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Abstract. Due to Fortuin and Kastelyin the q state Potts model has a representation
as a sum over random graphs, generalizing the Potts model to arbitrary q is based
on this representation. A key element of the Random Cluster representation is the
combinatorial factor ΓG(C,E), which is the number of ways to form C distinct clusters,
consisting of totally E edges. We have devised a method to calculate ΓG(C,E) from
Monte Carlo simulations.
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1. Introduction

The Potts model[1] is one of the most studied models in statistical physics. The

traditional representation of the model is in terms of the Hamiltonian

H = −J
∑
〈i,j〉

δ(σi, σj), (1)

where the spins σi are integer values σi ∈ [1 . . . q], the sum 〈i, j〉 is over nearest

neighbours. The q is a parameter of the model. The model is typically defined on

a regular lattice in d dimensions, but can in general be defined on any graph.

For d ≥ 2 the model sustains a order-disorder transition , in d = 2 the critical

coupling is βc = ln(1 +
√

q). For β > βc the q-fold permutation symmetry of Eq. 1 is

broken, and one of the q different groundstates has been singled out. For q = 2 the model

is the familiar Ising model, which has a second order transition, but with increasing q

the excited states have relatively more entropy and for q > qc the transition is first

order. For d = 2 the phase transition changes order at qc = 4 [2, 3], for d = 3 the exact

value is not known, but the most recent estimate based on Monte Carlo simulations is

qc ≈ 2.35[4].

The Hamiltonian Eq. 1 is only defined for integer q, however due to an elegant

transformation by Fortuin and Kastelyn (KF) the partition function of the q state Potts

model can be written as a correlated percolation problem, the socalled Random Cluster

(RC) model[5]. In the RC representation q enters as an ordinary variable, and can

attain any scalar value. Apart from extrapolation/interpolation from integer q results,

all (numerical) studies of the noninteger q properties of the Potts model are based

on the RC representation, this also applies to the current paper. Properties of the

Potts model with noninteger q have been extensively studied using transfer matrix[6]

techniques. Recently also MC simulations have been used. The latter come in two

categories; either a technique is based on the RC measure to simulate directly at an

arbitrary q[4, 7, 8], or alternatively the results are reweighted to arbitrary q after the

simulation is complete[7, 9].

The rest of this paper is organized as follows: In section 2 we introduce some

key elements of graph theory, and how concepts from graph theory can be applied

in statistical physics; in particular to the Potts model. In section 3 we introduce

and describe an algorithm which can be used to “reweight” Potts model simulations

to arbitrary q. Section 4 is devoted to results, both to show the correctness of the

approach and also to study real q properties which are not easily studied by ordinary

MC simulations.

2. Graph theory and the Potts model

An (undirected) graph G is a collection of vertices V (G), along with a set of edges E(G)

connecting the vertices[10]. A subgraph G ′ ∈ G is a collection of vertices and edges such
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that V (G ′) ∈ V (G) and E(G ′) ∈ E(G). The rank of a graph is denoted by r(G) and

given by

r(G) = |V (G)| − C(G), (2)

where |V (G)| is the number of vertices and C(G) is the number of connected components.

Observe that also isolated single vertices constitute connected components when

evaluating the rank of a graph. Fig. 1 shows a simple graph and illustrates the necessary

concepts. From now on we will use the symbols EG, CG and VG to denote the number of

edges, clusters and vertices in a graph G, when there is no ambiguity we will omit the

index G.

Figure 1. The sites of 5× 5 lattice, and links connecting some of the sites. Together
these sites and links constitute a graph. This particular graph has VG = 25, EG = 20,
six connected components (CG = 6) and a rank r(G) = VG − CG = 19.

By assigning scalar properties to sites and bonds one can define different graph

polynomials. One of the most general graph polynomials is the Tutte or Di-Chromatic

polynomal TG(x, y)[11, 12]:

TG(x, y) =
∑

E∈E(G)

(x− 1)r(E)−r(G) (y − 1)E−r(G) . (3)

The sum in Eq. 3 is over all edge configurations of the graph G (i.e. spanning subgraphs).

Here x is a scalar property assigned to the vertex set, and y a property assigned to the

edges; as indicated in Eq. 3 we will only consider the situation of spatially constant y, but

the general definition of the Tutte polynomial allows for a set {y} of edge properties.

Many other polynomials can be found as suitably rescaled evaluations of the Tutte

polynomial[13]:

RG(p) = (1− p)E−V+1pV−1TG

(
1,

1

1− p

)
(4)

PG(q) = (−1)r(E)qCTG(1− q, 0) (5)

ZG(q, v) = qvV−1(v + 1)−ETG

(
q + v

v
, v + 1

)
, v =

p

1− p
= eβJ − 1. (6)
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RG(p) is the reliability polynomial, closely related to the (bond) percolation problem.

PG(q) is the chromatic polynomial, and denotes the number of ways the vertices in G can

be colorized with q different colors, so that no adjacent vertices share the same color.

The chromatic polynomial coincides with the T → 0 limit of the partition function of

the anti ferromagnetic Potts model. Finally Z(q, v) is the partition function of the q

state Potts model. Observe the quantity v in Eq. 6, in this context this is the most

convenient temperature variable.

The FK transformation is the key to identify Z(q, v) with the Tutte Polynomial[5].

The actual transformtion is in terms of the complete partition function, hence it is not

possible to identify a spin state with a corresponding RC state uniquely, see however

Ref. [14] for an exposition in terms of a mixed bond-spin model which elucidates the

connection. ZRC(p, q) is a function of two variables: a probability p to occupy an edge,

and a q, where ln q resembles a cluster entropy. The RC partition function is built up as

follows: (1) each configuration E ′(G) of edges gets a “Boltzmann”-weight pE′
(1−p)E−E′

,

(2) the weight is multiplied by an entropic factor qC′
, (3) all configurations E ′(G) are

summed over. This finally gives the RC partition function

ZRC(q, p) =
∑

E′(G)∈E(G)

pE′
(1− p)E−E′

qC =
V∑

C=1

E∑
E′=0

ΓG(C, E)pE(1− p)E−E′

︸ ︷︷ ︸
aC(p)

qC , (7)

The p in Eq. 7 is the probability to occupy an edge, for the RC model this is an

arbitrary number, however to make contact with the q-state Potts model at coupling β,

we must have p = 1 − e−βJ . As indicated in Eq. 7 the partition function can bee seen

as a polynomial in q, with p dependant coeffiecients. In section 4.4 we will use this to

determine the zeroes of the partition function in the complex q plane.

Using the combinatorial factor ΓG(C, E) to express the sum is the key element in

Eq. 7. This factor is simply the number of ways to form C connected components with

E, on the underlying graph G. This is a purely combinatorial/geometric property which

can in principle be calculated without any reference to a particular model of statistical

physics. On the other hand all physical properties are contained in ΓG(C, E). Eq. 7 also

highlights that the Potts model has a common structure independent of q, even though

the physical properties vary significantly with q. In addition to facilitating the study

of the Potts model for arbitrary q, the FK representation also serves as the theoretical

underpinning of the Swendsen-Wang algorithm for spin models[14, 15].

An important topic in computer science is a formal demarcation of tractable and

intractable problems. The socalled #P complete problems are counting problems which

are essentially intractable. Obtaining the partition function of (discrete) system belong

to this category[4, 16]. Due to this intractability good approximative techniques is

essential; the Monte Carlo technique is one such approach. Also in computer science

the use of Monte Carlo techniques to approach NP and #P complete problems, has

been popular, see eg. [17]. Computer scientists Jerrum and Sinclair have devised

efficient Monte Carlo algorithms (FPRAS) to determine the partition functions of both
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2D monomer-dimer system, and the 2D Ising model[18, 19]. Hence the study of the RC

and related problems is of interest to scientist from widely different fields.

3. Algorithm

The probability P (ε) to find a system in a state with energy ε is proportional to g(ε)e−βε,

where g(ε) is the density of states at energy ε. That P (ε) can be written in this manner

is the foundation of ordinary ε − β reweigting[20]. In the formulation Eq. 7 (p, E) and

(q, C) are “conjugate” variable pairs; alas ΓG(C, E) can be used to reweight to arbitrary

q and p; from now on we will mostly use β in the text, but it should be understood that

the relation p = 1 − e−βJ applies throughout. In the remainder of this section we will

present an algorithm to estimate ΓG(C, E) from simulations at different p and q. An

algorithm based on the same principle was presented by Weigel et. al. in Ref. [9], and

just recently Hartmann has presented an algorithm based on only (q, C) reweighting[4].

The algorithm presented here is general, and will apply to any graph. However for

ease of notation we have specialized to a two dimensional square lattice with a total

of N = L × L sites, and 2N edges. The Gibbs probability to find any state with C

components and E edges is given by[13]:

PG(C, E) =
ΓG(C, E)pEq2N−EqC

ZG(q, β)
. (8)

To estimate ΓG(C, E) we need to generate states distributed according to Eq. 8. We

have done this by using the Swendsen-Wang[15] algorithm on the q state Potts model,

with integer q. However, one could equally well have used an algorithm generating RC

states directly[7, 8], or alternatively a combination. During the simulation at µ = (q, β)

a histogram hµ(C, E) is collected. From the histogram hµ0(C, E) we can in principle

estimate ΓG(C, E) from Eq. 8

Γ̂µ0(C, E) = eξµ0hµ0(C, E)p−E
0 q

−(2N−E)
0 q−C

0 , (9)

where ξµ0 is an (undetermined) normalization constant. ΓG(C, E) is independent of

µ, however the estimator in Eq. 9 has been given index µ0 to indicate that it is based

on results sampled at these couplings. The estimator Eq. 9 is formally correct, but only

applicable in a narrow range around the mean values 〈C〉µ0 and 〈E〉µ0 . By combining

results obtained at different β and q we can get an estimate for ΓG(C, E) which is valid

for a wide range of C and E values. A series of N histograms obtained at couplings

µ1, µ2, . . . , µN can be combined as

Γ̂G(C, E) =
N∑
i

wi(C, E) · Γ̂µi
(C, E), (10)

where the weight factor wi(C, E) is given by

wi(C, E) =
hµi

(C, E)∑
k hµk

(C, E)
. (11)
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The normalization constants ξi, i > 1 are determined by maximizing, the (weighted)

overlap between (the logarithm of) the estimates Γ̂µi
(C, E). Mathematically this

amounts to minimizing

χ2 =
∑

i

∑
j>i

∑
C,E

hµi
(C, E)hµj

(C, E)×

(
(ξi + ln hµi

(C, E)− C ln qi)−
(
ξj + ln hµj

(C, E)− C ln qj

)︸ ︷︷ ︸
ln Γ̂µi−ln Γ̂µj

)2

, (12)

with ξ1 initially fixed at an arbitrary value. The final normalization constant ξ1 is

determined by the overall normalization∑
C,E′

ΓG(C, E′) = 2E . (13)

The actual solution of the minimization problem Eq. 12 is found as the solution of a

system of linear equations. As long as all the histograms hµi
(C, E) have finite overlap

with at least one other histogram hµj
(C, E) the solution will be found. The method is

a generalization of an existing algorithm to determine the density of states g(ε)[21, 22].

Due to the nonlinear nature of the algorithm it is difficult to calculate errors by

the use of error-propagation. Furthermore the estimation of ΓG(C, E) is quite time

consuming, hence computer-intensive methods like Jack-Knife and Bootstrap are not

very suitable. In the current paper error estimates have been calculated by comparing

the results from independent simulations.

4. Results

4.1. Basic thermodynamic results

In this section we will show how simulations performed at one value q1 can be reweighted

to another q2 6= q1. Fig. 2 shows thermodynamics for a q = 4 Potts model. The solid

line is data obtained at q = 4, and the symbols represent results reweighted from q = 2

and q = 8 respectively.

4.2. The average trajectory in clusters - links space

In the Random Cluster formalism the state of the system is given by C and E, and it is

interesting to see how these quantities evolve when the Potts model parameters β and

q are varied. For a fixed value of E the conditional probability P (C|E) is independent

of β; hence we can easily plot the mean path the system will follow in (C, E) space. In

Fig. 3 we show the conditional mean

〈C|E〉 =

∑
C C · Γ(C, E)qC∑

C Γ(C, E)qC
, (14)

along with the contours of P (C, E) at the critical coupling, for two different values of

q. As we can see from Fig. 3 the q behaviour of C and E can conveniently be divided
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Figure 2. This figure shows from top to bottom free energy, internal energy and
spesific heat for the q = 4 Potts model, system size is 16 × 16. The solid line shows
result obtained from a simulation at q = 4, the symbols show results “reweighted”
from q = 2 and q = 8 respectively.

in three regions: (1) a low T region where 〈C|E〉 ≈ 1 quite independent of E, a high T

region where 〈C|E〉 & N − E and an intermediate region containg the critical point. It

is only in the intermediate region there is significant q dependence.

The contours in Fig. 3 show the probability density P (C, E) at the critical point,

for q = 2 and q = 8. The q “reweighting” has similar limitations as ordinary thermal

reweighting, the statistics is best at the original q value, and can not be extended to

regions of (C, E) space which have not been sampled. As we can from Fig. 3 the overlap

between the q = 2 and q = 8 results is very small; hence reweighting between these two

q values would give unreliable results.

From Fig. 3 we see that the fluctuations are quite assymetric; they are much larger

along the direction given by the mean path Eq. 14 than orthogonal to it. The conditional

distribution function

P (C|E) =
Γ(C, E)qC∑
C Γ(C, E)qC

(15)

is well described by a Gaussian with width σE(q). The width scales with the number of

sites as N1/2, hence the relative fluctuations in the number of clusters scales as N−1/2
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Probability distribution P(C,|E|) for Q=2 and Q=8 at the critical point
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Figure 3. Contour plot of the density P (C,E) at the critical point, for q = 2 and
q = 8 for a 16 × 16 lattice. The dashed lines show 〈C|E〉, which corresponds to the
path followed in C,E space when temperature is varied.

and consequently the system will follow an increasingly well defined line in (C, E) space

when the system size increases. Fig. 4 shows the distribution of the cluster density

c = C/N for a given link density e = E/N , and finite size scaling of the width of this

distribution, σe(q) = σE(q)/N .
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Figure 4. The left figure shows the conditinal distribution P (c|e) at e = (1− 1/(1 +√
q))/L2, i.e. the critical link density, for the q = 3 model. The right figure shows the

width of the distribution P (c|e) as a function of L, all the curves show a L−1 decay.
The curves for q ≥ 3 have been shifted for clarity.

In the RC model each cluster can be in q different configurations, hence we get an

additive entropy contribution of ln q from every cluster. Consequently we see that for a

fixed number of links the average number of clusters will increase with q. On the other

hand larger amount of entropy per cluster, means that for high q entropy will dominate
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the competetion between internal energy and entropy at a lower number of clusters,

and consequently at the critical point 〈C〉 decreases with increasing q. These points are

illustrated in Fig. 5.
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q

<c|e = 0.60>
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Figure 5. The mean number density of clusters as a function of q, for a fixed density
of links and at the (q dependant) critical link density. The results in the figure are
from a 16× 16 lattice.

4.3. Evaluation of the Tutte polonymial

The Tutte polynomial can be defined in terms of a recursive definition[13]; which

immediately leads to a simple and exact algorithm for computation of TG(x, y). However

this algorithm has exponential complexity, and is clearly not feasible for anything but

very small graphs. Due to it’s importance in many different areas of mathematics and

computer science, this has lead to a large effort to find efficient approximate algorithms

for evaluation of the Tutte polynomial[23].

Using the algorithm presented here we can also estimate Tutte polynomials, in

Fig. 6 we show the reliability polynomial and the Chromatic polynomial. With the

current approach the running time to determine the Tutte polynomial is governed by

the running time of the MC algorithm, and at least for q ≤ 4 the Swendsen-Wang

algorithm is rapidly mixing[24].

When the arguments x, y of the Tutte polynomial move a long way away from the

values used when sampling, the results become unreliable; consult Eq. 6 to see how

x and y are related to the parameters q and β of the Potts model. In particular for

x < 1 and/or y < 1 the evaluation of T (x, y) is difficult, because in these regions the

polynomial terms are oscillating and inaccurate coefficients lead to large relative errors.

4.4. Zeros in the complex q plane

The formulation of the partition function as a polynomial in q allows for quite easy

evaluation of the zeros of the partition function in the complex q plane. Properties



The number of link and cluster states: the core of the 2D q state Potts model 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
p

Reliability polynomial

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 2  4  6  8  10  12  14  16  18  20
Q

Chromatic polynomial

Figure 6. The reliability polynomial Eq. 4 and chromatic polynomial Eq. 5 for a 3×3
lattice. The solid lines are exact results from the computer algebra system Maple, and
the points come from our simulations. The very small system size considered is to
limit the run-time of Maple

of the complex q zeroes have been investigated both analytically, and numerically[25].

According to the Yang-Lee view of critical phenomena the critical point is characterized

by zeros in the complex β plane pinching the real axis. The phase transition in the

Random Cluster model can be driven by both β and q, we should therefor see the same

pinching of the real q axis.

The critical coupling is given by βcJ = ln(1 +
√

q), alternatively we find that for a

fixed β the critical q is given by

qc = (eβJ − 1)2 = v2. (16)

For the current discussion the temperature variable v, first introduced in Eq. 6 will be

the most convenient. Plotting the zeros of Z(v, q) we expect the zeros to pinch the

real q axis close to the qc given by Eq. 16, Fig. 7 shows the distribution of zeros in the

complex q plane for two different couplings.

If we denote the zero closest to qc with qc(L), we find that qc(L) converges towards

qc with increasing system size. To determine which zero is indeed the “critical” one we
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Figure 7. The roots in the complex q plane of the partition function Z(v, q) at
couplings v =

√
3 (top) and v =

√
5 (bottom). We observe that the zeroes close in on

the critical q values of 3 and 5.

have measured distance d(qi, qc) using both the ordinary metric d2(x, y) = |x − y| and

also d1(x, y) = |Im(x) − Im(y)|. For v2 . 3.0 the two methods select the same zero,

whereas for v2 & 3.0 different zeros are selected, and the real part of the zero selected

by d2 jumps about randomly. Fig. 8 shows finite size scaling plots of the |Im(q)| (as

determined by using d1) for the zero closest to the real q axis. This should scale as

|Im(q)| ∼ L− 1
ν . (17)

For q = 2 and q = 3 this gives ν ≈ 0.992(7) and ν ≈ 0.863(7) which agree reasonably

well with the exact values of 1 and 5/6 ≈ 0.8333 . . .. For q = 4 we get ν ≈ 0.77(3), this

is well above the exact value of 2/3 + logarithmic corrections. If we assume an effective

exponent for the first order transition at q = 5 we would expect ν = 1/2, whereas the

estimated value is ν = 0.77(6).

The reason that the quality of the ν estimates detoriate with increasing q is

probably that the slope of the curve βc(q) is reduced with increasing q. When the

transition is driven by q the critical point is approached more and more tangentially.

It seems reasonable that this makes a precise determination of the critical properties

progressively more difficult. Furthermore the model has limiting behaviour at q = 4,
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with strong corrections to scaling; consequently critical properties are notoriously

difficult to determine numerically at q = 4[26].

 0.1

 1

 10

 10

|Im
(q

)|

L

v2 = 5
v2 = 4
v2 = 3
v2 = 2

Figure 8. The plots show |Im(q)| for the zero closest to the real axis, as a function of
system size L. The value of v2 coincides with qc. The error bars are generally smaller
than the symbol size. The solid lines are least squares fits with slope, from top to
bottom, −1.3(1),−1.29(5),−1.159(9),−1.008(7).

The zeroes are found using the MPSolve[27] package. To determine the roots of

Z(v, q) in the complex q plane is an ill-posed problem. Firstly the coefficeints aC(p) (see

Eq. 7) vary over a wide range, secondly finite sampling statistics adds to the problem.

In particular the states with C → N are typically not sampled at all. For independent

simulations the pattern of zeroes differs significantly from case to case, however the

location of the zero qc(L) shows much less fluctuations. The results in Fig. 8 are the

total of ten independent simulations, and as we see the error bars are very small.

In a large paper by Alan Sokal[25] it is shown that the complex q zeros of the

partition function Z(v, q) for |1 + v| ≤ 1 are all located within a circle given by

the maximal degree of the graph. The restriction |1 + v| ≤ 1 corresponds to the

antiferromagnetic Potts model, which is not what we have considered in this paper.

If the restriction |1 + v| ≤ 1 is relaxed the radius is found to scale as (for spatially

constant v)

Rq ∼ max
[
v, vr/2

]
, (18)

where r is the maximum degree of the graph, i.e. the maximum number of edges incident

on any one vertex. For an ordinary cubic lattice in two dimensions we have r = 4, hence

we expect to see a crossover from v to v2 scaling around v = 1. Fig. 9 shows the radius

Rq as a function of v.
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Figure 9. The radius Rq for a two dimensional square lattice, i.e. r = 4. The solid
line is f(v) ∼ a · v and the dashed line is g(v) ∼ a + b · v2.

5. Conclusion

We have shown that the nontrivial information of the Potts model is contained

in the density ΓG(C, E), and this is independent of q. ΓG(C, E) is purely

combinatorial/geometric property of the underlying lattice, emphasizing the connection

between these concepts and critical phenomena. Furthermore we have devised an

algorithm to estimate ΓG(C, E) from Monte Carlo simulations, and used this to study

various properties of the Potts / Random Cluster model.
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