liu, Weisberg and
Mooers (2006), only the hexagonal lattice and the �at sheet shape were used to estimate the maps
here.
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Four neighborhood functions are selectable in the SOM Toolbox: `bubble', `gaussian', `cutgauss'
and `ep' (epanechicov). Based on previous experiments with the neighborhood function (Telszewski,
2009), and the good reproduction of the original data, the `gaussian' function was chosen for the
argument `neigh'.

The extent of training of the SOM is speci�ed by the argument `training' and consists of two phases:
rough training and �ne-tuning.The rough training takes place �rst, followed by �nal adjustments in
the �ne-tuning phase. The amount of training is crucial for the outcome, but can unfortunately only
be determined by trial and error. If the map is excessively trained it can lead to overtraining, whilst
inadequate training leads to undertraining. Both cases may result in improper visualization of the
data, which is why the maps should be trained with moderation. This is achieved by avoiding too low
or too high values for the arguments for rough and �ne-tuning.

Both the training and the labeling dataset were linearly normalized in order to minimize redun-
dancy. This is particularly important since the SOM algorithm uses Euclidean distance and because
the large range of the input values (e.g. 10-3000 m for MLD and -1.8-25◦C for SST), greatly a�ects
the calculation.

The fCO2 maps are presented in the next chapter, where the following questions are investigated:
Are the self organizing maps able to reproduce the fCO2 distribution in the Nordic Seas and the
northern North Atlantic Ocean? If so, which parameters are required in order to estimate the most
optimal fCO2 maps?

(a) (b) (c)

Figure 2.14: Di�erent map shapes. The default sheet shape (a), and two shapes where the map
topology accommodates circular data: cylinder (b) and toroid (c). Figure from Vesanto et al. (2000).



Chapter 3
Results

In order to determine whether the SOM method is useful in estimating fCO2 maps in the Nordic Seas
and the northern North Atlantic Ocean, skill assessment statistics that quantify model performance
are used to determine the maps' reliability. The statistics adopted are based on metrics used by Stow
et al. (2009) and are the square of the correlation coe�cient (r2, Eq. 3.1), the root-mean-square-error
(RMSE, Eq. 3.2) and the Nash Sutcli�e model e�ciency (ME, Eq. 3.3), in addition to the Cost Function
(CF, Eq. 3.4) used by Holt et al. (2005):

r2 =

n∑
i=1

(Oi −O)(Pi − P )√√√√ n∑
i=1

(Oi −O)2
n∑

i=1

(Pi − P )2

(3.1)

RMSE =

√√√√√√
n∑

i=1

(Pi −Oi)
2

n
(3.2)

ME =

(
n∑

i=1

(Oi −O)2 −
n∑

i=1

(Pi −Oi)
2

)
n∑

i=1

(Oi −O)2
(3.3)

CF =
1

nσ2

n∑
i=1

(Pi −Oi)
2 (3.4)

where n is the number of observations, O i is the ith number of n observations, P i is the ith number of
n predictions, O and P are averaged observations and predictions respectively and σ2 is the standard
deviation of the observations.

The r2 value ranges from 0 to 1 and measures how well the predicted data �ts the observed data. A
correlation of 1 equals a perfect match. The RMSE is a measure of the discrepancy between observed
and predicted values. The lower the value, the better the match (Stow et al., 2009). The ME measures
how well a model simulates the observed values (Nash and Sutcli�e, 1970; Stow et al., 2009). Based
on Allen et al. (2007), the e�ciency is rated as: ME>0.65 excellent, 0.65-0.5 very good, 0.5-0.2 good,
and ME<0.2 poor. The CF is weighted with σ2, which means that it measures the accuracy of the
predictions, in addition to how accurate they are compared to the variation in the data. CF is therefore
more informative than RMSE (Holt et al., 2005).
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Maps were determined for year 2005, 2006 and 2007. However, only the maps for year 2005 is
presented in this chapter. The maps for 2006 and 2007 are presented in Appendix B. Year 2005 was
selected in order to compare my maps with the SOM �elds prepared by Telszewski et al. (2009) for
the North Atlantic Ocean.

As mentioned in section 2.2, bottom depths shallower than 350 m were excluded (Fig. 3.1). During
visualization of the fCO2 maps in Matlab, the function �m_contourf� had di�culties with visualization
of the de�ned bottom depths. The excluded depths therefore appear in some of the estimated fCO2

maps as dark blue areas, especially around Iceland. This is incorrect and the reader should be aware
of this.

Nordic
Seas

Northern North
Atlantic Ocean

63
° N

44
° N

 

 

Bathymetry (m)
−5000 −4500 −4000 −3500 −3000 −2500 −2000 −1500 −1000 −500

Figure 3.1: Map showing the separation of the two seas at 63◦N. The northern North Atlantic Ocean is
de�ned as 44-63◦N, while the Nordic Seas is de�ned as 44-85◦N. Colors indicate bottom depths greater
than 350m, whereas white spaces indicate bottom depths shallower than 350 m.

As SOM B and D, which contains the CHL parameter, have di�culties with mapping fCO2 at
higher latitudes during winter, these maps will be created with two di�erent sets of parameters, one
for winter and one for summer. CHL is only part of the summer parameters, as no data is available for
the winter months. This should work well, since the CHL concentration and the biological productivity
are low during winter. The winter months are de�ned as September to March, and the summer months
as April to August. The monthly breakdown was based on biological production (Fig. 2.12). Months
with no distinctive biological activity were categorized as winter months, while months with distinctive
biological production were categorized as summer months. Since SOM A and C do not contain the
CHL parameter, their winter and summer parameters are identical. The di�erent sets of parameters
for all SOMs are listed in Tab. 3.1.

Table 3.1: Di�erent sets of parameters used for SOM A-D

Map name Winter parameters Summer parameters

SOM A MLD/SST MLD/SST
SOM B MLD/SST MLD/SST/CHL
SOM C MLD/SST/SSS MLD/SST/SSS
SOM D MLD/SST/SSS MLD/SST/SSS/CHL
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The optimal combinations of map size and training arguments were selected by performing skill
assessment statistics. The arguments `msize' and `training' for each combination of predictive variables
were optimized iteratively by running each SOM with di�erent settings. The SOMs with the best
results are shown in Tab. 3.2. The optimalization had good e�ect on the parameters, e.g. r2 typically
improved by 10%. The SOM parameters for each map are also speci�ed under each �gure. However,
this is not done for the merged SOMs, but they can be found in Tab. 3.2 by combining the SOM
parameters for the northern North Atlantic Ocean and the Nordic Seas for each SOM. Most of the
SOMs were trained with an `msize' of [100 65] and a `training' of [25 20]. The various combinations are
discussed in section 4. Quality parameters for the SOMs were calculated and are presented in Tab. A.1
in Appendix A. These parameters can function as an indicator on how well a SOM will perform.

Table 3.2: Parameters used for the optimized SOMs

Map name & The northern North Atlantic The northern North The Nordic Seas
Parameters Ocean and the Nordic Seas Atlantic Ocean

Winter Summer Winter Summer Winter Summer

SOM A: `msize' [90 50] [85 50] [100 65]
SOM A: `training' [20 15] [15 10] [25 20]
SOM B: `msize' [90 50] [90 50] [85 50] [100 65] [100 65] [100 65]
SOM B: `training' [20 15] [25 20] [15 10] [25 20] [25 20] [25 20]
SOM C: `msize' [100 65] [100 65] [100 65]
SOM C: `training' [20 15] [25 20] [25 20]
SOM D: `msize' [100 65] [60 40] [100 65] [100 65] [100 65] [100 65]
SOM D: `training' [20 15] [15 10] [25 20] [15 10] [25 20] [15 10]

3.1 The northern North Atlantic Ocean and the Nordic Seas [44-
85◦N]

3.1.1 Underlying Functional Relationships

To see how suitable the di�erent input parameters are as predictive variables, the MLD, SST, SSS
and CHL were plotted against fCO2. Thus it is possible to investigate the coupling between them
(Fig. 3.2).

Fig. 3.2a-d shows all available data, whereas Fig. 3.2e-h and Fig. 3.2i-l show only data obtained
for winter and summer months, respectively. All of these �gures were prepared using data from areas
with bottom depths >350 m.

The relationship between fCO2 and MLD for 2005-2007 (Fig. 3.2a) has a nearly logarithmic shape
and deep mixed layer depths are associated with high fCO2 values, whereas waters with shallow MLD
has fCO2 values within the whole range. There is a clear transition in MLD from winter (Fig. 3.2e)
to summer (Fig. 3.2i). During winter the fCO2 values are high regardless of MLD. In summer on the
other hand, the MLD is shallow with fCO2 values ranging from low to high.

An almost logarithmic shape can also be seen for the CHL data (Fig. 3.2d). Typically the fCO2

values decrease with increasing amount of CHL. This is expected as CHL measures the presence of
phytoplankton, which consumes CO2 in photosynthesis. The amounts of CHL during winter (Fig. 3.2h)
and summer (Fig. 3.2l), reveal that the CHL data in Fig. 3.2d are dominated by data from summer.

For the SST (Fig. 3.2b) and SSS (Fig. 3.2c) there are no clear patterns. There is a warming trend
with decreasing fCO2 values from 5-10◦C (green trend line in Fig. 3.2b), which is in accordance with
the higher biological fCO2 consumption during summer. Another slight trend can be seen between
10-20◦C (red trend line in Fig. 3.2b), where fCO2 values increases with increasing temperature, i.e.
the thermodynamic e�ect. This is typical for oligotrophic areas, such as the subtropical eastern North
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Atlantic Ocean where the biological production is low. Some values with both low temperature and
fCO2 can be seen in Fig. 3.2b, and are most likely due to coastal areas. During winter the SST values
are relatively stable, with high fCO2 values (Fig. 3.2f). Heating of the water masses during summer
leads to an increase in fCO2.

The fCO2 value is nearly constant relatively to SSS during winter, but has a wider range in the
summer. Fig. 3.2k shows two groups with low fCO2 during summer. The �rst group, with values
between 34 and 35 psu, are most likely associated with the East Greenland Current. These water
masses are fresh and cold and originates from the Arctic Ocean �owing south along Greenland. The
second group, with intermediate fCO2 and SSS between 32 and 34, are presumably elements of coastal
waters at the western side of the basin.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.2: Plots of MLD, SST, SSS and CHL (from left to right) versus fCO2 from data for the
northern North Atlantic Ocean and the Nordic Seas: (a)-(d) total distribution; (e)-(h) relationship in
winter; (i)-(l) relationship in summer. The red and green lines in �gure (b) are drawn to illustrate
trends in SST.

3.1.2 Self Organizing Maps

For each SOM analysis, A-D, the estimated and the measured in-situ fCO2 is compared (Fig. 3.3).
The results of the statistical analyses are presented in Tab. 3.3. The r2 for the self organizing maps
varies from 0.48 in SOM D to 0.63 in SOM A. The smallest RMSE, 22.6 µatm, is found in SOM A,
while the largest RMSE, 27.1 µatm, is found in SOM C and D. Based on the modeling e�ciency, SOM
A and B are rated as `very good', whereas SOM C and D are rated as `good'. The cost function also



The northern North Atlantic Ocean and the Nordic Seas [44-85◦N] 37

indicates that the most optimal map is SOM A, followed by B, C and D with the values 0.39, 0.43,
0.56 and 0.58 respectively.

Table 3.3: Skill assessment statistics for the Nordic Seas
and the northern North Atlantic Ocean

Map name r2 RMSE (µatm) ME CF

SOM A 0.63 22.6 0.61 0.39
SOM B 0.59 23.3 0.57 0.43
SOM C 0.50 27.1 0.44 0.56
SOM D 0.48 27.1 0.42 0.58
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Figure 3.3: Comparison of fCO2 estimates with measured values from the northern North Atlantic
Ocean and the Nordic Seas for the di�erent types of SOM: SOM A (a), SOM B (b), SOM C (c) and
SOM D (d). The function represents the regression line (red), while the identity line (black) represents
x=y.

Monthly fCO2 maps for 2005 are presented in Fig. 3.4-3.7. Since the estimated maps have more
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or less the same patterns, a description of the seasonal cycle of fCO2 will only be given for the �rst
SOM.

The seasonal fCO2 cycle (Fig. 3.4) is characterized by a winter maximum and a summer minimum.
This is caused by the two factors that control fCO2 during the season; temperature and deep mixing
in the winter season, and biological production in the summer season.

The Nordic Seas and the northern North Atlantic Ocean have high estimated fCO2 values from Jan-
uary through February. In March a gradual depletion begins, due to biological production (Fig. 2.12).
This occurs as the water masses warm (Fig. 2.9) and strati�es (Fig. 2.10). The biological impact is
maintained throughout April and May, and the lowest fCO2 values are reached in June. The low
values persists in the majority of the ocean in July and August. A change in fCO2 can bee seen at
around 44◦N-48◦N at the southern reaches of the study area, in July, August and September, with
values noticeable higher than for the rest of the basin. This is most likely due to the nutrient-poor
water masses in the subtropical gyre (∼20◦N-45◦N), an area where biological production is absent.
These warm waters cause the fCO2 increase. The mixed layer deepens during fall and winter, which
leads to an enhanced uptake of fCO2 from the atmosphere to the ocean.
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SOM A: MLD and SST
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Figure 3.4: SOM A: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for 2005. SOM A was prepared using the following settings: `msize': [90
50], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': [20 15].
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SOM B: MLD, SST and CHL (summer only)
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Figure 3.5: SOM B: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for 2005. SOM B was prepared using the following settings: `msize':
Summer/Winter: [90 50], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer:
[25 20], Winter: [20 15].
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SOM C: MLD, SST and SSS
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Figure 3.6: SOM C: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for 2005. SOM C was prepared using the following settings: `msize': [100
65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': [20 15].
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure 3.7: SOM D: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for 2005. SOM D was prepared using the following settings: `msize':
Summer: [60 40], Winter: [100 65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training':
Summer: [15 10], Winter: [20 15].
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3.2 The northern North Atlantic Ocean [44-63◦N]

3.2.1 Underlying Functional Relationships

Comparison of the plots of MLD, SST, SSS and CHL against fCO2 for the northern North Atlantic
Ocean and the Nordic Seas (Fig. 3.2) with the same plots for only the northern North Atlantic Ocean
(Fig. 3.8), reveals more or less similar patterns. Except for some outliers with low SST and SSS values
that occurred in the northern North Atlantic Ocean and the Nordic Seas, Fig. 3.8 is essentially identical
to Fig. 3.2.
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Figure 3.8: Plots of MLD, SST, SSS and CHL (from left to right) versus fCO2 from data for the north-
ern North Atlantic Ocean: (a)-(d) total distribution; (e)-(h) relationship in winter; (i)-(l) relationship
in summer.

3.2.2 Self Organizing Maps

Plots of estimated versus measured fCO2 values are shown in Fig. 3.9, while the skill assessment
metrics are presented in Tab. 3.4. The r2 values range from 0.51 to 0.61 for SOM D and SOM A,
respectively. The RMSEs are more or less equal to those for the northern North Atlantic Ocean and
the Nordic Seas, ranging from 23.1-26.1 µatm. The ME's are the same as for the previous estimations,
where SOM A and B are rated as `very good' and the two others are rated as `good'. CF is calculated
to be between 0.41 and 0.53 for SOM A and SOM D, respectively. Monthly fCO2 maps for 2005 are
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presented in Fig. 3.10-3.13, and will be further discussed in chapter 4.

Table 3.4: Skill assessment statistics for
the northern North Atlantic Ocean

Map name r2 RMSE (µatm) ME CF

SOM A 0.61 23.1 0.59 0 41
SOM B 0.57 24.2 0.55 0.45
SOM C 0.52 25.8 0.49 0.51
SOM D 0.51 26.1 0.47 0.53
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Figure 3.9: Comparison of fCO2 estimates with measured values from the northern North Atlantic
Ocean for the di�erent types of SOM: SOM A (a), SOM B (b), SOM C (c) and SOM D (d). The
function represents the regression line (red), while the identity line (black) represents x=y.
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SOM A: MLD and SST
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Figure 3.10: SOM A: Monthly distribution of estimated sea surface fCO2 in the northern North
Atlantic Ocean for 2005. SOM A was prepared using the following settings: `msize': [85 50], `lattice':
`hexa', `shape': `sheet', `neigh': `gaussian' and `training': [15 10].
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SOM B: MLD, SST and CHL (summer only)
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Figure 3.11: SOM B: Monthly distribution of estimated sea surface fCO2 in the northern North
Atlantic Ocean for 2005. SOM B contains the parameters: `msize': Summer: [100 65], Winter: [85 50],
`lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer: [25 20], Winter: [15 10].
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SOM C: MLD, SST and SSS
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Figure 3.12: SOM C: Monthly distribution of estimated sea surface fCO2 in the northern North
Atlantic Ocean for 2005. SOM C was prepared using the following settings: `msize': [100 65], `lattice':
`hexa', `shape': `sheet', `neigh': `gaussian' and `training': [25 20].
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure 3.13: SOM D: Monthly distribution of estimated sea surface fCO2 in the northern North
Atlantic Ocean for 2005. SOM D was prepared using the following settings: `msize': Summer/Winter:
[100 65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer: [15 10], Winter:
[25 20].
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3.3 The Nordic Seas [63-85◦N]

3.3.1 Underlying Functional Relationships

When comparing the property-fCO2 plot for the northern North Atlantic Ocean and the Nordic Seas
(Fig. 3.3) with the plot for the Nordic Seas (Fig. 3.15), the most prominent di�erence is the lower
amount of data. A logarithmic shape can still be seen for the MLD-fCO2 relationship (Fig. 3.14a),
although the amount of data is signi�cantly reduced. Despite the reduced patterns, the MLD transition
from winter (Fig. 3.14e) to summer (Fig. 3.14i) can still be seen. Fig. 3.14h is blank, as expected,
since no CHL data is available during winter. The low SST and fCO2 values seen in Fig. 3.2j, seems
to come from the Nordic Seas.
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Figure 3.14: Plots of MLD, SST, SSS and CHL (from left to right) versus fCO2 from data for the
Nordic Seas: (a)-(d) total distribution; (e)-(h) relationship in winter; (i)-(l) relationship in summer.

3.3.2 Self Organizing Maps

The skill assessment statistics, presented in Tab. 3.5 based on the results in Fig. 3.15, are better for
the Nordic Seas than the other two basins. The r2 reaches 0.85 in SOM A, whereas the other SOMs
range from 0.70 to 0.78. There is a drastic improvement in the RMSE for all SOMs, and the lowest
and highest errors are 12.5 and 17.9 µatm, respectively. An enhanced modeling e�ciency is also seen
for all the SOMs, where SOM A-D are rated to have an `excellent' ME. The highest ME belongs to
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SOM A, with an ME of 0.84. CF values are also noticeably smaller than for the others basins, with
following results: 0.16, SOM A; 0.24, SOM B; 0.32, SOM C; 0.30, SOM D. Monthly fCO2 maps for
2005 are presented in Fig. 3.16-3.19, and will be further discussed in chapter 4.

Table 3.5: Skill assessment statistics for
the Nordic Seas

Map name r2 RMSE (µatm) ME CF

SOM A 0.85 12.5 0.84 0.16
SOM B 0.78 14.6 0.76 0.24
SOM C 0.70 17.9 0.68 0.32
SOM D 0.72 16.4 0.70 0.30
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Figure 3.15: Comparison of fCO2 estimates with measured values from the Nordic Seas for the di�erent
types of SOM: SOM A (a), SOM B (b), SOM C (c) and SOM D (d). The function represents the
regression line (red), while the identity line (black) represents x=y.
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Figure 3.16: SOM A: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2005.
SOM A was prepared using the following settings: `msize': [100 65], `lattice': `hexa', `shape': `sheet',
`neigh': `gaussian' and `training': [25 20].
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SOM B: MLD, SST and CHL (summer only)
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Figure 3.17: SOM B: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2005.
SOM B was prepared using the following settings: `msize': Summer/Winter: [100 65], `lattice': `hexa',
`shape': `sheet', `neigh': `gaussian' and `training': Summer/Winter: [25 20].
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SOM C: MLD, SST and SSS
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Figure 3.18: SOM C: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2005.
SOM C was prepared using the following settings: `msize': [100 65], `lattice': `hexa', `shape': `sheet',
`neigh': `gaussian' and `training': [25 20].
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure 3.19: SOM D: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2005.
SOM D was prepared using the following settings: `msize': Summer/Winter: [100 65], `lattice': `hexa',
`shape': `sheet', `neigh': `gaussian' and `training': Summer: [15 10], Winter: [25 20].
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3.4 Merging Two SOMs [44-85◦N]

An attempt was made to merge the SOMs of the northern North Atlantic Ocean (44-63◦N) and the
Nordic Seas (63-85◦N), to create one large basin. This was done in order to compare the merged
estimates with the estimates for the entire region (44-85◦N). Skill assessment statistic are presented
in Tab. 3.6, while the linear regression of the estimated and measured fCO2 are shown in Fig. B.13.
The coe�cient of determination ranges from 0.57 to 0.68, where SOM A has the best fCO2 prediction.
The di�erence between the best and the worst RMSE is quite small, only 3,3 µatm. SOM A is the
only map that is rated as `excellent', whereas the others are rated as `very good'.

Monthly fCO2 maps for 2005 are presented in Fig. 3.21-3.24, which will be discussed in chapter 4.

Table 3.6: Skill assessment statistics for merged SOMs

Map name r2 RMSE (µatm) ME CF

SOM A 0.68 20.9 0.67 0.33
SOM B 0.63 22.3 0.61 0.39
SOM C 0.59 24.1 0.56 0.44
SOM D 0.57 24.2 0.54 0.46

(a) (b)

(c) (d)

Figure 3.20: Comparison of fCO2 estimates with measured values from the merged basins. SOM A
(a), SOM B (b), SOM C (c) and SOM D (d). The function represents the regression line (red), while
the identity line (black) represents x=y.
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Figure 3.21: SOM A: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2005.
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SOM B: MLD, SST and CHL (summer only)
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Figure 3.22: SOM B: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2005.
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SOM C: MLD, SST and SSS
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Figure 3.23: SOM C: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2005.
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure 3.24: SOM D: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2005.
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3.5 Mapping SST by the use of Self Organizing Map

In order to verify whether the SOM technique is able to estimate realistic maps, a SST map was
estimated and compared with the mapped seasonal cycle of temperature (Fig. 2.9) in chapter 4. SOM
SST was estimated using the input parameters MLD and SSS, with the training arguments 20 for rough
and 15 for �ne-tuning, and with map size set to [100 65]. Skill assessment statistics are presented in
Tab. 3.7.

Table 3.7: Skill assessment statistics for SOM SST

Map name r2 RMSE (µatm) ME CF

SOM SST 0.71 3.1 0.70 0.30

Jan Feb Mar

Apr May Jun

Jul Aug Sep

Oct Nov Dec

 

 

Sea Surface Temperature (°C)
0 5 10 15 20 25

Figure 3.25: SOM SST: Monthly distribution of estimated sea surface temperature in 2005.



Chapter 4
Discussion

4.1 The Most Optimal Self Organizing Map

The skill assessment statistics for the di�erent SOMs are presented in Tab. 4.1. From this table it can
clearly be seen that SOM A for the Nordic Seas, with the input parameters MLD and SST, provides
the most realistic estimates of fCO2 distribution. The net fCO2 �ux for the Northern North Atlantic
required for 0.1 Pg C yr−1 was estimated to 10.8 µatm in the LSCOP report (Sweeney et al., 2002).
The uncertainty for SOM A in the Nordic Seas, 12.5 µatm, is close to this target, which proves that the
SOM technique works well for the Nordic Seas. However, the technique is inadequate for the northern
North Atlantic Ocean as the accuracy of the fCO2 estimates here are far from the target.

Table 4.1: Skill assessment statistics for all self organizing maps

Basin Map name r2 RMSE (µatm) ME CF

The northern SOM A 0.63 22.6 0.61 0.39
North Atlantic SOM B 0.59 23.3 0.57 0.43
Ocean and the SOM C 0.50 27.1 0.44 0.56
Nordic Seas SOM D 0.48 27.1 0.42 0.58

The northern SOM A 0.61 23.1 0.59 0 41
North Atlantic SOM B 0.57 24.2 0.55 0.45
Ocean SOM C 0.52 25.8 0.49 0.51

SOM D 0.51 26.1 0.47 0.53

SOM A 0.85 12.5 0.84 0.16

The Nordic SOM B 0.78 14.6 0.76 0.24
Seas SOM C 0.70 17.9 0.68 0.32

SOM D 0.72 16.4 0.70 0.30

SOM A 0.68 20.9 0.67 0.33
Merged SOM B 0.63 22.3 0.61 0.39
SOMs SOM C 0.59 24.1 0.56 0.44

SOM D 0.57 24.2 0.54 0.46

For all the basins, SOM A always estimates the most realistic fCO2 maps. The addition of the CHL
parameter (in SOM B) gives the second best estimates. SOM C has better skill assessment statistics
than SOM D, except for the Nordic Seas. This may be explained by the fact that the biological
production plays a key role in the seasonal cycle of fCO2 in the Nordic Seas, and that an exclusion of
the CHL parameter, as done in SOM C, leads to a weaker estimation of fCO2.
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Figure 4.1: Monthly distribution of the most optimal sea surface fCO2 map for 2005.

Combining the default MLD and SST parameters with additional parameters a�ected the skill
assessment statistics as summarized in Tab. 4.2. Adding the CHL parameter to represent biological
production, led to a 4-7% decrease in r2. Adding the SSS parameter led to a 9-13% decrease, whereas
adding both the CHL and SSS led to a 10-15% decrease. This is surprising, as one would expect
that more input parameters would yield better statistics. From Tab. 4.2, one can conclude that the
most optimal maps are made from the combination of the MLD and SST parameters, and that if any
additional parameters is to be included, it should be CHL as this yields better statistics than SSS.
This is probably because CHL has a larger impact on fCO2 than SSS.

The is a distinct di�erence between winter and summer in the most optimal SOM (Fig. 4.1), an
indication that the SOM estimates are able to solve the transition between physical and biological
processes. The next section discusses the seasonal and interannual variations in the map.

Table 4.2: The e�ect of additions of CHL and SSS to the default input parameters SST and MLD, on
the performance of the SOMs

Parameter r2 RMSE (µatm) ME CF

CHL -(0.04-0.07) +(0.7-1.4) -(0.04-0.08) +(0.04-0.08)
SSS -(0.09-0.13) +(2.7-5.4) -(0.10-0.17) +(0.10-0.17)
CHL and SSS -(0.10-0.15) +(3.0-4.5) -(0.12-0.19) +(0.12-0.19)
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4.2 Seasonal and Interannual fCO2 Variations in the Nordic Seas

In this section the seasonal, spacial and interannual fCO2 variations in the Nordic Seas are analyzed
in regard to SST (Fig. 4.4) and MLD (Fig. 4.5), as the most optimal SOM is for this region. The
northern North Atlantic Ocean is therefore not discussed. The color scale for June to September in
Fig. 4.5 is di�erent from the remaining months, as the MLD values for these months are very low.

4.2.1 Seasonal

The three years in this study have similar seasonal cycles of fCO2, therefore only year 2005 will be
discussed.

There is a clear distinction between east and west in January (Fig. 4.3a), with very low fCO2 values
in the Greenland Sea, and high values in the Norwegian Sea. A comparison with SST (Fig. 4.4a),
shows that fCO2 follows the same pattern as SST, which explains the clear distinction between the
Norwegian Sea and the Greenland Sea. Comparing annual fCO2 with MLD shows that the lowest
fCO2 values occur in areas with deep MLD, while the highest values occur in areas with intermediate
MLD (Fig. 4.5a). This is rather unexpected, as fCO2 generally increases with increasing MLD. This
trend is also seen in the rest of the �gures, and may be an artifact caused by an anomalous data point
in the training dataset. As waters with shallow MLD have intermediate fCO2 values, and waters with
intermediate MLD have high fCO2 values, it seems illogical that waters with high MLD should have
the lowest fCO2 values. However, in the fCO2 versus MLD plot (Fig. 3.14a), there is a single data
point with MLD of approximately 600 m and fCO2 of approximately 250 µatm. The temperature
for this data point is approximately 3◦C (Fig. 3.14b). It is not unlikely that this has de�ned a single
neuron, which has been used to determine the fCO2 in the Greenland Sea in winter, as the MLD and
SST in this area typically has such values (Fig. 4.4 and 4.5).

The distinction between east and west is also present in February, however to a lesser extent. Low
fCO2 values (Fig. 4.3d) in the Greenland Sea are associated with deep MLD (Fig. 4.5d), and higher
values in the Norwegian Sea is explained by the increased MLD from January to February.

March shows a gradual decrease in fCO2 in both the Greenland Sea and the Norwegian Sea,
compared to February (Fig. 4.3g). This is explained by the decreased MLD (Fig. 4.5g), which probably
has caused some primary production to occur.

As the surface water temperature gradually increases during spring (Fig. 4.4j), the MLD decreases
(Fig. 4.5j). The decrease in MLD in April increases primary production, causing fCO2 values to further
decrease (Fig. 4.3j). The Norwegian Sea still has higher fCO2 values than the Greenland Sea, but the
distinction between east and west has gradually decreased.

As the Nordic Seas continue to warm in May (Fig. 4.4m) and the MLD keeps decreasing (Fig. 4.5m),
the biological production increases further (Fig. 2.12). Shallow MLD thus results in intermediate levels
of fCO2 (Fig. 4.3m). The distinction in the SST between the Norwegian Sea and the Greenland Sea
becomes less clear, which is re�ected in fCO2. The relatively high fCO2 values northeast of the
Greenland Sea are due to intermediate MLD.

In June, July and August the fCO2 distribution is more or less homogeneous, with low values in
the Greenland Sea and slightly higher in the Norwegian Sea (Fig. 4.3p, 4.3s and 4.3v). The low fCO2

values are caused by shallow MLD and resultant high biological productivity during summer.

The fCO2 values in September gradually increases after being low during summer (Fig. 4.3y). The
increase can be explained by the decrease in biological activity and the slight increase in MLD (Fig.
4.5y). This deep mixing is caused by intense wind mixing and decreased temperature (Fig. 4.4y).
The distinction between the Norwegian Sea and the Greenland Sea becomes more clear, and is clearly
visible in October.

In November, cooling water masses (Fig. 4.4ae) and deepening MLD (Fig. 4.5ae) causes the fCO2

values in the Norwegian Sea and the Greenland Sea to increase and decrease, respectively (Fig. 4.3ae).
The low fCO2 values in response to deep MLD in the Greenland Sea are illogical as mentioned above,
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and should be investigated further. The high values in the Norwegian Sea are explained by intermediate
MLD.

During December the MLD continues to deepen (Fig. 4.5ah), while the SST gradually cools (Fig.
4.4ah). As a result the distinction in fCO2 values increases further, and begins to resemble the patterns
in January (Fig. 4.3ah). Low fCO2 values are explained by deep MLD, while intermediate MLD are
explained by intermediate values.

4.2.2 Interannual

Di�erences in physical and biological processes between years results in interannual variability of fCO2.
The interannual fCO2 variability for 2005-2007 (Fig. 4.3) is analyzed and compared with the interan-
nual SST (Fig. 4.4) and MLD variations (Fig. 4.5).

January 2005 has a much clearer distinction in the fCO2 distribution between the Greenland Sea
and the Norwegian Sea than the other years (Fig. 4.3a). This distinction is also visible in January 2006
(Fig. 4.3b), but to a lesser extent. January 2007 (Fig. 4.3c) has a distinction that lies in between the
two previous years. Comparing annual fCO2 with MLD shows that 2005 has much larger areas with
deep MLD than 2006 and 2007, and therefore the lowest fCO2 values (Fig. 4.5a-4.5c). This may be an
artifact due to the abnormal data point as described above. The problem occurs in all of the months,
and is not further commented. All three years have di�erent extent of areas with intermediate MLD
in the Norwegian Sea, which results in di�erent fCO2 values.

In February 2005 and 2007 the fCO2 values in the Norwegian Sea are slightly higher than in 2006
(Fig. 4.3d-4.3f). This is explained by the larger MLD in 2005 and 2007 (Fig. 4.5d-4.5f). The low values
in the Greenland Sea for all years correspond to the greatest MLD values.

In March, the greatest fCO2 di�erence between the years occurs in the Greenland Sea (Fig. 4.3g-
4.3i). Comparison of the values shows that 2005 has the highest values and that 2007 has the lowest.
The areas with low values in 2006 and 2007 are the result of deep MLD (Fig. 4.5g-4.5i). Intermediate
MLD is found in the Norwegian Sea at slightly deeper depths in 2006 and 2007 than in 2005. This
yields higher fCO2 values for 2006 and 2007.

April is a month with strong interannual variations. 2005 shows more or less intermediate fCO2

values in the Nordic Seas (Fig. 4.3j), while 2006 shows low and intermediate values in the Greenland
Sea and the Norwegian Sea, respectively (Fig. 4.3k). 2007 shows very low and high values in the
Greenland Sea and the Norwegian Sea, respectively (Fig. 4.3l). 2005 has smaller areas with deep MLD
(Fig. 4.5j), but still higher fCO2 levels this year compared to 2006 and 2007. 2006 has a distinctive
area in the Greenland Sea with deep MLD, in contrast to the rest of the basin which has shallow MLD
(Fig. 4.5k). For 2007, the deep MLD is found in the same area as 2006 (Fig. 4.5l). The intermediate
MLD in the Norwegian Sea corresponds to the high fCO2 values. By comparing the fCO2 for 2006 and
2007 with MLD, it is evident that intermediate MLD in the Norwegian Sea gives high fCO2 values, as
April 2006 lacks both intermediate MLD and high fCO2 values.

May 2005 has a di�erent fCO2 pattern than 2006 and 2007 (Fig. 4.3m-4.3o). The higher fCO2

values this year in the Norwegian Sea corresponds to the deeper MLD (Fig. 4.5m-4.5o). The MLD
decreases in 2006 and 2007, which leads to lower fCO2 values. The interannual variation in May
is probably the result of variations in primary production, and it is quite intriguing to examine the
SeaWiFS CHL maps in May, which shows larger CHL concentrations in 2006 and 2007 compared to
2005 (Fig. 4.2a-4.2c). These data have not been used in this SOM, which indicates strongly that the
MLD dataset from Mercator is quite robust in this month.

June has small interannual variations (Fig. 4.3p-4.3r). 2005 has slightly higher fCO2 values in the
Iceland Sea, while 2007 has slightly higher values in the Norwegian Sea. Both are explained by the
deeper MLD in these areas these years (Fig. 4.5p-4.5r).

In July the interannual di�erences are almost negligible (Fig.4.3s-4.3u). However, the biological
distribution for this month do not correspond to the fCO2 distribution (Fig. 4.2d-4.2f). In 2005 and
2006 the biological productivity is larger than in 2007, which is not re�ected in the fCO2 distribution.
The Mercator MLD estimates are clearly not always a robust proxy for the biological processes. High
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Figure 4.2: Interannual di�erences in the CHL (mg m−3) distribution in May (a-c) and June (d-f) in
2005-2007.

fCO2 values are found southwest of Svalbard, which can be explained by deeper MLD (Fig. 4.5s-4.5u).
The indistinct fCO2 distribution between the Greenland Sea and the Norwegian Sea, is caused by the
warming waters.

August 2007 has high values of fCO2 (Fig. 4.3x) in the northern Greenland Sea as a result of deep
MLD (Fig. 4.5x), otherwise, there are little interannual variations for this month.

The interannual variation of fCO2 in September is small, but visible (Fig. 4.3y-4.3aa). The high
fCO2 values in the eastern Greenland Sea for 2006 and 2007, are due to an increase in MLD (Fig.
4.5y-4.5aa). 2005 has more shallow MLD, and therefore lower fCO2 values than the other years.

There is a small interannual variation in October (Fig. 4.3ab-4.3ad), with the largest di�erence in
2005 in the Irminger Sea. This area has high fCO2 values compared to the other years, which is caused
by deep MLD (Fig. 4.5ab). A small variation can also be seen east in the Iceland Sea, where 2006 has
lower fCO2 values than 2005 and 2007. The MLD in 2006 for this area is slightly shallower than the
rest (Fig. 4.5ac), but not shallow enough to explain the large di�erence in fCO2. As there is no CHL
data for this time of the year, it is di�cult to say whether this is caused by biological production or
not.

November 2006 has higher fCO2 values than 2005 and 2007 in the north Greenland Sea (Fig.
4.3ae-4.3ag), which is an area with deep MLD (Fig.4.5ae-4.5ag). The Irminger Sea has more shallow
MLD in 2007, and therefore lower fCO2 values.

December 2006 has more shallow MLD in the southern Norwegian Sea compared to 2005 and 2007
(Fig. 4.5ah-4.5aj), which is re�ected in the lower fCO2 values for this year (Fig. 4.3ah-4.3aj). The
deep MLD in the north Greenland Sea in 2006 explains the high fCO2 values in this area.

Overall, the results in the Greenland Sea indicate that MLD control interannual fCO2 variations in
winter, where deep MLD leads to low fCO2. In summer on the other hand, the biological production
controls interannual fCO2 variations. In the Norwegian Sea, MLD controls interannual fCO2 variations
in winter, where deep MLD leads to high fCO2. This is known as the thermodynamic e�ect. In
summer, the interannual fCO2 variations in the Norwegian Sea appears to be controlled by biological
production.
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Figure 4.3: Continued on the next page.
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Figure 4.3: Interannual di�erences in the distribution of sea surface fCO2 (µatm) from January-
December in 2005-2007.
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Figure 4.4: Continued on the next page.
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Figure 4.4: Interannual di�erences in the distribution of SST (◦C) from January-December in 2005-
2007.
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Figure 4.5: Continued on the next page.
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Figure 4.5: Interannual di�erences in the distribution of MLD (m) from January-December in 2005-
2007. The color scale for June to September ranges from 0-75 m, while October to May ranges from
0-500 m.
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4.3 Normal Versus Merged SOMs for the northern North Atlantic
Ocean and the Nordic Seas

The normal maps were produced by mapping all data for the northern North Atlantic Ocean and the
Nordic Seas simultaneously. In the merged maps, each basin was trained and mapped separately, and
then merged together. Skill assessment statistics for the two approaches are presented in Tab. 4.3. By
comparing the statistics, it is evident that the merged maps are slightly better for all SOMs, with a
4-9% higher correlation. The RMSEs for the merged maps are typically 1-3 µatm lower than for the
normal maps, whereas the MEs are 4-12% higher. The cost function is also lower for all merged SOMs.

Table 4.3: Skill assessment statistics for the normal and merged SOMs

Map name r2 RMSE (µatm) ME CF

Normal SOM A 0.63 22.6 0.61 0.39
Merged SOM A 0.68 20.9 0.67 0.33
Normal SOM B 0.59 23.3 0.57 0.43
Merged SOM B 0.63 22.3 0.61 0.39
Normal SOM C 0.50 27.1 0.44 0.56
Merged SOM C 0.59 24.1 0.56 0.44
Normal SOM D 0.48 27.1 0.42 0.58
Merged SOM D 0.57 24.2 0.54 0.46

Only the self organizing map with the best statistics, SOM A, is presented and discussed (Fig. 4.6).
A comparison of the merged SOM A with the normal SOM A, showed that they have more or less
similar patterns. fCO2 values typically peaks in January and gradually decrease through spring. The
lowest values are found in July, and they start to increase during fall. There is a slight overestimation
of fCO2 in the Nordic Seas, and a slight underestimation in the northern North Atlantic Ocean for
the normal SOM, compared to the merged SOM. This can clearly be seen in January, where the
normal SOM (Fig. 4.6a) has much higher fCO2 values along the Greenland coast than the merged
SOM (Fig. 4.6b). This over- and underestimation may be explained by the fact that the northern
North Atlantic Ocean contains more data than the Nordic Seas, therefore the physical and biological
processes for the northern North Atlantic Ocean dominate the normal SOM. Another explanation may
be pattern smoothing of the regional characteristic during the training process. The normal SOM is
trained with rough and �ne-tuning parameters of 20 and 15, respectively, whereas the merged SOM
is trained with rough and �ne-tuning parameters of 25 and 20 for the Nordic Seas, and with 15 and
10 for the northern North Atlantic Ocean. This may have led to an overtraining of the characteristics
pattern in the Greenland Sea, but was done nonetheless as these settings re�ected the most realistic
fCO2 values. The same assumptions can be made for the di�erence in the Nordic Seas at the eastern
side of the basin in July (Fig. 4.6f), where the fCO2 values for the merged map are slightly lower than
for the normal map (Fig. 4.6e). From Tab. 4.3 and Fig. 4.6 one can conclude that the merged SOM
produces better fCO2 maps than the normal SOM.

A problem associated with merging two basins, is discontinuity along the border where they meet (at
63◦N). This occurs when the two separate estimates do not match perfectly, and a small discontinuity
can be seen west of Iceland in March (Fig. 4.6d) and July (Fig. 4.6h). For the rest of the months,
discontinuity is more or less absent, proving that merged SOMs can successfully be applied.
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Figure 4.6: Comparison of fCO2 estimates in the Northern North Atlantic and the Nordic Seas for
SOM A `normal' (left column) and SOM A `merged' (right column).
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4.4 Comparison with Earlier Self Organizing Maps

In this section the most optimal pCO2 map from Telszewski et al. (2009)'s study of the North Atlantic
Ocean between 10.5◦N to 75.5◦N, SOM Main, is compared with the most optimal fCO2 map for the
Nordic Seas from this study, SOM A (Fig. 4.7). Telszewski's SOM Main was trained with the input
parameters MLD, SST and CHL, as they were found to be the most optimal, whereas in this study
MLD and SST proved to be the most optimal for the region he used. Tab. 4.4 presents the skill
assessment statistics for SOM A and SOM Main. The r2 for SOM Main was 0.93 compared to 0.85
for SOM A, whereas the RMSEs were 11.6 µatm and 12.5 µatm, respectively. Telszewski's better
statistical results may be explained by the di�erent study areas. His study incorporated larger areas of
the North Atlantic Subtropical gyre, where fCO2 tends to be more homogeneous than in the northern
areas that I focus on. In fact this oligotrophic area is mainly driven by the thermodynamic e�ect and
di�ers from the Nordic Seas where biological production has a major impact on fCO2 during summer
(Takahashi et al., 2002).

Table 4.4: Skill assessment statistics for SOM A and SOM Main

Map name Input Parameters r2 RMSE (µatm)

SOM A MLD/SST 0.85 12.5
SOM Main MLD/SST/CHL 0.93 11.6

Fig 4.7 compares, on a month by month basis, mine and Teszewski's fCO2 maps for 2005. Since
Telszewski's estimates are done more southward than this study, this discussion is limited to the region
north of 63◦N. The color scale for SOM A was changed in order to match the scale used for SOM
Main, which is 280-440 µatm. The CHL parameter in SOM Main makes a comparison with SOM A
impossible for January, February, October, November and December, as these months in SOM Main
do not contain any data at higher latitudes. SOM Main has higher fCO2 values in March than SOM
A. There is a clear distinction between the eastern and western side of the basin in SOM A, with high
and low fCO2 values respectively. This feature is rather indistinct in SOM Main. For April, the SOMs
are slightly more similar, and SOM Main is now able to display the distinction between eastern and
western side of the Nordic Seas. May seems to be the best match between the SOMs, with similar
fCO2 values and patterns. Low values are found along the Greenland coast, whereas slightly higher
values are found on the western side of the basin. June, July and August show more or less similar
patterns, with fCO2 values in SOM Main being slightly higher than in SOM A. The comparison of
September reveals large di�erences between the SOMs. SOM Main has a clear distinction between east
and west, with moderate levels of fCO2 in east and low levels in west. SOM A has low fCO2 levels
with an approximately homogeneous distribution, in contrast to SOM Main.

From Fig. 4.7, it seems like SOM A is slightly underestimated with respect to fCO2, compared
to SOM Main. This may have been caused by the de�ned color, or the fact that visualization of the
maps is done with two di�erent Matlab functions: �m_contourf' for SOM A and �m_pcolor� for SOM
Main. Given that SOM Main has been trained over a larger area, the overestimated fCO2 values in
the Nordic Seas may have been slightly in�uenced during the training. From Fig. 4.7, it is evident that
SOM A works better than SOM Main in the Nordic Seas.
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estimates (right column).

(v)

CHAPTER 4 Alternative parameterizations

113

MAIN SOM SOM 2
s) t)

u) v)

w) x)

Figure 4-5 Mean monthly distribution of sea surface pCO2 in the North
Atlantic. The main SOM estimates (left column) are compared to the SOM 2
estimates (right column).

(w)

CHAPTER 4 Alternative parameterizations

113

MAIN SOM SOM 2
s) t)

u) v)

w) x)

Figure 4-5 Mean monthly distribution of sea surface pCO2 in the North
Atlantic. The main SOM estimates (left column) are compared to the SOM 2
estimates (right column).

(x)
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Chapter 5
Summary and Conclusion

The main objectives of this thesis were to see whether self organizing maps were able to produce
seamless mapping of surface fCO2 in the Nordic Seas and the northern North Atlantic Ocean, and to
investigate which parameters were required in order to estimate the most optimal fCO2 maps.

The SOMs were estimated for the northern North Atlantic Ocean including the Nordic Seas (44-
85◦N), the northern North Atlantic (44-63◦N) excluding the Nordic Seas, and the Nordic Seas only
(63-85◦N). This was done in order to see whether mapping two independent basins worked better than
one large.

Four maps were produced for each region, SOM A-D, using di�erent parameters. SOM A was
estimated with MLD and SST, SOM B with MLD, SST and CHL, SOM C with MLD, SST and SSS,
and SOM D with MLD, SST, CHL and SSS.

Surprisingly, SOM A (MLD and SST) always estimated the most realistic fCO2 map for all the
basins. Adding the CHL parameter (in SOM B) provided the second best estimate. Of the two
poorest performing SOMs, SOM C was usually better than SOM D, except for the Nordic Seas. The
fact that adding additional parameters to the default MLD and SST, actually lead to poorer skill
assessment statistics was unexpected, as one would expect that more input parameters would improve
the statistics.

SOM A for the Nordic Seas provided the most realistic estimates of fCO2 distribution. The
uncertainty for this SOM, 12.5 µatm, is close to the LSCOP target of 10.8 µatm for estimation of net
fCO2 �ux for the Northern North Atlantic (Sweeney et al., 2002).

The fCO2 maps that were produced showed a realistic seasonal cycle. The Norwegian Sea has
high fCO2 values of typically 360 µatm during winter. The values gradually decrease throughout
spring, until the lowest values, typically 290 µatm, are reached in summer. This is caused by primary
production. During fall, primary production decreases and deep mixing causes fCO2 to increase, and
the fCO2 values continues to increase during the winter. The Greenland Sea has low fCO2 values
during winter, typically 250 µatm. As spring approaches the values gradually increase to 320 µatm,
before they decrease again in summer, typically to 280 µatm. In fall, the fCO2 values decrease and
continues to decrease throughout winter. Winter in the northern North Atlantic Ocean has high fCO2

values of typically 360 µatm. These values gradually decrease as the biological production increases
throughout the spring, and are at their lowest, approximately 320 µatm, in summer. A decrease in
biological activity and an increase in MLD causes the fCO2 values to increase for the remainder of the
year. The Irminger Sea follows the same trend as the Norwegian Sea and the northern North Atlantic
Ocean, with high fCO2 values in winter and low values in summer.

The SOM A fCO2 maps for the Nordic Seas were scrutinized for interannual variability. The most
substantial interannual variations occurred in the central areas during winter and were tied to the MLD.
In May the interannual variations in fCO2 were described by the MLD, and this was con�rmed by the
CHL distribution. However, in July the homogeneous fCO2 distribution was not in accordance with
the interannual di�erences in CHL. Here the MLD did not seem to accurately represent the biological



78 Summary and Conclusion

production.
In all the SOMs, comparison of fCO2 with MLD in the Greenland Sea showed that the lowest

fCO2 values occurred at deep MLD, while the highest values occurred at intermediate MLD. This was
rather unexpected, as fCO2 generally increases with increasing MLD. As waters with shallow MLD
have intermediate fCO2 values, and waters with intermediate MLD have high fCO2 values, it seems
illogical that waters with high MLD should have the lowest fCO2 values. A theory is that a neuron
has been overexpressed during training, resulting in an artifact in the SOMs. This seems to be a
weakness with SOM, if one do not have typical values for all regions in the study, one might end up
with unrealistic results.

The SOMs for the Nordic Seas were also merged with the SOMs for the northern North Atlantic
Ocean, to see whether this produced more realistic results than the SOMs for the northern North
Atlantic Ocean and the Nordic Seas (called normal SOMs). The merged SOMs showed more or less
the same patterns as the normal SOMs. For the normal SOM, there was a slight overestimation of
fCO2 in the Nordic Seas, and a slight underestimation in the northern North Atlantic Ocean, compared
to the merged SOM. The over- and underestimation may be explained by the fact that the northern
North Atlantic Ocean contains more data than the Nordic Seas, therefore the physical and biological
processes for the northern North Atlantic Ocean dominate the normal SOM. Discontinuity along the
border is a problem that can occur when merging the fCO2 maps from two basins. Here only a small
discontinuity was seen west of Iceland in March and July. For the rest of the months, discontinuity
was more or less absent, proving that merged SOMs can successfully be applied.

The most optimal fCO2 map for the Nordic Seas, SOM A, was compared with the most optimal
pCO2 map from Telszewski et al. (2009)'s study. SOM A had better results for the Nordic Seas, because
Telszewski's SOM was trained with the CHL parameter. As there is no CHL data available during
winter in the Nordic Seas, his most optimal SOM was unable to reproduce the fCO2 distribution at
higher latitudes. Telszewski's statistical results were better than the statistics for the most optimal
SOM from this study, which may be explained by the fact that his study incorporated larger areas of
the North Atlantic Subtropical gyre, where fCO2 tends to be more homogeneous than in the Nordic
Seas.

The most optimal SOM had good statistics and performed well in the Nordic Seas, it was able
to reproduce seasonal variations and a realistic fCO2 distribution, but appears unable to reproduce
correct fCO2 values for the deepest mixed layer depths in the Greenland Sea. SOM performed well in
the Nordic Seas, but not as well as in the northern North Atlantic Ocean, it is therefore recommended
to use merged SOM when mapping both regions together. There is a need for more data from the
winter season in the Nordic Seas, especially in central areas, as SOM seems to produce unrealistic
fCO2 values here.



Chapter 6
Further Work

The SOMs for the Nordic Seas reproduced deep mixed layer depths with low fCO2 values in the
Greenland Sea, which is counterintuitive. The training dataset should therefore be scrutinized for
possible outliers, and more data should be obtained from the Greenland Sea in winter, in order to resolve
the fCO2 distribution and its controlling mechanism in this area during this season. The training
dataset should also be trained with MLD from alternative ocean reanalysis products such as the Hycom
(www.hycom.org/reanalysis) and TOPAZ (topaz.nersc.no), to see whether this yields better results
than MLD from Mercator. To determine whether sea surface fCO2 is increasing with the increasing
atmospheric CO2, the SOMs should be trained yearly, instead of simultaneously. Adding additional
parameters to the default parameters gave poorer results than just using the default parameters, which
was unexpected. The causes for this behavior should also be investigated further.
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Appendix A
Self Organizing Map Quality Parameters

Table A.1: Quality parameters for the SOMs: quantization error (qe) and topographic error (te)

Map name & The northern North Atlantic The northern North The Nordic Seas
Parameters Ocean and the Nordic Seas Atlantic Ocean

Winter Summer Winter Summer Winter Summer

SOM A: `qe' 0.019 0.024 0.013
SOM A: `te' 0.058 0.015 0.089
SOM B: `qe' 0.019 0.132 0.024 0.017 0.013 0.109
SOM B: `te' 0.058 0.043 0.015 0.044 0.089 0.036
SOM C: `qe' 0.087 0.095 0.065
SOM C: `te' 0.046 0.041 0.039
SOM D: `qe' 0.087 0.284 0.095 0.222 0.065 0.195
SOM D: `te' 0.046 0.055 0.041 0.050 0.039 0.048
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Appendix B
Supplementary Self Organizing Maps
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The northern North Atlantic Ocean and the Nordic Seas [44-85◦N]
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Figure B.1: SOM A: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for year 2006 (a) and 2007 (b). SOM A was prepared using the following
settings: `msize': [90 50], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': [20 15].



85

SOM B: MLD, SST and CHL (summer only)
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Figure B.2: SOM B: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for 2006 (a) and 2007 (b). SOM B was prepared using the following settings:
`msize': Summer/Winter: [90 50], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training':
Summer: [25 20], Winter: [20 15].



86 Supplementary Self Organizing Maps

SOM C: MLD, SST and SSS
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Figure B.3: SOM C: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for year 2006 (a) and 2007 (b). SOM C was prepared using the following
settings: `msize': [100 65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': [20 15].
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SOM D: MLD, SST, SSS and CHL (summer only)

Jan Feb Mar

Apr May Jun

Jul Aug Sep

Oct Nov Dec

 

 

Sea Surface fCO
2
 (μatm)

260 280 300 320 340 360 380

(a)

Jan Feb Mar

Apr May Jun

Jul Aug Sep

Oct Nov Dec

 

 

Sea Surface fCO
2
 (μatm)

260 280 300 320 340 360 380

(b)

Figure B.4: SOM D: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean and the Nordic Seas for year 2006 (a) and 2007 (b). SOM D was prepared using the follow-
ing settings: `msize': Summer: [60 40], Winter: [100 65], `lattice': `hexa', `shape': `sheet', `neigh':
`gaussian' and `training': Summer: [15 10], Winter: [20 15].
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The northern North Atlantic Ocean [44-63◦N]

SOM A: MLD and SST
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Figure B.5: SOM A: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean for 2006 (a) and 2007 (b). SOM A was prepared using the following settings: `msize': [85 50],
`lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': [15 10].



89

SOM B: MLD, SST and CHL (summer only)
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Figure B.6: SOM B: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean for 2006 (a) and 2007 (b). SOM B contains the parameters: `msize': Summer: [100 65], Winter:
[85 50], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer: [25 20], Winter:
[15 10].
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SOM C: MLD, SST and SSS
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Figure B.7: SOM C: Monthly distribution of estimated sea surface fCO2 in the northern North Atlantic
Ocean for 2006 (a) and 2007 (b). SOM C was prepared using the following settings: `msize': [100 65],
`lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': [25 20].
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure B.8: SOM D: Monthly distribution of estimated sea surface fCO2 in the northern North At-
lantic Ocean for 2006 (a) and 2007 (b). SOM D was prepared using the following settings: `msize':
Summer/Winter: [100 65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer:
[15 10], Winter: [25 20].
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The Nordic Seas [63-85◦N]
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Figure B.9: SOM A: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2006
(a) and 2007 (b). SOM A was prepared using the following settings: `msize': [100 65], `lattice': `hexa',
`shape': `sheet', `neigh': `gaussian' and `training': [25 20].
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SOM B: MLD, SST and CHL (summer only)
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Figure B.10: SOM B: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2006
(a) and 2007 (b). SOM B was prepared using the following settings: `msize': Summer/Winter: [100
65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer/Winter: [25 20].
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SOM C: MLD, SST and SSS

Jan Feb Mar

Apr May Jun

Jul Aug Sep

Oct Nov Dec

 

 

Sea Surface fCO
2
 (μatm)

260 280 300 320 340 360 380

(a)

Jan Feb Mar

Apr May Jun

Jul Aug Sep

Oct Nov Dec

 

 

Sea Surface fCO
2
 (μatm)

260 280 300 320 340 360 380

(b)

Figure B.11: SOM C: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2006
(a) and 2007 (b). SOM C was prepared using the following settings: `msize': [100 65], `lattice': `hexa',
`shape': `sheet', `neigh': `gaussian' and `training': [25 20].
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure B.12: SOM D: Monthly distribution of estimated sea surface fCO2 in the Nordic Seas for 2006
(a) and 2007 (b). SOM D was prepared using the following settings: `msize': Summer/Winter: [100
65], `lattice': `hexa', `shape': `sheet', `neigh': `gaussian' and `training': Summer: [15 10], Winter: [25
20].
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Merging Two SOMs [44-85◦N]
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Figure B.13: SOM A: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2006
(a) and 2007 (b).
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SOM B: MLD, SST and CHL (summer only)
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Figure B.14: SOM B: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2006
(a) and 2007 (b).
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SOM C: MLD, SST and SSS
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Figure B.15: SOM C: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2006
(a) and 2007 (b).
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SOM D: MLD, SST, SSS and CHL (summer only)
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Figure B.16: SOM D: Monthly distribution of estimated sea surface fCO2 for the merged SOM in 2006
(a) and 2007 (b).
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