UNIVERSITY OF BERGEN

DEPARTMENT OF INFORMATICS

MASTER THESIS

Scaling the scales

A suggested improvement to
[BM’s Intelligent Recommendation Algorithm

Author Supervisor
MAGNAR MYRTVEIT JAN ARNE TELLE

November 2014

Abstract

Recommender systems appear in a large variety of applications, and their use
has become very common in recent years. As a lot of money can be made by
companies having a better recommender system than their competitors, much of
the research behind the best recommendation algorithms is proprietary and has
not been published. We suggest an improvement to a graph-based collaborative
filtering recommendation algorithm developed at IBM Research and published
in “KDD 99 Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery data mining” in 1999: the Intelligent Recommendation
Algorithm (IRA) [1].

We start by giving an overview of the field of recommender systems, how they
work, and how they can be utilized. Next we give a detailed description of the
graph-theoretical ideas IRA is built upon, and take an in-depth look at how the
algorithm works. We then present a suggested improvement to IRA, called Scaling
the scales. In Scaling the scales, customers using differently sized ranges of the
rating scale can still be used to predict each other. We give a short overview
of the design behind the implementation of our recommender system, which is
available at GitHub [23], as well as BORA [3], where this thesis is published. The
implementation uses a modular software design to allow for developing extensions
to the recommendation algorithms we have implemented, as well as deploying other
recommendation algorithms in our system.

Next we compare the recommendation quality of IRA and Scaling the scales using
leave-one-out cross-validation. This method works by hiding a known rating,
predicting what this rating should be, and comparing the correct and predicted
ratings. Experiments on four different datasets were run. Our results indicate that
Scaling the scales give slightly smaller errors than IRA when predicting ratings. A
bigger improvement is that Scaling the scales calculates predictions in many cases
where TRA is unsuccessful.

Lastly, ideas for further improvement of Scaling the scales are presented.

Acknowledgments

First and foremost, I would like to thank my supervisor, Jan Arne, for all help and
support. I would not have been able to write this thesis without his feedback and
expertise.

I would also like to thank the Algorithms group as a whole, for providing an
environment that is both social and educational. The table tennis matches, Friday
lunches, and trips to Winter School in Algorithms have been an important part of
my time as a master student in the Algorithms group.

A special thank you goes to Martin for getting me interested in the field of
algorithms.

I am honored to have been competing alongside Simen and Johan in various
programming competitions. In addition to being educational, it has always been a
great pleasure, and I believe the programming competitions will be among my best
memories from my time at the university.

I would like to thank my mom and dad, Astrid and Magne, for providing me with
a playful and good learning environment when i was young. And a special thank
you goes to my dad for introducing me to programming when I was still in primary
school.

Lastly, I would like to thank my sister, Solbjsrg, both for providing valuable
feedback on this thesis, but even more so for taking care of me and making sure I
didn’t starve to death during the last month of writing this thesis.

Bergen, November 2014
Magnar Myrtveit

i

Contents

Abstract

Acknowledgments

Contents

1

Introduction to recommender systems

ii

iii

1.1 Collaborative filtering
1.2 Content-based filtering
1.3 Privacy and censoringo
1.4 Applications and considerations
1.5 Graph-based collaborative filtering

2 Clarifications and definitions
2.1 Notations and definitions
2.2 Clarifications for pseudocode
2.2.1 Variables and functions specific to this thesis
3 IBM'’s Intelligent Recommendation Algorithm (IRA)
3.1 Identifying compatible users
3.2 Creating predictions by transitivity
4 Improving IRA—Scaling the scales
4.1 Scaledscales
4.2 Offline vs. real-time computations
4.3 Implementation details
5 Experimental results

5.1 Dataset generation L.
5.1.1 Ratings crafted towards IRA
5.1.2 Ratings crafted towards Scaling the scales

1l

10
10
12
13

14
14
22

28
28
34
35

5.2 Performance comparison L.
5.2.1 Dataset crafted towards IRA
5.2.2 Dataset crafted towards Scaling the scales
5.2.3 Real dataset: MovieLens 100k
5.2.4 Real dataset: HetRec 2011

Analysis and discussion of the experimental results

6.1 Successrate
6.2 Prediction qualityo o
6.3 Fallibility
6.4 Synthetic vs. realdata
6.5 Rating scalesizes L oo
6.6 Running times. oL

Conclusion and further research

7.1 Summaryo

7.2 Further research
7.2.1 Rating diversityo
7.2.2 Rating the ratings oL
7.2.3 “You will either love or hate this”

Bibliography

v

65
65
66
66
67
68

70

Chapter 1

Introduction to recommender
systems

When you want to read a book, but don’t know which one to choose, you may
ask a knowledgeable friend for a recommendation. The better your friend knows
your taste in books, the more likely he or she will be to recommend a book that
you actually like. Recommender systems are based upon this idea. By building
an understanding of what a user likes and dislikes, the recommender system can
identify items or content that the user is likely to be interested in.

The two main purposes of recommender systems are generating sales (or other
desirable user actions) and dealing with information overload on part of the user,
as described in Introduction to recommender systems handbook [28]. If it takes a
person looking for a new camera too long to identify a camera fitting his or her
needs in a large web shop, this potential customer might move on to try another web
shop. A good recommender system can increase sales by quickly identifying items
of high interest to the user. Also, a recommender system can generate new sales
by introducing customers to products they did not even know they were interested
in, for example by recommending items that other customers with similar interests
have bought. By dealing with the information overload that can otherwise hit
the user, the recommender system can increase customer satisfaction. In a large
online newspaper, every reader will probably not have interest in all the articles
written. If a reader finds many of the articles uninteresting, he or she might start
considering the newspaper unsatisfactory. By knowing what the reader usually
finds interesting, a recommender system can discriminate between relevant and
irrelevant articles, so that the articles likely to be of high interest are the ones
presented most prominently to the reader.

Recommender systems can provide clear benefits to both users and content providers,
and the business value of a good recommender system is supported by both research
(see the article by Garfinkel et al. [12] for one example among many) and common
practice. Because the idea behind recommender systems is generic, recommender
systems can be deployed and utilized in many different domains. There is, however,
no general recommender system suitable for providing good recommendations in
every scenario. In some domains each user is mainly interested in one specific type
of items, and a suitable recommender system might base the recommendations
on the specific details of the item contents. Such systems are called content-based
recommender systems. In other cases a content-agnostic recommender system that
does not need any information on the content of an item might be better. Such
approaches are called collaborative recommender systems. These systems rely solely
on identifying users having similar interests, and recommend the items that are
popular amongst these users. Most recommender systems are based on one of these
two approaches, or a combination of the two. Let’s have a closer look at how these
two main approaches to recommender systems work.

1.1 Collaborative filtering

The basic content-agnostic recommender system approach is called collaborative
filtering. It is based on the assumption that if two users had similar taste in the
past, it is likely that they will continue to share the same interests in the future.
Let’s look at a store selling videos as an example. If customer a and customer b
have bought many of the same videos in the past, and customer a recently bought
a new video, then it is likely that customer b also would be interested in this
new video. This approach was first introduced by Goldberg et al. [13], and is
called collaborative filtering because the users implicitly collaborate on making the
recommendations. Through actions like rating or buying items, the users inform
the system that other users with similar interests might also be interested in these
items.

The big advantage of collaborative filtering is that there is no need for any infor-
mation about the recommended items. The convenience of not having to provide
metadata for items makes setting up the system easy, but also poses some draw-
backs. For instance, how should the recommender system deal with new users?
When a user has not rated or bought more than a few items, the recommender
system might not have sufficient data to confidently consider this user’s interests as
similar to any other user’s. Also, when there are few registered users, the likelihood
of there being users considered to have similar taste is smaller. And what about

new items that are added to the system? When nobody has rated or bought
an item, the collaborative filtering algorithm has no way of knowing who might
be interested in it. This results in recently deployed collaborative recommender
systems performing poorly, since items cannot be recommended due to lack of
data about users and their interests. This is called the cold-start problem and is
discussed for example by Schein et al. [30].

1.2 Content-based filtering

Content-based recommender systems require information on the contents of each
item. In order to predict a rating, the content-based recommender system compares
the information about the contents of an item with a profile weighing the importance
of different properties. Let’s again look at the video store example described in the
previous section, now using a content-based recommender system. If a customer
in the past has bought “The Da Vinci Code”, the recommender system might
recommend other movies in the “mystery” or “thriller” genre, movies directed by
Ron Howard or starring Tom Hanks, or other movies based on the works of Dan
Brown. This is because the recommender system will have created a profile for the
customer, valuing these properties of “The Da Vinci Code” highly.

The preference profile used by a content-based recommender system is very similar
to the user history used by a collaborative recommender system. The difference
is that while the collaborative approach builds up a profile of items the user is
interested in, the content-based approach constructs a profile of item attributes
the user is interested in. This can be done through actions like rating or buying
items, as in a collaborative recommender system, or the system can ask the user
to explicitly rank different attributes in order to build up a user specific taste
profile.

By looking for items matching a taste profile instead of considering the actions of
users with similar taste when making recommendations, content-based recommender
systems overcome some of the drawbacks of collaborative recommender systems.
For instance, content-based recommender systems have no cold-start problem: any
item can be recommended if item attributes are available—there is no need for
an item to have been bought or rated by a user. This is great for systems with
few users, systems where new items are frequently added, or for recently deployed
recommender systems.

In contrast to collaborative recommender systems, content-based recommender
systems have the drawback of requiring well-organized attribute information about

the items. Sometimes such metadata is available in a database along with the item,
or can be extracted automatically from text documents. In many domains, however,
attributes concerning subjective qualities such as “ease of use” and “aesthetically
pleasing” could be useful. Such attributes are hard to extract automatically, and
manually entering such information can be an expensive and error prone process.
In order to overcome this cost issue, a possibility is to let the users enter metadata
about the items. This does however not solve the problem with subjective properties,
where users might have conflicting opinions. Different users might also use different
words to describe the same quality or feature. This can make the user-provided
metadata less valuable, as similar qualities might not be recognized as such by the
recommender system [2].

In order to increase sales and customer satisfaction, a good recommender system
should be able to recommend new, relevant, and interesting items to the users.
In some domains content-based recommender systems often fail to achieve this
goal, as the recommendations tend to either be too general (recommending all the
best-selling items in a category), or too narrow (recommending all items matching
a specific attribute), as discussed for example by Linden et al. [22]. Because
of this, collaborative recommender systems tend to be more popular than pure
content-based ones.

1.3 Privacy and censoring

In addition to positive aspects such as increased sales and customer satisfaction,
deploying a recommender system can also pose risks that should be taken into
consideration. When creating recommendations based on the actions of other users,
the issue of privacy immediately arises. The recommender system, like any system,
should not reveal the behavior and interests of individual users without the user’s
consent. We will not discuss the topic of privacy in recommender systems further
in this thesis, but recommend an article on privacy risks in collaborative filtering
by Calandrino et al. [6]. Differential privacy aims to provide means to overcome the
privacy issue in statistical databases. For a thorough introduction to differential
privacy we refer to an article by Dwork and Roth [9].

A different issue can arise when dealing with information overload; recommender
systems can hinder users from getting a full overview of the information available. If
the recommender system in a large newspaper considers a user as mainly interested
in articles presenting a conflict from one side, fewer articles presenting the issue
from the other side might be presented to the user. As a consequence, the user
might get an unbalanced picture of the issue. It might be correct that the user

sympathizes with one side of the conflict, and prefer articles supporting his or her
own view. However, it can be argued that, the user might be better off with a
recommendation for an article presenting the conflict from the other side to get
a fuller picture. Pariser has made a highly recommended TED Talk [25] on this
topic, in addition to his book The filter bubble: What the Internet is hiding from
you [26].

1.4 Applications and considerations

Recommender systems can answer many different questions and queries, making
them useful in numerous applications and scenarios. Let’s look at some of the
queries recommender systems can answer, and how the answers to these queries
can be useful.

1. What is the likelihood that a specific user would be interested in a specific
item? This likelihood can be expressed in different ways, depending on the
recommender system and scenario. In some cases one might be looking for
the likelihood of the user buying the item. In other scenarios the predicted
rating the user would give to the item is more interesting.

2. Gwve a list of the items a specific user or set of users is most likely to be
interested in. This can be amongst all items, or narrowed down to items
within a category or sharing some attribute, such as a set of promotional
items. The possibility to specify more than one user can be very useful, for
example if a group of friends want a recommendation for a movie that they
would all enjoy.

3. Give a list of the users who are most likely to be interested in a specific item
or a list of items. This can be amongst all users, or narrowed down to users
matching some criterion, for example based on demographics or geographical
information. This can be useful for example when sending out emails with
special offers for promotional items.

4. Give a list of the items that are most similar to a specific item or a list of
items. In a content-based recommender system, similarity would be based on
similarity between the attributes of the items. In a collaborative recommender
system, the similarity can be based on which items users are likely to be
interested in if they are interested in the specified item or set of items. This
query can be very useful for generating lists such as “Users buying this item
also bought...” and “You might also be interested in...”, as seen in Figure 1.

5. Give a list of the users who have the most similar taste to a specific user
or set of users. In a collaborative recommender system, the similarity will
depend on users having rated (or other user actions) several of the same
items. In a content-based recommender system this is not necessary, as the
preference profiles can be similar regardless of the users having rated many
items in common. This can be useful for creating chat groups of users with
similar interests. Of course introducing users to each other poses privacy and
anonymity issues that must be handled with care.

The first query in this list is the most ba- Customers Who Bought This Ttem Also Bought
sic query a recommender system can an- ; ey
swer, and many other queries can be an- m

. . SMITH
swered by subsequently answering this G
basic query [1]. For example, the second — winterof thewora (The Fal of Giants (The Century Desert God

Century Trilogy) Trilogy) > Wilbur Smith

query could be answered by repeatedly . ienroiet + Ken Follett P
running the first query on the specified 777" ™ el e o
user(s) and all items in question, and
then return the items most likely to be
of interest to the user(s). The third
query could similarly be answered by
repeatedly running the first query on the specified item(s) and all users in question,
and then return the users most likely to be interested in the item(s). Of course,
many of the queries can also be reversed from “most likely” to “least likely”. Some
users might for example be interested in a list of the items they are least likely to
enjoy. For the rest of this thesis, we will be concentrating on answering the basic
query of predicting the rating a specific user would give to a specific item.

Figure 1: A list of books recommended by
Amazon, based on customers having bought
“Edge of Eternity” by Ken Follet.

Another type of question a recom-
mender system might be able to an-
swer is why a user gets a specific recom-
mendation. Being able to support the
recommendations with reasons why a
user might like an item can effectively
improve the user’s trust in the recom-
mender system, as well as the user’s
willingness to adopt the recommenda-
tion, as discussed by Bilgic and Mooney
[4]. See also the work by Herlocker et
al. [18] for more information on how
recommender systems can give explana-
tions to support the recommendations.
Figure 2 shows an example of explained recommendations in Spotify.

Renee QOlstead Robbie Willlams
Tony Bennett

Figure 2: Music recommendation by Spotify,
explained and supported by related artists.

6

Depending on the domain characteristics, such as the number of users and items,
a recommender system can be memory-based or model-based. Memory-based
recommender systems keep the entire dataset in memory and calculate the recom-
mendations in real-time. This requires the recommendation algorithm to be fast
and the dataset to not be extremely large. Model-based recommender systems do
precalculations on the dataset offline, resulting in a simpler model representing the
entire dataset. Since more of the calculations have already been performed when
using the recommender system, this allows for larger datasets. On the other hand,
the recommendations might be of lower quality, as some of the data is thrown
away during the precomputations. Also, model-based recommender systems often
have more difficulty supporting the recommendations with explanations, as the
model might not preserve the data required for this. The recommender systems
looked at in this thesis are memory-based, but provide the possibility of using
slightly stale data when calculating predictions. This can improve the speed of the
recommender system by reusing earlier calculations, in exchange for slightly less
accurate predictions. This will be discussed briefly in Section 4.1.

In many use cases, collaborative recommender systems might work very well when
considering only a subset of the items, but less so when considering the entire
set of items. A reason for this is that users might have similar taste when it
comes to one category, for example books, while having conflicting opinions in
other categories, for instance when choosing which music to listen to. Hence, a
collaborative recommender system would be able to identify that the users have
similar taste if only considering the subset of the items that are books, while not
being able to find any similarity when looking at the entire item set. There are
several approaches that seek to overcome this problem. One can for example use a
hierarchical classification of the items. If two users do not seem to have similar
taste when considering all items in a category, the recommender system can go
down one level in the hierarchy, and check for similar taste when considering the
items in each subcategory.

1.5 Graph-based collaborative filtering

This thesis will focus on collaborative recommender systems. Many different
techniques can be applied by the recommendation algorithms in such systems.
Some are user-based, and rely on identifying users with similar taste. Others are
item-based, and provide predictions based on similarity between items instead of
similarity between users. This similarity is not based on content, as discussed
in Section 1.2, but rather that items are similar if users tend to have similar

opinions about them. Linden et al. [22] give an interesting introduction to an item-
based collaborative recommender system used by Amazon. The recommendation
algorithms discussed in this thesis are user-based.

The first collaborative recommender systems were based on computations on
matrices. When dealing with user ratings, such recommender systems represent
the data as a matrix where each column corresponds to an item, and each row to
a user. Cell (a,7) in the matrix contains the rating user a has given item i. How
similar taste two users a and b have, can for example be calculated as the angle
between the vectors represented by row a and row b in the matrix. How likely a
user a is to like an item ¢ can be calculated by looking at the values in column 4
for the rows corresponding to users having similar taste as user a.

In recent years, graph-based recommender systems have become increasingly popu-
lar. In these systems, the data is modeled as a graph instead of as a matrix. The
graph-representation allows for transitivity between user tastes to be exploited when
calculating predictions. Huang et al. [19] describe a graph-based recommendation
algorithm where both items and users are vertices in an undirected graph. If a
user a likes an item i, there is an edge between vertex a and vertex i. Now, how
likely a user b is to like an item j can be calculated based on the length of the
shortest path from b to j. The recommendation algorithms discussed in this thesis
are graph-based, but quite different from the method proposed by Huang et al.
[19].

No matter which techniques a recommender system is based upon, a few qualities
are essential for the recommender system to be successful:

Speed Many recommender systems provide their recommendations over the Inter-
net. A difference in loading time of a few seconds can decrease the customer
satisfaction substantially [35]. A recommender system must therefore be able
to provide accurate recommendations tremendously fast.

Scalability The algorithm must perform well on both small and large datasets.
Large web shops, such as Amazon, can contain several hundred million items
and users that the recommender system must be able to deal with.

Learning curve! The data a recommender system bases it’s calculations on will

LA learning curve shows the relationship between experience and learning. A learning curve
with a steep start represents rapid progress. Curiously, the common expression “a steep learning
curve” is often used in everyday language when describing something that is hard to learn,
contrary to the true meaning of a steep learning curve. In the case of recommender systems,
the learning curve shows the relationship between available data and recommendation quality.
Hence a good (or steep) learning curve indicates that the recommender system is able to calculate
accurate predictions without requiring a lot of user data.

often be very sparse. When there are many items, most users will only have
expressed an option on a small fraction of them. This should not prevent the
recommender system from providing good recommendations for the users.

We will in Chapter 3 go in depth on a specific graph-based collaborative filtering
algorithm, called IRA, and attempt to improve it. For good resources on more

information on recommender systems in general, we recommend the books by
Jannach et al. [21] and Ricci et al. [28].

Chapter 2

Clarifications and definitions

Throughout the rest of this thesis, knowledge about basic graph theory and basic
graph algorithms such as breadth-first search will be assumed. For more information
on graph theory and algorithms, the book by Dasgupta et al. [8] is a good starting
point. Basic knowledge about set theory, such as binary relations, will also be
assumed. A good resource on this and other topics in abstract algebra can be
found in the book by Fraleigh [11].

In many of the illustrations in this thesis, items from very different product groups
are used. This is for illustrative purposes, and not because the recommender system
necessarily should consider items from unrelated product groups when identifying
users with similar taste.

There are different ways to measure how well a user likes an item. In some domains
the measure may be explicit, such as a user giving a rating or buying an item. In
other domains the time spent reading an article or listening to a song might be a
more applicable measure for how well the item is liked. For the rest of this thesis
we will consider numeric user ratings as the measure of how well a user likes an
item, but the concepts and algorithms discussed would also apply if a different
measure was chosen.

2.1 Notations and definitions

Every recommender system must have a set of items, which we’ll denote by I.
The recommender system must also have a set of users, which we’ll denote by U.
The users can rate the items. The ratings must be constrained to lie within a
set of valid rating values, called the rating scale, which we’ll denote by S. We'll

10

denote the largest valid rating value (the largest value in S) by spe € S. All
the rating scales in this thesis will consist of consecutive integers, and be on the
form S ={1,..., St S ZT. When user a € U gives a rating to item i € I, we’'ll
denote this rating by 7,,; € S. Every user can give ratings to multiple items, but
only one rating to each item. We’ll denote the set of items that user a € U has
rated by I, C I.

For easier reference, we have that
e [is the set of items

e [/ is the set of users

Smaz 1S the largest valid rating value

e S={1,..., Sna) is the set of valid rating values

e [, C I is the set of items rated by user a € U

e 7,; € S is the rating given to item ¢ € I, by user a € U
Considering the example in Figure 3, we have that

e [= {game, picture, book, cd}

o U={a,b}

e S={1,...,7}

1

Figure 3: An example showing the use of I, U, and S. Two users have rated items on a

scale from 1 to 7. User a has given the ratings 2, 4, 5, and 7 to the items game, picture,
book, and cd. User b has given the ratings 2, 5, and 6 to the items game, picture, and cd.

By By~

11

2.2 Clarifications for pseudocode

To improve pseudocode readability, the following assumptions and decisions apply
to all upcoming algorithms.

Standard mathematical operations and notations are used in the pseudocodes.
For example |n| gives the absolute value of n if n is a number, and the number
of elements in n if n is a set or a list. Binary operators such as N and \ can
be used on sets, while € can be used on sets and lists.

<+ is an assignment operator, while = checks for equality.

The same value can be assigned to multiple variables by having a comma
separated list of the variables the value should be assigned to before the
assignment operator <—, and the value that should be assigned to the variables
after the assignment operator.

Lists can be appended to while being iterated through. The appended
elements will then also be iterated through.

Items in arrays can be accessed through the [|-operator. For example
container [i], where container is an array, will give the element at position ¢
in container.

All variables defined in Section 2.1 are available in the algorithms. For
example, 7, ,; will be available as the rating user a has given item 7. Similarly,
|1, N I,] is available as the size of the set of items both user a and user b have
rated.

When a variable has not been defined, its value will be null. For example,
Tq; =null for i ¢ I,.

Functions can return multiple values, but each function will always return
the same number of values. Multiple return values are denoted by a comma
separated list. When assigning the returned values to variables, the function
call is assigned to a comma separated list of variables. The number of variables
will always be the same as the number of values the function returns. The
first return value is assigned to the first variable, etc.

% is an indeterminate form, and hence has no defined value. For simplicity,

we define that % = 1 in our pseudocodes. (This is used in Algorithm 6.)

We assume the following functions to be available in the algorithms:

APPEND(container, elm), where container is a list, adds elm to the end of
the list.

12

® REVERSE(container), where container is a list, reverses the list such that

subsequent iterations will iterate through the elements of the list in the
opposite order.

e MAX(a,b), where a,b € R, returns the largest of a and b.

2.2.1 Variables and functions specific to this thesis

Variables and functions introduced later in this thesis are available in the algorithms
appearing after the variable introductions. The variables that will be used in
pseudocodes apart from the ones defined in Section 2.1 follow.

hort_common, introduced in Definition 1.

hort_frac, introduced in Definition 1.

t_diff,nqz, introduced in Definition 2.

P,, where a € U, introduced in Definition 3.

max _path_length, introduced in Section 3.2, prior to Algorithm 3.

ta—sb, where a,b € U, defined in Equations (1) and (3). When this is used in
a pseudocode, it refers to the version of it minimizing ¢_diff,_,, (defined in
Equations (2) and (4)).

In addition, the following functions will be used by the algorithms:

TRANS-FUNC-TRA(sign, offset) returns a callable function ¢ : R — R such
that ¢ (r) = sign - r + offset.

® TRANS-FUNC-SCALING(min,, maz,, min,, maz,) returns a callable function

t : R — R such that ¢ (r) = (r — min,) - % + miny. (Note that § =1
in pseudocodes, as previously defined.)

13

Chapter 3

IBM’s Intelligent
Recommendation Algorithm
(IRA)

In the article “Horting hatches an egg: A new graph-theoretic approach to collabo-
rative filtering”, published in “KDD ’99 Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery data mining” in 1999, Charu C.
Aggarwal, Joel L. Wolf, Kun-Lung Wu and Philip S. Yo, all working at the IBM T.
J. Watson Research Center at the time, introduced a new approach to collaborative
recommender systems [1]. The method they introduced, called the Intelligent
Recommendation Algorithm (IRA), is the one we will attempt to improve in this
thesis. In their article, Aggarwal et al. [1] compared IRA to two other recommender
systems, namely Firefly [33] and LikeMinds [14]. These recommender systems also
use collaborative filtering, but they are not graph-based. In this thesis, we focus
on graph-based collaborative filtering recommender systems, and hence will not go
into details on Firefly and LikeMinds. In this chapter we will have a detailed look
at how IRA works. Our presentation will attempt to follow a pedagogically sound
path, starting with easy examples, and ending with a detailed algorithm described
in pseudocode.

3.1 Identifying compatible users

Being a collaborative filtering system, IRA relies on identifying users with com-
patible taste, and provides predictions based on the compatibility between users.
A naive way to identify users with compatible taste could be to, for every pair of

14

users, look at all the items both users have rated and compare the ratings given
to these items. One could use, for instance, the average difference between the
ratings to determine how compatible the users are to each other. Let’s try this
approach on the example in Figure 3 (in Section 2.1).

The items both users have rated are game, picture, and cd. Both users have given
game the rating 2, so the difference in rating for this item is 0. For both picture
and cd, the difference in rating is 1. Using the average difference as compatibility
measure, we get a compatibility between the two users of % = % Whether this
is a good or bad compatibility will vary between use cases. In particular, the size
of the scale will play a big role in determining what is a good compatibility. If
the scale has size 2, for example, a compatibility of % is very bad, as the users
would be in complete disagreement more often than they agree with each other.
If the scale had size 100, however, a compatibility of % could be very good. Since
book is only rated by one of the users, this item is not used in the calculation of
the compatibility between the users. Obviously, other measures for compatibility
than the average difference can be used, for example adjusted cosine similarity,
Spearman’s rank correlation coefficient, or the mean squared difference [28].

This straightforward approach makes a lot of sense assuming two users can have
compatible taste only if they have low average difference when rating the same
items. But IRA takes the notion of compatible taste two steps further than this.
Firstly, what if one user is in general more positive than the other and always gives
higher ratings? Users could still agree on what they like and what they dislike, even
though they do not agree on the exact rating an item should receive. Secondly, and
more radically, two users who always rate totally opposite could still predict each
other’s behavior. Instead of assuming that users can only have compatible taste
when having low average difference between the ratings given the same items, IRA
attempts to discover a transformation function that can make the users compatible.

3 5 | 6

4 7
S & §
] O

By By~

Figure 4: An example showing the ratings of two users such that the average difference
equals zero. See Figure 3 in Section 2.1 for details on how to interpret the figure.

15

If, when applying the transformation function to one of the users’ ratings, the
transformed ratings have low average difference compared to the ratings of the
other user, the users are said to have compatible taste. Let’s look at the example
in Figure 4.

In this example, the items both users have rated are game, picture, and cd, and
for all of them, the users have given the same rating. Hence a good transformation
function t,_,, : R — R from a rating by user a to a predicted rating for user b could
be t,—p (1) = 7. When looking at only i € I, N 1,, we see that ¢, (15:;) — 75, =0
in all cases. Hence we get that the average difference t_diff,_,, between the
transformed ratings by user a and the ratings by user b equals 0, which means that
the users have compatible taste. Based on user a’s rating of book, we can predict
that user b would give book the rating p, b pook = ta—b (Ta,book) = Ta,book = D-

d w” = 6
L da &= o
Figure 5: An example showing the ratings of two users such that a transformation

function with offset —1 gives an average difference equal zero. See Figure 3 in Section 2.1
for details on how to interpret the figure.

Consider now Figure 5. In this example, the items both users have rated are game,
picture, and cd, and for all of them, user b has a rating of value 1 less than user a.
Hence a good transformation function ¢, ,, : R — R from a rating by user a to a
predicted rating for user b could be t,_; (1,) = 7, — 1, which we could call an offset
of —1. When looking at only i € I, N I, we see that t,; (14;) — 1; = 0 in all
cases. Hence we get that the average difference t_diff,_,, between the transformed
ratings by user a and the ratings by user b equals 0, which means that the users
have compatible taste. Based on user a’s rating of book, we can predict that user b
would give book the rating pa—sp.pook = ta—sb (Ta.book) = Ta,book — 1 = 4.

In addition to identifying compatible users whose ratings are offset, as in the
previous example, the IRA algorithm can also identify users whose ratings are
more or less opposite of each other as compatible. This is based on the assumption
that two users with opposing taste can still provide information on whether the
other user will like an item or not. If you like action movies and dislike romantic

16

comedies, while your friend dislikes action movies and likes romantic comedies,
even though you do not have the same taste in movies, one could expect that if
your friend likes a movie of any of these two types, you would probably not like it,
and if your friend dislikes it, you will probably like it.

S v =€ 6
260 reU R
Figure 6: An example showing the ratings of two users such that a transformation

function inverting the ratings around the value four, gives an average difference equal
zero. See Figure 3 in Section 2.1 for details on how to interpret the figure.

Consider Figure 6. In this example, the items both users have rated are game,
picture, and cd. We see that the ratings by user b are in a sense the opposite of
those by user a. User b’s ratings are flipped around 4 compared to the ratings
by user a. Hence a good transformation function ¢,_,;, : R — R from a rating by
user a to a predicted rating for user b could be t,_; (7,) = —7, + 8. When looking
at only ¢ € I, N I, we see that ¢, (r4,) — 75, = 0 in all cases. Hence we get
that the average difference t_diff, ., between the transformed ratings by user a
and the ratings by user b equals 0, which means that the users have compatible
taste. Based on user a’s rating of book, we can predict that user b would give book

the rating Pa—b,book = la—b (Ta,book) = —Tq,book +38=23.

We are now ready to specify the details of how IRA defines a compatibility measure
based on the concept of a transformation function. To find the transformation
function that makes two users a and b as compatible as possible, the IRA algorithm
chooses the version of

taspy (ra) = sign - r, + offset (1)
where sign € {—1,1}, offset € Z, that minimizes

t_diff,p = Z |ta—>b (Ta,i) - Tb,i| (2)

i€l,NIy

If t_diff,_p is not greater than some predetermined threshold, we say that user a
and user b have compatible taste.

17

Algorithm 1 Algorithm for finding the best IRA transformation function ¢, .5 : R — R
for predicting ratings for user b, based on ratings by user a. See Section 2.2 for general
clarifications for pseudocodes.

Input: Two users a,b € U

Output: Two values:
1. The IRA transformation function ¢, : R — R minimizing t_diff,_,,
2. The minimized t_diff,_,

1: function BEST-TRANS-FUNC(a, b)

2: best_sign < 0

3: best_offset < 0

4: best_diff < oo

5:

6: for all sign € {—1,1} do > All feasible transformation functions
7: for all offset € {—Smaz,---+2* Smaz} dO

8: diff <0

9: for allve I,N 1, do > Calculate total difference
10: ‘ diff < diff + |(sign - 14 + offset) — 1y 4]
11: end for

12: if diff < best_diff then > New best transformation function
13: best_sign < sign

14: best _offset < offset

15: best_diff < diff

16: end if

17: end for

18: end for

19:
20: avg_diff < best_diff /|1, N 1| > Calculate average difference
21: t <~ TRANS-FUNC-IRA (best_sign, best_offset)
22: return ¢, avg_diff

23: end function

Algorithm 1 shows pseudocode for finding the transformation function ¢,_., that
minimizes t_diff,_,,. This is done by exhaustive search—every feasible version of
t,—p is tried, and the best one is chosen. Feasible means that the transformation
function maps at least one valid rating value to a value within the rating scale:
dr € S| tass (r) € S. When sign = 1, t,, (1) = 7+ offset. 1 <1 < Spmas, SO
offset € {1 — Spags - - Smaz — 1} all yield feasible transformation functions. When
sign = —1, top (r) = —1r + offset. 1 < r < Spas, S0 offsel € {2,...,2 Spae) all
yield feasible transformation functions. By trying all combinations of sign € {—1,1}

18

and offset € {—Smazs---+2* Smaz }, We know that all feasible versions of ¢,,;, have
been tried. This algorithm has time complexity O (|S|-n), where n = |, N I,].
Generally the size of the rating scale is not very large, and the number of items
both users have rated is also generally not very large, hence this algorithm should
run very fast. As mentioned in Section 4.3, there are also other ways to calculate
the best transformation function, giving alternative running times, for example
O (n -logn), where n = |1, N I,].

In addition to the users having compatible taste, IRA has another condition that
must be satisfied before one user’s ratings can be used to predict ratings for another
user, namely the concept of horting®.

Definition 1. User b € U horts user a € U if there either is a large number of
items they both have rated

1. |1, N 1| > hort_common

or user a has rated a large portion of all the items user b has rated

2. % > hort_frac

where hort_common > 1 and hort_frac < 1 are predetermined thresholds.

Figure 7: The first condition for horting: Figure 8: The second condition for horting:
|1, N Iy| > hort_common. I, N I, (the set |ITZ|L’| > hort_frac. I,NIy (the set of items
of items both users have rated) is colored both users have rated) is colored red, while
red. Iy (the set of items user b has rated) is the
union of the blue area and the red area.

The horting condition attempts to improve the prediction quality by preventing the
algorithm from basing predictions on users whose compatibility is based on very
few data points. If, for example, two users have only rated one item in common,
there will always exist a transformation function making the two users completely

!The word horting was introduced by Aggarwal et al. [1]. It is based on the noun “cohort”,
but “co” was omitted since horting describes a property that is not necessarily symmetric.

19

compatible. Basing the further prediction process on this compatibility, however,
would very often give poor results.

1 3

4
(a3}
(a3}

By By

O
O

Figure 9: An example showing that horting is not generally symmetric or transitive. See
Figure 3 in Section 2.1 for details on how to interpret the figure.

ol
& & @~

Consider Figure 9 for an example showing that horting is not symmetric or tran-
sitive. Let hort_common = 3 and hort_frac = 3. We have that |I, N 1,| =
3 > hort_common, so a horts b and b horts a. |[,N1.| = 2 < hort_common,
hence the first condition of horting between user b and user c¢ is not satisfied.

uTI:‘[C‘ = % < hort_frac, so b does not hort c. |["’p|lc| = % > hort_frac, so ¢ horts b.

|I, N I.| = 1 < hort_common, hence the first condition of horting between user
a and user ¢ is not satisfied. H“’Iﬂfl = % < hort_frac, so a does not hort c.
“‘lllm‘h' = % < hort_frac, so ¢ does not hort a. We have that horting is not symmet-

ric, as ¢ horts b, while b does not hort ¢. We have that horting is not transitive, as
¢ horts b and b horts a, while ¢ does not hort a.

We are now ready to define the prediction relationship.
Definition 2. User a € U predicts user b € U if
1. user b horts user a (see Definition 1)
and the error in the transformation function between the users is small

2. todiffasy < t-diffmas

where t_diff,— is the minimized difference between t,_,;, (7,;) and r, ; for i € I,N 1,
as defined in Equation (2), and t_diff,,4, is some predetermined threshold. (Note
the opposite order of prediction compared to that of horting,.)

20

Definition 3. P, is the set of all users predicting a. P, = |J (u | u predicts a).
uelU

Because horting is a condition for prediction (but in the opposite order), prediction
inherits horting’s properties of not being symmetric or transitive. This can easily be
seen when considering Figure 9. Let ¢t_diff,,.. = 0. We have that the transformation
function t (r) = r yields an average difference of zero between all user pairs. Hence,
the second condition in Definition 2 for one user to predict another is satisfied for
all user pairs. Let hort_common = 3 and hort_frac = %, as in the example following
Figure 9. Since ¢ horts b, while b does not hort ¢, we have that b predicts ¢, while ¢
does not predict b, and prediction is not symmetric. Because ¢ horts b and b horts a,
while ¢ does not hort a, we have that a predicts b and b predicts ¢, while a does
not predict ¢, and prediction is not transitive.

Algorithm 2 shows pseudocode for determining whether there is a prediction
relation from user a to user b, and if so, finding the best transformation function
to—p : R — R. This is done by first checking that at least one of the two conditions
for user b to hort user a is satisfied. If user b horts user a, the function described
in Algorithm 1 is called to find the best transformation function from user a to
user b. If this transformation function has a small enough error, user a predicts
user b, and the transformation function is returned.

Algorithm 2 Algorithm for determining whether there is a prediction relation from user
a to user b, and if so returning the transformation function ¢, ., : R — R. See Section 2.2
for general clarifications for pseudocodes.

Input: Two users a,b € U
Output: The best transformation function ¢,_,; : R — R if a predicts b, or
null if a does not predict b
function RELATE(a, b)
if |1, N I,| < hort_common and |1, N Iy|/|1,| < hort_frac then
‘ return null > The horting condition is not satisfied
end if

t, t_diff <= BEST-TRANS-FUNC(a, b)

if t_diff > t_diff,ne: then

: ‘ return null > The transformation function is not accurate enough
10: end if

11:
12: return ¢ > Return the transformation function
13: end function

1:
2
3
4:
5:
6
7
8
9

21

3.2 Creating predictions by transitivity

Now that we have seen how IRA determines the prediction relations between the
users, we want to show how IRA uses these to actually predict how well a user will
like an item he or she has not rated yet. To predict which rating user a would give
item ¢, we can look at the users who predict user a and see if any of them have
rated item 7. Let’s say we find such a user b. We can then predict that user a would
give item ¢ the rating pya; = tp—q (73,:). If there are several users who predict
user a and has rated item i, we can take the average of the calculated predictions
as the final prediction p, ;.

The problem with this intuitive approach is what happens when there are no
users who both predict user a and have rated item ¢: a prediction for user a and
item 7 cannot be calculated! To overcome this problem, IRA models the prediction
relations as a directed graph. Every user corresponds to a vertex in the graph, and
for every prediction relation, an edge is added from the predicted user’s vertex
to the predicting user’s vertex. With this graph, IRA can exploit some sort of
transitivity in the predictions. Even though the prediction relation is not transitive
(z predicts y and y predicts x does not imply that z predicts z, according to
Definition 2 and seen in Figure 9), z’s rating can be transformed into a predicted
rating for y, which in turn can be transformed into a predicted rating for z! So, to
create the prediction, IRA performs a breadth-first search from user a, searching for
a user who has rated item ¢. When such a user has been found, its rating can be
transformed back to a predicted rating for user a, even if the user does not predict
user a directly. Consider the example in Figure 10.

Stage 0 We want to predict how well the red user a will like an item p. The graph
shows the users as vertices, and the directed edges correspond to prediction
relations. If there is an edge from user x to user y, it means that y predicts z.
Note that not all edges are bidirectional. For example, f predicts d, while
d does not predict f. The reason for this is that the prediction relation is not
in general symmetric, as seen in Figure 9 and the following explanation. The
users with rings around them (b, ¢, f, and i) are the users who have rated
item p.

Stage 1 A breadth-first search is performed from user a, searching for a user
having rated item g (the users with rings around them). During the first
stage, the users colored blue (d, e, and h) are discovered, as these have
distance 1 from a. None of these users have rated item p, so the breadth-first
search continues from the discovered users.

Stage 2 During the second stage of the breadth-first search, the users colored

22

Stage 0

Stage 1

Stage 2

Figure 10: A breadth-first search searching from user a for a user having rated a specific
item (users with rings around them) in a prediction graph.

23

blue (b, ¢, f, and g) are discovered, as these have distance 2 from a. The
users colored yellow (d, e, and h) are the users that have been discovered in
previous stages. The breadth-first search is looking for a user having rated
item 4 (the users with rings around them). Since such a user has been found
(b, ¢, and f), the breadth-first search is terminated.

When the breadth-first search has found one or more users that have rated item g,
these ratings are used to predict which rating user a will give to the item. In this
example, three shortest paths from user a to a user having rated p were found:
a—>d—c,a—d— f,and a — h — b. Each arrow x — y represents a prediction
relation between the head y and the tail x, and each such prediction relation
has an associated transformation function ¢,_,, : R — R. For each shortest path
w — T — -+ — y — 2z, where z has rated p, user 2’s rating r, , can be transformed
into a predicted rating p,_,y—...ospwpy = Loy © tys O -+ 0 by O tyyy (72, for
user w. The average of these predicted ratings is used as the final predicted
rating p, . In our example we have p.,isay = tesd © tisa (Tep), Prsd—ap =
tr—d O tasa (T7), and Poshay = tosh © thsqa (13,,). We now take the average of
these p,, = =i “erfﬁd”“ T as the final prediction for how well user a
will like item p. Note that this value is not necessarily in S. This can very often
be useful, as it says something about the confidence of the prediction. A predicted
rating of 13.1 indicates a higher likelihood of the item getting the rating 13 than if
the predicted rating was 12.5, even though they both round to 13. One can easily
constrain p, , to be within S by rounding it to the nearest value in S, if this is
more desirable.

As the breadth-first search goes through more stages, and the distance from the
source of the search increases, the chance of the predicted rating being accurate
decreases. Every prediction relation has a chance of being erroneous, and each
transformation function can even introduce an average error up to t_diff,,... Hence,
the longer the path of relations used to calculate the prediction is, the less ac-
curate the prediction will be. Because of this, IRA, introduces a depth limit
max_path_length on the breadth-first search. When reaching a distance further
than maz_path_length from the source, the breadth-first search is terminated. The
algorithm then returns as if a path to a user having rated the item in question
could not be found, and as result a prediction cannot be calculated.

Algorithms 3, 4, and 5 show pseudocode for predicting the rating a specific user
would give to a specific item.

Algorithm 3 calls the code in Algorithm 4 to search for users having rated the item.
Then the code in Algorithm 5 is called to transform the ratings by the users found
to predicted ratings for the user in question. Finally the average of the predicted

24

Algorithm 3 Algorithm for calculating a predicted rating for a specific user and item.
See Section 2.2 for general clarifications for pseudocodes.

Input: A user € U and an item € [
Output: A prediction for the rating user would give to item, or
null if no prediction could be calculated
function PREDICT(user, item)
L, D, M <+ PREDICT-BFS(user, item) > Perform breadth-first search
R < PREDICT-BACKTRACK(L, D, M) > Perform backtracking

1:
2
3
4:
5: if @ = R then
6
7
8
9

‘ return null > No prediction could be calculated
end if
: rating <— 0
10: for all r € R do
11: ‘ rating <— rating + 1 > Calculate the sum of the predictions
12: end for
13:
14: return rating/|R| > Return the average of the predictions

15: end function

ratings is returned as the final predicted rating. If no predicted rating could be
calculated, null is returned.

Algorithm 4 performs a breadth-first search, searching from the user in question for
users having rated the item in question. The pseudocode shows a fairly standard
depth-limited breadth-first search, so, along with the comments in the pseudocode,
the algorithm should be self-explanatory and will not be further explained here.
Let u be the user in question, and i be the item in question. If there are no users
at distance less than or equal to max_path_length from user u having rated item i,
the empty list is returned. If we let d < max_path_length be the shortest distance
from user u to a user having rated item 4, the list of all users at distance d from
user u having rated item i is returned. Note that if user v has rated item ¢, the
distance from user u to a user having rated item i is 0, and the list containing only
user u is returned.

Algorithm 5 transforms the ratings given by the users found by the breadth-first
search back to predicted ratings for the user in question. This is done by iterating
through the users in the opposite order of which they were visited by the breadth-
first search. This means that the users furthest from the user in question will be

25

Algorithm 4 Algorithm searching from a specific user for users having rated a specific

item. See Section 2.2 for general clarifications for pseudocodes.

Input: A user € U, and an item € I

Output: Three values:
1. An ordered list of the users visited during the search
2. An array with distances from user to other users
3. A list of the users closest to user having rated item

1: function PREDICT-BFS(user, item)

2: L < [user] > List of users to visit
3: D < [00,...,00] > Array of size |U| with distance from user to other users
4: M + || > List of users having rated item
5: Dluser] < 0

6: depth_limit < maz _path_length > Set the depth limit for the search
T

8: for all w € L do > Perform the breadth-first search
9: if D[u] < depth_limit then
10: if null = 7 jten, then > User u has not rated item
11: for all n € P, do > Users predicting user u
12: if oo = D[n| then > User n has not been visited before
13: Din] <~ D[u] +1

14: APPEND(L, n) > Put n in list of users to visit
15: end if

16: end for

17: else > User u has rated item
18: depth_limit <— D[u] > Update the depth limit for the search
19: APPEND(M, u) > Add u to list of users having rated item
20: end if
21: end if
22: end for
23: return L, D, M
24: end function

visited first. For each user u we visit, we check all the users predicting user u
that are further away from the user in question than user u, and transform any
ratings we have calculated for those users to predicted ratings for user u. After
iterating through all the users, we will have a list containing one predicted rating
for each shortest path from the user in question to any of the users discovered
by the breadth-first search. This list is returned as the list of predicted ratings
for the user and item in question. Note that if no users were discovered by the

26

Algorithm 5 Algorithm for transforming ratings found in a breadth-first search from
a specific user back to predicted ratings for that user. See Section 2.2 for general
clarifications for pseudocodes.

Input: A user € U, and an item € [
An ordered list L or users visited in a breadth-first search
An array D with distances from user to other users
A list M of the users closest to user having rated item
Output: A list of predicted ratings for user and item

1: function PREDICT-BACKTRACK (user, item, L, D, M)

2 R+ 1[],-.-,]] > Array of size |U| with lists of ratings
3 for all u € M do > Users having rated item
4: ‘ APPEND(R[u], 7y item) > Add rating to u’s list of ratings
5: end for

6 REVERSE(L) > Reverse the list, so iteration becomes last-in-first-out
7 for all u € L do > Perform the backtracking
8 for alln € P, do > Users predicting u
9: if D[n] +1 = D[u| then > n is reachable from u
10: for all p € R[n| do
11: > Transform rating for n to rating for v and add it to u’s list
12: APPEND(R[u], t,—u.(p))
13: end for
14: end if
15: end for
16: end for
17: return R|user] > List of predicted ratings for user

18: end function

breadth-first search, the returned list will be empty.

Together, Algorithms 3, 4, and 5 perform a depth-limited breadth-first search with
backtracking, and the combined time complexity is that of a standard breadth-first
search: O (n + m), where n is the number of vertices (users), and m is the number
of edges (prediction relations). Because the graph will normally be very sparse,
combined with the depth limit maz_path_length, the algorithms will usually run
very fast, and hence predictions can be calculated with great speed.

27

Chapter 4

Improving IRA—Scaling the
scales

The article “Horting hatches an egg: A new graph-theoretic approach to collabora-
tive filtering” by Aggarwal et al. [1], which introduced IRA, has been cited more
than 450 times, according to Google Scholar [31]. Despite this high number of
citations, we have not found in the literature any attempts of further developing
and extending IRA to make it perform even better. In this chapter we suggest such
an improvement, which we have called “Scaling the scales”.

4.1 Scaled scales

A natural extension to the assumption that users with compatible taste can rate
offset and/or inverse in relation to each other, is that users can use differently
sized ranges of the scale. One user might be very effusive, and often give top or
bottom ratings. Another user might find that everything is more or less ok. This
user, who seldom loves or hates an item, will naturally not use the top or bottom
ratings very frequently. In this scenario, the two users can actually agree with each
other on what is good and what is bad—they are just using differently sized ranges
to express the difference between good and bad. Note that the transformation
function used by IRA as described in the previous chapter, would not capture this
type of taste compatibility between a pair of users.

This is the idea behind the suggested improvement to IRA implemented in this
thesis. We create an algorithm that, in addition to identifying users who rate offset
or inverse compared to each other, also attempts to identify users who rate on

28

differently sized ranges of the scale. The relationships between users having either
of these tree types of compatible taste (or any combination of them), are then
considered when creating predictions. Consider the example in Figure 11.

1234|567
& a0 = 6
d @ &0

Figure 11: An example showing the ratings of two users such that a transformation
function halving the size of the ratings scale gives an average difference equal zero. See
Figure 3 in Section 2.1 for details on how to interpret the figure.

The items both users have rated are game, picture, and cd. Both users have given
picture the rating 5, so the difference in rating for this item is 0. For both game
and cd, the difference in rating is 1. For game, user b has given a higher rating
than user a, while user b has rated cd lower compared to user a.

By using IRA’s method for identifying users with compatible taste, we get that the
transformation function IRA_t,_,;, : R — R that minimizes the average difference
IRA_t_diff, ., between the transformed ratings by user a and the ratings by user b
is IRA_t, .y (14) = rq. We get that the minimized IRA_t_diff,,, = # = % This
might seem like an ok average difference and transformation function. However, if
we look closely at the figure, we see that user b’s ratings look like a compressed
version of user a’s ratings. Can it be that user a is more effusive than user b, and
hence uses a larger part of the scale? Our algorithm will identify this case as both
users having the same opinion on the rating 5, while above and below 5, user a’s
rating scale is twice as large as user b’s scale. In other words, the distance from 5
is twice as large for user a compared to user b’s ratings. The final transformation
function from user a to user b will be t,; (r,) = (r, —3) - 1 + 4. Using this
transformation function we get that the average difference t_diff,_., between the
transformed ratings by user a and the ratings by user b equals 0.

If we want to predict which rating user b would give book based on user a’s
rating of book, IRA’s transformation function would give us a predicted rating
IRA po—sp book = IRA 14—y (Ta,book) = Ta,book = 1, while our transformation function
would give the prediction pa—b ook = ta—sb (Ta.book) = (Ta,book — 3) - % +4 = 3. This
is quite a large difference on a scale of size 7!

29

To find the transformation function that makes two users a and b as compatible
as possible, our algorithm chooses values for the variables min,, maz,, min,, and
mazxy, giving the functions

Ta—ming) + mmb if min,=maz, and miny,=max,

(3)

ry—ming) - DAL= 4 i if ming,Amaz, and min,#Amaxy

oy (1) = {(ra ming) - e, b +miny if min,#mazx, and min,#maxz,
a—b
(
m.
(axp —Mminyg

(

tha (15) = {

where min,, maz,, miny,, maz, € S such that

Ty — mmb) + min, if min,=mazx, and min,=max,

tfdiﬂ‘a—)b = max (Z ’ta—>b (ra,i) - rb,i| y Z ‘tb—m (Tb,i) - ra,il) (4)

1€l,NIy i€l NIy

is minimized. Note that the functions are only defined when maz, — min, and
mazx, — miny are either both equal 0, or both different from 0. In other words, the
functions are always invertible, and, in fact, t_diff,_,, and t_diff,_,, are the inverse
of each other.

The rationale behind minimizing the maximum of the average difference between
user b’s ratings and the transformed ratings by user a and the average difference
between user a’s ratings and the transformed ratings by user b, instead of just
minimizing the average difference between user b’s ratings and the transformed
ratings by user a, is to avoid accepting relations due to the size of the scale being
decreased by the transformation function. When |maz, — min,| < |maz, — min,|,
the difference between ¢, (7,,;) and r, ; will be smaller than the difference between
ty—a (16;) and 7, ,;, for i € I, N I,. This is not necessarily due to t,_,, being more
accurate than ¢, .,, but rather that ¢,_,, maps onto a smaller range than #,_.,,
and hence the differences are scaled down accordingly. A difference of 1 on a scale
from 2 to 5 has the same relative size as a difference of 2 on a scale from 1 to 7, as

522 — =1 Consider Figure 12, which illustrates this effect.

If we let min, = 1, maz, = 7, miny, = 4, max, = 6, and i € [N I, we get that

. . 0+24+0
the average difference between ¢, (7,;) and 1p; is —— = 3, while the average
difference between t,,, (13,:;) and 7, is w = % Hence 1t seems that t,_,; is

more accurate than t,_,,. If we, instead of comparing the average differences as
absolute values, compare them relative to the size of the scaled scales, we see that

)

2
the average differences actually are equal. 2, = %, and =25 = %. In Scaling the

30

Figure 12: An example showing that decreasing the size of the rating scale results in

decreased average difference. See Figure 3 in Section 2.1 for details on how to interpret
the figure.

scales, we therefore choose to regard two users as having compatible taste only if
both transformation functions yield small average differences!. Because scaling is
not involved in IRA, an TRA transformation function will always give the same
average difference as its inverse function. Therefore this issue of scaled average
differences does not apply to IRA.

Rating on differently sized ranges of the scale is a generalization of both rating
offset and rating inverse. Therefore this transformation function will identify users
as having compatible taste when they are rating in any combination of offset or
inverse, as IRA does, as well as when they are rating on differently sized ranges of
the scale?. Here are some examples of how our transformation function covers any
combination of scaled, offset, and inverse rating scales:

Offset If user a generally rates 2 values higher than user b, IRA would give the
transformation function IRA_t,_,; (r,) = 7, — 2. The transformation function

"'We have also tried variants of our algorithms which do not have this constraint, and some of
them are included in our implementation. See Section 4.3 for more details.

2There are actually two transformation functions that, in theory, can be used by IRA and not
by Scaling the scales, namely ¢ (1) = —r 4+ 2 and ¢ (1) = —r + 2 - $;45- Using these functions, all
ratings are transformed to ratings 1 (bottom of the scale) or lower and s,,4, (top of the scale) or
higher, respectively. We do not regard it as reasonable that two users have compatible taste if
such a function is the best transformation function between them. In addition, these functions
will never be the only best transformation functions, as they will never give a smaller average
difference than the function ¢ (r) = r. Therefore we chose to not include these transformation
functions in Scaling the scales. If we wanted to, the functions could have been included by for
example introducing a separate sign € {—1,1} variable in the Scaling the scales transformation
functions.

31

given by our algorithm could® be t,_; (1,) = (1, — 2) - é:—g +0=(r, —2).

Inverse If user a generally rates exactly opposite of user b on a scale of size 13 (so
they agree on the midpoint of the scale), IRA would give the transformation
function IRA_t, ., (r,) = —r, + 14. The transformation function given by
our algorithm could be ¢, ,; (1,) = (ry — 5) - % +9=—r, +14.

Offset + inverse If user a generally rates opposite of user b on a scale of size
13, but is also more negative and rates 1 lower than user b, IRA would give

the transformation function IRA_t, ., (r,) = —7r, + 15. The transformation
function given by our algorithm could be t, ., (1,) = (1, = 7) - g +8 =
—74 + 15.

Scaled By letting W # 41, scaling can be added to any of the above cases.

Tq—MiNg

Other than BEST-TRANS-FUNC, Scaling the scales can use the same algorithms as
IRA when calculating predictions. So all algorithms described in Chapter 3 except
for Algorithm 1 also apply for Scaling the scales. Algorithm 6 shows pseudocode for
the Scaling the scales version of BEST-TRANS-FUNC. It’s job is to find the Scaling
the scales transformation function #,_,, that minimizes t_diff,_,,. This is done by
exhaustive search—every feasible version of %,_,, is tried, and the best one is chosen.
Feasible means that both users’ rating scales are assumed to be within the valid
rating scale: 1 < min,, maz,, ming, mazy, < Syaz-

We have that

, max, — miny .
tasy (ra) = (rg — ming) - ——————— + miny,
maz, — ming

max, — ming

(14 — ming + maz, — maz,) - + miny,

Mazr, — Min,
max, — miny max, — miny

= (r, — maz,) - + (max, — min,) - + miny

max, — Min, max, — min,

mazxy — miny

= (r, — maz,) -
= (r, — mazx,) -

= (1, — maz,) -

—— 4+ maxzy, — miny, + ming
MaT, — MAN,

max, — miny
——————— + mam
MaT, — MiNy,
ming — maxy
— + max

ming — Max,

Therefore, every instance where max, < min, will be covered by an instance where

3In Scaling the scales, transformation functions with different parameters can behave identically.
For example t,_p (rq) = (14 — 2) - % +0=1(r,—3)- % + 1. Hence the exact values of the
parameters in the transformation function cannot be uniquely determined in all cases. However,
the behavior of the transformation function is uniquely determined in any case.

32

Algorithm 6 Algorithm for finding the best Scaling the scales transformation function
ta—sp : R — R for predicting ratings for user b, based on ratings by user a. See Section 2.2
for general clarifications for pseudocodes.

Input: Two users a,b € U

Output: Two values:
1. The Scaling the scales trans. function t,,; : R — R minimizing ¢_diff, .,
2. The minimized t_diff,_,

1: function BEST-TRANS-FUNC(a, b)

2: best_min,, best_min, < 0

3 best_mazx,, best_mazxy < Smaz

4 best_diff < oo

5: for all min, € {1,..., Sma} do > All feasible transformation functions
6 for all maz, € {ming, ..., Sne} do

7 for all min, € {1,..., Sy} do

8 for all maz, € {1,..., Sy} do

9 if (maz, = min, and maz, = min,)

or (mazx, # min, and maz, # min,) then

10: diff,_p, diffy—q < 0

11: scaleq—p < (maz, — miny)/(mazx, — min,)

12: scaley—q < (maz, — min,)/(mazy, — miny)

13: forallie I,NnI, do > Calculate total difference
14: diffasp < diffosp+|(rai —ming)-scaleq,—p+ming —1y 4|
15: diffy—a < diffo—a+|(rp,;—ming)-scaley o +ming— 14 ;|
16: end for

17: if MAX(diffu—p, diffy—a) < best_diff then

18: best_min, < min, > New best trans. function
19: best_mazx, < maz,

20: best_ming < ming

21: best_mazxy, < maxy

22: best_diff < MAX(diff,—sp, diffy—a)

23: end if

24: end if

25: end for

26: end for

27: end for

28: end for

29: avg_diff < best_diff | |1, N Ly| > Calculate average difference
30: t < TRANS-FUNC-SCALING (best_min,, best_mazx,, best_miny, best_maxy)
31: return ¢, avg_diff

32: end function

33

min, < mazx,, and we only have to consider the cases where min, < maz,, as we
have done in Algorithm 6.

The time complexity of this algorithm is O (]S 1t n), where n = |I, N I,|. Because
the rating scale and the number of items both users have rated generally both are
fairly small, this algorithm runs quite fast. There are ways to improve the running
time compared to the quite straightforward algorithm presented in Algorithm 6, and
some such optimizations have been used in our implementation. It runs, however,
considerably slower than IRA’s algorithm for finding the best transformation
function between two users.

4.2 OfHine vs. real-time computations

As discussed in Section 1.5, it is important that the process of calculating predic-
tions (called the predicting process) is very fast. The process of finding the best
transformation function between two users (called the relating process) does not
necessarily have to be invoked when calculating predictions, and hence its running
time might not be that crucial. If we assume that the dataset is static, and does not
change, the relating process only has to be run once for each pair of users. After
this, the predicting process can calculate predictions by simply searching in the
prediction graph constructed by the relating process. If changes are made to the
dataset (for example when users rate items, or when new users or items are added),
however, the predicting process will not take these changes into account before the
relating process has been run again to update the prediction graph.

The highest prediction quality would be obtained by running the relating process
whenever changes are made to the dataset, in order to always keep the prediction
graph up to date. This might come with an unsatisfactory speed penalty. To
increase the speed of the system, it might be acceptable to use slightly stale data
when calculating predictions. For example, the relating process can be run offline,
updating the prediction graph at regular intervals, while the predicting process runs
in real-time, using the most recent data available for calculating predictions. This
makes for a very fast system, as the predicting process never has to wait for the
relating process. The prediction quality, on the other hand, might suffer, since the
data used when calculating predictions is not always up to date. Another approach,
which is implemented by Aggarwal et al. [1], gives a tradeoff between speed and
prediction quality. In addition to running the relating process offline at regular
intervals, this approach makes sure that the relations concerning the user for which
the prediction should be calculated are up to date before the predicting process is
started. The data is still not always totally up to date, but at least the relations

34

where the user in question is the predicted user are up to date. This should give
higher prediction quality, with only a small time penalty. An in-depth explanation
of this approach can be found in the article by Aggarwal et al. [1].

4.3 Implementation details

“There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies.
The first method is far more difficult.”

— C.A.R. Hoare, winner of the 1980 Turing Award

Even though it would be great, we do not consider our software design so simple
that the absence of deficiencies is obvious. Nor do we consider our implementation
so simple that it is easy to see exactly how it works without any extra explanation
besides the source code. This section will therefore give a short introduction to
the design of our recommender system. For a further study of our implementation,
we refer to the source code itself, which is available at GitHub [23], as well as
BORA [3], where this thesis is published.

When implementing our recommender system, we wanted the development and
deployment of different extensions and approaches to be easy, without having to
rewrite big parts of the system. The recommender system should also be able to
handle different datasets with ease. Therefore we chose to let the recommender
system consist of four components: Core, Parser, Relator, and Predictor.

e The Core stays the same for all the recommender system approaches, and
takes care of the communication between the other components.

e The Parser is different for every dataset. Its job is to know the format of
the dataset on which the recommender system should be run, and translate
it into something that can be understood by the other components.

e The Relator’s responsibility is to discover users with compatible taste, and
is different for every recommendation algorithm.

e The Predictor calculates predictions. This is done based on the prediction
relations calculated by the Relator. By providing the Predictor with a few
parameters, such as the depth limit max_path_length for the breadth-first
search, we can use the same Predictor for all the different recommendation

35

algorithms we have implemented. It can, however, be changed to accommo-
date recommender systems behaving differently from the algorithms we have
tested in this thesis.

Our recommender system works by the Core first asking the Parser to parse the
dataset. The Parser constructs objects for each user, item and rating in the dataset.
When the parsing is done, the Relator is asked to identify all pairs of users such
that one of the users (called the predicting user) predicts the other (called the
predicted user). This is done by looking at the ratings given to the items which
both users have rated, as discussed in Sections 3.1 and 4.1. For each such pair of
users, a relation object is created, containing information on the transformation
function used to transform ratings by the predicting user to ratings for the predicted
user. Each user has a list of all relations in which they are the predicted user.
The Predictor calculates predictions by searching in the graph consisting of user
vertices and directed relation arcs from predicted users to predicting users.

Every Parser must implement the same interface in order to be used by our
recommender system. We have implemented Parsers for the four different datasets
we will use in Section 5.2. New Parsers can easily be created for using the
recommender system on other datasets.

In our implementation, the abstract class CollaborativeFilter contains most of
the functionality needed by the Relator and the Predictor. We have included four
different classes extending CollaborativeFilter in our implementation. These
classes give the functionality of the recommendation algorithms IRA [1], Scaling
the scales, Firefly [33] and LikeMinds [14]. As mentioned in Section 3, Firefly and
LikeMinds were used when comparing the performance of IRA to other recommender
systems in the article by Aggarwal et al. [1]. Because we focus on graph-based
collaborative recommender systems, Firefly and LikeMinds are not discussed in this
thesis. But to show that our software design allows for recommendation algorithms
taking other approaches than IRA and Scaling the scales, we have included the
implementations of Firefly and LikeMinds.

To tailor how the recommender system should behave, the Predictor part of
CollaborativeFilter takes as argument an instance of a class describing how
the search in the graph should be performed. We have only implemented one such
class, as the same one could be used for all four of the CollaborativeFilters
implemented. Similarly, the Relator part of CollaborativeFilter takes as
argument an instance of a class called Transformer, whose task is to create the
functions for transforming ratings by one user into predicted ratings for another. We
have made ten different classes implementing Transformer. Four of them provide

36

the functionality used by IRA, Scaling the scales, Firefly and LikeMinds (items 1,
3, 9, and 10 in the following list), while one (item 2) provide alternative running
times for IRA. The remaining five classes provide slightly different approaches
to scaled scales than the one presented in Section 4.1. These approaches were
implemented in order to pick the algorithm providing the best prediction quality
for use in Scaling the scales. Brief descriptions of the different classes extending
Transformer follow.

1.

InverseOffsetMinimized provides an implementation of the function for
identifying users with compatible taste used by IRA [1]. This is an imple-
mentation of the code shown in Algorithm 1, which is an exhaustive search
algorithm with time complexity O (|S| - n), where n = |1, N I,|.

. InverseOffsetAnalyzed provides a different implementation of the function

for identifying users with compatible taste used by IRA. This algorithm
finds the optimal offset by looking at the median of the differences. In our
implementation, the algorithm for finding the median can be chosen from
three alternatives, giving different running times for the function:

(a) By sorting, in time O (n -logn), where n = |1, N I|.

(b) By a random selection algorithm in expected time O (n), where n =
|1, N 1]

(c) By a deterministic selection algorithm [5] in guaranteed time O (n),
where n = |1, N I

In our experience, the sorting algorithm usually is the fastest one in practice.

InverseScaledInvertible provides an implementation of the function for
identifying users with compatible taste used by Scaling the scales. This
is an implementation of the code shown in Algorithm 6, but with a few
optimizations to make it run faster. It is an exhaustive search algorithm, and
has time complexity O (]8\4 -n), where n = [I, N .

ScaledInvertible provides an algorithm similar to number 3. The main
difference is that this algorithm does not identify users rating opposite of each
other as having compatible taste. In our experiments, this algorithm gave
lower prediction quality than InverseScaledInvertible, which we chose to
use in Scaling the scales.

InverseScaled provides an algorithm similar to number 3. The main differ-
ence is that this algorithm does not consider the average difference of the
inverse transformation function when identifying users with compatible taste,

37

as discussed in Section 4.1. Instead, user a and user b have similar taste
if there is a transformation function with small average difference between
the transformed ratings by user a and the ratings by user b, regardless of
there being a transformation function with small average difference in the
opposite direction. In our experiments, this algorithm gave lower prediction
quality than InverseScaledInvertible, which we chose to use in Scaling
the scales.

6. Scaled provides an algorithm similar to number 5. The main difference
is that this algorithm does not identify users rating opposite of each other
as having compatible taste. In our experiments, this algorithm gave lower
prediction quality than InverseScaledInvertible, which we chose to use
in Scaling the scales.

7. InverseScaledTwoWay provides an algorithm similar to number 3. The main
difference is that this algorithm does not require the transformation functions
te—p and t,_,, to be inverse of each other. For user a and user b to have
compatible taste, the algorithm still requires that both ¢,_,;, and ¢,_., give
small average differences. But the functions can be any valid Scaling the
scales transformation functions, and not necessarily the inverse of each other,
as in number 3. In our experiments, this algorithm gave lower prediction
quality than InverseScaledInvertible, which we chose to use in Scaling
the scales.

8. ScaledTwoWay provides an algorithm similar to number 7. The main difference
is that this algorithm does not identify users rating opposite of each other
as having compatible taste. In our experiments, this algorithm gave lower
prediction quality than InverseScaledInvertible, which we chose to use
in Scaling the scales.

9. ConstrainedPearsonR provides an implementation of the function for iden-
tifying users with compatible taste used by Firefly [33]. This algorithm has
time complexity O (n), where n = |1, N L.

10. AgreementScalar provides an implementation of the function for identifying
users with compatible taste used by LikeMinds [14]. This algorithm has time
complexity O (n), where n = |I, N I].

In addition to the recommender system itself, we have included a system for
generating synthetic datasets, as well as a system for computing statistics for
datasets, relations and predictions in our implementation.

38

“Measuring programming progress by lines of code is like measuring
aireraft building progress by weight.”

— Bill Gates, co-founder of Microsoft

The number of lines of code in a project is seldom a useful measure, and is usually
not a good indicator for neither quality nor progress. It can, however, be a fun
measure to look at when comparing projects, and can also provide some insight in
regard to the amount of work put into a program. Our implementation contains
more than 6,000 lines of code, and uses around 50 different classes and interfaces.
If we were to include the source code in an appendix to this thesis, the appendix
would be more than 150 pages long, or about twice as long as the thesis itself!

39

Chapter 5

Experimental results

Some people argue that the quality of a recommender system cannot be measured,
due to there being too many objective functions. There are, however, many
methods attempting to calculate such quality measures. Most traditional methods
rely on performing offline experiments using an existing dataset. There are several
limitations to such offline evaluation methods, as there is no way to know how
users would react to the recommendations. Because of this, a better method might
be to actually deploy several recommender systems on a real live system for doing
performance comparison, as this allows for measuring true user satisfaction [32].
Many companies use this approach for identifying the recommender systems that
gives the best performance for their particular applications. The comparison can
for example be done by dividing the user base into several groups, where each
group of users is served recommendations from different recommender systems.
The results for how the different user groups respond to the recommendations can
then be used for comparing the different recommender systems, and for tweaking
them for optimal performance.

For this thesis, we do not have access to a live system on which we can test different
recommender systems, and hence we must resort to using an offline approach
for performance comparison. We will use a technique called leave-one-out cross-
validation for comparing the performance of IRA and Scaling the scales. This
method is based on comparison between predicted ratings, calculated based on
a dataset, and the real ratings in the dataset. For more information on how
recommender systems can be evaluated, the article by Herlocker et al. [17] is the
authority in the field. Another interesting article is written by Olmo and Gaudioso
[24], who present a new evaluation approach that takes the interactivity of the
recommender system into account.

40

In the article by Aggarwal et al. [1], IRA is only tested on synthetic data, but the
authors state that the algorithm “will be tested in a real user trial in the near future”.
We have contacted the authors, and received replies from Wolf and Wu. They
replied that, presumably due to lack of real data, such a trial was never deployed.
We have not found in the literature any published work testing the IRA algorithm
on real datasets. Hence this thesis might present the first published results on how
IRA performs on real data. Many organizations release datasets based on real data
for use in research on recommendation algorithms. We will run experiments on
datasets provided by GroupLens Research and the 2°¢ International Workshop on
Information Heterogeneity and Fusion in Recommender Systems.

In addition to using real datasets, we would like to compare the performance
of Scaling the scales and IRA on similar datasets as were used in the article
by Aggarwal et al. [1]. The synthetic datasets used in the article were crafted
towards the features of the IRA algorithm. We want to test how Scaling the scales
performs on such datasets, and also how the IRA algorithm performs on datasets
crafted towards Scaling the scales. We start by describing how we have created the
synthetic datasets used in this thesis.

5.1 Dataset generation

When generating a dataset, we first W T
choose the values of the rating scale
S={1,...,8ma} S Z". Secondly, we
specify the sizes of the set of users U
and the set of items I in our dataset.
Every user has a chance uc < 0.5 of |
being a COntI'arian, and rate OppOSite of The more you rate, the better your suggestions.

normal users. Let U.pnira € U be the

set of users chosen to be contrarians. Figure 13: Netflix asking their users to rate
The items are divided into two parts: movies, in order to improve the recommen-
one small set of items I, C I called dations.

the “hot set”, and the rest of the items I,y C I, called the “cold set”. Users are
more likely to have rated the items in the hot set than the items in the cold set.
The idea behind this is that the hot set will increase commonality between the
users (users have rated many of the same items), while the cold set increases the
coverage of the items rated (all items have been at least a few times) [1]. Having a
hot set of items which users are likely to have rated increases the probability that
two users have rated many of the same items, and hence we can identify their taste

41

compatibility. It is not unrealistic that such hot sets can exist in many applications.
This is both due to some items being generally more popular than others, but also
because a recommender system can “push” users towards rating specific items. As
seen in Figure 13, the movie website Netflix, for example, ask their users whether
they have seen specific movies, and if so, how they would rate them. This would
be a great opportunity to ask users to rate items in the hot set. But it is equally
important that the users rate the items in the cold set. If very few users have rated
an item, it might not be possible to find a path from a user we want to predict a
rating for to any of the few users having rated the item. So users could also be
asked to rate items in the cold set, in order to ensure that the system will be able
to calculate predictions for those items.

Next we choose how many items ri the users have rated on average, as well as how
many of these are items from the hot set ri,; and from the cold set 7i.,;y. We can
now determine the probability pr,; for user a to have rated item 4

Tihot T
et it g € [
Pra; = 4 ol ot (5)
’ Tleold §f 4 € [cold
|[cold|

Every item ¢ is now assigned an average rating m;, chosen randomly from a
uniform distribution over the rating scale. Specific user ratings will ensure that
the average of all ratings given to item ¢ becomes more or less m;, as described in
Sections 5.1.1 and 5.1.2.

The next step is to determine the specific ratings the various users have given. So
far, the generation process has been identical for all our synthetic datasets. But
when determining the specific user ratings the processes are different, depending on
whether the dataset should be crafted towards the IRA algorithm, or towards the
features of Scaling the scales. This is because the two algorithms exploit different
aspects of how users behave, and hence, in order to bring out these differences, the
datasets should be based on different models for user behavior.

5.1.1 Ratings crafted towards IRA

The following describes the datasets that were used to test the IRA algorithm by
Aggarwal et al. [1]. The IRA algorithm assumes that users can have compatible
taste while rating offset and/or inverse compared to each other. To create a dataset
with users matching this assumption, we first assign every user a an offset addend
0, randomly chosen from a normal distribution with mean 0. This offset addend
represents how positive or negative the user is when giving a rating, compared to
the average user.

42

When creating the dataset, user a will have given item ¢ a rating with probability
prai- The average rating given to item ¢ has already been specified, and should
have the value m;. Given that user a is chosen to give a rating to item i, this rating
Tq,i is calculated as follows. First a random rating rr; for item ¢ is chosen from
a normal distribution with mean m;. Then user a’s offset addend o, is added to
the random rating, and if a € U,ynue the rating is reversed. Finally, the rating is
constrained to lie within the rating scale. In formulas this yields
max (1, min (Syqez, 77 + 04)) if a ¢ Uecontra
Ta,i = . . (6)
{max (1, min (Syazs Smaz + 1 — (175 + 04))) if @ € Ucontra

5.1.2 Ratings crafted towards Scaling the scales

In addition to letting users rate offset and/or inverse compared to each other,
Scaling the scales also identifies users rating on differently sized ranges of the scale
as compatible. To create a dataset with users matching this assumption, every
user a is assigned a value s,, representing the size of the scale the user typically
uses when rating. s, is chosen randomly from a uniform distribution over the set
{0,..., Smaz — 1}. Next, the user is assigned a value Spom,q, representing where the
scale the user typically uses when rating is located on the full rating scale. Sfrom,q iS
chosen randomly from a uniform distribution over the set {1, ..., Sy — Sq}. We let
Sto,a = Sfrom,a T Sa- 1he values on the rating scale between spom o and sy, , represent
the part of the scale that the user typically uses when rating. If a € Uconira, We
SWaP Sfrom,q aNd St 4, SO that si 4 < Sprom.a-

When creating the dataset, user a will have given item ¢ a rating with probability
prai- The average rating given to item ¢ should be m,. Given that user a is chosen
to give a rating to item ¢, this rating r, ; is calculated as follows. First a random
rating rr; for item ¢ is chosen from a normal distribution with mean m;. Then the
random rating is multiplied by the relative size of the scale that user a typically
uses when rating. If user a is a contrarian, the rating will now automatically have
been reversed, as the relative size of the scale is negative. Now spom o is added
to the rating, before the rating is constrained to lie within the rating scale. As a
formula this can be expressed as

) Sto.q — 8
Te; = Max <1, min <smax, Sfrom,a + (175 — 1) - M—Jm)) (7)

Smaz — 1

43

5.2 Performance comparison

As mentioned in the introduction to this chapter, there are many different ways to
evaluate recommender systems. In this thesis, we will compare how well IRA and
Scaling the scales fare when giving predictions using an approach called leave-one-
out cross-validation. This method works by hiding a known rating, predicting what
that rating should be, and comparing the correct and predicted ratings.

Algorithms 7 and 8 show pseudocode for the leave-one-out algorithm. Algorithm 7
first checks whether the user in question has rated the item in question. If this is
not the case, there is no rating to hide, and the prediction is calculated directly
by calling the basic prediction function in Algorithm 3. If the user has rated the
item, the rating must be hidden. When a rating is hidden, the prediction relations
concerning the user having given the rating might change. For example, the user
might not have enough rated items in common with other users any longer, or the
transformation function giving the smallest average difference might be another
when the hidden rating is not considered. Therefore the prediction relations must

Algorithm 7 Algorithm for predicting which rating a specific user would give to a specific
item. If the user has already rated the item, the rating is hidden and the prediction
calculated as if the user had not rated the item. See Section 2.2 for general clarifications
for pseudocodes.

Input: A user a € U, and an item ¢ € [
Output: Two values:
1. The original rating, null if no original rating
2. The predicted rating, null if no rating could be predicted

1: function LEAVE-ONE-OUT(a, 1)

2 if i ¢ I, then > a has not rated 7, calculate the prediction and return

3 | return null, PREDICT(a, 1)

4: end if

o:

6 I, < I\ {i} > Hide ¢ from the items a has rated

7 RE-RELATE(a) > Recalculate prediction relations to and from a

8 p < PREDICT(a, 1)

9: I, + 1, U{i} > Unhide 7 in the items a has rated
10: RE-RELATE(a) > Recalculate prediction relations to and from a
11:

12: return r,;, p

13: end function

44

Algorithm 8 Algorithm for recalculating the prediction relations to and from a user.
See Section 2.2 for general clarifications for pseudocodes.

Input: A useraeU
1: function RE-RELATE(a)

2 for all w € U do

3 ta,u < RELATE(a, u) > Update transformation function from user a
4: tu.a < RELATE(u, a) > Update transformation function to user a
5 > P, and P, are implicitly updated
6: end for

7: end function

be recalculated. This is done by calling the function in Algorithm 8, before the
prediction can be calculated by calling the basic prediction function in Algorithm 3.
Finally, the rating must be unhidden, and the prediction relations recalculated
again. Both the original rating and the predicted rating are returned, so they can
be compared and used when calculating statistics.

Algorithm 8 simply goes through every user u, and calls the function in Algorithm 2
to recalculate the prediction relation from the user in question to u and from u to
the user in question. The callable transformation functions returned by the function
in Algorithm 8 are stored globally, so they can be called by other functions. Note
that, as prediction relations are removed and introduced, the sets P,, where a € U,
are implicitly updated, as they always contain the set of current predictors.

When evaluating the recommender systems on different datasets, we collect statistics
on the prediction results. The different statistics we collect are:

Success rate How many of the attempts to predict a rating were successful?

Success rate extremal This statistic is the same as the previous one, except that
only the predictions where the real rating is an extremal value on the rating
scale are considered. As mentioned in the works by Shardanand and Maes
[33], these predictions are often the most important, as users are generally
more interested in what they will love or hate, than in items they might
perceive as average. The rating values considered to be extremal will be
specified for each dataset.

Error The average difference between the predicted rating and the real rating.

Error extremal This statistic is the same as the previous one, except that only
the predictions where the real rating is an extremal value on the rating scale
are considered.

45

Prediction sources The average number of different users having rated the item
in question that were found by the breadth-first search, and hence used as
sources for the prediction.

Paths The average number of paths used to calculate the prediction. This is the
same as the average number of shortest paths from the predicted user to a
user having rated the item in question.

Path length The average distance from the predicted user to a user having rated
the item in question in the prediction graph. This will never be larger than
mazx_path_length.

Distinct edges On average, how many of the edges in the paths used to calculate
the predictions are distinct? On average, there are Paths - Path length
edges used to calculate the predictions. The same edge can be used in several
different paths, and hence it is interesting to know how many distinct edges
are used.

Common ratings The average of I, N I, for all edges a — b in all paths used to
calculate the final prediction. An edge will count multiple times towards this
statistic if it appears in multiple prediction paths. To our understanding,
this measure is the same as the average intersection cardinality of directed
path arcs used by Aggarwal et al. [1].

Trans func diff The average of t_diff,_,, for all edges a — b in all paths used to
calculate the final prediction. This will never be larger than t_diff,,... An
edge will count multiple times towards this statistic if it appears in multiple
prediction paths. To our understanding, this measure is the same as the
average manhattan segmental distance of directed path arcs used by Aggarwal
et al. [1].

Relations The number of prediction relations identified by the recommender
system. In other words, the number of user pairs such that one user predicts
the other.

Inverse relations How many of the Relations are inverse relations, meaning
that the users in the relation rate opposite.

Scaled relations How many of the Relations are scaled relations. This only
applies to Scaling the scales. A relation a — b is scaled if 22— £]

maxqe—ming

in the transformation function ¢, ,;, : R — R giving the smallest average
difference t_diff,_,y.

|E]
_ [wl-(ul-1)°
where |U| is the number of users, and hence equals the number of vertices

Graph density The graph density for the prediction graph, calculated as

46

in the prediction graph, while |F| is the number of Relations identified by
the recommendation algorithm, and hence equals the number of edges in the
prediction graph. This measure is always in the range [0,...,1]. A graph
density close to 0 means that the graph is sparse (a graph with density 0 has
no edges), while a graph density close to 1 means that the graph is dense (a
graph with density 1 is a complete graph).

5.2.1 Dataset crafted towards IRA

For this test, we created our dataset as close to the dataset with 10,000 users
described by Aggarwal et al. [1] as we were able to. Ideally, our implementation
of the IRA algorithm should produce the same results on this dataset as those
presented by Aggarwal et al. [1]. Unfortunately we were not able to achieve this. In
particular we get more and shorter prediction paths, meaning that our prediction
graph is denser than the one obtained by Aggarwal et al. [1]. If we change the
parameters to make the prediction graph more sparse, the success rate is drastically
decreased. It seems there must be a difference either between Aggarwal et al.’s
implementation of the algorithm and our implementation, between the dataset used
in the test published in the article and the dataset we have used, or a difference in
how the statistics have been computed. There can be several explanations for this,
as there are both details about the algorithm, dataset, and statistical analysis that
are not transparent in the article by Aggarwal et al. [1]. Here are the explanations
that, in our mind, are the most plausible. Some of them are formulated as questions,
as we do not know the correct answers.

e Is the final predicted rating calculated by Aggarwal et al. [1] the average of
the transformed ratings, or a weighted average? In our algorithm we use the
normal average, as seen in Algorithm 3.

e Do Aggarwal et al. recalculate the prediction relations when a rating is
hidden? In our algorithm we recalculate the prediction relations when a
rating is hidden, as seen in Algorithm 7.

e In the datasets generated by Aggarwal et al., have the users rated ri items
on average, or at least ri items? We assume that the users have rated ri
items on average when we generate datasets, and have no lower limit on the
number of items a user has rated.

e Details about the datasets, like how many users are contrarians and the
standard deviations of the normal distributions, are not specified by Aggarwal
et al.

47

e When presenting their results, Aggarwal et al. state that “Only experiments
in which the algorithms were able to compute a rating were considered”.
This statement is ambiguous, and can be interpreted as “only experiments
in which all algorithms were able to compute a rating were considered”, or
as “only experiments in which at least one algorithm were able to compute
a rating were considered”. In addition, it is unclear whether the statement
applies to all or only a few of the statistics presented in the article.

Although our results differ from what was obtained by Aggarwal et al. [1], it is
still interesting to compare the performance of our implementation of IRA to the
performance of our implementation of Scaling the scales. The question if scaling
the rating scales has a positive effect on the prediction quality, can in any case be
tested, regardless of whether Aggarwal et al. [1] used slightly different assumptions
in their experiments than we have done in ours.

The dataset used in these experiments were generated as described in Sections 5.1
and 5.1.1, using the following parameters.

e The rating scale S = {1,...,13}, and s,,4, = 13

e The number of users |U| = 10,000

e The number of items |I| = 5,000, |,¢| = 50, and |I.q| = 4,950

e The average number of items rated ri = 20, 74, = 10, and 73, = 10
e The chance of a user being a contrarian uc = 0.01

This produced a dataset crafted towards the features of the IRA algorithm with
the following properties.

Rating scale {1,...,13} =S

Number of items 5,000 = |/|

Number of users 10,000 = |U|
Number of ratings 201,120 =, |/.|

In order to compare the prediction quality of IRA and Scaling the scales, we
performed several experiments on this dataset, each using different parameters for
the recommendation algorithms. 1,058 user-item pairs for which a rating existed in
the dataset were randomly chosen. In every experiment, predictions were calculated
for each of these pairs, using leave-one-out cross-validation. 500 of the user-item

pairs involved extremal values, which were regarded as the ratings of value 1, 2, 3,
11, 12, and 13.

48

Comparative results

Consider Table 1, which shows statistics for two of the experiments run on this
dataset. The first experiment uses parameters hort_common = 4, hort_frac = 1,
and t_diff,,.. = 0.2, and shows the best results we were able to obtain when
minimizing the average error, while keeping a success rate of at least 90 %. In the
second experiment, we tightened the constrains for horting, to see how this would
effect the performance of the algorithms. We see that Scaling the scales is able to
identify considerably more prediction relations than IRA. Note that Scaling the
scales will always identify at least as many prediction relations as IRA. This is
because the transformation functions identified by Scaling the scales is a superset
of the transformation functions IRA can utilize, as discussed in Section 4.1. In the
two experiments, we see an increase in prediction relations identified by Scaling the
scales compared to IRA of 117 % and 42 %, respectively. This leads to Scaling the
scales being able to compute predictions in many cases where IRA is unsuccessful,
and particularly so in the second experiment, where the prediction graphs are more
sparse. Scaling the scales also generally finds many more prediction sources and
prediction paths to base the prediction calculations on. Scaling the scales gives

hort_common = 4 hort_common =7
hort_frac =1 hort_frac =1
t,diﬁma:r =0.2 t,diﬁma:r =0.2
Algorithm Scaling IRA Scaling IRA
Success rate 99 % 99 % 42 % 36 %
Success rate extremal 99 % 98 % 43 % 36 %
Error 0.38 0.35 0.56 0.49
Error extremal 0.32 0.28 0.44 0.41
Prediction sources 30.21 16.69 3.25 2.66
Paths 65.32 28.09 4.23 3.17
Path length 1.36 1.45 2.61 2.80
Distinct edges 94 % 95 % 86 % 87 %
Common ratings 4.36 4.58 7.16 7.16
Trans func error 0.09 0.08 0.13 0.12
Relations 2,217,694 1,020,140 19,218 13,516
Inverse relations 2% 2% 2% 2%
Scaled relations 57% 0% 33% 0%
Graph density 0.02 0.01 0.0002 0.0001

Table 1: Performance comparison of IRA and Scaling the scales when creating predictions
based on a dataset crafted towards the features of IRA.

49

Scaling the scales

13

12

11

10

12
70

87

25
68

13
67
16

15

14
72

17

11
70

67

21

19

18
60
24

61

18

26
60
24

16
29
10

12
69
14

15
84

10
11

12
13

IRA

13

12

11

10

90

25
74
11

70
10

15
69

18
67
16

18
65

11

19
73

19

24
66
22

61

15

15
64
27

18

13
61

10
64
18

10
82

23

10
11

12
13

Table 2: Prediction accuracy for Scaling the scales (top) and IRA (bottom) when using

0.2 on a dataset crafted
towards the features of IRA. Rows correspond to actual ratings, while columns correspond

to predicted ratings.

parameters hort_common = 4, hort_frac = 1, and t_diff;nez

20

slightly lower prediction quality than IRA, which is expected when the dataset
is crafted to fit the model IRA is based upon. Relative to the total number of
relations identified, both algorithms identify equally many inverse relations. The
number of inverse relations is very low, which is expected as the probability of
a user being a contrarian was set to 1% when generating the dataset. In both
experiments, a quite high number of the relations are identified to be scaled by
Scaling the scales, considering that the dataset is generated without any users
using scaled rating scales. This is probably due to the randomness of the normal
distribution the ratings are generated around, in addition to ratings generated
outside of the rating scale, and hence moved to the top or bottom valid rating
value. This can lead to the ratings appearing to be on a scaled scale, which is
identified by Scaling the scales.

Consider now Table 2. The table shows the relationships between real ratings
and predicted ratings for the experiment using parameters hort_common = 4,
hort_frac = 1, and t_diffnee = 0.2. The rows correspond to real ratings, while the
columns correspond to predicted ratings. Each cell (7,) shows the percentage of
the real ratings of value ¢ that were predicted to be of value j. For example, for
each real rating of value 2 that is predicted to be a rating of value 3, cell (2,3) in
the table is increased. Since each cell shows a percentage relative to the number
of real ratings for that row, each row sums to approximately 100. Obviously, the
diagonal matrix with 100 in every cell along the diagonal, would be the best result.
We see that IRA generally performs slightly better than Scaling the scales, but
both algorithms perform very well, with the average value along the diagonal being
close to 70. This means that the algorithms predicted the correct rating in about
70 % of the cases. Scaling the scales give slightly larger errors than IRA. While IRA
generally predicts to the three or four columns closest to the diagonal, Scaling the
scales generally predicts to the four or five columns closest to the diagonal. Scaling
the scales also has some outliers, in particular 2 % of the ratings that actually were
of value 13 were predicted to be of value 1!

5.2.2 Dataset crafted towards Scaling the scales
The dataset used in these experiments were generated as described in Sections 5.1
and 5.1.2, using the following parameters.

e The rating scale S = {1,...,13}, and S0, = 13

e The number of users |U| = 10,000

e The number of items |I| = 5,000, |5,¢| = 50, and || = 4,950

51

e The average number of items rated ri = 20, 74, = 10, and 73, = 10
e The chance of a user being a contrarian uc = 0.01

This produced a dataset crafted towards the features of the Scaling the scales
algorithm with the following properties.

Rating scale {1,...,13} =5

Number of items 5,000 = |/|

Number of users 10,000 = |U|
Number of ratings 201,407 =}, |/.|

In order to compare the prediction quality of IRA and Scaling the scales, we
performed several experiments on this dataset, each using different parameters for
the recommendation algorithms. 1,006 user-item pairs for which a rating existed in
the dataset were randomly chosen. In every experiment, predictions were calculated
for each of these pairs, using leave-one-out cross-validation. 279 of the user-item
pairs involved extremal values, which were regarded as the ratings of value 1, 2, 3,
11, 12, and 13.

Comparative results

Consider Table 3, which shows statistics for two of the experiments run on this
dataset. The first experiment uses parameters hort_common = 5, hort_frac = 1,
and t_diff,,.. = 0.2, and shows the best results we were able to obtain when
minimizing the average error, while keeping a success rate of at least 90 %. In
the second experiment, we tightened the constrains for horting and relaxed the
constraints for the average difference of the transformation function, to see how
this would effect the performance of the algorithms. As in the experiments with
the dataset crafted towards IRA, we see that Scaling the scales is able to identify
considerably more prediction relations than IRA. In the two experiments, we see an
increase in prediction relations identified by Scaling the scales compared to IRA of
80 % and 81 %, respectively. This leads to Scaling the scales being able to compute
predictions in many cases where IRA is unsuccessful, and particularly so in the
second experiment, where the prediction graphs are more sparse. Scaling the scales
also generally finds many more prediction sources and prediction paths to base the
prediction calculations on. Scaling the scales gives slightly higher prediction quality
than IRA, which is expected when the dataset is crafted to fit the model Scaling
the scales is based upon. Relative to the total number of relations identified by the
algorithms, Scaling the scales identifies noticeably more inverse relations than IRA,

52

hort_common =5 hort_common = 8
hort_frac = 1 hort_frac =1
t-diffpmes = 0.2 t-diffmes = 0.6
Algorithm Scaling IRA Scaling IRA
Success rate 97 % 96 % 51 % 46 %
Success rate extremal 97 % 97 % 54 % 48 %
Error 0.26 0.29 0.40 0.55
Error extremal 0.27 0.30 0.48 0.69
Prediction sources 25.41 15.58 9.89 5.17
Paths 49.60 26.87 14.92 7.56
Path length 1.40 1.47 1.94 2.10
Distinct edges 93 % 94 % 83 % 83 %
Common ratings 5.20 5.24 8.25 8.27
Trans func error 0.14 0.12 0.33 0.33
Relations 1,483,792 826,350 63,780 35,262
Inverse relations 5% 2% 4% 1%
Scaled relations 50 % 0% 70 % 0%
Graph density 0.01 0.008 0.0006 0.0004

Table 3: Performance comparison of IRA and Scaling the scales when creating predictions
based on a dataset crafted towards the features of Scaling the scales.

and the amount of inverse relations is surprisingly high (5% and 4 %), considering
that the probability of a user being a contrarian was set to 1 % when generating
the dataset. In both experiments, a high number of the relations are identified to
be scaled by Scaling the scales, which is expected considering that the dataset is
generated with many users rating on scaled rating scales.

Consider now Table 4. The table shows the relationships between real ratings
and predicted ratings for the experiment using parameters hort_common = 5,
hort_frac = 1, and t_diff,,.. = 0.2. We see that Scaling the scales generally performs
slightly better than IRA, but both algorithms perform very well, predicting the
correct rating in about 80 % of the cases (the average value along the diagonal).
Both algorithms give very small errors. We do not see any outliers, as we saw in
the experiment using the dataset crafted towards IRA.

23

Scaling the scales

1 2 3 4 5 6 7 8 9 10 11 12 13
118 13 0 0 0 0 0 0 0 0 0 0 0
21 6 78 17 0 0 0 0 0 0 0 0 0 0
31 0 4 85 8 3 0 0 0 0 0 0 0 0
41 0 0 4 8 11 1 0 0 0 0 0 0 0
51 0 0 0 10 76 12 2 0 0 0 0 0 0
6] 0 0 0 0 6 88 4 1 0 0 0 0 0
71 0 0 0 0 0 12 83 5 0 0 0 0 0
81 0 0 0 0 0 2 4 87 7 0 0 0 0
91 0 0 0 0 0 0 0 10 88 2 0 0 0

10 0O 0 0 0 0 0 0 0 7 79 13 1 0

111 0 0 0 0 0 0 0 0 0 11 77 10 1

121 0 0 0 0 0 0 0 0 0 3 16 76 5

131 0 0 0 0 0 0 0 0 0 0 11 11 78
IRA

1 2 3 5 6 7 8 9 10 11 12 13
1183 13 4 0 0 0 0 0 0 0 0 0 0
2111 65 24 0 0 0 0 0 0 0 0 0 0
31 0 3 83 11 0 1 0 0 0 0 0 0 0
41 0 0 o 80 15 0 0 0 0 0 0 0 0
51 0 0 1 778 13 2 0 0 0 0 0 0
6] 0 0 0 0 7 8 10 0 0 0 0 0 0
71 0 0 0 0 0 9 84 7 0 0 0 0 0
81 0 0 0 0 0 1 8 80 10 1 0 0 0
91 0 0 0 0 0 0 0 13 81 5 0 0 0

10 0O 0 0 0 0 0 0 1 10 7 11 3 0
111 0 0 0 0 0 0 0 0 0 14 77 9 0
121 0 0 0 0 0 0 0 0 0 3 21 76 0
131 0 0 0 0 0 0 0 0 0 0 0 22 T8

Table 4: Prediction accuracy for Scaling the scales (top) and IRA (bottom) when using
parameters hort_common = 5, hort_frac = 1, and t_diffmee; = 0.2 on a dataset crafted
towards the features of Scaling the scales. Rows correspond to actual ratings, while
columns correspond to predicted ratings. See Section 5.2.1 for details on how to interpret
the tables.

o4

5.2.3 Real dataset: MovieLens 100k

GroupLens [15], a research lab at the Department of Computer Science and Engineer-
ing at the University of Minnesota, has a long history of research on recommender
systems. They provide a movie recommendation service called MovieLens. Movie-
Lens has hundreds of thousands of registered users, and GroupLens has collected
and made available some rating datasets from this service. We will now see how
IRA and Scaling the scales perform when providing recommendations based on
one of these datasets, called “MovieLens 100k” [16]. This dataset has the following
properties.

Rating scale {1,...,5} =5
Number of items 1,682 = |I|
Number of users 943 = |U|

Number of ratings 100,000 = > _,; ||

uceU

In order to compare the prediction quality of IRA and Scaling the scales, we
performed several experiments on this dataset, each using different parameters for
the recommendation algorithms. 1,043 user-item pairs for which a rating existed in
the dataset were randomly chosen. In every experiment, predictions were calculated
for each of these pairs, using leave-one-out cross-validation. 284 of the user-item
pairs involved extremal values, which were regarded as the ratings of value 1 and

D.

Comparative results

Consider Table 5, which shows statistics for two of the experiments run on this
dataset. The first experiment uses parameters hort_common = 4, hort_frac = 1,
and t_diff,,.. = 0.8, and shows the best results we were able to obtain when
minimizing the average error, while keeping a success rate of at least 90 %. In
the second experiment, we tightened the constrains for both horting and the
average difference of the transformation function, to see how this would effect the
performance of the algorithms. As expected, we see that Scaling the scales is able
to identify more prediction relations than IRA, but the increase is considerably
smaller than in the synthetic datasets, as seen in Sections 5.2.1 and 5.2.2. In both
experiments, we see an increase in prediction relations identified by Scaling the
scales compared to IRA of about 2 %. Since this increase is so small, the algorithms
perform almost identically in both experiments. Scaling the scales has a slightly
higher success rate, and a slightly lower average error. Relative to the total number

95

hort_common = 4 hort_common = 11

hort_frac = 1 hort_frac =1

t-diffmes = 0.8 t-diffmee = 0.4
Algorithm Scaling IRA Scaling IRA
Success rate 100 % 100 % 7% 76 %
Success rate extremal 100 % 100 % 7% 76 %
Error 0.58 0.59 0.77 0.79
Error extremal 0.83 0.85 0.87 0.88
Prediction sources 55.36 55.05 4.33 4.15
Paths 107.79 104.89 4.71 4.49
Path length 1.03 1.03 1.90 1.90
Distinct edges 99 % 99 % 84 % 84 %
Common ratings 52.48 52.57 17.46 17.57
Trans func error 0.69 0.69 0.34 0.34
Relations 310,302 305,610 2,924 2,856
Inverse relations 25% 24 % 16 % 17%
Scaled relations 7% 0% 3% 0%
Graph density 0.35 0.34 0.003 0.003

Table 5: Performance comparison of IRA and Scaling the scales when creating predictions
based on the dataset “MovieLens 100k”

of relations identified, the two algorithms identify more or less the same number
of inverse relations. A low number of the relations are identified to be scaled
by Scaling the scales in both experiments. The reason for the number of scaled
relations being so small can be attributed to the rating scale being so small. There
is reason to think that users are more likely to only use a smaller part of the scale
if the rating scale is very large. When rating on a scale of size 3, for example, users
might give items they don’t like the rating 1, items that are ok the rating 2, and
items they like the rating 3, and hence use the whole scale. If the rating scale had
size 100, however, it is harder to decide which ratings to give. A user might never
like an item so much that it gets the rating 100, and the full size of the rating scale
is not utilized by the user. We believe that the likelihood of users rating on scaled
scales increases as the size of the rating scale increases.

Consider now Table 6. The table shows the relationships between real ratings
and predicted ratings for the experiment using parameters hort_common = 4,
hort_frac = 1, and t_diff,,.. = 0.8. We see that both algorithms perform very
similarly, with Scaling the scales performing slightly better concerning extremal
values (1 and 5). Interestingly, both algorithms tend to give predictions of higher

26

Scaling the scales IRA

1 2 3 4 5 1 2 3 4 >
1] 17 43 33 7 0 1] 13 39 39 0
2 1 25 o4 20 1 2 1 24 53 22 1
31 0 3 60 36 0 31 0 3 61 35 0
41 0 1 17 79 3 41 0 1 17 79 3
51 0 0 3 66 31 51 0 0 4 66 30

Table 6: Prediction accuracy for Scaling the scales (left) and IRA (right) when using
parameters hort_common = 4, hort_frac = 1, and t_diff;q; = 0.8 on the dataset “Movie-
Lens 100k”. Rows correspond to actual ratings, while columns correspond to predicted
ratings. See Section 5.2.1 for details on how to interpret the tables.

value than the real rating. The sum below the diagonal is around 90, while the
sum above the diagonal is around 200 for both algorithms. Both algorithms
predict the correct rating in about 42 % of the cases (the average value along the
diagonal).

5.2.4 Real dataset: HetRec 2011

Several real datasets were released in the framework of the 2°¢ International
Workshop on Information Heterogeneity and Fusion in Recommender Systems
(HetRec 2011) [7] at the 5" ACM Conference on Recommender Systems. The focus
of this workshop was raising awareness of the potential of using multiple sources of
information in recommender systems. We will now see how IRA and Scaling the
scales perform when providing recommendations based on one of these datasets,
combining information from both IMDb [20], RottenTomatoes [10] and a dataset
released by GroupLens [15], containing 10,000,000 ratings. This dataset [27] has
the following properties.

Rating scale {1,...,10} = S!
Number of items 10,197 = |/|
Number of users 2,113 = |U|
Number of ratings 855,598 = > ./ |1.|

!The actual rating scale in this dataset is from 0.5 to 5, with steps of 0.5. For simplicity, we
have multiplied all ratings in the dataset by 2, and hence turned the rating scale into a scale from
1 to 10, with steps of 1, which fits the model described in Section 2.1.

o7

In order to compare the prediction quality of IRA and Scaling the scales, we
performed several experiments on this dataset, each using different parameters for
the recommendation algorithms. 1,017 user-item pairs for which a rating existed in
the dataset were randomly chosen. In every experiment, predictions were calculated
for each of these pairs, using leave-one-out cross-validation. 246 of the user-item
pairs involved extremal values, which were regarded as the ratings of value 1, 2, 9,
and 10.

Comparative results

Consider Table 7, which shows statistics for two of the experiments run on this
dataset. The first experiment uses parameters hort_common = 4, hort_frac = 1,
and t_diff,,. = 1.4, and shows the best results we were able to obtain when
minimizing the average error, while keeping a success rate of at least 90 %. In
the second experiment, we relaxed the constrains for horting and tightened the
constraints for the average difference of the transformation function, to see how
this would effect the performance of the algorithms. Again, we see that Scaling the

hort_common = 4 hort_common = 3
hort_frac =1 hort_frac =1
tdiffpmee = 1.4 t_diffmes = 0.5
Algorithm Scaling IRA Scaling IRA
Success rate 96 % 95 % 14 % 11%
Success rate extremal 95 % 94 % 22 % 15 %
Error 1.09 1.09 0.78 0.87
Error extremal 1.56 1.58 0.75 0.98
Prediction sources 111.20 111.14 6.69 4.47
Paths 112.77 112.71 7.10 4.48
Path length 1.06 1.06 1.19 1.20
Distinct edges 98 % 98 % 93 % 93 %
Common ratings 217.66 218.13 5.52 5.91
Trans func error 1.26 1.27 0.34 0.37
Relations 1,389,822 1,376,540 61,332 45,076
Inverse relations 18 % 15% 36 % 31%
Scaled relations 7% 0% 49 % 0%
Graph density 0.31 0.31 0.01 0.01

Table 7: Performance comparison of IRA and Scaling the scales when creating predictions
based on the dataset “HetRec 2011”

o8

scales is able to identify more prediction relations than IRA. In the first experiment,
we see an increase in prediction relations identified by Scaling the scales compared
to IRA of only 1%. Since this increase is so small, IRA and Scaling the scales
perform almost identically. Scaling the scales has a slightly higher success rate, and
a slightly lower average error for extremal values. In the second experiment, we see
an increase in prediction relations identified by Scaling the scales compared to IRA
of 36 %. This leads to Scaling the scales being able to compute predictions in many
cases where TRA is unsuccessful. Scaling the scales also generally finds many more
prediction sources and prediction paths to base the prediction calculations on. In
the second experiment, Scaling the scales gives noticeably higher prediction quality
than TRA. Relative to the total number of relations identified by the algorithms,
Scaling the scales identifies slightly more inverse relations than IRA. We are not
certain about what might cause this, but one explanation we find reasonable is
that users with different taste are more likely to use differently sized ranges of
the scale. When two users have so different taste that they rate opposite, they
are more likely to use scaled scales than when they have more similar taste, and
only rate offset compared to each other. This would make Scaling the scales able
to identify more inverse relations than IRA, also relative to the total number of
relations they identify. In the first experiment, a small fraction of the relations are
identified to be scaled by Scaling the scales, while the fraction is much larger in
the second experiment.

Consider now Table 8. The table shows the relationships between real ratings
and predicted ratings for the experiment using parameters hort_common = 4,
hort_frac = 1, and t_diff,e: = 1.4. We see that the algorithms perform similarly.
As in the experiment in Section 5.2.3, both algorithms tend to give predictions of
higher value than the real rating. In particular, there are so few predictions of value
1 that the first column in the table is completely empty for both algorithms! Both
algorithms tend to make occasionally large errors, for example 4 % of the ratings of
value 2 were predicted to be of value 9. Both algorithms predict the correct rating
in around 23 % of the cases (the average value along the diagonal).

29

Scaling the scales

1 2 3 4 Y 6 7 8 9 10

1 0 14 14 14 29 21 7 0 0 0
2 0 13 4 29 17 8 8 17 4 0
3 0 0 18 36 18 18 0 9 0 0
4 0 0 2 15 20 34 19 3 3 3
) 0 0 3) 18 37 26 11 0 0
6 0 0 0 3 9 33 41 10 3 1
7 0 0 0 1 2 18 44 28 6 1
8 0 0 0 1 2 5 40 43 9 0
9 0 0 0 0 0 4 17 49 28 3
10 0 0 0 0 4 0 8 29 39 20

IRA

1 2 3 4 3 6 7 8 9 10

1 0 14 14 29 29 7 0 0 0
2 0 13 4 29 17 8 8 17 4 0
3 0 0 18 36 18 18 0 9 0 0
4 0 0 2 14 22 32 20 3 3 3
) 0 0 3) 17 36 29 11 0 0
6 0 0 0 3 9 34 41 10 3 1
7 0 0 0 1 2 18 44 28 6 1
8 0 0 0 1 2 5 39 44 9 0
9 0 0 0 0 0 4 17 48 29 3
10 0 0 0 0 2 1 8 31 38 20

Table 8: Prediction accuracy for Scaling the scales (top) and IRA (bottom) when using
parameters hort_common = 4, hort_frac = 1, and t_diffmee = 1.4 on the dataset “HetRec
2011”. Rows correspond to actual ratings, while columns correspond to predicted ratings.
See Section 5.2.1 for details on how to interpret the tables.

60

Chapter 6

Analysis and discussion of the
experimental results

In this chapter, the results presented in the previous chapter will be analyzed.
The strengths and weaknesses of Scaling the scales in comparison to IRA will be
highlighted, and the tangible benefits and drawbacks discussed.

6.1 Swuccess rate

Our experiments show that Scaling the scales gives a noticeable improvement over
IRA’s ability to predict ratings. As discussed in Section 4.1, Scaling the scales
always identifies at least as many prediction relations as IRA. This leads to Scaling
the scales being able to successfully predict ratings in many cases where IRA is
unsuccessful.

This improvement is most prominent when prediction graphs calculated by the
algorithms are sparse. In some cases, in particular when the recommender system
has recently been deployed, the prediction graph is likely to be sparse. When
few users and ratings have been registered, the lack of data makes recommender
systems less likely to identify many users with similar taste. This is part of the cold
start problem, discussed in Section 1.1. The improved ability to identify prediction
relations leads us to think that Scaling the scales should have less of a cold start
problem than IRA!. Note that no experiments were run on datasets representing a

1Scaling the scales only provides a potential improvement of the part of the cold start problem
concerning not being able to identify users with similar taste. Scaling the scales does not attempt
to solve the problems of users not having rated many items or items not having been rated.

61

recently deployed system. Our experiments show an increased success rate over
IRA on datasets where the prediction graph is sparse due to using tight conditions
for similarity in user taste. Whether this effect also applies to datasets where the
prediction graph is sparse due to the system being recently deployed will have to
be tested in a separate experiment using an appropriate dataset.

When the prediction graph calculated by IRA is less sparse, Scaling the scales
provide less improvement in success rate. In these cases, IRA already has a more
or less universal success rate.

6.2 Prediction quality

In all our experiments, except for when the dataset was crafted towards IRA
(Section 5.2.1), we see that Scaling the scales calculates predictions of slightly
higher quality than IRA. The improvements are generally quite small, and whether
they are results of random variation or if they would provide a tangible benefit in
a real live system is difficult to discern. Having said that, also small improvements
can substantially increase the value of a recommender system. In a large webshop,
for instance, a small improvement leading to a 1%o increase of users buying the
recommended items could result in significantly increased earnings. As discussed
in the introduction to Chapter 5, running tests on a real live system is required to
confidently decide which recommender system provides the highest recommendation
quality in a particular application.

6.3 Fallibility

As seen in Section 5.2.1, Scaling the scales seems more prone to making large
mistakes when calculating predictions than IRA. A reason for this can be users
wrongly identified as having compatible taste through scaled transformation func-
tions. Consider the example in Figure 14, where two users are identified as having
compatible taste by Scaling the scales, even though the likelihood of the users
actually having compatible tastes does not seem very high.

The items both users have rated are game, picture, and cd. User a has given both
game and picture the rating 2, while user b has given those items the rating 1.
Almost no matter which ratings the users have given the cd, Scaling the scales
will be able to find a transformation function giving an average difference of 0

62

®

[a2]

&

&

O

CD

~

i
2
1

1

7

Figure 14: An example showing the ratings of two users whose ratings are not diverse.

The rating scale goes from 1 to 7. The value in the cells represent the rating given by
the row user to the column item.

between the users®. In this example, Scaling the scales will identify ¢, (r,) =
(ra —2)- 55 +1=(ro —2)-6+1 as a good transformation function from a rating
by user a to a predicted rating for user b. When looking at only i € I, N I,
we see that #,,; (75:) — m; = 0 in all cases. Hence we get that the average
difference t_diff,_,, between the transformed ratings by user a and the ratings
by user b equals 0, which means that the users have compatible taste. Based
on user a’s rating of book, we can predict that user b would give book the rating
Pa—sbbook = ta—sb (Tabook) = (Ta,book — 2) - 6+ 1 =19. This does not seem like a very
likely rating on a scale from 1 to 7! Ideas on how this problem could be avoided
are presented in Section 7.2.1.

6.4 Synthetic vs. real data

Our experiments show a significant difference in prediction quality when using
synthetic and real data. While both algorithms provide accurate predictions
when using synthetic datasets, as seen in Sections 5.2.1 and 5.2.2, the prediction
quality is considerably lower when using real datasets, as seen in Sections 5.2.3
and 5.2.4. Not surprisingly, it seems that real data must be used when analyzing
the real performance of the algorithms, while synthetic datasets can be useful for
confirming correctness of the implementation. An algorithm performing badly
on data crafted towards the algorithm might indicate that there is an error in
either the generated data or the implemented algorithm. On real data we see that
both Scaling the scales and IRA tend to give predictions of too high rating value.

2The exceptions are if user @ has given the rating 2, while user b has given a rating different
from 1, or when user a has given a rating different from 2, while user b has given the rating 1.

63

Particularly in Section 5.2.4, we see that neither algorithm predict any ratings to be
of value 1. It would be interesting to investigate what might cause this, as, to our
understanding, there is nothing in the algorithms indicating that the predictions
calculated should be overly positive. Our understanding is also confirmed by the
experiments on synthetic data, where we do not see the trend of predicted values
being too high.

6.5 Rating scale sizes

In Section 5.2.3, we argued that Scaling the scales can provide greater improvements
over IRA when using a large rating scale. Studies have shown that the reliability
of data collected in surveys does not increase substantially if the number of choices
is increased beyond seven [29]. This undermines the usefulness of the increased
improvement provided by Scaling the scales: If large rating scales are not used, due
to there being no benefits from using them, there is also no benefit from having an
algorithm with increased performance for large rating scales. Another issue arising
when increasing the size of the rating scale is the increased running time of the
algorithm.

6.6 Running times

As discussed in Section 4.1, the algorithm for identifying users with compatible
taste runs much slower for Scaling the scales than for IRA. In Section 4.2 we argued
that this might be acceptable, as this algorithm does not necessarily have to be
run when calculating predictions in real-time. Which running times are acceptable
must be determined for each particular application, but Scaling the scales definitely
performs worse than IRA in this aspect.

64

Chapter 7

Conclusion and further
research

7.1 Summary

In this thesis, a suggested improvement to IBM’s Intelligent Recommendation
Algorithm (IRA), introduced by Aggarwal et al. [1] in 1999 has been presented.
The suggested improvement, called Scaling the scales, is based on the assumption
that users rating on differently sized ranges of a rating scale can be used to predict
each other. This is a simple and natural extension of the concept of users having
compatible taste, already used by IRA.

Experiments have been run using both synthetic and real datasets. To our knowing,
this thesis presents the first published results on how IRA performs when calculating
predictions based on real data. Our experiments show that Scaling the scales,
in many cases, give noticeable improved success rate over IRA when calculating
predictions. This is most prominent when the predictions are calculated based
on sparse prediction graphs. Scaling the scales also gives a slight improvement in
prediction quality in all experiments except for the one crafted towards the IRA
algorithm. Whether this improvement is enough to give any benefit in a real live
system is difficult to discern from our results, and experiments on a real live system
would be needed. That Scaling the scales does not show any decline in prediction
quality except in the experiment crafted towards the IRA algorithm is, however,
encouraging.

Improvements usually do not come without a cost, and the cost of Scaling the scales
lies in its running time. The process of identifying users with compatible taste is

65

considerably slower for Scaling the scales than for IRA. In many applications this
might not pose a problem, but the increase in running time is a clear disadvantage
of Scaling the scales.

Scaling the scales is also more prone to make big mistakes than IRA. Ideas for
further improving the algorithm to overcome this issue by reducing the chances
of identifying users with compatible taste erroneously will been presented in
Section 7.2.1. Finally, aiming to increase the prediction quality as well as the
usefulness of the predictions provided by the algorithm, two further ideas for
improvement will also be presented in the next section.

7.2 Further research

This section presents three ideas for further improvement of IRA and Scaling the
scales. The first idea introduces new constraints for users to have compatible taste,
and aims to overcome the problem described in Section 6.3. The two other ideas
concern the process of calculating predictions in the prediction graph, and aim to
increase prediction quality and usefulness. We would like to emphasize that these
ideas suggest improvements to IRA, as well as Scaling the scales. For instance
in systems with particularly high requirements for speed, an improved version of
IRA which does not introduce the time complexity of scaled rating scales can be of
interest.

7.2.1 Rating diversity

As seen in Section 6.3, problems can arise when transformation functions are
based on only a few different rating values. The horting condition, introduced in
Definition 1, ensures that two users have rated some minimum number of items in
common in order for them to predict each other. In some cases, especially when
using Scaling the scales, this condition is not enough to confidently find a good
transformation function between the users, as seen in Figure 14 and the following
discussion. Some ideas for additional constraints that could reduce this problem
are presented below. All of them look at two users a and b, and suggest constraints
that should be satisfied in order for the users to predict each other.

e The ratings given by user a to items not rated by user b should not be
transformed to values (far) beyond the rating scale by the function ¢, ;. The
same applies in the opposite direction.

66

e For user a and user b to predict each other (through a scaled transformation
function), both users must have used at least k different values on the rating
scale when looking at the items both users have rated. This constraint could
apply to scaled transformation functions only (the condition does not have
to be satisfied for transformation functions that are not scaled), or to all
transformation functions. We imagine that setting k£ = 3, and using it for
scaled transformation functions only, would make for a good constraint in
many cases.

e Transformation functions that enlarge or reduce the rating scale more than k
times should not be considered. One can argue that the likelihood of user a
and user b having compatible taste is small if user a’s rating scale is for
example more than three times larger than user b’s rating scale. By setting
k = 3, no such transformation functions would be considered.

The problems that might arise when transformation functions are based on only a
few different rating values is most prominent with Scaling the scales, as errors can
be scaled up to huge dimensions, as seen in Figure 14 and the following description.
The problem is, however, also present in IRA. Consider, for instance, two users a
and b and the items both users have rated (1, N [,). If user a has given the same
rating to all of the items, and user b have given the same rating to all of the items,
IRA would find a transformation function giving an average difference equal 0 by
using an offset. It is, however, hard to decide how the users behave in relation
to each other when giving ratings other than that one value the transformation
function is based on. For instance, they may rate opposite, or maybe the ratings
given by user a are bottom ratings, while the ratings given by user b are top ratings.
In this case all other ratings than the bottom rating will be transformed to a
value outside the rating scale when transforming from user a to user b. Hence the
constraints just presented can also be used to improve IRA.

7.2.2 Rating the ratings

When predicting a rating for user a and item 4, IRA and Scaling the scales perform
a depth-limited breadth-first search in the prediction graph, looking for users having
rated item 7. As demonstrated in Section 3.2, the search returns all paths of length
k from user a to users having rated item i, where k < max_path_length is the
shortest distance from user a to any user having rated item ¢. The ratings by the
users found in the search are transformed along the paths, and finally the average
of the transformed ratings is used as the predicted rating.

This suggested improvement is called “Rating the ratings”, and changes the way

67

predictions are calculated. In Rating the ratings, every prediction relation a — b
is assigned a confidence value 0 < ¢,,;, < 1. This value is based on measures
like the number of items both user a and user b have rated (|1, N I,|) and the
average difference between the transformed ratings by user a and the ratings by
user b (t_diff,—,). The confidence value indicates the reliability and accuracy of
the transformation function ¢, ,,. A confidence of 1 indicates high reliability and
accuracy, while a confidence of 0 indicates low reliability and accuracy. When
predicting a rating for user ¢ and item 7, Rating the ratings searches in the prediction
graph from user ¢ using a weighted shortest path search, such as Dijkstra’s algorithm.
This means that prediction relations with high confidence will be explored earlier
than prediction relations with low confidence. As the confidences lie between 0
and 1, the confidence of a path can be expressed as the product of the confidences
of each edge in the path!. In order to not end up with only one prediction path,
namely the one with highest confidence, the search should be continued further
than to the first user having rated item ¢ that is found. The search could for
example continue until all paths have confidence below some threshold. Note that
this threshold does not have to be fixed, but can be relative to the confidence of
the first prediction path found. After transforming the ratings along the paths
back to user ¢, each transformed rating is assigned the confidence (or rating, hence
“Rating the ratings”) of the path it was calculated along. The final prediction can
now be calculated using a weighted average of the transformed ratings, where the
weight of each transformed rating corresponds to its confidence value. We believe
this will provide higher prediction quality than using the simple average of the
transformed ratings.

It is worth to note that this suggested improvement will lead to a slightly increased
running time for the predicting process of the algorithms, since a weighted shortest
path search has higher time complexity than an unweighted shortest path search,
such as breadth-first search. We do not consider it likely that the increased running
time will pose any problem in most applications, as Dijkstra’s algorithm is extremely
fast. This is especially true when searching on sparse graphs that should not be
completely searched, as is the case in most recommender systems.

7.2.3 “You will either love or hate this”

In TRA and Scaling the scales, the average of the transformed ratings is used as
the final predicted rating. This might work well in many cases. In others, however,

! Usually, Dijkstra’s algorithm explores low weighted edges first, and weights are added together
along the paths. In Rating the ratings, the algorithm must be modified to explore edges of high
confidence before edges of low confidence, and multiply the confidences along the paths.

68

valuable information might be lost when not paying attention to the individual
transformed ratings.

Let’s look at some examples showing how a simple analysis of the transformed
ratings can provide valuable information about the prediction.

e If all or most transformed ratings indicate more or less the same predicted
rating, the likelihood of the prediction being correct is high. Also, the
likelihood of the prediction being correct increases as the total number of
transformed ratings increases.

e If the transformed ratings indicate many different predictions, the likelihood
of the prediction being correct is low, hence it has low reliability. Even if the
average value of the transformed ratings is high, this might not be a good
item to recommend. When expecting something to be average, an average
item would meet expectations. Items expected to be good, but perceived as
less good, lead to disappointments. Hence a reliable prediction of value 9 can
in many cases indicate a better recommendation than a prediction of value
10 with low reliability. Even though the latter is more likely to be of high
interest to the user, it is also more likely to disappoint the user.

e When dealing with controversial topics or content, users who normally have
similar taste can be in complete disagreement. Whether a user will like or
dislike an item with such content can be hard to predict, both in everyday
life and for recommender systems. If the transformed ratings contain many
values both near the bottom and the top of the scale, this might indicate an
item with controversial content. Instead of predicting a rating of the average
value in the middle of the scale, a recommendation saying “You will either
love or hate this” might be more informative, valuable, and titillating for the
user.

Note that we do not present any concrete suggestions on how an analysis of the
transformed ratings should or could be done. We only state that performing such
an analysis could lead to higher prediction quality and usefulness.

69

Bibliography

Charu C Aggarwal, Joel L Wolf, Kun-Lung Wu, and Philip S Yu. “Horting
hatches an egg: A new graph-theoretic approach to collaborative filtering”. In:
Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 1999, pp. 201-212.

Anasse Bari, Mohamed Chaouchi, and Tommy Jung. Predictive Analytics
For Dummies. John Wiley & Sons, 2014.

The University of Bergen. BORA - Bergen Open Research Archive. URL:
https://bora-uib-no.pva.uib.no.

Mustafa Bilgic and Raymond J Mooney. “Explaining recommendations:
Satisfaction vs. promotion”. In: Beyond Personalization Workshop, TUL
Vol. 5. 2005.

Manuel Blum, Robert W Floyd, Vaughan Pratt, Ronald L Rivest, and Robert
E Tarjan. “Time bounds for selection”. In: Journal of computer and system
sciences 7.4 (1973), pp. 448-461.

Joseph A Calandrino, Ann Kilzer, Arvind Narayanan, Edward W Felten, and
Vitaly Shmatikov. “” You Might Also Like:” Privacy Risks of Collaborative
Filtering”. In: Security and Privacy (SP), 2011 IEEE Symposium on. IEEE.
2011, pp. 231-246.

Ivan Cantador, Peter Brusilovsky, and Tsvi Kuflik. “2"¢ Workshop on Infor-
mation Heterogeneity and Fusion in Recommender Systems (HetRec 2011)”.
In: Proceedings of the 5" ACM conference on Recommender systems. RecSys

2011. Chicago, IL, USA: ACM, 2011.

Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Vazirani. Algorithms.
McGraw-Hill, Inc., 2006.

Cynthia Dwork and Aaron Roth. “The algorithmic foundations of differential
privacy”. In: Theoretical Computer Science 9.3-4 (2013), pp. 211-407.

70

https://bora-uib-no.pva.uib.no

[10]
[11]

[12]

[13]

Flixter. Rotten Tomatoes: Movies — TV Shows — Mowie Trailers — Reviews.
URL: http://www.rottentomatoes. com.

John B Fraleigh. A first course in abstract algebra. Pearson Education India,
2003.

Robert Garfinkel, Ram D Gopal, Bhavik K Pathak, Rajkumar Venkatesan,
and Fang Yin. “Empirical analysis of the business value of recommender
systems”. In: Available at SSRN 958770 (2006).

David Goldberg, David Nichols, Brian M Oki, and Douglas Terry. “Using
collaborative filtering to weave an information tapestry”. In: Communications

of the ACM 35.12 (1992), pp. 61-70.

Dan R Greening. “Collaborative filtering for Web marketing efforts”. In:
Recommender Systems, Papers from the 1998 Workshop. 1994, pp. 53-55.

GroupLens. GroupLens: Social Computing Research at the University of
Minnesota. URL: http://www.grouplens.org.

GroupLens. MowvieLens Datasets. URL: http : //www . grouplens . org/
datasets/movielens.

Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T
Riedl. “Evaluating collaborative filtering recommender systems”. In: ACM
Transactions on Information Systems (TOIS) 22.1 (2004), pp. 5-53.

Jonathan L Herlocker, Joseph A Konstan, and John Riedl. “Explaining
collaborative filtering recommendations”. In: Proceedings of the 2000 ACM
conference on Computer supported cooperative work. ACM. 2000, pp. 241-250.

Zan Huang, Hsinchun Chen, and Daniel Zeng. “Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering”. In:
ACM Transactions on Information Systems (TOILS) 22.1 (2004), pp. 116-142.

IMDb. IMDb - Movies, TV, Celebrities. URL: http://www.imdb.com.

Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich.
Recommender systems: an introduction. Cambridge University Press, 2010.

Greg Linden, Brent Smith, and Jeremy York. “Amazon. com recommenda-
tions: Item-to-item collaborative filtering”. In: Internet Computing, IEFEE
7.1 (2003), pp. 76-80.

Magnar Myrtveit. GitHub - Scaling the scales. URL: https://github.com/
Stadly/Scaling-the-scales.

71

http://www.rottentomatoes.com
http://www.grouplens.org
http://www.grouplens.org/datasets/movielens
http://www.grouplens.org/datasets/movielens
http://www.imdb.com
https://github.com/Stadly/Scaling-the-scales
https://github.com/Stadly/Scaling-the-scales

28]

[29]

[30]

Félix Hernandez del Olmo and Elena Gaudioso. “Evaluation of recommender
systems: A new approach”. In: Expert Systems with Applications 35.3 (2008),
pp. 790-804.

Eli Pariser. “Beware online “filter bubbles””. In: TED Talks, March (2011).
URL: http://www.ted.com/talks/eli_pariser_beware_online_filter_
bubbles.

Eli Pariser. The filter bubble: What the Internet is hiding from you. Penguin
UK, 2011.

5" ACM Conference on Recommender Systems. 27¢ International Workshop
on Information Heterogeneity and Fusion in Recommender Systems (HetRec
2011). URL: http://www.grouplens.org/datasets/hetrec-2011.

Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recom-
mender systems handbook. Springer, 2011.

Robert Rosenthal and Ralph L. Rosnow. Essentials of behavioral research:
Methods and data analysis. Vol. 2. McGraw-Hill New York, 1991.

Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and David M Pen-
nock. “Methods and metrics for cold-start recommendations”. In: Proceedings
of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM. 2002, pp. 253-260.

Google Scholar. Horting hatches an egg: A new graph-theoretic approach to
collaborative filtering. URL: http://scholar.google.no/scholar?cites=
4418358089889456011 (visited on 2014-10-14).

Guy Shani and Asela Gunawardana. “Evaluating recommendation systems”.
In: Recommender systems handbook. Springer, 2011, pp. 257-297.

Upendra Shardanand and Pattie Maes. “Social information filtering: algo-
rithms for automating “word of mouth””. In: Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM Press/Addison-
Wesley Publishing Co. 1995, pp. 210-217.

VisualPharm. Icons§ - Free Windows 8 Icons. URL: http://icons8. com.

Sean Work. “How Loading Time Affects Your Bottom Line”. In: KISSmetrics,
April (2011). URL: https://blog.kissmetrics.com/loading-time.

72

http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles
http://www.ted.com/talks/eli_pariser_beware_online_filter_bubbles
http://www.grouplens.org/datasets/hetrec-2011
http://scholar.google.no/scholar?cites=4418358089889456011
http://scholar.google.no/scholar?cites=4418358089889456011
http://icons8.com
https://blog.kissmetrics.com/loading-time

	Abstract
	Acknowledgments
	Contents
	Introduction to recommender systems
	Collaborative filtering
	Content-based filtering
	Privacy and censoring
	Applications and considerations
	Graph-based collaborative filtering

	Clarifications and definitions
	Notations and definitions
	Clarifications for pseudocode
	Variables and functions specific to this thesis

	IBM's Intelligent Recommendation Algorithm (IRA)
	Identifying compatible users
	Creating predictions by transitivity

	Improving IRA—Scaling the scales
	Scaled scales
	Offline vs. real-time computations
	Implementation details

	Experimental results
	Dataset generation
	Ratings crafted towards IRA
	Ratings crafted towards Scaling the scales

	Performance comparison
	Dataset crafted towards IRA
	Dataset crafted towards Scaling the scales
	Real dataset: MovieLens 100k
	Real dataset: HetRec 2011

	Analysis and discussion of the experimental results
	Success rate
	Prediction quality
	Fallibility
	Synthetic vs. real data
	Rating scale sizes
	Running times

	Conclusion and further research
	Summary
	Further research
	Rating diversity
	Rating the ratings
	"You will either love or hate this"

	Bibliography

