Computational search for isotopic semifields and planar functions in characteristic 3
Master thesis
View/ Open
Date
2023-09-01Metadata
Show full item recordCollections
- Master theses [220]
Abstract
In this thesis, we investigate the possibility of finding new planar functions and corresponding semifields in characteristic 3 by the construction of isotopic semifields from the known families and sporadic instances of planar functions. Using the conditions laid out by Coulter and Henderson, we are able to deduce that a number of the known infinite families can never produce CCZ-inequivalent functions via isotopism. For the remaining families, we computationally investigate the isotopism classes of their instances over finite fields of order 3^n for n ≤ 8. We find previously unknown isotopisms between the semifields corresponding to some of the known planar functions for n = 6 and n = 8. This allows us to refine the known classification of planar functions up to isotopism, and to provide an updated, partial classification up to isotopism over finite fields of order 3^n for n ≤ 8.