Building a finite state automaton for physical processes using queries and counterexamples on long short-term memory models
Master thesis
View/ Open
Date
2023-06-01Metadata
Show full item recordCollections
- Master theses [218]
Abstract
Most neural networks (NN) are commonly used as black-box functions. A network takes an input and produces an output, without the user knowing what rules and system dynamics have produced the specific output. In some situations, such as safety-critical applications, having the capability of understanding and validating models before applying them can be crucial. In this regard, some approaches for representing NN in more understandable ways, attempt to accurately extract symbolic knowledge from the networks using interpretable and simple systems consisting of a finite set of states and transitions known as deterministic finite-state automata (DFA). In this thesis, we have considered a rule extraction approach developed by Weiss et al. that employs the exact learning method L* to extract DFA from recurrent neural networks (RNNs) trained on classifying symbolic data sequences. Our aim has been to study the practicality of applying their rule extraction approach on more complex data based on physical processes consisting of continuous values. Specifically, we experimented with datasets of varying complexities, considering both the inherent complexity of the dataset itself and complexities introduced from different discretization intervals used to represent the continuous data values. Datasets incorporated in this thesis encompass sine wave prediction datasets, sequence value prediction datasets, and a safety-critical well-drilling pressure scenario generated through the use of the well-drilling simulator OpenLab and the sparse identification of nonlinear dynamical systems (SINDy) algorithm. We observe that the rule extraction algorithm is able to extract simple and small DFA representations of LSTM models. On the considered datasets, extracted DFA generally demonstrates worse performance than the LSTM models used for extraction. Overall, for both increasing problem complexity and more discretization intervals, the performance of the extracted DFA decreases. However, DFA extracted from datasets discretized using few intervals yields more impressive results, and the algorithm can in some cases extract DFA that outperforms their respective LSTM models.