Vis enkel innførsel

dc.contributor.authorMøller, Tor Einar
dc.contributor.authorMoine-Bauer, Sven Le
dc.contributor.authorHannisdal, Bjarte
dc.contributor.authorZhao, Rui
dc.contributor.authorBaumberger, Tamara
dc.contributor.authorRoerdink, Desiree Lisette
dc.contributor.authorDupuis, Amandine
dc.contributor.authorThorseth, Ingunn Hindenes
dc.contributor.authorPedersen, Rolf B.
dc.contributor.authorJørgensen, Steffen Leth
dc.date.accessioned2023-02-27T12:06:03Z
dc.date.available2023-02-27T12:06:03Z
dc.date.created2022-09-12T12:28:03Z
dc.date.issued2022
dc.identifier.issn1664-302X
dc.identifier.urihttps://hdl.handle.net/11250/3054213
dc.description.abstractOxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units. We find that some of the most abundant classes of microorganisms can be used to classify samples according to oxygen concentration. At the level of Operational Taxonomic Units, however, representatives of common classes are not differentially abundant from high-oxic to low-oxic conditions. This weakened response to changing oxygen concentration suggests that the abundance and prevalence of highly abundant OTUs may be better explained by other variables than oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the benthos, and that the microbiome then becomes more heterogeneous as oxygen drops below 25 μM. Our analytical approach takes into account the oft-ignored compositional nature of relative abundance data, and provides a framework for extracting biologically meaningful associations from datasets spanning multiple sedimentary cores.en_US
dc.language.isoengen_US
dc.publisherFrontiersen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMapping Microbial Abundance and Prevalence to Changing Oxygen Concentration in Deep-Sea Sediments Using Machine Learning and Differential Abundanceen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumber804575en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.3389/fmicb.2022.804575
dc.identifier.cristin2050759
dc.source.journalFrontiers in Microbiologyen_US
dc.identifier.citationFrontiers in Microbiology. 2022, 13, 804575.en_US
dc.source.volume13en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal