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We discuss the construction of volume-preserving splitting methods based on a tensor product of
single-variable basis functions. The vector field is decomposed as the sum of elementary divergence-free
vector fields (EDFVFs), each of them corresponding to a basis function. The theory is a generalization of
the monomial basis approach introduced in Xue & Zanna (2013, BIT Numer. Math., 53, 265–281) and has
the trigonometric splitting of Quispel & McLaren (2003, J. Comp. Phys., 186, 308–316) and the splitting
in shears of McLachlan & Quispel (2004, BIT, 44, 515–538) as special cases. We introduce the concept of
diagonalizable EDFVFs and identify the solvable ones as those corresponding to the monomial basis and
the exponential basis. In addition to giving a unifying view of some types of volume-preserving splitting
methods already known in the literature, the present approach allows us to give a closed-form solution
also to other types of vector fields that could not be treated before, namely those corresponding to the
mixed tensor product of monomial and exponential (including trigonometric) basis functions.

Keywords: geometric integration; volume preservation; splitting methods; elementary divergence-free
vector fields.

1. Introduction

Volume preservation is an important property shared by several dynamical systems. The principal
example is the velocity field for an incompressible fluid flow and applications include the study of
turbulence and of mixing of flows (see Arnold & Khesin, 1998). The preservation of phase-space vol-
ume is also a key ingredient in methods that involve stochastics like the hybrid Monte Carlo algorithm
(see Neal, 2011). Thus, preservation of volume by a numerical method for differential equations is a
desirable property either in conjunction with other properties, like energy preservation or time reversal
symmetry, or on its own. The latter case is the subject of this paper.

Designing volume-preserving numerical integrators is a hard task, especially given the existence
of no-go theorems within the class of ‘standard’ methods: in Qin & Zhu (1993) it was proved that no
standard numerical method, for example a Runge–Kutta scheme, is volume preserving for all linear
vector fields. A similar result was proved in Kang & Shang (1995). Further, Iserles et al. (2007) and
Chartier & Murua (2007) proved that no B-series method can be volume preserving for all possible
divergence-free vector fields. The only methods in this class that can be volume preserving are the
composition of exact flows of divergence-free subsystems. Thus, the design of efficient methods that
preserve volume is still an open problem in geometric integration (see McLachlan & Scovel, 1998).

Despite the existence of no-go theorems, volume-preserving numerical methods can be constructed
by other techniques, for instance using generating functions (see e.g. Scovel, 1991; Shang, 1994; Quis-
pel, 1995; Xue & Zanna, 2014) or by splitting methods. One of the earliest volume-preserving splitting
methods is the splitting method by Kang & Shang (1995), decomposing the vector field into the sum
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2 of 18 A. ZANNA

of essentially two-dimensional Hamiltonian fields, which are then solved by a (typically implicit) sym-
plectic method.

Because of the difficulty of addressing the general space of divergence-free vector fields, recent
efforts have concentrated on smaller, yet still interesting, function spaces, for instance, the space of
polynomial fields. An earlier paper on the splitting of polynomial vector fields is McLachlan & Quispel
(2004), dealing mainly with the Hamiltonian case. In Xue & Zanna (2013), we presented a novel
approach for arbitrary polynomial divergence-free vector fields, by expanding the divergence equation
in terms of the monomial basis, that allowed us to develop explicit volume-preserving splitting meth-
ods. It turns out that the approach can be generalized to an arbitrary tensor basis framework, which
embraces several known splitting methods as special cases, namely the monomial splitting of Xue &
Zanna (2013), the splitting in shears of McLachlan & Quispel (2004) and the trigonometric splitting of
Quispel & McLaren (2003). The main idea is simple: to expand the divergence equation in terms of a
tensor product of one-dimensional basis functions. Each basis function gives rise to a uniquely deter-
mined (up to an off-diagonal contribution) elementary divergence-free vector field (EDFVF). Away
from some critical points, these EDFVFs are proved to be integrable. Further, we identify solvable
EDFVFs, recovering the monomial basis and the exponential basis (and the mixed tensor product of
these). The resulting composition methods are thus explicit and volume preserving.

Finally, we also consider expansions in EDFVFs for divergence-free fields with measure μ(x) �= 1,
and show that the noncanonical case can be viewed as a time-reparametrization of the canonical one.
Thus, the results and methods presented in this paper can be applied to the case ∇ · (μf) = 0.

2. The basis-decomposition approach

We consider the problem of solving the differential equation

ẋ = f(x), (2.1)

subject to the divergence-free condition

∇ · f = 0, (2.2)

by splitting the vector field f as the sum of EDFVFs that are integrable by analytical methods. As the
exact flow of each of the elementary vector fields is itself volume preserving, the resulting composition
method is volume preserving.

In McLachlan et al. (2008), it was proposed to decompose any divergence-free vector field f(x) into
a diagonal and off-diagonal part,

f(x) = fdiag(x) + foffdiag(x),

where, componentwise, f diag
i (x) is the collection of terms in fi(x) that depend on xi (i.e. ∂xi f diag

i (x) �= 0),
while foffdiag(x) is, componentwise, the collection of terms in fi that do not depend on xi, i.e.
∂xi f

offdiag
i (x) = 0. From the definition of divergence, it is clear that only the coefficients of the diagonal

part are directly involved in the divergence-free condition (2.2); therefore, vector fields with zero diag-
onal part are automatically divergence-free. Further, there exists a generic volume-preserving splitting
technique to solve for these off-diagonal vector fields, namely, the splitting into canonical shears: one
integrates one variable at a time, keeping the remaining variables constant; see McLachlan & Quispel
(2004) and McLachlan et al. (2008). Vector fields with nonzero diagonal are more difficult to treat; thus,
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 3 of 18

without loss of generality, we assume that the function f has zero off-diagonal part, i.e.

f = fdiag(x), foffdiag(x) = 0, (2.3)

unless otherwise mentioned.

Proposition 2.1 Let f(x) be a given vector field, with divergence p(x) = ∇ · f(x), and assume that the
latter can be expanded in a set of basis functions {φj(x)}j∈J ,

p(x) =
∑
j∈J

pjφj(x).

For each j ∈J , there exists a uniquely determined vector field Fj(x) such that

∇ · Fj(x) = pjφj(x). (2.4)

If f is divergence-free, then the differential equation

ẋ = Fj(x) (2.5)

is also divergence-free and, moreover, the decomposition f(x) =∑j Fj(x) is unique.

Proof. Since the basis functions are independent,

∇ · f(x) =
∑
j∈J

pjφj(x) �⇒ pj = 0

for all indices j ∈J whenever f obeys (2.2). Consider next vector fields Fj, constructed so that

(Fj)i = (aj)i

∫
φj(x) dxi, (2.6)

where (aj)i is the component of ∂ifi(x) along φj(x). Note that the Fjs are uniquely defined up to a
function hi(x) independent of xi, which we can choose to be zero, as it would only contribute to the
off-diagonal part. By construction, Fj(x) is such that ∇ · Fj(x) = pjφj(x) = 0 since pj = 0. Hence, Fj is
divergence-free. Finally, by collecting all terms in f by picking out those which contribute to each pj,
we are able to split f as the sum of EDFVFs, f =∑j∈J Fj. �

A practical way to find the components of the vectors aj in (2.6) is the following: let J [0] = {} be
the initial (empty) list of indices for the basis functions. Starting with i = 1, for i = 1, . . . , n, expand
∂ifi in the given basis. If new basis functions are added to the expansion, the corresponding indices are
added to the list of indices J [i]. For each index j ∈J [i], the coefficient (aj)i is determined. When i = n,
J [n] =J is the final list of indices of the expansion and the aj are completely determined.

It might happen that some of the J [i]s, hence J , are infinite. This is the case when some of the ∂ifis
expand in infinite terms. In practice, it is desirable to work with a finite number of basis elements: we
assume that each ∂ifi can be projected to the same finite-dimensional space spanned by a finite number
of basis functions. Correspondingly, we obtain a projection of the vector field f onto a finite-dimensional
set of divergence-free vector fields. The dimension of such a set is ideally chosen by the problem owner
not to alter the dynamic of the system of interest in a significant manner. Alternatively, we assume
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4 of 18 A. ZANNA

that the remainder of the finite-dimensional projection can be treated by some other volume-preserving
numerical method. Thus, without further ado, we will assume J to be finite.

Definition 2.2 Given the basis {φj(x)}j∈J , the vector field Fj(x) obeying (2.4) will be called an
EDFVF associated to the basis function φj(x).

The main idea of the paper can be summarized as follows: decompose the divergence function using
the basis functions {φj(x)}j∈J ,

p(x) =
∑
j∈J

pjφj(x).

For each j ∈J ,

• identify the terms in f(x) that contribute to pj to obtain Fj(x) (EDFVF);

• integrate ẋ = Fj(x) exactly (if possible) or by some volume preserving method.

The composition resulting from the flows of the Fj is then volume preserving by construction. The main
goal is to find suitable basis functions, in the sense that the corresponding vector fields must be easy to
integrate exactly.

3. Tensor-product bases

Consider the case when the basis functions are the tensor product of one-dimensional function bases,

φj(x) = φj1(x1) · · · φjn(xn), (3.1)

jl ∈Jl, j = (j1, . . . , jn) ∈J =J1 × · · · × Jn.

Observe that the choice
φjl (xl) = xjl

l , φj = xj = xj1
1 · · · xjn

n

corresponds to the case of the monomial basis for polynomials, discussed in detail in Xue & Zanna
(2013).

Proposition 3.1 Let φj(x) be in the form (3.1), for some arbitrary tensor-product basis. The EDFVF
Fj (2.5) corresponding to the multi-index j = (j1, . . . , jn) can be written as

ẋi = (aj)i

∫
φji(xi) dxi

n∏
l=1//l �=i

φjl (xl)

= (aj)i

∫
φji(xi) dxi

φji(xi)
φj(x), i = 1, . . . , n, (3.2)

where the aj ∈ R
n obey the condition

n∑
i=1

(aj)i = aj
T1 = 0, (3.3)

where 1 = (1, 1, . . . , 1)T ∈ R
n.
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 5 of 18

Proof. The result is a corollary of Proposition 2.1, specific to the case of tensor bases. Note, in
particular, that upon taking the divergence, the coefficients (aj)i obey the divergence-free condition
aj

T1 = pj = 0; thus (3.3) holds. �

It is worth mentioning that the second line in (3.2) makes sense when φji(xi) �= 0. This motivates the
following definition.

Definition 3.2 The points in which φji(xi) = 0 are called critical points of the basis function φji . Sim-
ilarly, the points in which the

∫
φji(xi) dxi = 0 are the critical points of the primitives of the basis func-

tions. The collection of both is referred to as the critical points of the EDFVF Fj, or simply critical
points.

From now on, for ease of notation, we will discard the dependence of the vector aj on the index j,
unless the index is needed for the sake of clarity.

Theorem 3.3 (Integrability of EDFVFs of tensor bases) Consider the EDFVF (3.2) associated
to the tensor basis function φj(x) (aj ≡ a). Let b1 = 1 and b2, . . . , bn−1 be such that the set
of vectors {a, b1, . . . , bn−1} are mutually orthogonal. Then, for any l = 1, . . . , n − 1, the quantity
Il =

∏n
i=1(
∫

φji(xi) dxi)
(bl)i is an integral of the system, i.e.

Il =
n∏

i=1

(∫
φji(xi) dxi

)(bl)i

= const, l = 1, . . . , n − 1, (3.4)

for all t. In particular, away from the critical points, the system has n − 1 independent integrals and is
integrable.

Proof. Let bl be as above. Note that

d

dt
log

(∫
φji(xi) dxi

)(bl)i

= (bl)iẋi
φji(xi)∫
φji(xi) dxi

.

For each i = 1, . . . , n, multiply (3.2) by (bl)iφji(xi)/
∫

φji(xi) dxi and sum over i:

n∑
i=1

ẋi(bl)i
φji(xi)∫
φji(xi) dxi

=
n∑

i=1

ai(bl)iφj(x) = (aTbl)φj(x) = 0,

as a consequence of the orthogonality of the vectors. Hence, it follows that

log
n∏

i=1

(∫
φji(xi) dxi

)(bl)i

= const,

from which the first part of the statement follows by exponentiation of both sides of the equation. In
passing, note that (3.4) holds also for any b in the span of b1 = 1, b2, . . . , bn−1, i.e. for any b orthogo-
nal to a.
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6 of 18 A. ZANNA

As far as integrability is concerned, it is sufficient to show that the integrals are independent, i.e.
that the linear combination

c1∇I1 + c2∇I2 + · · · + cn−1∇In−1 = 0 (3.5)

admits only the trivial solution c1 = · · · = cn−1 = 0. For this purpose, observe that

(∇Il)i = Il∫
φji(xi) dxi

∂xi

(∫
φji(xi) dxi

)(bl)i

= Il(bl)i
φji(xi)∫
φji(xi) dxi

, i = 1, . . . , n,

for any l = 1, . . . , n − 1. Hence, the linear system (3.5) can be written in the form

Ξ [b1, . . . , bn−1]Jc = 0,

where Ξ and J are the diagonal matrices with elements

(Ξ)i,i = φji(xi)∫
φji(xi) dxi

, Ji,i = Ii

and dimensions n × n and (n − 1) × (n − 1), respectively. It is immediate to see that the matrix
[b1, . . . , bn−1] has full rank. The matrix J has full rank as long as each of the integrals Il is nonzero, i.e.
each of the quantities

∫
φji(xi) dxi �= 0. Similarly, the matrix Ξ has full rank, provided that φji(xi) �= 0.

Away from the critical points of the basis functions and their primitives, the system has full rank and
the integrals are independent. Thus, the system is integrable. �

Definition 3.4 (Diagonalizable EDFVFs) Consider the EDFVF Fj corresponding to the multi-index
j = (j1, . . . , jn),

ẋi = ai

∫
φji(xi) dxi

φji(xi)
φj(x), i = 1, . . . , n, aT1 = 0,

away from its critical points. We say that Fj(x) is diagonalizable if φj(x) has a closed-form expression.

Diagonalizability means that φj(x) can be treated as a function of t only. Thus, each xi obeys a
differential equation with variable coefficients, indicating that one might find classes of diagonalizable
EDFVFs whose solution can be given in closed form. For this purpose, we study the behaviour of the
basis function φj(x) as a function of time.

Theorem 3.5 (Solvable diagonalizable EDFVFs) Consider the EDFVF Fj away from its critical points.
The tensor basis function φj(x) = φj1(x1) · · · φjn(xn) obeys the differential equation

d

dt
φj(x) =

(
n∑

i=1

ai
φ′

ji(xi)
∫

φji(xi) dxi

φji(xi)2

)
φj(x)2. (3.6)

Moreover, (3.6) is solvable if and only if the φji(xi) are monomials (up to a shift) or exponentials
(including Fourier basis functions).

Proof. Equation (3.6) is an immediate consequence of d
dt φji(xi) = φ′

ji(xi)ẋi and (3.2); hence the first part
of the statement follows.
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 7 of 18

To prove the second part of the statement, we observe that (3.6) has the form

d

dt
y = gy2,

where y(t) = φj(x)(t). Clearly, the equation is closed if g ≡ c, a constant, or if g ≡ g(t) is a function of
time only. This latter case is equivalent to the case g ≡ c upon the time reparametrization dτ = g(t) dt.

We commence by analysing the constant case,

φ′
ji(xi)

∫
φji(xi) dxi

φji(xi)2
= ci, (3.7)

where ci �= 0 (the case ci = 0 corresponds to constant basis functions and is uninteresting). In this case,
the basis functions obey the differential equation

d

dt
φj(x) =

(
n∑

i=1

aici

)
φj(x)2, (3.8)

which has solution

φj(x)(t) = φj(x)(t0)

1 − [φj(x)(t0)
∑n

i=1 aici
]
(t − t0)

(3.9)

in [t0, t] for t − t0 sufficiently small.
Setting Φ(z) = ∫ φji(z) dz, the condition (3.7) is equivalent to Φ being a solution of the differential

equation

Φ ′′Φ = ci(Φ
′)2, (3.10)

where the dash denotes differentiation with respect to the variable z. Dividing both sides by ΦΦ ′ and
integrating, we obtain

log Φ ′ = ci log Φ + log ki,

where ki is an integration constant. By exponentiation, we obtain

Φ ′ = kiΦ
ci , (3.11)

and here we distinguish two cases: ci = 1 and ci �= 1.
When ci = 1, the equation becomes Φ ′ = kiΦ, which has solution Φ(z) = li exp(kiz), where li is

another constant of integration. This corresponds to the basis function φji(xi) = likiekixi and it is useful
to choose liki = 1. The corresponding basis function is then

φji(xi) = ekixi . (3.12)

For this special choice of basis functions, ci = 1 for all i and the divergence-free condition (3.3) imply
that the right-hand side of (3.8) is equal to zero; hence

φj(x)(t) = φj(x)(t0),

i.e. the tensor basis function is constant along the EDFVF.
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8 of 18 A. ZANNA

Next, we consider the case when ci �= 1. Integrating (3.11) between 0 and z, we obtain

Φ(z)1−ci = ki(1 − ci)z + li, li = Φ(0)1−ci ,

where, again, ki is a constant of integration. The constants li depend on the choice of the value of Φ at
z = 0. Their choice will be discussed later. Thus, we have

Φ(z) = [li + ki(1 − ci)z]1/(1−ci).

To recover the basis functions, we differentiate Φ(z) to obtain

φji(z) = Φ ′(z) = ki(li + ki(1 − ci)z)
ci/(1−ci).

The integration constants ki can be chosen such that ki(1 − ci) = 1. Moreover, it is useful to introduce
ci = mi/(1 + mi). With this choice, we have

φji(xi) = (mi + 1)(li + xi)
mi , mi �= −1.

In particular, if li = 0 and mi = ji ∈ Z, we recover the monomial basis studied at great length in Xue &
Zanna (2013). The case li �= 0 is just a shifted monomial basis. In particular, the above formula indicates
that it is also possible to use noninteger values of mi. Note that the value mi = −1 is not allowed. This
value of the exponent (corresponding to

∫
1/x = log x) has also been discussed in Xue & Zanna (2013).

The general case g(t, y), ∂yg �= 0, is not solvable for all a satisfying (3.3). The argument is the
following. Assume that

n∑
i=1

ai
φ′

ji(xi)
∫

φji(xi) dxi

φji(xi)2
= g(t, φj(x)).

By differentiation with respect to xi, we obtain

ai
∂

∂xi

φ′
ji(xi)

∫
φji(xi) dxi

φji(xi)2
= ∂yg(t, φj(x))φ′

ji(xi)
∏
l �=j

φjl (xl).

It is readily seen that the left-hand side depends solely on xi, while the right-hand side also depends on
all the other variables xl, l �= i. Hence, the above equation cannot have a nontrivial solution, unless for
very specific choices of a. �

Remark 3.6 In fact, the previous theorem classifies all cases of diagonalizable tensor basis functions
having a closed-form solution: the monomials and the exponential basis. Other choices might still be
integrable, but they might not necessarily give a closed-form solution for all a satisfying (3.3). As
an example, the cosine basis φji(xi) = cos jixi and the sine basis φji(xi) = sin jixi do not give rise to a
solvable tensor basis for all a, as (3.7) is not satisfied. Yet, we know that the corresponding EDFVF
is integrable by Theorem 3.3 away from critical points; see also Fig. 1. Combinations of sines and
cosines can be treated with solvable EDFVFs by transforming into an exponential basis (Fourier basis),
as described in the next section.

Remark 3.7 Note that the two classes of tensor basis functions satisfying Theorem 3.5, monomials and
exponentials, are precisely the classes of functions that are closed under differentiation, i.e. any partial
derivative of a monomial/exponential is still a monomial/exponential. Further, they are also closed under
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 9 of 18

Fig. 1. A three-dimensional system with tensor basis function φj(x1, x2, x3) = cos(j1x1) sin(j2x2) sin(j3x3) with j = (1, 3, −1)T,
a = (1, −2, 1)T and b2 = a × 1 (cross product). The solution of the system lies on the intersection of the surfaces I1 (lighter
surface) and I2 (darker surface).

multiplication: the product of monomials is still a monomial, the product of exponentials can still be
written as a single exponential. This has the important consequence that the commutator of these vector
fields will still be a vector field of the same type, for which the same algebraic formula holds. This is
of relevance for the construction of higher-order integrators. Typically, symmetric compositions, using
only the splitting of the vector field, are used. Here, we might increase the order by also using the
commutators.

3.1 Connection with the splitting in shears of Quispel and McLachlan

Quispel and McLachlan introduced the technique of splitting (2.1) in divergence-free vector fields of
the type

ẋ = af (jTx), jTa = 0 (3.13)

(splitting into shears), with f an arbitrary scalar function; see McLachlan & Quispel (2004) and
McLachlan et al. (2008). Here, j need not be a vector of integers. It is easy to verify that jTx = const
along the flow of (3.13); hence the solution is a simple translation parallel to the vector a. Since ẋ is
parallel to a, this also implies that bTx = const for any b orthogonal to a.

Proposition 3.8 The splitting into shears (3.13) is equivalent to a diagonal tensor basis splitting, with
exponential basis choice (3.12).

Proof. Set f (jTx) = KejTx (which is always possible, since jTx is constant along the flow). Then, we
can rewrite (3.13) as

ẋi = Kaiji
1

ji
ejTx, i = 1, . . . , n. (3.14)
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10 of 18 A. ZANNA

Above, we have tacitly assumed that ji �= 0 for i = 1, . . . , n. This is no real restriction as, if ji = 0 for
some i, the remaining variables do not depend on ji and the system is reducible.

Note that the condition aTj = 0 is now equivalent to ãT1 = 0, where ã = Ka ⊗ j (tensor product).
Thus, we see that (3.14) is precisely of the form (3.2) with basis functions φji(xi) = ejixi and coefficient
vector ã obeying (3.3). Thus, Theorem 3.3 holds, and for any vector b̃ orthogonal to ã, the quantity

n∏
i=1

(∫
φji(xi) dxi

)b̃i

, l = 1, . . . , n − 1

is an integral. In particular, by choosing b̃ = 1 we recover the condition jTx = const. For the other
choices of b̃, taking the logarithm, we see that

∑
i b̃i(jixi − ji); hence

∑
i b̃ijixi, is a constant of inte-

gration. Next, set bi = b̃iji. We have thus proved that d
dt b

Tx = 0. Moreover, the condition b̃Tã = 0 is

equivalent to bTa = 0, and the condition b̃T1 = 0 is equivalent to bTj = 0, and thus there is complete
equivalence of the two formulations. �

4. Trigonometric polynomials and Fourier bases

We next turn our attention to the case of trigonometric polynomials, which often arise when the vector
field is expanded in a Fourier series. A typical application is the study of the dynamics of incompressible
inviscid fluid flows. Some practical examples, often written in their real form using trigonometric poly-
nomials, are the Arnold–Beltrami–Childress flow (ABC flow, Ricca, 2001), a prototype for the study of
turbulence, and

ẋ1 = − cos(πx1) sin(πx2) + ε sin(2πx1) sin(πx3),

ẋ2 = sin(πx1) cos(πx2) + ε sin(2πx2) sin(πx3),

ẋ3 = 2ε cos(πx3)[cos(2πx1) + cos(2πx2)],

a model for the study of the mixing in a laminar vortex flow with rigid boundaries, occurring in many
geophysical, industrial and biophysical applications; see Solomon & Mezić (2003). For our analysis, it
is more convenient to work in the complex setting. Trigonometric polynomials can always be written in
a complex exponential form using the Euler formulas (4.5).

4.1 The method of expansion in a Fourier series

Consider again a vector field ẋ = f(x) and assume that each of the function components fi(x) is expanded
in a Fourier series. The result will be a right-hand side that is the product of one-dimensional Fourier
series in each variable, i.e.

ẋi = fi(x) =
∑

j

(cj)ie
ijTx, i = 1, . . . , n, (4.1)

where i2 = −1 defines the imaginary unit. The divergence is given as

∇ · f = i
n∑

i=1

∑
j

(cj)ijie
ijTx = i

∑
j

cj
TjeijTx. (4.2)
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 11 of 18

We note at once that if the vector field f is expressed in a Fourier basis, then the divergence is also
expressed in a Fourier basis. To put this in the formalism of the earlier sections, we identify

φji(xi) = eijixi , φj(x) = eijTx,

so that the relation between the vectors aj in Proposition 3.1 and cj is the normalization

(aj)i = 1

iji
(cj)i.

Corollary 4.1 Under the assumptions above, f divergence-free implies cj
Tj = 0 for any multi-index

j, or, equivalently, aj
T1 = 0, in the nD Fourier expansion of f.

We state the above result as a corollary because it was proved by Quispel & McLaren (2003) by
direct computation on trigonometric polynomials. It is a direct consequence of Theorem 3.3.

Similarly to the approach presented for polynomials, we split the vector field into EDFVFs, each Fj

associated to a tensor basis element φj. Because of Theorem 3.5, the basis function is solvable. In fact,
we have

d

dt
jTx = jTẋ = (jTcj)e

ijTx = 0,

since cj and j are orthogonal (cf. the divergence-free condition). This implies that (4.1) decomposes in
EDFVFs of the form ẋ = Fj(x) = cjeijTx, whose solution is given explicitly as

x(t0 + h) = x0 + hcje
ijTx0 . (4.3)

A naive implementation of this method would require complex arithmetic. However, if the function f is
real, then the coefficients of the Fourier transform obey the condition

c−j = c̄j

(the bar denotes complex conjugation). This implies that the EDFVFs Fj and F−j share the same inte-
grals and can be combined together. Thus, we need to sum over just half of the multi-indices and, instead
of (4.1), we can consider

ẋ = F̃j(x) = cje
ijTx + c̄je

−ijTx. (4.4)

Writing cj = αj + iβ j, and using the identities

sin z = eiz − e−iz

2i
, cos z = eiz + e−iz

2
, (4.5)

it is readily seen that (4.4) becomes

ẋ = 2αj cos(jTx) − 2β j sin(jTx), (4.6)

which can be integrated exactly as

x(t + h) = x0 + h(2αj cos(jTx0) − 2β j sin(jTx0)). (4.7)

We recognize (4.7) as the method proposed in Quispel & McLaren (2003).
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12 of 18 A. ZANNA

5. Tensor product of Fourier series and the monomial basis

So far, the pure monomial choice reduces to the methods in Xue & Zanna (2013) and the pure trigono-
metric choice reduces to the methods of Quispel & McLaren (2003). However, because of the generality
of Proposition 2.1 we are also able to treat the mixed polynomial–trigonometric case, which one could
not deal with systematically before.

We start from the divergence function, which we assume can be written in the form

∇ · f =
∑

j

pjxjmeijT
f x,

where, by an appropriate relabelling of the variables, we can assume

j = jm ⊕ jf , jm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

j1
...
jp
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, jf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

jp+1
...
jn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, the subscript m is associated to the projection onto the first p components (monomial part), while
the subscript f refers to the projection onto the remaining n − p components (Fourier part). Dropping
the dependence of the coefficient a on the index j, the corresponding EDFVF is

ẋ = Fj(x) = a ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

j1 + 1
...

xp

jp + 1
i

jp+1
...
i

jn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xjmeijT
f x, aT1 = 0 (5.1)

(the ⊗ denoting the tensor (componentwise) product of two vectors). Equivalently, we could write the
EDFVF using the unscaled coefficients c,

ẋ = Fj(x) = c ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xp

1
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

xjmeijT
f x, (5.2)
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 13 of 18

subject to
cT((j + 1)m + ijf ) = 0. (5.3)

From Theorem 3.5, it follows that the basis function φj(x) = xjmeijT
f x obeys the differential equation

d

dt
φj(x(t)) = Cφj(x)2, C = cT(jm + i1f ),

with solution
φj(x) = φj(x0)(1 − C(t − t0)φj(x0))

−1.

Now, for i = 1, . . . , p, we have
ẋi = cixiφj(t),

with solution
xi(t) = xi(t0)(1 − Cφj(x0)(t − t0))

−ri , ri = ci

C
, i = 1, . . . , p, (5.4)

while, for i = p + 1, . . . , n we have
ẋi = ciφj(t),

with solution
xi(t) = xi(t0) − ri log(1 − Cφj(x0)(t − t0)), i = p + 1, . . . , n, (5.5)

and ri as in (5.4).

5.1 Avoiding complex arithmetic

In the case when basis elements xjmeijT
f x are used, the coefficients are generally complex and the method,

as described before, will require complex arithmetic. This might be a problem, because the logarithm
functions in (5.5) will require the tracking of the argument function, for a correct complex part. As most
applications involve real coefficients, it is a disadvantage (and computationally more expensive) to use
complex arithmetic.

A first attempt would be to try to generalize the techniques for pure trigonometric tensor prod-
ucts described earlier (and in Quispel & McLaren, 2003). Let c = α + iβ. It is readily seen that the
divergence-free condition (5.3) is equivalent to the two conditions

αT(j + 1)m − βTjf = 0, (5.6)

βT(j + 1)m + αTjf = 0. (5.7)

These are, in fact, the conditions for the vector fields

T1 :

{
ẋi = αixixjm cos(jT

f x),

ẋi = −βixjm sin(jT
f x),

T2 :

{
ẋi = −βixixjm sin(jT

f x), i = 1, . . . , p,

ẋi = αixjm cos(jT
f x), i = p + 1, . . . , n,

(5.8)

to be volume preserving. The vector field T1 + T2 can be recognized as the real part of (5.2) (we assume
that the solution is real). Note the resemblance to (4.6), which we treated simultaneously (because the
sine and cosine part shared the same integral). Here, the vector field T1 has integral x(j+1)m sin(jT

f x),
while the vector field T2 has integral x(j+1)m cos(jT

f x) . These two integrals do not commute, indicat-
ing that there is no easy way to solve T1 + T2 simultaneously. On the other hand, we observe that
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14 of 18 A. ZANNA

xjm cos(jT
f x) and xjm sin(jT

f x) are also basis functions (though not tensor product, but linear combina-
tions of tensor bases). Thus, a natural strategy is to attempt solving T1 and T2 separately.

We set

T1 : φm(x) = xjm , φf (x) = cos(jT
f x),

T2 : φm(x) = xjm , φf (x) = sin(jT
f x).

It is readily observed that

φ′
m = κ1φ

2
mφf ,

φ′
f = κ2φm(1 − φ2

f ),
(5.9)

with

T1 : κ1 = αTjm, κ2 = βTjf ,

T2 : κ1 = −βTjm, κ2 = αTjf .
(5.10)

The two equations in (5.9) can be combined into

φ′
m

φm
= κ1

κ2

φ′
f φf

1 − φ2
f

,

which can be integrated by separation of variables to give

φm(t)

φm(t0)
=
(

1 − φ2
f (t)

1 − φ2
f (t0)

)−κ1/2κ2

.

Setting

ρ = κ1

2κ2
, K = κ2φm(t0)(1 − φ2

f (t0))
ρ

and substituting φm(t) into φ′
f , we obtain the differential equation

φ′
f

(1 − φ2
f )

1−ρ
= K, (5.11)

which can be solved by separation of variables. The solution is given in terms of hypergeometric func-
tions,

φf 2F1

⎡
⎣ 1

2 , 1 − ρ;
φ2

f
3
2 ;

⎤
⎦
∣∣∣∣∣∣
φf (t)

φf (t0)

= K(t − t0); (5.12)

see Abramowitz & Stegun (1965) and Rainville (1967). Some special cases of the parameter ρ are worth
discussion.
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EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 15 of 18

Case ρ = 0 (κ1 = 0, κ2 �= 0). In this case, directly from (5.9), we have φ′
m = 0. This gives

φm(t) = φm(t0),

φf (t) = −1 − K1e2K(t−t0)

1 + K1e2K(t−t0)
, K1 = 1 + φf (t0)

1 − φf (t0)
, K = κ2φm(t0).

Next, we integrate the monomial part in (5.8) to obtain

T1 : xi(t) = xi(t0) e−αiφm(t0)(t−t0)

[
1 + K1 e2K(t−t0)

1 + K1

]αiφm(t0)K

, (5.13)

T2 : xi(t) = xi(t0) eβiφm(t0)(t−t0)

[
1 + K1 e2K(t−t0)

1 + K1

]−βiφm(t0)K

, i = 1, . . . , p, (5.14)

and, for the Fourier part,

T1 : xi(t) = xi(t0) − βis0
(1 + K1)

κ2
√

K1
tan−1

[
K1 + √

K1eK(t−t0)

1 − K1
√

K1

]
, (5.15)

T2 : xi(t) = xi(t0) + αic0
(1 + K1)

κ2
√

K1
tan−1

[
K1 + √

K1eK(t−t0)

1 − K1
√

K1

]
, i = p + 1, . . . , n, (5.16)

where

s0 = sin(jT
f x(t0)), c0 = cos(jT

f x(t0)).

Case ρ = ∞ (κ1 �= 0, κ2 = 0). Directly from (5.9), we have φ′
f = 0. In particular, this implies that

both cos(jT
f x) = c0 and sin(jT

f x) = s0. The monomial part is closed and can be solved by the methods
described in Xue & Zanna (2013) (see also (5.4)):

T1 : xi(t) = xi(t0)(1 − κ1c0φm(t0)(t − t0))
−ri , ri = αi

κ1
,

T2 : xi(t) = xi(t0)(1 − κ1s0φm(t0)(t − t0))
−ri , ri = −βi

κ1
, i = 1, . . . , p

and

T1 : xi(t) = xi(t0) − qi log(1 − κ1c0φm(t0)(t − t0)), qi = −βis0

κ1c0
,

T2 : xi(t) = xi(t0) − qi log(1 − κ1s0φm(t0)(t − t0)), qi = αic0

κ1s0
, i = p + 1, . . . , n

for the Fourier part.
Case ρ = 0

0 (κ1 = κ2 = 0). In this case, φ′
m = φ′

f = 0. As above, we have cos(jT
f x) = c0 and sin(jT

f x) =
s0. The solutions are easily found:

T1 : xi(t) = xi(t0)e
αic0φm(t0)(t−t0),

T2 : xi(t) = xi(t0)e
−βis0φm(t0)(t−t0), i = 1, . . . , p
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16 of 18 A. ZANNA

for the monomial part, and

T1 : xi(t) = xi(t0) − βis0φm(t0)(t − t0),

T2 : xi(t) = xi(t0) + αic0φm(t0)(t − t0), i = p + 1, . . . , n

for the Fourier part.
Case ρ = 1 (κ1 = 2κ2 �= 0). In this case, (5.11) reduces to φ′

f = K. This gives

φf (t) = φf (t0) + K(t − t0),

φm(t) = φm(t0)

[
1 − φf (t)2

1 − φ2
f (t0)

]−1

.

Thus, we have

xi(t) = xi(t0)

[
1 − φf (t)2

1 − φ2
f (t0)

]−ri

, T1 : ri = αi

2κ2
, T2 : ri = −βi

2κ2
, i = 1, . . . , p

for the monomial part. For the Fourier part, we focus on T1 and observe that y = sin(jT
f x) obeys the same

differential equation as xi of the monomial part upon replacement of αi by −κ2. Thus, it has a similar
solution:

sin(jT
f x) = s0

[
1 − φf (t)2

1 − φ2
f (t0)

]1/2

.

A similar formula holds for T2. Substituting into ẋi and integrating, we have

xi = xi(t0) + qiφm(t0)

K
(sin−1 φf − sin−1 φf (t0))

= xi(t0) − qiφm(t0)

K
(cos−1 φf − cos−1 φf (t0)),

where
T1 : qi = −βis0|s0|, T2 : qi = αic0|c0|.

The general case requires the inversion of the special function in (5.12). Note that if ρ > 1, the series
terminates (finite sum).

6. Divergence-free with measure μ(x) �= 1

In the above, we have discussed the case of how to split divergence-free methods for the case of canon-
ical variables, i.e. if the vector field f obeys

∇ · f = 0.

In some cases, the divergence-free condition is given with respect to a measure μ(x), meaning that the
vector field ẋ = f(x) obeys the condition

∇ · (μf) = 0. (6.1)

 at U
niversitetsbiblioteket i B

ergen on D
ecem

ber 21, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


EXPLICIT VOLUME-PRESERVING SPLITTING METHODS 17 of 18

The scope of this section is to extend the results for the canonical case μ = 1 to the generic case when
μ = μ(x). A result very similar to the case μ = 1 is true also in this case.

Proposition 6.1 Let φj(x) be in the form (3.1) for some arbitrary tensor-product basis. Consider a
decomposition

∇ · (μf) =
∑

j

pjφj(x).

The EDFVF Fj (2.5) corresponding to the multi-index j = (j1, . . . , jn) must be of the form

ẋi = (aj)i
1

μ(x)

∫
φji(xi) dxi

n∏
l=1
l �=i

φjl (xl) (6.2)

= (aj)i

∫
φji(xi) dxi

φji(xi)

φj(x)

μ(x)
, i = 1, . . . , n, (6.3)

where aj
T1 = 0, as in (3.3). Furthermore, for any b orthogonal to aj and 1, one has that

(∫
φj1(x1) dx1

)b1

· · ·
(∫

φjn(xn) dxn

)bn

is a conserved quantity of the system.

The proof is analogous to the case μ = 1. Thus, also, the generic case is integrable, provided that
the integrals are linearly independent.

Proposition 6.2 The vector field (6.3) is equivalent to the vector field (3.2) upon time reparametriza-
tion dt

dτ
= μ(x).

Thus, all the knowledge of the canonical case μ = 1 can in principle be extended to the more general
case μ �= 1.

7. Concluding remarks

We have presented a framework for generating volume-preserving splitting methods based on a decom-
position of the divergence of the vector field using an appropriate tensor product of basis functions of
one variable. The vector field is then decomposed into the sum of EDFVFs, each of them correspond-
ing to a basis function. This theory includes, as a special case, the monomial basis of Xue & Zanna
(2013) and the trigonometric splitting of Quispel & McLaren (2003). We have introduced the concept
of diagonalizable EDFVFs and classified solvable ones: the monomial basis and the exponential basis.
We have further shown that the method of splitting into shears proposed by McLachlan & Quispel
(2004) is equivalent to using a special class of diagonalizable EDFVFs, corresponding to the choice of
exponential basis.

In addition to giving a unifying view of some types of volume-preserving splitting methods already
known in the literature, the present approach allows us to give a closed-form solution also to other types
of vector fields that could not be treated before, namely those corresponding to the mixed tensor product
of monomial and exponential (including trigonometric) basis functions.
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