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The supervising committee for this PhD project has been Trond Mannseth (Uni Re-

search CIPR, UiB), Martha Lien (Octio AS), and Shaaban A. Bakr (Assuit University,
Egypt).

Outline

The work done in this thesis is divided into two separate parts; Part I: ‘Inversion of
CSEM Data for Subsurface Structure Identification’ and Part II: ‘Numerical Assess-
ment of the Upstream Mobility Scheme’. These parts provide the scientific back-
grounds for the collection of research papers given in Part III. In Part IV, co-authored
research papers associated with Part II are given. These are not considered as the main
part of this thesis, but are given for completeness.
A brief outline of Part I and Part II follows.

Part I

In Chapter 1, a short introduction that provides an overview of marine exploration and
controlled source electromagnetic (CSEM) inversion is given.
A presentation of different aspects of the CSEM method, together with a brief

overview of some related exploration methods follows in Chapter 2.
In Chapter 3, a general discussion of the inverse problem is presented. We also

present different solution methods within the classical and Bayesian approach for solv-
ing an inverse problem.
Chapter 4 includes an overview of different formulations of Maxwell’s equations

and how these are typically solved numerically in the CSEM problem.
The representation of the unknown parameter function in the inverse problem is

discussed in Chapter 5. The focus is on a composite parameterization based on the
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level-set idea. Moreover, a reparameterization of the parameter function is discussed.
In Chapter 6, the concept of kernel functions is discussed in detail. Based on the

theory on kernel functions, several applications are present.
A summary of the research papers associated with Part I is given in Chapter 7.

Part II

In Chapter 8, a short introduction to different aspects of reservoir simulation with a
focus on the upstream mobility scheme is given.
Chapter 9 introduces two-phase flow in heterogeneous porous media, which, mathe-

matically, is modelled as a hyperbolic conservation law with a discontinuous flux func-
tion. A detailed overview of the theory of conservation laws with discontinuous flux is
thus also presented.
In Chapter 10, numerical schemes for approximating solutions to conservation laws

with discontinuous flux are introduced. Specifically, the upstream mobility scheme for
approximating two-phase flow in heterogeneous porous media is presented.
A summary of the research papers associated with Part II is given in Chapter 11.
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Abstract

Part I

In this part of the thesis, two different methodologies for solving the inverse problem of
mapping the subsurface electric conductivity distribution using controlled source elec-
tromagnetic (CSEM) data are presented. The two inversion methodologies are based
on a classical and a Bayesian approach for solving inverse problems, respectively.
In the classical approach, we regularize the inverse problem by incorporating struc-

tural prior information available from, e.g., interpreted seismic data. In many cases, the
outcome of an interpretation of seismic data cannot be well approximated by a Gaus-
sian distribution. Hence, to incorporate non-Gaussian prior information we have ap-
plied the shape prior technique. Here, an implicit transformation of variables facilitates
the incorporation of non-Gaussian prior information, at the expense of an application-
dependent kernel function.
In the Bayesian approach, a combination of prior knowledge and observed data

results in a solution given as a posterior probability density function (PDF). To sample
from the posterior PDF, a sequential Bayesian method, the ensemble Kalman filter
(EnKF), is applied. Structural prior information is naturally incorporated as a part of
the Bayesian framework.
To represent large-scale subsurface structures two model-based, composite parame-

terizations based on the level-set representation are applied in the inversion methodolo-
gies. By using a reduced number of parameters in the representation, a regularization of
the inverse problem is achieved. Moreover, it enables the use of second-order gradient-
based optimization algorithms in the classical approach.

Part II

In this part of the thesis, a numerical investigation of the upstream mobility scheme for
calculating fluid flow in porous media is presented. Previous studies have shown that
the upstream mobility scheme experienced erroneous behaviour when approximating
pure gravity segregation flow in 1D heterogeneous porous media. The errors shown,
however, were small in magnitude. In this work, numerical experiments, where we in-
clude both advection and gravity segregation, are conducted. It is shown that the errors
produced in this case may be larger in magnitude than for pure gravity segregation, but
are only found for countercurrent flow situations.
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you had been would have appeared to them to be otherwise.’"

Alice’s Adventures in Wonderland, Lewis Caroll.
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Chapter 1

Introduction

Over the last decades, it has become apparent that satisfying the world’s energy need is
one of humanity’s greatest problems. To meet the energy demands, hydrocarbon energy
sources have been, and will still be in the future, a major contributor. The challenge is,
of course, that most of the ‘easy’ reservoirs of hydrocarbon resources have been found
and depleted, and thus the more difficult targets remain. In many countries, Norway
included, the reservoirs are located offshore, which adds to the challenge.
The cost of drilling wells in a marine environment is expensive. To increase the

probability of hitting a hydrocarbon target in a drilling operation, the area is first
prospected with a geophysical exploration method. Among the most used geophysical
exploration methods are seismic reflection and rarefaction, controlled source electro-
magnetic (CSEM), magnetotelluric, gravity, magnetics, and ground-penetrating radar.
(See Chapter 2 for a description of the first three methods.) Although seismic meth-
ods have dominated the marine geophysical exploration industry the last decades, other
geophysical methods have shown their usefulness, especially as the hydrocarbon tar-
gets have become increasingly harder to locate. In particular, the industry have in re-
cent years applied several geophysical exploration methods together to lower the risk of
drilling ‘false positives’ (i.e., non-existing reservoir targets predicted by a geophysical
exploration method).
The overall principle in any geophysical exploration method is to transmit energy

into the subsurface and measure the returning signals with receivers at the surface level.
The measured signals will change according to the subsurface physical properties, and
thus an inversion of the measured signals can provide an image of the subsurface. This
image must then be interpreted by geologists and geophysicists, and turned into a geo-
logical model where subsurface formations, rock types, and, importantly, the reservoir
quality are described. Based on the geological model, an informed economic evaluation
of the prospected area can be made before any drilling is done.
In this thesis, we focus on the CSEM exploration method where the transmitted

energy is an electromagnetic (EM) field. Most of the EM applications in geophysics
attempt to use the measured EM signals to map the electric conductivity distribution in
the subsurface (see Sections 2.1 and 2.3). Other physical properties that affect the EM
signal propagation are the electric permittivity and magnetic permeability, but they are
seldom included in an inversion process.
An important part of the CSEM inversion process is to understand how the signals

propagate in the subsurface. Since we cannot directly monitor the signal propagation in
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the subsurface, we must rely on mathematical equations that model the physics behind
the propagation of signals, which, in the case of CSEM, are the Maxwell’s equations
(see Chapter 4). By setting up the mathematical model in the exact same manner as the
real-world exploration survey, we could, in theory, have described the signal propaga-
tion by solving the equations. Unfortunately, the mathematical equations are generally
not possible to solve analytically, and thus numerical methods must be used (see Sec-
tion 4.6). In the numerical approach, the subsurface is represented by a set of grid
cells, where each grid cell is populated by the parameters governing the signal prop-
agation, which in the CSEM case is electric conductivity. When the numerical model
has been set up, usually on a computer, a simulation of the real-world CSEM survey
can be done, where the mathematical equations are solved approximately. With today’s
computational resources, the signal propagation can be modelled with considerable ac-
curacy. Even so, prospecting more difficult areas with complex geological formations
requires better and less resource demanding numerical methods. Thus the numerical
simulation of CSEM signal propagation is a research area within itself.
Setting up the numerical model in the exact same manner as the real-world ex-

periment is of course impossible. However, we can try to minimize the discrepancy
between the outcome of the numerical simulation and the actual measured signals from
a survey. The minimum is achieved by changing the electric conductivity values in the
numerical model in such a way that it simulates similar signals in the receivers as the
measured signals. The numerical model will then provide the sought map of the sub-
surface electric conductivity distribution. This is the basics in the classical approach
for solving an inverse problem (see Section 3.2). Traditionally, the adjustment of the
numerical model parameters was done manually, but over the years automatic adjust-
ment of the parameters have been developed. With the advancement of optimization
methods, automatic adjustment of parameters have become a much used approach by
the geophysical community.
In an inversion process, we often have to deal with uncertainties. The numerical

model is not a perfect reconstruction of the real-world survey, and measured signals
always contain noise. Moreover, since the signals are measured at sparse locations at
the surface, the map of the electric conductivity resulting from an inversion process
will necessarily contain uncertainties. It can thus be advantageous to view the outcome
of the numerical simulations, the numerical model parameters, and measured signals
as stochastic variables associated with a probability density function (PDF). This is
the basic set up of a entirely different approach for solving the inverse problem than
the classical – the Bayesian approach (see Section 3.3). The solution procedure of a
Bayesian approach is to update a prior PDF of the electric conductivity distribution by
conditioning to the measured signals using Bayes’ rule. The result of this procedure
is a posterior PDF where an updated knowledge on the uncertainty of the subsurface
electric conductivity is contained.
The focus of this thesis is to develop computationally efficient and robust method-

ologies for the inversion of CSEM signals. Moreover, we want to incorporate infor-
mation from other geophysical methods (most notably seismic methods) to increase
the reliability of the CSEM inversion result. In particular, we want to use the inter-
preted result from an inversion of a geophysical method as prior model in an inversion
of CSEM signals. To do so, we have investigated solution procedures following both
the classical and the Bayesian approach. While prior models are naturally incorporated
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into the Bayesian framework as a prior PDF, they must be incorporated as an additional
term in a classical inversion methodology. Due to the ambiguity in the interpretation
procedure, prior models can exhibit non-Gaussian features, and are thus difficult to
incorporate. Hence, when developing the classical inversion methodology, the prior
models are incorporated using the shape prior technique (see Section 6.3). In short, the
shape prior technique allows for the incorporation of non-Gaussian prior models using
an implicit transformation of variables.
An important part of this thesis is to produce maps of the subsurface conductiv-

ity distribution which renders the complex geological formations known to exist in
the subsurface (e.g., faults, pinchouts, anticlines, and so on). To be able to represent
the conductivity distribution with such flexiblity, model-based representations based on
level sets (see Chapter 5) are considered. When chosen properly, model-based repre-
sentations can preserve geological knowledge about the subsurface and also reduce the
ambiguity in the inversion result.
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Chapter 2

Controlled source electromagnetic method and
marine exploration

In this chapter, we discuss the CSEM method, together with some selected marine
exploration methods. The aim of the discussion is to highlight the strengths and weak-
nesses of each method, thus providing a sense of what sets each method apart, and,
importantly, how the different methods can work together for a richer view of the sub-
surface geology.

2.1 Controlled source electromagnetic

The CSEM method used today was initially developed by Cox in 1980 [48] to study
seafloor geology (although similar configurations had been proposed earlier, see,
e.g., [19].) From this point CSEM was further developed both technically and theo-
retically, but the applications were mostly academic. In 2000, the first field testing of
CSEM as a tool for hydrocarbon exploration was conducted [58]. Since then CSEM
has been successfully used in many field operations, both as a frontier exploration tool
and in conjunction with other exploration methods. For a comprehensive history of
CSEM see, e.g., [44, 47]. A detailed review on the instrumentation used in CSEM can
be found in [45].

2.1.1 Acquisition – source and receivers

A generic CSEM survey consists of first deploying a set of receivers, which are sensi-
tive to both electric and magnetic fields. These receivers are typically positioned in a
straight line or in a 2D array on the sea floor. Since the receivers are released from a
boat and freely fall to the sea floor, a perfect set up of the receivers is typically not pos-
sible. The receivers record EM signals using a set of electrodes and inductions coils.
Unfortunately, magnetic fields are difficult to record due to high noise sensitivity.
The source is towed behind a boat over the acquisition area, transmitting low-

frequency (typically 0.1–10 Hz) EM signals into the subsurface. The source is usu-
ally a 100–300 m long cable, which is towed 25–100 m over the sea floor. The reason
the source has to be towed near the sea floor is to minimize the signal attenuation in
conductive sea water, and also to reduce the influence of the ‘airwave’ (see Figure 2.1).
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Sea
Air

Subsurface

(i)

(ii)

(iii)

Figure 2.1: An illustration of CSEM signal propagation. (i) ‘Airwave’; (ii) direct wave; (iii)
and (iv) signals interacting with the subsurface.

There are four basic source geometries associated with CSEM: horizontal electric
dipole (HED), vertical electric dipole (VED), horizontal magnetic dipole (HMD), and
vertical magnetic dipole (VMD) [38]. The electric dipole sources are typically current
carrying bipoles (i.e., there is a length between the positive and negative pole), which
for receivers far away from the source can be treated as dipoles (a point in space with
positive and negative pole). The magnetic dipole sources are loops of electric wires
that create a magnetic field when a current is active. Both HMD and HED sources pro-
vide horizontal and vertical current flows, while VED and VMD sources only provide
vertical or horizontal currents, respectively. HED sources are by far the most widely
applied, as it is much easier to generate electric currents than magnetic currents [43].
There are two main approaches in CSEM: frequency domain and time domain. The

underlying physics of both approaches are the same; EM fields in the frequency domain
are Fourier transformed fields from the time domain, and vice versa. However, there
is a difference in their practical application. For frequency-domain CSEM, the source
transmits broadband waveform signals with high amplitude in some key frequencies,
improving the sensitivity to both shallow and deep structures. In time-domain CSEM,
the source transmits continuously over the frequency spectrum with a step-on/step-off
transmitter current, see, e.g., [91] and references therein.
Lastly, we mention that a towed streamer acquisition has also been developed [59].

Similarly to the seismic method (see Section 2.2 below), a line of receivers is towed
behind the source, making the acquisition faster and cheaper, but only inline fields are
recorded.

2.1.2 Physical behaviour

A simplified illustration of the CSEM signal propagation is given in Figure 2.1. In
reality, the signals cannot be readily explained by simple ray paths as shown in the
figure. The signals are 3D vector fields, which interact with the subsurface in a more
complicated way than, e.g., seismic. In the following, we give a basic overview of
different factors that impact the physical behaviour of EM signals.
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Radial
θ = 0◦

Azimuthal
θ = 90◦

Radial
field

Receiver

Azimutal
field

HED

θ

Figure 2.2: Plane view of the HED source-receiver geometry outlining the two modes: radial
and azimuthal.

Modes

The source-receiver geometry is important in CSEM as it determines which type of
interactions with the subsurface geology that will be recorded. Considering the HED
source in Figure 2.2, the EM fields transmitted in-line with the direction of the source
are called radial (zero azimuth, θ = 0◦). On the other hand, the EM signals transmitted
in the broadside direction are called azimuthal (full azimuth, θ = 90◦). For a receiver
in between these extremes, both radial and azimuthal fields are recorded.

Electric conductivity

The main physical attribute of CSEM signals is the sensitivity to the subsurface electric
conductivity distribution, σ, measured in siemens/meter (S/m) (or, more seldom, in
mho/m). Often the reciprocal of conductivity, resistivity, is used, denoted by ρ and
measured in ohm/m (Ω/m). In sea water, the conductivity is almost entirely dependent
on temperature and salinity, and typically ranges from 3.2–5 S/m.
In the subsurface, the range of conductivity is vast and highly dependent on the

environment in which the sediments were deposited and on processes occurring after
deposition. Importantly, the uppermost sediments are porous and can thus contain flu-
ids, which contributes greatly to the conductivity distribution in the subsurface. Saline
water is the dominating fluid, filling most of the porous media in the upper crust. The
difference in conductivity between different brine filled sediments is mostly due to the
composition of the rock matrix. Depending on the minerals which the rock consists of,
the conductivity of the uppermost layers typically range from 0.1–10 S/m (assuming
that the brine contains one type of salt).
Important for marine exploration is the presence of hydrocarbons in the subsurface.

Compared to brine, hydrocarbons are regarded as insulators with conductivity typically
ranging from 0.01–0.1 S/m. The contrast in conductivity between brine filled and hy-
drocarbon filled porous media makes CSEM an attractive hydrocarbon indicator. Note
that there also exist highly resistive bodies other than hydrocarbons in the subsurface,
e.g., tight carbonates and volcanic rock. Thus, the interpretation of CSEM signals can
often be difficult.
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Table 2.1: Skin depth, δ, for some given frequencies, f , and conductivity values, σ.

f \σ 100 10 3.33 1 0.1 0.01
0.1 159.15 503.29 872.16 1591.55 5032.92 15915.49
1 50.33 159.15 275.80 503.29 1591.55 5032.92
5 22.51 71.18 123.34 225.08 711.76 2250.79
10 15.92 50.33 87.22 159.15 503.29 1591.55

Mechanisms

There are several mechanisms related to a changing EM field. First, we have the atten-
uation of a diffusive EM wave in a conductive medium, which can be described by the
skin depth:

δ =

√
2

ωμ0σ
. (2.1)

Here, ω = 2π f , with f being the source frequency, and μ0 = 4π × 10−7 H/m is the
magnetic permeability of free space. The skin depth is defined as the distance at which
the amplitude of a EM plane wave is reduced by a factor of 1/e (≈ 0.37). Although
it is defined for a plane wave, it gives an idea of how much a more complicated EM
wave will attenuate in the subsurface. The skin depth for some frequencies and con-
ductivity values are given in Table 2.1. From this table it is seen that there is little to
no attenuation of the EM fields in very resistive targets like, e.g., hydrocarbon filled
sediments. Hence, the EM signals will propagate through hydrocarbon reservoirs as
‘guided waves’ [163].
The second mechanism is the galvanic effect. This effect occurs when currents cross

a boundary between two bodies. The continuity equation (see Chapter 4) requires the
normal component of the current density to be continuous across a boundary, leading
to a jump in the electric field, due to Ohm’s law (see Chapter 4). This perturbation in
the electric field is measurable at sea floor receivers. Pure radial source-receiver geom-
etry will generate EM fields where the galvanic effect dominates when intersecting a
boundary in the subsurface.
The third mechanism is the inductive effect. This effect occurs when the current

flow is parallel to the boundary between two bodies. At the boundary, the tangential
electric field is continuous. Hence, if one of the bodies is more conductive than the
other, a strong electric current must flow in the high conductive body, due to Ohm’s
law (see Chapter 4). This will in turn generate magnetic fields according to Ampere’s
law (see Chapter 4), which work against the electric field. Consequently, attenuation
increases according to the skin depth due to inductive effects. On the other hand, if one
of the bodies is more resistive (e.g., hydrocarbon reservoirs), the attenuation will be
less than the conductive surroundings, resulting in a change in EM fields measurable
by the receivers. The change in amplitude in the inductive effect is much less than
in the galvanic effect. Contrary to the galvanic effect, however, a change in phase
occurs in the inductive effect, which can be used to determine, e.g., the geometry of
a resistive target [57]. In pure azimuthal source-receiver geometry, the EM fields are
largely horizontal and produce inductive effects when intersecting a boundary in the
subsurface.
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For a more complete description and investigation of the different mechanisms in
CSEM surveys see, e.g., [44, 153].

2.2 Seismic

Seismic methods are by far the most widely used marine exploration methods. A typical
seismic acquisition consists of a towed air gun transmitting elastic (or acoustic) waves
through the seawater and into the subsurface. The elastic waves that have interacted
with the subsurface are recorded by hydrophones, which are towed some distance be-
hind the acquisition boat. The hydrophones are located on a single line cable, or, more
commonly, on a 2D array of cables.
There are three main types of elastic waves: P-waves, S-waves, and surface

waves [142]. Of the three wave types, P-waves (or primary waves) are the most im-
portant in seismic acquisition. P-waves travel by compression and rarefaction of the
media, and the direction of travel is thus perpendicular to the wave fronts. Lines fol-
lowing the travel direction are called ray paths, and are important in first guess seismic
interpretation. S-waves (or shear waves) are transverse waves, that is, the movement is
perpendicular to the direction of the wave propagation (similar to EM waves). Since
water does not have any shear strength, S-waves cannot be recorded by towed hy-
drophones. If receivers are placed on the sea floor, however, it is possible to record
both S-waves and P-waves. Surface waves are waves traveling near the interface be-
tween different materials, and do not illuminate the subsurface. Hence, surface waves
are mainly considered as noise, which is most severe in onshore acquisition.
The fundamental principles in seismic surveying are reflection and refraction. When

an incident elastic wave meets an interface between two media with different elastic
properties (primarily density), the wave will reflect or refract, or both, according to
Snell’s laws. Due to the complex geometry of the subsurface, the wave propagation
can be quite involved. An example is the occurrence of multiples. These are waves
that have reflected multiple times in the subsurface before reaching the receiver, hence,
making the interpretation of such signals a difficult process.
At the receivers, the incoming seismic waves are recorded together with travel times

(time from transmission to recording), and form the basis of seismic data. The seismic
data are processed, before an interpreter converts them to one or more likely geological
scenarios. Interpretation is a difficult process, and requires expert knowledge from
different parts of geology. Most often such knowledge comes from studying outcrop
analogues and well logs.
Contrary to CSEM, seismic signals do not give direct information on presence of

hydrocarbons. The presence of hydrocarbons must be interpreted from typical signal
reflections occurring at the interface between hydrocarbon-bearing sediments and sur-
round sediments, so called ‘flat spots’, ‘bright spots’, and ‘dim spots’.
The resolution of seismic imaging is better than for CSEM. In CSEM, the signal

propagation is diffusive in nature, and is thus limited to a large-scale description of the
subsurface. Seismic waves have typically much higher frequency than CSEM waves,
and have thus higher resolution. Hence, seismic methods can better resolve the struc-
tures and stratigraphy of the subsurface, while correction of the large-scale structures
and detection of possible hydrocarbon formations can be done with CSEM. This means
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that seismic and CSEM data can give complementary information about the subsurface
(see [106] for a discussion on this topic).

2.3 Magnetotelluric

A closely related method to CSEM is the magnetotelluric (MT) method. Equivalently
to CSEM, the signals measured in MT are EM signals. Contrary to CSEM, natural
sources are responsible for the MT signals. Typical sources are lightning activity in the
ionosphere, which emits signals in the frequency range of 1 Hz–10 kHz, and distur-
bance in the magnetosphere, which emits signals in the frequency range below 1 Hz.
The receivers in MT are equivalent to CSEM receivers, hence, it is possible to record
both MT and CSEM signals in one survey.
The EM fields associated with MT are largely horizontal plane waves. Hence, the

interaction with the subsurface only produces the inductive effect, and is entirely gov-
erned by the skin depth (see description in Section 2.1). Consequently, MT signals
have small to no sensitivity for (thin) resistive targets such as hydrocarbon reservoirs.
Thus, we can only map subsurface geological structures with a contrast in conductivity.
Moreover, since the EM waves have to pass through the highly conductive sea column,
only the low-frequency signals will pass through to the subsurface. Hence, MT data
have low spatial resolution.
MT and CSEM data can be used together for an improved understanding of the

subsurface geology. Where CSEM signals are primarily concentrated between source
and receiver, the nature of MT signals leads to local and regional information about
the subsurface [46]. Hence, CSEM and MT can be used together to map large-scale
geological formations. Moreover, since MT has little (or no) sensitivity to hydrocarbon
reservoirs, while CSEM has, an inversion process where MT data can be used to map
the subsurface structures and CSEM data can be used to provide information about
potential hydrocarbon reservoirs, can be made.



Chapter 3

Inverse problems

Consider a physical system described by a set of mathematical equations. To apply the
mathematical equations on a specific problem, the parameters governing the equations
must be determined. Direct observation of these parameters is, however, often costly,
inaccurate, or impossible. We must instead rely on observations of responses from the
physical system to determine the parameters.
According to [150], a study of a physical system can be divided into three steps:

1. Parameterization. Find a set of model parameters that fully describes the system.
These parameters can either be scalars or described by a function.

2. Forward modelling. Find a set of mathematical equations that allows us to calcu-
late a unique response of a physical system (to some stimulus). Typical forward
models are numerical methods solving boundary-/initial-value problems of par-
tial, or ordinary, differential equations, or integral equations.

3. Inverse problem. Using a set of observed responses of a physical system to de-
termine a plausible set of model parameters, or information about these model
parameters, to some stimulus. In this work, we will also refer to this as parame-
ter estimation.

In the next sections, we will briefly cover subjects within the twomain approaches in
inverse problems: the classical approach and probabilistic (Bayesian) approach. Before
we present these approaches, we will discuss inverse problems in general and outline
their mathematical properties. We confine our cover of inverse problems to the discrete
case and refer to, e.g., [60, 111] for theory on continuous inverse problems.

3.1 Inverse problem formulation

Letm denote the Nm × 1 vector containing the model parameters of a system. Further-
more, let d be a Nd × 1 vector containing the observed responses (or observed data)
of a physical system, and let g(·) denote the corresponding nonlinear forward model
operator. The theoretical relationship betweenm and d is then given as

d = g(m). (3.1)
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In practice, the observed data almost always contain measurement noise, due to, e.g.,
faulty measurements of the physical system. Hence, we can envision d containing
noiseless observations from a ‘perfect’ experiment, dtrue, plus measurement noise, εd ,

d = g(mtrue) + εd ,
= dtrue + εd , (3.2)

where mtrue contains the true model parameters of the physical system, and dtrue con-
tains the true observed responses assuming g(·) is the exact forward model opera-
tor [12]. In practice, g(·) is not exact (e.g., using numerical approximations), leading
to an additional noise term εm, denoted model noise. In this case, we must replace εd
in (3.2), with ε = εd + εm. In practice, εm is often neglected as it is difficult to quantify.
Solving the inverse problem is generally a very difficult task due to the fact that it is

most often an ill-posed problem. In [77], Hadamard gave the mathematical properties
of a well-posed problem:

Existence. A solution must exist.

Unique. A solution must be unique.

Stability. A solution must depend continuously on the data.

If any of the above properties are violated, the problem is said to be ill-posed.
The first property is almost always violated in inverse problems since no set of

model parameters makes forward model responses that exactly fits the observed data,
due to contamination of noise. In practice, we need to settle for solutions that fits the
data within a given accuracy.
A violation of the second property frequently occurs in many inverse problems. In

this case, there exist several (or possibly infinite) sets of model parameters that satisfies
(3.1). In this case, one has to either decide which of the solutions is of interest, or use
additional information to specify the expected nature of the solution [60].
The last property is difficult to attain. A violation of the stability property implies

that small perturbations in the observed data lead to (arbitrary) large perturbations in
the solution. A remedy for this is called regularization, which we come back to in
Section 3.2.3.
In the following sections, we let d̃ ∈ C

Nd/2 and g̃(m) ∈ C
Nd/2 denote vectors of

observed data and forward model outputs, respectively. Complex-valued responses are
typical for physical systems governing the frequency-domain CSEM method. Instead
of the complex-valued d̃ and g̃(m), we use a real composite form (see Appendix A)

d =
[
Re{d̃}
Im{d̃}

]
, g(m) =

[
Re{g̃(m)}
Im{g̃(m)}

]
, (3.3)

where Re{·} and Im{·} denote the real and imaginary part of the argument, respectively,
thus d,g(m) ∈ RNd . Note thatm ∈ RNm .
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3.2 Classical approach

As we discussed in the previous section, an exact solution of (3.1) may not exist, and
we must instead look for a solution that fits the data within a given accuracy. A stan-
dard approach to achieve this goal is to solve the inverse problem as an optimization
problem. Define the weighted least-squares objective function as

J (m) = (g(m) − d)TC−1d (g(m) − d), (3.4)

whereT denotes matrix and vector transpose, andCd is a data weighting matrix, usually
a diagonal matrix containing estimates of the variance of the measurement and model
noise, ε. J (m), as given in (3.4), is often denoted data misfit function. The objective
in an optimization problem is to minimize J (m) until some termination conditions are
met. Mathematically, the optimization problem can be stated as

argmin
m

J (m). (3.5)

Ideally, we want to find the global minimizer of (3.5), that is, we want to find a
point m∗ such that J (m∗) ≤ J (m), ∀m ∈ RNm . However, since g(·) is nonlinear, local
minimizers of (3.5) may exist, that is, we may only be able to find a pointm∗ such that
J (m∗) ≤ J (m) for m in a neighbourhood around m∗ [125]. Indeed, the algorithms
discussed in the next sections only search for local minimizers.

3.2.1 Newton-type methods

A necessary condition form∗ to be a (global or local) minimizer is

∇J (m) = 0. (3.6)

Here, ∇ denotes the gradient with respect tom. The most common way of solving (3.6)
is by applying the Newton-Raphson algorithm. Here, an initial guess on m, denoted
m0, is iteratively updated by [125]

mn+1 = mn + Δmn, (3.7)

where Δmn is obtained by solving the linear system

N(mn)Δmn = −∇J (m). (3.8)

In (3.8), n is the iteration index and N(m) is the Hessian matrix

N(m) = ∇
(
(∇J (m))T

)
. (3.9)

The gradient and Hessian of the objective function (3.4) are given, respectively, by

∇J (m) = 2STC−1d (g(m) − d), (3.10)

and
N = 2STC−1d S +Q, (3.11)
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where S is the Nd × Nm sensitivity matrix (see Section 3.2.2) andQ is a matrix contain-
ing second derivatives of g(m).
It can be shown that the Newton-Raphson algorithm has quadratic convergence

given that J (m) is twice continuously differentiable in a neighbourhood around m∗,
m0 is sufficiently close to m∗, and N(m∗) is positive definite [125]. A drawback of the
algorithm is the calculation of N, which can be difficult (or even infeasible) in most ap-
plications. We will in the following briefly discuss Newton-type methods with different
approximations of N.

Gauss-Newton method

A simple approximation of N is to neglect Q in (3.11), leading to N ≈ 2STC−1d S. This
approximation is only valid if 2STC−1d S is large in magnitude compare to Q, which in
many cases holds true, especially around the solutionm∗. The linear system (3.8) then
becomes

S(mn)TC−1d S(m
n)Δmn = −S(mn)TC−1d (g(mn) − d), (3.12)

and is denoted the Gauss-Newton (GN) method. As seen in (3.12), only the sensitivity
matrix S is needed to solve the linear system, which saves computational time compared
to the Newton-Raphson algorithm.
Often, GN is implemented with a line search algorithm. In short, a line search algo-

rithm searches along the direction of the current iteratemn for a new iterate with lower
objective function value. In practical applications, an inexact line search algorithm is
implemented, where a few trial searches are done and accepted when some conditions
are fulfilled (often used stopping criteria are the Wolfe conditions) [125].
An interesting connection between GN and linear least-squares problems can be

made by noting that (3.12) is identical in form to normal equations. That is, Δmn is the
solution of the linear least-squares problem [125]

argmin
Δm

���C−1/2d [S(mn)Δm + (g(mn) − d)]���22 . (3.13)

This subproblem can be much easier to solve using, e.g., QR decomposition where
STC−1d S does not need to be calculated explicitly [66].
In the best case, GN will have similar convergence properties as that of Netwon-

Raphson. However, the convergence relies on S having full rank. For application of
GN in CSEM inversion see, e.g., [2].

Levenberg-Marquardt method

In the Levenberg-Marquardt (LM) method,N is replaced by 2(STC−1d S+λ
nINm

), where
INm

is the Nm × Nm identity matrix, and λn ≥ 0 is chosen at each iteration to improve
the downhill search direction. The linear system (3.8) then becomes[

S(mn)TC−1d S(m
n) + λnINm

]
Δmn = −S(mn)TC−1d (g(mn) − d). (3.14)

The obvious connection between (3.12) and (3.14) leads to LM sometimes being re-
ferred to as the damped GN method.
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The value λn controls both the search direction and the step size. If λn ≈ 0, then
LM reduces to GN, and typically large steps are made. On the other hand, if STC−1d S+
λnINm

≈ λnINm
, then LM reduces to the steepest decent method,

Δmn ≈ − 1
λn
S(mn)TC−1d (g(m

n) − d), (3.15)

which ensures convergence, but is typically very slow (linear convergence). Hence,
careful adjustment of λn must be done at each iteration to ensure good convergence
properties for LM. An example of a selection procedure for λn can be found in [65].
A related implementation of LM is the trust region method. In short, the trust region

method ensures that the length and direction of Δmn is chosen within a trusted region
around the current iterate. A popular implementation of the trust region method is given
by More in [118].
The LM method has been used in CSEM inversion, see, e.g., [116]. It was also used

in Paper A.

Quasi-Newton methods

The motivation in quasi-Newton (QN) methods is to replace the (usually) computa-
tionally costly N with a less computationally expensive matrix B. The matrix B is a
symmetric, positive definite matrix that, compared to N, has an easily computable in-
verse, B−1. It is of course desirable to use information about the Hessian to build B,
without actually computing it. To this end, B is updated at each iteration by solving the
secant equation

Bn+1Δmn = ∇J (mn+1) − ∇J (mn) = wn. (3.16)

(From Taylor’s theorem the second-derivative of a function can be approximated by
the difference in gradients, see, e.g., [125]). The secant equation is not enough to
uniquely determine B, hence, additional constraints are needed. In most QN methods,
the following problem is solved [125]:

min
B
‖B − Bn‖F ,

subject to B = BT , BΔmn = wn, (Δmn)Twn > 0,
(3.17)

where ‖ · ‖F is a weighted Frobenius norm. Solving (3.17) leads to the most used QN
methods: Davidson-Fletcher-Powell (DFP) method and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method.
The advantage of QN methods is that only the gradient of J (m) is needed to update

B. The convergence rate of QN methods is superlinear, which is lower than GN. How-
ever, the cost per iteration in QN is lower than GN since B−1 is easier to calculated than
N−1. In the case of BFGS, B−1 is found directly by solving (3.17) where B is replaced
with B−1.
The main disadvantage of QN methods is that Bn must be stored for next iteration

(in order to update Bn+1), which for large-scale problems can be memory consuming.
To alleviate this problem, a limited memory version of BFGS was introduced where up-
dates of Bn+1 are done using vectors that implicitly stores information about Bn [125].
QN has been used for solving CSEM inversion problems, see, e.g., [131].
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3.2.2 Sensitivity calculation

In Newton-Rapshon and the Newton-type methods, the sensitivity matrix, S, is required
in the gradient and Hessian of J (m). The sensitivity matrix is a Nd × Nm matrix given
by

S =
∂gi

∂mj
, i = 1, . . . ,Nd , j = 1, . . . ,Nm, (3.18)

hence it provides information about how changes in the model parameters affect the
output of the forward model.
There are generally four ways of calculating S: perturbation method, automatic

differentiation, direct method, and adjoint method [109]. In the perturbation method,
the derivatives in (3.18) are approximated by some finite difference approach. This
method is not widely used in practice, due to its inefficiency and difficulties associated
with selection of perturbation length. Automatic differentiation exploits the fact that
any function is written in a computer program using elementary functions (e.g., sin,
exp, etc.) and arithmetic operations (+, −, etc.). By using basic differentiation rules, the
derivatives can be found automatically by the computer program to working precision
(see, e.g., [121]). The two last methods are analytical methods, which we will briefly
discuss in the next two sections.

Direct method

In the direct method, g(m) is differentiated directly with respect tom. In many applica-
tions, g(m) is not readily available as an explicit expression; typically, forward model
outputs are given as a numerical solution of a differential, or integral, equation. In this
case, let f(g(m),m) = 0 denote the system of equations that are solved in order to get
the numerical solution g(m). Total differentiation of f with respect to mj gives [127]

d f
dmj

=
∂f
∂g

∂g
∂mj

+
∂f
∂mj

= 0, j = 1, . . . ,Nm. (3.19)

The first expression, ∂f/∂g, is often simple to calculate. The numerical solutions of
differential equations are often given on the form f(g(m),m) = Ag − b, where A is the
coefficient matrix resulting from discretization of the differential equation and b is a
vector containing the source term; hence, ∂f/∂g = A. In the case where f(g(m),m) is
a nonlinear function, f(g(m),m) = 0 must be solved iteratively (using, e.g., a Netwon-
type method, see Section 3.2.1) where A = ∂f/∂g is calculated at each iteration. The
second expression, ∂f/∂mj , can be calculated analytically since the functional relation-
ship between f andm will be known.
Inserting ∂f/∂g = A into (3.19) and rearranging leads to

A
∂g
∂mj

= − ∂f
∂mj

, j = 1, . . . ,Nm. (3.20)

This is a linear system that can be solved in a similar manner as f(g(m),m) = 0. From
(3.20) we see that the right-hand side gives rise to a new linear system for each unknown
model parameter, mj ; hence, Nm linear systems must be solved to get the entries in S.
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Adjoint method

To present the adjoint method, we follow the description in [127] and define a function
L = h(g(m),m). From the previous section we know that f(g(m),m) = 0, hence, we
can define the Lagrangian

L = h(g(m),m) + μT f(g(m),m), (3.21)

where μ is a vector containing the Lagrange multipliers. Total differentiation of L with
respect to mj leads to

d L
dmj

=
∂h
∂g

∂g
∂mj

+
∂h
∂mj

+ μT
[
∂f
∂g

∂g
∂mj

+
∂f
∂mj

]
,

=
∂h
∂mj

+ μT
∂f
∂mj

+

[
∂h
∂g
+ μT

∂f
∂g

]
∂g
∂mj

. (3.22)

μ can be freely chosen, hence, we require it to satisfy

μT
∂f
∂g
= −∂h

∂g
, (3.23)

or (
∂f
∂g

)T
μ = −

(
∂h
∂g

)T
. (3.24)

This linear system is referred to as the adjoint system.
Inserting (3.23) into (3.22), we get

d L
dmj

=
∂h
∂mj

+ μT
∂f
∂mj

. (3.25)

Hence, when μ is found from (3.24), it can be inserted into (3.25) to find the sensitivity
d L/dmj .
If we let L = h(g(m),m) = gi and recall from the previous section that ∂f/∂g = A,

then (3.24) and (3.25) give

ATμ = −
(
∂gi

∂g

)T
, (3.26)

and
d gi
dmj

= μT
∂f
∂mj

, (3.27)

respectively, where i = 1, . . . ,Nd and j = 1, . . . ,Nm. To get the sensitivity matrix S
we need to solve (3.26) Nd times and insert into (3.27). Hence, the adjoint method is
well suited for problems where Nd < Nm, whereas the direct method is well suited for
problems where Nm < Nd .

3.2.3 Tikhonov regularization

To alleviate the instability issue in an ill-posed inverse problem, additional features of
the solution are imposed by using regularization techniques. The additional features are
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a priori assumptions on the nature of the solution. Hence, regularization techniques
will always bias the solution. A compromise between accuracy and stability is thus
needed when choosing the regularization technique.
Perhaps the most widely applied regularization technique is Tikhonov regulariza-

tion [152]. In the least-squares framework, a Tikhonov regularization is given by

J (m) = (g(m) − d)TC−1d (g(m) − d) + α‖Lm‖22 . (3.28)

Here, L is called the roughening matrix, and α > 0 is the regularization parameter. In an
optimization, a solution is sought where both terms in (3.28) are minimized. In addition
to the data misfit term (first term), we have a penalization term (second term). If we let
L = INm

, then α‖m‖22 will penalize solutions with large norms. This is often denoted
zero-order Tikhonov regularization (or ridge regression in statistics). In higher-order
Tikhonov regularization, L is given as a numerical approximation of some differential
operator. This will penalize solutions that are rough in some derivative sense. Note that
‖ · ‖2 in the above description is the Euclidean norm. If we instead use the l1-norm and
let L = INm

, then (3.28) reduces to the LASSO (least absolute shrinkage and selection
operator) method [151].
The regularization parameter α can be difficult to adjust. Essentially α controls the

degree of which the regularization should be emphasized. Some strategies for select-
ing α have been proposed, e.g., the L-curve strategy [96]. In practice, however, α is
usually adjusted during the iterations by applying some kind of ‘cooling’ scheme, see,
e.g., [124]. The basic idea with a ‘cooling’ scheme is to have a large α in the beginning,
leading to (3.28) being almost quadratic, and subsequently reduce α in later iterations
to put more emphasis on the data misfit term.

3.3 Bayesian approach

A different approach from the classical one is to view m and d as random variables
associated with probability distributions. In this case, we are not only interested in
identifying one particular solution of the inverse problem but we are also interested
in quantifying the uncertainty of the solution. Towards this end, let m be associated
with the PDF f (m) and let d be associated with the likelihood function f (d|m). The
conditional PDF of m given d is given by Bayes’ rule:

f (m|d) = f (d|m) f (m)
f (d)

. (3.29)

The PDF f (d) is a normalizing constant ensuring that f (m|d) integrates to 1. In prac-
tice, exact knowledge about f (d) is not needed, and (3.29) can be expressed as

f (m|d) ∝ f (d|m) f (m). (3.30)

In (3.30), f (m) is the knowledge and uncertainty we have on the model parameters
before conditioning to data, and is denoted prior PDF. Consequently, f (m|d) is de-
noted posterior PDF, and it provides the complete solution of the inverse problem. The
likelihood function f (d|m) relates m with d through (3.1). (Note that the difference
between f (d|m) being a likelihood function or conditional PDF is whether d is a fixed
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or a random variable, leading to m being a random or a fixed variable, respectively.
Since we want to use observed data that are fixed, e.g., from an experiment, f (d|m) is
the likelihood function.)
If we assume that measurement errors and model errors, ε, are Gaussian with mean

zero and covariance matrix Cd , then f (d|m) is written as

f (d|m) = f (ε = g(m) − d),
= c exp

(
−(g(m) − d)TC−1d (g(m) − d)

)
, (3.31)

where c is a normalizing constant. Similarly, if we assume that the prior PDF is Gaus-
sian with meanmprior and covariance matrix Cm, then f (m) is given by

f (m) = c · exp(−(m −mprior )TC−1m (m −mprior )). (3.32)

Inserting (3.31) and (3.32) into (3.30) yields

f (m|d) = c exp(−J (m)), (3.33)

where

J (m) = (g(m) − d)TC−1d (g(m) − d) + (m −mprior )TC−1m (m −mprior ). (3.34)

Note that f (m|d) is not a Gaussian PDF since g(·) is a nonlinear forward model op-
erator. Hence, a complete characterization of f (m|d) can be very difficult or even
impossible. (Note that the above Gaussian PDFs can be written as generalized com-
plex Gaussian PDFs using a complex augmented form of d̃ and g̃(m), see Appendix A.
However, the generalized complex Gaussian PDFs are no more general than the Gaus-
sian PDFs based on the real composite form given above.)
Traditionally, a single ‘best’ estimate can be obtained from f (m|d) by finding its

maximum a posteriori solution. Mathematically, this is stated as

mMAP = argmax
m

f (m|d),
= argmin

m
J (m), (3.35)

where the second equality follows from (3.33). Note that this is an optimization prob-
lem that can be solved using the methods described in Section 3.2. Moreover, com-
paring J (m) from (3.34) and (3.28), we see that the second term in (3.34) is a type
of zero-order Tikhonov regularization term; it will penalize solutions that are far away
from mprior (in some weighted norm sense). In Paper A, we used a similar regular-
ization term as in (3.34), which was derived by assuming a Gaussian prior PDF in a
high-dimensional feature space Y (confer Section 6.3).
In the following sections, we will discuss methods for characterizing the whole

posterior PDF, not only providing a ‘single’ best estimate. First, we present the widely
used, and important, Markov Chain Monte Carlo (MCMC) methods. Subsequently, we
will discuss alternative methods to MCMC, which are based on the sequential Bayesian
framework.
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3.3.1 Markov chain Monte Carlo

Since a complete characterization of the posterior PDF is generally infeasible when the
forward model operator is nonlinear, assessment of the posterior PDF can only be done
by sampling. A popular choice for sampling from the posterior PDF is MCMC algo-
rithms, due to their simplistic implementation. The basic idea of MCMC algorithms is
to construct Markov chains that converge to the posterior PDF within a finite number
of steps. In most MCMC algorithms, this is an iterative procedure:

1. j = 1→ generate initial samplem1.
2. Generate a samplem� from a proposal PDF q(m|m j ).

3. Generate a random number from the uniform distribution u ∼ U[0,1], and calcu-
late the acceptance probability β(m�,m j ):

β(m�,m j ) = min
[
1,
f (m�|d)q(m j |m�)
f (m j |d)q(m�|m j )

]
.

4. If β(m�,m j ) > u→ m j+1 = m�; elsem j+1 = m j .

5. Repeat steps 2–4 until a predetermined number of iteration steps is reached.

The proposal PDF, q(mi |m j ), is the probability of proposing a transition from mi to
m j . It can be arbitrarily chosen as long as it is possible to propose a transition to anym
within a finite number of steps [127]. The acceptance probability, β(mi,m j ), given in
step 3, is the widely used Metropolis-Hastings algorithm [79, 113]. Other algorithms
exist, e.g., Gibbs sampling and slice sampling. (Note that to evaluate f (m|d) in step 3
we insert (3.30), or if the likelihood and prior is given from (3.31) and (3.32), respec-
tively, then we insert (3.33).)
The convergence of MCMC algorithms is usually very slow. Depending on the pro-

posal PDF, the number of iterations can be O(104) ∼ O(105), or even higher. Since we
need to run the forward model as many times as we have iterations, the computational
costs can be prohibitively costly for complex models .
For CSEM application of MCMC algorithms see, e.g., [39, 132]. These applications

involved a fast computing 1D numerical model, which enabled the use of a MCMC
algorithm.

3.3.2 Sequential Bayesian formulations

In the following sections, it is advantageous to introduce some notation. Let dk ∈ RNdk

denote a subset of the observed data, where k = 1, . . . ,Ns, with Ns denoting the total
number of subsets, that is, Nd =

∑Ns

k=1 Ndk . The corresponding forward model output
is denoted gk (mk−1) ∈ R

Ndk , and mk ∈ R
Nm . We introduce a subscript notation to

denote a sequence, e.g., dk:1 = {dk , . . . ,d1}. For simplicity of notation, we augment
the forward model response and model parameter vector in a new vector

ψk =

[
gk (mk−1)
mk

]
, (3.36)
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often denoted the joint-state vector. Note thatψk ∈ RNψk , where Nψk
= Ndk + Nm.

Following [64], we use the above notation to write the posterior PDF at step k as

f (ψk:0 |dk:1) ∝ f (dk:1 |ψk:0) f (ψk:0). (3.37)

If we assume that the evolution of ψk from one sequential step to the next is a first-
order Markov process; that data vectors at different sequential steps are independent
from each other; and that the data at a particular sequential step only depend on the
joint-state at this step; then (3.37) can be written as

f (ψk:0 |dk:1) ∝ f (dk |ψk ) f (ψk:0 |dk−1:1). (3.38)

If we note that f (ψk:0 |dk−1:1) is just the posterior PDF from step k − 1 evolved forward
to step k, then (3.38) is just a sequential version of (3.37). Observe that at step k, the
information from dk is used to update all joint-state vectors from steps 0, . . . , k. In the
literature, this is called a smoother; hence, (3.37) is denoted a general smoother and
(3.38) is denoted a sequential smoother.
From (3.38) it is possible to derive the general filter by integrating over the solutions

ψk−1:0,
f (ψk |dk:1) ∝ f (dk |ψk ) f (ψk |dk−1:1). (3.39)

Similarly to (3.38), we note that f (ψk |dk−1:1) is just the posterior PDF from step k − 1
evolved forward to step k. Contrary to (3.38), dk only updates ψk . Note that at step k,
(3.38) and (3.39) will provide the same estimate, but the general filter estimate at step
k is suboptimal at later sequential steps since observed data for steps k + 1, . . . ,Ns will
not be used to updateψk .

3.3.3 Kalman filter

The posterior PDF in the general filter problem (3.39) has a closed-form solution when
the forward model is linear, and the likelihood function and prior PDF are Gaussian.
This was discovered by Kalman in his now famous 1960 paper [89], and is thus named
Kalman filter (KF).
We follow the traditional notation for filter problems and consider the current state

of the system given by

ψk = Fkψk−1 + τk =
[
0 Pk
0 INm

] [
Pk−1mk−2
mk−1

]
+

[
εmk
0

]
, (3.40)

with P denoting the linear forward model operator, i.e., g(m) = Pm in (3.36). εmk ∈
R
Ndk is a zero-mean Gaussian model error, i.e., εmk ∼ N(0,Cmk

). Note that the model
parameters are not changed from step k − 1 to step k in (3.40); they are only used to
produce forward model output. Furthermore, the relationship between dk and ψk is
given by

dk = Hkψk + εdk , (3.41)

where Hk = [INdk
,0], and εdk ∈ RNdk is a zero-mean Gaussian measurement error, i.e.,

εdk ∼ N(0,Cdk ). It is assumed thatψ0, εmk and ε
d
k are mutually independent.
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Since all the involved PDFs in (3.39) are Gaussian and the forward model operator
is linear, the posterior PDF at step k − 1 will also be Gaussian

f (ψk−1 |dk−1:1) ∼ N(ψak−1,C
a
ψk−1 ), (3.42)

hence, completely described by its mean ψak−1 and covariance matrix C
a
ψk−1. The prior

PDF at the next step, k, is given by

f (ψk |dk−1:1) ∼ N(ψ fk ,C
f
ψk
). (3.43)

From (3.40) and the fact that εmk has zero mean,ψ
f
k and C

f
ψk
are given by [85]

ψ
f
k = Fkψ

a
k−1, (3.44)

C f
ψk
= FkCaψk−1F

T
k + Cτk , (3.45)

where
Cτk =

[
Cmk

0
0 0

]
. (3.46)

The equations (3.44) and (3.45) describes the first stage in KF, the forecast step; hence
the superscript ‘f ’.
The second stage of KF is the analysis step (hence the superscript ‘a’) where the

mean and covariance matrix of the posterior PDF at step k, ψak and C
a
ψk
, respectively,

is calculated. By recognizing that f (ψk |dk:1) can be derived from the joint distribution
f (ψk ,dk |dk−1:1), we can outline a simple derivation of the analysis step; see, e.g., [110]
for a full derivation. From multivariate statistics, a joint Gaussian distribution,[

x1
x2

]
∼ N

( [
μ1
μ2

]
,

[
C11 C12
C21 C22

])
, (3.47)

yields a conditional PDF f (x1 |x2) that is also Gaussian with mean and covariance
matrix, respectively, given by

μ1|2 = μ1 + C12C−122 (x2 − μ2), (3.48)
C1|2 = C11 − C12C−122C21. (3.49)

We first note that x1 = ψk , and μ1 = ψ
f
k and C11 = C

f
ψk
from (3.44) and (3.45),

respectively. Secondly, x2 = dk , μ2 = Hkψ
f
k and C22 = HkC

f
ψk
HTk + Cdk . Lastly, the

cross-covariance matrices are given as C12 = CT21 = C
f
ψk
HTk . Inserted into (3.48) and

(3.49) yields

ψak = ψ
f
k +Kk (dk −Hkψ

f
k ), (3.50)

Caψk
= (INψk −KkHk )C

f
ψk
, (3.51)

where the Nψk
× Ndk matrix Kk is the Kalman gain

Kk = C fψk
HTk (HkC

f
ψk
HTk + Cdk )

−1. (3.52)

In summary, KF is a two-stage recursive method: first, (3.44) – (3.45) are calculated
giving the forecast distribution; and, secondly, (3.50) – (3.52) are utilized to correct the
forecast distribution by conditioning to observed data. It can be shown that KF is the
optimal (minimum variance) filter in the case of Gaussian PDFs and linear forward
model operator [85].
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Discussion

In the above derivation of the KF equations, we considered the joint-state vector given
in (3.36). Recall from (3.3) that g(m) and d are augmented vectors containing the real
and imaginary part of g̃(m) and d̃ (i.e., the real composite form). Thus, if we define ψ̃ =
[g̃(m)T , mT ]T , then the equivalent expression to (3.36) is (with some rearrangement)
ψ = [Re{ψ̃}T , Im{ψ̃}T ]T . From Appendix A, we know that ψ̃ can be expressed in
a complex augmented form: ψ = [ψ̃T , ψ̃H]T , where H is the Hermitian (conjugate
transpose). Moreover, this is equivalent to ψ since we can use the real-to-complex
transform (confer (A.5)) to expressψ in terms ofψ, and vice versa.
Using the complex augmented form of the state vector,ψ, Dini et al. [53] derived an

alternative (and equally valid) form of the KF equations given above, and denoted the
method augmented complex Kalman filter (ACKF). More importantly, they showed
that KF methods that only considers ψ̃ instead of ψ is a special case of ACKF with
restrictions on the measurement and model error (confer Appendix A for a comparison
of the covariance matrix in a Gaussian distribution for complex augmented vectors and
‘standard’ complex vectors).

3.3.4 Ensemble Kalman filter

When g(·) is nonlinear, f (ψk |dk:1) will become non-Gaussian, and thus KF will not
provide a closed-form solution of (3.39). As we noted above, MCMC provides an
accurate characterization of f (ψk |dk:1) but at an extremely high computational cost.
To reduce the computational cost, an approximate sampling method must be used. An
approximate sampling method that has received a lot of attention in recent years is
the ensemble Kalman filter (EnKF), first introduced by Evensen [61]. The main idea
in EnKF is to use a Monte Carlo, or ensemble, representation of the PDFs in (3.39),
and update the ensemble with the KF analysis equations. In the following, we only
give an overview of the method and discuss some of its features. For a more thorough
discussion on EnKF see, e.g., [1, 63].
We consider the nonlinear state-space problem, where the current state of the system

is given by

ψk = Fk (ψk−1) + τk =
[
gk (mk−1)
mk−1

]
+

[
εmk
0

]
. (3.53)

Similarly to (3.41), the relationship between dk andψk is assumed to be linear,

dk = Hkψk + εdk . (3.54)

Note that if the relationship between dk and ψk is nonlinear, say hk (ψk ), then a linear
relationship can be obtained by defining a new augmented vector ψ̂k = [ψTk , hk (ψk )

T ]T

and a new associated matrix Ĥk that picks out gk (mk−1) from ψ̂k . Note that εmk ∼
N(0,Cmk

) and εdk ∼ N(0,Cdk ) as for KF.
To describe the EnKF algorithm, we need to introduce some notation. Let Mk =

[m1k , . . . ,m
Ne
k ] ∈ R

Nm×Ne and Gk (Mk−1) = [gk (m1k−1), . . . ,gk (m
Ne
k−1)] ∈ R

Ndk
×Ne de-

note the ensemble of model parameters and forward model outputs, respectively, where
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Ne denotes the number of ensemble members. With these definitions, an ensemble ma-
trix Ψk ∈ RNψk×Ne containingMk and Gk (Mk−1) is given on a similar form as (3.36)

Ψk =

[
Gk (Mk−1)
Mk

]
. (3.55)

The sample mean matrix of the ensemble members is given by

Ψk = Ψk1Ne , (3.56)

where 1Ne is a Ne × Ne matrix with all entries equal 1/Ne. With the definition of Ψk ,
the sample covariance matrix for Ψk is given by

Ceψk
=

1
Ne − 1

(Ψk − Ψk )(Ψk − Ψk )T . (3.57)

To ensure that Ceψk
is updated with correct statistics, an ensemble of observed data is

also needed [34]. To this end, let Dk = [d1k , . . . ,d
Ne
k ] ∈ R

Ndk
×Ne denote the ensemble

of observed data, where each entry is a realization of a Gaussian measurement distri-
bution,

d jk ∼ N(dtruek ,Cdk ), j = 1, . . . ,Ne, (3.58)

where dtruek contains the true observed data. The relationship between Ψk and Dk is
given in a similar manner as (3.54),

Dk = HkΨk + Edk , (3.59)

where Edk = [(ε
d
k )
1, . . . , (εdk )

Ne ], with (εdk )
j ∼ N(0,Cdk ) for j = 1, . . . ,Ne.

EnKF follows the same forecast-analysis workflow as KF. In the forecast step, we
are interested in calculating the forward propagation of the posterior PDF at the previ-
ous step k−1, f (ψk−1 |dk−1:1), to the next sequential step k; that is, we want to calculate
the prior PDF f (ψk |dk−1:1) in (3.39). In general, the evolution of a PDF, f (·), is gov-
erned by the Fokker-Planck equation (also called Kolmogorov’s forward equation) [85,
p. 130],

∂ f (·)
∂t
+

∑
i

∂Fi f (·)
∂ψi

=
1
2

∑
i,j

∂2 f (·)(Cτk )i j
∂ψi∂ψ j

. (3.60)

Essentially, this is a diffusion equation where the ‘movement’ of the PDF is described
by the left-hand side, and the ‘flattening’, or ‘diffusion’, of the PDF due to model errors
is described by the right-hand side. Inserting f (ψk |dk−1:1) into (3.60) and assuming that
the forward model operator is linear (i.e., Fk (·) is given as in (3.40)) leads to the KF
forecast equations, (3.44) and (3.45) (proof can be found in [85, examples 4.19–4.21]).
In the EnKF forecast step, the Fokker-Planck equation for f (ψk |dk−1:1) is solved

by a Monte Carlo method. That is, the updated ensemble from step k − 1, Ψak−1, is
propagated forward to step k using (3.53)

Ψ
f
k =

⎡⎢⎢⎢⎢⎣G
f
k

M f
k

⎤⎥⎥⎥⎥⎦ =
[
Gk (Ma

k−1)
Ma
k−1

]
+

[
Emk
0

]
, (3.61)
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where Emk = [(ε
m
k )
1, . . . , (εmk )

Ne ], with (εmk )
j ∼ N(0,Cmk

) for j = 1, . . . ,Ne. As we
noted for KF, the model parameters are not changed from step k − 1 to k; henceM f

k =
Ma
k−1. By using a Monte Carlo approximation we have in the limit of Ne → ∞ a

consistent description of f (ψk |dk−1:1). Consequently, the only approximation in the
forecast step is the use of a finite ensemble size.
In the analysis step, each member of the forecast ensemble, Ψ fk , is updated using

the KF analysis equation (3.50). Omitting the step index k, this is written in matrix
form as

Ψ
a = Ψ f +Ke(D −HΨ f ), (3.62)

where the Nψk
× Ndk matrix Ke is the approximate Kalman gain,

Ke = Ce
ψ fHT (HCeψ fHT + Cd)−1. (3.63)

It is possible to find separate update equations for G and M from (3.62) and (3.63),
using (3.57) and (3.61). Towards this end, inserting (3.61) in (3.57) yields

Ce
ψ f =

[
Ce
g
Ce
gm

Cemg Cem,

]
(3.64)

where

Ce
g
=

1
Ne − 1

(G f −G f
)(G f −G f

)T , Ce
gm =

1
Ne − 1

(G f −G f
)(M f −M f

)T ,

Cemg =
1

Ne − 1
(M f −M f

)(G f −G f
)T , Cem =

1
Ne − 1

(M f −M f
)(M f −M f

)T .

The terms involving Ce
ψ f in (3.63) are Ceψ fHT and HCeψ fHT . Computing these terms

using (3.64) and Hk = [INdk
,0], and, subsequently, inserting (3.63) into (3.62) yields[

Ga
Ma

]
=

[
G f

M f

]
+

[
Ce
g

Cemg

]
(Ce

g
+ Cd)−1(D −G f ). (3.65)

The bottom equation is identified as the update equation for the model parameters.
(Note that M f is actually Ma from the previous sequential step. However, to avoid
confusing notation the superscript ‘f ’ is used in (3.65).)
Some observations can be made on the EnKF algorithm. First, we note that in

the case of Gaussian PDFs and linear forward model, and in the limit of Ne → ∞,
the sample mean of Ψa and the mean vector ψa given in (3.50) for KF are identical.
When g(·) is nonlinear, the EnKF analysis equation will only provide an approximate
solution.
Second, we note that even though the analysis step is a linear update step, the up-

dated ensemble will not be a resampled Gaussian distribution. Since the forecast en-
semble is a Monte Carlo representation of f (ψk |dk−1:1), the updated ensemble will
inherent some of the non-Gaussian features from the forecast ensemble. Hence, the up-
dated ensemble can be thought of as something in between a linear Gaussian and full
Bayesian solution [63].
It can be shown that the updated ensemble for the model parameters is a linear

combination of the initial ensemble, M0 (see, e.g., [1]). Hence, it is important that
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the initial ensemble for the model parameters properly spans the prior uncertainty. In
practical applications of EnKF, much effort is put into the generation of the initial
ensemble to obtain the best possible results.
The strength of EnKF is the ability to approximate covariance matrices using an

ensemble. Hence, the computational cost associated with EnKF is mostly dependent
on Ne and the computational cost of producing a forward model output. To keep the
computational cost at a moderate level, Ne is often of O(10) ∼ O(100). Since Ne is
usually much lower than Nm and/or Ndk , some issues may arise. One issue is related to
the inversion of the matrix (Ce

g
+ Cd) in (3.65). If Ceg is badly scaled and low variance

is assumed in Cd , then (Ceg + Cd) may be singular. In CSEM, this may be a problem
if data from receivers far away from the source is not suppressed (e.g., by setting a
minimum data level).
Another issue that may arise is what in the literature is denoted as ‘ensemble col-

lapse’, that is, all ensemble members collapse into one vector. This arises when mul-
tiple forecast-analysis cycles are done, or if very few ensemble members are used. In
either case, the internal correlation between the ensemble members increases with each
analysis step. This is due to the fact that the forecast ensemble is updated using a
Kalman gain that is approximated from the same forecast ensemble.
A third issue that may arise when using a relatively small ensemble size is spurious

correlations. In CSEM, this can result in an update of model parameters in a part of the
subsurface that is far away from the source where it is not expected that the EM signals
would have sensitivity.
In the literature, ad hoc solutions to the abovementioned issues have been made,

see, e.g., [1, 63].

Discussion

Alternative ensemble-based methods exist, for example, the ensemble smoother
(ES) [156]. In short, ES produces a solution to the general Bayesian problem, (3.30),
by following the EnKF procedure outline in the previous section, but now all observed
data is conditioned simultaneously (i.e., no sequential steps). ES has shown to produce
inferior results compared to EnKF in some applications, see, e.g., [62]. In [68, 69], an
investigation on simultaneous and sequential methods was conducted, with the conclu-
sion that a sequential method should outperform a simultaneous method in most cases.
Some preliminary investigations for CSEM inversion studied in this work supported
this conclusion. Thus, utilizing EnKF, and not ES, for inversion of CSEM data seems
advantageous. Moreover, it was also suggested in [68, 69] that a particular grouping of
the data based on a measure of nonlinearity of g(·) could improve the results for a se-
quential method. In Paper B, no systematic grouping based on measure of nonlinearity
was done.
It is also interesting to compare EnKF to a classical method like, e.g., Newton-type

methods (see Section 3.2.1). A clear advantage of EnKF is the fact that no sensitiv-
ity calculation is needed to update the model parameters. EnKF updates the model
parameters by relating the changes in forward model output to changes in the model
parameters through correlations established in the sample covariance matrices, and not
through a sensitivity matrix.
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We mention that iterative ensemble-based methods exist where the sensitivity ma-
trix is approximated from the ensemble of model parameters and forward model output,
that is, S ≈ (G − G)(M −M)†, where ‘†’ denotes pseudoinverse [40]. The approxi-
mation of the sensitivity matrix reduces the computational cost compared to computing
the real sensitivity matrix. However, compared to EnKF, where no iterations are done,
the computational cost is at best equal (if only one iteration is done), but is usually
higher. Hence, using iterative ensemble-based methods is a question of how expensive
the computational costs are compared to the improvement of the final results.
Lastly, we note that it is possible to also use the analysis equation from the ACKF

to update the ensemble of model parameters, see Appendix B for a derivation.
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Chapter 4

Electromagnetic theory and numerical modelling

In 1865, James Clerk Maxwell published the paper ‘A dynamical theory of the electro-
magnetic field’ [108], which gathered all previous theory and experimental knowledge
on electricity and magnetism into a cohesive theory. He also discovered that EM fields
propagate as waves, and most famously, that light were EM waves. The theory was
proven experimentally over 20 years later by Heinrich Hetz. The system of equations
that governs EM fields – Maxwell’s equations – were gathered in their familiar form
by Oliver Heaviside (he reduced the original twenty equations down to the four we use
today), which greatly simplified the application of Maxwell’s EM theory.
In this chapter, we formulate Maxwell’s equations in several (equally valid) forms,

all of which have been extensively used to model EM fields. We will also briefly sum-
marize analytical and numerical approaches that have been widely applied in geophys-
ical EM modelling.

4.1 Maxwell’s equations in the time domain

Maxwell’s equations are given in the time domain as

∇ × e = −∂b
∂t
, (4.1)

∇ × b = μ0j + μ0ε0
∂e
∂t
, (4.2)

∇ · e = ρ

ε0
, (4.3)

∇ · b = 0, (4.4)

where e is the electric field intensity (V/m), b is the magnetic field intensity (T), j is the
electric current density (A/m2), ρ is the electric charge density (C/m3), ε0 is permittivity
of free space (F/m) with value ε0 = 8.85 × 10−12 F/m, and μ0 is magnetic permeability
of free space (H/m) with value μ0 = 4π × 10−7 H/m.
The first of the Maxwell’s equations, (4.1), is Faraday’s law. It states that a changing

magnetic field induces an electric field. The second equation, (4.2), is Ampere’s law
(sometimes called Maxwell-Ampere’s law), which states that a changing electric field
together with a conducting current generates a magnetic field. Gauss’ law, (4.3), states
that the electric flux through any closed surface is proportional to the charge enclosed



32 Electromagnetic theory and numerical modelling

by the surface. In other words, a positive electric charge emits an electric field that
diverges away from the charge. The last of Maxwell’s equations, (4.4), bears no name
(although sometimes called Gauss’ law for magnetism), and it simple states that there
are no magnetic charges analogous to electric charges.
Applying the divergence to (4.2) and using (4.3), we get

∂ρ

∂t
+ ∇ · j = 0, (4.5)

which is the mathematical expression of conservation of charge, also called the conti-
nuity equation. It states that the change of charge inside a volume is equal to the current
in or out through the surface.
For electromagnetic fields in matter, (4.1) – (4.4) can be expressed in a more con-

venient way. In matter, ρ and j can be separated into free and bound parts, where
the bound parts are due to polarization and magnetization of the material. Since po-
larization and magnetization are properties of the material, it is convenient to express
Maxwell’s equations in terms of the free parts of ρ and j (which we can control). To do
so, the following constitutive relations are introduced (assuming linear media)

d = εe, (4.6)

h =
1
μ
b, (4.7)

where d is the electric displacement and h is an auxiliary vector (many authors denote
this, and not b, as the ‘magnetic field’, in which case b is denoted ‘magnetic induction’
or ‘magnetic flux density’). Furthermore, ε = ε0(1 + χe) and μ = μ0(1 + χm) with
χe and χm being the electric and magnetic susceptibility, respectively. Using (4.6) and
(4.7), the unknowns in Maxwell’s equations can be any combination of e, b, d and h, if
wanted. However, the common practice is to let e and h be the unknown vector fields,
in which case (4.1) – (4.4) becomes

∇ × e = −μ∂h
∂t
, (4.8)

∇ × h = j f + ε
∂e
∂t
, (4.9)

∇ · εe = ρ f , (4.10)
∇ · μh = 0, (4.11)

where j f and ρ f are the free current and charge densities, respectively.
In CSEM, it is advantageous to split j f as

j f = jc + je = σe + je, (4.12)

where jc is the current density induced in conducting matter by an external source
current density, je. The equality jc = σe is due to Ohm’s law, and it introduces the
electric conductivity, σ (S/m).
Lastly in this section, we mention that the parameters ε , μ, and σ are tensors for

anisotropic media and scalars for isotropic media. Furthermore, they are functions of
position for heterogeneous media, whereas for homogeneous media they are not.
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4.2 Maxwell’s equations in the frequency domain

If e, h, and je are harmonic oscillating functions with a single frequency, they are
referred to as time-harmonic [86]. Let the vector fields vary with the harmonic time
convention exp(−iωt), where ω = 2π f denote the angular frequency with f being
the ordinary frequency (Hz), and i =

√
−1. Assuming no free charges (ρ f = 0), the

time-domain Maxwell’s equations (4.8) – (4.12) can now be expressed in the frequency
domain as

∇ × e = iωμh, (4.13)
∇ × h = je + σe − iωεe, (4.14)
∇ · εe = 0, (4.15)
∇ · μh = 0. (4.16)

The frequency-domain Maxwell’s equations are widely used in CSEM, and the advan-
tage with this approach is the ability to solve the equations only for a few frequencies
of interest.

4.3 Wave equation

Maxwell’s equations, as given in Section 4.1 or 4.2, are first-order coupled partial dif-
ferential equations. It is possible to decouple the equations with some simple math-
ematical manipulations. For the time-domain Maxwell’s equations, applying the curl
operator to (4.8) and substituting (4.9) with (4.12) eliminates h, resulting in

∇ × (∇ × e) + με ∂
2e
∂t2
+ μσ

∂e
∂t
= −μ∂je

∂t
. (4.17)

Equivalent manipulations can be done with the frequency-domainMaxwell’s equations,
leading to

∇ × (∇ × e) − (ω2με + iωμσ)e = iωμje. (4.18)
In CSEM, it is common to neglect the contribution from the displacement current

(the so-called quasi-static approximation [83]), due to the application of low-frequency
signals. Removing the displacement current term in (4.17) and (4.18) leads to

∇ × (∇ × e) + μσ∂e
∂t
= −μ∂je

∂t
, (4.19)

and
∇ × (∇ × e) − iωμσe = iωμje, (4.20)

respectively. Informally speaking, by neglecting displacement currents, the wave-
type equations (4.17) and (4.18) are changed to diffusion-type equations (4.19) and
(4.20) [104]. The price paid for decoupling Maxwell’s equations is that (4.19) and
(4.20) are now second-order partial differential equations.
When e has been found from either (4.19) or (4.20), h can be found using Faraday’s

law,
∂h
∂t
= −1

μ
∇ × e (4.21)
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for the time domain, or
h =

1
iωμ
∇ × e (4.22)

for the frequency domain.
For completeness, we mentioned that e can be eliminated by similar manipulations

as above. Applying the curl operator to (4.9) and using (4.8) with (4.12) (neglecting
the contribution from the displacement current), the resulting wave equations for h are
given as

∇ × (∇ × h) + μσ∂h
∂t
= ∇ × je, (4.23)

and with similar manipulations for the frequency domain Maxwell’s equations we have

∇ × (∇ × h) − iωμσh = ∇ × je. (4.24)

4.4 Scalar and vector potentials

An alternative approach to the wave equations for finding the unknown vector fields, e
and h, is to use scalar and vector potentials. Since h is divergenceless, it is possible to
express it in terms of a vector potential a,

h =
1
μ
∇ × a. (4.25)

Substituting (4.25) into (4.13) gives

∇ × e = iω∇ × a, (4.26)

or
∇ × (e − iωa) = 0. (4.27)

Since (e − iωa) has vanishing curl, it can be expressed in terms of a scalar potential V ,

e − iωa = ∇V. (4.28)

or
e = iωa + ∇V. (4.29)

Similar considerations in the time domain yields

e = −∂a
∂t
− ∇V. (4.30)

The decomposition of a vector field into vector and scalar potentials, as done in (4.29)
and (4.30), is denoted Helmoltz decomposition.
Inserting (4.25) and (4.29) into (4.14) (neglecting contributions from displacement

currents), and inserting (4.29) into (4.15), leads to the following system of equations

∇ × (∇ × a) − μσ (iωa + ∇V ) = μje, (4.31)
∇2V + iω∇ · a = 0. (4.32)
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Similarly for the time domain, we have the system of equations

∇ × (∇ × a) + μσ
(
∂a
∂t
+ ∇V

)
= μje, (4.33)

∇2V + ∂

∂t
(∇ · a) = 0. (4.34)

For 3D problems the system of equations (4.31) and (4.32), or (4.33) and (4.34), ef-
fectively reduces the search for the six unknowns in e and h to a search for the four
unknowns in V and a.
The vector fields e and h are not uniquely described by the potentials. This can

be seen, e.g., in (4.29) where e is described by both V and a, which means that we
have an extra degree of freedom. As long as e and h do not change, extra conditions
can thus be imposed on V and a; these are called gauge transformations. Many gauge
transformations have been introduced to solve (4.31) and (4.32), or (4.33) and (4.34),
more easily, e.g., Coulomb gauge and Lorentz gauge.

4.5 Analytical solutions

Analytical solutions to Maxwell’s equations can be found when the earth’s subsurface
can be modeled as a set of horizontally stratified layers. In this case, the material
properties only varies in one direction. For a typical CSEM setup with a HED source,
the components of e and h are given as integrals of the form [90]

∫ ∞

0
f (λ)Ji (λr) dλ. (4.35)

The integral (4.35) is called the Hankel transform, and is essentially a double Fourier
transform. The kernel function f (λ) depends on the subsurface material properties,
and Ji (λ) is an i’th order Bessel function of the first kind. Derivation of e and h on the
form (4.35) can be found, e.g., in [38, 161].
In most 1D EM modelling, evaluation of (4.35) is done numerically using a digital

filter approach (see, e.g., [7]), which provides fast and accurate solutions. The numer-
ical evaluation of (4.35) can also be done using quadrature methods (see, e.g., [37]),
although they are less popular in geophysical EM applications (see [90] for a compari-
son of digital filter and quadrature approaches).
1D EM modelling has been widely used in many areas of CSEM. To mention a

few applications, 1D solutions provided valuable insights on the physics of CSEM
(see, e.g., [153]), and helped with experimental design [67]. Furthermore, horizontally
stratified layers are often assumed as background models when calculating solutions
for an anomalous conductivity distribution in the integral equation formulation (see
Section 4.6.3 below) [160]. 1D solutions can also be used to generate source terms for
3D modelling applications [122]. Analytical solutions also exist when the horizontally
layered subsurface consists of an anisotropic conductivity distribution (see, e.g., [105,
165]).
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4.6 Numerical modelling

In many geological scenarios, the subsurface contains structures that varies in 2D or
3D. Hence, the subsurface cannot be well approximated as a set of horizontally strati-
fied layers, and, consequently, analytical solutions of Maxwell’s equations are not valid.
For general subsurface models, calculations of e and h must be done using numerical
methods. Roughly speaking, the numerical approaches for EM modelling can be di-
vided into three main groups: differential equation (DE) approaches, integral equation
(IE) approaches, and hybrid approaches. DE approaches are easy to implement even
for complex subsurface structures, and result in a sparse matrix system. IE approaches
contain more involved mathematics and result in a dense matrix system, but the vector
fields are only calculated in an anomalous region. Hybrid approaches try to combine
parts of DE and IE approaches. In the following sections, we briefly discuss the DE
methods, specifically finite difference (FD) and finite element (FE) methods, and the IE
and hybrid methods. For a comprehensive review on the these topics see, e.g., [13, 28].

4.6.1 Finite difference methods

In FD, the solution procedure is relatively simple [134]: discretize the subsurface model
into a grid of nodes; approximate the governing differential equations by finite differ-
ences; and solve the differential equations subject to boundary and/or initial condi-
tions. Most often, a structured rectangular grid is employed to discretize the subsurface
model, which leads to an easy implementation of the FD method. In particular, the
staggered grid approach of Yee [167] has been widely applied in EM modelling.
FD approximation of the first-order Maxwell’s equations can be found, e.g., in [42,

159]. For FD approximation of the wave equation formulation of Maxwell’s equations
see, e.g., [119, 123]. Some authors have solved the scalar-vector potential formulation
of Maxwell’s equations using FD approximation, see, e.g., [11, 81]. We also mention
that FD methods have been applied for anisotropic subsurface structures, see, e.g., [51,
164].

4.6.2 Finite element methods

The solution procedure for any FE method involves the following steps [134]: dis-
cretize the subsurface model into a finite number of elements; derive governing equa-
tions for an element; assemble all elements in the solution region; and solve the system
of equations obtained. Typically, and contrary to most FD methods, unstructured grids
are applied to discretize the subsurface model. This provides greater flexibility to con-
form grids to complex model features. The development of robust mesh generators
have reduced the complication associated with model discretization (a popular choice
for triangular mesh generation can be found in [144]).
The FE method has been applied to EM problems by many authors: for applica-

tion on the first-order Maxwell’s equations see, e.g., [92, 115]; for application on the
wave equation see, e.g., [35, 93]; and for application on the scalar-vector potential for-
mulation see, e.g., [16, 94]. The FE methods have also been applied on models with
anisotropic conductivity distributions, see, e.g., [95, 99].



4.6 Numerical modelling 37

A widely applied FE formulation is the 2.5D formulation (see, e.g., [80, 148]).
Here, the vector fields, e, h, and j, are functions in 3D, while the material properties,
σ, ε and μ, are functions only in 2D; thus the last dimension is defined as the strike
direction. The splitting is done using a 1D Fourier transform, and the 3D EM prob-
lem is effectively reduced to a sequence of 2D problems (one for each Fourier mode).
Several authors have applied the 2.5D formulation for the EM modelling problem; see,
e.g., [115, 129]. In Papers A, B, and C, a 2.5D FE method was used to generate forward
model outputs for the inversion of CSEM data.

4.6.3 Integral equations and hybrid methods

The IE approach for modelling EM fields was introduced in a paper by Dmitriev [54].
In this approach, the first-order Maxwell’s equations are reduced to Fredholm integral
equations (of first or second kind). Moreover, with the IE approach, the electric con-
ductivity is divided into a background part (in the following denoted by a superscript
‘b’) and anomalous part (in the following denoted by a superscript ‘a’), σ = σb + σa,
which in turn splits e and h into a background and anomalous part. Without providing
the derivation, the expressions for the background and anomalous part of e and h are
given as

fb(r′) =
∫
Q
Ĝf (r′|r)je(r) dv, (4.36)

and
fa(r′) =

∫
D
Ĝf (r′|r)σa(r)

[
fb(r) + fa(r)

]
dv, (4.37)

respectively. Here, f is either e or h, and Ĝf is the Green’s tensor calculated for the
background conductivity. Furthermore, Q is the region containing the source, D is the
anomalous region, and r and r′ are vectors denoting position. The calculation of fb is
done analytically if the background model is a horizontally stratified model, hence it is
only necessary to discretize D in order to solve the EM modelling problem.
In summary, the procedure for calculating f is: calculate fb in D (r′ ∈ D) and in the

receivers (r′ ∈ R, with R being the receiver positions) from (4.36); calculate fa in D
from (4.37) (r,r′ ∈ D); and compute fa in the receivers from (4.37) (r ∈ D and r′ ∈ R).
Many authors have implemented the IE approach, see, e.g., [14, 82].
The computationally intensive part of IE approaches is the calculation of fa in D.

To alleviate the computational expenses, hybrid methods have been introduced where
calculation of fa in D is done using a FE or FD approach. Hybrid methods where FE
and IE are combined can be found in, e.g., [27, 76]. Hybrid methods where FD and IE
methods are combined can be found in, e.g., [17, 168].

4.6.4 Boundary conditions

When solving the EM modelling problem on a computational grid, Ω, suitable bound-
ary conditions (BC) must be supplemented to account for the behaviour of the vector
fields, e and h, on the computational boundary, ∂Ω. Traditionally, the BCs in numeri-
cal methods are the Dirichlet, Neumann, and Cauchy BC (also called Dirichlet BC of
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first, second, and third order). Dirichlet BC fix the field values at the boundary; Neu-
mann BC fix the gradient of the fields normal to the boundary; and Cauchy BC is a
combination of Dirichlet and Neumann BC. A typically used Dirichlet BC is the per-
fect conducting surface: n × e = 0 and n · h = 0, where n is a normal vector on ∂Ω. To
apply the perfect conducting surface BC, ∂Ω has to be significantly far away from the
region of interest.
Among other BCs are the infinite element technique [35], absorbing BC [120], per-

fectly matched layers [20], and asymptotic BC [162].

4.6.5 Linear system solver

Whether a DE, IE, or hybrid approach is applied, the numerical modelling of (any
version of) Maxwell’s equations results in a linear system,

Ax = s. (4.38)

Here, A is a square coefficient matrix, which for FD and FE methods is a large, sparse
matrix; while for IE methodsA is a dense matrix, which is typically smaller in size than
for FD and FE methods. The unknown, x, is either e or h, and s is a vector containing
the external source, je.
The algorithms solving the linear system (4.38) can be divided into two approaches:

direct methods and iterative methods. Basically, all direct methods are based on Gauss
elimination, and, in particular, decomposition methods are widely used. Among the
most popular decomposition methods are the LU decomposition, LDL decomposition
(modified Cholesky decomposition), frontal and multifrontal methods. For a detailed
presentation of decomposition methods see, e.g., [70].
In some cases, decomposition methods can be slow, particular when A becomes

large. An alternative is to use iterative methods. In short, the procedure of itera-
tive methods is to iteratively improve an approximate solution to x until a termina-
tion criterion is met. Among the most used iterative methods are Krylov subspace
methods, including conjugate and biconjugate gradient, generalized minimal residual,
quasi-minimal residual and biconjugate gradient stabilized. For a review on Krylov
subspace methods see, e.g., [145]. Lastly, we mention that the rate of convergence in
iterative methods can be (greatly) improved using a preconditioner (see, e.g., [15]).



Chapter 5

Parameter representation using level sets

In Chapter 3, we listed ‘parameterization’ as one of three steps for studying a physical
system. It consisted of finding a suitable set of model parameters to describe the physi-
cal system under study. In general, the model parameters are described by a parameter
function of some kind. However, we are interested in solving the discrete inverse prob-
lem, thus we need to approximate the parameter function by a set of discrete quantities;
this is called reparameterization.
In this chapter, we discuss a widely popular parameterization method – the level-set

representation – and outline some possible reparameterizations of this method. Fur-
thermore, we will briefly discuss different strategies for solving the inverse problem of
identifying the unknown parameter function.

5.1 Parameterization and the level-set representation

Let D denote the region where we want to estimate a parameter function, q. Further-
more, let r be a vector denoting spatial position in D. A general representation of q is
often given as a linear series expansion,

q(r) =
Nc∑
j=1
cj (r)Φ j (r), (5.1)

whereΦ(r) = [Φ1(r), . . . ,ΦNc (r)] are the basis functions and c(r) = [c1(r), . . . ,cNc (r)]T
are the corresponding expansion functions. The representation (5.1) divides D into Nc
regions given by suppΦ j , with q(r) = cj (r) in each region. The linear series expansion
(5.1) describes a parameterization of q, and is often referred to as a model-based rep-
resentation of q. In the special case where the regions are given by the Ng grid cells in
a numerical method (either DE or IE approach; see Section 4.6) and c is independent of
r, we can write (5.1) as q = c = [c1, . . . ,cNg

]T . This describes a so-called pixel-based
representation.
In the following, we drop the dependence of c on r and assume for simplicity that

each region has a constant value q(r) = cj . In the seminal paper [128], Osher and
Sethian introduced the level-set (LS) representation as a part of a front propagation
method – the LS method. The LS representation is simple, yet powerful: the boundary
between two regions are represented implicitly. That is, the region boundary is derived
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Figure 5.1: Two examples of the LS representation with two regions

from a higher-dimensional function, which again is represented explicitly. The higher-
dimensional function is called the LS function, and we denote it as I (r).
Generally, the boundary is given by the zero-contour of I (r) (this choice is arbi-

trary; we could, with minor modifications, have given it as any contour of I (r)). When
I (r) is a function in 3D, the zero-contour, and hence the region boundary, is a line in
2D. Similarly, when I (r) is a function in 4D, the zero-contour is plane in 3D. In the fol-
lowing, we will only consider the case when I (r) is a 3D function, and we will denote
the 2D zero-contour of I (r) as I0(r).
For simplicity, consider the partition of D into two regions Λ1 and Λ2 with a com-

mon edge Γ = ∂Λ1 ∩ ∂Λ2. The LS function is then given as the continuous function
satisfying

I (r) > 0, for r ∈ Λ1,
I (r) < 0, for r ∈ Λ2,

I (r) = I0(r), for r ∈ Γ.
(5.2)

An illustration is given in Figure 5.1.
In the case of two regions (Nc = 2), the parameter function (5.1) is given as

q(r) = c1Φ1(r) + c2Φ2(r). (5.3)

Define Φ1(r) = H (I (r)) and Φ2(r) = 1 − H (I (r)), where H is the Heaviside function

H (I) =
⎧⎪⎨⎪⎩1, if I ≥ 0,
0, if I < 0.

(5.4)

Inserting this into (5.3) yields the LS representation for two regions

q(r) = c1H (I (r)) + c2(1 − H (I (r))). (5.5)

From (5.2) and (5.4) we see that (5.5) gives q = c1 for r ∈ Λ1 and q = c2 for r ∈ Λ2.
For Nc = 2, the LS representation is uniquely given by (5.5). However, in the case

when Nc > 2, the LS representation is not unique and several formulations have been
proposed. In the following sections, we will present two LS representations important
for this work. Alternative LS formulations can be found, e.g., in [56, 100, 103, 169].
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Figure 5.2: Illustrations using the Vese-Chan representation. (a) Four regions represented by
I01 and I

0
2 intersecting. (b) Three regions represented by I

0
1 and I

0
2 not intersecting. (c) Λ1 and

Λ4 made adjacent by partially coinciding I01 and I
0
2 .

Lastly in this section, we mention that the LS method has been applied in a wide
range of scientific fields; see, e.g., [31, 55] for reviews. For inverse problems, the LS
method was introduced by Santosa in [136], where he suggested two approaches: the
evolution approach, where the LS functions are adjusted with a velocity correspond-
ing to the descent direction; and the optimization approach, where the update of the
LS functions are determined directly by the optimization algorithm. In this work, we
follow the latter approach.

5.1.1 Vese-Chan representation

The most commonly applied LS representation for Nc > 2 is the Vese-Chan rep-
resentation [157]; see also [36, 158]. Let Ii (r) denote the i’th LS function where
i = 1, . . . ,NI , with NI being the total number of LS functions. Furthermore, let
bij denote element number j in the NI-dimensional binary representation of ( j − 1),
bin( j − 1) =

[
b1j , . . . ,b

NI

j

]
, for j = 1, . . . ,2NI . With these definitions, the Vese-Chan

representation is given by

q(r) =
Nc∑
j=1
cj

NI∏
i=1
Ej (Ii (r)), (5.6)

where

Ej (Ii) =
⎧⎪⎨⎪⎩
H (Ii), if bij = 0,
1 − H (Ii), if bij = 1.

(5.7)

From the definition of bin( j − 1) it is possible to represent Nc = 2NI regions for NI
LS functions. Note, however, that 2NI is the maximum number of regions for NI LS
functions. The actual number of regions occurring in D depends on the configuration
of {I0i (r)}NI

i=1. Let us illustrate this with an example. If we let NI = 2, then there is
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2NI = 22 = 4 possible combinations for bin( j − 1),
⎡⎢⎢⎢⎢⎢⎢⎢⎣
bin(0)
bin(1)
bin(2)
bin(3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11 b21
b12 b22
b13 b23
b14 b24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0
0 1
1 0
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.8)

and using (5.7) we get

E1(I1) = E2(I1) = H (I1),
E1(I2) = E3(I2) = H (I2),
E3(I1) = E4(I1) = 1 − H (I1),
E2(I2) = E4(I2) = 1 − H (I2).

Inserted into (5.6) yields

q(r) = c1E1(I1)E1(I2) + c2E2(I1)E2(I2) + c3E3(I1)E3(I2) + c4E4(I1)E4(I2),
= c1H (I1)H (I2) + c2H (I1)(1 − H (I2))
+ c3(1 − H (I1))H (I2) + c4(1 − H (I1)(1 − H (I2)), (5.9)

where the dependence of Ii on r has been suppressed for convenience. With q given as
in (5.9) the maximum number of regions possible is Nc = 22 = 4, and an illustration
of this fact for a configuration of I01 and I

0
2 is given in Figure 5.2a. The + and - signs

in the figure indicates which side of I0i the LS functions are positive and negative. In
Figure 5.2a, we see that in order to represent four regions, I01 and I

0
2 must intersect. If

we consider a configuration where they do not intersect, as in Figure 5.2b, only three
regions will occur in D. In the case of the non-intersecting I01 and I

0
2 in Figure 5.2b, Λ3

has vanished since supp (1 − H (I1))H (I2) = ∅. In general, the number of regions that
can occur in D for a particular number of LS functions is p ∈ [NI + 1,2NI ]. The lower
bound accounts for the case where none of the I0i ’s are intersecting, while the upper
bound accounts for the case where all of the I0i ’s are intersecting.
The above example illustrates a topological constraint of the Vese-Chan representa-

tion. When {I0i }NI

i=1 are intersecting, new regions, which have no relation to the neigh-
bouring regions, are introduced. Consider again Figure 5.2a where we have seen that
Λ3 occurs due to the intersection of I01 and I

0
2 . In order for Λ4 and Λ1 to become ad-

jacent, I01 and I
0
2 must partially coincide as illustrated in Figure 5.2c. As pointed out

in [56, 107], this is a drawback when using the Vese-Chan representation in an esti-
mation setting, since partial joining of the I0i ’s is unlikely to happen during a practical
estimation.

5.1.2 Hierarchical representation

To alleviate the unwanted topological constraint seen for the Vese-Chan representation
(see Section 5.1.1), the hierarchical representation was introduced in [107]. The hierar-
chical representation is best presented as a scale-by-scale description of q. To simplify
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Figure 5.3: Illustrations using the hierarchical representation. (a) Example of scale 1 repre-
sentation. (b) Example of scale 2 representation. I02 divide Λ
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the notation, let H+i = H (Ii (r)) and H
−
i = 1 − H (Ii (r)), and let the corresponding ex-

pansion functions be given as c+i and c
−
i . Furthermore, let the region where Ii (r) > 0

be denoted Λ+i and the region where Ii (r) < 0 be denoted Λ
−
i .

At scale 1, the domain D is divided into two regions, Λ+1 and Λ
−
1 , using I

0
1 , and q is

expressed as in (5.5), which, using the above notation, is written as

q = c+1 H
+
1 + c

−
1 H
−
1 . (5.10)

See Figure 5.3a for an arbitrary example of a scale 1 representation.
At scale 2, we have two possibilities: divide Λ+1 or divide Λ

−
1 . Hence, c

+
1 and c

−
1

may be expanded as

c+1 = c
+
2 H
+
2 + c

−
2 H
−
2 , and/or

c−1 = c
+
3 H
+
3 + c

−
3 H
−
3 .

(5.11)

As an illustration of the scale 2 representation, consider the case where Λ+1 from Fig-
ure 5.3a has been divided into two new regions Λ±2 by the introduction of I

0
2 , see Fig-

ure 5.3b. Since Λ+1 has been divided, c
+
1 must be expanded according to (5.11), leading

to q being given by
q = (c+2 H

+
2 + c

−
2 H
−
2 )H

+
1 + c

−
1 H
−
1 . (5.12)

From Figure 5.3b we note that I02 has a partially solid and partially dashed part. The
solid part indicates where I02 has an effect on the representation of q, while the dashed
part indicates where I02 has no effect on q due to annihilation by H

+
1 (confer (5.12)).

It is this annihilation effect that is responsible for avoiding the unwanted topological
constraint seen in the Vese-Chan representation, and thus there are no restrictions on
which regions that can be adjacent to each other.
The above procedure continues at subsequent scales with further expansion of the

c±j ’s as new regions are introduced. Since the introduction of a new I
0
i leads to two new

regions in an already existing region (compare Figures 5.3a and 5.3b), it is clear that
NI = Nc − 1 LS functions are needed to represent Nc regions.
By noticing that the regions at one scale are ‘parents’ to the regions at the next scale,

the above procedure can be ordered in a binary tree structure. Hence, at scale 1, c±1 are
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the ‘children’ of the domain D and are the ‘parents’ of c±2 and c
±
3 at scale 2, which

again will be parents for subsequent regions at scale 3, and so on. A general formula
for expanding c±j ’s at scale (L − 1) can then be written as

c(−)
i

j = c+i H
+
i + c

−
i H
−
i ,

j ∈ [2L−2,2L−1 − 1], i ∈ [2 j,2 j + 1],
(5.13)

where

(−)i =
⎧⎪⎨⎪⎩−, if i is odd,
+, if i is even,

(5.14)

is introduced as a shorthand for determining the superscript on the c±j ’s.

5.1.3 Related parameterization methods

If we let Φ j (r) = χ j (r), where χ j is the indicator function (e.g., the Heaviside func-
tion), and let cj be independent of r, then (5.1) is given as

q(r) =
Nc∑
j=1
cj χ j (r). (5.15)

This corresponds to the widely used parameterization method called standard (or clas-
sical) zonation [84]. With standard zonation, D is divided into fixed regions with con-
stant value q(r) = cj . Hence, during an estimation it is not possible to adjust the region
boundaries; only the cj’s can be adjusted. This is different from the LS representation
where it is possible to (implicitly) adjust the region boundaries by changing the value
of the LS functions. Due to the connection with standard zonation, LS representations
are sometimes denoted non-standard zonation methods.
There also exist parameterization methods where the region boundaries are explic-

itly adjusted, for example, the sharp boundary approach [52, 146]. Here, nodes with
interpolated lines in between make up the region boundaries, and each region has a con-
stant parameter value q(r) = cj . Only the vertical position of the nodes are adjustable.
In [2], the sharp boundary method was expanded using 2D polygons for defining re-
gions.
A drawback of using explicit representation of the region boundaries is the handling

of regions merging or splitting apart, which can happen during an estimation sequence.
To prevent region boundaries colliding, a minimum distance between nodes was set
in [2]. In [52], region boundaries that intersected were instead given equal depth or
removed completely. As seen above, due to the implicit representation of the region
boundaries in the LS representation, regions merging or splitting does not pose a prob-
lem. For the Vese-Chan representation a new region is introduced if regions merge,
while for the hierarchical representation the scale-by-scale description prevents new
regions appearing if regions merge.

5.1.4 Smoothed level-set representation

In both the Vese-Chan representation and hierarchical representation, q was represented
using the standard Heaviside function. This leads to a discontinuous transition between
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the regions, which again can lead to difficulties in an estimation setting. A numerical
study done in [102] showed that a smooth approximation of the Heaviside function was
needed to reduce the nonlinearity of g(·) in the estimation problem. In other words,
a smooth representation of q reduces the risk of finding a non-optimal solution to the
estimation problem.
Another reason for replacing the standard Heaviside function with a smooth approx-

imation is that in many classical estimation algorithms, the derivative of the Heaviside
function is needed. In the sense of distributions, the derivative of the Heaviside func-
tion is the Dirac delta, δ(x), which cannot be expressed outside an integral. Hence,
many authors have suggested approximations to the Dirac delta and Heaviside func-
tion, see, e.g., [157, 158]. In Papers A, B, and C, we used the approximations given in
[157],

H̃ (I) =
1
π
tan−1(I) +

1
2
, δ̃(I) =

1
π(1 + I2)

. (5.16)

Note that the δ̃(I) is the derivative of H̃ (I).

5.2 Reparameterization

To adjust the functions Φ(r) and c(r) in an estimation sequence we need to introduce
some control coefficients in (5.1):

q(r;w,a) =
Nc∑
j=1
cj (r;w)Φ j (r; a). (5.17)

Φ(r; a) and c(r;w) are thus determined by the coefficients a = [a1, . . . ,aNa ]T and w =
[w1, . . . ,wNw

]T , respectively. The a-coefficients are introduced to be able to change the
shape and position of the regions, while the w-coefficients are introduced to be able to
change cj (r;w) within the regions. When w and a are determined, q(r;w,a) can be
found for any r ∈ D; hence, q(r;w,a) is reparameterized by the coefficients w and a.
In the next two sections, we look at how the LS function, Ii (r), and the expansion

functions, c(r), in can be represented using a and w, respectively.

5.2.1 Representation of level-set functions

If we consider the case where D is divided into a grid with Ng cells, e.g., associated
with a numerical method for computing forward model outputs, then a straightforward
representation of the LS functions is given by

Ii (r; ai) =
Ng∑
k=1
aik χk (r), (5.18)

where χk is the indicator function for grid cell number k (see Figure 5.4a). Note that
ai is a subset of the a-coefficients that are associated with Ii; hence a = [aT1 , . . . ,a

T
NI
]T .

Although flexible, it leads to Na = NI × Ng, which can become a prohibitively large
number when NI > 1.
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(a) (b) (c)

Figure 5.4: Conceptual illustrations of (a) the straightforward, (b) the narrow-band, and (c) the
interpolation representation of an arbitrary I. The solid line indicates I0.

An alternative to the straightforward representation is the narrow-band representa-
tion, first introduced in [41] and analyzed extensively in [3]. Here, only the parameters,
aik , associated with grid cells in the vicinity of I

0
i are allowed to change (see Figure 5.4b,

where only the narrow-band has been illustrated). Some difficulties are associated with
the narrow-band representation. First, selecting the number of grid cells in the vicinity
of I0i is not trivial. Second, re-initialization of the bands of grid cells around the I

0
i ’s

must be done each time the I0i ’s reach the edge the bands, which can be a cumbersome
procedure.
Instead of representing the LS functions on the numerical model grid, interpolation

techniques can be used. The LS functions are then given on the form

Ii (r; ai) =
N i
a∑

k=1
aikθ

i
k (r). (5.19)

Here,
{
θik

}N i
a

k=1
denotes a set of basis functions, which are given on a parameter grid

(typically detached from the numerical grid), and ai = [ai1, . . . ,a
i
N i
a

]T is the associated
coefficient vector (see Figure 5.4c). Note that the total number of associated coefficients
is Na =

∑NI

i=1 N
i
a.

In Papers A, B, and C, we followed [25, 26] and used the simplest interpolation
technique – bilinear interpolation. In bilinear interpolation, the parameter grid con-
sists of non-overlapping rectangles, where, in finite-element fashion, the cell area are
denoted elements and cell corners are denoted nodes. The basis function θik is given
as a normalized piecewise bilinear function with support on the parameter elements
adjacent to node no. k. A normalized bilinear function with support on an arbitrary
element, [x1, x2] × [z1, z2], is given by

((x2 − x1) (z2 − z1))−1
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(x2 − x) (z2 − z) ,
(x − x1) (z2 − z) ,
(x − x1) (z − z1) ,
(x2 − x) (z − z1) .

(5.20)

With the bilinear representation a minimum of four nodes are needed to represent Ii,
and increasing the number of nodes allows for a more detailed representation. In [25] it
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was shown (for a reservoir estimation problem) that using too many nodes can become
problematic in an estimation procedure. With a high number of nodes, we can have
a scenario where Ii has oscillating perturbations, which can lead to difficulties in the
estimation problem.
For other representations of LS functions using interpolation techniques see [23]

where θik is given as a B-spline, and [166] where θ
i
k is given as a T-spline (a general-

ization of non-uniform rational B-splines).

5.2.2 Representation of expansion functions

In this section, we consider the representation of the expansion functions c(r). The ex-
pansion functions determines if q(r;w,a) in a particular region should be homogeneous
or heterogeneous. In the homogeneous case, c is a vector consisting of one constant
per region, hence, c is independent of r, and w can be neglected (this was assumed in
Paper A). In the heterogeneous case, the representation of c(r;w) can be given in the
same manner as (5.19) for the LS functions,

cj (r;w j ) =
N j
w∑

k=1
w
j
kϑ
j
k (r). (5.21)

Here,
{
ϑ
j
k

}N j
w

k=1
are interpolation basis functions with w j = [w j1, . . . ,w

j
N j
w

]T being the
associated coefficient vector. The associated coefficient vectors for all regions are gath-
ered in the vector w = [wT1 , . . . ,w

T
Nw
]T . The total number of associated coefficients is

Nw =
∑Nc
j=1 N

j
w.

In Paper C, c(r;w) was given as a bilinear interpolation function, i.e., ϑ jk was a
normalized piecewise bilinear function (see (5.20)). Hence, q(r;w,a) was a smoothly
varying function within each region.

5.3 Parameter estimation and multiscale approaches

Recall from Chapter 3 that the model parameters were gathered in a vector denoted
m. With the reparameterization of q by the coefficients w and a, the model parameter
vector is given as m = [wT , aT ]T . Thus, the inverse problem can in this case be stated
as: use a set of observed responses from a physical system to identify both the structure
of the regions and parameter value within each region. If the inverse problem is solved
by a classical approach, the optimization problem can be stated (confer (3.5))

argmin
w,a

(g(w,a) − d)TC−1d (g(w,a) − d). (5.22)

If some type of regularization term is added, the optimization problem is given by

argmin
w,a

(g(w,a) − d)TC−1d (g(w,a) − d) + Jreg (w,a), (5.23)

where Jreg (w,a) can, e.g., be a Tikhonov regularization term (see Section 3.2.3) or
shape prior regularization term (see Section 6.3). Note that g(w,a) is a shorthand nota-
tion for g(q(r;w,a)).
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If, on the other hand, the Bayesian approach is used, the parameter estimation prob-
lem is stated as (confer (3.30))

f (w,a|d) ∝ f (d|w,a) f (w,a). (5.24)

The parameter estimation problem can also be stated as sequential Bayesian problem
following the description given in Section 3.3.2.
In the last two solution procedures, (5.23) and (5.24), regularization was applied by

adding terms to penalize solutions in some sense. However, the choice of reparameteri-
zation can also regularize an inverse problem. The idea is to identify a low-dimensional
representation of the ‘true’ parameter function (denoted qtrue) using q given by (5.17).
This regularization method is called reduced parameterization (alternatively, regular-
ization by projection or regularization by discretization, see, e.g., [60]). By decreasing
the number of degrees of freedom in the sought parameter function, a stable estimate
may be obtained. The effect of reducing the number of degrees of freedom was studied
in, e.g., [74].
Choosing the dimensionality of the reduced representation requires some kind of a

priori knowledge, e.g., of the resolution power of the observed data, or about qtrue itself.
Without such a priori knowledge, different strategies can be employed to solve the
parameter estimation problem. A well-known strategy is the multiscale approach. With
q given by (5.17), two multiscale approaches can be employed, either in conjuction, or
separately.
The first strategy is related to the problem of a priori choosing the number of re-

gions. To solve this problem, we start with a few number of regions (typically one
region) and, subsequently, refine the number of regions during the estimation process.
An example of an application of this approach can be found in [24, 102]. Here, an
adaptive refinement strategy based on [75] was combined with a LS corrector.
The second strategy is related to the problem of determining the fine-scale variations

of the model, that is, determining the resolution of c(r;w) andΦ(r; a). The multiscale
strategy is to start with a coarse grid for w and a, and, subsequently, refine to get fine-
scale variations in both the parameter value within each region, given by c(r;w), and
the region structure, given byΦ(r; a). An example of an application of this strategy for
Φ(r; a) can be found in [26, 101]. Here, an adaptive refinement procedure for a using
a LS representation was applied, again based on [75].



Chapter 6

Kernel methods

Extracting the most of the information contained in a set of data is an important part of
science. In this section, we will refer to data in a wide sense, that is, it can be the out-
put of any observation, measurement, or recording device [143]. In many applications,
extraction of information, or features, from the data cannot be well described by linear
algorithms. However, in the middle of the 1990s it was discovered that nonlinear fea-
tures could be extracted using theory on kernel functions. Kernel functions had already
been widely applied in functional analysis, dating back to the early 1900s. The term
nonlinear features can (loosely speaking) be translated to features that can only be re-
lated through some nonlinear function. In statistics, data with nonlinear features follow
a non-Gaussian probability distribution. In any case, kernel methods allow for extrac-
tion of nonlinear features by transforming the data to a feature space and using linear
algorithms in this new space.
In this chapter, we will start by introducing kernels and present some of the funda-

mental theory. Most of the theory will follow the textbooks [140, 143]. Subsequently,
we will discuss some applications that take advantage of the theory on kernel functions.

6.1 Kernel functions and their properties

Throughout this chapter, we will consider the mapping

φ : x ∈ Rn �→ φ(x) ∈ Y, (6.1)

where Y is a NY-dimensional space, denoted feature space, and φ is a nonlinear func-
tion, denoted feature map. Using the mapping (6.1), we aim to convert nonlinear fea-
tures in the data to linear ones; hence, enabling the use of linear algorithms to extract
features in Y. This, however, poses two major difficulties: first, to convert nonlinear
features to linear features, Y must usually be a very high-dimensional space (in some
cases, it must be infinite dimensional). Second, an explicit expression for φ is generally
unknown.
Instead of relying on a direct measure in Y via φ, we can instead use some indirect

measure to extract the information we need from Y. A simple, yet powerful indirect
measure is the inner product (sometimes also denoted scalar product or dot product),

〈·, ·〉 : Y × Y �→ R. (6.2)
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The inner product is an operation yielding information on how similar two vectors
are in Y. Moreover, the inner product yields geometrical information on the length
of a vector, and the distance between two vectors (which we will exploit later when
discussing dissimilarity).
The inner product still requires the computation of φ. To circumvent the explicit

dependence on φ, we introduce a function k : Rn × Rn �→ R,

k (x,y) = 〈φ(x), φ(y)〉. (6.3)

The function k is denoted kernel function or just kernel. What remains now is to see
what kind of kernel functions admits a representation of the form (6.3); that is, given
a kernel, can we construct a Y with an associated φ such that (6.3) holds? In the
following sections, we will present two theories from functional analysis that answers
this question. First, we define some properties of k.

6.1.1 Positive definite kernels

Let a set of data be given as t1, . . . , tm ∈ X. Note that X is a general set where Rn is a
special case. The m × m matrix K given as

Kij = k (ti, t j ) (6.4)

is denoted kernel matrix. A kernel function is said to be positive (semi-) definite (PD)
iff K is PD, i.e., sTKs ≥ 0, ∀s ∈ R

m. Furthermore, k is a symmetric function iff K is
symmetric, i.e., K = KT . Note that, PD and symmetry for k must hold for all choices
of ti. When there is no conflicting notation, we will refer to symmetric PD kernels as
just kernels. Note that we restrict our study to real-valued kernels.
In the following section, we will need the Cauchy-Schwarz inequality for kernels,

which is given by
|k (x,y) |2 ≤ k (x,x)k (y,y). (6.5)

Proof can be found in [140].

6.1.2 Reproducing kernel Hilbert space

The goal of this section is to construct a reproducing kernel Hilbert space (RKHS) and
prove that (6.3) holds true in this space. To do so, we define a pre-Hilbert space, or strict
inner-product space, that, when completed, will define a RKHS. For a more rigorous
derivation of RKHS see, e.g., [22].
We start by defining the vector space

Y0 =
⎧⎪⎨⎪⎩
m∑
i=1

ξi k (ti, ·) : ξi ∈ R, m ∈ N, ti ∈ X
⎫⎪⎬⎪⎭ .

Note that t1, . . . , tm are arbitrary. Let f ,g ∈ Y0 be given as

f (·) =
m∑
i=1

ξi k (ti, ·), g(·) =
m′∑
j=1

η j k (u j , ·). (6.6)
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Now, define the operation 〈·, ·〉 on Y0 × Y0 as

〈 f ,g〉 =
m∑
i=1

m′∑
j=1

ξiη j k (ti,u j ) =
m′∑
j=1

η j f (u j ) =
m∑
i=1

ξig(ti). (6.7)

The two last equalities follow from (6.6) and the fact that k is symmetric. Hence, by
definition, 〈·, ·〉 is also symmetric, i.e., 〈 f ,g〉 = 〈g, f 〉. Moreover, the two last equalities
show that 〈 f ,g〉 does not depend on the particular expansion of f and g, and also that
〈·, ·〉 is bilinear (e.g., 〈 f + h,g〉 = 〈 f ,g〉+ 〈h,g〉, which follows from the second equality
and the fact that Y0 is a vector space.) Since k is PD, then

〈 f , f 〉 =
m∑
i,j=1

ξiξ j k (ti, t j ) ≥ 0, (6.8)

thus 〈·, ·〉 is also PD.
Hence, we only need to show that 〈 f , f 〉 = 0 implies f = 0 to show that 〈·, ·〉 is

a strict inner product. To this end, we make two observations. The first observation
follows directly from (6.6) and (6.7),

〈 f , k (x, ·)〉 = f (x). (6.9)

A kernel fulfilling (6.9) is called a reproducing kernel. In particular, we have

〈k (x, ·), k (y, ·)〉 = k (x,y). (6.10)

The second observation is that 〈·, ·〉 is actually itself a kernel. This follows from 〈·, ·〉
being bilinear and PD. To see this, note that for any functions f1, . . . , fn and coefficients
c1, . . . ,cn ∈ R we have

n∑
i,j=1

cicj〈 fi, f j〉 =
〈 n∑
i=1
ci fi,

n∑
i= j
cj f j

〉
≥ 0, (6.11)

where the equality follows from bilinearity of 〈·, ·〉, and the inequality follows from
(6.8). From the definition of a kernel in Section 6.1.1, we thus see that 〈·, ·〉 is a kernel.
Since 〈·, ·〉 is a kernel, we can use the Cauchy-Schwartz inequality (6.5) and the

reproducing property (6.9) to get

| f (x) |2 = |〈 f , k (x, ·)〉|2 ≤ |〈 f , f 〉|k (x,x), (6.12)

from which 〈 f , f 〉 = 0 directly implies f = 0. Since 〈·, ·〉 is a strict inner product on Y0,
then Y0 is a pre-Hilbert space. By standard approaches, Y0 can be turned into a Hilbert
space Y (with the norm ‖ f ‖ =

√
〈 f , f 〉). A Hilbert space with the reproducing property

is denoted RKHS. Note that the RKHS uniquely determines a kernel.
Letting φ : X �→ R

X, where RX is the space of functions mapping X to R, be given
as

φ(x) = k (x, ·), (6.13)
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we see that the relation (6.3) follows directly from (6.10). Hence, we have shown that a
kernel infers a RKHS. The converse also holds, that is, if φ is a feature map to a RKHS,
then k (x,y) given by (6.3) is PD. To this end, ∀si ∈ R and t1, . . . , tm ∈ X we have

m∑
i,j=1

sis j k (ti, t j ) =
m∑
i,j=1

sis j〈φ(ti), φ(t j )〉 =
〈 m∑
i=1
siφ(ti),

m∑
j=1
s jφ(t j )

〉

=

������
m∑
i=1
siφ(ti)

������
2

≥ 0, (6.14)

where the inequality follows from the nonnegativity of the norm.
In conclusion, we have shown that kernels are functions with the property that there

exist a feature map φ to a Y such that (6.3) holds.

6.1.3 The Mercer kernel map

In this section, we construct an alternative RKHS from the one presented in the previous
section, which is commonly the way (6.3) is justified in various applications. Assume
now that k is a continuous kernel, and that X is a compact metric space with a finite
measure ν. We can then define an integral operator Tk : L2(X) �→ L2(X):

(Tk f )(x) =
∫
X

k (x,y) f (y) dν(y), (6.15)

where L2(X) is the the space of square integrable functions. Since k is symmetric, Tk is
self-adjoint, i.e., 〈 f ,Tkg〉 = 〈Tk f ,g〉. Moreover, since k is PD, Tk is a positive operator,
i.e., 〈 f ,Tk f 〉 ≥ 0, and since k is continuous, Tk is compact. Since Tk is a self-adjoint
positive compact operator, it can, by the spectral theorem be decomposed into a sum of
eigenvalues ζ j > 0 and orthonormal eigenfunctions ej ∈ L2(X), where j = 1, . . . ,NY
with NY = N or NY = ∞.
We are now ready to state Mercer’ theorem (without proof) [112].

Theorem 1 Let k be a continuous kernel on X. Then ∀x,y ∈ X

k (x,y) =
NY∑
j=1

ζ j e j (x)ej (y), (6.16)

which converges absolutely and uniformly for NY = ∞.
The relation (6.3) follows from Mercer’s theorem by letting φ : X �→ lNY2 be given as

φ(x) =
{√

ζ j e j (x)
}NY
j=1

(6.17)

where lNY2 is a NY-dimensional space of square summable sequences.
It is now possible to construct a RKHS in the same manner as in Section 6.1.2.

Omitting the details, the RKHS is given by

Y =

⎧⎪⎪⎨⎪⎪⎩
NY∑
j=1

ξ j e j :
ξ j√
ζ j
∈ lNY2

⎫⎪⎪⎬⎪⎪⎭ , (6.18)
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with an inner product 〈 NY∑
j=1

ξ j e j ,
NY∑
j=1

η j e j
〉
=

NY∑
j=1

ξ jη j

ζ j
. (6.19)

(The inner product is chosen such that 〈ei,ej〉 = δi j/ζ j , where δi j is the Kroeneker
delta.)
The reproducing property is easily checked by letting f =

∑NY
j=1 ξ j e j and noticing

from Mercer’s theorem that k (x, ·) = ∑NY
j=1 ζ j e j (x)ej ,

〈 f , k (x, ·)〉 =
〈 NY∑
j=1

ξ j e j ,
NY∑
j=1

ζ j e j (x)ej
〉
=

NY∑
j=1

ξ jζ j e j (x)
ζ j

= f (x). (6.20)

In conclusion, kernels made by Mercer’s theorem are also reproducing kernels, and,
hence, are associated with a unique RKHS. Moreover, we showed above that the rela-
tion (6.3) is ensured by Mercer’s theorem.

6.1.4 Kernel trick

The results in the preceding sections justified the relation (6.3) provided that the ker-
nel was real-valued, symmetric, and PD. We can now proceed to the most important
consequence of (6.3), the kernel trick: Any algorithm expressed in terms of inner prod-
ucts can instead be expressed in terms of kernels. Consequently, we can transform our
data from R

n to Y and use standard linear algebra algorithms involving inner products
to extract nonlinear features.
The kernel trick does not tell us what kernel to use for each application. Other

than a kernel needing to be symmetric and PD, there is usually no restriction on which
kernel to use for an application. However, in some applications, there exist theoretical
proofs that narrows down the choice of valid kernels. In other applications, a kernel
can be constructed using simpler kernels as building blocks, see, e.g., [143, section
3.4]. Often, however, a kernel is chosen by trail-and-error, or based on user experience.
It is important to stress that the choice of kernel implicitly defines the feature space

Y, or more specific, it defines how the data is related in Y. Hence, to extract the most
information from the data, it is important to choose the kernel wisely.
The above kernel trick relies on the notion of similarity (through the inner product

in (6.3)). It turns out that there exist an equivalent kernel trick which is based on
dissimilarity, that is, there exists a relation between a kernel and a distance measure.
These types of kernels will be important in the applications described in the sections
below, thus we introduce their theory in the next section.

6.1.5 Conditionally positive definite kernels

The purpose of this section is to establish a similar relation to (6.3), but now between
a distance measure and a kernel. The kernels we will be discussing belongs to a large
class than PD kernels. They are conditionally positive definite (CPD) kernels. Since
we will encounter both PD and CPD kernels in this section, we denote a PD kernel with
kPD and CPD kernel with kCPD.
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Let 1 be a m-vector where each element is equal 1. A kernel function is said to be
CPD iff K is CPD, i.e., sTKs ≥ 0, ∀s ∈ Rm with sT1 = 0. Note that a PD kernel is also
CPD.
Two formulas will be important for relating CPD kernels and distances in Y. First,

a squared distance in Y for x, y ∈ X is given by
‖φ(x) − φ(y)‖2 = 〈φ(x), φ(x)〉 − 2〈φ(x), φ(y)〉 + 〈φ(y), φ(y)〉,

= kPD (x,x) − 2kPD (x,y) + kPD (y,y), (6.21)

where the last equality follows from (6.3). This tells us that there is a connection
between squared distances in Y and PD kernels. A connection between PD and CPD
kernels is given by the next formula [21]:

kPD (x,y) =
1
2
(kCPD (x,y) − kCPD (x,x0) − kCPD (x0,y) + kCPD (x0,x0)), (6.22)

where x0 ∈ X is arbitrary.
Combining (6.21) and (6.22) yields the Hilbert space representation of CPD kernels:

If k : X × X �→ R is a CPD kernel, then there exists a Hilbert space with mapping
φ : X �→ Y such that

kCPD (x,y) −
1
2
(kCPD (x,x) + kCPD (y,y)) = −‖φ(x) − φ(y)‖2. (6.23)

In particular, if kCPD (x,x) = kCPD (y,y) = 0 and kCPD (x,y) � 0 for x � y, then

kCPD (x,y) = −‖φ(x) − φ(y)‖2. (6.24)

Thus, we have showed that kCPD is the negative of a distance measure in Y (see,
e.g., [21] for a rigorous proof).
For the applications discussed later, a generalization of (6.22) will be useful. First,

we note that (6.22) is itself a generalization. Consider x, y, x0 ∈ X, and the inner
product in X. The effect of a translation of the data x and y by x0 for the inner product
can be expressed as

〈x − x0,y − x0〉 =
1
2
(−‖x − y‖2 + ‖x − x0‖2 + ‖x0 − x‖2). (6.25)

Noticing that −‖x − y‖2 is a CPD kernel and 〈x − x0,y − x0〉 is a PD kernel, we see
that (6.25) follows from (6.22). Moreover, in light of (6.24) (or (6.23)) we can infer
that (6.22) also must hold true in the general case. This means that kPD in (6.22)
essentially describes a translation with respect to a point φ(x0) in Y. If we want to
translate with respect to other types of orgins, e.g., the mean of some mapped data set,
φ(t1), . . . , φ(tm) ∈ Y, then the following generalization of (6.22) is advantageous. Let
t1, . . . , tm ∈ X; x, y ∈ X; and γi ∈ R where

∑m
i=1 γi = 1. Then we have the following

relation [140]

kPD (x,y) = kCPD (x,y) −
m∑
i=1

γi kCPD (x, ti) −
m∑
i=1

γi kCPD (ti,y)

+

m∑
i,j=1

γiγ j kCPD (ti, t j ). (6.26)
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6.2 Kernel principal component analysis

Principal component analysis (PCA) is a powerful and widely used method for reduc-
ing the dimensionality of a data set. The method is an orthogonal linear transform of
coordinates where the data set is projected onto a new coordinate system. The pro-
jected data form a new set of uncorrelated variables, denoted principal components
(PC), where each PC reflects the variability of the data. Hence, by ordering the PC in
decreasing order, the first few PCs will represent the most of the variability in the data.
Mathematically, the objective in PCA can be stated as follows: given a set of data

t1, . . . , tm ∈ R
n, find a n × n matrix V of unit vectors v1, . . . ,vn that determines the

change of variables from x to a new set of variables

y = VTx, (6.27)

such that y = [y1, . . . , yn]T are ordered by decreasing variance and are uncorrelated. It
turns out that v1, . . . ,vn are easily found from the sample covariance matrix,

Cet =
1
m

m∑
i=1
(ti − t)(ti − t)T , (6.28)

where t denotes the sample mean,

t =
1
m

m∑
i=1
ti . (6.29)

By performing an eigenvalue decomposition of Cet , we obtain the unit vectors
v1, . . . ,vn:

λkvk = Cet v
k . (6.30)

The eigenvalues, {λk }nk=1 ≥ 0, give the variance of the PCs, and are thus ordered in de-
creasing order. The PCs are uncorrelated since the eigenvectors {vk }nk=1 are orthogonal.
A full derivation of PCA can be found, e.g., in [87].
The PCs defined by (6.27) give a linear projection of the data set onto V. In some

applications, a linear projection will not reveal all the features in the data. For example,
if the data is given by multiple clusters inRn, the standard PCAmethod will not provide
PCs that accounts for such nonlinear features. In this case, a generalization of the PCA
method is needed. In [139], the authors provided a nonlinear version of PCA using the
kernel relation (6.3); they referred to the new method as kernel PCA. Below we provide
the derivation of kernel PCA, which follows directly from the standard PCA (from now
denoted linear PCA).
Consider the feature map φ : Rn �→ Y, and let φ(t1), . . . , φ(tm) ∈ Y denote the

mapped data set. The sample mean and covariance matrix is given by

φ =
1
m

m∑
i=1

φ(ti), (6.31)

and

Ceφ =
1
m

m∑
i=1
(φ(ti) − φ)(φ(ti) − φ)T , (6.32)
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respectively. To shorten the notation we let φ̃(x) = φ(x)−φ in the following. Recall that
NY is large (possibly infinite) and φ is generally unknown, hence, a direct eigenvalue
decomposition ofCeφ is not possible. To proceed, we inserting (6.32) into the eigenvalue
decomposition of Ceφ,

λkvk = Ceφv
k =

1
m

m∑
i=1
〈φ̃(ti),vk〉φ̃(ti). (6.33)

Rearranging gives

vk =
m∑
i=1

〈φ̃(ti),vk〉
mλk

φ̃(ti) =
m∑
i=1

αki φ̃(t
i), (6.34)

where
αki =

〈φ̃(ti),vk〉
mλk

. (6.35)

Consequently, vk lies in the span of {φ̃(t1), . . . , φ̃(tm)}. Hence, we can consider the
equivalent eigenvalue decomposition of Ceφ given by

〈φ̃(tl ), λkvk〉 = 〈φ̃(tl ),Ceφvk〉 (6.36)

Inserting (6.32) and (6.34) into (6.36) leads to

λk

m∑
i=1

αki 〈φ̃(tl ), φ̃(ti)〉 =
1
m

m∑
j=1

m∑
i=1

αki 〈φ̃(tl ), φ̃(t j )〉〈φ̃(t j ), φ̃(ti)〉. (6.37)

From (6.3) and (6.4) we can define K̃i j = k̃ (ti, t j ) = 〈φ̃(ti), φ̃(t j )〉. Moreover, we let
αk = [αk1 , . . . ,α

k
m]T and l = 1, . . . ,m. Inserted into (6.37) yields

mλkK̃αk = K̃2αk , (6.38)

or, since K̃ is a symmetric PD matrix

λ̃kα
k = K̃αk , (6.39)

where λ̃k = mλk . This is just the expression for an eigenvalue decomposition of K̃.
In summary, we have reduced the eigenvalue decomposition of Ceφ to the eigen-

value decomposition of K̃. Note that since vk is a unit vector, αk needs to be normal-
ized [139],

〈vk ,vk〉 = 1 ⇒ λ̃k〈αk ,αk〉 = 1. (6.40)

Finally, the PCs in kernel PCA are given in a similar manner as in linear PCA (see
(6.27)):

yk = 〈vk , φ̃(x)〉 =
m∑
i=1

αki 〈φ̃(x), φ̃(ti)〉 =
m∑
i=1

αki k̃ (x, t
i), (6.41)

for k = 1, . . . ,m. Since the PCs are given in terms of a kernel, which generally is a
nonlinear function, we denote yk as nonlinear PCs.
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A comment on K̃ is needed. K̃ was given in terms of a kernel function k̃, which
we will denote the centered kernel. Since we do not know φ̃(x), we cannot compute K̃
directly. However, from the definition of k̃ and φ̃, and using (6.3) it follows that [139]

K̃i j = 〈φ̃(ti), φ̃(t j )〉 = 〈φ(ti) −
1
m

m∑
k=1

φ(tk ), φ(t j ) − 1
m

m∑
l=1

φ(tl )〉,

= 〈φ(ti), φ(t j )〉 − 1
m

⎡⎢⎢⎢⎢⎣
m∑
k=1
〈φ(tk ), φ(t j )〉 +

m∑
l=1
〈φ(ti), φ(tl )〉

⎤⎥⎥⎥⎥⎦
+
1
m2

m∑
k,l=1
〈φ(tk ), φ(tl )〉,

= k (ti, t j ) − 1
m

⎡⎢⎢⎢⎢⎣
m∑
k=1
k (tk , t j ) +

m∑
l=1
k (ti, tl )

⎤⎥⎥⎥⎥⎦ + 1
m2

m∑
k,l=1

k (tk , tl ). (6.42)

Hence, we have expressed K̃ in terms of the familiar PD kernel k (x,y). Note that we
can also get the same expression for CPD kernels. Recall from the discussion made
at the end of Section 6.1.5, where we noted that data translated to a general origin
in Y could be expressed in kernel form by (6.26). Above, we have used φ̃ to center
the mapped data set to the sample mean φ in Y. Hence, it is readily seen that letting
γi = 1/m, x = ti, and y = t j in (6.26) leads to (6.42). Thus, CPD kernels are a valid
choice in kernel PCA. Using (6.42), K̃ can be calculated via K as

K̃ = K − 1
m
[K11T + 11TK] +

1
m2
(1TK1)11T , (6.43)

where 1 is a m-dimensional vector with all entries equal 1.
We note that in the derivation given above for kernel PCA we did not do anything

we could not have done for linear PCA. In fact, letting k (x,y) = 〈x,y〉 in kernel PCAwe
get the linear PCA algorithm. Consequently, all mathematical and statistical properties
of linear PCA directly applies to kernel PCA. In particular, the first nonlinear PCs
correspond to the most of the (nonlinear) variability in the data.
In the next section, we will discuss a method related to kernel PCA; in fact, the

method can be viewed as a probabilistic extension of kernel PCA.

6.3 Shape prior regularization

In Section 3.2.3, we discussed Tikhonov regularization, which was introduced to rem-
edy the instability issues in ill-posed inverse problems. Moreover, in Section 3.3, we
pointed out that the Gaussian prior model had strong connections with Tikhonov regu-
larization in the sense that deviations from a predetermined prior model was penalized
during a MAP solution procedure. In some applications, assuming a Gaussian prior
model in the input space Rn may not be appropriate, that is, a set of data may not be
well described by a Gaussian PDF. For example, data that are divided into separate
clusters will necessarily lead to a multimodal PDF (see, example given below).
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F

F
φ̃(x)

d1
d2

Figure 6.1: Illustration of the decomposition of Y to F (kernel PCA space) and F (the orthogo-
nal complement to kernel PCA space). The (squared) distances (6.48) and (6.49) are indicated,
together with the mapped data set (×).

The limitation of assuming a Gaussian prior PDF in Rn was noticed in [50] for the
image segmentation problem. They suggested an extension of the standard approach
for incorporating prior information by instead assuming a Gaussian PDF in Y. The
method was denoted shape prior. In the following, we will give a brief derivation of the
method, before we discuss some important properties.
Let t1, . . . , tm ∈ R

n be a set of data that comprises some prior knowledge about a
model under consideration in an inverse problem (in some applications, e.g., machine
learning, the ti’s are called training data). The sample mean, φ, and covariance ma-
trix, Ceφ, of the mapped data set φ(t

1), . . . , φ(tm) ∈ Y is given by (6.31) and (6.32),
respectively. Furthermore, recall that φ̃(x) = φ(x) − φ. The shape prior regularization
term is given as the corresponding energy of the Gaussian PDF in Y estimated from the
mapped data set. That is, it is defined as

Jprior (x) = φ̃(x)T (Ĉeφ)
−1φ̃(x). (6.44)

Note that Ĉeφ is a regularized covariance matrix [50]

Ĉeφ = C
e
φ + λ⊥(I − VVT ),

= VΛVT + λ⊥(I − VVT ) (6.45)

whereΛ is a diagonal matrix containing the eigenvalues, λk , andV is matrix containing
the eigenvectors, vk , of Ceφ, with k = 1, . . . ,r ≤ m (that is, there are at most r ≤ m
positive eigenvalues of Ceφ). In most cases r << NY, which results in C

e
φ not having

full rank and thus is not invertible. Hence, we add the term λ⊥(I−VVT ) to replace the
r + 1, . . . ,NY zero eigenvalues of Ceφ by λ⊥ ∈ (0, λr ). To see that this is valid, note that
if r ≥ NY then VVT = I and Ĉeφ = Ceφ. For r < NY, we have

VVT + V0VT0 = I, (6.46)

where V0VT0 denote the eigenvectors corresponding to the r + 1, . . . ,NY zero eigenval-
ues. Rearranging (6.46) and multiplying by λ⊥ yields the second term in (6.45).
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Inserting (6.45) into (6.44), and writing it as a series expansion, yields

Jprior (x) =
r∑
k=1

λ−1k 〈vk , φ̃(x)〉2 + λ−1⊥ ��〈φ̃(x), φ̃(x)〉 −
r∑
k=1
〈vk , φ̃(x)〉2�� . (6.47)

From this expression it is possible to make some insightful observations. First, we
immediately recognize 〈vk , φ̃(x)〉 as the nonlinear PC, yk , from kernel PCA (confer
(6.41)). Moreover, 〈φ̃(x), φ̃(x)〉 = ‖φ̃(x)‖2. Hence, we can split Jprior in two (squared)
distances [50, 117]:

d1 =
r∑
k=1

λ−1k 〈vk , φ̃(x)〉2 =
r∑
k=1

y
2
k
λk
, (6.48)

and

d2 = λ−1⊥ ��〈φ̃(x), φ̃(x)〉 −
r∑
k=1
〈vk , φ̃(x)〉2�� ,

= λ−1⊥ ��‖φ̃(x)‖2 −
r∑
k=1

y
2
k
�� . (6.49)

Let the subspace spanned by vk be denoted F ⊆ Y (kernel PCA space), and its or-
thogonal compliment be denoted F. Then d1 is a (squared) distance in F while d2 is a
(squared) distance in F; see Figure 6.1. Hence, by regularizing Ceφ we have the possi-
bility to search for solutions that are outside the span of the mapped data set, but since
λ⊥ < λr they are less probable than all the solutions within the span of the mapped
data set.
The expression (6.47) is not calculable in its current form. To finalize the derivation,

we insert for the PCs and eigenvalues from Section 6.2, and let k̃ (x,y) = 〈φ̃(x), φ̃(y)〉.
Omitting the details, the final expression becomes [50]

Jprior (x) = λ−1⊥ k̃ (x,x) +
r∑
k=1

��
m∑
i=1

αki k̃ (t
i,x)��

2

(λ−1k − λ−1⊥ ). (6.50)

From (6.42) we know that the centered kernel, k̃, can be evaluated from an ‘uncen-
tered’ kernel, k, which can be CPD or PD. Hence, (6.50) is eaily calculated when an
appropriate k has been chosen.
It is important to note that although Jprior is quadratic in Y, it is not necessarily con-

vex in Rn. This is illustrated in the 1D example given in Figure 6.2a and 2D example
given in Figure 6.2b. For the 1D example in Figure 6.2a we have also drawn the two
terms in (6.50) separately: the dashed line denotes the first term (i.e., the term equiv-
alent to the Parzen estimator, confer Appendix C), while the dotted line denotes the
second term in (6.50). It is seen that the first term favors area with more data points (as
a kernel density estimator tends to do), while the second term tends to compensate this
such that Jprior (solid line) is impacted by all input data. This can also be seen for the
2D example in Figure 6.2b where only Jprior is plotted. The three clusters of data are
encapsulated separately by Jprior , but also individual points outside the main clusters
have an impact.
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(a) (b) (c) (d)

Figure 6.2: Examples of Jprior for a set of data (red dots). (a) 1D example with Jprior (solid),
first (dashed) and second (dotted) term in (6.50). (b) 2D example of Jprior . The correspond
examples calculated with a regularization term Gaussian in Rn, Jgauss, in (c) 1D and (d) 2D.

The examples have also been calculated using a regularization term which is Gaus-
sian in Rn (confer (3.32)); we denote this by Jgauss. Figure 6.2c shows Jgauss for the
1D example, and Figure 6.2d shows Jgauss for the 2D example. The main advantage of
the shape prior regularization term is clearly seen by comparing Figure 6.2b and Fig-
ure 6.2d. While the information from the three clusters are smoothed out by Jgauss,
they are separately encapsulated by Jprior . If, for example, the three clusters were data
from three separate objects, say three types of subsurface structures in the CSEM case,
then the information from the three objects would be smoothed out with Jgauss, but not
with Jprior .
In Paper A, we chose the CPD kernel called power kernel, as it was shown to have

a computational advantage in the CSEM inversion compared to the widely applied PD
kernel, the Gaussian kernel. In [49, Appendix C] and [50], it was argued that the choice
of Gaussian kernel lead to an interpretation of Jprior as a generalization of the Parzen
kernel density estimator [130]. In Appendix C, we show that same argument can be
made for the power kernel.

6.4 Kernel ensemble Kalman filter

In this section, we discuss a nonlinear generalization of EnKF (confer Section 3.3.4)
based on the kernel relation (6.3) – the kernel-based EnKF (KEnKF). The main idea
in KEnKF is to do the analysis step (confer (3.62) or (3.65)) in a high-dimensional
feature space, Y, instead of the original space, RNψk [137]. By doing the analysis step
in Y, one hopes to capture more of the statistical properties of the posterior PDF than
with EnKF. In the following, we only briefly outline the KEnKF algorithm, expanding
on the notation and quantities introduced in Section 3.3.4. We refer to [137] for a full
derivation of KEnKF.
For simplicity we assume that only the model parameters, m, are mapped to the

feature space; hence, the measurement and model noise are assumed Gaussian (an
extension to non-Gaussian noise terms is given in [137]). We thus define the feature
map as

φ : m ∈ RNm �→ φ(m) ∈ Y. (6.51)
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The forecast ensemble matrix is now given by (omitting the sequential step index)

Y f =
[
G f

Φ
f
m

]
, (6.52)

where Φm = [φ(m1), . . . , φ(mNe )]. Note that Y f is a Ny × Ne matrix, with Ny =

Nd + NY. The sample covariance matrix of the forecast ensemble, Ce
y f
, is given in a

similar manner as (6.32),
Ce

y f
=
1
Ne
Ỹ f (Ỹ f )T , (6.53)

where Ỹ f = Y f − Y f with Y f = Y f 1Ne .
With the above definitions, the approximate Kalman gain (confer (3.63)) is given by

Ke
y
= Ce

y f
HT (HCe

y f
HT + Cd)−1, (6.54)

whereH = [INd
, 0]. Note thatKe

y
is of size Ny × Nd . Due the high dimensionality of φ,

Ke
y
will be, at most, of rank Ne. Moreover, the columns inKey is a linear combination of

the columns in Ỹ f (this follows from (6.34) for Ce
y f
, which translates directly to Ke

y
).

Hence (6.54) can be written as
Ke

y
= Ỹ fA. (6.55)

With some manipulations we get

A =
1
Ne
(G −G)T (Ce

g
+ Cd)−1. (6.56)

The analysis step in KEnKF is given by

Ya = Y f +Ke
y
(D −HY f ),

= Y f + (Y f − Y f 1Ne )A(D −G f ),
= Y fB, (6.57)

where B = (INe−1Ne )A(D−G f ) is a Ne×Ne matrix. From (6.57) the updated ensemble
of mapped model parameters is given by

Φ
a
m = Φ

f
mB (6.58)

We are, however, not interested in the ensemble of updated model parameters in Y,
but rather the ensemble of model parameters in RNm , Ma = [(ma)1, . . . , (ma)Ne ]. To
getMa, the inverse feature map, φ−1, is required. This is denoted the exact pre-image
problem [140]. Due to the large dimensionality of Y the exact pre-image is generally
not possible to calculate. Instead we calculate an approximate pre-image, which is
given by the following optimization problem

(ma) j = argmin
m

‖φ(m) − φ((ma) j )‖2,

= argmin
m
〈φ(m), φ(m)〉 − 2〈φ((ma) j ), φ(m)〉 + 〈φ((ma) j ), φ((ma) j )〉,

= argmin
m

k (m,m) −
Ne∑
i=1
Bi j k ((m f ) j ,m) + const., (6.59)
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where we have used (6.3) and (6.58), with j = 1, . . . ,Ne. The optimization problem
(6.59) can be solved using, e.g., fixed-point iterations.
In [137], the authors argued for the use of a polynomial kernel given as

k (x,y) =
q∑
l=1
〈x,y〉l , (6.60)

which made it possible to honour up to 2q-order statistical moments (see also [138]);
in particular, q = 1 reduces KEnKF to the standard EnKF algorithm.

6.4.1 Discussion

In [137], it was noted that using high-order polynomial in (6.60) could lead to ensem-
ble collapse (i.e., all ensemble member collapsing to one vector), which is clearly an
unwanted behaviour. The optimization problem (6.59) can also be difficult to solve in
some cases, leading to larger computational expenses in KEnKF than in EnKF. In this
work, preliminary tests using EnKF and KEnKF on CSEM inversion lead to little or no
difference between the methods. Hence, it was concluded that for our CSEM inversion
problem there was no clear advantage of using KEnKF above EnKF.
The goal in KEnKF was to extract more statistical information about the posterior

PDF. As we note in Section 3.3.3 it is only in the case of Gaussian PDFs and linear
forward model that a complete description of the posterior PDF is possible. In recent
years, however, a vast theory has been developed that aims to describe a general proba-
bility distribution by mapping it to a RKHS; such mapping is called kernel embedding
(see, e.g., [147] and references therein). In kernel embedding, the whole probability
distribution is described by one point in Y. The mapping for a univariate distribution is
defined as

μX = EX [φ(X)] =
∫
X

φ(x) dP(x), (6.61)

and for a general joint distribution, it is defined as

CXY = EXY [φ(X) ⊗ φ(Y)] =
∫
X×X

φ(x) ⊗ φ(y) dP(x,y). (6.62)

Here, X and Y are random variables in X with instantiations x and y, and probabil-
ity distribution P(x) and P(y), respectively. Based on these mappings, basic statistical
operations, such as Bayes’ rule, can easily be generalized. To actually calculate the
embeddings, sample versions of (6.61) and (6.62) must be defined. Using (6.3), the
embeddings are calculable by choosing an appropriate kernel. It turns out that the ker-
nels must be characteristic. Informally speaking, characteristic kernels are associated
with a feature space large enough such that all the statistical moments of P(x) are
mapped to Y; an example is the Gaussian kernel. Although some applications have
used embedded versions of Bayes’ rule, preliminary study on this topic did not reveal
how an implementation for the CSEM inversion problem should look like.



Chapter 7

Summary of the papers and future work

In this chapter, the main results of Paper A – C associated with Part I of this thesis are
given. The summaries will be based on the scientific background presented in Part I.
Comments on potential future work will also be given.

7.1 Summary of Paper A

Title: Identification of subsurface structures using electromagnetic data and shape
priors

Authors: S. Tveit, S. A. Bakr, M. Lien, and T. Mannseth

In Paper A, we presented a methodology for inversion of controlled source elec-
tromagnetic (CSEM) data using a reduced representation (see Chapter 5) and shape
prior regularization (see Section 6.3). The inversion methodology was applied to iden-
tify large-scale subsurface structures where the contrast in electric conductivity can be
small.
To represent the structure boundaries, the Vese-Chan level-set representation dis-

cussed in Section 5.1.1 was applied. The bilinear interpolation technique was used
to represent the level-set functions (see Section 5.2.1), and smoothing of the level-set
functions was done according to the description in Section 5.1.4. This allowed for a
flexible representation of geological formations with a minimum number of parame-
ters.
To obtain accurate placement of the structure boundaries, structural prior informa-

tion were incorporated. Such type of prior information most often comes from seismic
interpretation (see Section 2.2). The shape prior regularization technique was used to
incorporate the structural information. Using the shape prior technique we were able
to incorporate different types of subsurface structures. That is, two or more equally
probable types of geological models could be incorporated, since each type of geo-
logical model will be captured by the shape prior technique (see Figure 6.2b for a toy
example).
The shape prior regularization term was incorporated using a different kernel func-

tion than the one suggested in the original paper [50]. For the application of CSEM
inversion, a CPD kernel – the power kernel (see Appendix C) – was shown to be more
useful. As shown in Appendix C, choosing the power kernel did not result in a loss of
theoretical properties for the shape prior regularization term.
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The reduced representation enable the use of Newton-type methods where Hessian
information could be employed. Specifically, the Levenberg-Marquardt method (see
Section 3.2.1) was used. The shape prior regularization term was incorporated as a
Tikhonov regularization term (see Sections 3.2.3 and 6.3) where the regularization pa-
rameter was chosen such that both the data misfit and regularization term was equal
initially, and subsequently reduced to put more emphasis on the observed data in later
iterations.
The methodology was tested on several different test cases, where the impact of

the shape prior regularization term was the main objective. Only the shape and po-
sition of the structures were estimated; hence, c(r) was assumed known and constant
within each structure. In some test cases, inversion without applying shape prior reg-
ularization could be approximately identified, but the use of shape prior regularization
clearly improved the results, and in some cases was crucial to get even an approximate
identification.

7.2 Summary of Papers B and C

Paper B:
Title: Ensemble-based, Bayesian inversion of CSEM data using structural prior

information
Authors: S. Tveit, S. A. Bakr, M. Lien, and T. Mannseth

Paper C:
Title: Ensemble-based Bayesian inversion of CSEM data for subsurface structure

identification
Authors: S. Tveit, S. A. Bakr, M. Lien, and T. Mannseth

In Papers B and C, a Bayesian inversion methodology for the identification of large-
scale subsurface structures from CSEM data was presented. The inversion methodol-
ogy applied a reduced representation and solved the Bayesian inverse problem using
the ensemble Kalman filter (EnKF), see Section 3.3.4. In Paper B, we only consid-
ered the identification of shape and position of the structures, while in Paper C we also
considered the identification of the conductivity value within each structure.
The reduced representation utilized in the papers was the hierarchical level-set rep-

resentation presented in Section 5.1.2. With the hierarchical representation, it was pos-
sible to construct complex geological formations like, e.g., faults and pinchouts. Bilin-
ear interpolation was used for the representation of level-set functions in both papers.
In Paper B, the structures were assumed to have constant conductivity value. In

Paper C, however, we considered heterogeneous conductivity distribution, hence, the
expansion function, c(r), was represented using the interpolation technique discussed
in Section 5.2.2. Specifically, we used bilinear interpolation to get a smooth conductiv-
ity distribution within each structure.
The update of model parameters (m = a for Paper B and m = [wT , aT ]T for Paper

C) was done using the EnKF algorithm (confer (3.65)). To make the initial ensemble
for EnKF, samples must be generated from an initial prior PDF. It was assumed that the
prior PDF consisted of structural prior information from, e.g., a seismic interpretation



7.3 Future work 65

(as for Paper A). Moreover, for the conductivity distribution within each structure it
was assumed that prior information was available from, e.g., well logs.
The initial prior PDF was assumed to be Gaussian, hence, a mean prior model to-

gether with a covariance matrix had to be generated. While a mean prior model is easily
generated, much effort can be put into the generation of the covariance matrix. It was
assumed that thew- and a-coefficients were not correlated, and moreover, thew j’s were
not correlated with each other, and the same for the ai’s. Consequently, separate co-
variance matrices were made for the conductivity distribution within each structure and
for each structure boundary. By assuming that the correlation between two coefficients
was only dependent on their normalized spatial distance (not their physical distance),
an analytical covariance model (the spherical covariance model) could be utilized. The
flexibility of the chosen covariance model made it possible to make a wide variety of
prior models in the numerical experiments.
The numerical test cases made in Paper B showed that the methodology was able

to recover fairly complex subsurface structures (included was, e.g., a fault). It was
also able to identify the correct shape and position of included hydrocarbon reservoirs.
Moreover, the methodology was able to completely remove a non-existing reservoir
present in the prior models, and identify the remaining structures. By plotting the
structure boundaries of each ensemble member, it was seen that the uncertainty in the
initial ensemble was significantly reduced in the final ensemble.
In the numerical experiments in Paper C, the inversion methodology was applied on

subsurface models where the structures had a heterogeneous conductivity distribution.
In each test case, the prior model was far away from the reference model (the conduc-
tivity distribution was homogeneous in each structure, and the shape and position of
the structures was far away from the reference solution). The numerical results showed
that the methodology was able to recover the reference model reasonably well in each
test case. A similar test case as we did in Paper B, where a non-existing reservoir was
present in the prior models, was conducted in Paper C also. Now, the reservoir was al-
most completely removed, and the remaining subsurface structures were fairly close to
the reference model. Similarly to what was seen in Paper B, by plotting the structure
boundaries of the individual ensemble members, it was seen that the uncertainty was
reduced from initial ensemble to final ensemble. However, since the conductivity dis-
tribution within each structure was also estimated, a more quantitative assessment of
the quality of the final ensemble compared to the initial ensemble was done by com-
puting the data misfit for both. A significant reduction was also seen for the data misfit,
indicating that the uncertainty present in the initial ensemble was reduced in the final
ensemble.
Comparing the results from Paper B and C, it was concluded that introducing the

w-coefficients in the inversion process, which allowed for the estimation of a smoothly
varying conductivity distribution, made the identification of region boundaries (a-
coefficients) more difficult.

7.3 Future work

In a recent paper [18], a novel numerical method for simulating 3D CSEM measure-
ments has been developed. Here, one part of the computational domain is modelled
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using the 2.5D approach discussed in Section 4.6.2, while the remaining parts are dis-
cretized utilizing a 3D FE method. Hence, targets in the subsurface where it is impor-
tant to know the spatial extent of the body in all three directions, like, e.g., hydrocarbon
reservoirs, can be modelled with smaller computational effort than a full 3D FEmethod.
In this context, it would be interesting to extend the model-based representation used in
this thesis to be able to represent the subsurface structures outside a potential reservoir
in 2D, and the target reservoir in 3D. The obvious difficulty is how to couple the 2D
and 3D part with the implicit representation presented in Chapter 5, without creating
unnecessary overhead computations.
In the numerical experiments shown in Papers A, B, and C, the number of structures

in the initial models were the same as the reference models. In reality, the number of
structures may not be known a priori. As discussed in Section 5.3, it is possible to
apply a multiscale approach where new structures can be introduced as a part of the
estimation sequence. Moreover, a multiscale refinement procedure for the w- and a-
coefficients can be beneficial in the estimation. An alternative to refining w and a is to
increase the polynomial order of the interpolation function in the representation of the
level-set functions and expansion functions (confer (5.19) and (5.21), respectively).
An implementation of the hierarchical representation (see Section 5.1.2) in a mul-

tiscale approach would be advantageous. The scale-by-scale description of the hier-
archical representation naturally allows for the introduction of new region boundaries
that are confined within the area of interest.
As noted in Section 5.3, multiscale strategies have been implemented using an adap-

tive approach [24, 25, 26, 101, 102]. Here, a linearized data misfit function (confer
(3.4)) based on one Gauss-Newton step (confer (3.12)) was computed to decide which
part of the model domain that needed refinement. An extension of this decision pro-
cedure to include a prior term, in particular the shape prior regularization term (see
Section 6.3), would be interesting.
The classical inversion methodology presented in Paper A, used shape prior regu-

larization together with a Netwon-type method (see Section 3.2.1) where the sensitivity
matrix was computed using the direct method (see Section 3.2.2). When complex sub-
surface models are considered, more parameters are needed in the representation, and
thus the sensitivity matrix becomes more expensive to calculate. An alternative way of
calculating sensitivity was outlined in the Discussion after Section 3.3.4, where an en-
semble of model parameters and forward model outputs can be used to calculate the
sensitivity matrix in an iterative ensemble-based method. Incorporating the shape prior
technique in an iterative ensemble-based framework could be both computationally ef-
ficient and robust. In general, it would be interesting to further investigate the use of
kernel methods (see Section 6) in a Bayesian inversion of CSEM, for example, based
on the kernel embedding theory briefly mentioned in Section 6.4.1.
The results given in Papers B and C, showed that there is potential in using EnKF

as method for inversion of CSEM. As mentioned in the Discussion after Section 3.3.4,
how we define the subset of observed data in EnKF can have an affect on the inversion
result. A thorough investigation on the impact of different groupings of the observed
data could reveal an even greater potential for using EnKF in CSEM inversion.
In addition to the abovementioned recommendations for future work, the following

suggestions are also of interest:
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• Applying the inversion methodology on numerical experiments were anisotropic
electric conductivity distribution is considered.

• Use the developed methodologies on an inversion of MT and CSEM data as sug-
gested in Section 2.3.

• Straightforward extension of the inversion methodologies to 3D subsurface mod-
els.

• Application of the developed inversion methodologies on real-world observed
data.



68 Summary of the papers and future work



Part II

Scientific background
–

Numerical Assessment of the Upstream
Mobility Scheme





Chapter 8

Introduction

The understanding of fluid flow in the subsurface is important in many areas of science.
For example, in the petroleum industry, an understanding of subsurface fluid flow is re-
quired to increase the recovery of oil and gas from a reservoir. This has become increas-
ingly important over the last decades as more complicated recovery strategies have to
be implemented in order to fully profit from mature petroleum reservoirs. Another ex-
ample is the sequestration of CO2. To lower the CO2 emission into the atmosphere,
CO2 can be stored in deep subsurface reservoirs. It is then important to understand
short and long term effects of injecting CO2 in a geological formation.
The dynamics of fluid flow in the subsurface is modelled by mathematical equa-

tions (see Chapter 9). The complex structure of the reservoir and involved interactions
between the fluids make it difficult to solve these mathematical equations analytically.
Hence, we are dependent on numerical methods (see Chapter 10) to make fluid flow
predictions. In the petroleum industry, large investments are made to develop commer-
cial reservoir simulators, which can be used in planning of well placements, testing
different production scenarios, investigation of new enhanced oil recovery methods,
etc. Reservoir simulators are also important in history matching. Here, the parameters
that govern the fluid flow in a reservoir (e.g., permeability, porosity, fault transmis-
sibility, etc.) are adjusted in such a way that the outcome of the reservoir simulator
matches real observed data (to some stimulus). With the updated parameters, the reser-
voir simulator can make more reliable predictions, e.g., on future oil and gas recovery
rates.
From the above discussion it is clear that a fundamental understanding of the proper-

ties and limitations of the numerical methods behind the reservoir simulators is crucial.
Over the years, numerical methods for fluid flow have been studied extensively both
theoretically and numerically, and in most cases, the applicability of the methods has
been established. However, the applicability of even the most well-established meth-
ods is, in some cases, not fully understood. In this thesis, one such method is under
consideration, namely the upstream mobility scheme (see Section 10.5).
The upstream mobility scheme is a widely applied numerical method for calculat-

ing the fluid flux through a grid cell. Many reservoir simulators have implemented the
upstream mobility scheme due to its simplistic and intuitive nature. Even so, a gen-
eral convergence proof of the scheme has not been established. Among practitioners,
however, it has been known for some time to produce erroneous results, and some ex-
periments in the literature have also indicated minor errors for the scheme for some
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simple flow situations [114].
Influenced by previous results and experiences, the main objective of this thesis is

to investigate the upstream mobility scheme numerically for flow situations commonly
associated with the fluid flow in the subsurface, as exemplified in the beginning of this
chapter. The investigations are done in 1Dwhere it is possible to compare the numerical
results to analytical solutions (see Section 9.3.3).



Chapter 9

Mathematical model

In this chapter, we discuss the mathematical model behind two-phase fluid flow in
a 1D heterogeneous porous medium. Starting from the basic equations, we derive
the model most often associated with two-phase flow, namely the Buckley-Leverett
equation. The Buckley-Leverett equation is a hyperbolic conservation law, and for
heterogeneous porous media, the associated flux function will be discontinuous. Hence,
we will present the theory on hyperbolic conservation laws with discontinuous flux
functions, and discuss the correct physical solution to the Buckley-Leverett equation in
heterogeneous porous media.

9.1 Reservoir properties

To describe the physical properties of fluid flow in a reservoir, the porous rock saturated
with fluids is regarded as a continuum; that is, all the involved components fill the entire
space under consideration. Roughly speaking, the involved properties can be divided
into three groups: rock properties, fluid properties, and properties that result from the
interaction between rock and fluid. In the following, we will only give a brief overview
of the three groups, and refer to standard textbooks on the topic, e.g., [170], for a full
description.

9.1.1 Rock properties

A typical reservoir consists of rock with void spaces, pores, where fluid can accumulate
or flow freely. The solid part of the rock is denoted matrix. On the continuum scale, a
porous rock is described by averaged parameters, which are only valid if the scale of
the reservoir is (much) larger compared to effects of micro-scale phenomena.

Porosity

There are two definitions of porosity: absolute and effective porosity. The first consid-
ers the total void space in the rock, while the latter only considers the void space that
are interconnected. Since fluid can only flow through interconnected pore volumes, we
will only consider effective porosity. It is defined as

φ =
Vp
Vt
, (9.1)
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where Vp is the volume of interconnected pores, and Vt is the total volume of the rock.
Note that φ is a dimensionless quantity.
The effective porosity can be regarded as the storage capacity of the reservoir, and

is determined by several factors, such as grain size, cementation, and rock type (sand-
stone, limestone, etc.).

Absolute permeability

The absolute permeability (K) is the porous medium’s capability of transmitting fluids
through the network of interconnected pores. It depends on many factors, most im-
portantly, effective porosity. Although there is no simple relationship between absolute
permeability and effective porosity, they are correlated (high effective porosity usually
leads to high absolute permeability). Absolute permeability is, in general, a symmet-
ric, positive definite tensor, that is, it is direction dependent. Usually, the horizontal
permeability is much larger than the vertical permeability. The SI unit of absolute per-
meability is m2, but conventionally the unit of measure is Darcy (D).

9.1.2 Fluid properties

A description of the fluid properties is necessary as they affect the fluid’s inherent abil-
ity to flow in a porous medium. The properties of the fluid is highly dependent on
temperature and pressure. A change in either can drastically change fluid flow proper-
ties, and in extreme cases a change of state can occur, e.g., a liquid can become gas or
solid. In this work, we will not consider any phase transitions.

Viscosity and density

Viscosity (μ) is the fluid’s internal resistance to shear stress. The viscosity is highly de-
pendent on the temperature, where it typically decreases for a liquid, while it increases
for a gas. It is also dependent on the pressure, and shape and size of fluid particles.
Due to the friction introduced by viscosity, the flow velocity of a fluid in porous media
is typically highest in the middle of the pores and decreasing towards the wall. The SI
unit of viscosity is pascal-seconds (Pa·s), however, it is often given in poise (P).
Density (ρ) is the mass per unit volume of a fluid. Changes in density of a fluid

is most often due to change in pressure. In some cases, the composition of the fluid
changes with temperature which, consequently, changes its density. The latter is typical
for hydrocarbon fluids.

9.1.3 Petrophysics

When two or more fluids are present in the rock, interactions internally between the
fluids, and between fluids and rock can occur. In this work, we assume that the reservoir
is occupied by maximum two fluids, which are both in the liquid phase. In addition,
the two liquids are immiscible, and can thus be classified according to wettability, i.e.,
the attraction to solid rock. The notation α = n, nw is introduced to denote either the
wetting (w) or nonwetting (nw) phase.
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Saturation

The fraction of pore volume occupied by a particular fluid is defined by the dimension-
less quantity saturation,

Sα =
Vα
Vp
, (9.2)

where Vα is the volume occupied by phase α. Due to the cohesive and adhesive forces,
a phase may become immobile under certain circumstances. In other words, there is
a minimum saturation at which each phase will become immobile, denoted by Sα,r .
Hence, it is often convenient to normalize the saturation according to

uα =
Sα − Sα,r

1 − Snw,r − Sw,r
. (9.3)

u will thus vary between zero and one. Note that the total volume of the pores must be
filled by all phases, hence

uw + unw = 1. (9.4)

Although u is a normalized saturation, it will in the following be referred to as just
‘saturation’.

Capillary pressure

The capillary pressure (Pc) is defined as the (molecular) pressure difference across the
interface of two immiscible fluids,

Pc = pnw − pw, (9.5)

where pα is the internal pressure of phase α. The capillary pressure depends on many
factors, most notably saturation. The unit is the same as pressure, pascal (P).
At large scales, capillary pressures are often neglected, but, as we will discuss below

(see Section 9.3.4), it can have an important impact on the solution of the flow equations
at the interface between two different homogeneous porous media.

Relative permeability

When more than one fluid occupies the pore volume, the fluid flow of one phase is
limited, not only by the rock properties, but also the fluid properties. A common as-
sumption is that fluid flow of a phase can be modeled as a single phase flow through
a reduced pore volume due to the presence of the other phase. This is called effective
permeability, and is denoted Keα. For practical purposes, relative permeability has been
introduced to describe the relationship between effective and absolute permeability. It
is a dimensionless quantity defined as

kα =
Keα
K
. (9.6)

The relative permeability is generally a nonlinear function of saturation, and the sum
of kα is always less than one.
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9.2 Two-phase flow in heterogeneous porous media

We consider the flow of two phases in a 1D heterogeneous reservoir. The heterogeneous
porous medium is given by two or more adjacent homogenous porous media with dis-
parate permeability values. The change in permeability can occur in absolute or relative
permeability, or both. For simplicity we assume that porosity does not change between
the different porous media (in any case, it is only a scaling factor for the fluid flow). In
this work, we consider the simplest case of two adjacent homogeneous media with an
interface at x = xh. In the following, a superscript ‘L’ and ‘R’ is adopted to indicated
quantities that are different on the left and right side of xh, respectively. We also follow
the commonly used subscript notation · t = ∂·

∂t and · x = ∂·
∂x .

The velocity of each phase in the porous medium is assumed to be well approxi-
mated by Darcy’s law

qL,Rα = −λL,Rα ((pα)x − ραg cos β) , (9.7)
where we have introduced the effective mobility of phase α

λL,Rα (u) =
KL,RkL,Rα (u)

μα
, (9.8)

and g cos β is the influence of gravity at the angle β from the vertical axis. Note that
Darcy’s law is an empirical law giving the bulk velocity of phase α, qL,Rα .
Conservation of mass in an arbitrary interval [x1, x2] without a source is given as

d
d t

∫ x2

x1
φραuα dx +

[
ραqL,Rα

] x2
x1
= 0. (9.9)

The first term describes the rate of change of total mass in [x1, x2], while the second
term describes the total flux into or out of [x1, x2]. With some modifications and rec-
ognizing that [x1, x2] was arbitrary, (9.9) can be written on differential form,

φ(uα)t + (qL,Rα )x = 0, (9.10)
where we have assumed incompressible rock and fluids.
From (9.4) and (9.10), we get

(qL,R
w
+ qL,Rnw )x = 0, ⇒ q = qL,R

w
+ qL,Rnw , (9.11)

where q is the total bulk velocity, which is independent of x. Subtracting (9.7) for each
phase, and using (9.5) and (9.11) leads to

qL,R
w
=

λ
L,R
w

λ
L,R
w + λ

L,R
nw
[q + (γw − γnw + (Pc)x)λL,Rnw ]. (9.12)

where γα = ραg cos β. For ease of notation, we define

f (uw) =
λR
w

λRw + λ
R
nw
[q + (γw − γnw)λRnw], (9.13)

g(uw) =
λL
w

λLw + λ
L
nw
[q + (γw − γnw)λLnw], (9.14)

F (uw, x) =
⎧⎪⎨⎪⎩ f (uw), if x ≥ xh,
g(uw), if x < xh.

(9.15)
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Inserted into (9.10) for the wetting phase yields the parabolic equation

φ(uw)t + F (uw, x)x = �� λ
L,R
w λ

L,R
nw

λ
L,R
w + λ

L,R
nw
(Pc)x��x . (9.16)

In the case of negligible capillary pressure, we get the hyperbolic conservation law for
the wetting phase

φ(uw)t + F (uw, x)x = 0, (9.17)
also known as the heterogeneous Buckley-Leverett equation. When uw is found from
(9.17), unw is easily calculated from (9.4). The functions F (uw, x), f (uw), and g(uw)
are denoted flux functions. In the case of negligible capillary pressure, F (uw, x) is equal
to the bulk velocity of the wetting phase. Solutions of (9.17) are discussed in the next
section.

9.3 Conservation laws with discontinuous flux

In the following, we will present the general theory on conservation laws with a dis-
continuous flux function, in which two-phase flow in heterogeneous media can be seen
as a special application. To this end, consider the following Cauchy problem

ut + F (u, x)x = 0,
u(x,0) = u0(x),

(9.18)

where u = u(x, t) ∈ [0,1], x ∈ R, and t = [0,T ). The flux function F (u, x) is given as
in (9.15), written in an equivalent form as

F (u, x) = H (x − xh) f (u) + (1 − H (x − xh))g(u), (9.19)
with H being the Heaviside function. For now, we let f (u) and g(u) be general con-
tinuous nonlinear functions (further specifications are made in Section 9.3.2). With
(9.19), (9.18) can be separated into two autonomous conservation laws

ut + f (u)x = 0, for x ≥ xh, (9.20)
ut + g(u)x = 0, for x < xh. (9.21)

Hence, away from the interface xh the problem is determined by either (9.20) or (9.21),
which are just classical nonlinear conservation laws. We will discuss solutions of (9.20)
or (9.21) in the next section. At the interface xh, special care must be taken to ensure
that the correct solution is found. This will be more discussed in Sections 9.3.2 and
9.3.3.
An important special case of (9.18) arise when the initial value is discontinuous,

u0(x) =
⎧⎪⎨⎪⎩u
0
l , if x < 0,
u0r , if x > 0,

(9.22)

which is called the Riemann problem. The solution to a Riemann problem is a similarity
solution, that is, u is a function of x/t alone and is self-similar at all times. Indeed, the
two-phase flow problem given in (9.17) is often posed as a Riemann problem. Riemann
problems are also important for the numerical schemes discussed in the next chapter.
The solution procedure below, however, is not restricted to a particular instance of
u0(x), and we will thus keep the presentation general.
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9.3.1 Away from the interface

The solution of (9.20) and (9.21) is given as [98]

u(x, t) = u0(x − f ′(u)t), for x > xh, (9.23)
u(x, t) = u0(x − g′(u)t), for x < xh. (9.24)

That is, the solution is constant along the curves x = x0 + f ′(u)t and x = x0 + g
′(u)t

in the x − t plane, denoted characteristics. In the case where the characteristics do not
cross, the solution will be continuous at all times. Such solutions are called rarefaction
waves. Due to f (u) and g(u) being general nonlinear functions, characteristics on
either side of xh may cross at some finite time. Hence, even if u0(x) is smooth, the
solution may become multivalued, which is not physically acceptable. Consequently, a
weaker form of the solution must be sought. To this end, let u ∈ L∞(R × [0,T )) be a
solution of (9.18) satisfying∫ ∞

0

∫ ∞

−∞
[uϕt + F (u, x)ϕx] dxdt +

∫ ∞

−∞
ϕ(x,0)u(x,0) dx = 0, (9.25)

for all test functions ϕ(x, t) ∈ C∞c (R × [0,T )). Note that (9.25) is found from the
integral form of the conservation law and multiplying in the test function.
With (9.25), we can allow u to develop discontinuities, or shocks, whenever the

characteristics cross, and consequently, circumvent the problem of the unphysical mul-
tivalued solution. The speed of a shock is determined by the Rankine-Hugoniot condi-
tion. Let σL,R denote the speed of a shock to the left or right of xh, and let ul and ur
be the solution immediately to the left and right of the shock discontinuity. Then the
Rankine-Hugoniot condition is given by

σR =
f (ur ) − f (ul )
ur − ul

, for x > xh, (9.26)

σL =
g(ur ) − g(ul )
ur − ul

, for x < xh. (9.27)

Even though u is a weak solution, it may not necessarily be unique. Hence, we need
to evoke further conditions to pick out the unique weak solution, which, moreover, must
be physically correct. To this end, so-called entropy conditions have been developed
to check if a solution is admissible. Entropy conditions have strong connections to the
second law of thermodynamics, which states that the total physical entropy of a system
must be nondecreasing in time. This can be state in mathematical form by defining
a convex entropy function η(u) with η′′(u) > 0, and an entropy flux ψ(u) satisfying
ψ′(u) = η′(u) f ′(u) for x > xh and ψ′(u) = η′(u)g′(u) x < xh. A weak solution u is
said to be an entropy weak solution if, for any ϕ(x, t) ∈ C∞c (R × [0,T )) it satisfies [98]∫ ∞

0

∫ ∞

−∞
[η(u)ϕt + ψ(u)ϕx] dxdt +

∫ ∞

−∞
ϕ(x,0)η(u(x,0)) dx ≥ 0. (9.28)

A particularly useful entropy pair is the Kružkov entropies given as η(u) = |u − c |
and ψ(u) = sign(u − c)( f (u) − f (c)) for x > xh and ψ(u) = sign(u − c)(g(u) − g(c))
for x < xh, where c ∈ R is arbitrary. Inserting the Kružkov entropies into (9.28) and
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Figure 9.1: Illustrations of characteristics (on an arbitrary side of xh) near a shock. (a) Valid
and (b) invalid characteristics according to the Lax entropy conditions.

studying the behaviour of an entropy weak solution around a shock discontinuity leads
to the famous Oleinik entropy conditions [126]

f (u) − f (ul )
u − ul

≥ σR ≥
f (u) − f (ur )
u − ur

, for x > xh, (9.29)

g(u) − g(ul )
u − ul

≥ σL ≥
g(u) − g(ur )
u − ur

, for x < xh. (9.30)

Hence, if a solution to (9.18) develops a shock away from xh, it must satisfy the Oleinik
entropy conditions to be a physically valid solution.
Letting u → ul,r in (9.29) and (9.30) leads to the Lax entropy conditions

f ′(ul ) ≥ σR ≥ f ′(ur ), for x > xh, (9.31)
g
′(ul ) ≥ σL ≥ g

′(ur ), for x < xh. (9.32)

These are weaker conditions than (9.29) and (9.30) as they do not provide information
on intermediate solutions. However, they provide insight on the behaviour of the char-
acteristics near a shock. That is, characteristics may never come out of a shock, only
go into one, as time advances; see Figure 9.1.

9.3.2 At the interface

The entropy conditions given in (9.29) and (9.30) only ensures a unique solution away
from xh. To get a fully unique solution of (9.18), an entropy condition for the solution at
xh is necessary. It turns out, however, that no unique entropy condition at the interface
exists for conservation laws with a discontinuous flux function. In fact, many authors
have suggested different admissibility criteria for a solution at xh (see, e.g., [10] and
references therein). In [6], the authors gather previously existing admissible solutions
to (9.18) into one unified theory, which was further justified in [33]. (More recently,
the theory was further summarized, and admissible solutions were given as a family
of ‘elementary solutions’, see [10].) In the following, we will give an overview of the
entropy condition for the interface xh presented in [6, 33].
We start with some restrictions on the flux functions. Let f ,g ∈ Lip([0,1]), and let

θ f ∈ [0,1] and θg ∈ [0,1] denote the global extrema of f (u) and g(u), respectively.
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Furthermore, f (0) = g(0) and f (1) = g(1). Then the flux functions satisfy either of
the following properties:

(i) f (u) and g(u) have one global maximum and no local minimum in (0,1). Such
flux functions are denoted CC([0,1]) (concave type).

(ii) f (u) and g(u) have one global minimum and no local maximum in (0,1). Such
flux functions are denoted CV ([0,1]) (convex type).

Let u+(t) = limx→x+
h
u(x, t) and u−(t) = limx→x−

h
u(x, t) denote the right and left

traces, respectively. The flux must necessarily be equal on both sides of xh, which is
given by the following Rankine-Hugoniot condition

f (u+(t)) = g(u−(t)). (9.33)

To derive the entropy condition at the interface the following definition is crucial.

Definition 1 The pair (A,B) ∈ [0,1] is called a connection if
1. f (A) = g(B).

2. For f ,g ∈ CC([0,1]) we have θg ≤ A ≤ 1 and 0 ≤ B ≤ θ f .
3. For f ,g ∈ CV ([0,1]) we have 0 ≤ A ≤ θg and θ f ≤ B ≤ 1.

Note that the second and third entry essentially says that A lies in the region where
g
′(u) ≤ 0 and B lies in the region where f ′(u) ≥ 0.
With Definition 1, we can define the following function [33]

cAB (x) = H (x − xh)B + (1 − H (x − xh))A =
⎧⎪⎨⎪⎩A, for x ≤ xh,
B, for x > xh.

(9.34)

Simliarly to the Kružkov entropies we defined in the previous section, we now let
η = |u − cAB (x) | and ψ = sign(u − cAB (x))(F (u, x) − F (cAB(x), x)). Inserted into
(9.28), leads to the following entropy condition [33]

sign(u+(t) − B)( f (u+(t)) − f (B)) − sign(u−(t) − A)(g(u−(t)) − g(A)) ≤ 0, (9.35)
which is understood in the weak sense. This is called the interface entropy condition. In
summary, the interface entropy condition says that any transition of u across xh given
by u−(t) and u+(t) must fulfill (9.35) for any choice of (A,B) that satisfy the conditions
in Definition 1. Note that u−(t) = A and u+(t) = B is only a special case in which (9.35)
is fulfilled with equality.
A similar characteristic condition as the Lax entropy conditions, (9.31) and (9.32),

can be derived from (9.35) [33]

min{0,g′(u−(t))}max{0, f ′(u+(t))} = 0, if (u−(t),u+(t)) � (A,B). (9.36)

This says that the characteristics must lead back to the x-axis at least on one side of xh,
unless (u−(t),u+(t)) = (A,B), in which case there are no restrictions on the character-
istics.
In the last two sections, we have presented the entropy conditions that are valid both

away from and at the interface xh. The following definition summaries valid entropy
solutions to conservation laws with a discontinuous flux function [6].
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Definition 2 u ∈ L∞(R × [0,T )) is a unique entropy solution of (9.18) if the following
holds

1. u is a weak solution, i.e., (9.25) holds.

2. u satisfies (9.29) for x > xh, and (9.30) for x < xh.

3. u satisfies (9.35) for x = xh.

The proof of uniqueness, existence, and L1-stability of the entropy solution u satisfying
the above definition is found in [6, 33].
Remarkably, the definition of a unique entropy solution is valid for any choice of

(A,B), which means that, in theory, there exist an infinite number of entropy solutions
to (9.18). Hence, we need to choose (A,B) carefully such that the correct entropy
solution for each application is found. This is discussed more in the next section.

9.3.3 The physically meaningful entropy solution

Most hyperbolic conservation laws are derived by letting a higher-order dissipation
term in a parabolic equation approach zero. In the limit, we expect the behaviour of the
parabolic solution to be the same as the hyperbolic solution. In fact, the entropy con-
ditions discussed in the previous sections are derived by studying the behaviour of the
entropy functions and fluxes in the limit between parabolic and hyperbolic solutions.
When f = g, there is only one entropy condition (i.e., the Oleinik entropy condi-

tion), which is derived from the viscous equation [98]

uεt + h(u
ε )x = εuεxx, (9.37)

where h is the flux function for the continuous conservation law. In the case of f � g,
as we have in (9.18), a unique entropy solution must be derived by considering each
physical model by itself, that is, we need to consider from which parabolic differential
equation the hyperbolic conservation law is derived from. In the following sections,
we present two entropy conditions most often encountered when discussing two-phase
flow in heterogeneous porous media.

Optimal entropy condition

In [6], a functional measuring the total variation of the solution for each choice of (A,B)
was defined and, subsequently, minimized to find the optimal connection (Ao,Bo).

Definition 3 The optimal connection (Ao,Bo).

• For f ,g ∈ CC([0,1]):
If f (θ f ) ≤ g(θg), then let θ f ≥ θg such that f (θ f ) = g(θ f ). Moreover, if
f (θ f ) > g(θg), then let θg ≤ θ f such that f (θg) = g(θg). Then

(Ao,Bo) =
⎧⎪⎨⎪⎩(θg, θg), if f (θ f ) ≥ g(θg),
(θ f , θ f ), if f (θ f ) ≤ g(θg).

(9.38)
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• For f ,g ∈ CV ([0,1]):
If f (θ f ) ≤ g(θg), then let θg ≥ θ f such that f (θg) = g(θg). Moreover, if
f (θ f ) > g(θg), then let θ f ≤ θg such that f (θ f ) = g(θ f ). Then

(Ao,Bo) =
⎧⎪⎨⎪⎩(θg, θg), if f (θ f ) ≤ g(θg),
(θ f , θ f ), if f (θ f ) ≥ g(θg).

(9.39)

In summary, Ao and Bo are chosen by simple consideration on g(θg) and f (θ f ).
With (Ao,Bo) given in the definition, the characteristic condition (9.36) reduces

to [33]
min{0,g′(u−(t))}max{0, f ′(u+(t))} = 0, (9.40)

that is, the characteristics must always be traced back to the x-axis on at least one side
of xh.
The optimal entropy connection was derived from a mathematical point of view.

However, it was noted that it corresponded exactly with the entropy condition derived
by Kaasschieter in [88] where the heterogeneous Buckley-Leverett equation was con-
sidered. The entropy condition given in [88] was derived considering the vanishing
capillary limit, that is, by studying the solution when the capillary pressure term (right-
hand side of (9.16)) approaches zero. This was considered the physically relevant so-
lution for two-phase fluid flow in a heterogeneous porous medium in [6, 114] and also
in Papers D, E, and F.

Minimal jump condition

The minimal jump condition was introduced in [71]. Although the conditions on the
flux functions given in [71] are more relaxed than for f (u) and g(u) given above, the
entropy condition can still be adapted to the (A,B) framework.

Definition 4 Let either f ,g ∈ CC([0,1]) or f ,g ∈ CV ([0,1]). Then the minimal jump
connection (Am,Bm) is chosen such that

|Am − Bm | (9.41)

is minimized.

With (Am,Bm) given in the definition, the characteristic condition (9.36) reduces to [33]

min{0,g′(u−(t))}max{0, f ′(u+(t))} = 0 if u−(t) � u+(t). (9.42)

Hence, the characteristics must lead back to the x-axis at least on one side of xh, unless
u−(t) = u+(t), in which case there is no restriction on the characteristics.
In [71], the minimal jump connection was associated with the vanishing viscosity

limit, that is, in the limit of a parabolic equation of type (9.37). It was recognized in [32]
that the minimal jump connection was the correct entropy solution for the clarifier-
thickener model, that is, a model where a source is present at xh. It was also associated
with two-phase fluid flow in a heterogeneous porous medium in, e.g., [72].
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Figure 9.2: Illustration of (a) the MJ solution and (b) the OE solution around xh for flux
functions crossing in an undercompressive manner.

9.3.4 Discussion

In the previous section, we introduced two entropy conditions, the optimal entropy
(OE) condition and minimal jump (MJ) condition, and indicated that both had been
associated with two-phase flow in heterogeneous porous media. Hence, it is useful to
discuss the difference between the two entropy solutions.
It can easily be shown that for f ,g ∈ CC([0,1]) and f ,g ∈ CV ([0,1]) the OE and

MJ condition produces different result only when flux functions cross in an undercom-
pressive manner, that is, f ′(uχ) > 0 and g′(uχ) < 0 for the intersection value uχ. In
this case, Definition 4 gives Am = Bm = uχ, and, depending on the initial condition,
the solution can thus be u−(t) = u+(t) = uχ. From (9.42) we see that the MJ condition
produces characteristics that go out of xh when u−(t) = u+(t) = uχ (see Figure 9.2a).
Consequently, the MJ solution is continuous across the interface xh. From Definition 3,
we see that (Ao,Bo) � (uχ,uχ), and thus (u−(t),u+(t)) � (uχ,uχ). The characteristic
condition (9.40) also tells us that that the characteristics of an OE solution always lead
back to the x-axis on at least one side of xh (see Figure 9.2b).
As mentioned in Section 9.3.3, the OE condition has been considered the physically

correct entropy condition for two-phase flow in heterogeneous porous media in many
studies. However, in recent papers [8, 9], a new entropy condition for the heteroge-
neous Buckley-Leverett equation was suggested where one has to allow the interface
to ‘generate information’ (similarly as seen for the MJ condition above). In short, the
entropy condition presented in [8, 9] requires the knowledge about the capillary forces,
which are neglected in the hetereogeneous Buckley-Leverett equation (i.e., in the limit
of (9.16) to (9.17)), to compute the solution to (9.17). This entropy condition is dif-
ferent from the one presented in [88] (i.e., the OE condition), where knowledge of the
capillary forces is not needed. Specifically, in [8, 9] the capillary pressure function
must be continuous at the interface together with the flux function (c.f. (9.33)). The
continuity of capillary pressure was regarded in [88] as only ‘merely coincidental’.
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Chapter 10

Numerical schemes

In most practical applications, conservation laws must be solved with a numerical
method. It is then important that the numerical method honours the same principles
underlying the conservation law. To wit, the conservation principle must be followed
to allow for discontinuous solutions (shocks), and, moreover, the correct entropy so-
lution must be captured. In the following, we present the basic concepts for a finite
volume approximation of the conservation law with discontinuous flux function we
studied in the previous chapter (confer (9.18)). Furthermore, we present two schemes,
the Godunov and Engquist-Osher scheme, that provide solutions with respect to the
(A,B)-connection defined in Section 9.3.2, and two schemes, the local Lax-Friedrichs
and upstream mobility scheme, that are just extensions of their classical counterparts.

10.1 Finite volume methods

For simplicity, we discretize the spatial domain R into grid cells (or ‘finite volumes’)
with equidistant width Δx > 0. The cell edges are given by

x j+1/2 = jΔx + xh, for j ≥ 0, x j−1/2 = jΔx + xh, for j ≤ 0,
where x−1/2 = x1/2 = xh is the interface (confer Chapter 9), and j ∈ Z. The cell centers
are given by

x j = ( j − 1/2)Δx + xh, for j ≥ 1, x j = ( j + 1/2)Δx + xh, for j ≤ −1.
The time domain [0,T ) is discretized into n = 0, . . . ,N equidistant time steps, i.e.,
tn = nΔt for Δt > 0.
To get a numerical method on conservation form, we integrate (9.18) over an arbi-

trary cell, [x j−1/2, x j+1/2] × [tn, tn+1], in the x − t plane∫ x j+1/2

x j−1/2
u(x, tn+1) dx −

∫ x j+1/2

x j−1/2
u(x, tn) dx

+

∫ tn+1

tn
F (u(x j+1/2, t), x) dt −

∫ tn+1

tn
F (u(x j−1/2, t), x) dt = 0. (10.1)

Since the first term describes the change of u in a time step and the second term de-
scribes the change of total flux in or out of [x j−1/2, x j+1/2], (10.1) is a conservative
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Figure 10.1: Illustration of the finite volume scheme around the interface xh. Shown in the
x − t plane.

scheme. In general, we cannot evaluate the above integrals since we do not know the
exact solution. However, by approximating the integrals, the numerical method will
be based on the necessary conservation principles. A standard approach is to use the
following averages [98]:

Unj ≈
1
Δx

∫ x j+1/2

x j−1/2
u(x, tn) dx, (10.2)

Fnj+1/2 ≈
1
Δt

∫ tn+1

tn
F (u(x j+1/2, t), x) dt. (10.3)

Using (10.2) and (10.3), (10.1) can be written as

Un+1j = Unj −
Δt
Δx

(
Fnj+1/2 − Fnj−1/2

)
, (10.4)

which is the basis for all (explicit) finite volume methods.
To get a fully discrete method, we need Fn to depend on Un, and not on u. For hy-

perbolic problems, the information propagates with finite speed, hence, it is reasonable
to approximate Fnj+1/2 based on the neighbouring valuesU

n
j andU

n
j+1 [98]. To this end,

we define the numerical flux function as

Fnj+1/2 = F(Unj ,U
n
j+1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (Unj ,U

n
j+1), for j ≥ 1

D(Un−1,U
n
1 ),

G(Unj−1,U
n
j ), for j ≤ −1.

(10.5)

Hence, F (Unj ,U
n
j+1) approximates f (u) for x > xh, andG(U

n
j−1,U

n
j ) approximates g(u)

for x < xh. At x = xh, however, special considerations must be made to ensure that the
correct solution is approximated, which is taken care of by the function D(Un−1,U

n
1 ).

See Figure 10.1 for a schematic of the finite volume scheme around the interface xh.
From (10.4) and (10.5), we see that a finite volume method depends on how F, G,

and D are defined. Hence, when we present the different finite volume schemes below,
we will only describe their numerical flux functions. First, however, we briefly discuss
the CFL-condition and give an overview of convergence criteria for (10.4).

10.1.1 CFL condition

In the previous section, we indicated that for hyperbolic problems the information prop-
agates with finite speed and, hence, we could approximate the flux over a cell edge as
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a function of the neighbouring Un values. However, this approximation is highly de-
pendent on the speed of propagation, which is determined by the derivative of the flux
functions, i.e., f ′(u) and g′(u). Since the distance that a solution of (9.18) propagates
in one time step is f ′(u)Δt for x > xh and g′(u)Δt for x < xh, the following restrictions
must be met

Δt max
u∈[0,1]

| f ′(u) | ≤ Δx, Δt max
u∈[0,1]

|g′(u) | ≤ Δx. (10.6)

This is called the Courant-Friedrich-Lewy (CFL) condition, and it is a necessary (but
not sufficient) condition of a finite volume method to converge.

10.1.2 Convergence

When discussing the theory on conservation laws in Chapter 9, two aspects were im-
portant: a solution had to be on a weak form and it had to fulfill an entropy condition.
It is clear that Un also has to fulfill these conditions to converge to the true physically
relevant solution. A useful theorem in this context is the Lax-Wendroff theorem [97],
which states that if a solutionUn of a conservative scheme converges to a solution u in
the limit of Δx,Δt → 0, then u is a weak solution. Although an important theorem, it
does not guarantee convergence, and if convergence is guaranteed, it does not say if the
solution fulfills an entropy condition or not. Hence, more notions on convergence are
needed.
The first notion needed is consistency, that is, the finite volume method needs to be

consistent with the conservation law it approximates. For (10.4) this is satisfied if

F (u,u) = f (u), G(u,u) = g(u). (10.7)

For D, the notion of consistency is difficult since the flux through xh is highly problem
dependent. As we will note below, convergence can still be achieved, even though
consistency is not fulfilled for D.
The second notion needed for convergence is stability. This is an important notion,

as convergence cannot be ensured for an unstable finite volume method. There exists a
wide variety of stability criteria that a finite volume method may fulfill, e.g., bounded
variation, total variation, L1-contraction, etc. For conservation laws with a continuous
flux function (i.e., a classical conservation law), a particularly interesting property arise
for monotone methods. Essentially, if a consistent finite volume method is a monotone
method, then it converges to the correct entropy solution (i.e., it fulfills Oleiniks entropy
condition) in the limit of Δx,Δt → 0 [78]. Monotone methods are, however, at most
first-order methods.
Unfortunately, for finite volume methods approximating a conservation law with a

discontinuous flux function, as (10.4), monotonicity does not ensure that the method
converges to the correct entropy solution. It can, however, be an important ingredient
in a convergence proof. In any case, stability must always be fulfilled, and special care
must be taken to ensure thatUn converges to the correct entropy solution, especially at
the interface.
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10.2 The Godunov scheme

From (10.3), it is seen that the numerical flux Fnj+1/2 depends on the solution
u(x j+1/2, t), which we cannot compute. However, it is possible to compute an approxi-
mation of u(x j+1/2, t) by solving the Riemann problem (see Section 9.3) at x j+1/2 with
UL = Uj and UR = Uj+1 as initial conditions. In most cases, the solution to the Rie-
mann problem is either a shock or a rarefaction wave moving entirely to the right or
left of x j+1/2, hence, the solution is UL or UR, respectively. The exception is when UL
and UR is on either side of an extrema, and the solution is a rarefaction wave. In this
case, the solution will be the value of the extrema; θ f for f (u), or θg for g(u), see Sec-
tion 9.3.2. If the solution is a shock with speed equal to zero, then the solution is just
given by the initial condition.
By inserting the above solutions into (10.3), the flux approximations for cell edges

away from xh can be written compactly as [73]

H (UL,UR) =
⎧⎪⎨⎪⎩minu∈[UL ,UR] h(u), forUL ≤ UR,
maxu∈[UR ,UL] h(u), forUR ≤ UL,

(10.8)

where H is either F for x > xh or G for x < xh, and h(u) is either f (u) for x > xh or
g(u) for x < xh.
At xh, we can do similar consideration for the Riemann problem as we did above,

but now UL = U−1 is associated with G and UR = U1 is associated with F. In addition,
we need to consider the entropy solutions of type (A,B) introduced in Section 9.3.2.
To capture the correct flux function value at the interface the authors in [6] gave the
following expressions

D(UL,UR) = min{G(UL, A),F (UR,B)}, for f ,g ∈ CC([0,1]), (10.9)
D(UL,UR) = max{G(UL, A),F (UR,B)}, for f ,g ∈ CV ([0,1]), (10.10)

where the definitions of CC([0,1]) and CV ([0,1]) can be found in Section 9.3.2. Since
the Godunov scheme approximated the flux functions using the Riemann solutions at
each cell edge, it is often referred to as the exact Riemann solver.
It is easily seen from (10.8) that the scheme is consistent for x � xh. However,

from (10.9) and (10.10) it is seen that there are some cases where D(u,u) is not equal
to either f (u) or g(u) (in that case, D(u,u) = g(A) = f (B)). Hence, D(UL,UR) is
not consistent. In spite of the non-consitency, convergence of the Godunov scheme to
entropy solutions of type (A,B) was proven in [6].
Note that for f (u) and g(u) of type CC([0,1]) or CV ([0,1]), the expressions in

(10.8), (10.9), and (10.10) can be simplified for implementation purposes, see, e.g., [5]
or Papers D, E, and F.

10.3 The Engquist-Osher scheme

The basic idea behind the Engquist-Osher scheme is to generalize the standard upwind
method for conservation laws with linear flux functions by assuming that the solution
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is always a rarefaction wave. This can by done by defining the numerical flux functions
as

H (UL,UR) =
1
2

[
h(UL) + h(UR) −

∫ UR

UL

|h′(w) | dw
]
, (10.11)

where H is either F for x > xh or G for x < xh, and h(u) is either f (u) for x > xh
or g(u) for x < xh. Furthermore, we have introduced the notation UL = Uj and
UR = Uj+1. In most cases, (10.11) produces the same result as (10.8). It is only in the
case of a transonic shock, i.e., when h′(UL) > 0 > h′(UR), that (10.11) produces a
result different than (10.8). In this case,

H (UL,UR) = h(UL) + h(UR) − h(θh),

where θh is either θ f or θgdepending on if x > xh or x < xh, respectively. The
advantage with (10.11) compared to (10.8) is that no solution of the Riemann problem
is needed.
To capture the entropy solutions of type (A,B) given in Section 9.3.2, Bürger et al.

[33] proposed that the numerical flux at xh should be given as

H (UL,UR) =
1
2

[
g̃(UL) + f̃ (UR) −

∫ UR

B
| f̃ (w) | dw +

∫ UL

A
|g̃(w) | dw

]
, (10.12)

where

f̃ (u) = min{ f (u), f (B)}, g̃(u) = min{g(u), f (A)}, for f ,g ∈ CC([0,1]), (10.13)
f̃ (u) = max{ f (u), f (B)}, g̃(u) = max{g(u), f (A)}, for f ,g ∈ CV ([0,1]). (10.14)

The definitions of CC([0,1]) and CV ([0,1]) can be found in Section 9.3.2.
Similarly as for the Godunov scheme, the Engquist-Osher scheme is consistent

away from xh, and not consistent for x = xh (for some configurations, D(u,u) =
g(A) = f (B)). Nevertheless, the scheme converges to an entropy solution of type
(A,B) as shown in [33].
Note that the expressions (10.11) and (10.12) can be simplified for flux functions

satisfying CC([0,1]) and CV ([0,1]); see Paper D.

10.4 The local Lax-Friedrichs scheme

The simplest flux approximation possible is the Lax-Friedrichs scheme. Let UL = Uj
and UR = Uj+1 be on either side of an arbitrary cell edge x j+1/2. The numerical flux in
the Lax-Friedrichs scheme is then given by

H (UL,UR) =
1
2
[h(UL) + h(UR) −

Δx
Δt
(UR −UL)], (10.15)

where H is either F for x > xh or G for x < xh, and h(u) is either f (u) for x > xh
or g(u) for x < xh. From [149] it seen that the Lax-Friedrichs scheme produces the
most allowable numerical viscosity (i.e., smearing of the numerical solution) of any
convergent method.
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An improvement of the Lax-Friedrichs scheme is obtained by replacing Δx/Δt in
(10.15) with a locally determined value, ah, [98]

H (UL,UR) =
1
2
[h(UL) + h(UR) − ah(UR −UL)] , (10.16)

where
ah = max{|h′(u) |}, ∀u ∈ [UL,UR]. (10.17)

This scheme is often called the local Lax-Friedrichs scheme, although it was introduced
by Rusanov [133] and is thus also known as the Rusanov method. Comparing (10.15)
and (10.16), it can be shown that the numerical viscosity produced by the local Lax-
Friedrichs scheme is at worst equal to the Lax-Friedrichs scheme.
At the interface xh, (10.16) can be applied in a straightforward manner

D(UL,UR) =
1
2

[
g(UL) + f (UR) − a(UR −UL)

]
, (10.18)

where
a = max{| f ′(u) |, |g′(u) |}, ∀u ∈ [UL,UR]. (10.19)

It is easily seen from (10.16) that the local Lax-Friedrichs scheme is consistent for
x � xh. At xh, the scheme is not consistent (D(u,u) = 1

2[g(u) + f (u)]), similarly to the
observations seen for the Godunov and the Engquist-Osher scheme. For conservation
laws with a continuous flux function (i.e., classical conservation laws) the local Lax-
Friedrichs scheme is monotone and thus converges to the correct entropy solution [98].
For conservation laws with a discontinuous flux function, convergence has not yet been
proven for the interface flux (10.18). However, results in Paper D indicated that the
scheme converges to the minimal jump solution (confer Section 9.3.3).

10.4.1 Discussion

Recently, a modified version of the Lax-Friedrichs and local Lax-Friedrichs scheme
was shown to converge to entropy solutions of type (A,B) [4]. The modified schemes
relied on the construction of an interface flux function in which a numerical approxi-
mation could be given. Furthermore, the numerical flux functions immediately to the
right and left of the interface xh, F (U1,U2) and G(U−1,U−2), respectively, also had to
be modified. As of yet, the connection between the local Lax-Friedrichs scheme given
in the previous section and the scheme presented in [4] is unclear.

10.5 The upstream mobility scheme

To predict fluid flow in porous media, an ad hoc flux approximation was invented by
petroleum engineers from simple physical considerations. Recall the notation given in
Sections 9.1 and 9.2 for the two-phase flow problem in heterogeneous porous media.
The quantityU will in this section thus be a numerical approximation of the saturation
u. The numerical flux functions away from the interface xh can be written as

H (UL,UR) =
λ
L,R∗
w

λ
L,R∗
w + λ

L,R∗
nw

[q + (γw − γnw)λL,R∗nw ]. (10.20)
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The superscript ‘R’ denotes x > xh (where H is equal to F), and ‘L’ denotes x < xh
(where H is equal G). The mobility functions λL,R∗α (U) must be evaluated with the
correct upstream saturation, hence, the superscript ‘*’. The direction of flow can be
found from a discretization of Darcy’s law (confer (9.7)), thus λL,R∗ is evaluated using
the upstream saturationU in cell j ± 1 if

pj±1 − pj ∓ γαΔx > 0, (10.21)

and in cell j otherwise. We can remove pressure from the equation with similar manip-
ulations as in Section 9.2. Omitting the details, we get the following equivalence

pj±1 − pj ∓ γlΔx ⇐⇒ q + (γl − γk )λk , for k � l . (10.22)

The direction of flow is now determined by advection, q, and the buoyancy effects,
(γl − γk )λk . Using the above equivalence, the mobility functions λL,R∗α (U) can thus be
evaluated as

λ
L,R∗
l =

⎧⎪⎨⎪⎩λ
L,R
l (UL), if q + (γl − γk )λL,R∗k ≥ 0,
λ
L,R
l (UR), if q + (γl − γk )λL,R∗k ≤ 0, (10.23)

for k � l. Note that this is an implicit formula (λL,R∗l is dependent on λL,R∗k , and vice
versa). For implementation purposes an explicit formula was given in [29]. After the
mobility functions are evaluated, they are inserted into (10.20) to produce the numerical
flux functions away from xh.
To calculate the numerical flux function at the interface, (10.20) and (10.23) are

applied in a straightforward manner

D(UL,UR) =
λ∗
w

λ∗w + λ∗nw
[q + (γw − γnw)λ∗nw], (10.24)

where

λ∗l =
⎧⎪⎨⎪⎩λ

L
l (UL), if q + (γl − γk )λ∗k ≥ 0,
λRl (UR), if q + (γl − γk )λ∗k ≤ 0.

(10.25)

Similarly as for (10.23), the above formula for calculating the mobility functions can
be made explicit, see [114].
To check the consistency, recall that H and D are numerical approximations of

the flux functions given for two-phase flow in porous media. Indeed, away from the
interface, the flux approximation (10.20) is consistent with f and g given by (9.13) and
(9.14), respectively. At the interface, we see from (10.25) that the mobility functions
on either side of xh might be used depending on the upstream direction of flow for
each phase. Hence, in some cases D might reduce to F or G, but in the case where the
upstream direction of flow for each phase is opposite (i.e. countercurrent flow), λL will
be given for one phase and λR for the other. Thus, the upstream mobility scheme is not
consistent at xh, which was also the case for the Godunov, Engquist-Osher, and local
Lax-Friedrichs scheme.
It can be shown that the upstream mobility scheme converges to the true entropy

solution in the case of two-phase flow in homogeneous porous media, see, e.g., [135].
In the case of two-phase flow in heterogeneous porous media, convergence of the up-
stream mobility scheme has not yet been proven. In [114] it was shown that the scheme
is stable, and converges to a weak solution (by the Lax-Wendroff theorem, confer Sec-
tion 10.1.2).
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Chapter 11

Summary of the papers

In this chapter, the main results of Paper D – F associated with Part II of this thesis are
given. The summaries will be based on the scientific background presented in Part II.

11.1 Summary of Paper D

Title: Errors in the upstream mobility scheme for countercurrent two-phase flow
in heterogeneous porous media

Authors: S. Tveit and I. Aavatsmark

In Paper D, a numerical investigation of the widely applied upstream mobility
scheme (see Section 10.5) was conducted for two-phase fluid flow in a 1D heteroge-
neous porous medium (see Section 9.2). The scheme had been shown to fail for a pure
gravity segregation problem [114], however, the errors observed in Paper D were larger
in magnitude, when advection and gravity segregation were included. A secondary ob-
jective of the paper was to investigate the behaviour of the local Lax-Friedrichs scheme
introduced in Section 10.4.
From Section 9.2 we know that fluid flow in a heterogeneous porous medium is

modeled as conservation law with a discontinuous flux function (see Section 9.3). In
Section 9.3.3, two physically relevant entropy solutions were presented for the two-
phase flow problem, the optimal entropy connection and minimal jump connection. In
Paper D, we followed consensus (see, e.g., [5, 114]) and considered the optimal entropy
solution as the physically relevant solution, which has later been disputed (confer the
discussion in Section 9.3.4 and [9]).
To evaluate the performance of the upstream mobility scheme, it was compared to

the Godunov and Engquist-Osher scheme presented in Section 10.2 and Section 10.3,
respectively. Both schemes were set to approximate the optimal entropy condition.
Since the Godunov scheme is considered an exact Riemann solver, it acted as the true
solution in the numerical experiments.
The numerical experiments were set up to model a countercurrent flow situation,

that is, the two phases flow in opposite direction. With this flow situation it was shown
that the upstream mobility scheme produced three types of errors: ‘spike’ solutions;
solutions following the minimal jump connection; and solutions which followed neither
the optimal entropy solution nor the minimal jump solution.
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The ‘spike’ solution produced by the upstream mobility scheme was a ‘spike’ at the
interface, xh, that persisted even when the grid cell size was reduced, indicating that it
would still be present as the grid cell size approached zero.
From the discussion made in Section 9.3.4, we know that the minimal jump solu-

tion only differs from the optimal entropy condition (for our type of flux functions, see
Section 9.3.2) in the case where the flux functions cross in an undercompressive man-
ner. Moreover, it can then produce a continuous solution across the interface xh. This
erroneous solution was observed for the upstream mobility scheme when the flux func-
tions were made such that λL

w
(uχ) = λR

w
(uχ) and λLnw (uχ) = λRnw (uχ) (where uχ is

the intersection value for the flux functions, see Section 9.3.4). Although it is easy to
see why the upstream mobility scheme must produce the minimal jump solution in the
case of pure gravity segregation, the same conclusions could not be made for the flow
situation in the Paper D experiment.
By changing the flux functions slightly from the previous experiment, the upstream

mobility scheme produced a solution which did not follow the optimal entropy so-
lution nor the minimal jump solution. The deviation of the upstream mobility solu-
tion from the optimal entropy solution was large. Moreover, the solution produced by
the upstream mobility scheme looked reasonable with no apparent unusual behaviour
when looked upon isolated. We also observed that the mobility functions fulfilled:
λL
w
(U−1) = λ

R
w
(U1) and λ

L
nw (U−1) = λ

R
nw (U1), where U−1 and U1 is the last saturation

value to the left and right of xh, respectively (see Figure 10.1). Note that this was only
an observation and not a condition for the upstream mobility scheme.
The behaviour of the local Lax-Friedrichs scheme was studied in the same numeri-

cal experiments. It seemed to follow the minimal jump condition in all the experiments,
with some numerical diffusion.

11.2 Summary of Paper E and F

Paper E:
Title: Errors in the upstream mobility scheme for counter-current two-phase flow

with discontinuous permeabilities
Authors: T. S. Mykkeltvedt, I. Aavatsmark, and S. Tveit

Paper F:
Title: On the performance of the upstream mobility scheme applied to counter-

current two-phase flow in a heterogeneous porous medium
Authors: T. S. Mykkeltvedt, I. Aavatsmark, and S. Tveit

In Papers E and F, the upstream mobility scheme was applied on numerical ex-
periments involving flow of CO2 and brine in a 1D hetereogeneous porous medium.
The numerical experiments were conducted using realistic parameters for the rock
and fluids under consideration. This involved relative permeability modeled by cu-
bic spline interpolation, based on the classical Brooks-Corey [30] and van-Genuchten
relations [155]. Similarly to Paper D, the upstream mobility scheme was compared to
a Godunov scheme that approximated the optimal entropy condition.
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The numerical experiments were set up to model the flow of CO2 and brine in a ver-
tical column. Since the non-wetting CO2 phase is less dense than wetting brine phase,
it will flow upwards, and thus a countercurrent flow situation occurs. Two scenarios
were considered: one where a single interface was regarded (as in Paper D) and one
where two interfaces were regarded. In the case where a single interface was present,
similar erroneous behaviour as seen in Paper D was observed. The upstream mobil-
ity scheme produced solutions following the minimal jump condition, and solutions
which followed neither the optimal entropy nor the minimal jump condition. In par-
ticular, it was observed that a small perturbation in the relative permeability produced
noticeably different solutions, which indicates that the upstream mobility scheme is
ill-conditioned.
When two interfaces were included in the experiments, it was clearly seen that up-

stream mobility scheme could produce solutions which, when looked upon isolated,
appeared reasonable but was erroneous compared to the true solution.

Contribution as co-author: Experience and suggestions for the research and paper.
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Appendix A

Complex Gaussian distribution

The following appendix gives a brief overview of the theory on complex random vec-
tors with a focus on complex Gaussian distributions. For the most part we will follow
the textbook [141].
Let u and v be two random vectors in R

n, and let z be a real composite random
vector in R2n given by

z =
[
u
v

]
. (A.1)

Furthermore, let x be a complex random vector in Cn given by

x = u + iv, (A.2)

where i =
√
−1. The complex conjugate of x is denoted x∗ = u − iv. With x and x∗ we

can define the complex augmented random vector, x ∈ C2n∗ , as

x =
[
x
x∗
]
. (A.3)

A transformation from z to x can easily be made with the real-to-complex transform
matrix

Tn =
[
In iIn
In −iIn

]
, (A.4)

which has the property T−1n = 1
2T

H
n where H is the Hermetian. The real-to-complex

transformation thus becomes

x = Tnz ⇔ z =
1
2
THn x. (A.5)

x may seem as a redundant description of z, but, as we will see below, it provides a
valuable description of what a general complex Gaussian distribution looks like.
A Gaussian distribution is fully described by its mean and covariance matrix, i.e,

by second-order statistics. Second-order statistical description of z and x thus follows.
The mean of z is given by

μz = E[z] =
[
E[u]
E[v]

]
=

[
μu
μ
v

]
, (A.6)



98 Complex Gaussian distribution

and its covariance matrix is

Czz = E[(z − μz)(z − μz)T ] =
[
Cuu Cuv
Cvu Cvv

]
, (A.7)

where Cuu = E[(u − μu)(u − μu)T ], Cuv = E[(u − μu)(v − μv)T ] = CTvu, and Cvv =

E[(v − μ
v
)(v − μ

v
)T ].

The mean vector of x is

μ
x
= E[x] =

[
E[x]
E[x∗]

]
=

[
μx
μ∗x

]
=

[
μu + iμv
μu − iμv

]
, (A.8)

where we note that μ
x
= Tnμz. The covariance matrix of x is given by

Cxx = E[(x − μx)(x − μx)
H] =

[
Cxx C̃xx
C̃∗xx C∗xx

]
, (A.9)

where we note that Cxx = TnCzzT
H
n and CHxx = Cxx. The two covariance matrices in

(A.9) are the complex covariance matrix,

Cxx = E[(x − μx)(x − μx)H] = Cuu + Cvv + i(Cvu − Cuv) (A.10)

and the complementary complex covariance matrix (also called pseudo-covariance ma-
trix, conjugate covariance matrix, and relation matrix),

C̃xx = E[(x − μx)(x − μx)T ] = Cuu − Cvv + i(Cvu + Cuv), (A.11)

respectively. The last equalities in (A.10) and (A.11) follows from TnCzzTHn .
We now claim that a complete second-order statistical characterization of a complex

random vector x is given in terms of μ
x
and Cxx. We will not provide a rigorous proof

but rather sketch an idea of why it must be true. Consider the question of uncorrelated
random vectors. Two real vectors z and w are uncorrelated if Czw = 0. If we let
z = [uT , vT ]T and w = [aT , bT ]T , Czw = 0 implies that Cua = Cub = Cva = Cub = 0.
Now, if we let x = u+ iv and y = a+ ib, the complex cross-covariance matrix between
x and y is given by

Cxy = Cua + Cvb + i(Cva − Cub). (A.12)

Hence, Cxy = 0 only implies Cua = −Cvb and Cva = Cub. This does not lead to x and y
being uncorrelated since there can be some dependence between their real and complex
parts. For x and y to be completely uncorrelated the complementary cross-covariance
matrix, C̃xy, must also be 0, since

C̃xy = Cua − Cvb + i(Cva + Cub) = 0 (A.13)

implies Cua = Cvb and Cva = −Cub. Together with the result for Cxy = 0 above we
have Cua = Cub = Cva = Cub = 0. Since the augmented cross-covariance matrix
between x and y is

Cxy =
[
Cxy C̃xy
C̃∗xy C∗xy

]
, (A.14)
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Cxy = 0 and C̃xy = 0 is automatically fulfilled if Cxy = 0. Hence, the augmented co-
variance matrix provides second-order statistical information of complex random vec-
tors.
We can now derive the general complex Gaussian probability density function

(PDF). Towards this end, let again z = [uT , vT ]T ∈ R
2n such that x = u + iv ∈ C

n

and x = Tnz ∈ C2n∗ . The multivariate Gaussian PDF for z is given by

f (z) =
1

(2π)n
√
detCzz

exp
(
−1
2
(z − μz)TC−1zz (z − μz)

)
. (A.15)

(Note that this is equal to the joint PDF between u and v.) From [154] it can be shown
that C−1zz = THC−1xxT and detCxx = 2

2n detCzz. Inserting these identities into (A.15)
yields

f (x) =
1

πn
√
detCxx

exp
(
−1
2
(x − μ

x
)HC−1xx (x − μx)

)
. (A.16)

This is often called the generalized complex Gaussian PDF (it is, however, no more
general than (A.15)).
An important special case of (A.16) can be found when C̃xx = 0. From (A.11),

C̃xx = 0 leads to

Cuu = Cvv, (A.17)
Cuv = −Cvu. (A.18)

The first equation implies that u and v have equal variance, and the second equation
requires Cuv to have zero diagonal elements while the off-diagonal may be nonzero
(i.e., ui and vi are uncorrelated, but ui and v j can be correlated for i � j). Furthermore,
inserting (A.17) and (A.18) into (A.10) leads to

Cxx = 2[Cuu − iCuv] = 2[Cvv + iCvu]. (A.19)

From (A.9) we see that the augmented covariance matrix, Cxx, is now a block diagonal
matrix containingCxx andC∗xx. Inserting this into (A.16), and after somemanipulations
(see [154]) yields

f (x) =
1

πn detCxx
exp

(
−(x − μx)HC−1xx (x − μx)

)
. (A.20)

This Gaussian PDF only gives a complete characterization of complex random vectors
in the special case when C̃xx = 0.
Objective functions in a number of different classical inversion approaches involv-

ing complex-valued vectors (CSEM in particular) are derived from (A.20) and are on
the form

(x − μx)HC−1xx (x − μx),
where Cxx is often a diagonal matrix containing, e.g., estimates of the variance of
measurement noise. From the discussion above, a diagonal Cxx implies that the real
(u) and imaginary parts (v) of x must have equal variance, which, in some cases, may
not be desirable.
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Appendix B

Model parameter update in an ensemble version
of ACKF

In this chapter, we will discuss an ensemble version of ACKF presented in [53], and in
particular derive an update equation for the ensemble of model parameters in a similar
manner as we did in Section 3.3.4. From Appendix A we know that there is an equiva-
lence between the real-composite vector and complex augmented vector, and based on
these two vector forms it is possible to express a generalized complex Gaussian PDF in
two, equally valid, ways. As we pointed out in the Discussion after Section 3.3.3 and
shown formally in [53], the ACKF and real-valued KF are also equally valid forms of
the same problem. Hence, the update equation for the ensemble of model parameters
given in this appendix will be an equally valid form of the one given in Section 3.3.4.
The following presentation relies on notation introduced in Appendix A and Chapter 3
(Section 3.3.3 and Section 3.3.4 in particular).
For ease of reading we give the analysis equation of the ACKF (without deriva-

tion) [53]
ψa
k
= ψ f

k
+Kk (dk −Hkψ fk ), (B.1)

where
Kk = C

f
ψk
HHk (HkC

f
ψk
HHk + Cdk )

−1, (B.2)

In our application,ψ
k
is a joint-state vector defined as

ψ
k
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
g̃k (mk−1)
mk

g̃∗k (mk−1)
mk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(B.3)

with a corresponding matrix

Hk =
[
INdk

/2 0 0 0
0 0 INdk

/2 0

]
(B.4)

Note that m is a real-valued vector, thusm∗ = m.
Let the ensemble of complex forward model outputs be given as G̃k (Mk−1) =

[g̃k (m1k−1), . . . , g̃k (m
Ne
k−1)] ∈ C

(Ndk
/2)×Ne . Let the complex augmented ensemble ma-
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trix, Ψk ∈ C
Nψ

k
×Ne

∗ be given by

Ψk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
G̃k (Mk−1)
Mk

G̃∗k (Mk−1)
Mk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.5)

where Nψ
k
= Ndk + 2Nm. Furthermore, let the ensemble of augmented observed data

be given as Dk = [d
1
k , . . . ,d

Ne
k ] ∈ C

Ndk
×Ne

∗ , where d jk ∼ N(dtruek ,Cdk ). The relationship
between Ψk and Dk is given in a similar manner as (3.59),

Dk = HkΨk + E
d
k , (B.6)

where Edk = [(ε
d
k )
1, . . . , (εdk )

Ne ] with (εdk )
j ∼ N(0,Cdk ) for j = 1, . . . ,Ne. We denote

the forecast ensemble as

Ψ
f
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G̃ f
k

M f
k

(G̃ f
k )
∗

M f
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.7)

Based on (B.1) and (B.2), the analysis equation for Ψak is given by (omitting the
sequential step index)

Ψ
a = Ψ f +Ke(D −HΨ f ), (B.8)

where Ke is the approximate Kalman gain

Ke = Ce
ψ fHH (HCeψ fHH + Cd)

−1. (B.9)

To get the model update equation, we proceed in the same manner as for EnKF. In the
following, let ΔX = X − X, where X is an arbitrary ensemble matrix. Based on (A.8),
(A.9), and (3.57) the sample covariance matrix, Ce

ψ f , omitting the superscript ‘ f ’, is
given by

Ce
ψ
=

1
Ne − 1

ΔΨΔΨ
H =

1
Ne − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔG̃
ΔM
ΔG̃∗
ΔM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
ΔG̃H ΔMT

ΔG̃T ΔMT
]
,

=
1

Ne − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔG̃ΔG̃H ΔG̃ΔMT

ΔG̃ΔG̃T ΔG̃ΔMT

ΔMΔG̃H ΔMΔMT
ΔMΔG̃T ΔMΔMT

ΔG̃∗ΔG̃H ΔG̃∗ΔMT
ΔG̃∗ΔG̃T ΔG̃∗ΔMT

ΔMΔG̃H ΔMΔMT
ΔMΔG̃T ΔMΔMT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.10)

Using (B.4), the terms involving Ce
ψ f in (B.9) are given by

Ce
ψ
HH =

1
Ne − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔG̃ΔG̃H ΔG̃ΔG̃T

ΔMΔG̃H ΔMΔG̃T

ΔG̃∗ΔG̃H ΔG̃∗ΔG̃T

ΔMΔG̃H ΔMΔG̃T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.11)



103

and

HCe
ψ
HH =

1
Ne − 1

[
ΔG̃ΔG̃H ΔG̃ΔG̃T

ΔG̃∗ΔG̃H ΔG̃∗ΔG̃T

]
. (B.12)

Inserting (B.9) into (B.8), and using (B.11) and (B.12) yields

⎡⎢⎢⎢⎢⎢⎢⎢⎣
G̃a
Ma

(G̃a)∗
Ma

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
G̃ f

M f

(G̃ f )∗
M f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1
Ne − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔG̃ΔG̃H ΔG̃ΔG̃T

ΔMΔG̃H ΔMΔG̃T

ΔG̃∗ΔG̃H ΔG̃∗ΔG̃T

ΔMΔG̃H ΔMΔG̃T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

(
1

Ne − 1

[
ΔG̃ΔG̃H ΔG̃ΔG̃T

ΔG̃∗ΔG̃H ΔG̃∗ΔG̃T

]
+ Cd

)−1
(D −HΨ f ). (B.13)

The update equation for the ensemble of model parameters is thus given by

Ma =M f +
1

Ne − 1
[
ΔMΔG̃H ΔMΔG̃T

]
×

(
1

Ne − 1

[
ΔG̃ΔG̃H ΔG̃ΔG̃T

ΔG̃∗ΔG̃H ΔG̃∗ΔG̃T

]
+ Cd

)−1
(D −HΨ f ). (B.14)

If we define
Cemg =

1
Ne − 1

ΔMΔGH Ce
g
=

1
Ne − 1

ΔGΔGH , (B.15)

with

G =
[
G̃
G̃∗

]
, (B.16)

then (B.14) can be given on similar form as (3.65).
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Appendix C

Relation between power kernel and Parzen
kernel density estimator

The objective of this appendix is to show that the power kernel used in Paper A leads
to an interpretation of the shape prior regularization term (see Section 6.3), Jprior , as
a generalization of the well known Parzen kernel density estimator (in the following
denoted KDE). The discussion in this appendix mostly follows [49, Appendix C].
We first define the power kernel. Let x, y ∈ Rn, then the power kernel is given by

k (x,y) =
1
hn

⎧⎪⎨⎪⎩ρ(τ,n) − ‖
x−y
h ‖τ, if ‖ x−yh ‖ ≤ ρ(τ,n) 1τ ,

0, otherwise,
(C.1)

where 0 ≤ τ ≤ 2, and
ρ(τ,n) =

(
τ + n
τVn

) τ
τ+n

, (C.2)

with Vn being the unit n-dimensional sphere, that is, V1 = 2, V2 = π, V3 = 4π/3,
etc. The power kernel has close connections to the CPD kernel defined as k (x,y) =
−‖x − y‖τ [140]. It can be shown that any kernel of the form k = kCPD + b, where b is
a constant, is also CPD [140]. Since ρ(τ,n) is just a constant and h in (C.1) just scales
the output of k (x,y) = −‖x − y‖τ, the power kernel is CPD.
Let t1, . . . , tm ∈ Rn be a set of data. A simple estimator of a PDF, f (x), is given by

the KDE [130]

f̂ (x) =
1
mhn

m∑
i=1
K

(
x − ti
h

)
, (C.3)

where K is a Borel measurable function, which is nonnegative and integrates to one
(i.e., it fulfills the same properties as a PDF). It is easy to show a connection between
KDE and Jprior , if we require the kernel to be on the form

k (x,y) =
1
hn
K

(x − y
h

)
. (C.4)

From (6.50) it is seen that Jprior consists of two terms where one involves k̃ (x,x) =
〈φ̃(x), φ̃(x)〉 = ‖φ̃(x)‖2 = ‖φ(x) − φ‖2. Using (6.42) this term can be written

‖φ(x) − φ‖2 = k̃ (x,x) = k (x,x) − 2
m

m∑
i=1
k (x, ti) +

1
m2

m∑
i=1
k (ti, t j ). (C.5)
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Inserting (C.4) leads to

‖φ(x) − φ‖2 = const. − 2
mhn

m∑
i=1
K

(
x − ti
h

)
. (C.6)

We see that (C.6) is equivalent to (C.3) up to a scaling and a constant. Hence, Jprior
can be seen as a generalization of KDE.
Now, we need to show that the power kernel (C.1) fulfills (C.4), that is, check if it

is nonnegative and integrates to one. First, we identify K (u) for the power kernel as

K (u) =
⎧⎪⎨⎪⎩ρ(τ,n) − ‖u‖

τ, if ‖u‖ ≤ ρ(τ,n) 1τ ,
0, otherwise,

(C.7)

where u = (x − ti)/h. From (C.7) it is easily seen that K (u) is always nonnegative.
Next, we show that K (u) integrates to one only for n = 2, as it gives the basic idea for
the proof for a general n. Hence, we are interested to show that∫ ∞

∞

∫ ∞

∞
K (u1,u2) du1du2 = 1. (C.8)

Using polar coordinates, (r, θ), and noticing the K (u) is nonzero only in a radius ρ 1τ =
ρ(τ,2) 1τ from the origin, the integral becomes

∫ 2π

0

∫ ρ
1
τ

0
(ρ − rτ)r drdθ = ρτ+2τ

[
πτ

τ + 2

]
= 1, (C.9)

where the last equality follows from (C.2). Using hyperspherical coordinates it is pos-
sible to show that K (u) also integrates to one for a general n.
In summary, we have shown that Jprior consists partly of a term similar to the KDE

if the kernel fulfills (C.4), and can thus be seen as a generalization of KDE. Moreover,
we have shown that the power kernel given in (C.1) fulfills (C.4).



Bibliography

[1] Aanonsen, S. I., Nævdal, G., Oliver, D. S., Reynolds, A. C., and Vallès, B. The
ensemble Kalman filter in reservoir engineering – a review. SPE J. 14, 3 (2009),
393–412.

[2] Abubakar, A., Habashy, T. M., Li, M., and Liu, J. Inversion algorithms for large-
scale geophysical electromagnetic measurements. Inverse Probl. 25, 12 (2009),
123012.

[3] Adalsteinsson, D., and Sethian, J. A. A fast level set method for propagating
interfaces. J. Comput. Phys. 118, 2 (1995), 269–277.

[4] Adimurthi, Dutta, R., Veerappa Gowda, G. D., and Jaffré, J. Monotone (A,B)
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